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ABSTRACT OF THE DISSERTATION 

Calibration of Confidence Judgments in Elementary Mathematics:  

Measurement, Development, and Improvement 

By 

Teomara Rutherford 

Doctor of Philosophy in Education 

University of California, Irvine, 2014 

Professor George Farkas, Chair 

 

Self-regulated learning (SRL), the ability to set goals and monitor and control progress 

toward these goals, is an important part of a positive mathematical disposition. Within SRL, 

accurate metacognitive monitoring is necessary to drive control processes. Students who display 

this accuracy are said to be calibrated, and although calibration is a growing area of research 

within Educational Psychology, unanswered questions remain about the nature of calibration: 

how it should be measured, its role as a dynamic aspect of metacognition, and how best to 

improve it. This dissertation uses a rich source of data on student calibration and achievement 

within an online mathematics curriculum (ST Math) to approach these questions and present 

results on calibration as representative of a complex system of metacognition. 

This dissertation presents evidence that calibration is best represented as two separate 

monitoring processes, one for confidence and one for uncertainty; these processes can be 

operationalized through the measures of Sensitivity and Specificity. In Study 1, comparisons 

with other commonly used measures of calibration indicate that Sensitivity and Specificity have 

a relative robustness to most patterns of missing data and greater strength as predictors. Other 
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commonly used calibration measures suffer greatly from missing data inherent in real-world 

patterns of question answering.  

Study 2 characterizes metacognitive monitoring as part of a dynamic system that varies 

depending on task. In this study, variance in calibration is associated with variance in 

performance gain within the same student across ST Math quizzes. Both Sensitivity and 

Specificity are predictors of this gain, but greater confidence when correct (Sensitivity) is more 

strongly associated with performance gains between quizzes than is greater uncertainty when 

incorrect (Specificity). 

Study 3 evaluates the potential of ST Math as a calibration intervention. After a year's 

practice and feedback with ST Math, students display greater Specificity, but lower Sensitivity, 

indicating that ST Math made the students more uncertain. Study 3 also explores how change in 

calibration is related to change in achievement, finding no relation between growth in calibration 

and growth in achievement, either within or outside of ST Math.  
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CHAPTER 1 

Introduction and Literature Review 

Background  

Innovative math thinkers, crucial for a modern STEM workforce, are those who take 

ownership of their learning.  This ownership can be characterized as self-regulated learning 

(SRL): the ability to set goals, monitor progress toward these goals, and make adjustments when 

necessary to ensure achievement (Zimmerman, 2008).  Fostering SRL is especially important in 

mathematics, where students who are unable to monitor their understanding inevitably miss 

foundational material needed to understand more advanced concepts.   

Using SRL, students incorporate feedback from prior successes and failures into the 

formation of strategies for future accomplishments (Greene & Azevedo, 2007; Winne, 2004). 

Students who are able to realistically assess their likelihood of success on a given task, and who 

are able to accurately reflect on previous performance, are more able to set challenging yet 

attainable goals, maintain motivation towards achieving these goals, and make use of strategies 

necessary for their success (Greene & Azevedo, 2007; Stone, 2000; Winne, 2004). Models for 

SRL are complex, and in order to effectively regulate their learning, students must make accurate 

assessments of their own capabilities and knowledge at multiple steps of the process (Greene & 

Azevedo, 2007). This dissertation addresses the accuracy of these assessments as calibration of 

confidence, and sets out a course of research on the measurement of calibration, its links with 

mathematics performance, and its malleability. 

The Studies  

This dissertation combines three studies centered on calibration by elementary school 

students addressing the research questions: (1) How can calibration best be measured? (2) Is 
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initial calibration accuracy linked to learning gains? and (3) Can calibration be improved? 

Data from a calibration training program within the MIND Research Institute's ST Math 

program are utilized within all three studies. In the first, the measurement of calibration is 

explored to determine which of the most common measures of calibration are appropriate for 

real-world data of the type gathered within ST Math. In the second study, these data are analyzed 

to determine whether calibration is associated with greater student performance gains from pre to 

post-test. The third study determines whether the practice with and feedback on calibration 

judgments within ST Math improves calibration accuracy, comparing a group of students who 

have had one year of this practice with those who are just beginning to use the program. 

Significance  

America's ability to compete in a global market depends heavily on education (NAP, 

2010). Science and math education in particular are vital for success, yet the United States public 

education system is not adequately developing the intellectual readiness needed to sustain the 

nation's economy or solve the scientific and mathematical challenges of the future (NAS, 2007; 

NSF, 2010). International comparisons of mathematics performance show that U.S. students fall 

behind other top industrialized nations (PISA, 2009), and within the U.S., achievement gaps 

persist between African American or Hispanic students and White or Asian American students 

(Fryer & Levitt, 2004; NCES, 2005; Reardon & Galindo, 2009). 

Teaching students math concepts and procedures may not be enough for their success. 

So-called "non-cognitive" skills are also necessary to ensure lasting learning and engagement in 

math and other subjects (see Cunha & Heckman, 2006; NMAP, 2008). Strength in these skills 

can provide students with a sensitivity to know when it is appropriate to apply certain 

mathematical knowledge and an inclination to do so (DeCorte, Verschaffel, & Op'T Eynde, 
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2000). As one of these "non-cognitive" skills, SRL has been related to mathematics achievement 

(e.g., Fuchs et al., 2003; Schunk, 1996), as has calibration—students who are more accurate in 

their self-assessments achieve more (Pajares & Kranzler, 1995; Rinne & Mazzocco, 2014; Stone, 

2000). Given these relations, improving the components of SRL, including calibration, may lead 

to improved mathematical skills, ultimately supporting achievement and engagement in 

mathematics, potentially far beyond the reach of the current class environment.  

In order to plan interventions to improve calibration and to measure their effects, it is 

necessary to better understand the relation between calibration and achievement. Prior work has 

consistently found associations indicating that students who are better calibrated are also higher 

achievers (e.g., e.g., Bol, Riggs, Hacker, Dickerson & Nunnery, 2010; Chen, 2002; Tobias & 

Everson, 1998), often relating calibration on one task or group of tasks with an unrelated 

measure of performance (e.g., Jonsson & Allwood, 2003; Pallier et al., 2002). This makes it 

difficult to understand the function of calibration within the ecology of SRL: the link between 

student calibration on knowledge recall questions and performance measured as GPA may 

indicate that disposition toward metacognitive monitoring is linked with higher achievement, but 

it does not indicate whether this monitoring may serve to enhance regulation of learning from 

task to task or within the same task. Studying the same student across related tasks as is done in 

this dissertation can better illuminate the dynamic nature of calibration.  

Inherent in the understanding of calibration and its relation with achievement is 

knowledge about the measurement of calibration. Recommendations as to the best way to 

represent a student’s knowledge of what they know and don’t know have previously been based 

on factor analysis of simulated data (e.g., Schraw, Kuch, & Gutierrez, 2013), comparisons of the 

biases inherent in certain indices of calibration (e.g., Masson & Rotello, 2009; Nietfeld, Enders, 



4 
 

& Schraw, 2006), or examinations of differential correlates of calibration accuracy depending on 

measure (e.g., Boekaerts & Rozendaal, 2010). Much of this work has been done using simulated 

or unrealistic data and has not considered the practical concerns of using each measure with data 

obtained from young students. Additionally, comparative studies of the predictive validity of 

calculation options have not been undertaken (see Schraw, 2009). Within this dissertation, real-

world data obtained from meaningful educational interactions of young students with digital 

mathematics content provides a unique testing ground for these comparisons. 

Interventions focused on calibration have largely been in non-math domains, with 

college-aged students, or for short durations. All three aspects may contribute to the typically 

weak improvements seen and the lack of transfer to achievement (e.g., Bol & Hacker, 2001; Bol, 

Hacker, O'Shea, & Allen, 2005; Huff & Nietfeld, 2009). Prior calibration trainings have been 

conducted largely in knowledge-based college classrooms (e.g., Educational Psychology). These 

types of domains may especially suffer from a piecemeal approach to learning antithetical to the 

transfer of skills (see Alexander & Murphy, 1999). In contrast, the hierarchical structure of 

mathematics means that it is typically taught as a developmental progression, where new math 

skills are built on previously mastered skills to form a trajectory of increasingly sophisticated 

thinking (see Clements & Sarama, 2009). Within this system of learning, it may be easier for 

students to see links between units of instruction, supporting the transfer of calibration between 

math topics. Just as math may be more suited to interventions focused on calibration 

improvement, there may be ages at which students may benefit more from this type of training. 

Middle childhood, as metacognitive skills begin to emerge, may be an ideal time to bolster SRL, 

including calibration (Cunha & Heckman, 2006; Davis-Kean, Jager, & Collins, 2009). As with 

any skill, calibration of metacognitive judgments requires extensive opportunity for practice to 
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become a transferable habit of mind (see Alexander & Murphy, 1999). Prior trainings have 

involved only a handful of practice opportunities over periods lasting at most a semester (e.g., 

Nietfeld, Cao, & Osbourne, 2006). Study three within this dissertation focuses on an intervention 

to improve calibration of metacognitive judgments in math, with students in middle childhood, 

and over the course of one year with multiple practice opportunities (30+). The domain, age, and 

scope of this study will be a unique contribution to the calibration intervention literature. 

These three studies combine research on measurement of calibration, its relation with 

achievement, and the malleability of calibration in response to an intervention. This dissertation 

will contribute to the body of literature in these areas and also inform future interventions for 

improving calibration of metacognitive judgments within math and beyond, potentially having a 

significant effect on SRL and achievement, with further potential to improve these skills beyond 

the immediate subject or class. 

Structure 

The following section contains a discussion of the conceptual framework for this 

dissertation and a description of self-regulated learning and the role of calibration within. Each 

study within the dissertation will then be laid out in turn: the study-specific literature will be 

reviewed, the questions presented, and the methods and results described. These results will be 

discussed within each study’s chapter and tied together in a final overarching conclusion. 
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Literature Review 

Theoretical Framework, Social Cognitive Theory and Metacognition 

The SRL cycle is situated within a social cognitive perspective—one that seeks to explain 

individual processes in interaction with the environment (Schunk, Pintrich, & Meece, 2008; 

Zimmerman, 1989). Within this perspective, human functioning is explained by the interplay of 

personal factors, environmental factors, and behaviors (Bandura, 1986). Activities within the 

SRL cycle mediate the relations between student and environment to culminate in learning and 

achievement (Pintrich, 2004). Personal characteristics of the learner and characteristics of the 

context each contribute to the student's regulation of learning. The context influences student 

motivation and behavior within the SRL cycle and it also must provide opportunity for the 

learner to engage in SRL: there must exist the potential for the learner to have control over 

his/her cognition, motivation, environment, and/or behavior (Pintrich, 2004).  

SRL is also informed by theories of metacognition, known colloquially as “thinking 

about thinking.” Drawing on ideas from the cognitive revolution and the turn away from 

behaviorism, psychology within the 1960s and 1970s focused on processes that occurred within 

the individual (Dunlosky & Metcalfe, 2009). These ideas about cognition, along with Piagetian 

theories of development, were brought together in Flavell’s (1979) introduction of 

metacognition. Flavell defined metacognition as knowledge and cognition about cognitive 

phenomena, and described the elements of metacognitive knowledge (e.g., knowledge of 

yourself as a person, knowledge about tasks, and knowledge about strategies) and metacognitive 

experiences: the conscious consideration of the task at hand, such as a “momentary sense of 

puzzlement” (1979, p. 908). Flavell’s ideas can be contrasted with the modern study of 

metacognition within a social cognitive framework in the perception of “hot” vs. “cool” 
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cognition. Flavell described metacognitive experiences as most likely to occur in moments of 

cognitive purity “where high affective arousal or other inhibitors of reflective thinking are 

absent” (p. 908). Real-world metacognitive experiences, such as senses of puzzlement, exist 

within a context of goals and emotions (see Bandura, 2001) and interact with features of the 

environment and the agent’s perception of those features (Efklides, 2011; Zimmerman, 2000). 

Because aspects of the current study investigate self-regulated learning within the context of 

classrooms, subjects, and learning environments, and emphasize the agentic nature of the student 

participants, social cognitive theory is a more fitting theoretical framework than traditional 

metacognition. However, studies on SRL and calibration within a social cognitive framework 

share a history with studies of calibration and metamemory within a more purely metacognitive 

framework, and therefore metacognitive research is discussed within the literature review and 

considered as informative to the study. 

Self-Regulated Learning and Metacognitive Judgments 

Emerging in the 1980s, the concept of SRL was one that drew on information processing, 

social cognitive theory, and the ideas inherent in the earlier lines of research on self-regulation 

and metacognition (Dinsmore, Alexander, & Loughlin, 2008; Zimmerman, 2001). Within a 

social cognitive perspective, SRL is often represented by the three stages seen in Figure 1.1. 

Learners set goals, monitor their progress as they perform actions in pursuit of these goals, and 

evaluate their performance in light of these goals to make adjustments to their goals or strategies 

when reentering the cycle (Pintrich2000; Zimmerman, 1989; Zimmerman, 2008; Zimmerman, 

2000). Although the model presented in Figure 1.1 is the conceptualization of SRL born from the 

social cognitive perspective, models of SRL from other perspectives share similar features, 

namely purposeful use of strategies or processes, a self-oriented feedback loop, and a motivation 
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to engage in the learning process (Zimmerman, 1998, 2001).  

{Insert Figure 1.1} 

Accurate metacognitive judgments are important at each stage of the process. In the 

planning or forethought phase, students rely on their self-efficacy or judgment that they will be 

able "to organize and execute courses of action required to attain designated types of 

performances” (Bandura, 1986, p. 391). Goals can be adjusted in light of this self-efficacy 

judgment. An accurate judgment would result in a goal that is attainable; setting too lofty a goal 

might result in failure accompanied by discouragement and disengagement. The ideal self-

efficacy is one that is slightly positively biased, allowing for appropriate goal-setting, and also 

for persistence in the face of obstacles (Bandura, 1986; Schunk et al., 2008; Winne, 2004). This 

persistence can be seen in the performance phase as learners must maintain their sense of their 

goals despite challenges they encounter. Also within the performance phase, students adjust their 

strategies and resource allocation as they monitor their success with relation to their goals and 

sub-goals (Nelson, 1996; Pintrich, 2004; Winne, 2001). In the final phase, as students evaluate 

their ultimate goal attainment and the usefulness of their strategies to obtain this goal, accurate 

metacognitive judgments will guide students to make necessary changes. 

The process of studying for a test is an oft-used example of SRL (e.g., Nelson, 1996). 

Within this example, a student may set the goal that she would like to earn an A on her 

Educational Psychology midterm. To set this goal she uses information about herself as a learner 

generally and in this domain, information about the task (in this case the test), and information 

about what strategies are likely to yield the best results (see Efklides, 2011; Flavell, 1979). This 

information is used to determine whether an A is an attainable goal, and what actions need to be 

taken to attain this goal. An error in her metacognitive knowledge or her metacognitive 
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judgments regarding the accuracy of this knowledge will result in an error in goal-setting and/or 

planning.  

Our student has set a goal and has determined that the best course of action is to study 

using the instructor-provided outline and practice test—it worked well for her on the last quiz 

she took in this same class. As she studies, she monitors her understanding: she reads a question 

and asks herself whether she knew the answer, she speaks the answer to herself and has a sense 

as to whether it is the correct one. As she does this she also asks herself about the material in 

general—making determinations as to which topic she knows and does not know and dedicating 

extra time where she thinks she has holes in her understanding. An error in these judgments 

might cause her to misallocate study time. As she assesses her learning she evaluates how well 

her strategies are working. She identifies that she does not understand as much as she would like 

and changes strategy, perhaps by seeking help from the TA during office hours.  

At each stage of the process, the student's successful regulation of her learning is 

contingent on making accurate metacognitive judgments. At each stage is also the opportunity 

for her to enhance her SRL with interaction with the environment (see Zimmerman, 2000). She 

uses resources provided by the instructor to scaffold her self-regulation, she uses the self-quiz 

technique because it was modeled for her and she practiced it, and she seeks help because she is 

aware of the resource the TA provides and has been encouraged to use it. In this way, her 

environment supports current self-regulation and development of future SRL skills.  

Accuracy of Metacognitive Judgments: Calibration 

For a given task, student calibration accuracy is defined by comparing student predictions 

or postdictions with actual achievement. Predictions are those judgments made before 

undertaking a task, and postdictions are those made after completing a task. For example, a 
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student about to take a math test can make a prediction as to how many questions he or she will 

answer correctly and then, after attempting the questions, the student makes a postdiction as to 

how many he or she did answer correctly. Two types of calibration bias are possible. When a 

student predicts or postdicts accuracy above that which he actually attains, that student is 

overconfident. This is in contrast to underconfidence, when a student’s indication of his 

likelihood of success is below his attainment of actual success.  

Differences between perception of performance and actual or objective measures of 

performance are well documented in the literature—people in general tend to be overconfident 

(Chen, 2002; Kruger & Dunning, 1999; Stone, 2000). Individual differences may influence 

relative overconfidence. Those who have limited knowledge about a domain tend to be more 

overconfident (Kruger & Dunning, 1999). Stages of domain learning as described in Alexander 

and Murphy (1999) may help to illuminate some of these differences. Alexander and Murphy 

describe new learners within a domain as those who must rely heavily on general metacognitive 

strategies, yet do not have the domain-specific knowledge to use them efficiently. Nor do they 

have the cognitive resources free to focus attention on metacognitive pursuits (see Alexander & 

Murphy, 1999; Avery & Smillie, 2012). Lack of knowledge within a domain may also result in 

individuals using the wrong resources with which to base their judgments. Dinsmore and 

Parkinson (2013) found that students who were more poorly calibrated often relied on multiple 

factors when making metacognitive judgments, perhaps reflecting their failure to understand the 

most important cues within the test information. Kruger and Dunning (1999) note this link 

between knowledge and calibration as a "dual burden"—individuals lack both the knowledge of 

material and the knowledge that they don't have this knowledge (p. 1,121), handicapping their 

motivation to acquire the knowledge they need. 
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Generally, higher achieving students are found to be better calibrated, and have been 

found by some researchers to exhibit underestimation bias, if any (Stone, 2000). This has been 

replicated across domains and age groups. With elementary students, the relation between 

accurate calibration and achievement has been found in math (e.g., Barnett & Hixon, 1997; 

Tobias & Everson, 1998), reading (e.g., Fajar, Santos, & Tobias, 1996; Romero & Tobias, 1996), 

social studies and spelling (e.g., Barnett & Hixon, 1997), and in playing computer games (e.g., 

Nietfeld, Minogue, Spires, & Lester, 2013). This  calibration/achievement link was also found in 

middle/high school math students (e.g., Bol, Riggs, Hacker, Dickerson & Nunnery, 2010; Chen, 

2002; Chen, 2007, in an international sample; Pajares & Kranzler, 1995), and in undergraduate 

students within knowledge-based courses like Research Methods (e.g., Bol & Hacker, 2001; Bol 

et al., 2005). Many of these studies use researcher-created measures of achievement; little work 

in the K-12 arena has used real graded assignments or relevant achievement measures (Hacker, 

Bol, & Keener, 2008). These associations between calibration and achievement are explored 

within the studies of this dissertation. The following chapter discusses issues inherent in the 

calculation of measures of calibration and compares ten commonly used measures of 

calibration—investigating both their practicality and their predictive validity. 
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CHAPTER 2 

Study 1: The Measurement of Calibration in Real Contexts 

Calibration, although generally referring to knowledge of what one knows and doesn’t 

know, can be operationalized in a variety of manners. When operationalizing calibration, 

researchers focus on three dimensions: timing, grain size, and calculation of measurement. 

Timing focuses on when metacognitive judgments are elicited, before or after an event, 

described above as predictions and postdictions. Timing has important indications for conducting 

research on calibration—for example, postdictions are generally more accurate than predictions 

(Hacker, Bol, & Keener, 2008). Predictions and postdictions may implicate different levels of 

metacognitive knowledge within an individual. In a testing context, a prediction before a student 

attempts to answer an item is completed with imperfect information about the actual material to 

be tested and may reflect a more general sense of self-efficacy about the domain of assessment. 

In contrast, postdictions are completed after experiencing attempt at recall or problem-solving 

and are therefore more closely tied to the material tested.  

Grain size refers to the level at which the judgments are elicited (see Schraw, 2009). A 

student could be asked for a pre or postdiction for how well they think they will do/did in a 

course, on a test, or on an individual item. Studies within Educational Psychology often look at 

macro levels of calibration, for example, comparing actual percent of items correct with a 

student's pre or postdiction of items correct (see Keren, 1991; e.g., Barnett & Hixon, 1997; Bol 

& Hacker, 2001). As seen in Figure 2.1, this can ignore important information. Imagine that two 

students, Sarah and Jenny, each took a five-question quiz and gave item-by-item confidence 

ratings (confident/not confident). Looking only at the macro level, Jenny appears perfectly 

calibrated—her level of confidence matches her level of accuracy; however, she is only properly 
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calibrated on 60% of the items. In comparison to macro-level analysis, item-by-item analysis 

allows a more detailed, and likely more accurate, view of the process of forming metacognitive 

judgments.  

Finally, choice of calculation of calibration affects conclusions drawn. Researchers can 

focus on absolute calibration (e.g., Bol & Hacker, 2001; Huff & Nietfeld, 2009) or can 

investigate the direction of the calibration (e.g., Chen, 2002; Mengelkamp & Bannert, 2010). In 

Figure 2.1, both Sarah and Jenny have the same level of calibration (looking item-by-item), but 

Sarah displays an overconfident bias whereas Jenny is not biased in either direction. It is this 

choice of how to calculate the level of calibration when using item-by-item comparisons upon 

which this study focuses, asking (1) Which measures of calibration can accommodate real-world 

data of accuracy and confidence judgments? and (2) Among these measures, which display the 

greatest predictive validity?  

{Insert Figure 2.1} 

Comparisons of Calibration Measures 

In selecting measures of calibration, prior research has noted the importance of aligning 

the purpose of the study with the selected measure (see Boekaerts & Rozendaal, 2010; Nietfeld, 

Enders, & Schraw, 2006; Schraw, 2009). Various measures may be complimentary in that they 

can provide information on absolute accuracy, bias, or also the ability to distinguish between 

correct and incorrect items—each may be more or less useful in light of particular research 

questions (see Boekaerts & Rozendaal, 2010; Schraw, 2009). However, practical considerations 

beyond the match with research question may also guide the choice of method. The balance 

between sensitivity and ease of use has been one such issue. It has been suggested that for young 

children especially, measures with fewer choices reduce the cognitive load and allow for more 
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accurate calibration scores (see Huff & Nietfeld, 2009; see e.g, Lyons & Ghetti, 2011). As seen 

with the example of Sarah and Jenny (Figure 2.1), students can indicate on a dichotomous 

measure whether they feel confident or not confident.   

{Insert Figure 2.2} 

The use of such a dichotomous measure in relating accuracy to judgments of confidence 

results in a 2x2 contingency table with cells described as in Figure 2.2. Looking to our examples: 

of the five quiz questions, Sarah would have one question in cell A, two each in cells B and D, 

and none in cell C. Jenny would have two questions in cell A and one each in the other three 

cells. Numerous indices have been created for the calculation of agreement based on the contents 

of these cells (see Feuerman & Miller, 2008; Schraw et al., 2013). Table 2.1 presents a number 

of common indices expressed as functions of cells A through D and largely draws on 

descriptions of these formulas as presented in Schraw and colleague's (2013) work. Some 

measures have emerged as more popular that others: Gamma (e.g., Mengelkamp & Bannert, 

2010; Thiede, Anderson, & Therriault, 2003), d' or discrimination (e.g., Boekaerts & Rozendaal, 

2010; Macmillan & Creelman, 1996), and G Index (e.g., Schraw, 1995; Tobias & Everson, 2002) 

have been particularly popular within metacognition research. These and other measures have 

theoretical justifications (e.g., Gamma may be most useful in determining consistency of 

judgments whereas G Index may be most useful in measuring changes in calibration, see 

Nietfeld et al., 2006), but there are also practical ramifications of the selection of one measure 

over another. Due to the nature of the formula calculations, the distribution of data within the 

2x2 contingency tables affects each of the measures differently. For some, the lack of selections 

that fall in certain quadrants is especially problematic. As an example, Gamma is undefined 
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when certain combinations of quadrants are missing (A and C, A and B, D and C, D and B) and 

can be heavily distorted when even one quadrant is zero (see Kuch, 2012).  

These distortions from missing quadrants have been quantified and discussed in prior 

research (e.g., Kuch, 2012; Mason & Rotello, 2009; Nietfeld et al., 2006; Schraw, Kuch, & 

Roberts, 2011). In particular, previous work has examined the extent of distortion due to number 

of test questions and difficulty of questions (e.g., Schraw et al., 2011; Kuch, 2012), the 

comparative distortion between measures (e.g., Kuch, 2012; Nietfeld et al., 2006), and solutions 

for eliminating this distortion (e.g., Hautus, 1995; Miller, 1996; Schraw et al., 2011). The bulk of 

this research is conducted by examining the behavior of the measures using simulated data. A 

typical process uses a Monte Carlo simulation to create responses for questions to tests of lengths 

from 6 to 1,000 questions (often assuming the correct/non-distorted estimates will be present at 

1,000 questions). To simulate a distribution of responses due to chance, each question response 

is randomly assigned to one of the four quadrants resulting in approximately 25% of the 

responses in each cell. To simulate a moderately accurate condition, which is often assumed to 

approximate real-life conditions (see Kuch, 2012; Nietfeld et al., 2006; Schraw et al., 2013), 50% 

of the responses are assigned to cell A (confident and correct) and then the remaining 50% are 

randomly assigned across all four cells. This results in a distribution of 62.5% in cell A and 

12.5% in each of the other cells. Based on such simulated datasets, Nietfeld and colleagues 

(2006) concluded that G Index was more reliable across varying test sizes than Gamma, a 

conclusion supported by Kuch (2012). Schraw and colleagues (2011) suggested that for Gamma 

to be reliable it needed to be calculated from moderately difficult tests of at least 20 questions. 

This suggestion for test size was based on data behavior that simulated an equal likelihood of 

being in cells B through D, even in conditions meant to approximate tests of moderate difficulty. 
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However, theory surrounding metacognitive judgments does not support this distribution of 

responses. As difficulty increases, it is more likely that test-takers will make overconfident 

judgments (see Kruger and Dunning, 1999), likely resulting in a paucity of quadrant D 

responses, even when test-takers make more incorrect responses.  

{Insert Table 2.1} 

To attempt to avoid distortion from zero quadrants, two tactics have been previously 

used. A number, such as .05, can be added either to only the missing quadrant or to all four 

quadrants (see Hautus, 1995). Schraw et al. (2011) and Miller (1996) demonstrated with 

simulated data that adding a number to the missing quadrant (most likely quadrant D in Schraw 

et al., 2011) did not eliminate data distortion and that distortion varied depending on the exact 

number added and on the value for calibration that would have been observed without distortion 

(based on simulated data of at least 1,000 questions). Hautus (1995) noted that although neither 

commonly used convention for handling missing quadrants completely replicated true non-

problematic data, the practice of adding a value across all quadrants came closer. Schraw and 

colleagues (2011) discouraged researchers from the practice of modifying the data, noting that 

modifying the instrument instead (as noted above, to a moderately difficult >25 question test) 

should solve the problem of missing quadrants.  

Schraw (2009) describes both practical and theoretical limitations to a number of 

measures of calibration, noting that although Monte Carlo experiments can inform researchers 

about certain properties of these measures, comparative studies of predictive validity were much 

needed and had been virtually non-existent. In a later paper, Schraw and colleagues (2013) again 

turned to simulated data to move beyond the practical difficulties of distortion due to zero 

quadrants to concentrate on the interrelation of common measures. The authors classified each of 



26 
 

the measures in Table 2.1 into one of five interpretive families based on the main purpose for 

each measure (diagnostic efficiency, agreement, association, binary distance, and discrimination) 

and noted that there were theoretical reasons for possible degrees of correlation between each of 

the measures. Using simulated datasets of 1,000 question quizzes, they conducted confirmatory 

factor analyses to test three competing models of metacognitive monitoring: the first, based on 

the Nelson and Narens (1990) one-factor solution, the second, specifying a two-factor solution 

with sensitivity and specificity as orthogonal processes subsuming variance in all the other 

measures (see Feuerman & Miller, 2008), and the third, specifying five interrelated factors based 

on the theoretical families. The authors concluded that the second model was the best-fitting for 

their simulated data in both the chance and moderate accuracy conditions and that sensitivity and 

specificity, together in a combined model, should be the best indicators of metacognitive 

monitoring.  

Schraw and colleagues (2013) had theoretical reasons for supporting their advocacy of a 

combined sensitivity/specificity model; however, their conclusions were based off of simulated 

data and did not investigate the predictive validity of each of the measures studied. A comparison 

of these common measures of calibration has not been undertaken using non-simulated data, 

especially those from an authentic learning task. Most studies of calibration with authentic 

learning tasks include relatively small samples using tests of limited size (see Schraw et al., 

2013; e.g., Huff & Nietfeld, 2009; Pajares & Miller, 1997). This makes comparisons between 

measures difficult. Even those that have used multiple measures (e.g., Allwood, Jonsson, & 

Granhag, 2005; Boekaerts & Rozendaal, 2010) do not explore practical limitations of the data 

and often focus on calibration as an outcome (examining correlates between score and individual 

and/or task), without examining differences in predictive validity between scores. The current 
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paper utilizes data that addresses both the shortcomings of simulated data and authentic data as 

typically used. The data in this dissertation are authentic in that they come from student 

interactions with learning materials administered as part of their normal mathematics classes and 

the data are not subject to the typical limitations of real-world data in that the sample size is large 

(over 4,000 students) and aggregated across the year's curriculum to produce a test with over 200 

questions. Using these data I examine how the actual distortion from zero quadrants affects the 

calculation of different calibration measures and how these measures, once calculated, 

differentially predict measures of achievement gains.  

Method 

Research design. The proposed dissertation uses data from an ongoing study of ST Math 

funded by an IES grant to a partnership between MIND, the Orange County Department of 

Education, and researchers at the University of California, Irvine. Within the larger study, the 

effectiveness of the digital mathematics curriculum, Spatial Temporal (ST) Math, was evaluated 

using a randomized control trial of 52 schools (see Rutherford et al., 2014). The 52 elementary 

schools in the study included two cohorts with a staggered implementation design. The studies 

within this dissertation will concentrate on Cohort 2 schools, which began implementing ST 

Math in the 2009-2010 school year. Participating students played the ST Math games 90 minutes 

each week during each school year starting in 2009-2010.  

Research population. The overall ST Math study sample consisted of all second through 

fifth grade students in 52 low-performing schools within ten districts in Southern California. 

Each school enrolled approximately 200 to 800 students in second through fifth grade in a given 

year. This dissertation concentrates on students within the 18 Cohort 2 schools. Descriptive 

statistics for the study sample are shown in Table 2.2. Of the participating students, 52% were 
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male. The participants were largely Hispanic (85%), with White (8%), and Asian (3%). Other 

ethnicities, including African American and Native American, comprised another 3% of the 

sample. Eighty one percent of the students were eligible for free or reduced lunch and 65% of the 

students were English Language Learners (ELLs). In comparison to the populations of the 

county and to the state of California as a whole (CADOE STAR, 2011), the study schools 

contained a larger percentage of Hispanic students, ELLs, and students eligible for free or 

reduced lunch. Looking further at student subgroups, among the ELL students in the sample, 

96% were Hispanic, and among Hispanic students, 74% were ELLs. This study focuses on the 

4,281 students who were using ST Math in the 2010-2011 school year: approximately half of the 

second, third, and fifth graders in the Cohort 2 study schools, and all of the fourth graders.  

{Insert Table 2.2} 

Instruments/measures/sources of data. 

ST Math quiz data. Within ST Math, students completed up to 24 mathematics 

objectives, depending on grade level. As students started a new objective module, they took a 

five-question pretest on the content within that module and specified their confidence (sure or 

not sure) in each answer they gave (see Figure 2.3). After the module, they took a five-question 

posttest, also selecting their confidence level. The combination of this accuracy and confidence 

data provided information on student calibration. MIND provided in-game quiz scores and 

calibration measures for each of the students who engaged with the ST Math curriculum during 

the 2010-2011 school year. Data included item-by-item quiz answers, accuracy, and confidence 

ratings. Each year included up to 48 quizzes (considering pre and post separately), depending on 

grade-level, administered to students as they completed the ST Math curriculum. Calibration 

measures for the current analyses were calculated from scores aggregated across all quizzes 
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taken during the year’s curriculum.  This includes up to 270 questions for second grade, 280 

questions for third grade, 270 questions for fourth grade, and 230 questions for fifth grade. 

{Insert Figure 2.3} 

Demographics. Gender, ethnicity, free/reduced lunch, and ELL status were reported by 

the school districts along with the CST data. Ethnicity is represented in the analyses by five 

groups: Hispanic, Vietnamese, Black, White, and Other Ethnicity, to represent the largest ethnic 

groups within the sample. Reported English Language Learner (ELL) status was determined by 

schools as measured by the California English Language Development Test (California 

Department of Education, 2011). Federal free/reduced lunch program eligibility stands in as a 

measure of student socioeconomic status. 

Analysis 

To answer the first research question, regarding which measures of calibration can 

accommodate real-world data, quiz question data were aggregated across all the objectives to 

provide for the largest possible sample of questions. After aggregating, quadrants A through D 

were summed to represent each student's quadrant totals for each combination of confidence and 

accuracy. Two types of analyses were conducted to examine the relation between zero values in 

one or more of the quadrants and the number of questions answered. As a first step, the complete 

data were used for each student and logistic regressions were calculated to predict the likelihood 

of a zero in each quadrant based on the number of questions answered. Because student factors 

related to their likelihood for both accuracy and confidence were hypothesized to also be related 

to student ability to complete the curriculum and therefore their number of questions answered, 

additional analyses were conducted using data from only those students who had completed a 

substantial portion of the curriculum (200 questions). Within these students, 200 randomly drawn 
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(without replacement) datasets of 25, 50, 75, 100, and 150 questions each were created, and from 

these, the percentage of students with zero quadrants was examined. Random selections of 

questions were chosen to control for variation in question difficulty, hypothesized to be related to 

both student accuracy and confidence. This analysis examined the possibility of incalculable 

measures due to zero quadrants by using a range of realistic quiz lengths (see Nietfeld et al., 

2006; Schraw et al., 2011). 

After examining the possibility of zero quadrants, each of the ten measures described in 

Schraw et al. (2013) was analyzed to determine the proportion of students for whom each of the 

measures was not calculable (due mostly to zero denominators). For this analysis, the full sample 

of student data with varying completion rates was utilized. The measures were then recalculated 

after first adding 1 to each quadrant so that no students would have zero quadrants and all 

measures would be calculable. Means for each measure calculated from the unaltered sample 

(not including those students with incalculable measures) were compared to those from the 

measures calculated with the quadrants modified to ensure no zero quadrants.  

To answer the second research question, regarding the predictive validity of the ten 

calibration measures, the data were first limited to students for whom each of the ten measures 

was calculable. Separate regressions were conducted to examine the association between pretest 

calibration and posttest accuracy for each measure, controlling for pretest accuracy, student 

grade level, number of quizzes completed, and student demographic variables (gender, ethnicity, 

ELL and free/reduced lunch status, and grade-level). An additional model was examined 

considering sensitivity and specificity together, as recommended by Schraw et al. (2013). These 

analyses were replicated with the full sample of students with the measures adjusted to eliminate 

zero quadrants.  
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Results 

Zero quadrants. Within the ST Math curriculum, not all students took all quizzes—

teachers may have "skipped" some students past certain objectives or reordered the objectives, 

or, because of the self-paced nature of the program, students may not have reached the final 

objectives. The mean number of questions completed by students was 156.56 (SD=73.43), 

differing slightly between the grade levels (see Table 2.3). Figure 2.4 displays the distribution of 

each quadrant within the 2x2 contingency table of accuracy and confidence. Any given student, 

however, may have a distribution of confidence and accuracy that filled only some of these 

quadrants. As noted above, due to the nature of calibration calculations, a zero in any given 

quadrant may make measures of calibration incalculable. 796 of the 4,281 students (19%) had 

zeroes in at least one quadrant: less than one percent of students had zeroes in quadrants A or B, 

indicating that most students had at least one question on which they were confident and correct 

and at least one question on which they were confident, but not correct. However, 15% of 

students had no unconfident and correct answers (quadrant C), and 9% had no unconfident and 

incorrect answers (quadrant D). Six percent of students had zeroes in two quadrants, and less 

than one percent of students had zeroes in three quadrants. 

{Insert Table 2.3} 

{Insert Figure 2.4} 

Looking at the relation between likelihood of having a zero in a quadrant and number of 

questions completed, I focused only on quadrants C and D, which both involved student 

determinations of uncertainty. Results from logistic regressions are presented as odds ratios and 

marginal effects in Table 2.4. Students who completed more questions were less likely to have 

zeroes in quadrants C and D. For quadrant C, at the mean of total questions completed (157 
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questions), completing one more question is associated with a .10 percentage point decrease in 

the probability of never making a judgment of uncertainty when a student has the question 

correct. This would indicate that a student would have to answer 150 more questions (307 total) 

to bring her probability of having a quadrant C zero from 15%
1
 to nothing. Similarly, for 

quadrant D, at the mean of total questions completed, completing one more question is 

associated with a .10 percentage point decrease in the probability of never making a judgment of 

uncertainty when incorrect. A student would have to answer another 90 (247 total) questions to 

bring her probability of having a zero in quadrant D from 9% to nothing. 

{Insert Table 2.4} 

Student factors were related to the number of quiz questions completed (see Appendix A, 

Table 1). Statistically significant associations emerged between these factors and question 

completion: in all grades but fifth grade, boys completed more questions than girls and those 

students eligible for free/reduced lunch completed fewer questions than those who were not. In 

all grades, Asian students completed more questions than Hispanic students, and in all grades but 

third, ELLs completed fewer questions than those who were not labeled as such. Additionally, 

variation in the difficulty of the questions may have affected both the proportion of students who 

answered the question correctly, and the students’ judgments of confidence. Depending on 

grade-level, the average question accuracy was between 60 and 66%, with standard deviations 

around 20%.  

To explore the association between number of questions completed and likelihood of 

having a zero in one of the quadrants without the confounding factor of student progress, the data 

were limited to those of students who had completed at least 200 questions. Demographic 

                                                           
1
 15% is the mean number of quadrant C zeroes using the entire dataset with a question range from 5-280, depending 

on grade—not necessarily the number of quadrant C zeroes at the mean question number, 157. Likewise, the mean 

number of quadrant D zeroes using the entire dataset is 9%. 
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information on this reduced sample of 1,341 students is provided on the left side of Table 2.5. 

This sample represented 31% of the original sample. This percentage varied across grades: 37% 

of second graders, 29% of third graders, 30% of fourth graders, and 22% of fifth graders. Tables 

2-5 in Appendix A present the results of from the 200 randomly drawn datasets of 25, 50, 75, 

100, and 150 questions. The mean percentage of students missing values from each quadrant is 

presented as is the 98% confidence intervals around these means. The mean number of zero 

quadrants is also presented for the total number of questions (M=220-258, depending on grade). 

For each quadrant, the more questions that are used, the less likely there was a zero value in that 

quadrant. Using the mean number of zeros for each of the randomly drawn datasets, at 50 

questions, for second, fourth, and fifth graders, there were no students without at least one 

question on which they were both correct and confident (quadrant A). Third graders continued to 

have a few students missing data in this quadrant until 150 questions. Quadrant B, those 

questions which students got incorrect, but indicated confidence, followed a similar pattern. At 

25 questions, between 3.69% and 8.17% of students, depending on grade, did not have any 

answers that fell in this quadrant. This number dropped to between .01% and 4.87% at 150 

questions. Quadrants C and D, the quadrants representing student judgments of uncertainty, were 

missing from a large proportion of students. Approximately 40% of students never made 

judgments of uncertainty when they had the correct answer (quadrant C) in a randomly drawn 

sample of 25 questions. At 150 questions, this number dropped to between 9.03% and 16.59%, 

depending on grade. When samples of 25 questions were randomly drawn, approximately 30% 

of students never made judgments of uncertainty when they had the incorrect answer (quadrant 

D). At 150 questions, this dropped to between 5.07% and 15.02%, depending on grade.  

{Insert Table 2.5} 
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{Insert Table 2.6} 

Measures of calibration. Table 2.6 presents the descriptive statistics from the 

calculation of the ten measures of calibration described in Schraw et al. (2013) calculated with 

the full sample of 4,281 students. As predicted from the presence of zero quadrants within these 

data, not all measures could be calculated for all students. Sensitivity, Specificity, Simple Match, 

G Index, and Sokal Reverse could be calculated for almost all the students—98% or more of the 

students in the sample had valid data for these measures. Odds Ratio, Gamma, and Phi suffered 

moderately from the presence of zero quadrants. For example, in fourth grade, which is the 

largest sample of students (N=1,522), Odds Ratio could only be calculated for 85% of the 

students and Gamma and Phi for 92% of the students each. Discrimination seemed to be most 

affected by zero quadrant scores leading to calculation issues: only 83% of fourth graders have 

valid Discrimination scores. 

To examine which of these measures has the most predictive validity, the data were 

separated by pre and posttest. The ten measures of calibration were recalculated using only the 

pretest measures. Limiting the data to those students who had at least one pretest reduced the 

sample by three students (N=4,278). These calculable pretest measures of calibration followed 

the same pattern as that seen in the pre/post aggregated data (see Table 6 in Appendix A). The 

data were then limited to those students who had calculable values for each of the ten calibration 

measures, resulting in a new dataset of 3,089 students, or 72% of those with pretest data. The 

analysis sample was further limited to the 3,033 students who had complete demographic 

information (98% of the sample of 3,089 students). The resulting sample of students had data in 

each quadrant within the 2x2 contingency table. Student-level descriptive statistics on this 
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sample are presented in the right half of Table 2.5. Calibration measures from this sample are 

provided on the left side of Table 2.7.  

{Insert Table 2.7} 

As a first step, zero-order correlations were calculated to compare each of the ten 

measures, pretest and posttest accuracy, and pretest confidence (without regards to accuracy). 

These correlations are shown in Table2.8. With one exception (Kappa and Sensitivity), all 

measures of calibration were correlated to levels of statistical significance of p<.05, with 

correlations ranging from .07 (Sensitivity and Phi) to a perfect correlation between G Index and 

Simple Match. Sensitivity had low correlations (absolute values ranging from .01 to .23) with all 

measures other than Specificity, with which it had a strong inverse correlations of -.73.  

{Insert Table 2.8} 

Table 2.9 displays the results from regressions of posttest accuracy on pretest accuracy 

and the measures of calibration, separately. Full tables with results from control variables 

(gender, grade, race, language and free/reduced priced lunch status, and number of questions 

completed) are available in the Appendix (Tables 7a and 7b). In Model 1, before the calibration 

measures were added, pretest accuracy and student demographics explained 69.7% of the 

variance in posttest accuracy. Adding an individual measure of calibration brought this, at most, 

to 70% of the variance as is seen in Model 7. Of the single-measure models, the Gamma model 

explained the most variance and also had the largest standardized regression coefficient, at 0.057. 

This indicates that a one standard deviation increase in Gamma was associated with less than one 

tenth of a standard deviation increase in aggregate posttest accuracy with pretest accuracy 

controlled. The combined Sensitivity/Specificity model produced a slightly larger R-squared 
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than the Gamma model, explaining 70.2% of the variance (β=0.109, Sensitivity, β=0.074, 

Specificity). 

{Insert Table 2.9} 

Limiting the sample to only those students who had all ten measures calculable may have 

biased the dataset. As an alternative analysis, the data were modified to ensure that all students 

with at least one valid pretest would have data in all four quadrants before the ten measures were 

calculated. To do this, a 1 was added to each quadrant—the right side of Table 2.7 presents the 

means and standard deviations from the ten measures calculated after this adjustment. Absolute 

differences between the sides of Table 2.7 were small (largely below .10, except for Odds Ratio), 

but in standard deviation units, ranged from less than 2/10ths of a standard deviation (e.g., 

Simple Match, G Index) to 4/10ths of a standard deviation (e.g., Odds Ratio). To determine 

whether these differences influenced the predictive validity of each measure, the regression of 

posttest score on pretest accuracy, calibration, and controls was conducted for these newly 

calculated measures.  

Not all of the 4,278 students with pretest data also had demographic data, and so, as in 

the prior analyses, the data were limited to those with non-missing data on the demographic 

covariates, resulting in a sample of 4,144 (97% of the full pretest sample). Demographic 

information on the sample is provided in Appendix Table 8. Regression results were similar to 

those from the reduced sample and are presented in Table 2.10. A model without any calibration 

measures explained 67% of the variance in posttest scores. As in the prior analyses, of the single 

calibration measures Gamma added the most explained variance, adding an additional 0.3%. 

Models with Kappa and Phi also added an additional 0.3%. Unlike the limited sample models, in 

these regressions, G Index emerged as the strongest single predictor (β=0.61), although 
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differences in magnitude of standardized regression coefficients were small between many of the 

measures: six of the measures had betas within 0.10 of each other. Replicating the prior analysis, 

the combined model with Sensitivity and Specificity explained more variance than a single-

measure model (67.5%). Considered in a model together, Sensitivity (β=0.11) and Specificity 

(β=0.09) had stronger associations with posttest score than did any other measure of calibration. 

{Insert Table 2.10} 

Discussion 

Zero quadrants. This study set out to answer two research questions: (1) Which 

measures of calibration can accommodate real-world data of accuracy and confidence 

judgments? and (2) Among these measures, which display the greatest predictive validity?  

These questions were answered with data rarely used in comparisons of multiple measures of 

calibration: data from authentic learning tasks with a large number of questions and a large 

sample size. Even in the preliminary analyses, differences were apparent between these data and 

simulated data often created for measurement comparison studies. The students taking the 

quizzes within ST Math did not have accuracy and confidence judgments that were evenly 

distributed among cells B through D. Replicating studies meant to approximate realistic 

conditions (see Nietfeld et al., 2006; Schraw et al., 2013), the majority of responses were in cell 

A (56%). However, cell C (not confident and correct) appeared the least often (8%), indicating 

that few of the student responses displayed underconfident patterns. Prior research indicated 

concern that cell D (not confident and incorrect) would be the option most likely to remain 

unchosen by participants (see Schraw et al., 2011), but in my comparison of zero quadrants, cell 

C was the most likely cell to be left empty.  

A zero in at least one quadrant affected 19% of the students using the largest possible 

sample of questions and participants (approximately 156 for each student). Logistic regression 
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results indicated that for this sample, tests of over 300 questions would be needed to avoid zero 

quadrants and the resulting measure distortion. This is a far cry from the 25 questions suggested 

by Schraw and colleagues (2011). Schraw and colleagues based this suggestion off of data 

simulated to replicate moderate difficulty (75% accuracy), and indicated that the more difficult 

the test, the more equal the distribution among the quadrants and the less likely zero quadrants 

would be. Based on the accuracy of the current sample, the ST Math quizzes appeared more 

difficult than Schraw's simulated data (64% accuracy), leaving a larger number of responses 

available for distribution in quadrants B through D. However, the majority of responses not 

within quadrant A (55% of the remaining responses) were in quadrant B (confident and 

incorrect), indicating strong overconfidence among the student participants. This overconfidence 

is typical in young students (Pajares & Kranzler, 1995; Pressley, Levin, Ghatala, & Ahmad, 

1987). As Schraw and colleague's recommendation was based on simulated data intended to 

approximate adult behavior, it may not be applicable to measures of calibration in children.  

It could be that the age of the children may not be the only thing causing these disparate 

results. The logistic regressions looked at likelihood of zero quadrants based on number of 

questions completed. Progress through the curriculum and completion of questions was related to 

a number of student characteristics (see Appendix A, Table 1). It is possible that this progress 

could have also been related to characteristics such as math proficiency or familiarity with the 

math content or format within ST Math—things that affect the students' ability to marshal 

metacognitive resources and make accurate confidence judgments (see Alexander & Murphy, 

1999; Kruger & Dunning, 1999). Additionally, because of the structure of ST Math, the full 

sample included more questions from the start of the curriculum, reducing the external validity 

of the findings. As a step toward removing this confound and increasing external validity, sample 
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tests of varying question lengths were created through random selection of responses from 

among those students who had completed at least 200 questions. By limiting the data to only 

those students who had completed 200 questions, I could look within a group of students more 

likely to be similar to each other, and by drawing the random datasets, the difficulty of the 

questions was more randomly distributed. This allowed me to look at samples of small-sized 

quizzes (e.g., 25 questions) without having to rely on questions from a small sample of 

objectives that may have been easier or harder than the other objectives. Examination of these 

data suggested similar patterns to those observed in the data overall: quadrant C appeared the 

most problematic, with 40% of students missing data from this quadrant in 25-question quizzes. 

At 150 questions, quadrant C remained the most problematic: averaged across the grades, 15% of 

the students had a zero in quadrant C and 10% had a zero in quadrant D. The presence of zero 

quadrants decreased with the addition of more questions. Despite the suggestion from the logistic 

regression results indicating that zero quadrants would be eliminated at around 300 questions, I 

cannot say for certain that with this population and subject-matter, zero quadrants would be 

eliminated even at 1,000 questions, the number typically used in simulation experiments to 

approximate a test assumed to be problem-free. 

Measure calculation. Even at test lengths of 150 questions—unreasonably high in light 

of typical calibration research, zeroes in quadrants were likely to be a problem. However, not all 

zeroes would result in undefined measures. For example, Gamma could be calculated with 

zeroes in quadrant C or D, as long as both were not missing.
2
 Using all the available data, I was 

able to calculate all ten measures for most students. As suggested by the literature, both Gamma 

and Discrimination suffered from undefined values. For Gamma, between 4 and 9% of the cases, 

                                                           
2
 The ability to calculate the measure does not preclude distortion of the measure due to one zero quadrant (see 

Kuch, 2012). 
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depending on grade, were undefined or otherwise incalculable (compare with only 0.1% in a 20-

item test of similar difficulty in Schraw et al., 2011). As in Fuchs (2012), there were more 

undefined values for Discrimination than for Gamma and the other measures. For second and 

fifth graders, over 20% of the values for Discrimination were undefined. This is close to the 17% 

Fuchs (2012) found for 20-item tests, but the majority of the test-takers in my study took well 

over 20 questions: fewer than 3% of the students in these data completed fewer than 20 items; 

the majority completed more than 150 items each.  

Predictive validity. To my knowledge, this is the first study to compare the relative 

predictive validity of these ten commonly used measures of calibration using authentic education 

data. The ten measures are assumed to be correlated, except for Sensitivity and Specificity, 

which are assumed to be orthogonal and have proven such in simulated data (Schraw et al., 

2013). Within these data, this was not the case. Sensitivity and Specificity were inversely and 

statistically significantly correlated and this correlation was relatively strong. Sensitivity and 

Specificity were more highly correlated with each other than with any of the other measures—

although Specificity had moderate to strong correlations with Kappa, Phi, and Discrimination. 

Other researchers have advocated for Gamma as the gold standard measure of calibration, partly 

because of its assumed correlation with other measures (see Nelson & Narens, 1990; Schraw et 

al., 2013). Gamma did have strong correlations with all measures except for Sensitivity and 

Specificity, but it was not alone—many of the measures were as highly intercorrelated. 

Given this high degree of association, their similar levels of predictive validity may not 

be surprising. What may be surprising is the small amount of variance in posttest accuracy 

explained by calibration measures. Zero-order correlations between calibration and achievement 

were in line with prior research (e.g., Barnett & Hixon, 1997; Desoete & Roeyers, 2006). 
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However, in much of this prior work, the same test is used to measures calibration and 

achievement (e.g., Bol et al., 2010), or correlations between pretest calibration and posttest 

performance are examined without controlling for pretest performance (e.g., Barnett & Hixon, 

1997). If the accuracy of metacognitive judgments is indicative of a regulatory process not 

entirely subsumed by prior achievement, it should uniquely contribute to future mathematics 

performance net of prior performance. There was unique variance in posttest achievement 

explained by pretest calibration, but although statistically significant, beta values were mostly 

under .10. In line with the Nelson and Narens (1990) model, Gamma was the strongest singular 

predictor by a very small margin. However, the model combining Sensitivity and Specificity had 

the largest explained variance and the highest beta values. This is in agreement with Schraw and 

colleagues' (2013) suggestion that Sensitivity and Specificity represent unique aspects of 

monitoring (see also Feurman & Miller, 2008). Within these data, it appears that a model that 

accounts separately for students' knowledge of what they do know (Sensitivity) and what they 

don't know (Specificity) is more powerful than one that includes a measure that conflates the 

two. It is important to note that although this combined model produced the highest R-squared 

values in the current study, this was despite the relatively strong correlation of these two 

measures (cf Schraw et al., 2013).  

Correcting for zero quadrants. In a replication of the regression analyses, a 1 was 

added to each quadrant to ensure that all measures were calculable and that zero quadrants did 

not otherwise distort the values of the calibration measures. I followed the procedure suggested 

in Hautus (1995) and added a value to each quadrant instead of only to the missing quadrants. 

Differences in the means of measures between this sample altered for non-missing data and the 

sample limited to only non-missing participants was not negligible (close to 4/10ths of a standard 
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deviation for Odds Ratio, Gamma, and Discrimination). These differences did not translate to 

large differences in predictive validity between measures, however. Betas and R-squared values 

between the models were close, and, as in the limited sample analysis, the model including both 

Sensitivity and Specificity explained the most variance and had the largest standardized 

regression coefficients. Prior comparisons of methods to eliminate distortion from zero quadrants 

relied upon tests of 1,000 questions to simulate the actual sample means of calibration measures 

(e.g., Nietfeld et al., 2006; Schraw et al., 2011). Within my data, I cannot say whether the limited 

sample with unaltered data or the full sample with altered data is closer to the true values of 

calibration. I can only note that within both, a model including Sensitivity and Specificity 

together explained the most variance in achievement gain, and that it appears Sensitivity and 

Specificity, when considered together, are better predictors of achievement gain in elementary 

mathematics than the other measures examined.  

Limitations. The greatest strength to this study, that the data were taken from an 

authentic learning task completed by real students, is also a limitation. Because the data were 

real and suffered from real-world problems, I was unable to calculate the true values of each of 

the measures as is done in large simulation studies. Had a test of 1,000 questions been 

administered to the students in this dissertation it may have been possible to make comparisons 

similar to those conducted in simulated studies, but such a test is impractical in a single 

administration. If it were administered in smaller chunks over the course of a year it would be 

likely to contain the same types of missingness as was found in the data herein. Although the 

quizzes administered within ST Math allowed me to look at data of a type and scope not studied 

previously within the calibration literature, the results may be limited to similar populations and 

materials. There are reasons to believe there are domain and age differences in calibration (see 
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Bong, 1999; Jonsson & Allwood, 2003), and these differences may extend to the calculability 

and predictive validity of the different measures.  

Conclusion 

Prior recommendations regarding the measurement of calibration are based largely on simulated 

data. Data in this dissertation, taken from student interactions with authentic mathematics 

learning tasks, do not behave as simulated data do: distribution among the four quadrants is not 

even and patterns of missingness do not mirror those found in simulated studies. These 

differences have real implications for the calculability of many of the measures commonly used 

in calibration research. Researchers may wish to avoid measures like Gamma or Discrimination 

and instead rely upon measures more robust to missing quadrants, such as G Index. Outside of 

practical considerations, selection of a measure can also be guided by predictive validity. Results 

of this study supported assertions by Schraw and colleagues (2013) that Sensitivity and 

Specificity, when used together, should best represent metacognitive accuracy and should 

therefore be the most powerful predictors of achievement that relies upon SRL. These two 

measures have a long history of use in clinical research, but until recently were not used in the 

measurement of calibration within educational settings. Although the findings herein may 

recommend their use, more work is needed to understand the actual processes underlying 

determinations of confidence and uncertainty, especially in light of the high correlation between 

the measures within these data. 
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Figure 2.1. Illustration of calculation of item-by-item as compared to more macro levels of calibration. 

Perception of Sarah's and Jenny's calibration would vary depending on level and type of calculation. 
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Figure 3. 2x2 contingency table expressing the relations between 

accuracy and confidence. 
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Figure 2.3. Quiz questions appearing in ST Math. Students select their answer and then indicate 

their confidence rating by selecting the appropriate icon. Here, on the left the student is 

underconfident (right answer, expresses uncertainty) and on the right the student is overconfident 

(wrong answer, expresses certainty). 

 

  



52 
 

 

Figure 2.4. Distribution of combinations of confidence and accuracy within the actual 

ST Math quiz data. Compare with Schraw (2013) simulated data where 62.5% of data 

was in cell A and 12.5% each in cells B through D. 
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Table 2.1 

Common Indices of Agreement from 2x2 Contingency Tables 

Index Formula 

Sensitivity A/(A + C) 

Specificity D/(B + D) 

Simple Matching (A + D)/(A + B + C + D) 

G Index or Hamann coefficient (A + D) – (B + C)/(A + B + C + D) 

Odds Ratio AD/BC 

Goodman-Kruskal Gamma (AD – BD)/(AD + BC) 

Kappa 2*(AD – BC)/[(A + B)(B + D) + (A + C)(C + D)] 

Phi (AD – BC)/[(A + B)(B + D)(A + C)(C + D)]
1/2

 

Sokal Reverse [1 – [(A + D)/(A + B + C + D)]]
1/2 

Discrimination (d') z(A/(A + C)) – z(B/(B + D)) 
Note. Formulas as represented in Schraw et al., 2013. 
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Table 2.2     

Comparison of Sample Descriptives to County and State 

 

Dissertation 

Sample 

 

County California 

 Mean/Percent Count Mean/Percent Mean/Percent 

Math CST 373.32 3,072 396.46 382.24 

ELA CST 336.77 3,077 364.50 343.28 

Male 52% 4,147 50% 49% 

Free/Reduced Lunch 81% 4,147 46% 57% 

Hispanic 85% 4,147 47% 50% 

White 8% 4,147 31% 26% 

Asian 3% 4,147 14% 9% 

Other Race 3% 4,147 8% 23% 

Eng Language Learner 65% 4,146 39% 32% 

N 4,281  110,402 1,401,811 

Note.  Column 1 is calculated from available data within the sample. Demographic data were only 

present for the specified number of students. County and California data aggregated for grades two 

through four in 2008-2009 from the California STAR reporting website: http://star.cde.ca.gov/star2009.  
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Table 2.3             

Mean Number of Questions Answered & in Each of the Calibration Categories,  Aggregated Quiz Questions 

 

2nd (N=915) 3rd (N=812) 4th (N=1,522) 5th (N=1,032) 

 

Mean SD Range Mean SD Range Mean SD Range Mean SD Range 

A. Confident & Correct 90.85 53.88 0-235 104.30 62.04 0-245 80.85 52.26 0-235 79.63 50.03 0-230 

B. Confident & Incorrect 39.87 30.34 0-165 42.87 28.30 0-182 38.65 26.40 0-147 32.96 23.60 0-131 

C. Unconfident & Correct 14.02 20.50 0-167 12.87 19.75 0-201 12.92 15.03 0-136 10.03 13.17 0-95 

D. Unconfident & Incorrect 17.32 19.61 0-126 17.84 19.60 0-132 22.46 23.37 0-167 14.76 16.39 0-118 

Total Questions Answered 162.07 76.30 7-270 177.88 76.49 14-280 154.88 71.25 5-270 137.38 66.13 5-230 
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Table 2.4     

Odds Ratios and Marginal Effects from Logistic Regression of Zeroes in Quadrants C and D 

by Total Number of Questions 

 C. Not Conf. & Correct D. Not Conf. & Incorrect 

N=4,281 Odds Ratio Marg. Effects Odds Ratio Marg. Effects 

Total No. Questions .994*** -.001*** .993*** -.001*** 

 (.001) (.0001) (.001) (.0001) 

Grade 2 1.29* .033* 1.395* .028* 

 (.149) (.016) (.203) (.013) 

Grade 3 1.015 .002 1.002 .0001 

 (.131) (.016) (.169) (.013) 

Grade 5 1.055 .007 1.470** .032** 

 (.119) (.014) (.199) (.012) 

Constant .430***  .227***  

 (.047)  (.031)  
Note. *p<.05, **p<.01, ***p<.001.  

Standard errors in parentheses. Grade 4 is the reference group. 
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Table 2.5 

Demographic Information and Descriptive Statistics for Study Subsamples 

 

Sample of Students Who Answered > 200 Questions Sample of Students for Predictive Validity Analysis 

 

Mean/Percent SD Min Max Count Mean/Percent SD Min Max Count 

Grade 2 26% 

   

1,341 20% 

   

3033 

Grade 3 24% 

   

1,341 19% 

   

3033 

Grade 4 34% 

   

1,341 37% 

   

3033 

Grade 5 17% 

   

1,341 23% 

   

3033 

Male 57% 

   

1,335 49% 

   

3033 

Asian 6% 

   

1,335 3% 

   

3033 

Hispanic 77% 

   

1,335 85% 

   

3033 

White 12% 

   

1,335 9% 

   

3033 

Other Race 4% 

   

1,335 3% 

   

3033 

English Lang Learner 57% 

   

1,334 65% 

   

3033 

Free/Reduced Lunch 70% 

   

1,335 80% 

   

3033 

ELA CST 420.15 75.63 219 600 953 339.72 60.20 179 600 2274 

Math CST 365.13 58.06 210 600 956 377.81 79.16 181 600 2269 

Pretest Quiz Accuracy 0.62 0.14 0.27 1 1,341 0.57 0.14 0.2 0.98 3033 

Posttest Quiz Accuracy 0.73 0.13 0.29 1 1,341 0.67 0.15 0.11 1 3033 

Total Pretest Questions 121.21 11.12 93 140 1,341 83.60 33.78 5 140 3033 

Total Posttest Questions 122.31 10.92 100 140 1,341 84.57 33.90 4 140 3033 

N 1,341 

    

3,033 

    Note. Left section consists of those students who answered at least 200 questions across pre and posttests. The right section consists of those 

students who have valid data on all measures of calibration for the pretest and valid posttest accuracy data (excluding those with incalculable 

measures due to zero quadrants). Count column represents number of students with valid data for each variable. 
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Table 2.6 

Ten Common Measures of Calibration Calculated for Entire Sample from All Available Data 

N=4,281 2nd Grade 3rd Grade 4th Grade 5th Grade 

 

Mean SD %Valid Mean SD %Valid Mean SD %Valid Mean SD %Valid 

Sensitivity 0.86 0.17 99.89% 0.87 0.16 100.00% 0.85 0.16 100.00% 0.87 0.15 100.00% 

Specificity 0.31 0.27 99.34% 0.29 0.24 100.00% 0.36 0.27 99.67% 0.31 0.24 98.64% 

Simple Match 0.66 0.12 100.00% 0.67 0.14 100.00% 0.65 0.13 100.00% 0.68 0.12 100.00% 

Gamma 0.54 0.41 92.57% 0.54 0.41 96.06% 0.57 0.37 94.22% 0.53 0.42 91.38% 

G Index 0.33 0.25 100.00% 0.33 0.27 100.00% 0.3 0.25 100.00% 0.35 0.25 100.00% 

Odds Ratio 5.42 5.52 82.30% 5.84 6.62 86.95% 5.72 5.43 85.48% 5.32 6.07 82.46% 

Kappa 0.17 0.16 99.45% 0.18 0.16 100.00% 0.21 0.17 99.67% 0.18 0.16 99.42% 

Phi 0.22 0.16 92.57% 0.22 0.16 96.06% 0.25 0.16 94.22% 0.23 0.16 91.38% 

Sokal Reverse 0.57 0.11 100.00% 0.57 0.12 100.00% 0.58 0.11 100.00% 0.56 0.12 100.00% 

Discrimination 0.76 0.47 79.34% 0.76 0.48 83.67% 0.82 0.46 83.25% 0.77 0.43 78.59% 

N 915 

  

812 

  

1,522 

  

1,032 

  Note. Includes all students in the sample combining questions in both pre and posttests. Ten calibration measures are calculated as in Schraw et al. 

(2013) based on four quadrants of agreement between accuracy and confidence. %Valid represents the percent of students for whom the given 

measures is calculable. 
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Table 2.7 

        Means of Ten Measures of Calibration Eliminating (Left) and Accommodating (Right) Missing 

Data 

 

Limited Sample (N=3,033) Complete Sample (N=4,278) 

 

2nd 3rd 4th 5th 2nd 3rd 4th 5th 

Sensitivity 0.80 0.82 0.78 0.81 0.83 0.84 0.81 0.83 

 

(0.17) (0.18) (0.17) (0.16) (0.17) (0.17) (0.17) (0.16) 

Specificity 0.41 0.37 0.44 0.40 0.33 0.31 0.36 0.34 

 

(0.26) (0.23) (0.24) (0.23) (0.26) (0.23) (0.26) (0.23) 

Simple Match 0.64 0.65 0.64 0.64 0.62 0.63 0.61 0.63 

 

(0.12) (0.13) (0.11) (0.11) (0.12) (0.13) (0.12) (0.12) 

Gamma 0.49 0.50 0.51 0.50 0.41 0.42 0.41 0.43 

 

(0.33) (0.32) (0.30) (0.28) (0.33) (0.35) (0.34) (0.32) 

G Index 0.28 0.30 0.28 0.28 0.24 0.25 0.22 0.26 

 

(0.24) (0.25) (0.22) (0.21) (0.24) (0.27) (0.24) (0.24) 

Odds Ratio 5.49 5.79 5.28 5.46 3.96 4.39 3.96 4.54 

 

(6.78) (7.69) (5.81) (11.51) (3.90) (4.80) (3.84) (8.22) 

Kappa 0.21 0.20 0.23 0.21 0.16 0.16 0.18 0.17 

 

(0.17) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16) (0.15) 

Phi 0.23 0.23 0.25 0.24 0.18 0.18 0.19 0.19 

 

(0.18) (0.17) (0.17) (0.16) (0.17) (0.16) (0.17) (0.16) 

Sokal Reverse 0.59 0.58 0.59 0.59 0.61 0.60 0.62 0.60 

 

(0.10) (0.11) (0.09) (0.09) (0.10) (0.11) (0.10) (0.10) 

Discrimination 0.71 0.72 0.74 0.72 0.56 0.58 0.57 0.59 

 

(0.54) (0.52) (0.50) (0.48) (0.49) (0.51) (0.50) (0.49) 

N 601 570 1118 712 915 812 1,521 1,030 

Note. Standard deviations in parentheses. Ten calibration measures are calculated as in Schraw et al. (2013) based 

on four quadrants of agreement between accuracy and confidence.  Limited Sample excludes those missing on any 

measure due to zero quadrants. Complete sample is based on calculations after adding 1 to each quadrant. 
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Table 2.8 

            Correlations among Measures of Calibration, Pre and Posttest Accuracy and Pretest Confidence in Reduced Sample (N=3,033) 

Measure Pretest 

           Posttest Acc. 0.81 Posttest 

          Confidence 0.63 0.63 Conf 

         Sensitivity 0.29 0.29 0.53 Sens 

        Specificity -0.05* -0.05* -0.33 -0.73 Spec 

       Simple Match 0.67 0.57 0.47 0.22 0.33 Match 

      Gamma 0.35 0.35 0.29 0.21 0.41 0.77 Gamma 

     G Index 0.67 0.57 0.47 0.22 0.33 1.00 0.77 G Index 

    Odds Ratio 0.26 0.23 0.18 0.16 0.26 0.50 0.50 0.50 OddsRa 

   Kappa 0.27 0.26 0.11 0.01
a 

0.66 0.76 0.84 0.76 0.57 Kappa 

  Phi 0.27 0.28 0.15 0.07 0.61 0.77 0.92 0.77 0.59 0.99 Phi 

 Sokal Reverse -0.68 -0.58 -0.48 -0.23 -0.31 -0.99 -0.75 -0.99 -0.55 -0.76 -0.76 SokalR 

Discrimination 0.34 0.33 0.23 0.16 0.51 0.79 0.95 0.79 0.66 0.93 0.98 -0.79 

Note. All correlations are statistically significant at the p<.001 level except for those specified: *p<.05. 
a
p>.05. 

Pretest and posttest accuracy and confidence are a proportion of accurate or confident out of total test items.  
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Table 2.9a 

Regression of Posttest Accuracy (Percentage of Items Correct) on Pretest Calibration and Accuracy for Ten Measures of Calibration:  

Diagnostic Efficiency & Agreement Measures 

N=3,033 

 

(1) (2) (3) (4) (5) (6) 

  

Acc. Only Sensitivity Specificity Sensitivity Specificity Simple Match G Index 

Measure(s) B 

 

0.046*** -0.003 0.098*** 0.047*** 0.074*** 0.037*** 

 

SE 

 

(0.009) (0.006) (0.014) (0.010) (0.018) (0.009) 

 

Beta 

 

0.052*** -0.004 0.109*** 0.074*** 0.056*** 0.056*** 

Pretest Acc. B 0.818*** 0.803*** 0.818*** 0.789*** 

 

0.779*** 0.779*** 

 

SE (0.012) (0.012) (0.012) (0.012) 

 

(0.015) (0.015) 

 

Beta 0.758*** 0.744*** 0.758*** 0.731*** 

 

0.721*** 0.721*** 

Constant B 0.147*** 0.121*** 0.148*** 0.066*** 

 

0.121*** 0.158*** 

 

SE (0.009) (0.011) (0.010) (0.015) 

 

(0.011) (0.009) 

R2 

 

0.697 0.699 0.697 0.702 

 

0.698 0.698 

Table 2.9b 

Association, Binary Distance, and Discrimination 

N=3,033 

 

(7) (8) (9) (10) (11) (12) 

  

Gamma Odds Ratio Kappa Phi 

Sokal 

Reverse Discrimination 

Measure(s) B 0.028*** 0.0004* 0.046*** 0.049*** -0.081*** 0.017*** 

 

SE (0.005) (0.0002) (0.010) (0.010) (0.022) (0.003) 

 

Beta 0.057*** 0.021* 0.049*** 0.054*** -0.052*** 0.055*** 

Pretest Acc. B 0.798*** 0.812*** 0.804*** 0.803*** 0.781*** 0.799*** 

 

SE (0.012) (0.012) (0.012) (0.012) (0.015) (0.012) 

 

Beta 0.739*** 0.752*** 0.745*** 0.744*** 0.723*** 0.740*** 

Constant B 0.144*** 0.147*** 0.143*** 0.142*** 0.215*** 0.145*** 

 

SE (0.009) (0.009) (0.009) (0.009) (0.020) (0.009) 

R2 

 

0.700 0.697 0.699 0.699 0.698 0.699 

Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. Standard errors from unstandardized 

regressions are in parentheses. Control variables included number of pre and posttest questions completed, grade, gender, race, language and free/reduced priced 

lunch statuses. The reference group comprises students who were females in fourth grade, Hispanic, Non-ELL, and not on free lunch. 

Sample limited to those students who have non-missing values for each of the ten measures of calibration as described in Schraw et al. (2013). 
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Table 2.10a 

Replication Sample: Regression of Posttest Accuracy (Percentage of Items Correct) on Pretest Calibration and Accuracy for Ten Measures of 

Calibration: Diagnostic Efficiency & Agreement Measures 

N=4,144 

 

(1)  (2) (3) (4) (5) (6) 

  

Acc. Only  Sensitivity Specificity Sensitivity Specificity Simple Match G Index 

Measure(s) B 

 

 0.035*** 0.003 0.111*** 0.061*** 0.080*** 0.040*** 

 

SE 

 

 (0.009) (0.006) (0.015) (0.010) (0.018) (0.009) 

 

Beta 

 

 0.036*** 0.005 0.114*** 0.094*** 0.061*** 0.061*** 

Pretest Acc. B 0.871***  0.860*** 0.871*** 0.838*** 

 

0.819*** 0.819*** 

 

SE (0.011)  (0.011) (0.011) (0.012) 

 

(0.016) (0.016) 

 

Beta 0.750***  0.741*** 0.750*** 0.721*** 

 

0.705*** 0.705*** 

Constant B 0.130***  0.108*** 0.129*** 0.037* 

 

0.109*** 0.149*** 

 
SE (0.008)  (0.010) (0.009) (0.015) 

 

(0.010) (0.009) 

R2 

 

0.670  0.672 0.670 0.675 

 

0.672 0.672 

Table 2.10b 

Association, Binary Distance, and Discrimination 

N=4,144 

 

(7) (8) (9) (10) (11) (12) 

  

Gamma Odds Ratio Kappa Phi Sokal Reverse Discrimination 

Measure(s) B 0.029*** 0.0004 0.052*** 0.057*** -0.075*** 0.018*** 

 

SE (0.005) (0.0003) (0.010) (0.009) (0.022) (0.003) 

 

Beta 0.060*** 0.012 0.051*** 0.058*** -0.047*** 0.056*** 

Pretest Acc. B 0.841*** 0.866*** 0.853*** 0.849*** 0.830*** 0.844*** 

 

SE (0.012) (0.012) (0.012) (0.012) (0.016) (0.012) 

 

Beta 0.724*** 0.746*** 0.735*** 0.731*** 0.714*** 0.727*** 

Constant B 0.135*** 0.131*** 0.130*** 0.131*** 0.198*** 0.135*** 

 
SE (0.008) (0.009) (0.008) (0.008) (0.022) (0.008) 

R2 

 

0.673 0.670 0.673 0.673 0.671 0.672 

Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. Standard errors from unstandardized 

regressions are in parentheses. Control variables included number of pre and posttest questions completed, grade, gender, race, language and free/reduced priced 

lunch statuses. The reference group comprises students who were females in fourth grade, Hispanic, Non-ELL, and not on free lunch. 

Regressions on full sample of students who have at least one valid pre and posttest. 



63 
 

CHAPTER 3 

Study 2: Within and Between Person Associations of Calibration and Achievement 

A wide range of research has investigated the associations between performance and the 

calibration of accuracy and confidence. Mostly undertaken in the fields of education or 

psychology, calibration research has dealt with topics including eyewitness testimony (e.g., 

Howie & Roebers, 2007), text comprehension (e.g., Maki & Berry, 1984), and class performance 

(e.g., Bol & Hacker, 2001). A consistent finding is that higher performers display better 

metacognitive monitoring, operationalized as some form of calibration (Stone, 2000; e.g., Bol, 

Riggs, Hacker, Dickerson, & Nunnery, 2010; Ots, 2012; Soku & Quereshi, 2004). Conversely, 

poor performers are often "doubly cursed" in that not only do they perform poorly, but they are 

often unaware of their own poor performance, making it unlikely that they will take corrective 

action (Dunning, Johnson, Ehrlinger, & Kruger, 2003). This relation between monitoring and 

performance is theorized to operate through a system of self-regulated learning (SRL), where 

monitoring can alert learners to engage in control processes and allocate attention and resources 

where needed (Pintrich, 2004; Winne, 1995, 2004; Zimmerman, 2008). Although the 

calibration/performance relation is well-documented, it is often studied with a dispositional view 

of monitoring—examining performance differences between students who are good monitors 

and those who are poor monitors (e.g., Barnett & Hixon, 1997; Chen, 2002; Soku & Quereshi, 

2004). This view of monitoring is not in line with the Social Cognitive view of SRL as one that 

varies based on interactions between person, behavior, and environment (Bandura 1986; 

Zimmerman 1989). Nor does it distinguish monitoring from other individual characteristics that 

are related to both monitoring and performance. The current study takes a novel approach to 

examine the relation between monitoring and performance within the same person across 
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multiple tasks—analyzing whether differences in calibration across tasks are associated with 

differences in performance. In this way the dynamic nature of calibration can be better 

represented and the unique contribution of calibration within the SRL system can be better 

understood. 

Models of Regulation: Monitoring and Control 

The model of regulation adopted within this study is situated within the larger frame of 

SRL as described by Zimmerman (1986; 1989; see Dissertation Introduction for a description). 

However, much of the work on calibration and its role within SRL has been situated in a line of 

research stemming from Flavell's (1979) and later Nelson and Narens' (1990) conceptualizations 

of metacognition. In particular, I draw largely on the work of Efklides and her Metacognitive and 

Affective Model of Self-Regulated Learning (MASRL model, 2011), as well as her other work 

explicating the relations between monitoring and control (Efklides, 2008; Efklides & 

Vlachopoulos, 2012). Although typically distinct lines of research, the Flavell and Zimmerman 

conceptualizations of SRL and metacognition are complementary, jointly emphasizing the role of 

the learner as an agent of their own learning and acknowledging the contributing role of both 

learner background and task characteristics.  

Within the MASRL model, metacognition, motivation, and affect interact across two 

levels, the Person level and the Task x Person level (Efklides, 2011). The person level includes 

personal characteristics such as self-beliefs, ability, and person-level metacognitive knowledge 

(MK) and metacognitive skills (MK)—knowledge and skills that apply to a variety of tasks and a 

sense of when and how to apply them. The Task x Person level is where online metacognition 

takes place: based on an individual's experience of the task, she represents the task in a way that 

allows her to draw on the Person level (e.g., MK, MS, motivation) and engage control processes 
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in light of her metacognitive experiences (ME). These metacognitive experiences are cues from 

the individual's interaction with the task, such as an awareness of ease or difficulty of processing, 

and feelings of familiarity or confidence (Efklides, 2008). 

According to Efklides (2008), as individuals engage in a task, they engage in a non-

conscious implicit form of monitoring and control that responds to the demands of the task. An 

example of this non-conscious monitoring is seen as individuals slow down their rate of reading 

of difficult material even though they may not be consciously aware that the difficulty has 

increased. If an error is detected that cannot be resolved through this implicit regulation, a 

conscious level of regulation is activated. This error detection and activation of conscious 

regulation can be because of the difficulty of the task or because of external feedback that draws 

the learner's attention to the monitoring and control processes. Once monitoring information is 

active within working memory, the learner can take steps to exercise control: increasing 

resources brought to bear on the task or allocating resources differently across different elements 

of the task. Learners who activate conscious monitoring and who are accurate in their judgments 

of learning can appropriately allocate resources in the control process (see Efklides, 2008; 

Koriat, 2012).  

In studies of metacognitive monitoring using calibration judgments, participants are 

likely engaging in conscious monitoring—the self-report questions ubiquitous in such studies 

(e.g., Boekaerts & Rozendaal, 2010; Bol & Hacker, 2001; Nietfeld, Cao, & Osborne, 2006) bring 

to the learner's awareness the presence or absence of discrepancies between their current and 

goal states of performance (see De Bruin & van Gog, 2012). With this entry into conscious 

monitoring, the success of the learner at regulation then in part depends on the accuracy of these 

judgments—those who accurately identify a discrepancy may trigger control processes (Efklides, 
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2008; De Bruin & van Gog, 2012). Figure 3.1 illustrates this theorized process with a flow chart 

derived from the research and theories of De Bruin and van Gog (2012), Efklidies (2008; 2012), 

Koriat (2012), and Nelson and Narens (1990). The flow chart should be read from left to right 

and is simplified to illustrate the processes as recursive.
3
 After activation of conscious regulation, 

the individual draws on relevant personal characteristics based on her experience of the task 

(ME) and her characterization of the task. In the model, these personal characteristics are the 

applicable MK and MS as well as ability, self-beliefs, etc.—the trapezoid shape narrowing at the 

base represents that some of these features of the Person level may be more or less relevant to the 

task. For example, for a fraction task, self-efficacy for fractions would be more relevant, general 

mathematics self-efficacy less specifically relevant, and self-esteem still less relevant. Once 

monitoring triggers conscious regulation through the ME, the interaction of the Person and Task 

x Person levels results in a decision to engage in control, disengage from the task, or return to 

non-conscious monitoring. Once the decision is made to engage in control, the choice of control 

activity is informed by these same Person and Person x Task levels, both filtered through the 

learner's attributions for the particular discrepancy of which they have become aware. For 

example, while taking a test, a learner who is not confident that she has the correct answer but 

who feels she can arrive at the correct answer will engage in control processes. If she attributes 

her incorrect answer to not properly understanding the question, it is through this attribution that 

she will bring to bear Person level characteristics, such as her knowledge of strategies for 

clarifying instructions or her self-efficacy for solving problems in general or problems of this 

type. Through this process she chooses a control activity: in this case she may reread the 

question using strategies she has identified as relevant and potentially helpful. 

                                                           
3
 Consistent with SRL theory (Zimmerman, 1989) and previous models illustrated by Efklides (2008, 2011), the 

processes within the Figure 3.1 model are theorized to be non-recursive: control activities and attributions feed back 

into Person and Task x Person characteristics. For parsimony, this is omitted from the model shown. 
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{Insert Figure 3.1} 

As typically studied, calibration accuracy (as one aspect of ME) is measured with a task, 

such as a postdiction of the percentage of questions correct on an Educational Psychology exam 

(e.g., Bol, Hacker, O'Shea, & Allen, 2005). This measure of calibration is then related to 

performance on the same exam (e.g., Bol et al., 2010), a task from an unrelated or tangentially-

related domain (e.g., Ots, 2012), or a test in the same domain much later in time (e.g., Rinne & 

Mazzocco, 2014). This makes it difficult to understand the function of calibration within the 

ecology of SRL: the link between student calibration on knowledge recall questions and GPA 

may indicate a disposition toward metacognitive monitoring, but it does not indicate whether this 

monitoring may serve to enhance regulation of learning from task to task or within the same task.  

Additionally, such a study confounds calibration with other aspects of conscious 

regulation. When the only aspect of conscious regulation measured is calibration, what may be 

misconstrued as a link between calibration and performance may in actuality be a link between 

any number of personal characteristics and performance. There is both theoretical and empirical 

evidence that measures of calibration may largely reflect stable personal characteristics that have 

little to do with metacognitive monitoring (Pieschl, 2009; Scheck, Meeter, & Nelson, 2004; Zhao 

& Linderholm, 2008). Zhao and Linderholm (2008) present a theory wherein individuals, in 

making monitoring judgments, first anchor their judgment with expectations based on past 

experiences from potentially unrelated tasks and then adjust based on features of the actual task, 

ending with a judgment that, despite adjustment, is biased toward stable personal characteristics 

without adequately addressing task-specific considerations. Other researchers have relied upon 

the stability of calibration across tasks as indicative of a stable monitoring characteristic (e.g., 
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Mengelkamp & Bannert, 2010). Without disentangling indicators of monitoring from other 

personal characteristics, the true value of accurate calibration is unlikely to be revealed.   

The Current Study 

Relying on a model of conscious regulation as described by the flow chart in Figure 3.1, 

the current study seeks to determine a more true association between calibration and 

achievement. The context for the study is an online mathematics learning environment, Spatial 

Temporal Mathematics (ST Math), created by the MIND Research Institute. Students 

participating in ST Math proceeded through a grade-level-specific curriculum, divided into 21 to 

25 objectives, depending on grade level. Objectives covered included mathematics topic areas 

such as “Multi-Digit Multiplication” and "Linear Functions and Equations." Appendix B, Table 

1 provides a description of each of the objectives within the ST Math curriculum, divided by 

grade. The content was ordered to approximate the progression of content within a typical 

mathematics class, but was not aligned with pacing guides or other curricular materials. 

Each objective within ST Math was prefaced with a 5 to 10 question pretest on objective-

relevant content (examples provided in Appendix B). Within the pretest, once students selected 

their answer for a question, they were prompted to indicate their confidence in this answer by 

selecting a cheering icon to represent certainty or a shrugging icon to represent uncertainty (see 

Study 1 Figure 2.1). Students were then allowed to review their answers and confidence ratings 

on each question before beginning the main objective content. The main content consisted of a 

number of learning games leveled by difficulty. Within each game, students solved puzzles to 

help the ST Math penguin, Jiji, proceed from left to right across the screen through the use of 

mathematical problem solving to remove impediments in Jiji's path. Students had to correctly 

complete 80% of the puzzles within each level to move on to the next level; however, students 
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were able to replay levels as desired and otherwise proceeded at their own pace: there was no 

time-limit within the game for the completion of a given puzzle, level, or objective. At the end of 

each objective, students took a posttest quiz mirroring the content of the pretest quiz. The 

posttest quiz problems were structured in the same way as the pretest quiz problems: students 

were asked for confidence judgments on each problem and were allowed a post-quiz period of 

review. 

As students took the pretest quizzes and made judgments of confidence, their attention 

was directed toward monitoring, presumably passing the threshold into conscious regulation as 

illustrated in Figure 3.1. At this point, students had access to monitoring information as they 

proceeded to the main learning phase, where, if they were accurately calibrated and in need of 

performance improvements, they would engage control processes to regulate their learning (such 

as controlling their attention or replaying games). Because the content of each objective (and 

objective quiz) varied, confidence judgments and their accuracy were also likely to vary, due in 

part to features of the task and interactions between person and task. If students were better able 

to engage in control processes during the gameplay in objectives in which they were more 

accurately calibrated, and these control processes successfully influenced learning, then pre to 

posttest gains on these objectives would be larger than pre to posttest gains on objectives in 

which they were more poorly calibrated. By looking only at the joint variation in calibration and 

performance within each student, the Person level of conscious regulation as represented in 

Figure 3.1 can be eliminated from the model, reducing bias on our estimate of calibration's 

association with performance. The non-monitoring-aspects of the Task x Person level still 

remain and are potential confounds to our estimate as are any task-specific personal 

characteristics (e.g., self-efficacy for ST Math problems); however, because the content across 
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objectives shares a large number of features (in that it is grade-level mathematics problem-

solving presented and tested within the same format), it can be assumed that some aspects of the 

Task x Person level are also controlled. Arguably one of the most important features of the Task 

x Person level, student familiarity with the particular task (see de Bruin & van Gog, 2012; 

Dunning et al., 2003) can be controlled by adding a pretest covariate in the model.  

Measures of calibration. Isolating calibration from other aspects of conscious regulation 

is one step toward better understanding the dynamic nature of monitoring within SRL. Certain 

operationalizations of monitoring may also shed light on different processes and the different 

ways in which monitoring can lead to control and improvements in performance. Assuming a 

general monitoring ability that can be measured as a single construct, learner use of this ability to 

identify which content they know and which content they don't know can enable the most 

efficient application of resources (Nelson & Narens, 1990; Schraw, Kuch, & Gutierrez, 2013). 

Learners could direct attentional resources away from material already mastered and toward 

material that has yet to be mastered. In experimental studies, cognitive scientists have 

demonstrated that individuals do indeed allocate more study time to items they deem as more 

difficult to learn (e.g., Nelson & Narens, 1990), although some research has found that under 

certain circumstances individuals will choose easier items first (Theide & Dunlosky, 1999). 

Assuming such a singular process, measures such as Gamma or Discrimination may best capture 

the process of forming metacognitive judgments (see Study 1 for a description of these 

measures). However, if instead of a single monitoring ability, learners use distinct processes to 

make judgments of confidence and judgments of uncertainty, more than one measure would be 

necessary (Schraw et al., 2013).  



71 
 

There is theoretical support for a two-process model. It is a consistent finding that poor 

performers display overconfidence; however, it is also a consistent finding that although better 

calibration is associated with better performance, the best performers tend to display 

underconfidence (Stone, 2000). The top-down process by which individuals make confidence 

judgments (see Zhao & Linderholm, 2008) may illuminate this finding. As individuals draw on 

general self-beliefs or prior experiences to make their judgments for a given task, those who are 

unfamiliar with the domain or topic of study will not have access to the information necessary 

for them to adjust their judgments in consideration of the task, and will therefore likely 

underestimate the task demands, leading to overconfidence (Kruger & Dunning, 1999). The 

converse may be true: those with more prior knowledge may have an abundance of resources 

upon which to draw and may overthink the problem, causing underconfidence. Additionally, 

metacognitive experiences at the Task x Person level feed back into more stable beliefs at the 

Person level (Efklides, 2008), and so it may be protective, especially for those who feel 

threatened, to bolster their more general sense of self-worth with high confidence judgments (see 

Ots, 2012). Ots (2012) also offers evidence that high performers may underestimate as a form of 

defensive pessimism.  

Schraw and colleague's' (2013) analysis of ten measures of calibration using simulated 

data supported a two-process model, finding that including the measures of Sensitivity 

(proportion confident when correct) and Specificity (proportion uncertain when incorrect) in a 

model together best accounted for variance within the data. Findings within Study 1 of this 

dissertation also support the use of these measures: although differences between models were 

small, a model including Sensitivity and Specificity together explained the most variance within 

the data, and these two measures jointly had the greatest predictive validity for performance.  
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Developmental factors in monitoring and control. In considering Person level 

characteristics, which may be related to both monitoring and achievement, it may be beneficial to 

examine the moderating effects of those characteristics that are directly observable. Age is one 

such characteristic hypothesized to influence achievement and to influence both monitoring and 

control; study of the age-related development of metacognition has long been a topic of interest 

(see Flavell, 1979). Prior research has noted improvement in metacognition and regulation as 

children age, especially across elementary school, and has provided evidence that monitoring 

processes may be responsible for these changes (e.g., Howie & Roebers, 2007; Pressley & 

Ghatala, 1990; Pressley, Levin, Ghatala, & Ahmad, 1987). Young children may not attend to 

important features of tasks (Markman, 1977) and may tend toward wishful thinking or 

overconfidence (Desoete & Royers, 2006; Saxe & Sicilian, 1981; Schneider, 2002). There is 

evidence however that even very young children can make accurate confidence judgments, 

especially in situations where the task is simple and/or well-known and the directions are clear 

(de Bruin & van Gog, 2012; Ghetti, Hembacher, & Coughlin, 2013; Roebers, 2002; Schneider, 

2002).  

There may be age-related differences in both the ways children make monitoring 

judgments and in how they use them toward control processes. Children and adults both make 

more accurate judgments after a delay (Schneider, Visé, Lockl, & Nelson, 2000); however, they 

may respond differently to feedback (Newman & Wick, 1987). Children's ability to monitor 

metacognition may especially suffer from working memory demands in complicated tasks 

(Ghetti et al., 2013; Hacker, Dunlosky, & Graesser, 1998). Even with the same mean-level of 

calibration accuracy, younger children may not be as able to use information from metacognitive 

monitoring to influence control processes (Destan, Hembacher, Ghetti, & Roebers, 2014). As 
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with accuracy of metacognitive judgments, this translation of monitoring to control may depend 

on familiarity with and understanding of the task (de Bruin & van Gog, 2012).  

Research questions. I have presented a model of conscious regulation wherein accuracy 

of metacognitive monitoring, as calibration, affects performance on a task through the 

engagement of control processes. Within this model, calibration can be disentangled from other 

features of conscious regulation by examining associations between calibration and performance 

within the same student across related tasks. This study explores these associations within an 

online mathematics learning environment, ST Math, and asks (1) Do students (within ST Math) 

make greater pre to posttest gains when better calibrated at pretest? If there are statistically 

significant associations between calibration and performance within student, then there is 

evidence that elementary students are using ME to enact control processes and influence their 

learning. If there remain associations between calibration and performance between students, 

then there is evidence that there is a stable metacognitive monitoring trait or that another stable 

Person level characteristic is associated with calibration and performance. 

To answer this question, calibration is operationalized as Sensitivity, proportion confident 

when correct, and Specificity, proportion uncertain when incorrect. Representing these aspects of 

monitoring separately is in keeping with Schraw et al. (2013) and with the findings of Study 1 of 

this dissertation, and will also allow an examination of the potentially different processes 

surrounding accurate judgments of confidence and uncertainty. Within student differences in 

associations between these two measures and performance may indicate that they exert 

differential influences on control and thus performance, or may indicate that they are biased by 

different elements at the Task x Person level. For example, if influence on control differs 

between the measures, confidence of correct answers could allow students to operate more 
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efficiently and proceed more quickly through the content, whereas uncertainty in incorrect 

answers may indicate to students where they need to direct their attention or replay levels. 

Differences in associations between students may indicate that stable Person level characteristics 

associated with both calibration and performance differ between the two measures. 

As a second research question, I ask (2) Does calibration and the benefit from calibration 

vary depending on student grade-level? A grade-related improvement in the mean-level of 

calibration may indicate that the older children display better metacognitive monitoring in 

mathematics problem solving. It may be that mean-levels of calibration are equal across the 

grades but older students use metacognitive judgments differently through control processes. If 

this is the case, the associations between calibration and performance will vary by grade. 

Method 

Sample. The sample for this study consisted of approximately half of the second through 

fifth graders at 18 schools in Southern California. The participating schools were largely 

Hispanic (85%) and low-income (80% eligible for free/reduced lunch), and on average, lower 

performing than the other county and state schools (see tables in Study 1). The schools had been 

randomly assigned to receive Spatial Temporal (ST) Math, an online spatially-based 

mathematics curriculum, in either second and third or fourth and fifth grades. Because the year 

of data collection for this paper (2010) is the second year of the study, there was no 

treatment/control variation in fourth grade. Therefore, all fourth graders in the participating 

schools were included in this sample. There were 4,137 students in grades 2 through 5 who used 

ST Math within the study schools. The current analyses were limited to the 3,912 students (95%) 

who were using their on-grade curriculum (excluding fifth graders using fourth grade 

curriculum, for example), and who had completed at least two of the 20+ objectives within a 
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year’s ST Math curriculum. Comparisons between the samples and descriptive statistics on both 

can be seen in Table 3.1. Excluded students are more likely to be in fifth grade and male; no 

other differences between excluded and retained students rose to the level of statistical 

significance.  

{Insert Table 3.1} 

Procedure. Students played ST Math for 45 minutes at a time during twice weekly visits 

to the computer lab throughout the academic year. Student selections on multiple choice quiz 

questions along with their ratings of confidence were collected and compiled by MIND and 

provided to the author, who was able to match them with state identifiers and demographic 

information. 

Measures.  

Quiz data. For each objective, accuracy is represented separately for pre and posttest 

quizzes as percentage correct. Calibration is operationalized as recommended by Schraw et al. 

(2013), with Sensitivity (percent of correct items where students noted confidence) and 

Specificity (percent of incorrect items where students noted uncertainty), based on the 

distribution of data within the 2x2 contingency table of confidence and accuracy (See Study 1 

Figure 2.2). To accommodate students who did not have data in each combination of confidence 

and accuracy, .01 was added to each quadrant before Sensitivity and Specificity were calculated 

for each quiz. Because of this addition, the range of Sensitivity and Specificity were changed 

from the standard zero to one range to a range just over zero to approaching one. A score of .5 

can be considered neutral in this case, but can be arrived at in two ways: by not having any 

correct or incorrect answers, or by not indicating appropriate confidence on half of the 

correct/incorrect answers. For example, for Sensitivity, a student who did not get any items 
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correct would have .01/(.01+.01) or .5, as would a student who indicated confidence on two 

items but had actually answered four items correctly: 2.01/(2.01 + 2.01) or .5. Students who were 

perfectly calibrated (e.g. 4 confident out of 4 correct) have Sensitivity that approaches 1 (e.g., 

4.01/(.01+4.01) or .998) and those who were not accurately calibrated on any questions would 

have Sensitivity that was just over zero (e.g., .01/(.01+4.01) or .002). 

Demographics. Demographic information was provided to the author by the participating 

school districts. This information included student gender, grade-level, ethnicity (categorized in 

analyses to represent the largest groups: Hispanic, Asian, White, and Other), English Language 

Learner (ELL) status, and free/reduced lunch eligibility as a matter of socioeconomic status. 

Analysis. As a first step, these data were analyzed in a way typical to calibration data: 

examining zero-order correlations between accuracy and calibration. Multiple regression 

analyses were then conducted using a dispositional framework to examine the associations 

between calibration and accuracy controlling for other observed student characteristics. 

Sensitivity and specificity were included together in the model to represent correct identifications 

of both confidence and uncertainty (see Schraw et al., 2013). To view the association between 

calibration and average improvement from pre to posttest, a model was estimated also 

controlling for pretest accuracy. In these single student-level models, each student’s pretest 

means for accuracy, Sensitivity, and Specificity were calculated as was each student’s mean 

posttest accuracy (as outcome). The final single student-level model is represented by the 

following equation: 

PosttestAcc̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
i = β0 + β1Sensitivity̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

i + β2Specificity̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
i + β3PretestAcc̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

i + β3Covariatesi + ri (1) 

 

To address the dynamic nature of calibration and its role within the model of conscious 

regulation as presented in Figure 3.1, a random intercepts two-level hierarchical model with 
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objectives nested within students was analyzed to determine whether student calibration at 

pretest (Sensitivity and Specificity) was associated with gains from pre to posttest. To isolate 

within-student effects and to eliminate bias from unobserved student characteristics (see Allison, 

2005; Hofmann & Gavin, 1998; Park, 2008), group-mean centering (around each student’s 

mean) was used for Level 1 predictors. In this way, the question of whether the same student 

made greater gains during objectives when he/she was better calibrated could be answered. 

Unchanging student characteristics were entered as covariates at Level 2 along with student 

means for pretest accuracy and calibration. 

Level 1 

PosttestAccti = β0i + β1i(Sensitivityti-Sensitivity̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
ti) + β2i(Specificityti-Specificity̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

ti) + 

β3i(PretestAccti-PretestAcc̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
ti) + rti (2) 

 

Level 2 

β0i = γ00 + γ01 Sensitivity̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
i + γ02 Specificity̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

i + γ03 PretestAcc̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
i + γ04StudentCovariatesi + ui (3) 

β1i = γ10; β2i = γ20; β3i = γ30; β4i = γ40  

 

The level one predictors are represented by formula (2), in which individual student mean 

(e.g., Sensitivity̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
i) is subtracted from the student’s score at that time-point (e.g., Sensitivityti) to 

arrive at the student group-mean centered value for that variable. Posttest accuracy is a function 

of the student intercept, these predictors, and a time-varying student error. The level two or 

student-level predictors are represented within formula (3) above. In this formula, the student-

level intercept is a function of the grand intercept, the means of the calibration and pretest 

accuracy Xs, the non-time-varying student-level characteristics (gender, ethnicity, ELL, 

free/reduced lunch, grade-level), and a student error.  

In this way, the within student effect for Sensitivity (βw) is represented by γ01 and the 

between student effect (βb) is represented by γ10. The effect for the individual at level two is the 

difference between βw and βb—this “compositional” effect is the extent to which the student 
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effect remains once the individual quiz effect is controlled (see Raudenbush & Bryk, 2002). 

However, it is worth note that because this compositional effect does not control for lurking 

variables unique to the person, it should not be interpreted as definitive (see Allison, 2005).  

To test for these differences between βw and βb, Wald post-estimation tests were 

conducted to compare within and between student coefficients for Sensitivity, Specificity, and 

pretest accuracy. Differences, if statistically significant, were quantified and expressed as 

differences in standardized effect sizes. All standardized effect sizes were calculated using the 

relevant level-specific standard deviation for each variable using the formula: (B*SDX)/SDY. 

To answer the second research question regarding grade-level differences in calibration, 

analyses of variance were first conducted with student-level data using student mean levels of 

Sensitivity, Specificity, and accuracy. Tukey post-hoc tests were run to illuminate the results. 

Regardless of mean-level differences in calibration between students of different grade-levels, 

students at different developmental stages may use metacognitive information differently, 

resulting in differential associations between calibration and achievement gain depending on 

grade. To investigate these grade-level moderators of the association between calibration and 

quiz gains, a final model included interactions between grade-level and calibration measures.  

Results 

(1) Do students make greater pre to posttest gains when better calibrated at pretest? 

The means and standard deviations of each measure of calibration along with pre and posttest 

accuracy are presented in Table 3.2, divided by grade. The top half of the table presents 

descriptive statistics at the observation level and the bottom half presents them at the student 

level. On average, students are more accurate in their posttest answers than their pretest answers 
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and are better able to correctly identify when they are correct (Sensitivity) than they are able to 

correctly identify when they may be incorrect (Specificity).  

{Insert Table 3.2} 

Variation in calibration is divided by the within and between student levels. Random 

effects Analyses of Variance reveal that 25% of the variance in Sensitivity and 29% of the 

variance in Specificity is associated with the student. Similarly, 17% of variation in pretest 

accuracy is between students.  

Zero-order correlations between calibration and accuracy are presented in Table 3.3. Full 

correlations between calibration, accuracy, and other student characteristics are presented in 

Appendix B, Table 2. As in Study 1, Sensitivity and Specificity had a strong inverse correlation. 

Sensitivity had moderate correlations with both pretest and posttest accuracy; Specificity had 

weaker correlations with both. The accuracy measures were strongly correlated with each other. 

{Insert Table 3.3} 

Table 3.4 presents the results from the student-level regressions of posttest accuracy on 

pretest accuracy and calibration. The models progress in a step-wise fashion from a model that 

does not control for observable student characteristics (Model 1) to one that has a full 

complement of demographic controls (Model 3). The second model is seen as an intermediate 

step as it controls partially for student characteristics (grade-level), but also for characteristics of 

the task, as students at different grades received different curricula and quiz questions. Adding 

all observed student covariates does little to change explained variance—Model 3's r-squared is 

only a .01 improvement upon Model 1. The regression coefficients for calibration and pretest 

accuracy also change little with the addition of student covariates. In the final model, there is a 

strong association between pretest and posttest accuracy: a one standard deviation increase in 
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pretest accuracy is associated with a 0.72 standard deviation increase in posttest accuracy (based 

on the full sample standard deviations of 0.16 for posttest and 0.14 for pretest). The association 

between calibration and posttest accuracy is much smaller: d=0.09 for Sensitivity and d=0.08 for 

Specificity. This is slightly stronger than the statistically significant demographic associations. 

Male students, for example, score 0.06 standard deviations lower than female students on the 

posttest. 

{Insert Table 3.4} 

The models presented in Table 3.4 view calibration as a dispositional characteristic of the 

student and relate each student's average level of calibration to their average level of pre to 

posttest gain within the ST Math curriculum. A further series of models were estimated to 

account for both the dynamic nature of calibration and to estimate associations between 

calibration and achievement gain net of unmeasured student characteristics. Based on a random 

effects Analysis of Variance, 22% of variance in the posttest was associated with student as the 

grouping variable. This was confirmed with the unconditional hierarchical model specifying 

student as the nesting variable. Proportion of variance between the two levels and descriptions of 

incremental model fit are provided in Appendix B, Table 3. Student-level covariates produce a 

small but statistically significant improvement in explaining variance in posttest accuracy 

(2.61%). The addition of the pretest accuracy variables at both levels resulted in a larger 

improvement over the unconditional model (29.60%), and, whereas addition of the calibration 

variables resulted in a statistically significant improvement over this model, the incremental 

improvement was small (0.62%). 

The left half of Table 3.5 displays the results from the hierarchical regressions. Compared 

to the unconditional model, the full conditional model without interactions explained 84% of the 
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variance between students and 15% of the variance within students. Pretest accuracy was a 

strong predictor of posttest accuracy from quiz to quiz (d=0.30; effect sizes calculated using the 

level-specific standard deviations of predictor and outcome variables). The mean of student 

pretest accuracy at level 2 is similar in magnitude to the association as calculated with the one-

level model (d=0.74)—this combines both the quiz and student levels, subtracting the within 

coefficient from the between coefficient resulted in a 0.44 contextual effect for student (see 

Raudenbush & Bryk, 2002). Post-estimation Wald tests revealed that this difference was 

statistically significant at the p<.001 level. Both calibration measures were statistically 

significant predictors of within student differences in pre- to post-test quiz gains (Sensitivity: 

d=0.07; Specificity: d=0.02), and these coefficients were different from each other (p<.001 based 

on post-estimation Wald test). As means, both were also statistically significant predictors at the 

student level of mean growth from pre- to post-test (Sensitivity: d=0.09; Specificity: d=0.08). 

The difference between level one and two Sensitivity was small (d=0.02) and not statistically 

significant (p=.66). For Specificity, post-estimation Wald tests did indicate a statistically 

significant difference between the level one and level two coefficients (p=.001), with a 

difference of d=0.06; this contextual effect was different from that of Sensitivity (p<.001).  

{Insert Table 3.5} 

(2) Does calibration and the benefit from calibration vary depending on student 

grade-level? As seen from the means of calibration at the bottom of Table 3.2, Sensitivity and 

Specificity appear relatively stable across grade-levels. However, with regards to Sensitivity, 

proportion confident when correct, there was a statistically significant effect of grade F(3, 

3,908)=14.78, p<.0001. Post-hoc analyses revealed fourth graders had lower Sensitivity than 

second, third, and fifth graders. With regards to Specificity, proportion uncertain when not 
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correct, there was also a statistically significant effect of grade F(3, 3,908)=8.02, p<.0001. Post-

hoc analyses revealed that fourth graders had higher Specificity than second and third graders 

(ps<.0001), but there was no statistically significant difference between any of the other grades 

(ps>.17). In general, fourth graders were more likely to express uncertainty. This could be due to 

the difference in content within ST Math, as each grade-level experienced different content. This 

could also be due to differences between grades outside of ST Math: school or district-wide 

factors could have influenced the grades differently. To investigate these potential differences, 

school means of fourth grade Sensitivity and Specificity were examined. One school district with 

three study schools emerged as a consistent outlier. Excluding this district, fourth graders still 

had lower Sensitivity and higher Specificity than the other grades.  

There were also grade-level differences in pretest accuracy, F(3, 3,908)=31.01, p<.0001. 

Second graders were more accurate than fourth graders (p<.0001), and fourth graders were less 

accurate than all other grades (ps<.0001). There remained a statistically significant effect of 

grade at posttest, F(3, 3,908)=17.61, p<.0001. Second graders remained the most accurate, and 

this difference was statistically significant in comparing second graders to third and fourth 

graders (p<.0001). Differences between third, fourth, and fifth graders did not arise to the level 

of statistical significance (ps>.05).  

The right half of Table 3.5 displays results from the 2-level model including grade-level 

interactions. The depths of the slopes for Sensitivity and Specificity for each grade level can be 

seen in Figures 3.2 and 3.3. The direction and relative magnitude of coefficients for Sensitivity 

and Specificity were similar to those within the model without grade-level interactions: 

Sensitivity was a stronger predictor than Specificity at the within student level, but Specificity 

had a larger student contextual effect. At the within student level, the associations between 
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Sensitivity and posttest accuracy for second, third, and fifth graders were different than those for 

the reference group, fourth graders (ps<.05)—the coefficient for Sensitivity was larger for fourth 

graders than for the other grade-levels. The associations between Specificity and posttest 

accuracy were not different between fourth graders and second and fifth graders (ps>.05); 

however, third graders had a smaller coefficient for Specificity than did fourth graders (p=.04) 

and also smaller coefficients than those found for second (p=.01) and fifth graders (p=.02). A 

post-estimation test revealed that the third grade coefficient for Specificity was not statistically 

significantly different from zero (p=.62). At level two, coefficients for both Sensitivity and 

Specificity were lower for second, third, and fifth graders than for fourth graders (ps<.05). Post-

estimation test revealed that estimates for second, third, and fifth graders did not differ, however 

(ps>.05). Eliminating the outlier district resulted in little change. The relative strengths of the 

coefficients for each grade level were unchanged; however, the difference in slope for Sensitivity 

between second and fourth graders did not arise to levels of statistical significance (p=.09). 

Replication 

As a robustness check, a replication was run using data from students who were in the 

study schools and participated in ST Math during the 2011-2012 school year. Because of the 

design of the study, this sample included those students who were in the 2010 sample and did not 

age out or otherwise leave their schools. It also included students who were in grades that 

became treatment grades at the start of the 2011 school year. Table 4 in Appendix B displays 

demographic information on this new sample. Starting in 2011, all students in grades 2 to 5 in all 

study schools used ST Math, and so the grade distribution is more even than in 2010, where 

fourth graders dominated (compare with Table 3.1). Also of note is the ethnic makeup of this 

new sample: the sample is less Hispanic (74% vs. 85%) and more White (20% vs. 8%).  
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Appendix B, Table 5 presents the descriptive statistics on accuracy and calibration for 

this sample and indicates differences between this sample and the 2010 sample. There were 

differences in calibration and accuracy by grade between the samples, but all differences save 

one were smaller than .08 (as the exception, 2011 third graders had pretest accuracy that was .10 

higher than that of 2010 third graders, p<.0001). Although small in magnitude, most differences 

were statistically significant; however, there was no clear trend as to which sample had higher 

values on the variables, either across a given grade or a particular variable—of the 12 statistically 

significant differences, the 2011 sample had higher values for seven. 

As with the 2010 data, around 20% of the variance was associated with student as the 

grouping variable (see Appendix B, Table 6). As variables are added to the model, the model fit 

improved to levels of statistical significance, with the final model (before interactions) 

improving on the unconditional model by 27.31% (compare with 29.60% for the 2010 sample). 

Hierarchical regression results for the 2011 sample are presented on the left side of Table 7 in 

Appendix B. Effect sizes for pretest accuracy at both levels were within d=.05 of the 2010 

model; calibration effect sizes were within d=.01 at level one and d=.03 at level two, with 

direction and relative strength of sensitivity and specificity comparable between the two years. 

Also replicating the 2010 analysis, there was no statistically significant contextual effect of 

Sensitivity, but a contextual effect for Specificity that was larger than the within-student effect. 

Grade differences in calibration remained in the 2011 sample. There was a statistically 

significant effect of grade on mean Sensitivity F(3, 6,087)=89.49, p<.0001 and Specificity F(3, 

6,087)=50.84, p<.0001. Fourth graders had statistically significantly lower Sensitivity than 

second and third graders, as in the 2010 sample, but did not differ from fifth graders. In this 

sample, fifth graders also had statistically significantly lower Sensitivity than did second and 
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third graders, and third graders had statistically significantly lower Sensitivity than did second 

graders. With regards to Specificity, there was no statistically significant difference between 

third, fourth, and fifth graders, but second graders had lower mean-levels of Specificity than all 

three other grades.  

Replicating the 2010 sample, there was a statistically significant effect of grade on both 

pretest accuracy, F(3, 6,087)=204.68, p<.0001, and posttest accuracy, F(3, 6,087)=130.25, 

p<.0001. Post-estimation tests revealed all grade-level differences were statistically significant 

(ps<.0001, although the pattern of results did not mirror that found in the 2010 data). 

Specifically, second graders were not the most accurate in this sample. Third graders were the 

most accurate at both pre and posttest in 2011—it is of note that approximately half of the third 

graders in this sample were second graders in the previous sample. Fourth graders did remain the 

lowest-scoring grade, however. 

The right half of Appendix B, Table 7 displays results from the model including grade-

level interactions. Figures 2 and 3 in Appendix B display the regression slopes graphically. At 

the within student level, the size of the coefficient for Sensitivity for the reference group, fourth 

graders, was similar to that from the non-grade-level interaction model. There were no 

statistically significant differences between fourth, fifth, and second graders in the magnitude of 

this coefficient; however, the association between Sensitivity and posttest accuracy for third 

graders was weaker than that for fourth graders and second graders (ps<.05). The associations 

between Specificity and posttest accuracy for second and fifth graders was statistically 

significantly larger than that for fourth graders (ps <.01) and for third graders (ps<.001 from 

post-estimation Wald tests), but not different from each other (p=.12). For the reference group, 

fourth graders, the coefficient for Specificity was not statistically significantly different from 
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zero. At level two, coefficients for both Sensitivity and Specificity were lower for third graders 

than for fourth graders (ps<.05), and the coefficient for Sensitivity was higher for fifth graders 

than for all other grades (ps<.05). Post-estimation Wald test revealed that second, third, and fifth 

graders differed with respect to the size of the Specificity coefficient at level two: the association 

for fifth graders was strongest and third graders weakest.  

 

Discussion 

(1) Do students make greater pre to posttest gains when better calibrated at pretest? 

Analyses conducted with multiple measures of calibration and performance across a year-long 

mathematics curriculum were able to disentangle the associations between calibration and other 

aspects of regulation in a manner not previously undertaken within the calibration research. With 

respect to the first question, when better calibrated at pretest, students did make greater gains 

from pre to posttest. These associations were replicated with an additional sample of students, 

but were small, with effect sizes less than one tenth of a standard deviation. This is in contrast to 

the larger effects of calibration reported in previous research, mostly using between-person 

comparisons and zero-order correlations (e.g., Bol et al., 2010; Make, Shields, Wheeler, & 

Zacchilli, 2005; Ots, 2012; Soku & Quereshi, 2004).  

{Insert Table 3.6} 

Within the current study, effect sizes were sensitive to the mode of analysis: Table 3.6 

compares effect sizes for Sensitivity and Specificity across methods. Sensitivity in particular 

appears to be inflated when using zero-order correlations, indicating that person characteristics 

associated with both Sensitivity and performance can bias results when analysis is conducted 

with this typical method. Estimates for Sensitivity changed little, however, between the one-level 
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model (Table 3.4) and the hierarchical model (Table 3.5)—it may be that Sensitivity's 

association with pretest accuracy is the relation causing the greatest bias—it was eliminated in 

both regression models by the addition of a pretest covariate.  

Sensitivity and Specificity responded differently to mode of analysis and also had 

statistically significantly different associations with performance gains in the hierarchical model. 

Within student, the effect size for Sensitivity was more than three times as large as that for 

Specificity. It is a common feature of metacognitive and SRL models that students who are 

aware of what they don’t know will engage in behaviors to direct and control learning, for 

example, students in ST Math could adjust attention, replay puzzles, or seek help (see Efklides, 

2008; Nelson & Narens, 1990, Zimmerman, 2008). The small effect size for Specificity suggests 

that this may not be the case, at least when Specificity is measured at the Task x Person level, 

where student and task characteristics interact. It appears more important at this level that 

students are confident when they are correct. It is less clear what control mechanism is at play 

here. It may be that very task-specific self-efficacy is driving this association. The positive 

association between self-efficacy and performance is a consistent finding in the motivation 

literature (e.g., Bandura, 1997; Pajares, 1996).  

Sensitivity and Specificity also differed in their associations with performance gains at 

the Person level. The level two effect for Sensitivity was no different than the within-person 

effect, but the contextual effect for Specificity was statistically significantly different from zero 

and three times as large as the within-person effect. This could indicate that there is some stable 

metacognitive monitoring trait that assists students in making and/or acting upon determinations 

of uncertainty. The kind of tendency toward deliberate thinking as noted in Winne (1995) may be 
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a candidate. However, as noted in Allison (2005), this estimate of the contextual effect may be 

biased by other stable characteristics of the student and should be interpreted with caution. 

(2) Does calibration and the benefit from calibration vary depending on student 

grade-level? Looking at mean-levels of calibration across the grade-levels, it does not appear 

that the data supported the hypothesis that calibration accuracy improves with development in 

elementary-aged students (see Pressley et al., 1987). This could have been due to idiosyncrasies 

in the sample, especially within the 2010 data. The 2011 replication results differed. Within this 

sample, the younger students had higher Sensitivity, perhaps indicating greater confidence 

overall. Second graders had lower Specificity than the other grade-levels, indicating that they 

were not as accurate in identifying uncertainty for those questions they did not get correct. This 

is in keeping with prior research on age-related differences in monitoring, especially in complex 

or unfamiliar tasks (de Bruin & van Gog, 2012). Of all the grade-levels, the second graders 

would have been least familiar with multiple choice math tests as seen within ST Math; this may 

have driven their lower levels of Specificity.  

Increasingly large associations between calibration and performance across the grade-

levels would have indicated that older students used information from metacognitive monitoring 

judgments to differently engage control processes and subsequently make larger gains from pre 

to posttest. As with the analysis of mean-levels of calibration, no clear developmental picture 

emerged within the 2010 data. Unlike the mean-level analysis, the 2011 data did not appear to 

paint a clear picture either: there were no statistically significant interactions with respect to 

Sensitivity, and the higher coefficients for Specificity for both second and fifth graders as 

compared with third and fourth graders did not support the hypothesized developmental 

improvements. 
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Limitations. Using real-world data collected as part of an actual classroom mathematics 

activity offered some advantages over previous calibration research, but also provided some 

challenges. Because math content differed by grade-level, I was unable to disentangle grade and 

content—complexity and familiarity of test content may have played a large role in both the 

accuracy of calibration judgments and their use. The failure to replicate developmental 

differences across samples also reduces confidence in the results for the second research 

question. Additional replications, carefully adjusting content and difficulty differences between 

grade-levels, may offer stronger evidence for the presence of developmental patters of overall 

calibration accuracy and use.  

Although this study makes a substantial improvement in isolating calibration from the 

other aspects of conscious regulation as illustrated in Figure 3.1, even the within-person 

associations may be biased by other variables at the Task x Person level. For example, the effect 

of metacognitive knowledge about math tasks within ST Math would have been removed from 

the model at the Task x Person level; however, the difference between what a student knows 

about shape problems and what a student knows about fraction problems could be picked up in 

the calibration estimates between objectives, biasing the results. Using content that is more 

closely related may solve this problem, but a complete solution may remain elusive: as young 

students make great leaps in their math learning across the school year, the nature of their 

interaction with the task is likely to evolve, fundamentally changing aspects at the Task x Person 

level even in tasks that appear similar. 

Conclusion.  This study demonstrates the role of calibration within the system of SRL, 

showing how differences in the accuracy of student metacognitive monitoring are related to 

differences in performance gains within an online mathematics curriculum. As a main 
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contribution, this study moves beyond a dispositional view of calibration to explore the dynamic 

nature of calibration as it varies within the same student, from task to task. For the elementary 

school students within this study, calibration emerged as a statistically significant predictor of 

improvement in performance from pre to posttest. Within students, the accurate identification of 

correct answers (Sensitivity) had larger associations with performance gains than did the 

accurate identification of uncertainty for incorrect answers (Specificity), although both did have 

small statistically significant coefficients. This finding was replicated with a second sample of 

students. Although it was hypothesized that older students might both make more accurate 

calibration judgments and/or use those judgments more effectively toward performance gains, 

the results of this study did not conclusively support either hypothesis. These results can help 

calibration researchers in education and other fields start to disentangle the unique contribution 

of metacognitive monitoring within SRL—better understanding how calibration works in this 

dynamic system can help support the improvement of calibration and the improvement of SRL, 

both thought foundational to many learning activities. 

 

 

  



91 
 

References 

Allison, P. D. (2005). Fixed effects regression methods for longitudinal data using SAS. SAS 

Publishing. 

Bandura, Albert. (1986). Social foundations of thought and action : a social cognitive theory. 

Englewood Cliffs  N.J.: Prentice-Hall. 

Bandura, A. (1997). Self-efficacy: the exercise of control. Macmillan. 

Barnett, J. E., & Hixon, J. E. (1997). Effects of Grade Level and Subject on Student Test Score 

Predictions. The Journal of Educational Research, 90(3), 170–174. 

doi:10.2307/27542087 

Boekaerts, M., & Rozendaal, J. S. (2010). Using multiple calibration indices in order to capture 

the complex picture of what affects students’ accuracy of feeling of confidence. Learning 

and Instruction, 20(5), 372–382. doi:10.1016/j.learninstruc.2009.03.002 

Bol, L., & Hacker, D. J. (2001). A Comparison of the Effects of Practice Tests and Traditional 

Review on Performance and Calibration. The Journal of Experimental Education, 69(2), 

133–151. doi:10.2307/20152656 

Bol, L., Hacker, D. J., O’Shea, P., & Allen, D. (2005). The Influence of Overt Practice, 

Achievement Level, and Explanatory Style on Calibration Accuracy and Performance. 

The Journal of Experimental Education, 73(4), 269–290. doi:10.2307/20157403 

Bol, L., Riggs, R., Hacker, D. J., Dickerson, D.L., & Nunnery, J. (2010). The calibration 

accuracy of middle school students in math classes. Journal of Research in Education, 

21, 81-96.  

Chen, P. (2002). Exploring the accuracy and predictability of the self-efficacy beliefs of seventh-

grade mathematics students. Learning and Individual Differences, 14(1), 77–90. 



92 
 

De Bruin, A. B. H., & van Gog, T. (2012). Improving self-monitoring and self-regulation: From 

cognitive psychology to the classroom. Learning and Instruction, 22(4), 245–252. 

doi:10.1016/j.learninstruc.2012.01.003 

Desoete, A., & Roeyers, H. (2006). Metacognitive Macroevaluations in Mathematical Problem 

Solving. Learning and Instruction, 16(1), 12–25. 

Destan, N., Hembacher, E., Ghetti, S., & Roebers, C. M. (2014). Early metacognitive abilities: 

The interplay of monitoring and control processes in 5- to 7-year-old children. Journal of 

Experimental Child Psychology, 126C, 213–228. doi:10.1016/j.jecp.2014.04.001 

Dunning, D., Johnson, K., Ehrlinger, J., & Kruger, J. (2003). Why People Fail to Recognize 

Their Own Incompetence. Current Directions in Psychological Science, 12(3), 83–87. 

doi:10.1111/1467-8721.01235 

Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to 

self-regulation and co-regulation. European Psychologist, 13(4), 277–287. 

doi:10.1027/1016-9040.13.4.277 

Efklides, A. (2011). Interactions of Metacognition With Motivation and Affect in Self-Regulated 

Learning: The MASRL Model. Educational Psychologist, 46(1), 6–25. 

doi:10.1080/00461520.2011.538645 

Efklides, A., & Vlachopoulos, S. P. (2012). Measurement of metacognitive knowledge of self, 

task, and strategies in mathematics. European Journal of Psychological Assessment, 

28(3), 227–239. doi:10.1027/1015-5759/a000145 

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–

developmental inquiry. American Psychologist, 34(10), 906–911. doi:10.1037/0003-

066X.34.10.906 



93 
 

Ghetti, S., Hembacher, E., & Coughlin, C. A. (2013). Feeling Uncertain and Acting on It During 

the Preschool Years: A Metacognitive Approach. Child Development Perspectives, 7(3), 

160–165. doi:10.1111/cdep.12035 

Hacker, D. J., Dunlosky, J., & Graesser, A. C. (1998). Metacognition in Educational Theory and 

Practice. Routledge. 

Hofmann, D. A., & Gavin, M. B. (1998). Centering Decisions in Hierarchical Linear Models: 

Implications for Research in Organizations. Journal of Management, 24(5), 623–641. 

doi:10.1177/014920639802400504 

Howie, P., & Roebers, C. M. (2007). Developmental progression in the confidence-accuracy 

relationship in event recall: insights provided by a calibration perspective. Applied 

Cognitive Psychology, 21(7), 871–893. doi:10.1002/acp.1302 

Koku, P. S., & Qureshi, A. A. (2004). Overconfidence and the Performance of Business Students 

on Examinations. Journal of Education for Business, 79(4), 217–224. 

doi:10.3200/JOEB.79.4.217-224 

Koriat, A. (2012). The relationships between monitoring, regulation and performance. Learning 

and Instruction, 22(4), 296–298. doi:10.1016/j.learninstruc.2012.01.002 

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing 

one’s own incompetence lead to inflated self-assessments. Journal of Personality and 

Social Psychology, 77(6), 1121–1134. 

Maki, R. H., & Berry, S. L. (1984). Metacomprehension of text material. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 10(4), 663–679. 

doi:10.1037/0278-7393.10.4.663 



94 
 

Markman, E. M. (1977). Realizing That You Don’t Understand: A Preliminary Investigation. 

Child Development, 48(3), 986–992. doi:10.2307/1128350 

Mengelkamp, C., & Bannert, M. (2010). Accuracy of confidence judgments: Stability and 

generality in the learning process and predictive validity for learning outcome. Memory 

& Cognition, 38, 441–451. doi:10.3758/MC.38.4.441 

Nelson, T. O. (1990). Metamemory: A Theoretical Framework and New Findings. In Gordon H. 

Bower (Ed.), Psychology of Learning and Motivation (Vol. Volume 26, pp. 125–173). 

Academic Press. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S0079742108600535 

Newman, R. S., & Wick, P. L. (1987). Effect of age, skill, and performance feedback on 

children’s judgments of confidence. Journal of Educational Psychology, 79(2), 115–119. 

doi:http://dx.doi.org/10.1037/0022-0663.79.2.115 

Nietfeld, J. L., Cao, L., & Osborne, J. W. (2006). The effect of distributed monitoring exercises 

and feedback on performance, monitoring accuracy, and self-efficacy. Metacognition and 

Learning, 1(2), 159–179. doi:10.1007/s10409-006-9595-6 

Ots, A. (n.d.). Third graders’ performance predictions: calibration deflections and academic 

success. European Journal of Psychology of Education, 1–15. doi:10.1007/s10212-012-

0111-z 

Pallier, G., Wilkinson, R., Danthiir, V., Kleitman, S., Knezevic, G., Stankov, L., & Roberts, R. 

D. (2002). The Role of Individual Differences in the Accuracy of Confidence Judgments. 

The Journal of General Psychology, 129(3), 257–299. doi:10.1080/00221300209602099 

Pajares, F. (1996). Self-Efficacy Beliefs in Academic Settings. Review of Educational Research, 

66(4), 543–578. doi:10.3102/00346543066004543 



95 
 

Park, H. S. (2008). Centering in Hierarchical Linear Modeling. Communication Methods and 

Measures, 2(4), 227–259. doi:10.1080/19312450802310466 

Pieschl, S. (2009). Metacognitive calibration—an extended conceptualization and potential 

applications. Metacognition and Learning, 4(1), 3–31. doi:10.1007/s11409-008-9030-4 

Pintrich, P. (2004). A Conceptual Framework for Assessing Motivation and Self-Regulated 

Learning in College Students. Educational Psychology Review, 16(4), 385–407. 

doi:10.1007/s10648-004-0006-x 

Pressley, M., & Ghatala, E. S. (1990). Self-Regulated Learning: Monitoring Learning From Text. 

Educational Psychologist, 25(1), 19–33. doi:10.1207/s15326985ep2501_3 

Pressley, M., Levin, J. R., Ghatala, E. S., & Ahmad, M. (1987). Test monitoring in young grade 

school children. Journal of Experimental Child Psychology, 43(1), 96–111. 

doi:10.1016/0022-0965(87)90053-1 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: applications and data 

analysis methods. SAGE. 

Rinne, L. F., & Mazzocco, M. M. M. (2014). Knowing Right From Wrong In Mental Arithmetic 

Judgments: Calibration Of Confidence Predicts The Development Of Accuracy. PLoS 

ONE, 9(7), e98663. doi:10.1371/journal.pone.0098663 

Roebers, C. M. (2002). Confidence judgments in children’s and adult’s event recall and 

suggestibility. Developmental Psychology, 38(6), 1052–1067. doi:10.1037/0012-

1649.38.6.1052 

Saxe, G. B., & Sicilian, S. (1981). Children’s Interpretation of Their Counting Accuracy: A 

Developmental Analysis. Child Development, 52(4), 1330–1332. doi:10.2307/1129526 



96 
 

Scheck, P., Meeter, M., & Nelson, T. O. (2004). Anchoring effects in the absolute accuracy of 

immediate versus delayed judgments of learning. Journal of Memory and Language, 

51(1), 71–79. doi:10.1016/j.jml.2004.03.004 

Schneider, W., & Lockl, K. (2002). The development of metacognitive knowledge in children 

and adolescents. In T. J. Perfect & B. L. Schwartz (Eds.), Applied Metacognition (pp. 

224–257). Cambridge University Press. 

Schneider, W., Visé, M., Lockl, K., & Nelson, T. O. (2000). Developmental trends in children’s 

memory monitoring: Evidence from a judgment-of-learning task. Cognitive Development, 

15(2), 115–134. doi:10.1016/S0885-2014(00)00024-1 

Schraw, G., Kuch, F., & Gutierrez, A. P. (2013). Measure for measure: Calibrating ten 

commonly used calibration scores. Learning and Instruction, 24, 48–57. 

doi:10.1016/j.learninstruc.2012.08.007 

Stone, N. (2000). Exploring the relationship between calibration and self-regulated learning. 

Educational Psychology Review, 12(4), 437–475. doi:10.1023/A:1009084430926 

Thiede, K. W., & Dunlosky, J. (1999). Toward a general model of self-regulated study: An 

analysis of selection of items for study and self-paced study time. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 25(4), 1024–1037. 

doi:10.1037/0278-7393.25.4.1024 

Winne, P. H. (1995). Inherent details in self-regulated learning. Educational Psychologist, 30(4), 

173–187. doi:10.1207/s15326985ep3004_2 

Winne, P. H. (2004). Students’ calibration of knowledge and learning processes: Implications for 

designing powerful software learning environments. International Journal of Educational 

Research, 41(6), 466–488. 



97 
 

Zhao, Q., & Linderholm, T. (2008). Adult Metacomprehension: Judgment Processes and 

Accuracy Constraints. Educational Psychology Review, 20(2), 191–206. 

doi:10.1007/s10648-008-9073-8 

Zimmerman, B. J. (1986). Becoming a self-regulated learner: Which are the key subprocesses? 

Contemporary Educational Psychology, 11(4), 307–313. doi:10.1016/0361-

476X(86)90027-5 

Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic learning. Journal 

of Educational Psychology, 81(3), 329–339. doi:http://dx.doi.org/10.1037/0022-

0663.81.3.329 

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, 

methodological developments, and future prospects. American Educational Research 

Journal, 45(1), 166 –183. doi:10.3102/0002831207312909 

  



98 
 

 

Figure 3.1. Model of conscious regulation. Flow chart illustrating monitoring and control after a request to make metacognitive 

judgments brings the learner into conscious regulation. Metacognition represented within as Metacognitive Knowledge (MK), 

Metacognitive Experiences (ME)—including confidence judgments, and Metacognitive Skills (MS).   
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Figure 3.2. Level 1 slopes for Sensitivity by grade-level from interaction model on right-hand side of Table 3.5 compared 

with slope from non-interaction model (Main Model, dashed line) on left-hand side of Table 3.5.  
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Figure 3.3. Level 1 slopes for Specificity by grade-level from interaction model on right-hand side of Table 3.5 compared 

with slope from non-interaction model (Main Model, dashed line) on left-hand side of Table 3.5
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Table 3.1 

    Grade & Demographic Information of Study Students 

 

Total Sample Analysis Sample 

 

Percent Count Percent Count 

Grade 2 22% 4,137 21% 3,912 

Grade 3 19% 4,137 19% 3,912 

Grade 4 37% 4,137 37% 3,912 

Grade 5 23% 4,137 22% 3,912 

Male 52% 4,006 52% 3,912 

Asian 3% 4,006 3% 3,912 

Hispanic 85% 4,006 85% 3,912 

White 8% 4,006 9% 3,912 

Other Ethnicity 3% 4,006 3% 3,912 

English Language Learner 66% 4,005 66% 3,912 

Nat'l Free/Reduced Lunch 80% 4,006 80% 3,912 

N  4,137  3,912 
Note. Total Sample includes all students in second through fifth grade in the study 

schools who began at least one objective within ST Math. The analysis sample is 

limited to those students who had complete demographic information and completed 

at least two complete objectives (pre and posttest). 
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Table 3.2 
        Quiz Accuracy and Calibration Measures, by Grade 

Observation/Objective-Level Quiz Descriptives (N=56,962) 

 

Grade 2 Grade 3 Grade 4 Grade 5 

 

Mean SD Mean SD Mean SD Mean SD 

Pretest Accuracy 0.61 0.29 0.61 0.28 0.56 0.30 0.58 0.28 

Pretest Sensitivity 0.82 0.31 0.84 0.29 0.78 0.34 0.82 0.31 

Pretest Specificity 0.33 0.37 0.32 0.37 0.37 0.38 0.34 0.38 

Posttest Accuracy 0.69 0.28 0.70 0.27 0.67 0.30 0.70 0.27 

N (Observations)  12,935  11,146  21,263  11,618 

Student-Level Quiz Descriptive Statistics (N=3,912) 

 Grade 2 Grade 3 Grade 4 Grade 5 

 Mean SD Mean SD Mean SD Mean SD 

Pretest Accuracy 0.60 0.13 0.58 0.16 0.54 0.15 0.57 0.13 

Pretest Sensitivity 0.82 0.18 0.82 0.17 0.78 0.19 0.81 0.17 

Pretest Specificity 0.33 0.22 0.32 0.22 0.36 0.23 0.35 0.22 

Posttest Accuracy 0.68 0.14 0.66 0.16 0.64 0.16 0.68 0.15 

N (Students) 

 

836 

 

749 

 

1,453 

 

874 

Note. Data from analysis sample presented with objective data nested within students. Curricular and quiz 

content differs across grades. 
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Table 3.3 
    Correlations between Calibration and Accuracy Measures  

N=3,912 Sensitivity Specificity Pretest Acc Posttest Acc 

Sensitivity 1 

   Specificity -0.79 1 

  Pretest Acc 0.29 0.08 1 

 Posttest Acc 0.25 0.07 0.81 1 
Note. All correlations statistically significant at the p<.001 level. 
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Table 3.4 

   Student-Level Regressions of Posttest Accuracy on Pretest Accuracy 

and Calibration 

N=3,912 (1) (2) (3) 

Sensitivity 0.09*** 0.09*** 0.08*** 

 

(0.02) (0.02) (0.02) 

Specificity 0.07*** 0.06*** 0.06*** 

 

(0.01) (0.01) (0.01) 

Pretest Accuracy 0.83*** 0.84*** 0.82*** 

 

(0.01) (0.01) (0.01) 

Grade 2 

 

-0.01 -0.01 

  

(0.004) (0.004) 

Grade 3 

 

-0.01** -0.01** 

  

(0.004) (0.004) 

Grade 5 

 

0.02*** 0.01*** 

  

(0.004) (0.004) 

Eng Language Learner 

  

-0.01* 

   

(0.00) 

Male 

  

-0.01** 

   

(0.03) 

Asian 

  

0.01 

   

(0.01) 

White 

  

-0.0001 

   

(0.01) 

Other Ethnicity 

  

0.002 

   

(0.01) 

Free/Reduced Lunch 

  

-0.01*** 

   

(0.004) 

Constant 0.09*** 0.10*** 0.13*** 

 

(0.01) (0.01) (0.01) 

R2 0.66 0.67 0.67 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients. 

Standard errors in parentheses. The reference group comprises students who 

were females in fourth grade, Hispanic, Non-ELL, and not on free lunch. 
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Table 3.5 
      Results from Hierarchical Regressions of Post-test Accuracy on Pre-test Accuracy, 

Calibration, & Covariates 

Fixed Parameters B SE p B SE p 

Level 1 

Sensitivity 0.075 0.004 <.0001 0.092 0.006 <.0001 

Specificity 0.015 0.004 <.0001 0.016 0.006 0.004 

Pretest Accuracy 0.329 0.004 <.0001 0.329 0.004 <.0001 

GR2*Sensitivity 

   

-0.024 0.010 0.020 

GR3*Sensitivity 

   

-0.047 0.012 <.0001 

GR5*Sensitivity 

   

-0.022 0.011 0.045 

GR2*Specificity 

   

0.008 0.009 0.397 

GR3*Specificity 

   

-0.020 0.010 0.038 

GR5*Specificity 

   

0.005 0.009 0.631 

Level 2 

Sensitivity 0.082 0.015 <.0001 0.149 0.023 <.0001 

Specificity 0.057 0.012 <.0001 0.115 0.018 <.0001 

Pretest Accuracy 0.843 0.012 <.0001 0.841 0.012 <.0001 

Grade 2 -0.014 0.004 <.0001 0.100 0.035 0.004 

Grade 3 -0.019 0.004 <.0001 0.116 0.035 0.001 

Grade 5 0.011 0.004 0.003 0.095 0.036 0.008 

 ELL -0.007 0.003 0.031 -0.007 0.003 0.032 

Male -0.008 0.003 0.005 -0.007 0.003 0.005 

Asian 0.004 0.007 0.596 0.002 0.007 0.764 

White -0.001 0.005 0.911 0.000 0.005 0.961 

Other Ethnic 0.009 0.007 0.237 0.008 0.007 0.254 

Free/Reduced Lunch -0.013 0.004 <.0001 -0.013 0.004 0.001 

GR2*Sensitivity 

   

-0.105 0.033 0.001 

GR3*Sensitivity 

   

-0.125 0.034 <.0001 

GR5*Sensitivity 

   

-0.072 0.034 0.037 

GR2*Specificity 

   

-0.085 0.027 0.001 

GR3*Specificity 

   

-0.099 0.027 <.0001 

GR5*Specificity 

   

-0.078 0.028 0.005 

Intercept 0.128 0.014 <.0001 0.055 0.022 0.014 

Random Parameters 

      Between 0.003 0.0001 

 

0.002 0.0001 

 Residual 0.054 0.0003 

 

0.054 0.0003 

 % Variance Explained 

      L2 0.832 

  

0.888 

  L1 0.148 

  

0.148 

  Note. Unstandardized regression coefficients. Level 1 variables are group-mean centered around student 

means. Level 2 quiz variables represent student means. The reference group comprises students who were 

females in fourth grade, Hispanic, Non-ELL, and not on free lunch. 
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Table 3.6    

Comparison of Effect Sizes for 2010 Data across Analysis Methods 

 Zero-Order  Correlations One-Level Model Hierarchical Model 

Sensitivity .25 .09 .07 

Specificity .07 .08 .02 
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CHAPTER FOUR 

Study Three: Changes in Calibration: In Response to Intervention and as Related to 

Changes in Achievement 

As students interact with learning tasks, they must set goals, evaluate their progress 

toward those goals, and adjust their strategies (Zimmerman, 2008). This system of self-regulated 

learning (SRL) is considered a crucial element of a positive mathematics disposition (DeCorte, 

Verschaffel, & Op'T Eynde, 2000); student strength at SRL has been linked with positive 

academic and life outcomes (Pintrich & de Groot, 1990; Zimmerman & Kitsantas, 2014). Within 

SRL, as students evaluate their progress, they make determinations as to their success or failure 

of goal attainment (Efklides, 2008; Winne, 2004). The accuracy of these judgments is termed 

calibration, and is seen as foundational to SRL and to learning activities in general (Alexander, 

2013). Calibration itself has been shown to have a positive relation with achievement (Stone, 

2000)—Study 2 within this dissertation demonstrated that accurate student judgments of 

confidence and uncertainty were associated with learning gains. Acknowledging the potential for 

calibration to improve SRL and performance, this study expands upon the work of the prior 

dissertation studies to investigate the malleability of calibration. Within, I evaluate the effects of 

a program to improve calibration in elementary mathematics students, reporting changes on 

multiple measures of calibration and on the relation between changes in calibration and changes 

in achievement. 

Improving Calibration through Intervention 

Much of the prior work on improving calibration has been conducted with research 

studies of college students in classes involving the acquisition of knowledge about a field (e.g., 

psychology). Work by Bol and colleagues (2001, 2005) focuses on the effect of practice tests to 
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improve student calibration. In one of the first studies to take place in an authentic education 

setting, Bol and Hacker (2001) compared two sections of the same research methods course, one 

that incorporated practice tests into student review sessions and one that had a standard review 

session without practice tests. Within both groups, calibration accuracy was associated with 

higher achievement, but surprisingly, the group who received practice tests was more poorly 

calibrated on midterm multiple-choice items. Qualitative information was collected on causal 

attributions, and taking these into consideration, the authors theorized that the treatment group 

focused too narrowly on the material covered in practice tests. No formal feedback was given on 

the practice tests, however, which Bol and Hacker noted as a possible explanation for the failure 

to see improvement in calibration. In another study, Bol, Hacker, O'Shea, and Allen (2005) 

similarly looked for causal attributions to describe lack of improvement in calibration accuracy 

after students practiced calibration with five online quizzes before the final exam. In this study, 

practice seemed to increase postdiction accuracy, but had no effect on prediction accuracy, a 

finding the authors posit may have to do with the measure of calibration obtained: student ratings 

of percentage of items answered correctly. Additionally, the authors reported that the calibration 

trajectory for the five quizzes was not the expected upward trending line—the failure to find 

such a result may have been due to the course material. As is typical in many college classes, 

quizzes likely did not cover content that built upon prior material; the calibration measures may 

have covered largely unrelated topics. Researchers have discussed the difficulty of transferring 

skills in calibration across items or tasks that may be viewed as unrelated (e.g., Keren, 1991). 

Studying trajectories of calibration is useful, as it can give insight into whether calibration is 

changeable (Greene & Azevedo, 2007), but in order to best estimate this change, trajectories 
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might need to include measures from more closely related tasks, such as those found in many 

mathematics classes (see Clements & Sarama, 2009). 

Other studies also use test practice and review to improve calibration, but include 

additional elements to focus students on their performance and/or calibration. In a small 

experimental study, Labuhn, Zimmerman, and Hasselhorn (2010) assessed the effect of different 

feedback conditions on calibration and performance. After a brief lesson on order of operations, 

students were assigned to intervention conditions. All students were given an opportunity to 

practice the skill; those in the feedback conditions were given feedback either on their own 

performance relative to the maximum possible correct or on their own performance and the 

performance of others who had completed the same task. Feedback was presented graphically 

after each practice problem. Labuhn and colleagues found that students in both feedback 

conditions displayed better calibration on a posttest task than did the non-feedback group. 

Although the authors did not find an effect of the intervention on posttest performance for the 

entire group, they did find that students identified as poor performers at pretest improved both in 

their calibration and in their performance if they received the feedback directing them toward 

social comparisons. Open-ended questions of participants revealed that those who received 

feedback were more aware of the process of self-evaluation. The authors distinguished their 

study from prior work finding no benefits of feedback (e.g., Hacker, Bol, Horgon, & Rakow, 

2000; Schraw, Potenza, & Nebelsick-Gullet, 1993), noting that the graphical element of their 

feedback condition may have induced reflection more readily than the feedback in the previous 

studies. This study can be distinguished from others in additional ways: Labuhn and colleagues' 

(2010) study was with elementary-aged students, whereas the Hacker et al. (2000) and Schraw et 

al. (1993) studies they cited were both conducted with undergrads. Additionally, the 
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unsuccessful studies only provided feedback in the form of available answers—they did not 

specifically call attention to the accuracy of each student's answer and calibration. Hacker and 

colleagues did provide students an opportunity to monitor their own calibration and instruction 

directing them to do so, but this may be different then specifically pointing out each individual's 

incorrect answers and flaws in calibration. 

Huff and Nietfeld (2009), also in a study with fifth graders, did find positive effects on 

calibration from an intervention that provided students with correct answers for practice tasks 

without directly providing students with feedback on their individual answers. However, both of 

the intervention conditions included extensive direction to monitor comprehension over the 

course of 12 days of practice with passage reading and comprehension questions, including task-

specific instruction and cues. All treatment and control groups improved their reading 

comprehension from pre to posttest—the groups that improved their calibration did not 

experience larger gains in reading performance. The authors noted that this may have been due to 

their use of a standardized measure of reading comprehension and to the brief nature of the 

intervention. Improving performance through interventions to improve calibration remains an 

elusive goal. One of the few studies to show a connection between calibration improvement and 

achievement involved a semester-long training of college students (Nietfeld, Cao, & Osbourne, 

2006).  This training combined feedback and explicit instruction on calibration strategies, 

directing the students to reflect on their calibration accuracy.  

In their review of calibration research, Hacker, Bol, and Keener (2008) noted that across 

calibration training studies, feedback alone has failed to consistently improve calibration 

accuracy. However, much of the feedback studied was passive feedback (providing students with 

correct answers and leaving it to them to reflect). Although Labuhn and colleagues (2010) 
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attribute the success of their intervention to the graphical component, it is possible that giving 

students direct individual feedback, specific to them, also distinguished this study. Regardless of 

whether feedback (passive or direct) is sufficient to improve calibration accuracy, it is likely that 

feedback is a necessary condition for calibration improvement—feedback provides the means 

through which students can be directed to reflect on their calibration. Hattie and Timperley 

(2007) provide support for this assertion, noting that feedback on self-regulatory processes can 

help students develop their own error-detection skills (i.e., become better calibrated) and can 

"have major influences on self-efficacy, self-regulatory proficiencies, and self-beliefs about 

students as learners" (p. 90).  

Although not directly related to calibration training, Dignath and Buttner's (2008) meta-

analysis of interventions to foster SRL advocates for the use of feedback with elementary-aged 

children. The authors stress the complicated nature of metacognitive interventions, and note that 

younger children, who are still developing their metacognitive knowledge, may benefit from 

more scaffolds, including direct feedback on their SRL practices. The necessity of feedback to 

calibration interventions presents logistic challenges: the frequency and specificity of feedback 

required to improve calibration in elementary children may be too taxing for most elementary 

school teachers. Teacher-provided feedback presents an additional challenge: students may 

ignore it by augmenting or discounting (see Crocker, Voelk, Testa & Major, 1999; Hoyt, 

Aguilar, Kaiser, Blascovich, & Lee, 2007, noting that minority students may augment or 

discount feedback when given by others who know their race). Additionally, some participants in 

previous studies have specifically noted changing their predictions in an attempt to influence or 

protect against resulting negative self-concept (Dembo & Jakubowski, 2003, cited in Bol et al., 

2005; see also Hattie & Timperley, 2007). Computer-provided feedback may present a viable 
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alternative for calibration training: computer feedback can efficiently and individually reach 

multiple students and provide objective information in an environment protected from negative 

social ramifications. Although there is little prior research on computer-assisted calibration 

training, prior literature on computer-provided feedback and educational technology 

interventions for SRL in general may prove illuminating.  

Computer Provision of Feedback 

Feedback is an extremely powerful tool for education, but it is rarely used effectively by 

teachers (Hattie & Timperley, 2007). Educational technology provides a means to improve the 

effective use of feedback. Computer-based learning environments can provide feedback 

frequently, individually, and without embarrassment. Hattie and Timperley (2007) claim that 

feedback has its strongest effects when it is in the "form of video-, audio-, or computer-assisted 

instructional feedback" (p. 84). Two recent studies on computer-provided feedback demonstrate 

its usefulness in math education. 

Koedinger, McLaughlin, and Heffernan (2010) evaluated the formative assessment 

program ASSISTments using a quasi-experimental trial of its implementation with 1,240 seventh 

graders. ASSISTments provided individually directed feedback to students as they took 

computerized math assessments. The treatment group was compared to students at a similar 

school that was unable to implement ASSISTments because it did not have sufficient computers. 

Controlling for prior year's score, treatment students gained more than control students on a 

standardized measure of math achievement. The ASSISTments treatment included the provision 

of classroom progress information to teachers, which could have also been responsible for 

student gains if teachers changed classroom practices as a result of this information. A study of a 

similar system for homework has also shown benefits (Mendicino, Razzaq, & Heffernan, 2009). 
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In a randomized experiment, Mendicino and colleagues determined that a web-based homework 

system that provided immediate feedback to fifth grade students resulted in higher gains on 

classroom math assessments.  

These two studies represent examples of the use of computer-provided feedback within 

the context of elementary and middle school mathematics. The use of computerized provision of 

feedback is not without caveats. The most beneficial feedback directs the student to think 

critically about her errors rather than merely drawing attention to inaccuracies (see Azevedo & 

Bernard, 1995). As described in Hacker et al. (2008) and as noted above, passive feedback or 

feedback on accuracy alone are unlikely to improve student calibration; however, both are 

essential in raising student awareness of the current status of their goal pursuits and allowing an 

avenue for implementation of metacognitive monitoring. Feedback on both the accuracy of an 

answer and on the metacognitive evaluation itself are important elements in directing students to 

reflect on their own SRL processes and are implicit components of the technology-based SRL 

programs described below. 

Educational Technology and SRL  

In the past decade, researchers have begun to investigate the affordances for SRL within 

computer learning environments (e.g., Dabbagh, & Kitsantas, 2005; Winters, Greene, & Costich, 

2008). Dabbagh and Kitsantas (2005) explored the ways that web-based pedagogical tools within 

WebCT supported SRL practices of undergraduate students. They found that different types of 

tools supported different SRL processes such as goal-setting and self-monitoring through 

discussion, work sharing, and accessibility of standards. Winters and colleagues (2008) caution 

that although computer-based learning environments may offer tools to support SRL, many 
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students do not avail themselves of these tools, even if they report and perceive themselves as 

using the tools.  

To support the use of these tools, metacognitive prompts in the form of questions 

embedded in the learning activity, can be used to direct student attention to their own SRL. 

These questions require students to plan, monitor, or evaluate their learning (Bannert & 

Mengelkamp, 2013). Through scaffolding student learning by directing them to self-regulate, 

such prompts can improve students' ability to learn complex material and can develop reflective 

habits of mind that contribute to SRL beyond the scaffolded topic (Azevedo, 2005; Bannert & 

Mengelkamp, 2013). SRL scaffolding and prompts within hypermedia environments have also 

been shown to increase student learning (Aleven & Koedinger, 2002; Azevedo & Hadwin, 

2005). The success of metacognitive prompts is especially pronounced on transfer items that 

require greater depth of processing (Bannert & Mengelkamp, 2013). One example within the 

field of mathematics education is the metacognitive self-questioning program, IMPROVE 

(Kramarski & Gutman, 2006; Kamarski & Zeichner, 2001). Within IMPROVE, as students 

practice mathematical problem-solving, they are prompted to identify the type of problem they 

are working on, connect the problem to prior knowledge, use appropriate strategies to solve the 

problem, and reflect on their process. In a randomized trial, eleventh grade math students who 

received metacognitive questioning based on the IMPROVE system outperformed their peers 

assigned to a control condition that provided only feedback on problem accuracy (Kamarski & 

Zeichner, 2001). Kamarski and Gutman (2006) reported on another study with ninth grade math 

students assigned to an e-learning system either with or without IMPROVE. The students 

completed a five-week unit on linear functions within the e-learning environment and were 



115 
 

tested on procedural problems and "transfer" problems set in a real-life context. The IMPROVE 

students outperformed their peers on both types of problems.  

A number of guidelines have been advanced regarding elements of successful 

metacognitive support programs. Bannert and Mengelkamp (2013) summarized these guidelines 

and noted that successful programs should (1) be integrated in domain-specific instruction, (2) 

explain the value of the support or instruction to students, and (3) allow sufficient training time. 

Additionally, Winters et al. (2008) noted that effects should be monitored once scaffolds are 

faded or removed and real-world achievement measures should be included to demonstrate how 

skills learned within the computer-learning environment can translate to outside learning or 

assessment situations. 

Application of Prior Research and Formation of the Current Study 

Azevedo (2007) defined computer-based "metacognitive tools" as "any technology-based 

environment that (to some degree) models, prompts, supports, and enhances a learner's self-

regulatory processes," (p. 60) and includes monitoring behaviors, such as calibration, in his list 

of processes. The previously described studies of SRL in computer-based environments make 

use of such metacognitive tools to improve SRL in middle and high school students, where much 

of this research has been situated (see Azevedo & Hadwin, 2005). The success of programs like 

IMPROVE (Kamarski & Zeichner, 2001) is encouraging, but a similar integrated SRL program 

may not work for elementary-aged students, who are likely to require more direct training in the 

underlying components and strategies of SRL (see Bannert & Mengelkamp, 2013; Dignath & 

Buttner, 2008). As an initial step to improving SRL, the effectiveness of using a computer-based 

environment to train calibration alone can be investigated. 

Elements of the online mathematics learning software, Spatial Temporal (ST) Math, 
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provide such training. Within ST Math, students progress through a grade-level mathematics 

curriculum to learn mathematical concepts by solving spatially-represented problems. In a 

randomized trial, students using an earlier version of ST Math had larger standardized math 

score gains than their control-group peers (Rutherford, et al., 2014; Schenke, Rutherford, & 

Farkas, 2014). Within the newest version of ST Math, 30+ quizzes throughout the year ask 

students to give confidence ratings about their answers by selecting a cheering (confident) or 

shrugging (not confident) icon for each question (Figure 4.1).  This interface presents a novel 

way to approach the difficulty of training and assessing calibration with young children who 

struggle with traditional monitoring measures (see Huff & Nietfeld, 2009).  Students are given 

graphical feedback about their confidence calibration after each quiz, allowing them to practice 

their own evaluative skills (Figure 4.1).   

{Insert Figure 4.1} 

This repeated practice at calibration with individual feedback on problem and 

metacognitive accuracy can guide students to reflect on this element of their SRL process. 

Although there is no direct instruction on monitoring or other SRL skills inherent in this system, 

feedback coupled with reflection has been shown to improve calibration accuracy (e.g., Nietfeld 

et al., 2006). To date, no studies of calibration training have been conducted in elementary 

school mathematics or over the course of an entire year. The ST Math calibration training may 

be especially effective due to the extended nature of the training and the practice within a domain 

such as mathematics, where skills build upon each other in a developmental progression 

(Clements & Sarama, 2009).  The current study contributes to the research in calibration 

improvement by analyzing student change in calibration in response to practice and direct 

feedback and investigates the association between calibration changes and achievement gains 
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within the computer-based environment and on more traditional assessments. To this end, the 

following research questions are addressed: 

(1) Can third and fourth grade students be trained to be more accurate in their calibration 

judgments through practice and feedback on accuracy and calibration?  

(2) Is improvement in calibration accuracy linked to improvement in performance? 

Method 

Research Design. The current study uses data from an ongoing study of ST Math funded 

by an Institute of Education Sciences grant to a partnership between MIND Research Institute, 

the Orange County Department of Education, and researchers at the University of California, 

Irvine. Within the larger study, the effectiveness of ST Math was evaluated using a randomized 

control trial of 52 schools. The 52 elementary schools in the study included two cohorts with a 

staggered implementation design. This study will concentrate on Cohort 2 schools, which began 

implementing ST Math in the 2009-2010 school year. For these 18 schools, random assignment 

occurred during the summer of 2009. Nine schools were assigned to implement ST Math at 

grades 2-3 and not in grades 4-5 (Group A), and nine schools were assigned to implement ST 

Math at grades 4-5 and not in grades 2-3 (Group B). Although within schools the grades were 

split between treatment and control, the randomization occurred at the school level to either a 

second/third grade implementation or a fourth/fifth grade implementation. Thus, grades 2-3 of 

Group B served as controls for the treated grades 2-3 of Group A, and grades 4-5 of Group A 

served as controls for the treated grades 4-5 of Group B. The decision was made to assign all of a 

school's classrooms in a given grade as a group to either treatment or control to encourage 

fidelity to condition.  
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Each year in the study, schools had the option to add two treatment grades to provide 

multiple years of treatment to students as they progressed through elementary school. As a 

consequence, a third grade student who was assigned to a Group A (grades 2/3) school did not 

stop receiving ST Math in fourth grade so long as their school exercised the option to add 

additional grade-levels. Only one school elected to not add grades during their subsequent years 

in the study. The standard progression of treatment by grade for the 2007 to 2009 time-period is 

presented in Figure 4.2.  The delayed treatment design utilized permitted variation in the number 

of years and grade-levels of those assigned to treatment, and supported equal engagement in the 

study by treatment and control teachers (e.g., Roschelle et al., 2010)—initial control teachers 

knew that their grade would receive the intervention within two years. 

{Insert Figure 4.2} 

Sample. Information on the overall ST Math sample and study school population are 

provided in Study 1. All Cohort 2 students who were in third or fourth grade during the 2011-

2012 school year are included in this study (Study 3). By random assignment, roughly 50% of 

these students received ST Math in 2010-2011 as second or third graders (the Early Treatment 

Group, ETG) and roughly 50% started ST Math the following year, in the 2011-2012 school year 

(the Late Treatment Group, LTG). Of the 6,091 ST Math students in 2011 (identified in Study 2, 

above), 2,990 were in the appropriate grades for this study. The analysis sample for this study 

was limited to those students who stayed in the same treatment group for both years and who 

have valid standardized test achievement data for both years (N=2,625, 88% of the possible 

sample). The sample draws from 18 schools; distribution of the study students among the 18 

schools range from 81 students to 248 students at a given school, with a mean number of 146 

students at each school.  
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{Insert Table 4.1} 

Table 4.1 displays the demographic information on the sample, divided between the early 

and late treatment groups. Although the schools were assigned to treatment group randomly, and 

each contained both treatment and control grade-levels at random assignment, there are some 

differences in demographic characteristics that varied with school X grade combinations. The 

ETG had more third graders and fewer fourth graders (p=.022), fewer Hispanic students and 

more students of all other ethnic groups (ps<.05), and fewer students eligible for free/reduced 

lunch (p=.001).  

Measures. 

ST Math quiz data. MIND Research Institute provided in-game quiz scores and 

calibration measures for each of the treatment students. Data included item-by-item quiz 

answers, accuracy, and confidence ratings. Each year included 23 pre and posttest quizzes, 

administered to students as they completed the ST Math curriculum. As students started a new 

objective, they took a pretest on the content within that objective and specified their confidence 

(sure or not sure) in each answer they gave. After the objective, they took a posttest, also 

selecting their confidence level. 

As choice of calibration calculation may influence results, as recommended by Dunlosky 

and Thiede (2013), multiple measures of calibration were calculated. In keeping with Studies 1 

and 2 of this dissertation and recommendations by Schraw, Kuch, and Gutierrez (2013), 

Sensitivity and Specificity were examined. To aid in comparability across other studies of 

calibration, three other commonly used measures were chosen: Simple Match, Gamma, and 

Discrimination (see Schraw et al., 2013). For all measures, higher scores indicate better 

calibration, but the measures may represent different types of calibration: Gamma and 
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Discrimination represent a student's ability to differentiate between items (relative calibration), 

Simple Match represents a student's absolute calibration, and Sensitivity and Specificity 

represent different processes of calibration for judgments of confidence and uncertainty (see 

Study 1; Kuch, 2012; Schraw et al., 2013). Because patterns of responses would have rendered 

some measures incalculable (see Study 1), the procedure from Study 2 was followed: .01 was 

added to each of the quadrants representing accuracy/confidence combinations before calibration 

measures were calculated. 

Standardized Test Scores. Scores from the California Standards Test (CST), 

administered to all California students grades 2-11 in the spring of each year, were used to assess 

mastery of grade-level mathematics content. CSTs are criterion-referenced, standards-based 

assessments developed in alignment with the California Content Standards (California State 

Board of Education, 2010a). For the 2007-2008 test administration, the latest year for which this 

information is available, Cronbach’s alphas in grade 2 and 3 CST mathematics were 0.93 and 

0.94, respectively (ETS, 2008). Scale scores ranging from 150 to 600 were calculated by the 

state to allow for comparison between grade-levels and were provided to the IES study 

researchers by the participating school districts. These scale scores are necessary because tests 

are designed to assess each grade’s standards and therefore differ between grades. Within grades, 

each year’s test is based on the same core of standards, but contains different questions from the 

years prior. Across math and English/Language Arts (ELA) in all elementary grades, a scale 

score of 350 points indicates a student is considered by the state to be proficient in that subject's 

content-matter for that grade. In addition to specifying the 350 point proficiency cut-off, the state 

of California has designated math cutoff points for far below basic (scores less than 

approximately 240, depending on grade level), below basic (below 300),  basic (300-350) and 
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advanced (above 400, with the exact value depending on grade level) (California State Board of 

Education, 2010b). ELA scores were used as covariate controls in most models. 

Demographics. Gender, ethnicity, free/reduced lunch, and ELL status were reported by 

the school districts along with the CST data. Ethnicity was represented in the analyses by five 

groups: Hispanic, Asian, Black, White, and Other, to represent the largest ethnic groups within 

the sample. Reported English Language Learner (ELL) status was determined by schools as 

measured by the California English Language Development Test (California Department of 

Education, 2011). Eligibility for the national free and reduced lunch program is used as a 

measure of socioeconomic status. 

Analyses. 

(1) Can third and fourth grade students be trained to be more accurate in their 

calibration judgments through practice and feedback on accuracy and calibration? The 

randomly assigned variation in exposure to the training was used to answer this question. To 

answer whether there were differences in calibration after one year of ST Math calibration 

training, calibration scores from the 2011-2012 school year were regressed on treatment group. 

For the ETG, the start of 2011-2012 is one year after treatment, and for the LTG, it is before 

treatment (or just at the start of treatment). Measures of calibration were calculated from the 

2011-2012 posttest quizzes to equalize familiarity with the ST Math interface and each specific 

objective arena. The first set of analyses used quiz calibration from the first objective 

encountered by the students. Because task-specific knowledge may have been affected by 

treatment group and may have effects on measures of calibration (see Study 2; Efklides, 2008), 

same-objective pretest accuracy was entered as a control variable. Grade-level (whether student 

was a fourth grader) was entered as a covariate as were demographic variables: gender, ethnicity, 
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ELL and free/reduced lunch status. To capture general mathematics knowledge and academic 

performance, pretest math CST scores were also entered into the model. Pretest ELA CST scores 

were included in the model to control for additional pretest academic characteristics. The OLS 

Regression equation for this analysis is represented as Equation (1). To account for nesting of 

students within schools, Huber-White clustered standard errors were used in this and other 

models. 

Calibrationi = β0 + β1ETGi + β2PretestAccuracyi + β3FourthGradei + β4PriorAchievementi + 

β5DemographicVariablesi +ei (1) 

The model was run for each of the five calibration variables: Sensitivity, Specificity, 

Gamma, Simple Match, and Discrimination. For more stable measures of calibration, two 

aggregations of calibration were created for each calibration measure: a year-long aggregation 

for the 2011-2012 school year and an aggregation of the first three quizzes each student 

encountered. Due to the self-paced nature of the ST Math curriculum, these aggregated measures 

may include results from different objectives for each student. To accommodate this, dummy 

variables were included in these aggregated models as indications of which objectives 

contributed to the estimates and to compare students only to peers who had completed the same 

objectives. The year-long aggregated model also included a variable for the number of 

encountered objectives (1-23). 

The prior year (2010-2011) CST scores were endogenous to the treatment for the ETG. 

To ascertain the effect of this endogeneity on regression results, a robustness check was 

performed using the 2009-2010 CST scores as math and ELA pretests. In this year, the ETG 

received ST Math, but did not receive the calibration intervention within ST Math, as it was only 

added to the version of the software introduced in the 2010-2011 school year. These analyses 
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were limited to fourth graders because third graders were in first grade in 2009-2010 and 

therefore did not take the CSTs.  

Due to the nature of the provided calibration data, a posttest-only design was necessary. 

Although the schools were randomly assigned to study groups, it is possible that the two groups 

started with different levels of calibration. To test the likely magnitude of bias due to this 

limitation, calibration of the two groups (ETG and LTG) were compared from their first 

treatment year (2010-2011 for the ETG and 2011-2012 for the LTG). Only those students who 

were matched across 2010 and 2011 samples were included for the ETG (N=1,259, 99% of the 

main question sample). These students were in second and third grades in 2010—comparing 

them to the LTG sample in 2011 compares ETG second graders to LTG third graders and ETG 

third graders to LTG fourth graders. Because of this, grade could not be controlled as second or 

fourth grades would be perfectly collinear with treatment group. Nor could CST scores be 

included because second graders would not have pretest CST scores. The equation for this 

analysis is represented by Equation (2) below. As with the main analysis, three sets of equations 

were run using different samples of objective quizzes: the first objective only, the first three 

objectives, and all objectives from the first year of treatment (2010 for the ETG and 2011 for the 

LTG). An additional analysis was run using the entire-year aggregation of quizzes limiting the 

sample to only those students in fourth grade in 2011. In this analysis, pretest CST scores (from 

2009-2010) could be controlled. 

Calibrationi = β0 + β1ETGi + β2PretestAccuracyi + β3DemographicVariablesi +ei (2) 

(2) Is improvement in calibration accuracy linked to improvement in performance? 

Because of the timing of calibration and achievement measures, direct tests of the mediation of 

calibration on the relation between treatment and math achievement could not be conducted. 
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However, the association between ST Math calibration and math achievement, both in and 

outside of the software, can be explored with data from 2011-2012 for both the ETG and LTG 

students. This was done two ways: using gain across two objectives and using slopes of 

calibration to predict slopes of achievement. 

For the first method, within each grade, two objectives were identified: one at the 

beginning of the curriculum (within the first five objectives) and one at the end of the curriculum 

(within the last five objectives that at least 50% of the students completed).  Although all ST 

Math objectives cover on-grade mathematics curriculum in a similar manner (with spatial 

puzzles), there are some topics that may be more related than others. With this in mind, 

correlations between pretest accuracy for each objective were analyzed to determine which pair 

had the strongest correlation. It is for this pair that change scores were calculated: subtracting the 

early calibration from later calibration and early achievement from later achievement. The model 

is represented by equation (3) below and was estimated for each of the five measures of 

calibration separately. An additional series of models investigated the links between changes in 

calibration and changes in achievement outside of the ST Math curriculum, substituting the delta 

for mathematics CST score change for that of in-game math quiz accuracy. 

ΔPosttestAccuracyi = β0 + β1ΔCalibrationi + β2ΔPretestAccuracyi + β3ETGi + β4FourthGradei + 

β5DemographicVariablesi + ei (3) 

A second set of analyses used all available quiz information to calculate a slope for 

calibration improvement for each student, separately for each measure. This slope represents 

each child's calibration improvement over time as they progressed through the ST Math 

curriculum. The slopes were calculated by regressing calibration on ST Math objective quiz 

number (1 through 23). Similar slopes were calculated for posttest accuracy: regressing accuracy 

on ST Math objective quiz number. Once the slopes were calculated, growth of achievement was 
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regressed on growth in calibration, controlling for average pretest accuracy (as a measure of 

initial topic-specific knowledge), grade, treatment group, and demographic variables, along with 

the total number of objectives seen and a series of dummy variables to indicate which objectives 

contributed to the estimates. Equation (4) represents the model. 

BPosttestAccuracyi = β0 + β1BCalibrationi + β2AvePretesti  + β3FourthGradei + β4ETGi + 

β5DemographicVariablesi + β6TotalObjectivesi + β7DummyVariablesObjectivesi + ei (4) 

This model was estimated for each of the five calibration measures. An additional set of 

models (equation 5) was estimated to explore how growth in calibration across the year related to 

achievement on the end-of-year (2012) mathematics CST score, controlling for the prior year's 

(2011) CST scores.  

2012MathCSTi = β0 + β1BCalibrationi + β2FourthGradei + β3ETGi + β4DemographicVariablesi + 

β5TotalObjectivesi + β6DummyVariablesObjectivesi + β72011CSTi + ei (5) 

Results 

(1) Can third and fourth grade students be trained to be more accurate in their 

calibration judgments through practice and feedback on accuracy and calibration? 

Comparisons of mean-level differences between variables of interest and continuous covariates 

are presented in Table 4.2a (third grade) and 4.2b (fourth grade). Third graders who had already 

completed one year of the program completed more of ST Math—they saw, on average, one 

more objective than did the third graders who were new to ST Math (p=.004). However, using 

these unadjusted means, the ETG was less accurate in their quiz performance and in all measures 

of calibration (ps<.001) except Specificity: the ETG's average quiz pretest Specificity was higher 

than that of the LTG (p=.005). There were no statistically significant differences between the 

third grade ETG and LTG in mathematics standardized test scores, but there were differences 

between the two in ELA scores: the ETG group had lower ELA scores in 2011 (p=.01), and 

higher scores in 2012 (p=.01).   
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{Insert Table 4.2a} 

{Insert Table 4.2b} 

Among the fourth grade sample, the ETG and LTG did not differ in the number of 

objectives they completed (p=.79), nor in their quiz score accuracy (ps>.05). Similar to the third 

grade sample, however, the ETG had lower calibration scores on Sensitivity at both pre and 

posttest (ps<.0001), and on Gamma and Simple Match, but only at posttest (ps=.02). Like the 

third grade sample, the ETG had higher Specificity, at both prettest (p<.0001) and posttest 

(p=.0004). ELA CST scores were also different between the two groups: the ETG had lower 

scores for 2011 and 2012 (ps=.004).  

Table 4.3 displays the correlations of calibration measures and their correlation with quiz 

accuracy and CST achievement test measures. As expected (see Study 1; Schraw et al., 2013), 

calibration measures were correlated. Sensitivity and Specificity showed weaker correlations 

with all other measures than they did with each other: they were strongly negatively correlated at 

both pre and posttest. All measures were also relatively stable from pre to posttest: same-

measure correlations were above .5 except for Discrimination, which was just under at .49. 

Pretest Specificity was the only measure that did not show a statistically significant correlation 

with quiz pretest accuracy; however, posttest Specificity did show a small, statistically 

significant (p<.01) correlation with both pre and posttest accuracy. Similarly, Specificity showed 

the weakest correlations with CST scores. Quiz accuracy and CST scores had correlations around 

.5. ELA CST scores had stronger correlations with quiz accuracy than did math CST scores.  

{Insert Table 4.3} 

Although the groups were randomly assigned, unadjusted comparisons between the ETG 

and LTG may be biased by demographic or achievement characteristics that differed between the 
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groups.  A series of regression equations controlled for these characteristics and also for task-

specific knowledge (an important feature of the Task x Person level of metacognition, see Study 

2; Efklides, 2008, 2011). The first set of regressions focused on the first objective encountered 

by students at the start of the 2011-2012 school year. This comparison was thought to capture the 

cleanest difference between treatment groups: the first objective would be before the LTG had 

significant opportunity to practice or receive feedback on calibration. For most students, this was 

an objective covering the topic of Place Value (see Appendix C, Tables 1a and 1b). Although it 

appeared that a large number of fourth graders encountered the Symmetry objective first, those 

who did not encounter it first, did not complete it at all, whereas 98% of students completed the 

Place Value objective. For this reason, the first analyses focused on Place Value and the 2,560 

students (98% of the complete sample) who had valid data for this objective.  

Table 4.4 displays the regression results of calibration on treatment group. The full 

results, including coefficients for covariates, are available in Appendix C. The ETG had lower 

calibration for every measure except for Specificity. Pretest accuracy also had statistically 

significant associations with each calibration measure except for Specificity. Of the covariates, 

math and ELA CST scores were positively related to calibration, but these relations only 

achieved statistical significance for four of five calibration measures for math and for three out 

of five for ELA. Fourth graders had higher calibration across all measures. 

{Insert Table 4.4} 

For a more stable measure of calibration, two additional sets of analyses were run on 

aggregations across quizzes. Table 4.5 presents the results for the regressions run using the first 

three quizzes and Table 4.6 presents results using all taken quizzes. The results for most 

calibration variables were largely in line with the regressions in Table 4.4—the ETG displayed 
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lower levels of calibration—Beta values were within .04 across samples. However, the effect of 

ETG on Specificity increased from β=.02 using the first objective to β=.06 using all objectives, 

gaining statistical significance (p=.02) in the aggregated analysis. 

{Insert Table 4.5} 

{Insert Table 4.6} 

As a robustness check, the fourth grade sample was reanalyzed controlling for an earlier 

CST, taken at the end of the 2009-2010 school year, before either group was exposed to the 

calibration practice and feedback within ST Math. The results are available in Tables 5 through 7 

in Appendix C. Beta coefficients are similar, with a negative effect of ETG seen for Sensitivity, 

Simple Match, Gamma, and Discrimination, and a positive effect of ETG seen for Specificity. 

The most notable change is within the model using the entire-year aggregation of calibration 

scores: effects for Simple Match, Gamma, and Discrimination lose statistical significance, 

whereas Sensitivity and Specificity have larger beta weights than those from models using the 

2011 CST controls and including third graders. 

The next series of analyses explored whether there were calibration differences between 

the ETG and LTG before treatment. To do this, the ETG's first year of treatment, 2010, was 

compared to the LTG's first year of treatment, 2011. Mean-level changes within the ETG from 

2010 to 2011 were first examined. Of the 1,272 ETG students who were present in 2011, 1,259 

(99%) of them had valid data for their first year of treatment, 2010. Table 4.7 compares 

calibration and accuracy variables across the years for this group. Those students who started in 

second grade increased on all calibration and accuracy measures from second to third grade—

these differences were statistically significant (ps<.05) for all measures but Sensitivity. For 

students starting in third grade in 2010, differences between years did not arise to statistically 



129 
 

significant levels for posttest accuracy or any of the combined calibration measures (Simple 

Match, Gamma, Discrimination). However, pretest accuracy and Sensitivity were lower in 2011 

than in 2010 (ps<.0001) and Specificity was higher (p<.0001). 

{Insert Table 4.7} 

Results from regression analyses comparing the ETG at their year 1 (2010) to the LTG at 

their year 1 (2011) are presented in Appendix C, Tables 8 through 10. These results represent the 

association between assigned treatment group and pretest levels of calibration, before 

implementation of the experimental manipulation. Because some students in the ETG were in 

second grade in 2010, a CST pretest covariate could not be included. A robustness check on the 

final set of analyses (using the year-long aggregation) analyzes only those students who would 

be in fourth grade in 2010-2011, allowing for the control of the end-of-2010 CST scores for both 

the ETG and LTG (Appendix C, Table 11). Table 4.8 displays the beta coefficients from these 

pretest analyses (Yr 1 vs 1) and compares them with the beta coefficients from the after-

treatment analyses (Yr 2 vs 1).  The top half of the table displays these comparisons from the 

entire sample, and the bottom half from the fourth grade sample only, allowing for a CST pretest 

covariate exogenous to treatment.  

{Insert Table 4.8} 

For Simple Match, Gamma, and Discrimination in the entire sample, the ETG started 

with levels of calibration lower than those of the LTG. When the sample was limited to only 

fourth graders and the pretest CST was included, these differences did not rise to the level of 

statistical significance. After one year of treatment, these measures of calibration appeared to 

improve for the ETG, but remained lower than those of the LTG. The ETG also had lower levels 

of Sensitivity than did the LTG in their first year of ST Math, though these differences did not 
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attain statistical significance in the fourth grade sample with the CST pretest controlled. At year 

2, however, both the full and limited samples showed lower Sensitivity for the ETG than for the 

LTG. Within both samples, Specificity was higher for the ETG before treatment, but did not 

reach levels that attained statistical significance. After one year of treatment, the ETG had higher 

Specificity than did the LTG in their first year of treatment, and these differences were 

statistically significant. 

(2) Is improvement in calibration accuracy linked to improvement in performance? 

For this question, two analyses were conducted: the first looking at gains in calibration between 

two related objectives and the second looking at the growth of calibration represented as a slope. 

For the first set of analyses, correlations between objectives were analyzed to choose the 

appropriate objective pair. These correlations, broken down by grade, are displayed in Appendix 

C, Table 12. Although almost all are statistically significant (ps<.05), most are low (below .3). 

For third graders, Objective 14, Measurement, had relatively strong correlations with the first 

objectives, the strongest of which was with Objective 2, Ordering and Comparing Whole 

Numbers, r(681)=.35, p<.0001. On average, fourth grade correlations between objectives were 

weaker than those in third grade. However, the strongest pairing had a similar correlation to that 

found for the chosen third grade pair. This fourth grade pairing was between Objective 13, 

Decimal Operations and Money, and Objective 4, Whole Number Addition and Subtraction, 

r(901)=.36, p<.0001. 

As not all students took all objectives, the sample for this analysis was limited to those 

students who had both the paired objectives, resulting in a reduced sample of 1,586 students 

(60% of the sample included for Question 1). Table 4.9 compares those students included in this 

sample to those students excluded. All differences between the samples attained statistical 
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significance except for the difference in the number of White students: White students made up 

21% of both the included and excluded samples.  

{Insert Table 4.9} 

 Table 4.10 displays descriptive statistics on the included measures of calibration and 

achievement, divided by grade, and provides the simple gain scores and standard deviations of 

these gains. From the early objective to the later objective, third graders made gains in pre and 

posttest accuracy and in all measures of calibration. Fourth graders declined in accuracy and all 

calibration measures except for Specificity. Both grades made gains in math CST scores, but 

only fourth graders made gains in ELA CST scores. There appears to be variance in these gains; 

the regression analyses for this question focus on whether the variation in calibration gains 

covaries with variation in posttest achievement gain. 

{Insert Table 4.10} 

The results of the regression analyses are displayed in Table 4.11. Only gain in Sensitivity, or 

proportion confident when correct, was associated with positive gain in posttest accuracy from 

the early quiz to the later quiz (β=.07, p=.02). Increases in Specificity, proportion uncertain when 

incorrect, were associated with decreases in posttest accuracy across the quiz pairs. Gain in the 

other measures of calibration did not have associations with posttest performance gain that 

attained statistical significance. Gain in pretest accuracy across the quiz pairs was associated 

with gain in posttest accuracy; being a member of the ETG was also associated with greater gain 

in posttest score. Coefficients for other covariates are shown in Appendix C (Table 13). Table 

4.12 explores whether these gains in calibration are associated with gains in math CST scores 

from the end of the prior year (2010-2011) to the end of the studied ST Math year (2011-2012). 

No statistically significant relations emerged between calibration and achievement gain.  
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{Insert Table 4.11} 

{Insert Table 4.12} 

For the second set of analyses, growth in calibration and accuracy were representing by 

calculating slopes of pretest quiz calibration and of posttest quiz accuracy. Table 4.13 presents 

the means and standard deviations of these slopes. For third graders, the average slopes were not 

statistically significantly different from zero. For fourth graders, all but the slope for Specificity 

were lower than zero (ps<.01), indicating that students declined in both their calibration and their 

accuracy across the year.  

{Insert Table 4.13} 

Results from regressions of growth of posttest accuracy on growth of pretest calibration 

are presented in Table 4.14. No statistically significant associations emerged between growth in 

calibration and growth in accuracy when calculated as slopes from regressions of each on time 

(represented as quiz number). Neither average pretest accuracy nor assignment to ETG predicted 

this measure of performance growth. In the expanded table within the Appendix (Table 15), only 

three variables showed any statistically significant association with quiz performance growth: 

students in fourth grade, Asian students, and those eligible for free/reduced lunch showed lower 

levels of growth in posttest performance. Regressions of end-of-year math CST scores on 

calibration slopes painted a similar picture with regard to all but one of the calibration slopes 

(Table 4.15). Growth in Simple Match was associated with higher math test scores (β=.03, 

p=017). After using a Bonferroni correction (Abdi, 2007) to adjust the necessary p value for the 

five comparisons conducted in this set of analyses, the required p value of .01 was not obtained. 

Other variables from these regressions did display statistically significant associations with math 
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CST scores: average quiz pretest accuracy, whether the student was a male, and prior math and 

ELA CST scores were all positively associated with performance (Appendix C, Table 16). 

{Insert Table 4.14} 

{Insert Table 4.15} 

Discussion 

(1) Can third and fourth grade students be trained to be more accurate in their 

calibration judgments through practice and feedback on accuracy and calibration? As the 

context for practice and feedback, this study used ST Math, a digital mathematics learning 

environment focused on teaching math concepts through spatial representations. Within ST 

Math, students took quizzes on the content as they progressed through a number of mathematics 

objectives. For each quiz question, students gave their answer and rated their confidence; at the 

end of each quiz they were shown graphical feedback on the agreement between their accuracy 

and confidence. These training elements provided direct, individualized feedback targeting a 

specific aspect of metacognition: the accuracy of metacognitive judgments, often termed 

calibration. It was hypothesized that after a year's training on calibration within ST Math, 

students would display greater calibration accuracy than their peers who were randomly assigned 

to begin ST Math the following year. Analyses comparing those who started ST Math first (the 

ETG) to those with a delayed start (the LTG) did not support this hypothesis. Across multiple 

measures, the ETG displayed lower levels of calibration than the LTG.  

A number of robustness checks investigated the stability of these differences. As different 

levels of mathematics knowledge were likely to influence levels of calibration (see Efklides, 

2008; Study 2), measures of this prior knowledge were important to the analyses. Concerns over 

the endogeneity of previous year math achievement measures for the ETG were assuaged when 
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coefficients changed little with the inclusion of a measure prior to treatment for both groups. 

Additionally, different operationalizations of quiz calibration balanced novelty of the treatment 

for the LTG and the stability offered by the use of a greater number of contributing quizzes. 

Estimates changed little across operationalizations, and with regards to most measures of 

calibration, painted a consistent picture: The ETG had lower levels of four of the five measures 

of calibration, Sensitivity, Simple Match, Gamma, and Discrimination.  

The measures of Simple Match, Gamma, and Discrimination are based on the assumption 

of a single process for metacognitive judgments (see Schraw et al., 2013). Within this view of 

metacognition, monitoring judgments about correct and incorrect performance are part of the 

same process (Nelson & Narens, 1990; Schraw et al., 2013). This is reflected in the formulas for 

calculating these measures: they combine accurate confidence judgments for both correct and 

incorrect measures. In contrast, Sensitivity and Specificity assume separate processes for correct 

versus incorrect performance and divide these with formulas that represent the process of making 

correct judgments of confidence in Sensitivity and correct judgments of uncertainty in 

Specificity (Schraw et al., 2013). In this study, the ETG had lower calibration than the LTG 

when calibration was represented either as a combined measure or as Sensitivity. With respect to 

Specificity, however, the finding was opposite: the ETG made more judgments of uncertainty 

when they were incorrect than did the LTG. This difference suggests that there are separate 

calibration processes for correct and incorrect judgments (Feuerman & Miller, 2008; Schraw et 

al., 2013), and that the results for the three combined measures may present diluted versions of 

the Sensitivity finding. This is supported by the consistently lower beta coefficients for the 

combined measures than those for Sensitivity.  
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Focusing on Sensitivity and Specificity presents a clearer and more fine-grained picture 

of student calibration in this study. After a year's practice and feedback with calibration, the ETG 

was less likely to indicate confidence on items they correctly answered and more likely to 

indicate uncertainty on items they incorrectly answered. What aspects of the program may have 

resulted in this finding? Prior research supports the idea that students who are new to a domain 

are often overconfident, underestimating the demands of the task and failing to identify 

important aspects of the problem (Dunning, Johnson, Ehrlinger, & Kruger, 2003; Kruger & 

Dunning, 1999). Those students who had been exposed to the format of instruction and testing 

within ST Math and who had been given feedback on their accuracy and calibration may have 

better recognized the complexity of the problems and displayed greater doubt. It is unclear 

whether this calibration pattern is adaptive, especially because it appeared they displayed this 

doubt for both correct and incorrect solutions. Findings from Study 2 suggest that confidence for 

correct answers (Sensitivity) is an important aspect of calibration and plays a larger role than 

Specificity in student learning. Within Study 2, student-specific characteristics were controlled 

as part of the analysis, but the effect of calibration may have been biased by characteristics of the 

Task X Person level (Efklides, 2008, 2011), including student overall confidence for the 

particular content within a given objective in ST Math. It may be that positive (and even inflated) 

confidence is important for a broader level of content (e.g., math generally, ST Math generally, 

fractions generally), but less important at the individual item level, where accurate Specificity 

may more readily engage control processes (see Bandura, 1986; Efklides 2008, 2011). The 

specific division for this change in the importance of confidence is unknown; also unknown is 

the level at which ST Math is operating to influence changes in calibration. Prior work indicates 

that ST Math has positive effects on general mathematics self-efficacy (Chang, Rutherford, & 
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Farkas, 2014; Rutherford, Hinga, Chang, Conley, & Martinez, 2011)—this indicates that the 

decrease in confidence and increase in uncertainty is at finer level than mathematics in general.  

ST Math in the context of other training programs. Prior studies specifically focusing 

on the improvement of calibration have largely been situated in college classes such as 

Educational Psychology (e.g., Bol & Hacker, 2001; Schraw, Potenza, & Nebelsick-Gullet, 1993). 

Practice with multiple related quizzes within highly-related content area (herein, mathematics) 

was theorized to induce stronger transfer of metacognitive skills between quizzes than typically 

seen in classes with more unrelated content across exams. The conceptualization of elementary 

mathematics content as highly related, at least within the ST Math curriculum, may have been 

unfounded—the correlation between objective quizzes was low, with most correlations below .2.  

The length of the training was also theorized to strengthen effects. Even though the 

content may not have been as related as expected, students did get a substantial amount of 

practice with quizzes and confidence judgments. On average, students completed more than 14 

objectives and the corresponding pre/posttest quiz pairs. Although just over half of the available 

23 quizzes, this number of quizzes is far greater than those used in previous studies (e.g., Bol et 

al., 2005; Huff & Nietfeld, 2009). Although the length of the training likely provided sufficient 

practice time as recommended by Bannert and Mengelkamp (2013), the training did not meet 

one of their other guidelines for effective metacognitive support programs. ST Math did not 

provide explicit instruction on calibration. It may be, especially with the young children in this 

study, that more explanation was needed to get them to see the value and understand the use of 

the confidence judgments they were making. Students in ST Math were given the opportunity to 

graphically view their calibration results (see Figure 4.1), but this may not have been enough. 

The program may have needed to direct the students and monitor their engagement with the 
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calibration feedback as in Labuhn and colleagues (2010) where students worked one-on-one with 

a researcher to graph their calibration over time. Although ST Math provided more opportunity 

to view and engage with feedback than in Labuhn et al., students did not have to click on their 

calibration results nor did they have to monitor their improvements in calibration. MIND 

Research Institute is currently investigating changes to the ST Math interface that will allow the 

tracking of these student click behaviors and will present more engaging information on 

calibration trends for the students. These changes will take the software closer to the treatment 

provided in Labuhn et al. (2010), and as a result, may show greater effectiveness. 

Limitations to conclusions. Considering this study as a post-test only design with the 

assumption of successful randomization, results indicated that ST Math had a negative effect on 

student Sensitivity (confidence when correct) and a positive effect on student Specificity 

(uncertainty when incorrect). However, examination of the ETG's calibration during their first 

year of treatment indicated that the two groups may have been different before the variation in 

training was introduced. The ETG had lower levels of Sensitivity and all combined measures of 

calibration at the beginning of their first year and throughout their first year than did the LTG 

during their first year. Differences in combined measures of calibration diminished between 

years one and two, whereas differences in Sensitivity and Specificity increased: the ETG had 

lower levels of Sensitivity in their second year than their first and higher levels of Specificity. 

This supports the conclusion that the ETG was becoming more uncertain as they interacted with 

the software, but because there is no true pretest of calibration taken at the same time and during 

the same grade levels for both groups, it is difficult to say whether differences were due to 

exposure to ST Math or to other student or class characteristics.  



138 
 

(2) Is improvement in calibration accuracy linked to improvement in performance? 

Few prior studies showing improvement in calibration have shown corresponding gains in 

achievement (cf Nietfeld et al., 2006). Some of the same features noted as contributing to the 

potential for calibration training within ST Math were also thought to increase the potential for 

calibration improvements to translate to achievement gains. These features were the length of 

training and hypothesized close relation between math content objectives. As noted above, the 

objectives were not as closely related as expected. Because of this, the first analysis for question 

2 focused on pairs of more related quizzes: one early in the curriculum and one late in the 

curriculum. Even with these related quizzes, for the combined measures of calibration, growth of 

calibration was not related to growth in performance. The disaggregated measures, Sensitivity 

and Specificity, did show statistically significant associations with performance gain: student 

gain in Sensitivity (confidence when correct) was associated with positive gains in posttest 

accuracy, whereas gain in Specificity (uncertainty when incorrect) was associated with decreases 

in posttest accuracy. Using all quiz data in the models with calculated slopes for calibration and 

performance gains did not replicate this finding: all calibration gain slopes were associated with 

positive, but not statistically significant, increases in performance slopes. 

Neither set of analyses indicated that there were relations between increases in calibration 

and improvements in CST performance. Only one relation between slope of calibration 

improvement and CST improvement emerged as statistically significant, that for Simple Match. 

However, when p levels were adjusted for multiple comparisons, the new threshold was not met. 

One possibility for this lack of association may be a disconnect between content within the CST 

and content within ST Math. It appears though that CSTs and ST Math were related: slopes of 

ST Math pretest accuracy improvement had moderate associations with CST improvement 
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(β=.21, from Table 4.15), indicating that those students who improved in their accuracy across 

ST Math in 2011 also improved their math CST scores from the end of 2010 to the end of 2011.  

Limitations to conclusions. Because of the study design and the nature of calibration 

measures, it was not possible directly test the hypothesis that improvements in calibration due to 

the treatment led to improvement in achievement. However, an attempt was made to move 

beyond the typical single-timepoint correlational research within calibration studies and explore 

the associations between change in calibration and change in achievement, regardless of 

treatment group. This provided interesting information on these associations, but could not 

causally attribute change in achievement to change in calibration (or rule out this relation). In 

order to directly test the mediation hypothesis, pretest calibration measures were needed for the 

LTG, either within or outside of ST Math. The current study took advantage of variation in 

treatment as part of a larger study on ST Math. As such, design decisions were not made to 

optimize ability to draw conclusions regarding calibration; future studies specifically designed 

for calibration research can correct this flaw. 

Conclusion. It was thought that the lengthy and repeated practice on quizzes of related 

topics within ST Math would produce stronger effects on calibration than those typically seen in 

calibration research. This was not the case. Students who had a year with ST Math had lower 

levels of most measures of calibration than did students who were just starting ST Math, though 

ST Math did appear to have positive effects on students' indications of uncertainty for those 

questions they got wrong. It is unclear whether ST Math increased this specific kind of 

calibration, increased student uncertainty in general, or if the findings were a result of the 

different levels of calibration between the two groups before the intervention.  
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Students varied in their levels of calibration improvement across all five measures; 

however, this variation in gain was not associated with variation in achievement. There was no 

evidence to support the hypothesis that students who improved their calibration in ST Math 

would similarly improve their performance within ST Math or on an outside standardized 

achievement test. These findings shed light on both the potential processes of calibration and the 

difficulty in improving calibration.  

More detailed work with measures of Sensitivity and Specificity at different task levels 

can extend the research from this study to separate the processes of certainty and uncertainty and 

further understand both their malleability and their relation with achievement across grain sizes. 

This study's failure to find calibration improvement or the link between calibration and 

achievement change can inform the design of both future interventions and studies. Future 

interventions with similar populations should increase the relation between content in quizzes 

and include explicit instruction directing students toward calibration monitoring and use. Future 

studies should measure calibration within and outside the intervention arena and take care to 

ensure equality of starting calibration between treatment groups. Calibration remains an 

important element of models of metacognition and SRL; careful study of how and when 

calibration works and can be changed can aid in the design of more successful interventions to 

improve calibration, contributing to greater student success in SRL, mathematics, and beyond. 
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Figure 4.1. Screen shot from an ST Math quiz. On the left, the student chooses his/her answer 

and then indicates how sure they are of the answer by selecting the shrugging icon or the 

cheering icon. On the right, the student sees of the ones he/she felt sure (confident), how many 

he/she actually got correct. 
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Figure 4.2. ST Math study design. Illustrates the progression of students within a given 

grade as the years continue. "X" marks indicate the cohort of students has aged out of 

the study. 
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Table 4.1 

  Sample Demographics, Divided by Treatment Group 

 

ETG LTG 

Grade 3 51% 47% 

Grade 4 49% 53% 

Male 52% 52% 

Asian 4% 3% 

Hispanic 64% 80% 

White 27% 15% 

Other Ethnicity 4% 2% 

English Language Learner 60% 63% 

Free/Reduced Lunch 81% 86% 

N 1,272 1,353 
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Table 4.2a 

      Descriptive Statistics of Calibration and Achievement Variables, Third Grade by Treatment Group 

 

ETG LTG 

  

 

Mean SD Mean SD Difference p value 

Total Objectives 15.81 6.53 14.71 6.90 1.10 0.004 

Pretest Accuracy 0.62 0.14 0.67 0.15 -0.05 <.0001 

Posttest Accuracy 0.74 0.13 0.78 0.13 -0.04 <.0001 

Pretest Sensitivity 0.79 0.21 0.86 0.16 -0.07 <.0001 

Posttest Sensitivity 0.85 0.20 0.90 0.15 -0.05 <.0001 

Pretest Specificity 0.38 0.23 0.35 0.21 0.03 0.005 

Posttest Specificity 0.38 0.20 0.38 0.16 0.00 0.611 

Pretest Simple Match 0.66 0.12 0.70 0.13 -0.04 <.0001 

Posttest Simple Match 0.73 0.13 0.78 0.12 -0.05 <.0001 

Pretest Gamma 0.36 0.27 0.43 0.28 -0.07 <.0001 

Posttest Gamma 0.49 0.29 0.59 0.24 -0.10 <.0001 

Pretest Discrimination 0.97 0.77 1.14 0.80 -0.17 0.0001 

Posttest Discrimination 1.29 0.79 1.57 0.72 -0.28 <.0001 

ELA CST Score 2011 348.47 60.03 356.79 55.67 -8.32 0.010 

Math CST Score 2011 383.14 76.40 382.00 77.68 1.14 0.792 

ELA CST Score 2012 338.68 59.57 333.16 54.67 5.52 0.010 

Math CST Score 2012 398.63 79.05 394.93 76.75 3.70 0.792 

N 649 

 

630 

    Note. ETG is Early Treatment Group, LTG is Late Treatment Group. P values calculated from t-test of 

differences of means, assuming unpaired data. Positive differences indicate higher values for the ETG. 
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Table 4.2b 

      Descriptive Statistics of Calibration and Achievement Variables, Fourth Grade by Treatment Group 

 

ETG LTG 

  

 

Mean SD Mean SD Difference p value 

Total Objectives 14.59 5.99 14.50 6.40 0.09 0.791 

Pretest Accuracy 0.52 0.15 0.54 0.14 -0.02 0.055 

Posttest Accuracy 0.66 0.15 0.67 0.14 -0.01 0.139 

Pretest Sensitivity 0.73 0.22 0.79 0.18 -0.06 <.0001 

Posttest Sensitivity 0.81 0.2 0.86 0.16 -0.05 <.0001 

Pretest Specificity 0.41 0.25 0.35 0.22 0.06 <.0001 

Posttest Specificity 0.39 0.21 0.35 0.19 0.04 0.0004 

Pretest Simple Match 0.61 0.13 0.61 0.12 0.00 0.63 

Posttest Simple Match 0.68 0.14 0.70 0.12 -0.02 0.016 

Pretest Gamma 0.27 0.28 0.26 0.28 0.01 0.99 

Posttest Gamma 0.41 0.29 0.44 0.27 -0.03 0.015 

Pretest Discrimination 0.73 0.74 0.72 0.76 0.01 0.917 

Posttest Discrimination 1.10 0.79 1.17 0.75 -0.07 0.075 

ELA CST Score 2010
a 

342.10 60.59 345.72 56.88 -3.62 0.279 

Math CST Score 2010
a 

362.83 73.38 365.01 77.30 -2.18 0.613 

ELA CST Score 2011 322.45 58.89 331.43 55.62 -8.98 0.004 

Math CST Score 2011 385.56 83.88 389.06 85.02 -3.50 0.449 

ELA CST Score 2012 354.87 54.51 359.85 54.63 -4.98 0.004 

Math CST Score 2012 387.02 69.94 392.02 73.45 -5.00 0.449 

N 623  723    

 Note. ETG is Early Treatment Group, LTG is Late Treatment Group. P values calculated from t-test of 

differences of means, assuming unpaired data. Positive differences indicate higher values for the ETG. 
a
Not all students had data on this variable, N=571 for the ETG and N=667 for the LTG. 

 

 

 

 

 



Table 4.3          

Correlations between Calibration Measures and Achievement Measures 
 

 
Pretest 

Accuracy 

Posttest 

Accuracy 

Pretest Calibration Measures 
Math 

CST 

ELA 

CST N=2,625 Sensitivity Specificity Match Gamma Discrim. 

 
Pretest Accuracy 1 0.783 0.338 0.024

a
 0.731 0.610 0.543 0.461 0.559 

 
Posttest Accuracy 0.783 1 0.282 0.014

a
 0.234 0.239 0.192 0.519 0.586 

P
o
st

te
st

 C
al

. 

M
ea

su
re

s 

Sensitivity 0.284 0.335 0.807 -0.765 0.234 0.239 0.192 0.124 0.163 

Specificity 0.059
c
 0.054

c
 -0.699 0.794 0.314 0.358 0.475 0.016

a
 0.050

b
 

Simple Match 0.614 0.730 0.537 0.089 0.682 0.905 0.852 0.358 0.462 

Gamma 0.530 0.617 0.489 0.188 0.918 0.522 0.923 0.269 0.367 

Discrimination 0.486 0.555 0.406 0.356 0.858 0.923 0.493 0.222 0.327 

 
Math CST 0.461 0.519 0.186 0.014

a
 0.399 0.331 0.290 1 0.721 

 
ELA CST 0.559 0.586 0.206 0.059

c
 0.477 0.399 0.374 0.721 1 

Note. All correlations at p<.001 level except 
a
p>.05, 

b
p<.05, 

c
p<.01.Correlation between pretest measures and between pretest measures and 

achievement above the diagonal. Correlation between posttest measures and between posttest measures and achievement below the diagonal. 

Correlation between same measure pre to posttest on the diagonal (shaded). Data from aggregations across all quizzes taken in 2011. N for 

correlations with ELA CST 2,624 (1 missing student).
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Table 4.4 

      Effect of Early Treatment Group on Calibration for Place Value 

  

(1) (2) (3) (4) (5) 

N=2,560 

 

Sensitivity Specificity Simple Match Gamma Discrimination 

ETG B -0.05*** 0.01 -0.05*** -0.09*** -0.24*** 

 

SE (0.01) (0.01) (0.01) (0.02) (0.06) 

 

Beta -0.12*** 0.02 -0.10*** -0.08*** -0.07*** 

Pretest Acc B  0.12*** -0.01 0.17*** 0.28*** 0.70*** 

 

SE (0.02) (0.03) (0.02) (0.04) (0.12) 

 

Beta 0.14*** -0.01 0.19*** 0.14*** 0.11*** 

Constant B 0.75*** 0.20** 0.37*** -0.13 -0.48 

 

SE (0.05) (0.05) (0.04) (0.08) (0.23) 

 

R2 0.07 0.02 0.19 0.11 0.08 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses. Control variables included math and ELA CST 

scores, objective pretest quiz accuracy, grade, gender, race, language and free/reduced priced lunch statuses. The 

reference group comprises students who were females in third grade, Hispanic, Non-ELL, and not eligible for 

free/reduced lunch. Standard errors clustered on school (N=18). Sample limited to those who had data on the Place 

Value objective, the first objective for all third graders and first or second objective for all fourth graders. 
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Table 4.5 

      Effect of Early Treatment Group on Calibration for First Three Objectives Encountered in ST Math 

  

(1) (2) (3) (4) (5) 

N=2,624 

 

Sensitivity Specificity Simple Match Gamma Discrimination 

ETG B -0.06*** 0.02 -0.04*** -0.08*** -0.22*** 

 

SE (0.01) (0.01) (0.01) (0.02) (0.05) 

 

Beta -0.14*** 0.04 -0.13*** -0.10*** -0.10*** 

Pretest Acc B 0.19*** 0.03 0.28*** 0.54*** 1.34*** 

 

SE (0.03) (0.04) (0.03) (0.05) (0.17) 

 

Beta 0.19*** 0.03 0.33*** 0.28*** 0.24*** 

Constant B 0.58*** 0.19 0.10 -0.58** -1.40** 

 

SE (0.12) (0.10) (0.10) (0.19) (0.44) 

 

R2 0.13 0.05 0.32 0.20 0.16 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses. Control variables included math and ELA CST 

scores, objective pretest quiz accuracy, grade, gender, race, language and free/reduced priced lunch statuses. The 

reference group comprises students who were females in third grade, Hispanic, Non-ELL, and not eligible for 

free/reduced lunch. Standard errors clustered on school (N=18). Sample limited to those who had data on at least 

three objectives, the specific objectives included were controlled as a series of dummy variables (omitted). One 

student who otherwise had the appropriate data was excluded from this analysis for missing ELA scores.  
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Table 4.6 

     Effect of Early Treatment Group on Calibration Aggregated Across Entire Year 

  

(1) (2) (3) (4) (5) 

N=2,624 

 

Sensitivity Specificity Simple Match Gamma Discrimination 

ETG B -0.04** 0.02* -0.02** -0.04** -0.10** 

 

SE (0.01) (0.01) (0.01) (0.01) (0.03) 

 

Beta -0.11** 0.06* -0.08** -0.07** -0.06** 

Pretest Acc B 0.28*** 0.05 0.41*** 0.79*** 1.99*** 

 

SE (0.03) (0.04) (0.03) (0.06) (0.17) 

 

Beta 0.24*** 0.04 0.48*** 0.43*** 0.39*** 

Constant B 0.65*** 0.32*** 0.35*** -0.18*** -0.28 

 

SE (0.04) (0.04) (0.03) (0.04) (0.14) 

 

R2 0.14 0.06 0.43 0.31 0.27 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses. Control variables included math and ELA CST 

scores, objective pretest quiz accuracy, grade, gender, race, language and free/reduced priced lunch statuses. The 

reference group comprises students who were females in third grade, Hispanic, Non-ELL, and not eligible for 

free/reduced lunch. Standard errors clustered on school (N=18). The specific objectives included were controlled as 

a series of dummy variables (omitted). One student who otherwise had the appropriate data was excluded from this 

analysis for missing ELA scores. 
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Table 4.7 

        Descriptive Statistics for Calibration and Accuracy Across Years, Early Treatment Group 

 

2010 2011 2010 2011 

 

Grade 2 Grade 3 Grade 3 Grade 4 

 

Mean SD Mean SD Mean SD Mean SD 

Pretest Acc.
ab

 0.59 0.14 0.63 0.14 0.59 0.16 0.52 0.15 

Sensitivity
b
 0.83 0.18 0.85 0.20 0.85 0.18 0.81 0.20 

Specificity
ab

 0.36 0.21 0.38 0.20 0.34 0.20 0.39 0.21 

Simple Match
a
 0.69 0.13 0.73 0.13 0.69 0.14 0.68 0.14 

Gamma
a
 0.42 0.27 0.49 0.29 0.41 0.29 0.41 0.29 

Discrimination
a
 1.11 0.77 1.30 0.79 1.11 0.80 1.10 0.79 

Posttest Acc.
a
 0.68 0.14 0.74 0.13 0.67 0.16 0.66 0.15 

N 644 

 

643 

 

615 

 

616 

 Note. 
a
Differences between years for those starting in second grade (p<.05). 

b
Differences between years 

for those starting in third grade (p<.05)   Limited to those students present in both 2010 and 2011 data 

(excluding 1%). From grade-level Ns, one student skipped third grade in 2011. 
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Table 4.8      

Standardized Regression Coefficients Compared Across Analyses and Samples: 

Association of Treatment Group and Measures of Calibration 

 (1) (2) (3) (4) (5) 

 Sensitivity Specificity Simple Match Gamma Discrimination 

Total Sample 

Year 1 vs 1 -0.10* 0.02 -0.13*** -0.11*** -0.10** 

Year 2 vs 1 -0.11** 0.06* -0.08** -0.07** -0.06** 

Limited to Only 2011 Fourth Graders, with Pretest CST Scores 

Year 1 vs 1 -0.08 0.04 -0.08 -0.07 -0.04 

Year 2 vs 1 -0.13*** 0.10** -0.05 -0.04 -0.03 
Note. *p<.05, **p<.01, ***p<.001. Standardized regression coefficients taken from Appendix C, Table 10 (top 

line), Table 5 (second line), Appendix C, Table 11 (third line), and Appendix C, Table 7 (fourth line).  
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Table 4.9 

  Sample Characteristic Comparison for Question 2 

 

Excluded Included 

Grade 3 58% 43% 

Grade 4 42% 57% 

Male 47% 55% 

Hispanic 76% 71% 

Asian 1% 5% 

White 21% 21% 

Other Ethnicity 2% 4% 

English Language Learner 74% 54% 

Free/Reduced Lunch 88% 81% 

N 959 1586 

 

  



160 
 

Table 4.10 

      Descriptive Statistics of Selected Starting and Ending Quiz Pairs 

 

3rd Grade 4th Grade 

 

Start End Gain Start End Gain 

Pretest Acc. 0.67 0.83 0.16 0.62 0.47 -0.15 

 

(0.28) (0.22) (0.29) (0.22) (0.23) (0.25) 

Posttest Acc. 0.75 0.82 0.07 0.70 0.60 -0.10 

 

(0.25) (0.19) (0.26) (0.21) (0.23) (0.24) 

Sensitivity 0.82 0.90 0.08 0.87 0.71 -0.16 

 

(0.30) (0.23) (0.31) (0.25) (0.37) (0.38) 

Specificity 0.36 0.36 0.00 0.34 0.39 0.05 

 

(0.37) (0.30) (0.44) (0.37) (0.40) (0.44) 

Simple Match 0.69 0.79 0.10 0.67 0.58 -0.09 

 

(0.26) (0.24) (0.30) (0.21) (0.22) (0.25) 

Gamma 0.40 0.59 0.19 0.46 0.20 -0.26 

 

(0.66) (0.55) (0.77) (0.56) (0.63) (0.76) 

Discrimination 1.05 1.46 0.41 1.11 0.50 -0.61 

 

(1.90) (1.63) (2.36) (1.59) (1.46) (1.99) 

Math CST 411.22 436.73 25.51 411.78 413.23 1.45 

 

(65.75) (68.55) (60.59) (79.42) (64.93) (64.46) 

ELA CST 372.74 357.81 -14.93 339.43 369.61 30.18 

 

(52.40) (53.21) (37.02) (55.04) (51.02) (35.48) 

N 683 

  

903 

  Note. Means from starting and ending pairs of selected objective quizzes and from CST scores in 2011 

(start) and 2012 (end). Standard deviations in parentheses. Gains and standard deviations of gains 

provided.  

 

 

 

 

  



161 
 

Table 4.11       

Association between Calibration Gain and Posttest Performance Gain, Paired Quizzes 

  
(1) (2) (3) (4) (5) 

N=1,586 

 
Sensitivity Specificity Simple Match Gamma Discrim. 

Calibration 

Gain 

B 0.05* -0.04** -0.03 0.0001 -0.001 

SE (0.02) (0.01) (0.03) (0.01) (0.003) 

 Beta 0.07* -0.07** -0.04 0.0001 -0.005 

Pretest Gain 
B 0.22*** 0.24*** 0.25*** 0.23*** 0.23*** 

SE (0.03) (0.03) (0.04) (0.03) (0.03) 

 Beta 0.22*** 0.24*** 0.25*** 0.23*** 0.23*** 

Early Treat 

Group 

B 0.03* 0.03* 0.04** 0.03** 0.03** 

SE (0.01) (0.01) (0.01) (0.01) (0.01) 

 
Beta 0.03* 0.03* 0.04** 0.03** 0.03** 

Constant B 0.01 0.01 0.01 0.01 0.01 

 
SE (0.02) (0.02) (0.02) (0.02) (0.02) 

 
R2 0.17 0.17 0.17 0.16 0.16 

Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses. Control variables not shown included grade, 

gender, race, language and free/reduced priced lunch statuses. The reference group comprises students who were 

females in third grade, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Standard errors clustered on 

school (N=18). 
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Table 4.12       

Association between Calibration Gain and Math CST Gain 

  

(1) (2) (3) (4) (5) 

N=1,586 

 

Sensitivity Specificity Simple Match Gamma Discrim. 

Calibration 

Gain 

B -8.19 5.64 2.53 -2.31 -0.17 

SE (5.55) (4.21) (4.33) (2.39) (0.64) 

 
Beta -0.05 0.04 0.01 -0.03 -0.01 

Early Treat 

Group 

B -1.16 -1.26 -1.74 -1.48 -1.60 

SE (5.68) (5.69) (5.57) (5.65) (5.66) 

 
Beta -0.01 -0.01 -0.01 -0.01 -0.01 

Constant B 17.60 17.05 17.08 17.68 17.35 

 

SE (8.92) (9.10) (9.12) (8.98) (9.08) 

 

R2 0.05 0.06 0.05 0.05 0.05 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses. Control variables not shown included grade, 

gender, race, language and free/reduced priced lunch statuses. The reference group comprises students who were 

females in third grade, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Standard errors clustered on 

school (N=18). 
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Table 4.13 

    Slopes for Improvement in Accuracy and Calibration over Time 

 

3rd Grade 4th Grade 

N=2,625  Mean(B) SD Mean(B) SD 

Posttest Accuracy 0.002 0.042 -0.011*** 0.046 

Sensitivity 0.001 0.066 -0.007*** 0.052 

Specificity -0.002 0.057 0.002 0.057 

Simple Match 0.0004 0.038 -0.005*** 0.041 

Gamma -0.001 0.112 -0.011** 0.110 

Discrimination -0.006 0.294 -0.030*** 0.284 

N 1,279 

 

1,346 

 Note. *p<.05, **p<.01, ***p<.001. P values indicate whether statistically 

significantly different from zero. 
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Table 4.14 

      Association between Calibration Growth and Growth of Quiz Posttest Performance 

  

(1) (2) (3) (4) (5) 

N=2,625 

 

Sensitivity Specificity 

Simple 

Match Gamma Discrim. 

Calibration 

Slope 

B 0.04 0.05 0.18 0.06 0.02 

SE (0.12) (0.12) (0.12) (0.04) (0.02) 

 

Beta 0.05 0.06 0.16 0.15 0.15 

Pretest Acc. B -0.02 -0.02 -0.02 -0.02 -0.02 

 

SE (0.01) (0.01) (0.01) (0.01) (0.01) 

 

Beta -0.06 -0.06 -0.06 -0.06 -0.06 

Early Treat. 

Group 

B -0.001 -0.00 -0.001 -0.001 -0.001 

SE (0.002) (0.002) (0.002) (0.002) (0.002) 

 

Beta -0.01 -0.01 -0.01 -0.02 -0.02 

Constant B 0.01 0.01 0.01 0.01 0.01 

 

SE (0.02) (0.02) (0.02) (0.02) (0.02) 

 

R2 0.07 0.07 0.09 0.09 0.09 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses. Control variables not shown included grade, 

gender, race, language and free/reduced priced lunch statuses. Specific objectives tested controlled with a series of 

dummy variables (not shown). The reference group comprises students who were females in third grade, Hispanic, 

Non-ELL, and not eligible for free/reduced lunch. Standard errors clustered on school (N=18). 
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Table 4.15 

      Association between Calibration Growth and End-of-Year Math CST Scores 

  

(1) (2) (3) (4) (5) 

N=2,624 

 

Sensitivity Specificity Simple Match Gamma Discrim. 

Calibration 

Slope 

B -0.90 17.11 48.92* 9.75 3.06 

SE (10.44) (9.83) (18.40) (6.98) (2.60) 

 

Beta -0.001 0.01 0.03* 0.01 0.01 

Pretest Acc. B 100.49*** 100.24*** 100.22*** 100.40*** 100.39*** 

 

SE (10.97) (10.92) (10.75) (10.92) (10.87) 

 

Beta 0.21*** 0.21*** 0.21*** 0.21*** 0.21*** 

Early Treat. 

Group 

B 1.86 1.87 1.82 1.78 1.80 

SE (2.82) (2.84) (2.82) (2.83) (2.84) 

 

Beta 0.01 0.01 0.01 0.01 0.01 

Constant B 105.76*** 105.61*** 104.64*** 105.18*** 105.50*** 

 

SE (17.53) (17.46) (17.19) (17.49) (17.49) 

 

R2 0.64 0.64 0.64 0.64 0.64 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses. Control variables not shown included grade, 

prior CST scores gender, race, language and free/reduced priced lunch statuses. Specific objectives included 

controlled with a series of dummy variables (not shown). The reference group comprises students who were females 

in third grade, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Standard errors clustered on school 

(N=18). One student omitted who did not have ELA CST data for 2011. 
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CHAPTER FIVE 

Summary and Conclusion 

Self-Regulated Learning (SRL), the ability to set goals, monitor progress toward these 

goals, and make adjustments when necessary, is an important part of a positive mathematical 

disposition (DeCorte, Verschaffel, & Op'T Eynde, 2000; Zimmerman, 2008). Within SRL, 

accurate metacognitive monitoring is necessary to drive control processes needed for 

adjustments (Efklides, 2008; Winne, 2004). Students who display this accuracy are said to be 

calibrated, and the role of calibration in SRL and learning in general has been a topic of growing 

interest within Educational Psychology (Alexander, 2013). This interest has been accompanied 

by a number of studies of calibration and its relation with achievement, but unanswered 

questions remain about the nature of calibration: how it should be measured, its role as a 

dynamic aspect of metacognition, and how best to improve it. The studies within this dissertation 

used a rich source of data on student calibration and achievement in mathematics to approach 

these questions and present results on calibration as representative of a complex system of 

metacognition related to both the person and the task. 

Summary of Findings 

In Study 1, I examined which measures of calibration could accommodate real-world 

data of accuracy and confidence judgments. Prior work examining differences between measures 

focused on simulated data—my results showed that the distribution of such data is different than 

the distribution of real data, and these differences have implications for the calculability of 

calibration measures. Because of the distribution of data, even with large numbers of quiz 

questions (over 100), two of the most popular measures of calibration, Gamma and 

Discrimination, could not be calculated for a sizable portion of students. Kappa, Simple Match, 
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Sokal Reverse, Sensitivity and Specificity were less affected by missing data and were calculable 

for nearly all students. However, this would change when using tests with questions numbers 

typically used in research or practice (<20): many more measures would be incalculable. 

Excluding individuals within incalculable measures, as is sometimes done, is likely to bias the 

analysis sample as individual combinations of accuracy and confidence, and any resulting 

missing data, will be related to personal characteristics. 

Also within this study, I examined which of ten commonly used measures of calibration 

had the greatest predictive validity for performance gains from pre to posttest. All measures of 

calibration were highly correlated, except for Sensitivity and Specificity, which were strongly 

negatively correlated only with each other. All measures also explained similar amounts of 

variance in performance, but overall these amounts were small and most betas were below .10. 

Although there were only limited differences between models, a combined model with 

Sensitivity and Specificity explained the most variance, and in such a model, both Sensitivity and 

Specificity were positively associated with performance gain. This confirmed the simulated data 

results from Schraw, Kuch, and Gutierrez (2013). 

In Study 2, Sensitivity and Specificity were used to examine how, within the same 

student, variation in calibration was related to variation in performance gain from pre to posttest. 

I found that using zero-order correlations inflated the relation between calibration and 

performance, especially for Sensitivity (proportion confident when correct). Looking only at 

within-student variation, both Sensitivity and Specificity had positive associations with 

performance gain, but both beta coefficients were below .10, and the coefficient for Specificity 

was a third the size of the coefficient for Sensitivity. This suggested that it was more important 

for students to be confident when correct than to be uncertain when incorrect—a finding contrary 
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to assumptions about the trigger of control processes from accurately identifying material not yet 

learned. There appeared to be an association between Specificity and performance gain that 

operated at the between-student level, but this estimate may have been biased by omitted 

variables.  

Study 2 also investigated whether calibration and the benefit from calibration depended 

on student grade level. Across two samples of students, neither level of calibration nor the 

association between calibration and performance varied systematically with grade level. There 

were statistically significant differences between the grades in calibration values and in 

regression coefficients, but no clear patterns emerged. 

Study 3 characterized the practice and feedback on calibration within ST Math as a 

calibration intervention and asked whether a year’s worth of practice with this intervention 

would improve calibration. Random variation in the timing of the intervention was used to 

compare an early treatment group (ETG) to a late treatment group (LTG). Results indicated that 

after one year of ST Math, the ETG had lower levels of calibration than the LTG on all measures 

but Specificity; the ETG had higher levels of Specificity than the LTG. Examination of the prior 

year’s calibration for the ETG suggested that this difference may not have been due to the 

intervention, but was instead likely due to pre-existing levels of calibration in the ETG. 

However, when these prior levels were taken into consideration, it did appear that the ETG 

became more uncertain after their year with ST Math. 

Study 3 also addressed the potential link between improvement in calibration and 

improvement in achievement. Looking first at change in calibration predicting change in 

achievement using two of the most related quizzes, I found that only changes in Sensitivity and 

Specificity were associated with change in quiz posttest performance between the objectives. 
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The association with Sensitivity change was positive and Specificity change negative, indicating 

that as students became more confident in their correct answers, they became more accurate and 

as students became more uncertain about their incorrect answers, they became less accurate. 

These findings were not replicated when change in calibration was operationalized as a slope 

from beginning of ST Math to end. In these models, none of the calibration change measures had 

associations with achievement change. Neither did changes in calibration have associations with 

changes in math achievement outside of ST Math: both methods of analyses returned null results 

regarding the link between calibration and math performance on the California Standards Tests. 

Themes 

Each study within this dissertation answered specific questions regarding the nature of 

calibration. The three, taken together, not only cover a common topic area and source of data, but 

also provide insight into the process and measurement of calibration beyond the individual 

research questions. These insights are discussed as two themes. 

Calibration likely reflects a dual process. As suggested by Schraw and colleagues 

(2013) and work from clinical research (e.g., Feuerman & Miller, 2008), Sensitivity (proportion 

confident when correct) and Specificity (proportion uncertain when incorrect) are separable as 

measurements and likely represent separable constructs. The predictive validity results from 

Study 1 supported this conclusion—the model including these two measures explained the most 

variance and each had higher beta coefficients than other measures. Within Study 2, each had 

distinct relations with performance gains. These differences were present at the within-student 

level, and differences were also present between students, where only Specificity exhibited a 

contextual effect. In Study 3, practice with ST Math had opposite effects on the two measures, 

reducing Sensitivity and increasing Specificity. The effect of ST Math on combined measures of 
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calibration reflected the effect on Sensitivity but was diluted—viewing calibration as a single 

process by using measures such as Simple Match, Gamma, and Discrimination confounded the 

two opposite findings.  

In the process of making metacognitive judgments, when students ask themselves, “did I 

get this right?” they may use cues such as the ease of reaching the answer or affective 

experiences to determine their level of certainty (Efklides, 2008; Flavell, 1979). Metacognitive 

accuracy may therefore depend on student understanding of and use of these cues (De Bruin & 

van Gog, 2012). Schraw et al. (2013) characterized Sensitivity and Specificity as representing 

distinct processes for correct and incorrect answers, but instead, they could represent distinct 

categories of cues: those for certainty and those for uncertainty. Student attention to and 

interpretation of cues such as those encountered when things come easily may be different from 

those encountered when things are difficult, such as feelings of frustration or confusion. These 

processes may also differ depending on the type of problem. Much of calibration research that 

considers such cues is conducted on knowledge recall questions (e.g., Bjork, Dunlosky, & 

Kornell, 2013; Kleitman & Stankov, 2001), where the feeling of recognition as a student 

conjures an answer may be very different from the process of determining an answer in multi-

step problem solving such as that found in mathematics (see Jonsson & Allwood, 2003).  

Calibration reflects features of the Task x Person level and the Person level. 

Returning to the model articulated in Efklides (2008, 2011), the monitoring and control inherent 

in metacognition and in SRL involves both the more stable characteristics of the person and the 

interaction between these characteristics and the task at hand. Study 2 demonstrated differences 

in how calibration is related to performance at these different levels by looking both within 

students across tasks and between students. Prior research has noted that students often make top 
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down decisions about calibration, first determining if the subject is one that they are good at and 

then only slightly adjusting their decisions by task-specific information, such as the cues like 

feelings of knowing (see Zhao & Linderholm, 2008). Study 2 demonstrated that there is variance 

between tasks in these decisions and that this variance is related to the gains students make in 

performance. However, it is unclear whether this variance is due to student responsiveness to 

cues or to stable characteristics of the student at a finer grain than the individual generally or the 

individual in math. It could be that students draw on judgments of their competence with 

fractions or with simple addition or with problems involving the number “5” to make their 

decisions. These representations of the task will vary between students, as will the usefulness of 

each representation. 

The results of Study 3 indicated that ST Math may have increased student uncertainty 

and decreased student confidence. However, prior research had demonstrated the positive effect 

of ST Math on student self-beliefs for mathematics (Chang, Rutherford, & Farkas, 2014; 

Rutherford, Hinga, Chang, Conley, & Martinez, 2011). These results may seem at odds, but 

considered in light of the results from Study 2, suggest a division in the process of confidence 

judgments by granularity of task.  

Future Research 

This dissertation provided novel information on the measurement and malleability of 

calibration and the relation between calibration and achievement; it also suggested new avenues 

of inquiry regarding calibration, metacognitive processes, and SRL. I plan to pursue these 

avenues both within and outside of the ST Math learning environment; I detail my most proximal 

research priorities below. 
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Within ST Math. ST Math provides an opportunity to collect rich data on student 

learning with a large and diverse sample of students. The MIND Research Institute (MIND) is a 

dedicated collaborator and has already taken steps to improve the calibration feedback within ST 

Math based on initial results of this dissertation. My future research priorities within ST Math 

focus on three main areas: structure and measurement of calibration, saliency of feedback to 

students, and ability to exercise control. 

Structure and measurement of calibration. Focusing on the simplicity of measures 

thought necessary for elementary-aged children, current measures of calibration within ST Math 

are dichotomous, only asking children to express whether they are confident or uncertain. Recent 

research with very young children indicates that even preschoolers can correctly understand and 

use scales with three options (Ghetti, Hembacher, & Coughlin, 2013). Replicating the analyses 

within this dissertation with more fine-grained measures of calibration may lead to different 

conclusions and provide more information on the differences between the processes around 

confidence and uncertainty. 

Additionally, embedding calibration measures within the game-play of ST Math (instead 

of just within the pre and posttest quizzes) may better illuminate how metacognitive judgments 

relate to control processes as students are engaging in learning. Students may also provide 

valuable clues about their metacognitive processes as they make their answer choices and 

determinations of confidence. Collecting click data on students that change their answers and 

how this relates to their calibration can indicate whether students who behaviorally express 

uncertainty (by waffling in their answer choice) recognize this uncertainty in their choice of 

confidence judgment.  
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Saliency of feedback. Students in ST Math were provided the opportunity to view the 

information on their calibration and accuracy after each quiz, but no data were collected on their 

actual viewing practices. MIND is planning to collect click data on whether the students review 

this information and which questions they revisit after reviewing this information. I plan to 

analyze these data to determine if students who actively engage with the calibration feedback 

make greater improvements in their calibration as they progress through the ST Math curriculum. 

Additionally, I have been collaborating with MIND to design modifications to the software that 

will encourage students to track their calibration results and to monitor their improvement in 

calibration. Once a prototype is designed, it will be pilot tested before rolling it out to a sample 

of classrooms who receive ST Math. This rollout will be randomly assigned, allowing me to 

compare versions of the software and their effects on student calibration and performance 

outcomes.  

Ability to exercise control. The importance of accurate metacognitive judgments 

depends on the student’s ability to exercise control to improve his/her learning and performance. 

Within the current version of ST Math, students can direct their attention and can replay levels 

that they have already passed. Additional control may be necessary for the students to take the 

kind of ownership of their learning assumed within systems of SRL. One potential strength of ST 

Math is the visual feedback offered—within the games, students can see the consequences of 

their selections represented as visual models of mathematics. It is not known how much attention 

students pay to these representations, nor do students have the ability to explore different 

selection consequences without risking their score and their progress within the levels of the 

games. I have been collaborating with MIND to include a “sandbox mode” in certain games. 

This mode will allow students to exit the typical game-play structure to explore the ramifications 
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of answer choices within a low-stakes environment. By allowing this additional control over 

their own learning, I can explore how accuracy in metacognitive judgments relates to behavioral 

indications of control. By varying the objectives that include this sandbox mode, I can test how 

these additional control allowances influence the relation between calibration and performance.  

I also plan to explore the relation between calibration and control within the current 

version of ST Math. To examine how students adjust attention during game-play, I will use eye-

tracking to measure gaze patterns and analyze their association with levels of certainty across 

objectives and across different types of material within objectives. Student ability to both 

monitor and use monitoring to adjust attention during control may vary depending on attentional 

resources. I have measures of these attentional resources (as working memory and executive 

functions) for a sample of students within this dissertation. Examining how these resources 

moderate both the association between calibration and performance and the effect of ST Math on 

calibration will provide information on whether and how certain cognitive resources are used in 

metacognition and SRL.  Although options for control are limited within the current version of 

ST Math, students are able to exercise control through replaying levels. Analyzing the 

association between student level replays and measures of calibration can provide information on 

whether replays are being made when students note uncertainty and if these replays have positive 

associations with performance.  

 Outside of ST Math. Although ST Math provides a rich context for research on 

calibration and SRL, it is also limiting: students do not have many options for social contact 

within ST Math, teachers play a limited role, and the subject-matter is constrained to the specific 

objectives and problem formats of the game. Examining contexts outside of ST Math to build 

upon the research in this dissertation will provide a more generalizable picture of calibration and 
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SRL and will allow for finer manipulations to answer some of the questions raised by the results. 

In particular, I plan to examine how accuracy of confidence judgments across grain sizes is 

related to performance, how students characterize tasks and cues, and how metacognitive 

judgments are related to control processes in the classroom. 

Calibration across grain sizes. As was noted above, one theme to emerge from the three 

studies within this dissertation was the complicated divisions between the Task x Person and 

Person levels within metacognition. Although it is seen as desirable for students to have a 

slightly overconfident view of their ability to complete a task (see Bandura, 1986), it may be that 

the desired level of confidence varies depending on the grain size examined. For example, the 

most positive self-views may be adaptive at the broadest level, such as general self-esteem, 

whereas accurate calibration or even underconfidence may be adaptive at the item level. I will 

begin to examine these differing relations by measuring calibration along a continuum of grain 

sizes and relating these measures to performance. As a first step, I have data on broader 

mathematics self-efficacy for the sample of students included in this dissertation and can answer 

questions about the stability of their calibration across grain sizes as well as which level of 

measurement provides the most predictive power towards achievement. 

Student characterization of tasks and cues. Grain size can be defined by researchers 

(e.g., item, task, subject), but it can also be defined by the students. As students categorize types 

of tasks, they will draw on different prior experiences depending on the overlap between these 

experiences and their defined categories. A student who incorrectly identifies the type of 

problem will draw upon prior knowledge and experiences that may not be useful when forming 

their metacognitive judgments. Qualitative research is needed to understand how students 

categorize problem types and how they make determinations of confidence and uncertainty. 
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Some of this work has been conducted using contexts of knowledge recall (e.g., Dinsmore & 

Parkinson, 2013), but processes and student interpretation of processes in elementary 

mathematics may be substantially different than those in recall tasks. 

Calibration and control in the classroom. Although MIND is implementing changes to 

ST Math to allow for greater control within the software, much of student learning takes place in 

the classroom where the kinds of control activities in which students can engage are less 

structured. One option available in most classes is seeking help—help seeking has long been 

considered an important option for control within systems of SRL (Nelson-LeGall, 1981). As 

part of the data collection for the larger ST Math study, I collected data on student classroom 

help-seeking behaviors in both mathematics and English/Language Arts along with classroom 

quiz answers, including calibration ratings. Exploring the interplay between monitoring and this 

specific aspect of control can help us understand whether students who recognize a need for help 

actually seek it and whether those who seek help do so as part of conscious regulation or 

unconscious regulation (see Efklides, 2008).  
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Appendix A 

Supplementary Tables for Study 1 

 

Table 1  

Associations between Number of Questions Completed and Student Variables 

 
Grade 2 Grade 3 Grade 4 Grade 5 

 
N=878 N=789 N=1,475 N=1,004 

Male 11.785* 12.214* 9.199** 7.545 

 
(4.750) (5.209) (3.562) (4.077) 

White -2.396 14.087 4.743 14.781 

 
(9.604) (10.407) (8.037) (8.681) 

Asian 23.471* 45.653** 38.253*** 44.928** 

 
(11.822) (14.773) (11.039) (15.122) 

Other Ethnicity 10.958 9.758 -3.827 3.394 

 
(12.338) (15.499) (9.926) (13.085) 

Eng. Lang Learner -14.539* -7.278 -11.981** -13.437** 

 
(5.814) (6.791) (4.567) (4.463) 

Free/Reduced Lunch -41.625*** -30.850*** -19.065*** -5.445 

 
(6.980) (7.209) (5.261) (6.149) 

Constant 200.775*** 200.129*** 176.249*** 145.557*** 

 
(7.672) (8.300) (5.689) (6.241) 

R2 0.100 0.076 0.043 0.036 

Note. *p<.05, **p<.01, ***p<.001.  

Standard errors in parentheses. Reference groups are Hispanic students, non-ELL, female, and 

not eligible for free/reduced lunch. 
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Table 2 

Percent of Students with Zeroes in Quadrant A by Amount of Quiz Questions Sampled 

 
2nd 3rd 4th 5th 

25 Qs 0.01% 0.29% 0.03% 0.02% 

 
(.003-.02%) (.26-.32) (.02-.04) (.01-.03) 

50 Qs 0.00% 0.06% 0.00% 0.00% 

 
N/A (.04-.08) N/A N/A 

75 Qs 0.00% 0.03% 0.00% 0.00% 

 
N/A (.02-.04) N/A N/A 

100 Qs 0.00% 0.01% 0.00% 0.00% 

 
N/A (.01-.02) N/A N/A 

150 Qs 0.00% 0.00% 0.00% 0.00% 

 
N/A N/A N/A N/A 

All Qs 0.00% 0.00% 0.00% 0.00% 

Ave No. Qs 244.72 258.36 244.05 220.24 
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Table 3 

Percent of Students with Zeroes in Quadrant B by Amount of Quiz Questions Sampled 

 
2nd 3rd 4th 5th 

25 Qs 3.94% 4.37% 3.69% 8.17% 

 
(3.81-4.08%) (4.22-4.51) (3.58-3.80) (8.04-8.30) 

50 Qs 0.99% 1.22% 0.68% 5.90% 

 
(.93-1.06%) (1.16-1.29) (.63-.73) (5.82-5.97) 

75 Qs 0.39% 0.67% 0.19% 5.40% 

 
(.34-.43) (.62-.72) (.17-.22) (5.34-5.46) 

100 Qs 0.15% 0.41% 0.06% 5.16% 

 
(.13-.18) (.38-.45) (.05-.08) (5.10-5.21) 

150 Qs 0.03% 0.23% 0.01% 4.87% 

 
(.02-.04) (.19-.26) (.001-.01) (4.82-4.92) 

All Qs 0.00% 0.00% 0.00% 4.37% 

Ave No. Qs 244.72 258.36 244.05 220.24 
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Table 4 

Percent of Students with Zeroes in Quadrant C by Amount of Quiz Questions Sampled 

 
2nd 3rd 4th 5th 

25 Qs 40.20% 42.68% 34.32% 44.24% 

 
(39.96-40.44%) (42.42-42.94) (34.12-34.52) (43.93-44.55) 

50 Qs 29.38% 29.81% 23.80% 32.34% 

 
(29.19-29.58%) (29.57-30.04) (23.63-23.98) (32.08-32.60) 

75 Qs 24.21% 23.95% 19.20% 27.05% 

 
(24.03-24.39) (23.77-24.12) (19.10-19.34) (26.84-27.26) 

100 Qs 21.15% 20.45% 16.30% 23.98% 

 
(20.99-21.32) (20.29-20.62) (16.17-16.43) (23.80-24.16) 

150 Qs 16.75% 16.01% 12.78% 19.79% 

 
(16.61-16.89) (15.88-16.15) (12.67-12.89) (19.64-19.95) 

All Qs 12.28% 11.39% 9.03% 16.59% 

Ave No. Qs 244.72 258.36 244.05 220.24 
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Table 5 

Percent of Students with Zeroes in Quadrant D by Amount of Quiz Questions Sampled 

 
2nd 3rd 4th 5th 

25 Qs 31.38% 33.16% 25.01% 39.29% 

 
(31.15-31.62%) (32.93-33.39) (24.85-25.28) (39.04-39.55) 

50 Qs 21.09% 21.73% 16.48% 29.97% 

 
(20.89-21.29%) (21.52-21.95) (16.33-16.62) (29.76-30.18) 

75 Qs 16.29% 16.65% 12.66% 25.22% 

 
(16.11-16.46) (16.47-16.84) (12.54-12.79) (25.02-25.42) 

100 Qs 13.24% 13.65% 10.43% 22.40% 

 
(13.09-13.40) (13.47-13.83) (10.33-10.52) (22.23-22.58) 

150 Qs 9.22% 9.93% 7.67% 18.72% 

 
(9.09-9.35) (9.8-10.06) (7.58-7.76) (18.59-18.86) 

All Qs 5.26% 5.70% 5.07% 15.72% 

Ave No. Qs 244.72 258.36 244.05 220.24 
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Table 6a 

Ten Measures of Calibration Calculated Based on Student Pretest Measures Only, Second and Third Grade 

 
2nd Grade (N=915) 3rd Grade (N=812) 

N=4,278 Mean SD Min Max Count %Valid Mean SD Min Max Count %Valid 

Sensitivity 0.86 0.18 0.02 1.00 914 99.89% 0.86 0.18 0.00 1.00 812 100.00% 

Specificity 0.31 0.28 0.00 1.00 906 99.02% 0.29 0.25 0.00 0.99 811 99.88% 

Simple Match 0.63 0.13 0.00 1.00 915 100.00% 0.63 0.14 0.17 1.00 812 100.00% 

Gamma 0.50 0.48 -1.00 1.00 791 86.45% 0.49 0.48 -1.00 1.00 738 90.89% 

G Index 0.26 0.27 -1.00 1.00 915 100.00% 0.27 0.28 -0.67 1.00 812 100.00% 

Odds Ratio 5.17 6.68 0.00 72.00 666 72.79% 5.35 7.45 0.00 96.00 634 78.08% 

Kappa 0.16 0.18 -0.50 1.00 906 99.02% 0.16 0.17 -0.36 0.72 811 99.88% 

Phi 0.22 0.19 -0.50 1.00 791 86.45% 0.21 0.18 -0.41 0.73 738 90.89% 

Sokal Reverse 0.59 0.12 0.00 1.00 915 100.00% 0.59 0.12 0.00 0.91 812 100.00% 

Discrimination 0.71 0.54 -0.79 2.47 629 68.74% 0.71 0.53 -0.95 2.39 598 73.65% 

Table 6b 

Ten Measures of Calibration Calculated Based on Student Pretest Measures Only, Fourth and Fifth Grade 

 
4th Grade (N=1,521) 5th Grade (N=1,030) 

 
Mean SD Min Max Count %Valid Mean SD Min Max Count %Valid 

Sensitivity 0.83 0.18 0.00 1.00 1521 100.00% 0.85 0.17 0.00 1.00 1030 100.00% 

Specificity 0.35 0.28 0.00 1.00 1517 99.67% 0.31 0.26 0.00 1.00 1012 98.64% 

Simple Match 0.62 0.13 0.09 1.00 1521 100.00% 0.64 0.13 0.20 1.00 1030 100.00% 

Gamma 0.52 0.43 -1.00 1.00 1352 94.22% 0.50 0.46 -1.00 1.00 891 91.38% 

G Index 0.23 0.26 -0.83 1.00 1521 100.00% 0.28 0.27 -0.60 1.00 1030 100.00% 

Odds Ratio 5.11 5.97 0.00 87.43 1185 85.48% 5.17 11.22 0.00 227.50 765 82.46% 

Kappa 0.18 0.17 -0.67 0.67 1517 99.67% 0.17 0.18 -0.67 1.00 1022 99.42% 

Phi 0.23 0.18 -0.80 0.71 1352 94.22% 0.22 0.18 -0.67 1.00 891 91.38% 

Sokal Reverse 0.61 0.11 0.00 0.96 1521 100.00% 0.59 0.13 0.00 0.89 1030 100.00% 

Discrimination 0.74 0.50 -0.93 2.34 1140 75.00% 0.72 0.48 -0.68 3.03 722 70.10% 
Note. Includes all students who have valid pretest data. Ten calibration measures are calculated as in Schraw et al. (2013) based on four quadrants of agreement 

between accuracy and confidence. %Valid represents the percent of students for whom the given measures is calculable.  
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Table 7a 

Regression of Posttest Accuracy on Pretest Calibration and Accuracy for Ten Measures of 

Calibration: Diagnostic Efficiency & Agreement Measures 

N=3,033 (1) (2) (3) (4) (5) (6) 

 
Acc. Only Sensitivity Specificity Sensitivity Specificity 

Simple 

Match G Index 

Measure(s) 

 
0.046*** -0.003 0.098*** 0.047*** 0.074*** 0.037*** 

  
(0.009) (0.006) (0.014) (0.010) (0.018) (0.009) 

Pretest Accuracy 0.818*** 0.803*** 0.818*** 0.789*** 

 
0.779*** 0.779*** 

 
(0.012) (0.012) (0.012) (0.012) 

 
(0.015) (0.015) 

No. Pretest Qs. 0.0005 0.0004 0.0005 0.00050 

 
0.00050 0.00050 

 
(0.0004) (0.0004) (0.0004) (0.0004) 

 
(0.0004) (0.0004) 

No. Posttest Qs 0.0004 0.0004 0.0004 0.0003 

 
0.0004 0.0004 

 
(0.0004) (0.0004) (0.0004) (0.0004) 

 
(0.0004) (0.0004) 

Male -0.014*** -0.016*** -0.014*** -0.015*** 

 
-0.014*** -0.014*** 

 
(0.003) (0.003) (0.003) (0.003) 

 
(0.003) (0.003) 

Asian -0.013 -0.013 -0.013 -0.014 

 
-0.014 -0.014 

 
(0.009) (0.009) (0.009) (0.009) 

 
(0.009) (0.009) 

White -0.004 -0.003 -0.004 -0.004 

 
-0.005 -0.005 

 
(0.006) (0.006) (0.006) (0.006) 

 
(0.006) (0.006) 

Other Race -0.001 -0.001 -0.001 -0.001 

 
-0.001 -0.001 

 
(0.009) (0.009) (0.009) (0.009) 

 
(0.009) (0.009) 

ELL -0.005 -0.005 -0.005 -0.005 

 
-0.005 -0.005 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Free/Reduc Lunch -0.008 -0.008 -0.008 -0.007 

 
-0.007 -0.007 

 
(0.005) (0.005) (0.005) (0.005) 

 
(0.005) (0.005) 

Grade 2 -0.001 -0.001 -0.001 -0.0001 

 
0.0005 0.0005 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Grade 3 -0.010* -0.010* -0.010* -0.008 

 
-0.008 -0.008 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Grade 5 0.027*** 0.026*** 0.027*** 0.027*** 

 
0.028*** 0.028*** 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Constant 0.147*** 0.121*** 0.148*** 0.066*** 

 
0.121*** 0.158*** 

 
(0.009) (0.011) (0.010) (0.015) 

 
(0.011) (0.009) 

R2 0.697 0.699 0.697 0.702 

 
0.698 0.698 

Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients. Standard errors in parentheses. The 

reference group comprises students who were females in fourth grade, Hispanic, Non-ELL, and not on free lunch. 

Sample limited to those students who have non-missing values for each of the ten measures of calibration as 

described in Schraw et al. (2013).  
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Table 7b 

Regression of Posttest Accuracy on Pretest Calibration and Accuracy for Ten Measures of 

Calibration: Association, Binary Distance, and Discrimination 

N=3,033 (7) (8) (9) (10) (11) (12) 

 
Gamma Odds Ratio Kappa Phi 

Sokal 

Reverse Discrimination 

Measure(s) 0.028*** 0.0004* 0.046*** 0.049*** -0.081*** 0.017*** 

 
(0.005) (0.0002) (0.010) (0.010) (0.022) (0.003) 

Pretest Accuracy 0.798*** 0.812*** 0.804*** 0.803*** 0.781*** 0.799*** 

 
(0.012) (0.012) (0.012) (0.012) (0.015) (0.012) 

No. Pretest Qs 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 

 
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) 

No. Posttest Qs 0.0004 0.0004 0.0003 0.0003 0.0004 0.0004 

 
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) 

Male -0.014*** -0.014*** -0.013*** -0.013*** -0.014*** -0.014*** 

 
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Asian -0.014 -0.014 -0.014 -0.014 -0.014 -0.015 

 
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) 

White -0.005 -0.004 -0.005 -0.005 -0.005 -0.005 

 
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 

Other Race -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 

 
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) 

ELL -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Free/Reduced Lunch -0.008 -0.008 -0.007 -0.007 -0.007 -0.007 

 
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 

Grade 2 0.0003 -0.001 0.0001 0.0002 0.0003 0.0002 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Grade 3 -0.008 -0.009* -0.008 -0.008 -0.009* -0.008 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Grade 5 0.028*** 0.027*** 0.028*** 0.028*** 0.028*** 0.028*** 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Constant 0.144*** 0.147*** 0.143*** 0.142*** 0.215*** 0.145*** 

 
(0.009) (0.009) (0.009) (0.009) (0.020) (0.009) 

R2 0.700 0.697 0.699 0.699 0.698 0.699 

Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients. Standard errors in parentheses. The 

reference group comprises students who were females in fourth grade, Hispanic, Non-ELL, and not on free lunch. 

Sample limited to those students who have non-missing values for each of the ten measures of calibration as 

described in Schraw et al. (2013). 
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Table 8 

Demographic Information and Descriptive Statistics for All Students with Quiz Data 

 
Sample of Students Who Answered > 200 Questions 

 
Mean/Percent SD Min Max Count 

Grade 2 21% 

   
4,278 

Grade 3 19% 

   
4,278 

Grade 4 36% 

   
4,278 

Grade 5 24% 

   
4,278 

Male 52% 

   
4,145 

Asian 3% 

   
4,145 

Hispanic 85% 

   
4,145 

White 8% 

   
4,145 

Other Race 3% 

   
4,145 

English Lang Learner 65% 

   
4,144 

Free/Reduced Lunch 81% 

   
4,145 

ELA CST 336.75 60.19 171 600 3,075 

Math CST 373.35 80.29 150 600 3,070 

Pretest Quiz Accuracy 0.56 0.14 0.15 0.98 4,278 

Posttest Quiz Accuracy 0.67 0.16 0 1 4,278 

Total Pretest Questions 77.85 36.68 3 140 4,278 

Total Posttest Questions 78.82 36.76 2 140 4,278 

N 4,278 

    Note. This table presents information for those students who had at least one valid pre 

and posttest and who were included in the replication of the analysis of calibration 

measures. 
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Table 9a 

Regression of Posttest Accuracy on Pretest Calibration and Accuracy for Ten Measures of 

Calibration: Diagnostic Efficiency & Agreement Measures, Adjusted for Missingness 

N=4,144 (1) (2) (3) (4) (5) (6) 

 
Acc. Only Sensitivity Specificity Sensitivity Specificity 

Simple 

Match G Index 

Measure(s) 

 
0.035*** 0.003 0.111*** 0.061*** 0.080*** 0.040*** 

  
(0.009) (0.006) (0.015) (0.010) (0.018) (0.009) 

Pretest Accuracy 0.871*** 0.860*** 0.871*** 0.838*** 

 
0.819*** 0.819*** 

 
(0.011) (0.011) (0.011) (0.012) 

 
(0.016) (0.016) 

No. Pretest Qs 0.0003 0.0003 0.0003 0.0003 

 
0.0003 0.0003 

 
(0.0004) (0.0004) (0.0004) (0.0004) 

 
(0.0004) (0.0004) 

No. Posttest Qs 0.0004 0.0004 0.0004 0.0004 

 
0.0004 0.0004 

 
(0.0004) (0.0004) (0.0004) (0.0004) 

 
(0.0004) (0.0004) 

Male -0.016*** -0.017*** -0.015*** -0.016*** 

 
-0.015*** -0.015*** 

 
(0.003) (0.003) (0.003) (0.003) 

 
(0.003) (0.003) 

Asian -0.003 -0.003 -0.003 -0.003 

 
-0.002 -0.002 

 
(0.009) (0.009) (0.009) (0.009) 

 
(0.009) (0.009) 

White -0.004 -0.003 -0.004 -0.005 

 
-0.005 -0.005 

 
(0.006) (0.006) (0.006) (0.006) 

 
(0.006) (0.006) 

Other Race -0.006 -0.006 -0.006 -0.006 

 
-0.006 -0.006 

 
(0.008) (0.008) (0.008) (0.008) 

 
(0.008) (0.008) 

ELL -0.008* -0.007* -0.008* -0.007* 

 
-0.007* -0.007* 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Free/Reduced 

Lunch -0.006 -0.006 -0.006 -0.005 

 
-0.005 -0.005 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Grade 2 0.004 0.004 0.004 0.006 

 
0.006 0.006 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Grade 3 -0.007 -0.007 -0.007 -0.005 

 
-0.006 -0.006 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Grade 5 0.029*** 0.029*** 0.029*** 0.030*** 

 
0.030*** 0.030*** 

 
(0.004) (0.004) (0.004) (0.004) 

 
(0.004) (0.004) 

Constant 0.130*** 0.108*** 0.129*** 0.037* 

 
0.109*** 0.149*** 

 
(0.008) (0.010) (0.009) (0.015) 

 
(0.010) (0.009) 

R2 0.670 0.672 0.670 0.675 

 
0.672 0.672 

Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients. Standard errors in parentheses. The 

reference group comprises students who were in fourth grade, Hispanic, Non-ELL, and not on free lunch. 

Regressions on full sample of students who have at least one valid pre and posttest. To eliminate missing values of 

calibration due to zero quadrants, a “1” was added to each quadrant before calculating the calibration measures. 
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Table 9b 

Regression of Posttest Accuracy on Pretest Calibration and Accuracy for Ten Measures of 

Calibration: Association, Binary Distance, and Discrimination, Adjusted for Missingness 

N=4,144 (7) (8) (9) (10) (11) (12) 

 
Gamma Odds Ratio Kappa Phi 

Sokal 

Reverse Discrimination 

Measure(s) 0.029*** 0.000 0.052*** 0.057*** -0.075*** 0.018*** 

 
(0.005) (0.000) (0.010) (0.009) (0.022) (0.003) 

Pretest Accuracy 0.841*** 0.866*** 0.853*** 0.849*** 0.830*** 0.841*** 

 
(0.012) (0.012) (0.012) (0.012) (0.016) (0.012) 

No. Pretest Qs 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

 
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) 

No. Posttest Qs 0.0004 0.0004 0.0003 0.0003 0.0004 0.0004 

 
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) 

Male -0.014*** -0.016*** -0.014*** -0.014*** -0.015*** -0.014*** 

 
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Asian -0.002 -0.003 -0.003 -0.003 -0.003 -0.003 

 
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) 

White -0.005 -0.004 -0.005 -0.005 -0.005 -0.005 

 
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) 

Other Race -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 

 
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) 

ELL -0.008* -0.008* -0.008* -0.008* -0.007* -0.008* 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Free/Reduced 

Lunch -0.005 -0.006 -0.005 -0.005 -0.006 -0.005 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Grade 2 0.005 0.004 0.006 0.006 0.005 0.006 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Grade 3 -0.005 -0.007 -0.005 -0.005 -0.006 -0.005 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Grade 5 0.030*** 0.029*** 0.030*** 0.030*** 0.030*** 0.030*** 

 
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Constant 0.135*** 0.131*** 0.130*** 0.131*** 0.198*** 0.135*** 

 
(0.008) (0.009) (0.008) (0.008) (0.022) (0.008) 

R2 0.673 0.670 0.673 0.673 0.671 0.672 

Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients. Standard errors in parentheses. The 

reference group comprises students who were in fourth grade, Hispanic, Non-ELL, and not on free lunch. 

Regressions on full sample of students who have at least one valid pre and posttest. To eliminate missing values of 

calibration due to zero quadrants, a “1” was added to each quadrant before calculating the calibration measures. 
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Appendix B 

Supplementary Figures and Tables for Study 2 

Table 1 

List of ST Math Objectives for 2010 Curriculum, Divided by Grade 

Grade 2 Grade 3 Grade 4 Grade 5 

Addition and Subtraction Facts Place Value Place Value Place Value 

Addition and Subtraction 

Relationships 

Ordering and Comparing Whole 

Numbers Expanded Notation Decimal Addition and Subtraction 

Place Value to 200 Expanded Notation Ordering and Comparing Whole Numbers Exponents 

Comparing Numbers to 200 Addition to 10,000 Addition and Subtraction Variables 

Classifying Shapes Subtraction to 10,000 Factorization and Prime Numbers Lines and Angles 

Addition and Subtraction, Sums to 

200 2D Shapes Variables and Unknowns Factorization 

Measurement 3D Shapes Lines and Angles Fraction Concepts 

Fractions to a Whole Lines and Angles Shapes and Attributes Fraction Addition and Subtraction 

Telling Time Multiplication Concepts Fraction Concepts Fraction Addition and Subtraction LI 

Elapsed Time Multiplication Facts Fraction Addition and Subtraction 

Relationships of Decimals, Fractions, 

Percents 

Time Relationships Division Fraction Addition and Subtraction LI Ordered Pairs and Graphing 

Place Value to 1000 

Algebraic Expressions and 

Equations 

Decimal Fraction Relationships and 

Equivalence Mean Median Mode 

Expanded Forms Functional Relationships Decimals and Fractions PV Whole Number Operations 

Range and Mode Fraction Concepts Decimal Operations and Money Fraction Multiplication and Division 

Patterns and Functions Fraction and Decimal Equivalence 

Whole Number Multiplication and 

Division Area 

More Fraction Concepts Fraction Addition and Subtraction Using Parentheses Volume 

Using Data, Charts and Graphs 

Fraction Addition and Subtraction 

LI Equations Negative Number Operations 

Comparing Numbers to 1000 Multiplication of Multi Digits Integers Parentheses 

Comparing Fractions Measurement Area and Perimeter Linear Functions and Equations 

Money and Decimals Area, Perimeter and Volume Using Data and Graphs Using Data and Graphs 

Addition and Subtraction to 1000 Money Coordinate Grids and Ordered Pairs Temperature and Capacity 

Multiplication Concepts Outcomes Symmetry 

 Multiplication Facts Using Data and Graphs Median Mode 

 Division Concepts Temperature and Capacity Outcomes 

 Temperature and Capacity 

 

Temperature and Capacity 
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(a) (b) 

 

(c) (d) 

Figure 2. Quiz examples from third grade curriculum. (a) Objective 1, Place Value. (b) Objective 

8, Lines and Angles. (c) Objective 14, Fraction Concepts. (d) Objective 22, Outcomes. 
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Table 2 

    Correlations between Quiz Measures and Student Demographic Characteristics 

 

Sensitivity Specificity Pretest Acc. Posttest Acc. 

Grade 2 0.034* -0.033* 0.107*** 0.068*** 

Grade 3 0.062*** -0.054*** 0.057*** 0.007 

Grade 4 -0.103*** 0.068*** -0.135*** -0.109*** 

Grade 5 0.026 0.004 -0.003 0.053*** 

Male 0.090*** -0.169*** -0.116*** -0.117*** 

Asian 0.046** -0.012 0.096*** 0.090*** 

Hispanic -0.051** -0.035* -0.194*** -0.186*** 

White 0.016 0.054*** 0.143*** 0.139*** 

Other Ethnicity 0.032* -0.003 0.069*** 0.067*** 

Eng. Lang. Learner -0.056*** -0.019 -0.188*** -0.199*** 

Free/Reduced Lunch -0.050** -0.026 -0.168*** -0.183*** 
Note. *p<.05, **p<.01, ***p<.001. 
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Table 3 

      Model Fit Statistics for Hierarchical Linear Models 

 (1) (2) (3) (4) (5) (6) 

 

Non-HLM Unconditional Covariates Only Add Pretest Acc. Full conditional With Interactions 

Total Variance 0.0806824 0.0812649 0.0791443 0.0572135 0.0568569 0.0567945 

L2 (Student) 

 

0.0179063 0.0157771 0.0025576 0.0025381 0.0024973 

Residual (Quiz) 

 

0.0633586 0.0633672 0.0546559 0.0543188 0.0542972 

Percent of residual variance by level 

    L2 (Student) 

 

22.03% 19.93% 4.47% 4.46% 4.40% 

Residual (Quiz) 

 

77.97% 80.07% 95.53% 95.54% 95.60% 

Percent Reduction of variance by level from prior model 

   L2 (Student) 

  

11.89% 83.79% 0.76% 1.61% 

Residual (Quiz) 

  

-0.01% 13.75% 0.62% 0.04% 

Overall 

  

2.61% 27.71% 0.62% 0.11% 

Percent Reduction of variance from Unconditional model 

  Overall 

  

2.61% 29.60% 30.04% 30.11% 

Test of Statistical Significance for Model Changes 

   Deviance 18264.413 10602.33 10232.773 -1950.7263 -2305.3158 -2351.6951 

Parameter change 

 

1 8 2 4 12 

Deviance Change 

 

7662.083 369.557 12183.4993 354.5895 46.3793 

Needed change 

 

3.841 15.507 5.991 9.488 21.026 

Improvement 

 

Yes Yes Yes Yes Yes 
Note. Model fit statistics for HLM analysis of within and between student associations between calibration and improvements in quiz accuracy, 

including a final model with grade-level interactions (Model 6). 
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Table 4 

    Grade & Demographic Information for 2011 Replication Sample 

 

Total Sample Analysis Sample 

 

Percent Count Percent Count 

Grade 2 26% 6,254 26% 6,091 

Grade 3 24% 6,254 24% 6,091 

Grade 4 25% 6,254 25% 6,091 

Grade 5 25% 6,254 25% 6,091 

Male 52% 6,254 52% 6,091 

Asian 3% 6,254 3% 6,091 

Hispanic 74% 6,254 74% 6,091 

White 20% 6,254 20% 6,091 

Other Ethnicity 3% 6,254 3% 6,091 

English Language Learner 62% 6,252 62% 6,091 

Nat'l Free/Reduced Lunch 84% 6,252 84% 6,091 

N  6,254  6,091 

Note. Total Sample includes all students in second through fifth grade in the study 

schools who began at least one objective within ST Math in the 2011-2012 school 

year. The analysis sample is limited to those students who had complete demographic 

information and completed at least two complete objectives (pre and posttest). 
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Table 5 
        Quiz Accuracy and Calibration Measures, by Grade, 2011 Replication Sample 

Observation/Objective-Level Quiz Descriptives (N=84,308) 

 

Grade 2 Grade 3 Grade 4 Grade 5 

 

Mean SD Mean SD Mean SD Mean SD 

Pretest Accuracy 0.63 0.29 0.67 0.27 0.55 0.29 0.58 0.30 

Pretest Sensitivity 0.85 0.28 0.84 0.29 0.76 0.35 0.78 0.34 

Pretest Specificity 0.30 0.34 0.36 0.37 0.38 0.39 0.37 0.39 

Posttest Accuracy 0.72 0.26 0.78 0.23 0.69 0.28 0.71 0.27 

N (Observations)  21,315  22,149  21,514  19,330 

Student-Level Quiz Descriptive Statistics (N=6,091) 

 Grade 2 Grade 3 Grade 4 Grade 5 

 Mean SD Mean SD Mean SD Mean SD 

Pretest Accuracy 0.61
 a
 0.13 0.65

 a
 0.15 0.53

 b
 0.14 0.56 0.15 

Pretest Sensitivity 0.85
 a
 0.15 0.83  0.19 0.76

 b
 0.20 0.76

 b
 0.21 

Pretest Specificity 0.29
 b
 0.18 0.36

 a
 0.22 0.37  0.24 0.38

 a
 0.24 

Posttest Accuracy 0.70
 a
 0.12 0.76

 a
 0.13 0.66

 a
 0.15 0.68 0.16 

N (Students) 

 

1,604 

 

1,475 

 

1,515 

 

1,497 

Note. Data from analysis sample presented with objective data nested within students. Curricular and quiz 

content differs across grades.  
a
2011 sample has statistically significantly higher value (p<.05) 

b
2010 sample has statistically significantly higher value (p<.05) 
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Table 6       

Model Fit Statistics for Hierarchical Linear Models, 2011 Replication Sample 

 

(1) (2) (3) (4) (5) (6) 

 

Non-HLM Unconditional Covariates Only Add Pretest Acc. Full conditional With Interactions 

Total Variance 0.0695204 0.0702481 0.0671849 0.0513422 0.0511245 0.05106 

L2 (Student) 

 

0.0135398 0.0104316 0.0024068 0.0024092 0.0023845 

Residual (Quiz) 

 

0.0567083 0.0567533 0.0489354 0.0487153 0.0486755 

Percent of residual variance by level 

    L2 (Student) 

 

19.27% 15.53% 4.69% 4.71% 4.67% 

Residual (Quiz) 

 

80.73% 84.47% 95.31% 95.29% 95.33% 

Percent Reduction of variance by level from prior model 

   L2 (Student) 

  

22.96% 76.93% -0.10% 1.03% 

Residual (Quiz) 

  

-0.08% 13.78% 0.45% 0.08% 

Overall 

  

4.36% 23.58% 0.42% 0.13% 

Percent Reduction of variance from Unconditional model 

   Overall 

  

4.36% 26.91% 27.22% 27.31% 

Test of Statistical Significance for Model Changes 

   Deviance 14479.252 5729.3975 4679.5332 -12008.768 -12374.087 -12464.53 

Parameter change 

 

1 8 2 4 12 

Deviance Change 

 

8749.8545 1049.8643 16688.3012 365.319 90.443 

Needed change 

 

3.841 15.507 5.991 9.488 21.026 

Improvement 

 

Yes Yes Yes Yes Yes 
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Table 7 
      Results from Hierarchical Regressions of Post-test Accuracy on Pre-test Accuracy, 

Calibration, & Covariates, 2011 Replication Sample 

Fixed Parameters B SE p B SE p 

Level 1 

Sensitivity 0.061 0.003 <.0001 0.064 0.006 <.0001 

Specificity 0.010 0.003 <.0001 -0.004 0.005 0.483 

Pretest Accuracy 0.319 0.003 <.0001 0.318 0.003 <.0001 

GR2*Sensitivity 

   

0.009 0.009 0.322 

GR3*Sensitivity 

   

-0.020 0.009 0.024 

GR5*Sensitivity 

   

-0.004 0.008 0.617 

GR2*Specificity 

   

0.043 0.008 <.0001 

GR3*Specificity 

   

-0.008 0.007 0.296 

GR5*Specificity 

   

0.023 0.008 0.003 

Level 2 

Sensitivity 0.047 0.011 <.0001 0.058 0.019 0.002 

Specificity 0.039 0.009 <.0001 0.055 0.016 <.0001 

Pretest Accuracy 0.693 0.009 <.0001 0.693 0.009 <.0001 

Grade 2 -0.020 0.003 <.0001 0.007 0.028 0.795 

Grade 3 0.009 0.003 0.004 0.085 0.026 0.001 

Grade 5 -0.001 0.003 0.671 -0.054 0.026 0.042 

 ELL -0.016 0.002 <.0001 -0.016 0.002 <.0001 

Male 0.009 0.002 <.0001 0.009 0.002 <.0001 

Asian 0.022 0.006 <.0001 0.021 0.006 <.0001 

White 0.010 0.003 <.0001 0.010 0.003 <.0001 

Other Ethnic 0.013 0.006 0.027 0.012 0.006 0.033 

Free/Reduced Lunch -0.006 0.003 0.059 -0.006 0.003 0.045 

GR2*Sensitivity 

   

-0.026 0.027 0.342 

GR3*Sensitivity 

   

-0.063 0.025 0.01 

GR5*Sensitivity 

   

0.053 0.025 0.034 

GR2*Specificity 

   

-0.016 0.022 0.463 

GR3*Specificity 

   

-0.067 0.021 0.001 

GR5*Specificity 

   

0.030 0.021 0.163 

Intercept 0.259 0.011 <.0001 0.245 0.019 <.0001 

Random Parameters 

      Between 0.002 0.0001 

 

0.002 0.0001 

 Residual 0.049 0.0002 

 

0.049 0.0002 

 % Variance Explained 

      L2 0.822 

  

0.824 

  L1 0.141 

  

0.142 

  Note. Unstandardized regression coefficients. Level 1 variables are group-mean centered around 

student means. Level 2 quiz variables represent student means. The reference group comprises 

students who were females in fourth grade, Hispanic, Non-ELL, and not on free lunch. 
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Figure 2. Slopes for Sensitivity by grade-level from 2011 replication sample interaction model on right-hand side of 

Appendix B, Table 7 compared with slope from non-interaction model (Main Model, dashed line) on left-hand side 

of Appendix B, Table 7. 
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Figure 3. Slopes for Specificity by grade-level from 2011 replication sample interaction model on right-hand side of 

Appendix B, Table 7 compared with slope from non-interaction model (Main Model, dashed line) on left-hand side 

of Appendix B, Table 7. 
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Appendix C 

Supplementary  Tables for Study 3 

 

Table 1a 

      Percent of Students Completing Each ST Math Objective, Third Grade 

  

All Objectives First Objective First 3 Objectives 

  

ETG LTG ETG LTG ETG LTG 

1 Place Value to 10,000 98% 97% 98% 97% 98% 97% 

2 Ordering and Comparing Whole Numbers 98% 94% <1% <1% 98% 94% 

3 Addition and Subtraction to 1,000 90% 97% <1% <1% 90% 97% 

4 Lines and Angles 76% 68% <1% <1% 4% 3% 

5 2D Shapes 78% 66% <1% <1% 2% <1% 

6 3D Shapes 78% 66% 

  

3% <1% 

7 Multiplication Concepts 93% 91% <1% 

 

<1% 2% 

8 Division 77% 79% 

    9 Algebraic Expressions and Equations 76% 68% 

  

<1% 2% 

10 Functional Relationships 77% 77% 

   

<1% 

11 Fraction Concepts 71% 70% <1% 

 

<1% 

 12 Fraction Addition and Subtraction 66% 64% 

    13 Money and Decimals 64% 60% 

  

<1% 

 14 Measurement 61% 48% 

  

<1% 

 15 Area, Perimeter and Volume 62% 46% <1% 

 

<1% 

 16 Addition and Subtraction to 10,000 66% 50% 

  

<1% 

 17 Multiplication Facts 65% 62% 

  

<1% <1% 

18 Multiplication of Multi Digits 71% 77% 

   

<1% 

19 Fraction and Decimal Equivalence 51% 49% 

    20 Outcomes 47% 45% 

    21 Using Data and Graphs 52% 43% 

   

<1% 

22 Temperature and Capacity 53% 41% 

    23 Addition and Subtraction Relationships 12% 13% 

    

 

N 649 630 649 630 649 630 
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Table 1b 

      Percent of Students Completing Each ST Math Objective, Fourth Grade 

  

All Objectives First Objective First 3 Objectives 

  

ETG LTG ETG LTG ETG LTG 

1 Symmetry 64% 53% 64% 53% 64% 53% 

2 Place Value to 1 Million 99% 97% 36% 46% 99% 97% 

3 Ordering and Comparing Whole Numbers 98% 99% <1% <1% 98% 99% 

4 Whole Number Addition and Subtraction 97% 94% 

  

33% 44% 

5 Whole Number Multiplication and Division 89% 94% 

 

<1% 1% 4% 

6 Fraction Concepts 78% 83% <1% 

 

2% <1% 

7 Factorization and Prime Numbers 81% 89% 

   

<1% 

8 Integers 85% 70% 

  

<1% <1% 

9 Variables and Equations 85% 78% 

    10 Input Output 76% 67% 

    11 Using Parentheses 78% 69% 

    12 Decimals and Fractions 63% 76% 

    13 Decimal Operations and Money 65% 72% 

    14 Shapes and Attributes 57% 57% 

  

<1% 

 15 Lines and Angles 58% 57% 

  

<1% 

 16 Area and Perimeter 46% 44% 

    17 Graphing on Coordinate Grids 55% 54% 

  

<1% 

 18 Median Mode 48% 45% 

    19 Using Data and Graphs 50% 44% 

    20 Outcomes 39% 40% 

    21 Temperature and Capacity 42% 48% 

    22 Fraction Addition and Subtraction 4% 11% 

    23 Addition and Subtraction Relationships 4% 8% 

    

 

N 623 723 623 723 623 723 
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Table 2      

Effect of Early Treatment Group on Calibration for Place Value 

 

(1) (2) (3) (4) (5) 

N=2,560 Sensitivity Specificity Simple Match Gamma Discrimination 

Early Treat Group -0.054*** 0.011 -0.047*** -0.089*** -0.240*** 

 

(0.009) (0.013) (0.008) (0.019) (0.057) 

Pretest Accuracy 0.119*** -0.008 0.167*** 0.279*** 0.701*** 

 

(0.017) (0.025) (0.017) (0.041) (0.115) 

Grade 4 0.027* 0.056*** 0.085*** 0.152*** 0.473*** 

 

(0.009) (0.013) (0.009) (0.020) (0.060) 

Male 0.010 -0.027* -0.002 -0.012 -0.069 

 

(0.008) (0.012) (0.009) (0.017) (0.056) 

Asian 0.027 0.033 0.026 0.060 0.304* 

 

(0.018) (0.044) (0.016) (0.037) (0.141) 

White -0.007 0.004 -0.003 -0.003 -0.046 

 

(0.012) (0.014) (0.006) (0.017) (0.048) 

Other Ethnicity 0.009 -0.027 0.015 0.004 -0.108 

 

(0.020) (0.022) (0.018) (0.047) (0.128) 

Eng. Lang. Learner -0.014 0.005 -0.015 -0.023 -0.043 

 

(0.012) (0.012) (0.010) (0.027) (0.076) 

Free/Reduced Lunch -0.004 0.007 0.007 0.016 0.026 

 

(0.011) (0.016) (0.009) (0.020) (0.064) 

Math CST 2011 0.0002* 0.0001 0.0004*** 0.001*** 0.001*** 

 

(0.0001) (0.0001) (0.0001) (0.0002) (0.001) 

ELA CST 2011 0.0001 0.0003 0.001*** 0.001** 0.003*** 

 

(0.0001) (0.0002) (0.0001) (0.0002) (0.001) 

Constant 0.748*** 0.203** 0.371*** -0.133 -0.480 

 

(0.050) (0.053) (0.037) (0.081) (0.230) 

R2 0.065 0.015 0.186 0.105 0.079 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) regression coefficients presented. Standard errors are in 

parentheses. The reference group comprises students who were females in third grade, Hispanic, Non-ELL, and not 

eligible for free/reduced lunch. Sample limited to those who had data on the Place Value objective, the first 

objective for all third graders and first or second objective for all fourth graders. Standard errors clustered on school 

(N=18). 
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Table 3 

     Effect of Early Treatment Group on Calibration for First Three Objectives Encountered in ST Math 

 

(1) (2) (3) (4) (5) 

N=2,624 Sensitivity Specificity Simple Match Gamma Discrimination 

Early Treat Group -0.055*** 0.019 -0.044*** -0.079*** -0.216*** 

 

(0.010) (0.010) (0.007) (0.016) (0.050) 

Pretest Accuracy 0.186*** 0.032 0.281*** 0.540*** 1.337*** 

 

(0.033) (0.041) (0.028) (0.050) (0.168) 

Grade 4 0.007 -0.002 0.022** 0.045** 0.059 

 

(0.012) (0.013) (0.007) (0.012) (0.041) 

Male 0.032*** -0.041*** 0.004 0.006 -0.030 

 

(0.007) (0.006) (0.004) (0.009) (0.027) 

Asian 0.016 0.019 0.017 0.050* 0.187*** 

 

(0.024) (0.031) (0.011) (0.017) (0.044) 

White -0.010 0.030** 0.022** 0.038 0.107 

 

(0.013) (0.008) (0.007) (0.019) (0.065) 

Other Ethnicity -0.008 -0.026 -0.001 -0.014 -0.125 

 

(0.018) (0.020) (0.015) (0.036) (0.099) 

Eng. Lang. Learner -0.014 0.005 -0.014** -0.023 -0.049 

 

(0.009) (0.009) (0.005) (0.012) (0.033) 

Free/Reduced Lunch -0.006 0.006 0.005 0.007 0.009 

 

(0.008) (0.012) (0.007) (0.015) (0.049) 

Math CST 2011 0.0001 0.00001 0.0002** 0.0004** 0.001 

 

(0.0001) (0.0001) (0.0001) (0.0001) (0.001) 

ELA CST 2011 0.0001 0.0002 0.0003*** 0.001* 0.002** 

 

(0.0001) (0.0001) (0.0001) (0.0002) (0.001) 

Constant 0.582*** 0.186 0.104 -0.580** -1.404** 

 

(0.122) (0.102) (0.095) (0.193) (0.440) 

R2 0.130 0.046 0.315 0.202 0.156 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) regression coefficients presented. Standard errors are in 

parentheses. The reference group comprises students who were females in third grade, Hispanic, Non-ELL, and not 

eligible for free/reduced lunch. Sample limited to those who had data on at least three objectives, the specific 

objectives included were controlled as a series of dummy variables (omitted). Standard errors clustered on school 

(N=18). 
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Table 4 

     Effect of Early Treatment Group on Calibration Aggregated Across Entire Year 

 

(1) (2) (3) (4) (5) 

N=2,624 Sensitivity Specificity Simple Match Gamma Discrimination 

Early Treat Group -0.040** 0.024* -0.022** -0.041** -0.098** 

 

(0.010) (0.009) (0.006) (0.012) (0.033) 

Pretest Accuracy 0.280*** 0.050 0.407*** 0.786*** 1.986*** 

 

(0.028) (0.042) (0.026) (0.055) (0.168) 

Grade 4 -0.012 0.015 -0.002 -0.001 0.003 

 

(0.010) (0.011) (0.009) (0.019) (0.050) 

Male 0.044*** -0.057*** 0.007 0.006 -0.033 

 

(0.008) (0.008) (0.004) (0.011) (0.032) 

Asian 0.027 -0.031 0.012 0.013 0.001 

 

(0.017) (0.023) (0.009) (0.018) (0.054) 

White -0.001 0.017 0.013* 0.025 0.080* 

 

(0.013) (0.012) (0.005) (0.012) (0.030) 

Other Ethnicity -0.015 0.002 -0.000 -0.004 -0.057 

 

(0.013) (0.016) (0.009) (0.017) (0.053) 

Eng. Lang. Learner -0.021** 0.014 -0.010 -0.013 -0.043 

 

(0.007) (0.009) (0.005) (0.010) (0.025) 

Free/Reduced Lunch -0.017 0.014 -0.003 -0.008 -0.021 

 

(0.010) (0.012) (0.006) (0.015) (0.046) 

Math CST 2011 0.00004 -0.0001 0.00003 0.00003 -0.0002 

 

-0.0001 -0.0001 -0.0001 -0.0001 -0.0003 

ELA CST 2011 0.00002 0.0003** 0.0003** 0.001** 0.002*** 

 

-0.0001 -0.0001 -0.0001 -0.0002 -0.0004 

Total Objectives 0.046** -0.039* 0.015 0.017 0.021 

 

(0.014) (0.018) (0.014) (0.032) (0.078) 

Constant 0.649*** 0.319*** 0.348*** -0.181*** -0.281 

 

(0.040) (0.042) (0.028) (0.043) (0.140) 

R2 0.135 0.055 0.430 0.313 0.267 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) regression coefficients presented. Standard errors are in 

parentheses. The reference group comprises students who were females in third grade, Hispanic, Non-ELL, and not 

eligible for free/reduced lunch. The specific objectives included were controlled as a series of dummy variables 

(omitted). Standard errors clustered on school (N=18). 
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Table 5 
      Effect of Early Treatment Group on Calibration for Place Value, Robustness Check 

  

(1) (2) (3) (4) (5) 

N=1,214 

 

Sensitivity Specificity 

Simple 

Match Gamma Discrimination 

Early Treat 

Group 

B -0.040*** 0.001 -0.035** -0.047 -0.188* 

SE (0.010) (0.015) (0.011) (0.025) (0.083) 

 

Beta -0.095*** 0.001 -0.078** -0.045 -0.056* 

Pretest 

Accuracy 

B 0.078** -0.007 0.153*** 0.220** 0.544* 

SE (0.025) (0.036) (0.030) (0.071) (0.233) 

 

Beta 0.089** -0.005 0.163*** 0.101** 0.077* 

Male B 0.010 -0.037 -0.005 -0.020 -0.116 

 

SE (0.011) (0.019) (0.011) (0.023) (0.080) 

Asian B 0.040* -0.001 0.026 0.074 0.223 

 

SE (0.016) (0.047) (0.018) (0.044) (0.218) 

White B 0.002 0.007 0.005 0.022 0.027 

 

SE (0.012) (0.019) (0.009) (0.019) (0.066) 

Other 

Ethnicity 

B -0.002 0.075 0.032 0.074 0.341* 

SE (0.032) (0.037) (0.019) (0.052) (0.158) 

Eng Lang 

Learner 

B -0.026 0.012 -0.026* -0.061* -0.092 

SE (0.013) (0.016) (0.011) (0.027) (0.074) 

Free/Reduced 

Lunch 

B 0.001 0.001 -0.007 0.026 0.030 

SE (0.014) (0.012) (0.010) (0.031) (0.074) 

Math CST 

2010 

B 0.0003** 0.0002 0.001*** 0.001*** 0.003** 

SE (0.0001) (0.0001) (0.0001) (0.0003) (0.001) 

ELA CST 

2010 

B -0.00001 0.0002 0.0002 0.0003 0.001 

SE (0.0001) (0.0002) (0.0002) (0.0004) (0.001) 

Constant B 0.776*** 0.270*** 0.492*** 0.019 0.073 

 

SE (0.051) (0.068) (0.054) (0.113) (0.382) 

 

R2 0.059 0.013 0.155 0.096 0.067 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses.  The reference group comprises students who 

were females, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Sample limited to fourth graders who had 

2010 CST test score data and who had data on the Place Value objective, the first or second objective for all fourth 

graders. Standard errors clustered on school (N=18). 
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Table 6 
      Effect of Early Treatment Group on Calibration for First Three Objectives Encountered in ST 

Math, Robustness Check 

  

(1) (2) (3) (4) (5) 

N=1,238 

 

Sensitivity Specificity 

Simple 

Match Gamma Discrimination 

Early Treat 

Group 

B -0.058*** 0.032** -0.036** -0.054* -0.146* 

SE (0.011) (0.010) (0.011) (0.021) (0.061) 

 

Beta -0.154*** 0.072** -0.105** -0.069* -0.065* 

Pretest 

Accuracy 

B 0.175*** 0.042 0.291*** 0.533*** 1.397*** 

SE (0.040) (0.048) (0.043) (0.082) (0.283) 

 

Beta 0.172*** 0.035 0.319*** 0.257*** 0.232*** 

Male B 0.022* -0.043** -0.009 -0.015 -0.091 

 

SE (0.010) (0.011) (0.007) (0.016) (0.049) 

Asian B 0.052* -0.002 0.034* 0.079 0.305 

 

SE (0.021) (0.039) (0.014) (0.041) (0.151) 

White B -0.007 0.029** 0.026** 0.049* 0.136 

 

SE (0.014) (0.009) (0.009) (0.023) (0.074) 

Other 

Ethnicity 

B -0.007 0.015 0.007 0.038 0.086 

SE (0.029) (0.031) (0.012) (0.051) (0.121) 

Eng Lang 

Learner 

B -0.018 0.013 -0.020 -0.035 -0.059 

SE (0.009) (0.014) (0.011) (0.024) (0.070) 

Free/Reduced 

Lunch 

B -0.014 0.008 -0.002 0.012 -0.012 

SE (0.008) (0.017) (0.008) (0.029) (0.074) 

Math CST 

2010 

B 0.0003 0.0001 0.001*** 0.001*** 0.002** 

SE (0.0001) (0.0001) (0.0001) (0.0002) (0.001) 

ELA CST 

2010 

B -0.00003 0.0002 0.0002 0.0003 0.001 

SE (0.0001) (0.0001) (0.0001) (0.0002) (0.001) 

Constant B 0.320 0.112 0.045 -0.898* -2.612* 

 

SE (0.299) (0.142) (0.189) (0.381) (1.050) 

 

R2 0.134 0.061 0.344 0.226 0.179 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses The reference group comprises students who 

were females, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Sample limited to fourth graders who had 

2010 CST test score data and who had data on at least three objectives, the specific objectives included were 

controlled as a series of dummy variables (omitted).  Standard errors clustered on school (N=18). 
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Table 7  

     Effect of Early Treatment Group on Calibration Aggregated Across Entire Year, Robustness 

Check 

 

 (1) (2) (3) (4) (5) 

N=1,238 

 

Sensitivity Specificity 

Simple 

Match Gamma Discrimination 

Early Treat 

Group 

B -0.046*** 0.041** -0.014 -0.023 -0.038 

SE (0.010) (0.011) (0.008) (0.016) (0.041) 

 

Beta -0.125*** 0.101** -0.054 -0.041 -0.025 

Pretest 

Accuracy 

B 0.277*** 0.060 0.409*** 0.808*** 1.989*** 

SE (0.036) (0.041) (0.026) (0.056) (0.162) 

 

Beta 0.215*** 0.042 0.445*** 0.406*** 0.365*** 

Male B 0.044** -0.061*** -0.002 -0.011 -0.068 

 

SE (0.012) (0.013) (0.006) (0.015) (0.034) 

Asian B 0.056** -0.059 0.022 0.027 0.030 

 

SE (0.019) (0.031) (0.012) (0.028) (0.072) 

White B 0.004 0.023 0.026*** 0.055*** 0.153*** 

 

SE (0.014) (0.015) (0.006) (0.013) (0.035) 

Other 

Ethnicity 

B -0.044 0.023 -0.007 -0.037 -0.096 

SE (0.024) (0.030) (0.023) (0.051) (0.143) 

Eng Lang 

Learner 

B -0.025* 0.012 -0.011 -0.016 -0.075 

SE (0.010) (0.016) (0.010) (0.022) (0.057) 

Free/Reduced 

Lunch 

B -0.015 0.022 0.002 0.008 0.020 

SE (0.013) (0.017) (0.009) (0.022) (0.062) 

Math CST 

2010 

B 0.0001 0.0001 0.0003*** 0.001*** 0.001** 

SE (0.0001) (0.0002) (0.0001) (0.0001) (0.0004) 

ELA CST 

2010 

B 0.0001 0.0001 0.0001 0.00004 0.0003 

SE (0.0001) (0.0002) (0.0001) (0.0002) (0.0004) 

Total  

Objectives 

B 0.068 -0.030 0.043 0.080 0.116 

SE (0.051) (0.056) (0.028) (0.061) (0.083) 

Constant B 0.550*** 0.315*** 0.258*** -0.357* -0.723** 

 

SE (0.076) (0.076) (0.063) (0.130) (0.183) 

 

R2 0.131 0.063 0.428 0.311 0.268 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses The reference group comprises students who 

were females, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Sample limited to fourth graders who had 

2010 CST test score data. The specific objectives included were controlled as a series of dummy variables (omitted).  

Standard errors clustered on school (N=18). 
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Table 8 
      Association between Early Treatment Group and Calibration for Place Value, First Year of 

Treatment 

  

(1) (2) (3) (4) (5) 

N=2,520 

 

Sensitivity Specificity Simple Match Gamma Discrimination 

Early Treat 

Group 

B -0.036* -0.016 -0.057*** -0.102*** -0.308*** 

SE (0.014) (0.009) (0.011) (0.024) (0.067) 

 

Beta -0.089* -0.025 -0.129*** -0.095*** -0.089*** 

Pretest 

Accuracy 

B 0.134*** 0.124** 0.321*** 0.542*** 1.574*** 

SE (0.015) (0.033) (0.022) (0.042) (0.117) 

 

Beta 0.174*** 0.102** 0.379*** 0.263*** 0.237*** 

Male B 0.005 -0.041* -0.011 -0.024 -0.142 

 

SE (0.008) (0.015) (0.012) (0.029) (0.077) 

Asian B 0.021 0.018 0.030 0.064 0.290* 

 

SE (0.013) (0.020) (0.017) (0.043) (0.110) 

White B 0.019** -0.010 0.010 0.006 0.030 

 

SE (0.006) (0.009) (0.009) (0.015) (0.051) 

Other 

Ethnicity 

B 0.017 0.014 0.026 0.034 0.184 

SE (0.015) (0.037) (0.030) (0.071) (0.267) 

Eng Lang 

Learner 

B -0.006 -0.017 -0.041*** -0.064** -0.146* 

SE (0.007) (0.010) (0.009) (0.020) (0.055) 

Free/Reduced 

Lunch 

B -0.016 0.012 0.001 -0.011 -0.018 

SE (0.011) (0.017) (0.011) (0.025) (0.075) 

Constant B 0.855*** 0.329*** 0.644*** 0.374*** 0.946*** 

 

SE (0.015) (0.025) (0.017) (0.035) (0.100) 

 

R2 0.045 0.017 0.186 0.089 0.074 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses.  The reference group comprises students who 

were females, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Sample limited to students who had data 

on the Place Value objective, the first objective for second and third graders and the first or second objective for 

fourth graders. Standard errors clustered on school (N=18). 
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Table 9 

      Association between Early Treatment Group and Calibration for First Three Objectives, First 

Year of Treatment 

  

(1) (2) (3) (4) (5) 

N=2,612 

 

Sensitivity Specificity Simple Match Gamma Discrimination 

Early Treat 

Group 

B -0.035** -0.044** -0.094*** -0.172*** -0.449*** 

SE (0.012) (0.012) (0.008) (0.017) (0.035) 

 

Beta -0.098** -0.095** -0.276*** -0.220*** -0.195*** 

Pretest 

Accuracy 

B 0.215*** 0.125*** 0.419*** 0.756*** 2.021*** 

SE (0.020) (0.023) (0.021) (0.032) (0.079) 

 

Beta 0.235*** 0.108*** 0.483*** 0.381*** 0.346*** 

Male B 0.022* -0.043*** -0.003 -0.010 -0.082* 

 

SE (0.008) (0.009) (0.006) (0.014) (0.038) 

Asian B 0.001 0.004 0.018 0.027 0.055 

 

SE (0.017) (0.018) (0.010) (0.028) (0.083) 

White B 0.018* 0.018 0.027** 0.058*** 0.192*** 

 

SE (0.007) (0.009) (0.008) (0.014) (0.042) 

Other 

Ethnicity 

B -0.003 0.041 0.012 0.047 0.188 

SE (0.019) (0.022) (0.017) (0.035) (0.146) 

Eng Lang 

Learner 

B -0.010 -0.003 -0.029*** -0.046** -0.088* 

SE (0.007) (0.008) (0.007) (0.013) (0.036) 

Free/Reduced 

Lunch 

B 0.002 -0.012 -0.000 -0.014 -0.049 

SE (0.009) (0.015) (0.010) (0.024) (0.075) 

Constant B 0.824*** 0.087 0.336** -0.172 -0.559 

 

SE (0.099) (0.133) (0.098) (0.204) (0.537) 

 

R2 0.094 0.048 0.376 0.237 0.195 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses.  The reference group comprises students who 

were females, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Sample limited to students who had data 

on at least three objectives, the specific objectives included were controlled as a series of dummy variables 

(omitted).  Standard errors clustered on school (N=18). 
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Table 10 
      Association between Early Treatment Group and Calibration Aggregated Across All 

Objectives, First Year of Treatment 

  
(1) (2) (3) (4) (5) 

N=2,612 

 
Sensitivity Specificity Simple Match Gamma Discrimination 

Early Treat 

Group 

B -0.034* 0.007 -0.035*** -0.064*** -0.157** 

SE (0.013) (0.016) (0.006) (0.012) (0.040) 

 
Beta -0.102* 0.018 -0.132*** -0.114*** -0.100** 

Pretest 

Accuracy 

B 0.301*** 0.106* 0.513*** 0.978*** 2.457*** 

SE (0.028) (0.042) (0.021) (0.042) (0.117) 

 
Beta 0.272*** 0.084* 0.589*** 0.532*** 0.478*** 

Male B 0.036*** -0.057*** -0.002 -0.016 -0.079** 

 
SE (0.008) (0.008) (0.004) (0.010) (0.021) 

Asian B 0.007 -0.031 -0.006 -0.021 -0.101 

 
SE (0.019) (0.015) (0.016) (0.033) (0.085) 

White B 0.009 0.003 0.008 0.015 0.058 

 
SE (0.008) (0.010) (0.006) (0.011) (0.032) 

Other 

Ethnicity 

B -0.010 0.023 0.008 0.020 0.065 

SE (0.014) (0.015) (0.010) (0.018) (0.063) 

Eng Lang 

Learner 

B -0.014* 0.002 -0.015*** -0.025** -0.075** 

SE (0.006) (0.008) (0.003) (0.008) (0.022) 

Free/Reduced 

Lunch 

B 0.001 -0.005 -0.004 -0.006 -0.024 

SE (0.008) (0.011) (0.005) (0.012) (0.035) 

Total 

Objectives 

B 0.008** -0.014*** -0.006* -0.009 -0.025 

SE (0.003) (0.003) (0.002) (0.005) (0.018) 

Constant B 0.680*** 0.319*** 0.399*** -0.096 -0.090 

 
SE (0.039) (0.053) (0.028) (0.066) (0.241) 

 
R2 0.107 0.050 0.479 0.366 0.305 

Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses.  The reference group comprises students who 

were females, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Calibration and pretest accuracy 

aggregated across the entire year's curriculum; the specific objectives included were controlled as a series of dummy 

variables (omitted).  Standard errors clustered on school (N=18). 
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Table 11 

      Association between Early Treatment Group and Calibration Aggregated Across All 

Objectives, First Year of Treatment, Limited to Fourth Graders in 2011 

  

(1) (2) (3) (4) (5) 

N=1,259 

 

Sensitivity Specificity Simple Match Gamma Discrimination 

Early Treat 

Group 

B -0.028 0.015 -0.020 -0.039 -0.058 

SE (0.020) (0.026) (0.015) (0.030) (0.098) 

 

Beta -0.084 0.039 -0.076 -0.070 -0.037 

Pretest 

Accuracy 

B 0.315*** 0.034 0.468*** 0.906*** 2.139*** 

SE (0.050) (0.058) (0.028) (0.057) (0.149) 

 

Beta 0.279*** 0.026 0.527*** 0.473*** 0.404*** 

Male B 0.039** -0.063*** -0.008 -0.029* -0.103** 

 

SE (0.012) (0.013) (0.005) (0.012) (0.032) 

Asian B 0.048** -0.070** 0.017 0.017 -0.042 

 

SE (0.016) (0.022) (0.012) (0.028) (0.065) 

White B 0.022* 0.006 0.020** 0.041** 0.144** 

 

SE (0.009) (0.016) (0.006) (0.013) (0.043) 

Other 

Ethnicity 

B -0.027 0.027 0.001 -0.004 -0.003 

SE (0.022) (0.028) (0.015) (0.023) (0.077) 

Eng Lang 

Learner 

B -0.012 0.009 -0.012 -0.015 -0.038 

SE (0.013) (0.014) (0.009) (0.022) (0.059) 

Free/Reduced 

Lunch 

B -0.005 0.011 -0.002 0.004 0.015 

SE (0.016) (0.017) (0.009) (0.021) (0.055) 

Math CST 

2010 

B -0.0001 0.0001 0.0002* 0.0003 0.001 

SE (0.0001) (0.0002) (0.0001) (0.0001) (0.0003) 

ELA CST 

2010 

B 0.00001 0.0003 0.0001 0.0002 0.001* 

SE (0.0001) (0.0002) (0.0001) (0.0002) (0.0005) 

Total 

Objectives 

B 0.008 -0.019* -0.004 -0.006 -0.038 

SE (0.006) (0.007) (0.005) (0.010) (0.031) 

Constant B 0.604*** 0.236*** 0.339*** -0.220** -0.796*** 

 

SE (0.041) (0.056) (0.031) (0.059) (0.178) 

 

R2 0.126 0.076 0.503 0.377 0.324 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized (B) and standardized (Beta) regression coefficients presented. 

Standard errors from unstandardized regressions are in parentheses.  The reference group comprises students who 

were females, Hispanic, Non-ELL, and not eligible for free/reduced lunch. Calibration and pretest accuracy 

aggregated across the entire year's curriculum; the specific objectives included were controlled as a series of dummy 

variables (omitted). Sample limited to those students who were in fourth grade in 2011 and had data on 2010 CST 

scores. Standard errors clustered on school (N=18). 
 

 

 

  



213 
 

Table 12 

              Correlations between Objectives, Pretest Accuracy, Third Grade (Bottom) & Fourth Grade (Top) 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 1 0.160 0.102
c
 0.098

c
 0.120

c
 0.190 0.063

a
 0.052

a
 0.188 0.149 0.061

a
 0.143 0.211 0.237 0.227 0.094

b
 0.089

b
 

2 0.350 1 0.325 0.395 0.188 0.219 0.123 0.240 0.294 0.253 0.241 0.108
c
 0.243 0.225 0.213 0.146 0.174 

3 0.309 0.315 1 0.416 0.191 0.224 0.131 0.222 0.259 0.264 0.242 0.056
a
 0.235 0.234 0.228 0.174 0.166 

4 0.226 0.165 0.113 1 0.267 0.304 0.211 0.280 0.364 0.355 0.357 0.096
c
 0.362 0.265 0.269 0.201 0.222 

5 0.220 0.245 0.212 0.201 1 0.178 0.175 0.144 0.175 0.224 0.184 0.072
b
 0.232 0.141 0.128 0.100

b
 0.199 

6 0.184 0.158 0.166 0.150 0.216 1 0.240 0.241 0.277 0.321 0.241 0.113 0.311 0.238 0.290 0.16 0.213 

7 0.307 0.333 0.325 0.151 0.151 0.189 1 0.203 0.175 0.201 0.212 0.146 0.124 0.163 0.127 0.055
a
 0.248 

8 0.248 0.238 0.223 0.209 0.197 0.191 0.321 1 0.326 0.315 0.319 0.063
a
 0.265 0.226 0.272 0.173 0.278 

9 0.278 0.301 0.291 0.209 0.221 0.273 0.304 0.312 1 0.331 0.287 0.076
b
 0.313 0.277 0.218 0.173 0.238 

10 0.230 0.307 0.262 0.134 0.255 0.219 0.279 0.279 0.302 1 0.361 0.102
c
 0.330 0.333 0.332 0.239 0.230 

11 0.171 0.194 0.218 0.237 0.201 0.208 0.161 0.272 0.253 0.217 1 0.106
c
 0.369 0.271 0.301 0.226 0.316 

12 0.210 0.206 0.207 0.268 0.219 0.195 0.214 0.282 0.258 0.263 0.287 1 0.115 0.122
c
 0.088

b
 0.126

c
 0.114

c
 

13 0.112
c
 0.098

c
 0.173 0.155 0.109

c
 0.159 0.142 0.212 0.151 0.170 0.256 0.156 1 0.3 0.298 0.27 0.270 

14 0.248 0.349 0.323 0.089
b
 0.236 0.233 0.327 0.257 0.296 0.297 0.179 0.241 0.117

c
 1 0.350 0.200 0.266 

15 0.242 0.294 0.260 0.143 0.241 0.194 0.203 0.204 0.326 0.277 0.259 0.283 0.136 0.318 1 0.284 0.306 

16 0.175 0.201 0.138 0.242 0.239 0.161 0.196 0.189 0.200 0.224 0.206 0.190 0.155 0.145 0.223 1 0.213 

17 0.219 0.322 0.260 0.169 0.177 0.256 0.275 0.205 0.306 0.260 0.193 0.327 0.176 0.314 0.311 0.200 1 

18 0.184 0.252 0.320 0.109
c
 0.180 0.103

c
 0.332 0.249 0.261 0.283 0.201 0.177 0.142 0.267 0.269 0.122

c
 0.212 

Note. All correlations at p<.001 level except 
a
p>.05, 

b
p<.05, 

c
p<.01. Correlations of quiz accuracy at pretest between objectives. 

Third grade shown below the diagonal, fourth grade above. Objectives limited to those that at least 50% of the students completed across both the ETG and LTG.
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Table 13 

     Association between Calibration Gain and Posttest Performance Gain, Paired Quizzes 

 

(1) (2) (3) (4) (5) 

N=1,586 Sensitivity Specificity Simple Match Gamma Discrim. 

Calibration Gain 0.048* -0.041** -0.032 0.0001 -0.001 

(0.018) (0.011) (0.027) (0.008) (0.003) 

Pretest Gain 0.222*** 0.237*** 0.248*** 0.232*** 0.234*** 

(0.031) (0.030) (0.035) (0.033) (0.033) 

Early Treatment 

Group 

0.032* 0.031* 0.035** 0.034** 0.034** 

(0.012) (0.011) (0.012) (0.011) (0.011) 

Grade 4 -0.085** -0.089** -0.094** -0.092** -0.093** 

 
(0.023) (0.023) (0.025) (0.024) (0.024) 

Male -0.008 -0.008 -0.007 -0.007 -0.007 

 
(0.010) (0.010) (0.010) (0.010) (0.010) 

Asian 0.028 0.031 0.032 0.032 0.032 

 
(0.025) (0.026) (0.025) (0.025) (0.025) 

White 0.005 0.005 0.006 0.006 0.006 

 
(0.009) (0.009) (0.009) (0.009) (0.009) 

Other Ethnic -0.016 -0.020 -0.018 -0.018 -0.018 

 
(0.025) (0.024) (0.025) (0.025) (0.025) 

English Lang. 

Learner 

0.002 0.001 0.001 0.001 0.001 

(0.010) (0.010) (0.011) (0.010) (0.010) 

Free/Reduced 

Lunch 

-0.001 -0.001 -0.001 -0.001 -0.001 

(0.011) (0.012) (0.011) (0.011) (0.011) 

Constant 0.012 0.014 0.013 0.013 0.013 

 

(0.018) (0.018) (0.019) (0.019) (0.019) 

R2 0.168 0.169 0.165 0.164 0.164 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients presented. Standard errors are in 

parentheses. The reference group comprises students who were females in third grade, Hispanic, Non-ELL, and not 

eligible for free/reduced lunch. Standard errors clustered on school (N=18). Sample limited to those who had data on 

the two selected quizzes for this analysis.   
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Table 14 

     Association between Calibration Gain and Math CST Gain 

 

(1) (2) (4) (5) (6) 

N=1,586 Sensitivity Specificity 

Simple 

Match Gamma Discrim. 

Calibration Gain -8.186 5.639 2.528 -2.314 -0.170 

 

(5.545) (4.205) (4.331) (2.392) (0.637) 

Early Treatment 

Group 

-1.155 -1.256 -1.740 -1.484 -1.600 

(5.682) (5.693) (5.570) (5.651) (5.656) 

Grade 4 -25.219* -23.687* -22.954* -24.420* -23.602* 

 

(8.994) (9.345) (9.570) (9.487) (9.631) 

Male 2.318 2.330 2.211 2.161 2.208 

 

(3.269) (3.249) (3.240) (3.234) (3.244) 

Asian -9.334 -9.747 -9.928 -9.765 -9.891 

 

(8.094) (8.241) (8.199) (8.084) (8.138) 

White -2.575 -2.609 -2.640 -2.661 -2.648 

 

(6.535) (6.498) (6.532) (6.554) (6.520) 

Other Ethnic 11.697 12.225 12.015 12.000 11.958 

 

(10.900) (10.844) (10.740) (10.684) (10.764) 

English Lang 

.Learner 

15.291** 15.446** 15.476** 15.535** 15.498** 

(4.002) (3.955) (3.958) (3.969) (3.967) 

Free/Reduced 

Lunch 

-0.379 -0.437 -0.382 -0.487 -0.428 

(5.346) (5.401) (5.420) (5.375) (5.404) 

Constant 17.600 17.046 17.077 17.680 17.347 

 

(8.918) (9.094) (9.116) (8.981) (9.077) 

R2 0.054 0.054 0.052 0.053 0.052 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients presented. Standard errors are in 

parentheses. The reference group comprises students who were females in third grade, Hispanic, Non-ELL, and not 

eligible for free/reduced lunch. Standard errors clustered on school (N=18). Sample limited to those who had data on 

the two selected quizzes for this analysis.   
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Table 15 

     Association between Calibration Growth and Growth of Quiz Posttest Performance 

 

(1) (2) (3) (4) (5) 

N=2,625 Sensitivity Specificity 

Simple 

Match Gamma Discrim. 

Calibration Slope 0.036 0.048 0.183 0.062 0.023 

 

(0.117) (0.120) (0.122) (0.044) (0.018) 

Pretest Acc. -0.016 -0.017 -0.017 -0.017 -0.017 

 

(0.009) (0.010) (0.009) (0.009) (0.010) 

Early Treatment 

Group 

-0.001 -0.001 -0.001 -0.001 -0.001 

(0.002) (0.002) (0.002) (0.002) (0.002) 

Grade 4 -0.011** -0.011** -0.011** -0.011** -0.011** 

 

(0.003) (0.003) (0.003) (0.004) (0.004) 

Male 0.000 0.000 0.001 0.001 0.000 

 

(0.001) (0.001) (0.001) (0.001) (0.001) 

Asian -0.004* -0.004* -0.003 -0.003 -0.003 

 

(0.002) (0.002) (0.002) (0.002) (0.002) 

White -0.002 -0.002 -0.001 -0.002 -0.002 

 

(0.003) (0.003) (0.003) (0.003) (0.003) 

Other Ethnic -0.002 -0.002 -0.002 -0.002 -0.002 

 

(0.002) (0.002) (0.002) (0.002) (0.002) 

English Lang. 

Learner 

0.000 0.000 -0.000 0.000 -0.000 

(0.001) (0.001) (0.002) (0.001) (0.001) 

Free/Reduced 

Lunch 

-0.004* -0.004* -0.004 -0.004* -0.004* 

(0.002) (0.002) (0.002) (0.002) (0.002) 

Total Objectives 0.007 0.006 0.007 0.006 0.006 

 

(0.019) (0.019) (0.018) (0.018) (0.018) 

Constant 0.011 0.012 0.009 0.009 0.011 

 

(0.019) (0.019) (0.018) (0.019) (0.019) 

R2 0.069 0.071 0.092 0.090 0.089 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients presented. Standard errors are in 

parentheses. Specific objectives tested controlled with a series of dummy variables (not shown). The reference group 

comprises students who were females in third grade, Hispanic, Non-ELL, and not eligible for free/reduced lunch. 

Standard errors clustered on school (N=18). 
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Table 15 

     Association between Calibration Growth and End-of-Year Math CST Scores 

 

(1) (2) (3) (4) (5) 

N=2,624 Sensitivity Specificity Simple Match Gamma Discrim. 

Calibration Slope -0.901 17.112 48.919* 9.754 3.063 

 

(10.441) (9.828) (18.402) (6.984) (2.599) 

Pretest Acc. 100.489*** 100.242*** 100.223*** 100.402*** 100.393*** 

 

(10.970) (10.920) (10.751) (10.919) (10.873) 

Early Treatment 

Group 

1.857 1.872 1.823 1.783 1.802 

(2.819) (2.838) (2.821) (2.834) (2.838) 

Grade 4 11.840 11.768 11.833 11.823 11.820 

 

(7.373) (7.385) (7.292) (7.354) (7.372) 

Male 4.853** 4.856** 4.999** 4.902** 4.863** 

 

(1.592) (1.584) (1.571) (1.597) (1.586) 

Asian 8.218 8.243 8.419 8.277 8.270 

 

(4.536) (4.541) (4.515) (4.532) (4.514) 

White 0.635 0.636 0.847 0.683 0.683 

 

(2.990) (3.011) (3.006) (3.014) (3.001) 

Other Ethnic 5.155 5.227 5.235 5.278 5.274 

 

(7.603) (7.645) (7.588) (7.651) (7.637) 

English Lang 

Learner 

-2.260 -2.303 -2.333 -2.247 -2.275 

(2.790) (2.796) (2.783) (2.772) (2.779) 

Free/Reduced 

Lunch 

-2.663 -2.624 -2.476 -2.632 -2.599 

(2.188) (2.182) (2.175) (2.200) (2.175) 

Total Objectives -10.101 -10.270 -9.868 -10.054 -10.120 

 

(6.615) (6.639) (7.093) (6.826) (6.791) 

Math CST 2011 0.258*** 0.258*** 0.258*** 0.258*** 0.258*** 

 

(0.029) (0.029) (0.029) (0.029) (0.029) 

ELA CST 2011 0.230*** 0.231*** 0.232*** 0.231*** 0.231*** 

 

(0.039) (0.039) (0.039) (0.039) (0.039) 

Constant 105.763*** 105.613*** 104.637*** 105.184*** 105.504*** 

 

(17.527) (17.459) (17.189) (17.488) (17.486) 

R2 0.643 0.643 0.643 0.643 0.643 
Note. *p<.05, **p<.01, ***p<.001. Unstandardized regression coefficients presented. Standard errors are in 

parentheses. Specific objectives included controlled with a series of dummy variables (not shown). The reference 

group comprises students who were females in third grade, Hispanic, Non-ELL, and not eligible for free/reduced 

lunch. Standard errors clustered on school (N=18). One student omitted who did not have ELA CST data for 2011. 

 




