
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Scalable Robot Learning

Permalink
https://escholarship.org/uc/item/99w7d1hz

Author
Nair, Ashvin V

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99w7d1hz
https://escholarship.org
http://www.cdlib.org/

Scalable Robot Learning

by

Ashvin Nair

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sergey Levine, Chair
Professor Pieter Abbeel

Professor Alison Gopnik

Summer 2022

Copyright © 2022 – Ashvin Nair
All rights reserved.

Abstract

Scalable Robot Learning

by

Ashvin Nair

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

For robots to perform tasks in the unstructured environments of the real world, they
must be able to be tasked with a desired objective in a general way, and learn to perform
the desired task quickly if the robot does not already know how to accomplish it. In
this thesis, we explore deep reinforcement learning as a solution to enable this vision for
scalable learning-based real-world robotics through two main themes: accelerating rein-
forcement learning from prior data and self-supervised RL. Accelerating RL from prior
data or prior knowledge is important for making reinforcement learning algorithms suf-
ficiently sample-efficient to run directly in the real world. We discuss utilizing human
demonstrations to accelerate reinforcement learning, using human-designed residual
controllers in combination with reinforcement learning for industrial insertion tasks, and
algorithms for offline reinforcement learning that can also benefit from a small amount
of online fine-tuning. Concurrently, while sample-efficiency of reinforcement learning
algorithms is a well-appreciated problem, additional problems arise around agents that
can learn from rich observations such as images: in particular, reward supervision and
collecting data autonomously. We discuss self-supervised RL through goal reaching with
a generative model, allowing agents to evaluate their own success at reaching goals and
autonomously propose and practice skills. In the final section, we consider combining
offline policy learning with self-supervised practice, allowing robots to practice and per-
fect skills in novel environments. These directions enable robots to supervise their own
data collection, learning complex and general manipulation skills from interaction.

1

To my parents.

i

A C K N O W L E D G M E N T S

I would like to thank my advisor Sergey Levine for his guidance over the past years.
The work in this thesis would not have been possible without his vision and support. He
was a source of inspiration, motivation, and pushed me to work on the hard problems
that matter. I have never met anyone more diligent or with so much commitment to
excellence, and I was so lucky to have the opportunity to collaborate with him.

I would like to thank Pieter Abbeel for his mentorship. Joining his lab after being in-
spired by a talk he gave shifted my life trajectory and motivated me to pursue a research
career. I would also like to thank Pulkit Agrawal for his mentorship, and for heavily
influencing my thinking about robotics, machine learning, and research in general. I
would like to thank Alison Gopnik and Alyosha Efros in addition to Sergey and Pieter
for serving on my qualifying exam and thesis committee.

I would like to thank all my fantastic collaborators through the years. First, I would
like to thank my more senior collaborators who’s wisdom and experience I benefited
from immensely: Abhishek Gupta, Amy Zhang, Bob McGrew, Eugen Solowjow, Glen
Berseth, Ilya Kostrikov, Jitendra Malik, Kuan Fang, Marcin Andrychowicz, Phillip Isola,
and Wojciech Zaremba. In particular, I would like to highlight Vitchyr Pong, who was
my closest collaborator during my PhD. I learned so much from working with him,
and research really started to click for me once we started collaborating. On top of
being a great researcher and engineer, Vitchyr was also kind, encouraging, and a joy
to work with. I would also like to thank Shikhar Bahl, Murtaza Dalal, Sasha Khazatsky,
Graham Hughes, Daniel Jing, Catherine Huang, Patrick Yin, Brian Zhu and Charles Xu
specifically for the privilege of being a graduate mentor; I learned so much from the
experience and it was one of the best parts of research for me. And I would like to thank
all the other collaborators who were instrumental in pursuing this research: Dian Chen,
Gerrit Schoettler, Gokul Narayanan, Homer Walke, Jianlan Luo, Laura Smith, Matt Yan,
Philippe Hansen-Estruch, Soroush Nasiriany, Steven Lin, Tobias Johannink.

The Robotic AI and Learning Lab (RAIL) at Berkeley was an amazing place to be - I
was surrounded by brilliant people and it felt like the state-of-the-art RL algorithms,
important insider knowledge, and creative research perspectives were all just a few
desks away at most. For this I would like to thank Anusha Nagabandi, Anurag Ajay,

ii

Aravind Rajeswaran, Avi Singh, Aviral Kumar, Colin Li, Coline Devin, Dhruv Shah,
Dibya Ghosh, Dinesh Jayaraman, Frederik Ebert, Greg Kahn, Kristian Hartikainen, Jason
Peng, JD Co-Reyes, Justin Fu, Kate Rakelly, Katie Kang, Kelvin Xu, Laura Smith, Marvin
Zhang, Michael Chang, Michael Janner, Natasha Jaques, Nick Rhinehart, Roberto Calan-
dra, Rowan McAllister, Siddharth Reddy, Tuomas Haarnoja, Vikash Kumar, and Young
Geng. I will cherish all the great times, conversations, and conference trips we got to
experience together.

Spending my entire academic career at Berkeley, the times I got to step away and
imbibe new perspectives was always refreshing. I would like to thank Marcin, Bob, Woj-
ciech, and Pieter for my time at OpenAI which kickstarted my main research directions. I
would like to thank Tobias, Gerrit, and Eugen for the external collaboration with Siemens
which drove me to think about RL from an applications point of view. And I would like
to thank Saurabh Gupta, Shubham Tulsiani, and Abhinav Gupta for their mentorship
while at FAIR Pittsburgh; my time there really shifted my thinking about which ML
problems are valuable to work on as well as about building research communities.

It takes a village to raise a child - I was lucky to have so many teachers and mentors in
my life see potential in me, and go above and beyond their duty to help me and push me.
I would like to thank them all, but especially David Petty, Peter Wolf, Robert Trakimas,
Mike Hansen, Lauren Walsh, Amy Cooper, and Ms. Hunter for their dedication.

I am deeply grateful for the friends I made during graduate school, particularly Armin
Askari, Ashish Kumar, Allan Jabri, Chandan Singh, Parsa Mahmoudieh, and Sasha Sax.
Playing basketball with Armin, Chandan, and Marvin was a vital source of sanity for me
through the pandemic times. I would like to thank Kelvin, Marvin, and Parsa for their
support navigating the finish line of the PhD and searching for jobs. I would also like to
thank Sasha Sax and Nick Rhinehart for being thoughtful roommates and friends.

I could not have done this work without the love and support of my friends. I would
like to thank Aditya Pradhan, Alexandria Lai, Alex Joo, Anna Apa, Brian Giang, Carlos
Lazo, Greg Bulpitt, Jong Lim, Karthik Gururangan, Michael You, Nayif Alhomoud, Ryan
Goh, Sid Moghe, Shuyang Ren, Sua Kim, and Sunny Zhang: I am so fortunate to have
you all in my life. Going further back, I would like to thank Donald Feng, George Zhang,
Jessica Zhang, Kevin Gao, Ning Liu, Irene Wong, and Saavan Patel for their continued
friendship. I was lucky to share the last 13 (!) years of school with Saavan, and I deeply
appreciate his support and loyalty throughout.

Finally, I would like to thank my family. My entire extended family has been a source
of comfort and well-wishes throughout this process and I am very grateful for their love
and encouragement. I would like to thank my grandparents Damodaran Nair, Sarada

iii

Damodaran Nair, Methil Somasundaram, and Chandramathi Panangadath for their love
and care, for inspiring me, and for being excellent role models. I would like to thank
my father Vinod Nair for providing me with direction and purpose. And I would like to
thank my mother Asha Nair who inspired me with her love for others and sacrificed so
much so that I could pursue my dreams.

iv

C O N T E N T S

1 introduction 1

i reinforcement learning with imagined goals 6

2 visual reinforcement learning with imagined goals 7

2.1 Introduction 7

2.2 Related Work 9

2.3 Background 10

2.4 Goal-Conditioned Policies with Unsupervised Representation Learning 12

2.5 Experiments 16

2.6 Discussion and Future Work 22

2.7 Contribution Statement 23

3 contextual imagined goals for self-supervised robotic learn-
ing 24

3.1 Introduction 24

3.2 Related Work 26

3.3 Background 28

3.4 Self-Supervised Learning with Context-Conditioned Representations 28

3.5 Experiments 30

3.6 Conclusion 35

3.7 Contribution Statement 35

4 skewfit : state-covering self-supervised reinforcement learning 36

4.1 Introduction 36

4.2 Problem Formulation 38

4.3 Skew-Fit: Learning a Maximum Entropy Goal Distribution 40

4.4 Training Goal-Conditioned Policies with Skew-Fit 44

4.5 Related Work 45

4.6 Experiments 46

4.7 Conclusion 55

4.8 Contribution Statement 55

v

ii accelerating reinforcement learning with prior knowledge

56

5 overcoming exploration in reinforcement learning with demon-
strations 57

5.1 Introduction 57

5.2 Related Work 59

5.3 Background 61

5.4 Method 63

5.5 Experimental Setup 64

5.6 Comparison With Prior Work 66

5.7 Multi-Step Experiments 67

5.8 Ablation Experiments 71

5.9 Discussion and Future Work 73

6 awac : accelerating online reinforcement learning with offline

datasets 74

6.1 Introduction 74

6.2 Preliminaries 76

6.3 Challenges in Offline RL with Online Fine-tuning 78

6.4 Advantage Weighted Actor Critic: A Simple Algorithm for Fine-tuning
from Offline Datasets 81

6.5 Related Work 85

6.6 Experimental Evaluation 87

6.7 Discussion and Future Work 92

6.8 Contribution Statement 93

7 offline reinforcement learning with implicit q-learning 94

7.1 Related work 95

7.2 Implicit Q-Learning 97

7.3 Experimental Evaluation 103

7.4 Conclusion 107

7.5 Contribution Statement 107

8 residual reinforcement learning for robot control 110

8.1 Introduction 110

8.2 Preliminaries 112

8.3 Method 113

8.4 Experimental Setup 115

8.5 Experiments 117

vi

8.6 Results 119

8.7 Related Work 121

8.8 Conclusion 123

8.9 Contribution Statement 123

9 deep reinforcement learning for industrial insertion tasks with

visual inputs and natural rewards 124

9.1 Introduction 124

9.2 Related Work 126

9.3 Electric Connector Plug Insertion Tasks 127

9.4 Methods 130

9.5 Experiments 131

9.6 Results 132

9.7 Conclusion 136

9.8 Contribution Statement 137

10 learning on the job : industrial insertion of novel connectors

from vision 138

10.1 Introduction 138

10.2 Related Work 141

10.3 Background 143

10.4 Problem Setting 144

10.5 Method 144

10.6 Robot Setup 147

10.7 Experiments 148

10.8 Discussion 151

10.9 Contribution Statement 152

iii affordance learning in unseen environments 154

11 learning new skills by imagining visual affordances 155

11.1 Introduction 155

11.2 Related Work 157

11.3 Preliminaries 159

11.4 Problem Setting 160

11.5 Visuomotor Affordance Learning 161

11.6 Real-World Experimental Evaluation 164

11.7 Experimental Evaluation in Simulation 167

11.8 Conclusion 170

vii

11.9 Contribution Statement 171

12 planning to practice : efficient online fine-tuning by compos-
ing goals in latent space 172

12.1 Introduction 172

12.2 Related Work 174

12.3 Problem Statement 176

12.4 Preliminaries 177

12.5 Planning to Practice 177

12.6 Experiments 183

12.7 Conclusion and Discussion 188

12.8 Contribution Statement 188

13 conclusion 189

a appendix : chapter 2 229

a.1 Complete Ablative Results 229

a.2 Hyperparameters 232

a.3 Environment Details 233

b appendix : chapter 3 235

b.1 Multi-Color 2D Navigation Experiments 235

b.2 Off-Policy Experiments 236

c appendix : chapter 4 239

c.1 Proofs 239

c.2 Additional Experiments 244

c.3 Implementation Details 247

c.4 Environment Details 252

c.5 Goal-Conditioned Reinforcement Learning Minimizes H(G | S) 257

d appendix : chapter 6 258

d.1 Algorithm Derivation Details 258

d.2 Implementation Details 259

d.3 Environment-Specific Details 261

d.4 Baseline Implementation Details 264

d.5 Gym Benchmark Results From Prior Data 267

d.6 Extra Baseline Comparisons (CQL, AlgaeDICE) 269

d.7 Online Fine-Tuning From D4RL 270

d.8 Hardware Experimental Setup 271

e appendix : chapter 7 273

e.1 Proofs 273

viii

e.2 Experimental details 273

e.3 Finetuning experimental details 277

e.4 Connections to prior work 278

e.5 Different Estimators of V(s) 279

f appendix : chapter 11 281

ix

1
I N T R O D U C T I O N

Robots are becoming ubiquitous in manufacturing and other industries, for a variety of
tasks such as bin picking, assembly, welding, painting, and so on. Yet, the autonomous ca-
pability of present-day robotics systems are still quite limited. Settings where robots oper-
ate are carefully controlled; they often require very specific end-effector tooling (Zhongkui
Wang et al., 2020) combined with high precision motions and motion planning (Ang et
al., 2005; LaValle, 2006; Karaman and Frazzoli, 2011; Zucker et al., 2013) to accomplish
a particular task. In effect, robots rely on human ingenuity and engineering in order
to do their job. But such systems are brittle, and the hardware and software must of-
ten be redesigned for slight variations of a task. Some adaptability or autonomy can be
achieved with compliant robot controllers (Mason, 1981; Hogan, 1985), and with abstract
task planning (Sacerdoti, 1974; Leslie Pack Kaelbling and Lozano-Perez, 2011) combined
with perception. But if a manufacturing task actually requires significant adaptability or
robustness to varying environment conditions based on perceptual inputs, designing a
working system becomes much more difficult - as evidenced by the millions of human la-
borers doing these jobs today. And beyond relatively controlled manufacturing settings,
we will expect the robots of tomorrow to do a lot more: cook meals, assist the elderly in
homes and other human-centric environments, navigate unmapped terrain, operate ma-
chinery and appliances, manipulate objects, and interact safely in presence of humans.
This kind of open-world capability requires adaptability, generalization, and is beyond
the reach of most robots today.

In contrast, humans perform highly skillful dexterous manipulation so easily that it is
sometimes hard to conceive the difficulty of replicating this capability in a robot. Most
humans within the first five years of their life have developed complex fine motor skills,
successfully performing bimanual dexterous manipulation of various unfamiliar and
dynamic objects, and using tools with a tight sensorimotor loop that entails perception,
functional grasping, and control (Adolph and Franchak, 2017). It remains a challenge

1

to develop equivalently robust feedback controllers for robots that can adapt to a wide
variety of situations to accomplish goals. If robots were equally skillful, it would be
incredibly economically valuable - they could be used to automate many of the tasks that
humans have to do today. How can we develop methods to allow for general-purpose
robots that are similarly skillful?

The past decade of deep learning suggests that learning models from large datasets is
the key to such open-world generalization, which is a prerequisite for general robotics.
Expressive function approximation trained on broad datasets have driven recent progress
in artificial intelligence research across a range of fields: in speech recognition (Graves
et al., 2014), image classification (Krizhevsky et al., 2012) and segmentation (Ren et al.,
2015), natural language processing (Devlin et al., 2019), and even protein structure pre-
diction (Jumper et al., 2021), the recipe of large datasets combined with appropriate deep
learning architectures has pushed forward the frontier. These models are trained on a
broad enough dataset that the model can generalize from a broad training distribution
and capture corner cases at test time, a challenge with manually designed solutions. If
we could achieve such generality for control - the problem of selecting actions in order
to maximize a reward function - it could enable truly general robots in the wild.

But control introduces two new problems not found in the supervised learning setting.
The first problem is credit assignment: actions taken in the past affect the future. The sec-
ond is exploration: actions taken change the distribution of data visited. To address these
problems, a promising approach is deep reinforcement learning (RL), which combines
reinforcement learning with deep function approximation. Deep reinforcement learning
has been applied successfully on many sequential decision making problems: to achieve
super-human performance on competitive games such as Atari (Mnih et al., 2015), Go (D.
Silver et al., 2016a), Dota 2 (OpenAI et al., 2019), and Starcraft II (Vinyals et al., 2019),
in robotics (Marc Peter Deisenroth and Rasmussen, 2011; Kober et al., 2013; Levine et
al., 2017; J. ; Lee et al., 2020), navigation of stratospheric balloons Marc G. Bellemare
et al., 2020, and even control of plasma in a nuclear fusion reactor Degrave et al., 2022.
Yet, while algorithms for RL have been steadily advancing (Schulman et al., 2015; Lilli-
crap et al., 2016; Schulman et al., 2017; Haarnoja et al., 2018a), becoming more sample
efficient and stable, there are still significant obstacles towards a general solution for
robotics with RL. What challenges remain toward endowing robots with human-level
manipulation skills?

Challenges in robot learning. The central issue is that the world is so varied that
a robotic agent acquiring skills via learning based methods needs to experience both
the diversity of perceptual inputs found in large-scale vision datasets, combined with

2

the complexity of control including exploration and credit assignment. But unlike the
supervised learning setting where collecting and labeling data is relatively straightfor-
ward, collecting diverse and useful data in robotics is much harder and more expensive.
Existing work has used demonstrations, which require significant human effort, or run
online policy learning in heavily instrumented environments which also requires effort
to design reset mechanisms and reward engineering. Instead, robots would ideally be
able to collect their own data continuously with little human supervision in diverse en-
vironments as well as utilize past data to learn a policy that generalizes well to diverse
environments. How can we bootstrap this cycle, in which robots can successfully use
prior data to explore and learn in diverse environments? Broadly, two key components
need to be developed for a solution.

First, we must be able to embed prior knowledge - data of offline experience or demon-
strations, human-engineered controllers, and environment models, into the learning pro-
cess. The classic active formulation of RL learning from scratch necessitates a lengthy
active exploration process for each behavior, making it difficult to apply in real-world
settings such as robotic control. Beyond requiring a large amount of data, the initial ex-
ploration phase in RL can also be unsafe to execute on a robot. Instead of learning tasks
from scratch, we ought to be able to utilize existing knowledge to make RL algorithms
sample efficient and practical for running in the real world. If we can instead allow RL
algorithms to effectively use prior knowledge to aid the online learning process, such
applications could be made substantially more practical, providing a starting point that
mitigates challenges due to exploration and sample complexity. But vitally, online train-
ing may still be necessary for the agent to perfect the desired skill, if perfect zero-shot
generalization is not achieved. In this thesis, we explore several ideas in order to in-
corporate prior knowledge into policy optimization, significantly improving the sample
complexity, reducing unsafe exploration behavior, and making these algorithms more
amenable for real world use.

Second, we must address the problem of task specification. While reinforcement learn-
ing provides an appealing formalism for learning individual skills, a general-purpose
robotic system must be able to master an extensive repertoire of behaviors. Moreover, it
must correctly evaluate itself on whether it has succeeded or failed at accomplishing a
task, and be able to be tasked with a specific desired goal by a human when needed.
Ideally it could also transfer knowledge between tasks. Goal-conditioned reinforcement
learning provides a potential solution to this problem: by conditioning the policy on a
continuous goal space, we can enable this transfer and specify tasks in the goal space.
For scalable robot learning, we also want the learning procedure to be self-supervised:

3

the robot should be able to evaluate its own success in order to practice, and also au-
tonomously practice useful skills by setting goals that are feasible but diverse.

If we can overcome these challenges reliably, we can allow robots to use their prior ex-
perience to learn general policies, and then when tasked with a new objective, practice
and improve through self-supervision. Moreover, the ability to explore in new environ-
ments can be the basis to bootstrap a cycle in which our agents use prior experience to
learn a policy to collect high quality interaction data, improve the policy from that data,
and so on. This thesis first explores facets of each challenge individually, demonstrating
new algorithms on real-world robotic systems. We then integrate these solutions into
real-world robotic systems that understand affordances and autonomously improve on
novel tasks.

Outline. This thesis is organized into three parts. In Part I (chapter 2-4), we investigate
the use of goal-conditioned reinforcement learning for self-supervised exploration from
raw observations. In chapter 2, we describe the framework of reinforcement learning
with imagined goals (RIG), which enables self-supervised practice (A. Nair et al., 2018b).
In chapter 3, we discuss extending RIG to autonomously set goals in novel situations
based on prior experience, using a context-conditioned generative model (A. Nair et al.,
2019a). In chapter 4, we discuss a general framework for exploration in self-supervised
goal-conditioned RL (Vitchyr H. Pong et al., 2019).

In Part 2 (chapter 5-10), we discuss utilizing prior data and prior knowledge in or-
der to initialize and accelerate reinforcement learning. In chapter 5, we discuss utilizing
demonstrations to solve long-horizon tasks with reinforcement learning (A. Nair et al.,
2018a). In chapter 6, we discuss an algorithm to utilize arbitrary offline data and fine-
tune policies and value functions online (A. Nair et al., 2020). In chapter 7, we discuss
utilizing expectile regression for stable offline learning of value functions. The resulting
algorithm, implicit Q-learning, achieves state-of-the-art results in both offline RL and
online finetuning (Kostrikov et al., 2021b). In chapter 8, we discuss how to incorporate
prior knowledge such as an expert controller using residual reinforcement learning (Jo-
hannink et al., 2019), and in chapter 9 we further extend residual reinforcement learning
to solve industrial insertion tasks (Gerrit Schoettler et al., 2019). In chapter 10, we apply
implicit Q-learning along with domain generalization to learn reward models and poli-
cies for industrial insertion, enabling on-the-job learning when a policy cannot solve an
insertion task zero-shot.

Finally, in Part 3 (chapter 11-12), we show how these two directions dovetail to enable
robots in the real world to explore novel situations. In chapter 11, we cover visuomo-
tor affordance learning (VAL), a method to allow self-supervised learning from prior

4

data (Khazatsky et al., 2021a). In chapter 12, we extend VAL with planning to enable
finetuning of more complex skills. In chapter 13, we conclude by discussing future direc-
tions.

5

Part I

R E I N F O R C E M E N T L E A R N I N G W I T H I M A G I N E D
G O A L S

2
V I S U A L R E I N F O R C E M E N T L E A R N I N G W I T H I M A G I N E D G O A L S

2.1 introduction

Reinforcement learning (RL) algorithms hold the promise of allowing autonomous agents,
such as robots, to learn to accomplish arbitrary tasks. However, the standard RL frame-
work involves learning policies that are specific to individual tasks, which are defined
by hand-specified reward functions. Agents that exist persistently in the world can pre-
pare to solve diverse tasks by setting their own goals, practicing complex behaviors, and
learning about the world around them. In fact, humans are very proficient at setting
abstract goals for themselves, and evidence shows that this behavior is already present
from early infancy (Smith and Gasser, 2005), albeit with simple goals such as reaching.
The behavior and representation of goals grows more complex over time as they learn
how to manipulate objects and locomote. How can we begin to devise a reinforcement
learning system that sets its own goals and learns from experience with minimal outside
intervention and manual engineering?

In this paper, we take a step toward this goal by designing an RL framework that
jointly learns representations of raw sensory inputs and policies that achieve arbitrary
goals under this representation by practicing to reach self-specified random goals during
training. To provide for automated and flexible goal-setting, we must first choose how a
general goal can be specified for an agent interacting with a complex and highly variable
environment. Even providing the state of such an environment to a policy is a challenge.
For instance, a task that requires a robot to manipulate various objects would require
a combinatorial representation, reflecting variability in the number and type of objects
in the current scene. Directly using raw sensory signals, such as images, avoids this
challenge, but learning from raw images is substantially harder. In particular, pixel-wise
Euclidean distance is not an effective reward function for visual tasks since distances be-
tween images do not correspond to meaningful distances between states (Ponomarenko

7

et al., 2015; Richard Zhang et al., 2018). Furthermore, although end-to-end model-free re-
inforcement learning can handle image observations, this comes at a high cost in sample
complexity, making it difficult to use in the real world.

We propose to address both challenges by incorporating unsupervised representation
learning into goal-conditioned policies. In our method, which is illustrated in Figure 47,
a representation of raw sensory inputs is learned by means of a latent variable model,
which in our case is based on the variational autoencoder (VAE) (D. P. Kingma and
Welling, 2014). This model serves three complementary purposes. First, it provides a
more structured representation of sensory inputs for RL, making it feasible to learn
from images even in the real world. Second, it allows for sampling of new states, which
can be used to set synthetic goals during training to allow the goal-conditioned pol-
icy to practice diverse behaviors. We can also more efficiently utilize samples from the
environment by relabeling synthetic goals in an off-policy RL algorithm, which makes
our algorithm substantially more efficient. Third, the learned representation provides a
space where distances are more meaningful than the original space of observations, and
can therefore provide well-shaped reward functions for RL. By learning to reach random
goals sampled from the latent variable model, the goal-conditioned policy learns about
the world and can be used to achieve new, user-specified goals at test-time.

The main contribution of our work is a framework for learning general-purpose goal-
conditioned policies that can achieve goals specified with target observations. We call
our method reinforcement learning with imagined goals (RIG). RIG combines sample-
efficient off-policy goal-conditioned reinforcement learning with unsupervised represen-
tation learning. We use representation learning to acquire a latent distribution that can
be used to sample goals for unsupervised practice and data augmentation, to provide a
well-shaped distance function for reinforcement learning, and to provide a more struc-
tured representation for the value function and policy. While several prior methods, dis-
cussed in the following section, have sought to learn goal-conditioned policies, we can do
so with image goals and observations without a manually specified reward signal. Our
experimental evaluation illustrates that our method substantially improves the perfor-
mance of image-based reinforcement learning, can effectively learn policies for complex
image-based tasks, and can be used to learn real-world robotic manipulation skills with
raw image inputs. Videos of our method in simulated and real-world environments can
be found at https://sites.google.com/site/visualrlwithimaginedgoals/.

8

https://sites.google.com/site/visualrlwithimaginedgoals/

Figure 1: We train a VAE using data generated by our exploration policy (left). We use the VAE
for multiple purposes during training time (middle): to sample goals to train the policy,
to embed the observations into a latent space, and to compute distances in the latent
space. During test time (right), we embed a specified goal observation og into a goal
latent zg as input to the policy.

2.2 related work

While prior works on vision-based deep reinforcement learning for robotics can effi-
ciently learn a variety of behaviors such as grasping (Pinto et al., 2018; Pinto and Ab-
hinav Gupta, 2016; Levine et al., 2017), pushing (Agrawal et al., 2016; Ebert et al., 2017;
Finn and Levine, 2016), navigation (Pathak et al., 2018; Lange et al., 2012c), and other
manipulation tasks (Lillicrap et al., 2016; Levine et al., 2016a; Pathak et al., 2018), they
each make assumptions that limit their applicability to training general-purpose robots.
Levine et al. (2016a) uses time-varying models, which requires an episodic setup that
makes them difficult to extend to non-episodic and continual learning scenarios. Pinto
et al. (2018) proposed a similar approach that uses goal images, but requires instru-
mented training in simulation. Lillicrap et al. (2016) uses fully model-free training, but
does not learn goal-conditioned skills. As we show in our experiments, this approach is
very difficult to extend to the goal-conditioned setting with image inputs. Model-based
methods that predict images (Watter et al., 2015; Finn and Levine, 2016; Ebert et al., 2017;
Oh et al., 2015) or learn inverse models (Agrawal et al., 2016) can also accommodate
various goals, but tend to limit the horizon length due to model drift. To our knowledge,
no prior method uses model-free RL to learn policies conditioned on a single goal image
with sufficient efficiency to train directly on real-world robotic systems, without access
to ground-truth state or reward information during training.

Our method uses a goal-conditioned value function (Schaul et al., 2015b) in order
to solve more general tasks (R. S. Sutton et al., 2011; L P Kaelbling, 1993). To improve

9

the sample-efficiency of our method during off-policy training, we retroactively relabel
samples in the replay buffer with goals sampled from the latent representation. Goal rela-
beling has been explored in prior work (L P Kaelbling, 1993; Andrychowicz et al., 2017b;
Rauber et al., 2017; Levy et al., 2017; V. Pong et al., 2018). Andrychowicz et al. (2017b)
and Levy et al. (2017) use goal relabeling for sparse rewards problems with known goal
spaces, restricting the resampled goals to states encountered along that trajectory, since
almost any other goal will have no reward signal. We sample random goals from our
learned latent space to use as replay goals for off-policy Q-learning rather than restrict-
ing ourselves to states seen along the sampled trajectory, enabling substantially more ef-
ficient learning. We use the same goal sampling mechanism for exploration in RL. Goal
setting for policy learning has previously been discussed (Baranes and Oudeyer, 2012)
and recently Pr et al. (2018a) have also proposed using unsupervised learning for setting
goals for exploration. However, we use a model-free Q-learning method that operates
on raw state observations and actions, allowing us to solve visually and dynamically
complex tasks.

A number of prior works have used unsupervised learning to acquire better represen-
tations for RL. These methods use the learned representation as a substitute for the state
for the policy, but require additional information, such as access to the ground truth
reward function based on the true state during training time (Higgins et al., 2017b; Ha
and Schmidhuber, 2018; Watter et al., 2015; Finn et al., 2016b; Lange et al., 2012c; Jon-
schkowski et al., 2017b), expert trajectories (Srinivas et al., 2018), human demonstrations
(Sermanet et al., 2017), or pre-trained object-detection features (A. Lee et al., 2017). In
contrast, we learn to generate goals and use the learned representation to obtain a re-
ward function for those goals without any of these extra sources of supervision. Finn et
al. (2016b) combine unsupervised representation learning with reinforcement learning,
but in a framework that trains a policy to reach a single goal. Many prior works have
also focused on learning controllable and disentangled representations (Schmidhuber,
1992; X. Chen et al., 2016; Cheung et al., 2014; Reed et al., 2014; Desjardins et al., 2012;
V. Thomas et al., 2017). We use a method based on variational autoencoders, but these
prior techniques are complementary to ours and could be incorporated into our method.

2.3 background

Our method combines reinforcement learning with goal-conditioned value functions and
unsupervised representation learning. Here, we briefly review the techniques that we
build on in our method.

10

reinforcement learning . We consider the standard Markov Decision Process
framework for picking optimal actions to maximize rewards over discrete timesteps in an
environment E. We assume that the environment is fully observable. At every timestep,
an agent is in a state s, takes an action a, receives a reward r, and E evolves to state
s ′ according to the environment dynamics p(s ′|s,a). The state, action, and reward at
timestep t may also be denoted st, at, and rt respectively but we will drop the subscript
when considering individual transitions (s,a, r, s ′). In reinforcement learning, the agent
must learn a policy a = π(s) to maximize expected returns. We denote the return starting
at timestep t by Rt =

∑T
i=t γ

(i−t)ri where T is the horizon that the agent optimizes
over and γ is a discount factor for future rewards. The agent’s objective is to maximize
expected return from the start distribution J = Eri,si∼E,ai∼π[R0].

A variety of reinforcement learning algorithms have been developed to solve this prob-
lem. Many involve constructing an estimate of the expected return from a given state
after taking an action:

Qπ(s,a) = E[Rt|st = s,at = a] (1)
= E[r+ γEa ′∼π[Q

π(s ′,a ′)]], (2)

where the outer expectation is taken over the policy and environment dynamics.
We call Qπ the action-value function. Equation 13 is a recursive version of equation
12, and is known as the Bellman equation. The Bellman equation allows for methods
to estimate Q that resemble dynamic programming, enabling data re-use and sample
efficiency.

goal-conditioned reinforcement learning . Standard model-free RL learns
policies that achieve a single task. If our aim is instead to obtain a policy that can ac-
complish a variety of tasks, we can construct a goal-conditioned policy and reward, and
optimize the expected return with respect to a goal distribution: Eg∼G[Eri,si∼E,ai∼π[R0]],
where G is the set of goals and the reward is also a function of g. A variety of algorithms
can learn goal-conditioned policies, but to enable sample-efficient learning, we focus on
algorithms that acquire goal-conditioned Q-functions, which can be trained off-policy. A
goal-conditioned Q-function Q(s,a,g) learns the expected return for the goal g starting
from state s and taking action a. Given a state s, action a, next state s ′, goal g, and
correspond reward r, one can train an approximate Q-function parameterized by w by

11

minimizing the following Bellman error

E(w) =
1

2
||Qw(s,a,g) − (r+ γmax

a ′
Qw̄(s

′,a ′,g))||2 (3)

where w̄ indicates that w̄ is treated as a constant. Crucially, one can optimize this loss
using off-policy data (s,a, s ′,g, r) with a standard actor-critic algorithm (Lillicrap et al.,
2016; Fujimoto et al., 2018b; Mnih et al., 2016).

variational autoencoders . Variational autoencoders (VAEs) have been demon-
strated to learn structured latent representations of high dimensional data (D. P. Kingma
and Welling, 2014). The VAE consists of an encoder pφ, which maps states to latent distri-
butions, and a decoder pψ, which maps latents to distributions over states. The encoder
and decoder parameters, ψ and φ respectively, are jointly trained to maximize

L(ψ,φ; s(i)) = −βDKL(qφ(z|s
(i))||p(z)) + Eqφ(z|s(i))

[logpψ(s(i) | z)], (4)

where p(z) is some prior, which we take to be the unit Gaussian, DKL is the Kullback-
Leibler divergence, and β is a hyperparameter that balances the two terms. The use of
β values other than one is sometimes referred to as a β-VAE (Higgins et al., 2017a). The
encoder qφ parameterizes the mean and log-variance diagonal of a Gaussian distribu-
tion, qφ(s) = N(µφ(s),σ2φ(s)). The decoder pψ parameterizes a Bernoulli distribution for
each pixel value. This parameterization corresponds to training the decoder with cross-
entropy loss on normalized pixel values. Full details of the hyperparameters are in the
Supplementary Material.

2.4 goal-conditioned policies with unsupervised representation learn-
ing

To devise a practical algorithm based on goal-conditioned value functions, we must
choose a suitable goal representation. In the absence of domain knowledge and instru-
mentation, a general-purpose choice is to set the goal space G to be the same as the state
observations space S. This choice is fully general as it can be applied to any task, and
still permits considerable user control since the user can choose a “goal state” to set a de-
sired goal for a trained goal-conditioned policy. But when the state space S corresponds

12

to high-dimensional sensory inputs such as images, 1 learning a goal-conditioned Q-
function and policy becomes exceedingly difficult as we illustrate empirically in Sec-
tion 9.5.

Our method jointly addresses a number of problems that arise when working with
high-dimensional inputs such as images: sample efficient learning, reward specification,
and automated goal-setting. We address these problems by learning a latent embedding
using a β-VAE. We use this latent space to represent the goal and state and retroactively
relabel data with latent goals sampled from the VAE prior to improve sample efficiency.
We also show that distances in the latent space give us a well-shaped reward function for
images. Lastly, we sample from the prior to allow an agent to set and “practice” reaching
its own goal, removing the need for humans to specify new goals during training time.
We next describe the specific components of our method, and summarize our complete
algorithm in Section 2.4.5.

2.4.1 Sample-Efficient RL with Learned Representations

One challenging problem with end-to-end approaches for visual RL tasks is that the re-
sulting policy needs to learn both perception and control. Rather than operating directly
on observations, we embed the state st and goals g into a latent space Z using an encoder
e to obtain a latent state zt = e(st) and latent goal zg = e(g). To learn a representation of
the state and goal space, we train a β-VAE by executing a random policy and collecting
state observations, {s(i)}, and optimize Equation equation 4. We then use the mean of
the encoder as the state encoding, i.e. z = e(s) , µφ(s).

After training the VAE, we train a goal-conditioned Q-function Q(z,a, zg) and cor-
responding policy πθ(z, zg) in this latent space. The policy is trained to reach a goal
zg using the reward function discussed in Section 2.4.2. For the underlying RL algo-
rithm, we use twin delayed deep deterministic policy gradients (TD3) (Fujimoto et al.,
2018b), though any value-based RL algorithm could be used. Note that the policy (and
Q-function) operates completely in the latent space. During test time, to reach a specific
goal state g, we encode the goal zg = e(g) and input this latent goal to the policy.

As the policy improves, it may visit parts of the state space that the VAE was never
trained on, resulting in arbitrary encodings that may not make learning easier. Therefore,
in addition to procedure described above, we fine-tune the VAE using both the randomly
generated state observations {s(i)} and the state observations collected during exploration.

1 We make the simplifying assumption that the system is Markovian with respect to the sensory input, and
one could incorporate memory into the state for partially observed tasks.

13

We show in Section A.1.3 that this additional training helps the performance of the
algorithm.

2.4.2 Reward Specification

Training the goal-conditioned value function requires defining a goal-conditioned re-
ward r(s,g). Using Euclidean distances in the space of image pixels provides a poor
metric, since similar configurations in the world can be extremely different in image
space. In addition to compactly representing high-dimensional observations, we can uti-
lize our representation to obtain a reward function based on a metric that better reflects
the similarity between the state and the goal. One choice for such a reward is to use the
negative Mahalanobis distance in the latent space:

r(s,g) = −||e(s) − e(g)||A = −||z− zg||A,

where the matrix A weights different dimensions in the latent space. This approach has
an appealing interpretation when we set A to be the precision matrix of the VAE encoder,
qφ. Since we use a Gaussian encoder, we have that

r(s,g) = −||z− zg||A ∝
√

log eφ(zg | s) (5)

In other words, minimizing this squared distance in the latent space is equivalent to
rewarding reaching states that maximize the probability of the latent goal zg. In practice,
we found that setting A = I, corresponding to Euclidean distance, performed better than
Mahalanobis distance, though its effect is the same — to bring z close to zg and maximize
the probability of the latent goal zg given the observation. This interpretation would not
be possible when using normal autoencoders since distances are not trained to have any
probabilistic meaning. Indeed, we show in Section 9.5 that using distances in a normal
autoencoder representation often does not result in meaningful behavior.

2.4.3 Improving Sample Efficiency with Latent Goal Relabeling

To further enable sample-efficient learning in the real world, we use the VAE to relabel
goals. Note that we can optimize Equation equation 24 using any valid (s,a, s ′,g, r)
tuple. If we could artificially generate these tuples, then we could train our entire RL
algorithm without collecting any data. However, we do not know the system dynamics,

14

and therefore have to sample transitions (s,a, s ′) by interacting with the world. However,
we have the freedom to relabel the goal and reward synthetically. In particular, if we have
a mechanism for generating goals and computing rewards, then given (s,a, s ′), we can
generate a new goal g and new reward r(s,a, s ′,g) to produce a new tuple (s,a, s ′,g, r).
By artificially generating and recomputing rewards, we can convert a single (s,a, s ′)
transition into potentially infinitely many valid training datums.

For image-based tasks, this procedure would require generating goal images, an oner-
ous task on its own. However, our reinforcement learning algorithm operates directly in
the latent space for goals and rewards. So rather than generating goals g, we generate
latent goals zg by sampling from the VAE prior p(z). We then recompute rewards using
Equation equation 5. By retroactively relabeling the goals and rewards, we obtain much
more data to train our value function. This sampling procedure is made possible by our
use of a latent variable model, which is explicitly trained so that sampling from the latent
distribution is straightforward.

Retroactively generating goals is also explored in tabular domains by L P Kaelbling
(1993) and in continuous domains by Andrychowicz et al. (2017b) using hindsight expe-
rience replay (HER). However, HER is limited to sampling goals seen along a trajectory,
which greatly limits the number and diversity of goals with which one can relabel a
given transition. Our final method uses a mixture of the two strategies: half of the goals
are generated from the prior and half from goals seen along the trajectory. We show in
Section 9.5 that relabeling the goal with samples from the VAE prior results in signifi-
cantly better sample-efficiency.

Algorithm 1 RIG: Reinforcement learning with imagined goals

Require: VAE encoder qφ, VAE decoder pψ, policy
πθ, goal-conditioned value function Qw.

1: Collect D = {s(i)} using exploration policy.
2: Train β-VAE on D by optimizing equation 4.
3: for n = 0, ...,N− 1 episodes do
4: Sample latent goal from prior zg ∼ p(z).
5: Sample initial state s0 ∼ E.
6: for t = 0, ...,H− 1 steps do
7: Get action at = πθ(e(st), zg) + noise.
8: Get next state st+1 ∼ p(· | st,at).
9: Store (st,at, st+1, zg) into replay buffer R.

10: Sample transition (s,a, s ′, zg) ∼ R.
11: Encode z ′ = e(s ′).
12: (Probability 0.5) replace zg with z ′g ∼ p(z).

13: Compute new reward r = −||z ′ − zg||.
14: Minimize equation 24 using (z,a, z ′, zg, r).
15: end for
16: Fine-tune β-VAE every K episodes on mix-

ture of D and R.
17: end for=0

15

2.4.4 Automated Goal-Generation for Exploration

If we do not know which particular goals will be provided at test time, we would like
our RL agent to carry out a self-supervised “practice” phase during training, where the
algorithm proposes its own goals, and then practices how to reach them. Since the VAE
prior represents a distribution over latent goals and state observations, we again sample
from this distribution to obtain plausible goals. After sampling a goal latent from the
prior zg ∼ p(z), we give this to our policy π(z, zg) to collect data.

2.4.5 Algorithm Summary

We call the complete algorithm reinforcement learning with imagined goals (RIG) and
summarize it in Algorithm 2. We first collect data with a simple exploration policy,
though any exploration strategy could be used for this stage, including off-the-shelf
exploration bonuses (Pathak et al., 2017; M. Bellemare et al., 2016) or unsupervised re-
inforcement learning methods (Eysenbach et al., 2018; Florensa et al., 2017). Then, we
train a VAE latent variable model on state observations and finetune it over the course
of training. We use this latent variable model for multiple purposes: We sample a latent
goal zg from the model and condition the policy on this goal. We embed all states and
goals using the model’s encoder. When we train our goal-conditioned value function,
we resample goals from the prior and compute rewards in the latent space using Equa-
tion equation 5. Any RL algorithm that trains Q-functions could be used, and we use
TD3 (Fujimoto et al., 2018b) in our implementation.

2.5 experiments

Our experiments address the following questions:
1. How does our method compare to prior model-free RL algorithms in terms of

sample efficiency and performance, when learning continuous control tasks from
images?

2. How critical is each component of our algorithm for efficient learning?
3. Does our method work on tasks where the state space cannot be easily specified

ahead of time, such as tasks that require interaction with variable numbers of ob-
jects?

4. Can our method scale to real world vision-based robotic control tasks?
For the first two questions, we evaluate our method against a number of prior algorithms

16

Figure 2: (Left) The simulated environment. (Right) Test rollouts from our learned policy on the
three simulated environments. Each row is one rollout. The middle shows the goal im-
age g and its VAE reconstruction ĝ. The right columns shows frames from the trajectory
to reach the given goal.

and ablated versions of our approach on a suite of simulated and real-world tasks: Visual
Reacher: a MuJoCo (Todorov et al., 2012) environment with a 7-dof Sawyer arm reaching
goal positions. The arm is shown the left of Figure 2. The end-effector (EE) is constrained
to a 2-dimensional rectangle parallel to a table. The action controls EE velocity within a
maximum velocity. Visual Pusher: a MuJoCo environment with a 7-dof Sawyer arm and a
small puck on a table that the arm must push to a target push. Visual Multi-Object Pusher:
a copy of the Visual Pusher environment with two pucks. Detailed descriptions of the
environments are provided in the Supplementary Material.

Solving these tasks directly from images poses a challenge since the controller must
learn both perception and control. The evaluation metric is the distance of objects (includ-
ing the arm) to their respective goals. To evaluate our policy, we set the environment to
a sampled goal position, capture an image, and encode the image to use as the goal.
Although we use the ground-truth positions for evaluation, we do not use the ground-
truth positions for training the policies. The only inputs from the environment that
our algorithm receives are the image observations. For Visual Reacher, we pretrained the
VAE with 100 images. For other tasks, we used 10,000 images.

We compare our method with the following prior works. L&R: Lange and Ried-
miller (Lange and M. A. Riedmiller, 2010) trains an autoencoder to handle images. DSAE:
Deep spatial autoencoders (Finn et al., 2016b) learns a spatial autoencoder and uses

2 In all our simulation results, each plot shows a 95% confidence interval of the mean across 5 seeds.

17

0K 2K 4K 6K 8K 10K
Timesteps

0.0

0.1

0.2

Fi
na

l D
ist

an
ce

 to
 G

oa
l Visual Reacher Baselines

0K 100K 200K 300K 400K 500K
Timesteps

0.10

0.15

0.20

0.25

Visual Pusher Baselines

0K 100K 200K 300K 400K 500K
Timesteps

0.2

0.3

0.4Visual Multi-object Pusher Baselines
RIG
DSAE
HER
Oracle
L&R

Figure 3: Simulation results, final distance to goal vs simulation steps2. RIG (red) consistently
outperforms the baselines, except for the oracle which uses ground truth object state
for observations and rewards. On the hardest task, only our method and the oracle
discover viable solutions.

guided policy search (Levine et al., 2016a) to achieve a single goal image. HER: Hind-
sight experience replay (Andrychowicz et al., 2017b) utilizes a sparse reward signal and
relabeling trajectories with achieved goals. Oracle: RL with direct access to state informa-
tion for observations and rewards.

To our knowledge, no prior work demonstrates policies that can reach a variety of
goal images without access to a true-state reward function, and so we needed to make
modifications to make the comparisons feasible. L&R assumes a reward function from
the environment. Since we have no state-based reward function, we specify the reward
function as distance in the autoencoder latent space. HER does not embed inputs into
a latent space but instead operates directly on the input, so we use pixel-wise mean
squared error (MSE) as the metric. DSAE is trained only for a single goal, so we allow
the method to generalize to a variety of test goal images by using a goal-conditioned
Q-function. To make the implementations comparable, we use the same off-policy algo-
rithm to train L&R, HER, and our method (TD3 (Fujimoto et al., 2018b)). Unlike our
method, prior methods do not specify how to select goals during training, so we favor-
ably give them real images as goals for rollouts, sampled from the same distribution that
we use to test.

We see in Figure 3 that our method can efficiently learn policies from visual inputs
to perform simulated reaching and pushing, without access to the object state. Our ap-
proach substantially outperforms the prior methods, for which the use of image goals
and observations poses a major challenge. HER struggles because pixel-wise MSE is hard
to optimize. Our latent-space rewards are much better shaped and allow us to learn more
complex tasks. Finally, our method is close to the state-based “oracle" method in terms
of sample efficiency and performance, without having any access to object state. Notably,
in the multi-object environment, our method actually outperforms the oracle, likely be-
cause the state-based reward contains local minima. Overall, these result show that our

18

method is capable of handling raw image observations much more effectively than pre-
viously proposed goal-conditioned RL methods. Next, we perform ablations to evaluate
our contributions in isolation. Results on Visual Pusher are shown but see the Supple-
mentary Material (section A.1) for experiments on all three simulated environments.

0K 50K 100K 150K 200K 250K
Timesteps

0.16

0.18

0.20

0.22

Fi
na

l D
ist

an
ce

 to
 G

oa
l Visual Pusher

RIG Log Prob. Pixel MSE

Figure 4: Reward type ablation re-
sults. RIG (red), which uses la-
tent Euclidean distance, outper-
forms the other methods.

reward specification comparison We evalu-
ate how effective distances in the VAE latent space are
for the Visual Pusher task. We keep our method the
same, and only change the reward function that we
use to train the goal-conditioned valued function. We
include the following methods for comparison: Latent
Distance, which is the reward used in RIG, i.e. A = I
in Equation equation 5; Log Probability, which uses the
Mahalanobis distance in Equation equation 5, where A
is the precision matrix of the encoder; and Pixel MSE,
which computes mean-squared error (MSE) between
state and goal in pixel space. 3 In Figure 4, we see that
latent distance significantly outperforms the log prob-
ability. We suspect that small variances of the VAE en-
coder results in drastically large rewards, making the learning more difficult. We also
see that latent distances results in faster learning when compared to pixel MSE.

3 To compute the pixel MSE for a sampled latent goal, we decode the goal latent using the VAE decoder,
pψ, to generate the corresponding goal image.

19

0K 100K 200K 300K 400K 500K
Timesteps

0.150

0.175

0.200

0.225

0.250

Fi
na

l D
ist

an
ce

 to
 G

oa
l Visual Pusher

RIG None Future VAE

Figure 5: Relabeling ablation re-
sults. RIG (red), which uses a mix-
ture of VAE and HER, outperforms
the other methods.

relabeling strategy comparison As de-
scribed in section 2.4.3, our method uses a novel goal
relabeling method based on sampling from the genera-
tive model. To isolate how much our new goal relabel-
ing method contributes to our algorithm, we vary the
resampling strategy while fixing other components of
our algorithm. The resampling strategies that we con-
sider are: Future, relabeling the goal for a transition by
sampling uniformly from future states in the trajectory
as done in Andrychowicz et al. (2017b); VAE, sampling
goals from the VAE only; RIG, relabeling goals with
probability 0.5 from the VAE and probability 0.5 using
the future strategy; and None, no relabeling. In Figure 5, we see that sampling from the
VAE and Future is significantly better than not relabeling at all. In RIG, we use an equal
mixture of the VAE and Future sampling strategies, which performs best by a large mar-
gin. Appendix section A.1.1 contains results on all simulated environments, and section
A.1.4 considers relabeling strategies with a known goal distribution.

0K 100K 200K 300K 400K 500K
Timesteps

0.10

0.12

0.14

0.16

Fi
na

l D
ist

an
ce

 to
 G

oa
l Visual Pusher, Varying # of Objects

RIG

Figure 6: Training curve for learn-
ing with varying number of ob-
jects.

learning with variable numbers of objects

A major advantage of working directly from pixels is
that the policy input can easily represent combinato-
rial structure in the environment, which would be dif-
ficult to encode into a fixed-length state vector even if a
perfect perception system were available. For example,
if a robot has to interact with different combinations
and numbers of objects, picking a single MDP state
representation would be challenging, even with access
to object poses. By directly processing images for both
the state and the goal, no modification is needed to
handle the combinatorial structure: the number of pix-
els always remains the same, regardless of how many objects are in the scene.

We demonstrate that our method can handle this difficult scenario by evaluating on a
task where the environment, based on the Visual Multi-Object Pusher, randomly contains
zero, one, or two objects in each episode during testing. During training, each episode
still always starts with both objects in the scene, so the experiments tests whether a
trained policy can handle variable numbers of objects at test time. Figure 6 shows that
our method can learn to solve this task successfully, without decrease in performance

20

from the base setting where both objects are present (in Figure 3). Developing and
demonstrating algorithms that solve tasks with varied underlying structure is an im-
portant step toward creating autonomous agents that can handle the diversity of tasks
present “in the wild.”

0K 2K 4K 6K 8K 10K0.0

0.1

0.2

0.3

Fi
na

l D
ist

an
ce

 to
 G

oa
l Real-World Visual Reacher

RIG HER Oracle

Figure 7: (Left) Our method compared to the HER baseline and oracle on a real-world visual
reaching task. (Middle) Our robot setup is pictured. (Right) Test rollouts of our learned
policy.

0K 5K 10K 15K 20K 25K
Timesteps

10

8

6

4

Ep
iso

de
 R

etu
rn

 (1
e-

3)

Real-World Visual Pusher

Puck Distance to Goal (cm)

RIG HER

4.5± 2.5 14.9± 5.4

Figure 8: (Left) The learning curve for real-world pushing. (Middle) Our robot pushing setup
is pictured, with frames from test rollouts of our learned policy. (Right) Our method
compared to the HER baseline on the real-world visual pushing task. We evaluated
the performance of each method by manually measuring the distance between the goal
position of the puck and final position of the puck for 15 test rollouts, reporting mean
and standard deviation.

2.5.1 Visual RL with Physical Robots

RIG is a practical and straightforward algorithm to apply to real physical systems:
the efficiency of off-policy learning with goal relabeling makes training times manage-
able, while the use of image-based rewards through the learned representation frees
us from the burden of manually design reward functions, which itself can require hand-
engineered perception systems (Rusu et al., 2017). We trained policies for visual reaching

21

and pushing on a real-world Sawyer robotic arm, shown in Figure 7. The control setup
matches Visual Reacher and Visual Pusher respectively, meaning that the only input
from the environment consists of camera images.

We see in Figure 7 that our method is applicable to real-world robotic tasks, almost
matching the state-based oracle method and far exceeding the baseline method on the
reaching task. Our method needs just 10,000 samples or about an hour of real-world
interaction time to solve visual reaching.

Real-world pushing results are shown in Figure 12. To solve visual pusher, which
is more visually complicated and requires reasoning about the contact between the arm
and object, our method requires about 25,000 samples, which is still a reasonable amount
of real-world training time. Note that unlike previous results, we do not have access to
the true puck position during training so for the learning curve we report test episode
returns on the VAE latent distance reward. We see RIG making steady progress at opti-
mizing the latent distance as learning proceeds.

2.6 discussion and future work

In this paper, we present a new RL algorithm that can efficiently solve goal-conditioned,
vision-based tasks without access to any ground truth state or reward functions. Our
method trains a generative model that is used for multiple purposes: we embed the state
and goals using the encoder; we sample from the prior to generate goals for exploration;
we also sample latents to retroactively relabel goals and rewards; and we use distances
in the latent space for rewards to train a goal-conditioned value function. We show that
these components culminate in a sample efficient algorithm that works directly from
vision. As a result, we are able to apply our method to a variety of simulated visual
tasks, including a variable-object task that cannot be easily represented with a fixed
length vector, as well as real world robotic tasks. Algorithms that can learn in the real
world and directly use raw images can allow a single policy to solve a large and diverse
set of tasks, even when these tasks require distinct internal representations.

The method we presented can be extended in a number of ways. First, an exciting line
of future work would be to combine our method with existing work on exploration and
intrinsic motivation. In particular, our method already provides a natural mechanism
for autonomously generating goals by sampling from the prior. Modifying this proce-
dure to not only be goal-oriented but also, e.g., be information seeking or uncertainty
aware could provide better and safer exploration. Second, since our method operates
directly from images, a single policy could potentially solve a large diverse set of visual

22

tasks, even if those tasks have different underlying state representations. Combining
these ideas with methods from multitask learning and meta-learning is a promising
path to creating general-purpose agents that can continuously and efficiently acquire
skills. Lastly, while RIG uses goal images, extending the method to allow goals speci-
fied by demonstrations or more abstract representations such as language would enable
our system to be much more flexible in interfacing with humans and therefore more
practical.

2.7 contribution statement

The work in this chapter was performed in collaboration with Vitchyr Pong, Murtaza
Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine (A. Nair et al., 2018b). A.N. and V.P.
were joint first co-authors and co-led all aspects of the project, including prototyping
the initial idea, project planning, experimental design, experiments, and writing. The
first five authors conducted the simulation experiments. A.N. and S.B. conducted the
real-world experiments. Sergey Levine advised the project and assisted with writing.

23

3
C O N T E X T U A L I M A G I N E D G O A L S F O R S E L F - S U P E RV I S E D
R O B O T I C L E A R N I N G

3.1 introduction

In the previous chapter, we discussed letting an agent learn from its sensor stream by
automatically generating plausible goals during an unsupervised training phase, and
then learning policies that reach those goals (A. Nair et al., 2018b; Nachum et al., 2018;
Warde-Farley et al., 2019; Vitchyr H. Pong et al., 2019). Such goals can be defined in a
variety of ways, but a simple choice is to use goal observations, such that each proposed
task requires reaching a different observation. When the robot observes the world via
raw camera images, this corresponds to using images as goals. At test time, a user then
provides the robot with a new goal image.

While such methods have been demonstrated in both simulated and real-world set-
tings, they are typically used to learn behaviors in domains with relatively little visual
diversity. In the real world, a robot might interact with highly diverse scenes and objects,
and the tasks that it can perform from each of the many possible initial states will be
different. If the robot is presented with an object, it can learn to pick up or grasp it, and
when it is presented with a door, it can learn to open it. However, it must generate and
practice goals that are suitable for each scene. In this chapter, we propose and evaluate a
self-supervised policy learning method that learns to propose goals that are suitable to
the current scene via a conditional goal generation model, allowing it to learn in visually
varied settings that prove challenging for prior algorithms.

The key idea is that representing every element in a visually complex scene is often not
necessary for control. A scene is a visual form of context that can be factored out, while
only the controllable entities in the environment need to be captured for goal setting and
representing the state. To this end, we propose learning a context-conditioned generative
model that learns a smooth, compressed latent variable with an information bottleneck,

24

-

1. Collect random
interaction samples

{⌧1, ⌧2, . . . , ⌧N}

-

?

2. Train context-conditioned VAE

?
3. RL training: learn policy ⇡(z̄t, z̄g) to mini-
mize latent distance to generated goal zg

s0 sH d(z̄g)

Real-world Pusher Training Rollouts

-

4. Test time: agent executes policy to reach
human-provided goal image sg

s0 sH sg

Test Rollouts (Unseen Objects)

2

Figure 9: System overview of our self-supervised learning algorithm. (1) The agent collects ran-
dom interaction data, to be used for both representation learning and as additional
off-policy data for RL. (2) We propose a context-conditioned generative model (CC-
VAE) to learn generalizable skills. In order to improve the generation of plausible goal
states that result from a starting state s0, our model allows information to flow freely
through the context zc while an information bottleneck on zt gives us the ability to
generate samples by re-sampling only zt. This architecture provides a compact repre-
sentation of the scene disentangling information that changes within a rollout (zt) and
information that changes between rollouts (zc). We then use z̄t = (zt, zc) as the repre-
sentation for RL. (3) Our proposed CC-RIG algorithm samples latent goals, using the
above representation, and learns a policy to minimize the latent distance to the goal
with off-policy RL. Rollouts are shown on the real-world Sawyer robot pusher environ-
ment with visual variation. We include the initial image s0, selected frames from the
rollout, final image sH, and the decoded goal latent d(z̄g). (4) At test time, the agent
is given a goal image sg and executes the policy to reach it. Our method successfully
handles pushing novel objects that were unseen at training time. Example rollouts can
be found at https://ccrig.github.io/

25

https://ccrig.github.io/

while allowing the context, in the form of the initial state image, to be used freely to
reconstruct other images during the task. This context-conditioned generative model
architecture is shown in Figure 47.

The main contribution in this chapter builds on this context-conditioned generative
model to devise a complete self-supervised goal-conditioned reinforcement learning al-
gorithm, which can handle visual variability in the scene via context-conditioned goal
setting. Our method can learn policies that reach visually indicated goals without any
additional supervision during training, using the context-conditioned generative model
to set goals that are appropriate to the current scene. We show that our approach learns
coherent representations of visually varied environments, capturing controllable dimen-
sions of variation while ignoring dimensions that vary but cannot be influenced by the
agent, such as lighting and object appearance. We further show that our approach can
learn policies to solve tasks in visually varied environments, including in a real-world
robotic pushing task with a wide variety of distinct objects in Figure 12.

3.2 related work

While many practical robots today perform tasks by executing hand-engineered se-
quences of motor commands, machine learning is opening up a new avenue to train a
wide variety of robotic tasks from interaction. This body of work includes grasping (Ek-
vall and Kragic, 2004; Kroemer et al., 2010; Bohg and Kragic, 2010), and general tasks
(Peters and Schaal, 2008b; Kober et al., 2013), multi-task learning (M. P. Deisenroth et
al., 2014), baseball (Peters and Schaal, 2008c), ping-pong (Peters et al., 2010), and var-
ious other tasks (Marc Peter Deisenroth and Rasmussen, 2011). More recently, using
expressive function approximators such as neural networks has reduced manual feature
engineering and has increased task complexity and diversity, finding use in decision-
making domains, such as solving Atari games (Mnih et al., 2013) and Go (D. Silver et al.,
2016a). Deep learning for robotics has proved to be difficult due to a host of challenges
including noisy state estimation, specifying reward functions, and handling continuous
action spaces, but has been used to investigate grasping (Pinto and Abhinav Gupta,
2016), pushing (Agrawal et al., 2016), manipulation of 3D object models (Krainin et al.,
2011), active learning (Martinez et al., 2014) and pouring liquids (Schenck and Fox, 2017).
Deep reinforcement learning, which autonomously maximizes a given reward function,
has been used to solve precise manipulation tasks (Levine et al., 2016a), grasping (Pinto
et al., 2017; Levine et al., 2017), door opening (S. Gu et al., 2016), and navigation (Kahn
et al., 2018). These methods have succeeded on specific tasks, often with hard-coded re-

26

ward functions. However, to scale task generalization robots may need to learn methods
that can handle significant environment variation and require relatively little external
supervision.

Several works have investigated self-supervised robotic interaction with varied objects
in the deep learning setting with the goal of generalizing between objects. For example,
in the domain of robotic grasping, several works have studied autonomous data collec-
tion to learn to grasp from a hand-specified grasping reward (Pinto and Abhinav Gupta,
2016; Levine et al., 2017). However, hand-specifying such rewards in general settings
and for arbitrary manipulation skills is very cumbersome. Other work has focused on
self-supervised learning with visual forward models, either by enforcing a simplified
dynamical structure (Watter et al., 2015; M. Zhang et al., 2019) or with pixel transformer
architectures (Finn and Levine, 2016; Ebert et al., 2017; Ebert et al., 2018; A. X. Lee et al.,
n.d.; Ebert et al., n.d.). However, these methods rely on accurate visual forward mod-
elling, which is itself a very challenging problem. Instead, we build on self-supervised
model-free approaches, which allow the agent to efficiently reach visual goals without
planning with a visual forward model.

Prior work has also sought to perform self-supervised learning with model-free ap-
proaches. Using visual inverse models (Agrawal et al., 2016) is one such approach, but
may not work well for complex interaction dynamics or longer horizon planning. Most
closely related to our approach are prior methods on goal-conditioned reinforcement
learning (L P Kaelbling, 1993; Schaul et al., 2015b; Andrychowicz et al., 2017b). The
methods have been extended to frame self-supervised RL as learning goal reaching with
automatically proposed goals, including visually-specified goals (A. Nair et al., 2018b;
Vitchyr H. Pong et al., 2019; Warde-Farley et al., 2019; Florensa et al., 2019; Lin et al.,
2019). However, they generally focus on learning in narrow environments with little
between-trial variability. In this setting, any previously visited state represents a valid
goal. However, in the general case, this is no longer true: when the robot is presented
with a different scene or different objects on each trial, it must only set those goals
that can be accomplished in the current scene. In contrast, we focus on enabling self-
supervised learning from off-policy data in heterogeneous environments with increased
factors of variability.

27

3.3 background

3.3.1 Conditional Variational Auto-Encoders

In the previous chapter, we discussed handling high-dimensional goals by learning a
latent representation of the state using a variational auto-encoder (VAE). Instead of a
generative model that learns to generate the dataset distribution, one might instead de-
sire a more structured generative model that can generate samples based on structured
input. One example of this is a conditional variational auto-encoder (CVAE) that condi-
tions the output on some input variable c and samples from p(x|c) (Sohn et al., 2015).
For example, to train a model that generates images of digits given the desired digit, the
input variable c might be a one-hot encoded vector of the desired digit.

A CVAE trains qφ(z|s, c) and qψ(s|z, c), where both the encoder and decoder has access
to the input variable c. The CVAE then minimizes:

LCVAE = −Eqφ(z|s,c)[logp(s|z, c)] +βDKL(qφ(z|s, c)||p(z)). (6)

Samples are generated by first sampling a latent z ∼ p(z). Based on c, we can then
decode z with qψ(s|z, c) and visualize the output, which is in our case an image. In our
framework c = s0.

3.4 self-supervised learning with context-conditioned representa-
tions

In this work, our goal is to enable the learning of flexible goal-conditioned policies that
can be used to successfully perform a variety of tasks in a variety of contexts – e.g., with
different objects in the scene. Such policies must learn from large amounts of experience,
and although it is in principle possible to use random exploration to collect this experi-
ence, this quickly becomes impractical in the real world. It is, therefore, necessary for the
robot to set its own goals during self-supervised training, to collect meaningful experi-
ence. However, in diverse settings, many randomly generated goals may not be feasible
– e.g., the robot cannot push a red puck if the red puck is not present in the scene. We
propose to extend off-policy goal-conditioned reinforcement learning with a conditional
goal setting model, which proposes only those goals that are currently feasible. This en-
ables a learning regime with imagined goals that is more realistic for real-world robotic
systems that must generalize effectively to a range of objects and settings.

28

3.4.1 Context-Conditioned VAEs

To train a generative model that can improve the generation of feasible goals in varied
scenes, we use a modified CVAE that uses the initial state s0 in a rollout as the input c,
which we call the “context" for that rollout. The modified CVAE, which we call a context-
conditioned VAE (CC-VAE), is shown in Figure 47. While most CVAE applications use a
one-hot vector as the input, we use an image s0. This image is encoded with a convolu-
tional encoder e0 into a compact representation zc. Note that by design, e and e0 do not
share weights, as they are intended to encode different factors of variation in the images.
The context zc is used to output the latent representation zt, as well as the reconstruction
of the state ŝt. In addition, zc is used alone to (deterministically) decode ŝ0 = d0(zc). The
objective is given by

LCC-VAE = LCVAE + logp(s0|zc). (7)

Due to the information bottleneck on zt, this loss function penalizes information passing
through zt but allows for unrestricted information flow from zc. Therefore, the optimal
solution would encode as much information as possible in zc, while only including the
state information that changes within a trajectory in the latent variable zt. These are
precisely the features of most interest for control.

3.4.2 Context-Conditioned Reinforcement Learning with Imagined Goals

We propose to use our context-conditioned VAE in the RIG framework to learn poli-
cies over environments with visual diversity, where each episode might involve interact-
ing with a different scene and different objects. We first collect a dataset of trajectories
D = {τ(i)} by executing random actions in the environment. We then learn a CC-VAE, as
detailed in Section 3.4.1, to learn a factored representation of the image observations. To
use the CC-VAE for self-supervised learning, we save the first image s0 when starting
a rollout. We compute the encoding of s0, zc = e0(s0). Let z̄ denote the context concate-
nated vector (z, zc), and let µ(s, s0) denote the mean of qφ(z|s, s0). We then use RIG in the
z̄ latent space by encoding observations with µ, meaning that we train a goal-conditioned
policy π(z̄, z̄g) and a goal-conditioned Q-function Q(z̄, z̄g).

To collect data, we sample a latent goal for each rollout from the prior zg ∼ N(0, I),
as in RIG. For every observation st, we compute the mean encoding µt(st, s0). We then
obtain a rollout of the policy by executing π(z̄, z̄g). The reward at each timestep is the
latent distance ||µ̄t − z̄g||.

29

Algorithm 2 Context-Conditioned RIG
Require: Encoders µ(st, s0), e0(s0), policy πθ(z̄, z̄g), goal-conditioned value function Qw(z̄, z̄g), dataset

D = {τ(i)} of trajectories.
1: Train CC-VAE on D by optimizing equation 7.
2: for n = 0, ...,N− 1 episodes do
3: Sample latent goal zg ∼ p(z), z̄g = (zg, zc).
4: Sample initial state s0 ∼ p(s0).
5: Encode zc = e0(s0)
6: for t = 0, ...,H− 1 steps do
7: Observe st and encode z̄t = (µ(st, s0), zc)
8: Get action at = πθ(z̄t, z̄g) + noise.
9: Get next state st+1 ∼ p(· | st,at).

10: Store (z̄t,at, z̄t+1, z̄g) into replay buffer R.
11: Sample transition (z̄,a, z̄ ′, z̄g) ∼ R.
12: Compute new reward r = −||z̄ ′ − z̄g||.
13: Minimize equation 24 using (z̄,a, z̄ ′, z̄g, r).
14: end for
15: end for=0

The policy and Q-function can be trained with any off-policy reinforcement learning
algorithm. We use TD3 in our implementation (Fujimoto et al., 2018b). Our policy and Q-
function are goal-conditioned, and we take advantage of being able to relabel the goals
for each transition to improve sample efficiency (Andrychowicz et al., 2017b; A. Nair
et al., 2018b; Vitchyr H. Pong et al., 2019). However, when relabeling a goal z̄g with a
random goal from the environment, the context-conditioning is still preserved. That is, if
z ′g ∼ N(0, 1) is the new sampled goal, we use z̄ ′g = (z ′g, zc). This ensures that the relabeled
goal is compatible with the scene for the corresponding transition.

After training, we can use the learned policy π to reach a visually indicated goal. Given
a goal image sg, we encode it into a latent goal zg = µ(sg, s0). Then, we execute the
policy with the latent goal z̄g, just as during the training phase. The complete algorithm
is presented in Algorithm 2.

3.5 experiments

In our experiments, we aim to answer the following questions:
1. How does our method compare to prior work at learning self-supervised skills in

visually diverse environments?

30

2. Do context-conditioned VAEs learn an image representation that produces coher-
ent and diverse goals that are suitable for the current scene?

3. Can our proposed context-conditioned RIG method handle diverse real-world data
and learn effective policies under visual variation in the real world?

0K 200K 400K 600K 800K
Timesteps

0.15

0.20

0.25

Fi
na

l D
ist

an
ce

 to
 G

oa
l

Multi-color Pusher Learning Curve

0K 100K 200K 300K 400K 500K
Timesteps

1

2

3

4

5

Fi
na

l D
ist

an
ce

 to
 G

oa
l

Multi-color 2D Navigation Learning Curve

CC-RIG
RIG
Oracle

Figure 10: Self-supervised learning results in visually varied simulated environments. CC-RIG
significantly outperforms RIG and is competitive with the oracle method that has
direct access to ground truth states. The simulated pusher environment (left) is shown
in Figure 11 and the navigation environment is shown in Figure 65.

3.5.1 Self-Supervised Learning in Simulation

In simulation, we can conduct controlled experiments and evaluate against known un-
derlying state values to measure the performance of our approach and prior methods.
As a simulation test-bed, we use a multi-color pusher environment simulated in Mu-
JoCo (Todorov et al., 2012). In this environment (Figure 11(left)), a simulated Sawyer
arm is tasked with pushing a circular puck to a target position, specified by a goal image
at test time. On each rollout, the puck color is set to a random RGB value. Therefore,
the goal proposals for each method must adequately account for the color of the puck –
a goal that requires moving a red puck to a given location is impossible if only a blue
puck is present in the scene.

We compare the following algorithms: CC-RIG. Our method using a CC-VAE for
representation learning, as described in Section 3.4.2. RIG. Reinforcement learning with
imagined goals (A. Nair et al., 2018b) using a standard VAE, as described in Section ??.
Oracle. The oracle agent runs goal-conditioned RL with direct access to state information.
Achieving performance similar to the oracle indicates that an algorithm loses little from
using raw image observations over ground truth state.

Learning curves comparing these methods are presented in the plot on the left in Fig-
ure 73. CC-RIG outperforms RIG significantly, and standard RIG is not able to improve

31

Context s0

CVAE
samples

VAE samples

Figure 11: Comparing samples from our CC-VAE model to a standard VAE. The initial image
s0 is shown on the top row, and samples conditioned on s0 are shown below. Our
model coherently maintains object color and geometry in its samples, suggesting that
the context conditioned model can successfully factor out the scene-specific object
identity from the variable object position. This enables the use of the CC-VAE for goal
proposals in visually diverse scenes.

beyond the initial random policy. The performance of CC-RIG approaches that of the
oracle policy, which has access to the true state. This suggests that, in visually varied
environments, self-supervised learning is possible so long as the visual complexity is
factored out with representation learning, and the proposed goals are consistent with
the appearance of the current scene.

3.5.2 Generalizing to Varying Appearance and Dynamics with Self-Supervised Learning

In this experiment, to study changing both visual appearance and physical dynamics,
we study how well our method can generalize when the environment dynamics change.
We use a simulated 2D navigation task, where the goal is to navigate a point robot
around an obstacle. The arrangement of the obstacles is chosen from a set of 15 possible
configurations, and the color of the point robot is generated from a random RGB value.
Learning curves obtained by training the different methods above in this environment
are presented in Figure 73. CC-RIG requires more samples to learn, but eventually ap-
proaches the oracle performance. RIG, in comparison, plateaus with poor performance.
This environment is explained further in the supplementary, in Section B.1 and Figure 65.

32

3.5.3 Context-Conditioned VAE Goal Sampling

To better understand why CC-RIG outperforms RIG, we compare the samples from our
CC-VAE to a standard VAE. Samples from both models are shown in Figure 11. The
quality of the samples reveals why the CC-VAE provides better goal setting for self-
supervised learning. In all environments, the samples from the CC-VAE maintain the
background, object shape, and object color from the initial state. Therefore, the goals are
more meaningful in the CC-VAE latent space.

This kind of visualization is a good indicator for the suitability of the representation
for self-supervised learning. Diverse, coherent samples indicate that the latent space
captures the appropriate factors of change in the environment and can be useful for
self-supervised policy learning. Good samples also suggest that the latent space is well-
structured, and therefore distances in the latent space should provide a good reward
function for goal-reaching. In practice, we also look at the quality of the reconstructions.
Good reconstructions confirm that the latent variables capture sufficient information
about the image to be used in place of the image itself as a state representation.

3.5.4 Real-World Robotic Evaluation

In this experiment, we evaluate whether our method can handle manipulating visually
varied objects in the real world. We use CC-RIG to train a Sawyer robot to manipulate
a variety of objects, placed one at a time in a bin in front of the robot. As before, the
training phase is self-supervised, and the robot must match a given goal image at test
time. The robot setup is shown in Figure 47.

We first collect a large dataset with random actions and train a CC-VAE on the data.
Samples from the model are shown in Figure 12. The CC-VAE learns to generate goals
with the correct object. To handle varying brightness at different times of the day, we
added data augmentation by applying a color jitter filter to (s0, st) pairs. As seen in the
figure, the model is robust to this factor of variation. Each sample contains the same type
of object, brightness level, and background as the initial state that it is conditioned on.
However, crucially, these factors of variation are not present in zt, as evidenced by the
fact they do not vary within each column of Figure 12, but the object position does.

Next, we run CC-RIG with the trained CC-VAE to learn to reach visually indicated
goals in a self-supervised manner. We first conduct fully off-policy training using the
same dataset as was used to train the CC-VAE, consisting of 50,000 samples (about 3

hours) of total interaction with 20 objects. Then, we collect a small amount of additional

33

Real-World Pushing Results

CVAE distance VAE distance Pixel distance Object
distance (cm)

RIG 2.37 ± 0.97 2.41 ± 0.93 93.9 ± 41.7 17.1 ± 8.2
CC-RIG 1.66 ± 0.63 2.17 ± 0.88 56.8 ± 34.5 14.0 ± 6.9
CC-RIG, novel 1.51 ± 0.71 1.91 ± 0.87 53.1 ± 24.9 11.5 ± 2.9

Test rollouts, training objects
s0 sH sg

Test rollouts, novel objects
s0 sH sg

Figure 12: The table above shows the performance of our method in the real-world, evaluated
with four different evaluation metrics1. CC-RIG outperforms RIG in each one, even
when tested on novel objects that it has not been trained on. Test rollouts of our
method are shown on training objects on the left and unseen novel objects on the
right. Successful rollouts where the object is pushed to the goal location are shown in
top row, and failure modes are shown in the bottom row.

on-policy data to finetune the policy, analogous to recent work on large-scale vision-
based robotic reinforcement learning (Kalashnikov et al., n.d.). The robot learns to push
objects to target locations, indicated by a goal image. The real-world results are presented
in Figure 12. Because it is difficult to automatically detect the positions of objects, we
show some representative rollout examples, and we compute several distance metrics
between the final state of a rollout and the goal: CVAE distance. CC-VAE latent space
distance between final image and goal. VAE distance. VAE latent space distance between
final image and goal. Pixel distance. We manually label the center of mass of the object
in the final image and goal image, and compute the distance between them. Object
distance. We measure the distance between the physical goal position of the object and
the final position. In each metric, CC-RIG outperforms RIG.

At training time, the dataset consists of interaction with 20 objects. The result of run-
ning CC-RIG on novel objects that were not included in the dataset are shown in the
table as “CC-RIG, novel” and in the rollouts in Figure 12. These results show that our
method can also generalize its experience to push novel objects it has not seen before.

34

3.6 conclusion

We presented a method for sample-efficient, flexible self-supervised task learning for
environments with visual diversity. Our method can learn effective behavior without
external supervision in simulated environments with randomized colors and layout, and
in a real-world pushing task with differently colored pucks. Each environment contains
an axis of visual variation that requires our algorithm to utilize an intelligent goal-setting
strategy, to ensure that the self-proposed goals are consistent with the tasks and feasible
in the current scene.

The main idea behind our method is to devise a context-conditioned goal proposal
mechanism, allowing our self-supervised reinforcement learning algorithm to propose
goals for itself that are feasible to reach. This context-conditioned VAE model factors out
the unchanging context of a rollout, such as which objects are present in the scene, from
the controllable aspects, such as the object positions to construct a more generalizable
goal proposal model.

We believe this contribution will enable scalable learning in the real world. An agent
manipulating objects in the real world must handle many forms of variation: different
manipulation skills to learn, objects to manipulate, as well as variation in lighting, tex-
tures, etc. Methods that learn from data must be able to represent these variations while
at the same time taking advantage of common structure across objects and tasks in order
to achieve practical sample efficiency. Future work will address the remaining challenges
to achieve this vision.

3.7 contribution statement

The work in this chapter was performed in collaboration with Shikhar Bahl, Alexan-
der Khazatsky, Vitchyr Pong, Glen Berseth, and Sergey Levine (A. Nair et al., 2018b).
A.N., S.B., and A.K. were joint co-first authors. A.N. proposed the context-conditioned
VAE, led the project, designed the experiments, and wrote the paper. A.N, S.B, and A.K.
conducted the simulation experiments. A.K. conducted the real-world experiments with
assistance from A.N. V.P., G.B., and S.L. advised the project and assisted with writing.

1 The first three metrics are computed on 40 trajectories per method, and we report mean ± standard
deviation. Object distance is computed on 10 trajectories per method, and we report median ± standard
deviation.

35

4
S K E W F I T: S TAT E - C O V E R I N G S E L F - S U P E RV I S E D
R E I N F O R C E M E N T L E A R N I N G

4.1 introduction

While reinforcement learning (RL) provides an appealing formalism for automated learn-
ing of behavioral skills, separately learning every potentially useful skill becomes pro-
hibitively time consuming, both in terms of the experience required for the agent and
the effort required for the user to design reward functions for each behavior. In the
previous chapters, we covered self-supervised goal-conditioned reinforcement learning
with a generative model as an approach to scalable multi-task learning with little human
supervision. This approach however, crucially relies on the distribution of data that the
generative model is trained on. What if we could instead design an unsupervised RL
algorithm that automatically explores the environment and iteratively distills this expe-
rience into general-purpose policies that can accomplish new user-specified tasks at test
time?

In the absence of any prior knowledge, an effective exploration scheme is one that
visits as many states as possible, allowing a policy to autonomously prepare for user-
specified tasks that it might see at test time. We can formalize the problem of visiting as
many states as possible as one of maximizing the state entropy H(S) under the current
policy.2 Unfortunately, optimizing this objective alone does not result in a policy that can
solve new tasks: it only knows how to maximize state entropy. In other words, to develop
principled unsupervised RL algorithms that result in useful policies, maximizing H(S) is
not enough. We need a mechanism that allows us to reuse the resulting policy to achieve
new tasks at test-time.

We argue that this can be accomplished by performing goal-directed exploration: a policy

2 We consider the distribution over terminal states in a finite horizon task and believe this work can be
extended to infinite horizon stationary distributions.

36

Figure 13: Left: Robot learning to open a door with Skew-Fit, without any task reward. Right:
Samples from a goal distribution when using (a) uniform and (b) Skew-Fit sampling.
When used as goals, the diverse samples from Skew-Fit encourage the robot to practice
opening the door more frequently.

should autonomously visit as many states as possible, but after autonomous exploration,
a user should be able to reuse this policy by giving it a goal G that corresponds to a
state that it must reach. While not all test-time tasks can be expressed as reaching a
goal state, a wide range of tasks can be represented in this way. Mathematically, the
goal-conditioned policy should minimize the conditional entropy over the states given a
goal, H(S | G), so that there is little uncertainty over its state given a commanded goal.
This objective provides us with a principled way to train a policy to explore all states
(maximize H(S)) such that the state that is reached can be determined by commanding
goals (minimize H(S | G)).

Directly optimizing this objective is in general intractable, since it requires optimizing
the entropy of the marginal state distribution, H(S). However, we can sidestep this issue
by noting that the objective is the mutual information between the state and the goal,
I(S; G), which can be written as:

H(S) −H(S|G) = I(S; G) = H(G) −H(G|S). (8)

Equation 8 thus gives an equivalent objective for an unsupervised RL algorithm: the
agent should set diverse goals, maximizing H(G), and learn how to reach them, mini-
mizing H(G | S).

While learning to reach goals is the typical objective studied in goal-conditioned RL (L
P Kaelbling, 1993; Andrychowicz et al., 2017b), setting goals that have maximum di-
versity is crucial for effectively learning to reach all possible states. Acquiring such a

37

maximum-entropy goal distribution is challenging in environments with complex, high-
dimensional state spaces, where even knowing which states are valid presents a major
challenge. For example, in image-based domains, a uniform goal distribution requires
sampling uniformly from the set of realistic images, which in general is unknown a
priori.

In this chapter, we present the following contributions. First, we propose a principled
objective for unsupervised RL, based on Equation 8. While a number of prior works
ignore the H(G) term, we argue that jointly optimizing the entire quantity is needed
to develop effective exploration. Second, we present a general algorithm called Skew-
Fit and prove that under regularity conditions Skew-Fit learns a sequence of generative
models that converges to a uniform distribution over the goal space, even when the set of
valid states is unknown (e.g., as in the case of images). Third, we describe a concrete im-
plementation of Skew-Fit and empirically demonstrate that this method achieves state of
the art results compared to a large number of prior methods for goal reaching with visu-
ally indicated goals, including a real-world manipulation task, which requires a robot to
learn to open a door from scratch in about five hours, directly from images, and without
any manually-designed reward function.

4.2 problem formulation

To ensure that an unsupervised reinforcement learning agent learns to reach all possi-
ble states in a controllable way, we maximize the mutual information between the state
S and the goal G, I(S; G), as stated in Equation 8. This section discusses how to opti-
mize Equation 8 by splitting the optimization into two parts: minimizing H(G | S) and
maximizing H(G).

4.2.1 Minimizing H(G | S): Goal-Conditioned Reinforcement Learning

Standard RL considers a Markov decision process (MDP), which has a state space S,
action space A, and unknown dynamics ρ(st+1 | st, at) : S × S × A 7→ [0,+∞). Goal-
conditioned RL also includes a goal space G. For simplicity, we will assume in our
derivation that the goal space matches the state space, such that G = S, though the
approach extends trivially to the case where G is a hand-specified subset of S, such as
the global XY position of a robot. A goal-conditioned policy π(a | s, g) maps a state s ∈ S

and goal g ∈ S to a distribution over actions a ∈ A, and its objective is to reach the goal,
i.e., to make the current state equal to the goal.

38

Goal-reaching can be formulated as minimizing H(G | S), and many practical goal-
reaching algorithms (L P Kaelbling, 1993; Lillicrap et al., 2016; Schaul et al., 2015b;
Andrychowicz et al., 2017b; A. Nair et al., 2018b; V. Pong et al., 2018; Florensa et al.,
2018a) can be viewed as approximations to this objective by observing that the optimal
goal-conditioned policy will deterministically reach the goal, resulting in a conditional
entropy of zero: H(G | S) = 0. See Section C.5 for more details. Our method may thus
be used in conjunction with any of these prior goal-conditioned RL methods in order to
jointly minimize H(G | S) and maximize H(G).

4.2.2 Maximizing H(G): Setting Diverse Goals

We now turn to the problem of setting diverse goals or, mathematically, maximizing the
entropy of the goal distribution H(G). Let US be the uniform distribution over S, where
we assume S has finite volume so that the uniform distribution is well-defined. Let qGφ
be the goal distribution from which goals G are sampled, parameterized by φ. Our goal
is to maximize the entropy of qGφ, which we write as H(G). Since the maximum entropy
distribution over S is the uniform distribution US, maximizing H(G) may seem as simple
as choosing the uniform distribution to be our goal distribution: qGφ = US. However, this
requires knowing the uniform distribution over valid states, which may be difficult to
obtain when S is a subset of Rn, for some n. For example, if the states correspond to
images viewed through a robot’s camera, S corresponds to the (unknown) set of valid
images of the robot’s environment, while Rn corresponds to all possible arrays of pixel
values of a particular size. In such environments, sampling from the uniform distribution
Rn is unlikely to correspond to a valid image of the real world. Sampling uniformly from
S would require knowing the set of all possible valid images, which we assume the agent
does not know when starting to explore the environment.

While we cannot sample arbitrary states from S, we can sample states by performing
goal-directed exploration. To derive and analyze our method, we introduce a simple
model of this process: a goal G ∼ qGφ is sampled from the goal distribution qGφ, and then
the goal-conditioned policy π attempts to achieve this goal, which results in a distribu-
tion of terminal states S ∈ S. We abstract this entire process by writing the resulting
marginal distribution over S as pSφ(S) ,

∫
G q

G
φ(G)p(S | G)dG, where the subscript φ in-

dicates that the marginal pSφ depends indirectly on qGφ via the goal-conditioned policy π.
We assume that pSφ has full support, which can be accomplished with an epsilon-greedy
goal reaching policy in a communicating MDP. We also assume that the entropy of the
resulting state distribution H(pSφ) is no less than the entropy of the goal distribution

39

H(qGφ). Without this assumption, a policy could ignore the goal and stay in a single state,
no matter how diverse and realistic the goals are. 3 This simplified model allows us to an-
alyze the behavior of our goal-setting scheme separately from any specific goal-reaching
algorithm. We will however show in Section 9.5 that we can instantiate this approach
into a practical algorithm that jointly learns the goal-reaching policy. In summary, our
goal is to acquire a maximum-entropy goal distribution qGφ over valid states S, while
only having access to state samples from pSφ.

4.3 skew-fit : learning a maximum entropy goal distribution

Our method, Skew-Fit, learns a maximum entropy goal distribution qGφ using samples
collected from a goal-conditioned policy. We analyze the algorithm and show that Skew-
Fit maximizes the goal distribution entropy, and present a practical instantiation for
unsupervised deep RL.

4.3.1 Skew-Fit Algorithm

To learn a uniform distribution over valid goal states, we present a method that iteratively
increases the entropy of a generative model qGφ. In particular, given a generative model
qGφt at iteration t, we want to train a new generative model, qGφt+1 that has higher entropy.

While we do not know the set of valid states S, we could sample states sn
iid
∼ pSφt using

the goal-conditioned policy, and use the samples to train qGφt+1 . However, there is no
guarantee that this would increase the entropy of qGφt+1 .

The intuition behind our method is simple: rather than fitting a generative model to
these samples sn, we skew the samples so that rarely visited states are given more weight.
See Figure 14 for a visualization of this process. How should we skew the samples if we
want to maximize the entropy of qGφt+1? If we had access to the density of each state,
pSφt(S), then we could simply weight each state by 1/pSφt(S). We could then perform
maximum likelihood estimation (MLE) for the uniform distribution by using the follow-

3 Note that this assumption does not require that the entropy of pSφ is strictly larger than the entropy of the
goal distribution, qGφ .

40

ing importance sampling (IS) loss to train φt+1:

L(φ) = ES∼US

[
logqGφ(S)

]
= ES∼pSφt

[
US(S)
pSφt(S)

logqGφ(S)

]

∝ ES∼pSφt

[
1

pSφt(S)
logqGφ(S)

]

where we use the fact that the uniform distribution US(S) has constant density for
all states in S. However, computing this density pSφt(S) requires marginalizing out the
MDP dynamics, which requires an accurate model of both the dynamics and the goal-
conditioned policy.

We avoid needing to model the entire MDP process by approximating pSφt(S) with our
previous learned generative model: pSφt(S) ≈ q

G
φt
(S). We therefore weight each state by

the following weight function

wt,α(S) , qGφt(S)
α, α < 0. (9)

where α is a hyperparameter that controls how heavily we weight each state. If our
approximation qGφt is exact, we can choose α = −1 and recover the exact IS procedure
described above. If α = 0, then this skew step has no effect. By choosing intermediate
values of α, we trade off the reliability of our estimate qGφt(S) with the speed at which
we want to increase the goal distribution entropy.

variance reduction As described, this procedure relies on IS, which can have high
variance, particularly if qGφt(S) ≈ 0. We therefore choose a class of generative models
where the probabilities are prevented from collapsing to zero, as we will describe in
Section 4.4 where we provide generative model details. To further reduce the variance,
we train qGφt+1 with sampling importance resampling (SIR) (Rubin, 1988) rather than IS.
Rather than sampling from pSφt and weighting the update from each sample by wt,α, SIR

41

explicitly defines a skewed empirical distribution as

pskewedt(s) ,
1

Zα
wt,α(s)δ(s ∈ {sn}Nn=1) (10)

Zα =

N∑
n=1

wt,α(sn), sn
iid
∼ pSφt ,

where δ is the indicator function and Zα is the normalizing coefficient. We note that
computing Zα adds little computational overhead, since all of the weights already need
to be computed. We then fit the generative model at the next iteration qGφt+1 to pskewedt
using standard MLE. We found that using SIR resulted in significantly lower variance
than IS. See Section C.2.2 for this comparision.

goal sampling alternative Because qGφt+1 ≈ pskewedt , at iteration t+ 1, one can
sample goals from either qGφt+1 or pskewedt . Sampling goals from pskewedt may be pre-
ferred if sampling from the learned generative model qGφt+1 is computationally or oth-
erwise challenging. In either case, one still needs to train the generative model qGφt to
create pskewedt . In our experiments, we found that both methods perform well.

summary Overall, Skew-Fit collects states from the environment and resamples each
state in proportion to Equation 9 so that low-density states are resampled more often.
Skew-Fit is shown in Figure 14 and summarized in Algorithm 4. We now discuss condi-
tions under which Skew-Fit converges to the uniform distribution.

Algorithm 3 Skew-Fit

1: for Iteration t = 1, 2, ... do
2: Collect N states {sn}Nn=1 by sampling goals from qGφt (or pskewedt−1) and running

goal-conditioned policy.
3: Construct skewed distribution pskewedt (Equation 9 and Equation 10).
4: Fit qGφt+1 to skewed distribution pskewedt using MLE.
5: end for=0

4.3.2 Skew-Fit Analysis

This section provides conditions under which qGφt converges in the limit to the uniform
distribution over the state space S. We consider the case where N→∞, which allows us

42

to study the limit behavior of the goal distribution pskewedt . Our most general result is
stated as follows:

Lemma 1. Let S be a compact set. Define the set of distributions Q = {p : support(p) ⊆ S}.
Let F : Q 7→ Q be continuous with respect to the pseudometric dH(p,q) , |H(p) −H(q)|

and H(F(p)) > H(p) with equality if and only if p is the uniform probability distribution
on S, denoted as US. Define the sequence of distributions P = (p1,p2, . . .) by starting with
any p1 ∈ Q and recursively defining pt+1 = F(pt). The sequence P converges to US with
respect to dH. In other words, limt→0 |H(pt) −H(US)|→ 0.

Proof. See Appendix Section C.1.1.

We will apply Lemma 1 to be the map from pskewedt to pskewedt+1 to show that
pskewedt converges to US. If we assume that the goal-conditioned policy and genera-
tive model learning procedure are well behaved (i.e., the maps from qGφt to pSφt and from
pskewedt to qGφt+1 are continuous), then to apply Lemma 1, we only need to show that
H(pskewedt) > H(pSφt) with equality if and only if pSφt = US. For the simple case when
qGφt = p

S
φt

identically at each iteration, we prove the convergence of Skew-Fit true for
any value of α ∈ [−1, 0) in Section C.1.3. However, in practice, qGφt only approximates
pSφt . To address this more realistic situation, we prove the following result:

Lemma 2. Given two distribution pSφt and qGφt where pSφt � qGφt
a and

CovS∼pSφt

[
logpSφt(S), logqGφt(S)

]
> 0, (11)

define the pskewedt as in Equation 10 and take N→∞. Let Hα(α) be the entropy of pskewedt
for a fixed α. Then there exists a constant a < 0 such that for all α ∈ [a, 0),

H(pskewedt) = Hα(α) > H(pSφt).

a p� q means that p is absolutely continuous with respect to q, i.e. p(s) = 0 =⇒ q(s) = 0.

Proof. See Appendix Section C.1.2.

This lemma tells us that our generative model qGφt does not need to exactly fit the sam-
pled states. Rather, we merely need the log densities of qGφt and pSφt to be correlated,
which we expect to happen frequently with an accurate goal-conditioned policy, since

43

pSφt is the set of states seen when trying to reach goals from qGφt . In this case, if we choose
negative values of α that are small enough, then the entropy of pskewedt will be higher
than that of pSφt . Empirically, we found that α values as low as α = −1 performed well.

In summary, pskewedt converges to US under certain assumptions. Since we train each
generative model qGφt+1 by fitting it to pskewedt with MLE, qGφt will also converge to US.

4.4 training goal-conditioned policies with skew-fit

Thus far, we have presented Skew-Fit assuming that we have access to a goal-reaching
policy, allowing us to separately analyze how we can maximize H(G). However, in prac-
tice we do not have access to such a policy, and this section discusses how we concur-
rently train a goal-reaching policy.

Maximizing I(S; G) can be done by simultaneously performing Skew-Fit and training
a goal-conditioned policy to minimize H(G | S), or, equivalently, maximize −H(G | S).
Maximizing −H(G | S) requires computing the density logp(G | S), which may be diffi-
cult to compute without strong modeling assumptions. However, for any distribution q,
the following lower bound on −H(G | S):

−H(G | S) = E(G,S)∼q [logq(G | S)] + pq

> E(G,S)∼q [logq(G | S)] ,

where DKL denotes Kullback–Leibler divergence as discussed by Barber and Agakov
(2004). Thus, to minimize H(G | S), we train a policy to maximize the reward

r(S, G) = logq(G | S).

The RL algorithm we use is reinforcement learning with imagined goals (RIG) (A. Nair
et al., 2018b), though in principle any goal-conditioned method could be used. RIG is
an efficient off-policy goal-conditioned method that solves vision-based RL problems in
a learned latent space. In particular, RIG fits a β-VAE (Higgins et al., 2017a) and uses it
to encode observations and goals into a latent space, which it uses as the state represen-
tation. RIG also uses the β-VAE to compute rewards, logq(G | S). Unlike RIG, we use
the goal distribution from Skew-Fit to sample goals for exploration and for relabeling
goals during training (Andrychowicz et al., 2017b). Since RIG already trains a generative
model over states, we reuse this β-VAE for the generative model qGφ of Skew-Fit. To make
the most use of the data, we train qGφ on all visited state rather than only the terminal

44

states, which we found to work well in practice. To prevent the estimated state likeli-
hoods from collapsing to zero, we model the posterior of the β-VAE as a multivariate
Gaussian distribution with a fixed variance and only learn the mean. We summarize RIG
and provide details for how we combine Skew-Fit and RIG in Section C.3.4 and describe
how we estimate the likelihoods given the β-VAE in Section C.3.1.

4.5 related work

Many prior methods in the goal-conditioned reinforcement learning literature focus on
training goal-conditioned policies and assume that a goal distribution is available to
sample from during exploration (L P Kaelbling, 1993; Schaul et al., 2015b; Andrychowicz
et al., 2017b; V. Pong et al., 2018), or use a heuristic to design a non-parametric (Colas
et al., 2018b; Warde-Farley et al., 2018; Florensa et al., 2018a) or parametric (Pr et al.,
2018b; A. Nair et al., 2018b) goal distribution based on previously visited states. These
methods are largely complementary to our work: rather than proposing a better method
for training goal-reaching policies, we propose a principled method for maximizing the
entropy of a goal sampling distribution, H(G), such that these policies cover a wide
range of states.

Our method learns without any task rewards, directly acquiring a policy that can
be reused to reach user-specified goals. This stands in contrast to exploration methods
that modify the reward based on state visitation frequency (M. Bellemare et al., 2016;
Ostrovski et al., 2017; Tang et al., 2017; Chentanez et al., 2005; Lopes et al., 2012; Stadie
et al., 2016; Pathak et al., 2017; Burda et al., 2018; Burda et al., 2019; Mohamed and
Rezende, 2015; Tang et al., 2017; Fu et al., 2017). While these methods can also be used
without a task reward, they provide no mechanism for distilling the knowledge gained
from visiting diverse states into flexible policies that can be applied to accomplish new
goals at test-time: their policies visit novel states, and they quickly forget about them as
other states become more novel. Similarly, methods that provably maximize state entropy
without using goal-directed exploration (Hazan et al., 2019) or methods that define new
rewards to capture measures of intrinsic motivation (Mohamed and Rezende, 2015) and
reachability (Savinov et al., 2018) do not produce reusable policies.

Other prior methods extract reusable skills in the form of latent-variable-conditioned
policies, where latent variables are interpreted as options (R. S. Sutton et al., 1999) or
abstract skills (Hausman et al., 2018; Abhishek Gupta et al., 2018b; Eysenbach et al.,
2018; Abhishek Gupta et al., 2018a; Florensa et al., 2017). The resulting skills are diverse,
but have no grounded interpretation, while Skew-Fit policies can be used immediately

45

after unsupervised training to reach diverse user-specified goals.
Some prior methods propose to choose goals based on heuristics such as learning

progress (Adrien Baranes and Pierre-Yves Oudeyer, 2012a; Veeriah et al., 2018; Colas et
al., 2018a), how off-policy the goal is (Nachum et al., 2018), level of difficulty (Held et al.,
2018), or likelihood ranking (R. Zhao and Tresp, 2019). In contrast, our approach pro-
vides a principled framework for optimizing a concrete and well-motivated exploration
objective, can provably maximize this objective under regularity assumptions, and em-
pirically outperforms many of these prior work (see Section 9.5).

4.6 experiments

Our experiments study the following questions: (1) Does Skew-Fit empirically result
in a goal distribution with increasing entropy? (2) Does Skew-Fit improve exploration
for goal-conditioned RL? (3) How does Skew-Fit compare to prior work on choosing
goals for vision-based, goal-conditioned RL? (4) Can Skew-Fit be applied to a real-world,
vision-based robot task?

46

Skew

Fit

�

Fit

Proposed Goals
 pϕ

With Skew-FitWithout Skew-Fit

Replay Buffer
 t

Replay Buffer
 t+1

Training Data

�

Figure 14: Our method, Skew-Fit, samples goals for goal-conditioned RL. We sample states from
our replay buffer, and give more weight to rare states. We then train a generative model
qGφt+1 with the weighted samples. By sampling new states with goals proposed from
this new generative model, we obtain a higher entropy state distribution in the next
iteration.

47

250K 500K
Episodes

0

2

4

6
En

tro
py

Entropy Alpha Ablation

Skew-Fit, α=-2.5
Skew-Fit, α=-1
Skew-Fit, α=-0.5
No Skew-Fit, (α=0)

Figure 15: Illustrative example of Skew-Fit on a 2D navigation task. (Left) Visited state plot for
Skew-Fit with α = −1 and uniform sampling, which corresponds to α = 0. (Right) The
entropy of the goal distribution per iteration, mean and standard deviation for 9 seeds.
Entropy is calculated via discretization onto an 11x11 grid. Skew-Fit steadily increases
the state entropy, reaching full coverage over the state space.

48

does skew-fit maximize entropy? To see the effects of Skew-Fit on goal distri-
bution entropy in isolation of learning a goal-reaching policy, we study an idealized ex-
ample where the policy is a near-perfect goal-reaching policy. The environment consists
of four rooms (R. S. Sutton et al., 1999). At the beginning of an episode, the agent begins
in the bottom-right room and samples a goal from the goal distribution qGφt . To simu-
late stochasticity of the policy and environment, we add a Gaussian noise with standard
deviation of 0.06 units to this goal, where the entire environment is 11× 11 units. The
policy reaches the state that is closest to this noisy goal and inside the rooms, giving us
a state sample sn for training qGφt . Due to the relatively small noise, the agent cannot rely
on this stochasticity to explore the different rooms and must instead learn to set goals
that are progressively farther and farther from the initial state. We compare multiple val-
ues of α, where α = 0 corresponds to not using Skew-Fit. The β-VAE hyperparameters
used to train qGφt are given in Section C.3.2. As seen in Figure 15, sampling uniformly
from previous experience (α = 0) to set goals results in a policy that primarily sets goal
near the initial state distribution. In contrast, Skew-Fit results in quickly learning a high
entropy, near-uniform distribution over the state space.

1M 2M 3M 4M 5M 6M 7M
Timesteps

0.0

2.5

5.0

7.5

10.0

Fi
na

l X
Y-

Di
sta

nc
e

Ant Exploration

HER
Rank-Based Priority
Skew-Fit (Ours)
DISCERN-g
AutoGoal GAN

Figure 16: (Left) Ant navigation environment. (Right) Evaluation on reaching target XY position.
We show the mean and standard deviation of 6 seeds. Skew-Fit significantly outper-
forms prior methods on this exploration task.

exploration with skew-fit We next evaluate Skew-Fit while concurrently learn-
ing a goal-conditioned policy on a task with state inputs, which enables us study ex-
ploration performance independently of the challenges with image observations. We
evaluate on a task that requires training a simulated quadruped “ant” robot to navigate
to different XY positions in a labyrinth, as shown in Figure 35. The reward is the neg-
ative distance to the goal XY-position, and additional environment details are provided
in Section C.4. This task presents a challenge for goal-directed exploration: the set of
valid goals is unknown due to the walls, and random actions do not result in exploring

49

locations far from the start. Thus, Skew-Fit must set goals that meaningfully explore the
space while simultaneously learning to reach those goals.

We use this domain to compare Skew-Fit to a number of existing goal-sampling meth-
ods. We compare to the relabeling scheme described in the hindsight experience re-
play (labeled HER). We compare to curiosity-driven prioritization (Ranked-Based Pri-
ority) (R. Zhao et al., 2019), a variant of HER that samples goals for relabeling based
on their ranked likelihoods. Held et al. (2018) samples goals from a GAN based on the
difficulty of reaching the goal. We compare against this method by replacing qGφ with the
GAN and label it AutoGoal GAN. We also compare to the non-parametric goal proposal
mechanism proposed by Warde-Farley et al., 2018, which we label DISCERN-g. Lastly,
to demonstrate the difficulty of the exploration challenge in these domains, we compare
to #-Exploration (Tang et al., 2017), an exploration method that assigns bonus rewards
based on the novelty of new states. We train the goal-conditioned policy for each method
using soft actor critic (SAC) (Haarnoja et al., 2018b). Implementation details of SAC and
the prior works are given in Section C.3.3.

We see in Figure 35 that Skew-Fit is the only method that makes significant progress
on this challenging labyrinth locomotion task. The prior methods on goal-sampling pri-
marily set goals close to the start location, while the extrinsic exploration reward in
#-Exploration dominated the goal-reaching reward. These results demonstrate that Skew-
Fit accelerates exploration by setting diverse goals in tasks with unknown goal spaces.

vision-based continuous control tasks

50

Figure 17: We evaluate on these continuous control tasks, from left to right: Visual Door, a door
opening task; Visual Pickup, a picking task; Visual Pusher, a pushing task; and Real
World Visual Door, a real world door opening task. All tasks are solved from images
and without any task-specific reward. See Appendix C.4 for details.

We now evaluate Skew-Fit on a variety of image-based continuous control tasks, where
the policy must control a robot arm using only image observations, there is no state-
based or task-specific reward, and Skew-Fit must directly set image goals. We test our
method on three different image-based simulated continuous control tasks released by
the authors of RIG (A. Nair et al., 2018b): Visual Door, Visual Pusher, and Visual Pickup.
These environments contain a robot that can open a door, push a puck, and lift up a
ball to different configurations, respectively. To our knowledge, these are the only goal-
conditioned, vision-based continuous control environments that are publicly available
and experimentally evaluated in prior work, making them a good point of compari-
son. See Figure 17 for visuals and Section C.3 for environment details. The policies are
trained in a completely unsupervised manner, without access to any prior information
about the image-space or any pre-defined goal-sampling distribution. To evaluate their
performance, we sample goal images from a uniform distribution over valid states and

51

report the agent’s final distance to the corresponding simulator states (e.g., distance of
the object to the target object location), but the agent never has access to this true uniform
distribution nor the ground-truth state information during training. While this evalua-
tion method is only practical in simulation, it provides us with a quantitative measure
of a policy’s ability to reach a broad coverage of goals in a vision-based setting.

We compare Skew-Fit to a number of existing methods on this domain. First, we com-
pare to the methods described in the previous experiment (HER, Rank-Based Priority,
#-Exploration, Autogoal GAN, and DISCERN-g). These methods that we compare to
were developed in non-vision, state-based environments. To ensure a fair comparison
across methods, we combine these prior methods with a policy trained using RIG. We
additionally compare to Hazan et al. (2019), an exploration method that assigns bonus
rewards based on the likelihood of a state (labeled Hazan et al.). Next, we compare to
RIG without Skew-Fit. Lastly, we compare to DISCERN (Warde-Farley et al., 2018), a
vision-based method which uses a non-parametric clustering approach to sample goals
and an image discriminator to compute rewards.

20K 30K 40K 50K 60K 70K
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fi
na

l A
ng

le
Di

ffe
re

nc
e

Visual Door Opening

100K 200K 300K
Timesteps

0.01

0.02

0.03

0.04

0.05

Fi
na

l O
bj

ec
t D

ist
an

ce

Visual Object Pickup

100K 200K 300K
Timesteps

0.04

0.06

0.08

0.10

Fi
na

l P
uc

k
Di

sta
nc

e

Visual Puck Pushing
RIG + Skew-Fit (Ours)
RIG
RIG + # Exploration
RIG + Hazan et al.
RIG + AutoGoal GAN
RIG + DISCERN-g
RIG + HER
RIG + Rank-Based Priority
DISCERN

Figure 18: Learning curves for simulated continuous control tasks. Lower is better. We show the
mean and standard deviation of 6 seeds and smooth temporally across 50 epochs
within each seed. Skew-Fit consistently outperforms RIG and various prior methods.
See text for description of each method.

We see in Figure 18 that Skew-Fit significantly outperforms prior methods both in
terms of task performance and sample complexity. The most common failure mode for
prior methods is that the goal distributions collapse, resulting in the agent learning to
reach only a fraction of the state space, as shown in Figure 13. For comparison, additional
samples of qGφ when trained with and without Skew-Fit are shown in Section C.2.3.
Those images show that without Skew-Fit, qGφ produces a small, non-diverse distribution
for each environment: the object is in the same place for pickup, the puck is often in
the starting position for pushing, and the door is always closed. In contrast, Skew-Fit

52

proposes goals where the object is in the air and on the ground, where the puck positions
are varied, and the door angle changes.

We can see the effect of these goal choices by visualizing more example rollouts for
RIG and Skew-Fit. These visuals, shown in Figure 72 in Section C.2.3, show that RIG
only learns to reach states close to the initial position, while Skew-Fit learns to reach
the entire state space. For a quantitative comparison, Figure 19 shows the cumulative
total exploration pickups for each method. From the graph, we see that many methods
have a near-constant rate of object lifts throughout all of training. Skew-Fit is the only
method that significantly increases the rate at which the policy picks up the object during
exploration, suggesting that only Skew-Fit sets goals that encourage the policy to interact
with the object.

100K 200K 300K
Timesteps

0

200

400

600

800

1000

Ex
pl

or
ati

on
 P

ick
up

s

Visual Object Pickup RIG + Skew-Fit (Ours)
RIG
RIG + # Exploration
RIG + Hazan et al.
RIG + AutoGoal GAN
RIG + DISCERN-g
RIG + HER
RIG + Rank-Based Priority
DISCERN

Figure 19: Cumulative total pickups during exploration for each method. Prior methods fail to
pay attention to the object: the rate of pickups hardly increases past the first 100 thou-
sand timesteps. In contrast, after seeing the object picked up a few times, Skew-Fit
practices picking up the object more often by sampling the appropriate exploration
goals.

real-world vision-based robotic manipulation We also demonstrate that
Skew-Fit scales well to the real world with a door opening task, Real World Visual Door,
as shown in Figure 17. While a number of prior works have studied RL-based learning of
door opening (Kalakrishnan et al., 2011b; Chebotar et al., 2017b), we demonstrate the first
method for autonomous learning of door opening without a user-provided, task-specific
reward function. As in simulation, we do not provide any goals to the agent and simply

53

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Interaction Time (Hours)

0

20

40

60

80

100
Cu

m
ul

ati
ve

 S
uc

ce
ss

es

Real World Visual Door Opening
Skew-Fit (Ours)
RIG

S1 S100 G

Figure 20: (Top) Learning curve for Real World Visual Door. Skew-Fit results in considerable sample
efficiency gains over RIG on this real-world task. (Bottom) Each row shows the Skew-Fit
policy starting from state S1 and reaching state S100 while pursuing goal G. Despite being
trained from only images without any user-provided goals during training, the Skew-Fit pol-
icy achieves the goal image provided at test-time, successfully opening the door.

let it interact with the door, without any human guidance or reward signal. We train two
agents using RIG and RIG with Skew-Fit. Every seven and a half minutes of interaction
time, we evaluate on 5 goals and plot the cumulative successes for each method. Unlike
in simulation, we cannot easily measure the difference between the policy’s achieved and
desired door angle. Instead, we visually denote a binary success/failure for each goal
based on whether the last state in the trajectory achieves the target angle. As Figure 20

shows, standard RIG only starts to open the door after five hours of training. In contrast,
Skew-Fit learns to occasionally open the door after three hours of training and achieves
a near-perfect success rate after five and a half hours of interaction. Figure 20 also shows
examples of successful trajectories from the Skew-Fit policy, where we see that the policy
can reach a variety of user-specified goals. These results demonstrate that Skew-Fit is a
promising technique for solving real world tasks without any human-provided reward
function. Videos of Skew-Fit solving this task and the simulated tasks can be viewed on
our website. 4

4 https://sites.google.com/view/skew-fit

54

additional experiments To study the sensitivity of Skew-Fit to the hyperparam-
eter α, we sweep α across the values [−1,−0.75,−0.5,−0.25, 0] on the simulated image-
based tasks. The results are in Section C.2 and demonstrate that Skew-Fit works across a
large range of values for α, and α = −1 consistently outperform α = 0 (i.e. outperforms
no Skew-Fit). Additionally, Section C.3 provides a complete description our method hy-
perparameters, including network architecture and RL algorithm hyperparameters.

4.7 conclusion

We presented a formal objective for self-supervised goal-directed exploration, allowing
researchers to quantify and compare progress when designing algorithms that enable
agents to autonomously learn. We also presented Skew-Fit, an algorithm for training a
generative model to approximate a uniform distribution over an initially unknown set
of valid states, using data obtained via goal-conditioned reinforcement learning, and
our theoretical analysis gives conditions under which Skew-Fit converges to the uniform
distribution. When such a model is used to choose goals for exploration and to relabeling
goals for training, the resulting method results in much better coverage of the state
space, enabling our method to explore effectively. Our experiments show that when we
concurrently train a goal-reaching policy using self-generated goals, Skew-Fit produces
quantifiable improvements on simulated robotic manipulation tasks, and can be used
to learn a door opening skill to reach a 95% success rate directly on a real-world robot,
without any human-provided reward supervision.

4.8 contribution statement

The work in this chapter was performed in collaboration with Vitchyr Pong, Murtaza
Dalal, Steven Lin, Shikhar Bahl, and Sergey Levine (Vitchyr H. Pong et al., 2019). V.P.,
M.D., and S.L. were joint co-first authors. The idea of self-supervised goal setting with
an expanding goal space by iteratively retraining a generative model was developed
jointly by V.P. and A.N. V.P. conducted the theoretical analysis, and managed the project,
and led the writing of the paper. The simulation experiments were conducted by V.P.,
M.D., and S. Lin. The real-world experiments were conducted by V.P., M.D., A.N., and
S.B. A.N. assisted with writing and analysis. S. Levine advised on the project, guided
the theoretical analysis, and assisted with writing.

55

Part II

A C C E L E R AT I N G R E I N F O R C E M E N T L E A R N I N G W I T H
P R I O R K N O W L E D G E

5
O V E R C O M I N G E X P L O R AT I O N I N R E I N F O R C E M E N T L E A R N I N G
W I T H D E M O N S T R AT I O N S

5.1 introduction

In Part II, we turn to improving the underlying reinforcement learning algorithm itself
for practical, real-world robot learning. RL has found significant success in decision mak-
ing for solving games, so what makes it more challenging to apply in robotics? A key
difference is the difficulty of exploration, which comes from the choice of reward func-
tion and complicated environment dynamics. In games, the reward function is usually
given and can be directly optimized. In robotics, we often desire behavior to achieve
some binary objective (e.g., move an object to a desired location or achieve a certain
state of the system) which naturally induces a sparse reward. Sparse reward functions
are easier to specify and recent work suggests that learning with a sparse reward results
in learned policies that perform the desired objective instead of getting stuck in local
optima (Andrychowicz et al., 2017b; Veerk et al., 2017). However, exploration in an envi-
ronment with sparse reward is difficult since with random exploration, the agent rarely
sees a reward signal.

The difficulty posed by a sparse reward is exacerbated by the complicated environ-
ment dynamics in robotics. For example, system dynamics around contacts are difficult
to model and induce a sensitivity in the system to small errors. Many robotics tasks also
require executing multiple steps successfully over a long horizon, involve high dimen-
sional control, and require generalization to varying task instances. These conditions
further result in a situation where the agent so rarely sees a reward initially that it is not
able to learn at all.

All of the above means that random exploration is not a tenable solution. Instead, in
this work we show that we can use demonstrations as a guide for our exploration. To test
our method, we solve the problem of stacking several blocks at a given location from a

57

Figure 21: We present a method using reinforcement learning to solve the task of block stacking
shown above. The robot starts with 6 blocks labelled A through F on a table in random
positions and a target position for each block. The task is to move each block to its
target position. The targets are marked in the above visualization with red spheres
which do not interact with the environment. These targets are placed in order on top
of block A so that the robot forms a tower of blocks. This is a complex, multi-step task
where the agent needs to learn to successfully manage multiple contacts to succeed.
Frames from rollouts of the learned policy are shown. A video of our experiments can
be found at: http://ashvin.me/demoddpg-website

random initial state. Stacking blocks has been studied before in the literature (Marc
Peter Deisenroth et al., 2011a; Duan et al., 2017) and exhibits many of the difficulties
mentioned: long horizons, contacts, and requires generalizing to each instance of the
task. We limit ourselves to 100 human demonstrations collected via teleoperation in
virtual reality. Using these demonstrations, we are able to solve a complex robotics task
in simulation that is beyond the capability of both reinforcement learning and imitation
learning.

In this chapter, we show how demonstrations can be used within a reinforcement
learning algorithm to solve complex tasks where exploration is difficult. We introduce
a simple auxiliary objective on demonstrations, a method of annealing away the effect
of the demonstrations when the learned policy is better than the demonstrations, and a
method of resetting from demonstration states that significantly improves and speeds up
training policies. By effectively incorporating demonstrations into RL, we short-circuit
the random exploration phase of RL and reach nonzero rewards and a reasonable policy
early on in training. Finally, we extensively evaluate our method against other commonly
used methods, such as initialization with learning from demonstrations and fine-tuning
with RL, and show that our method significantly outperforms them.

58

http://ashvin.me/demoddpg-website

5.2 related work

Learning methods for decision making problems such as robotics largely divide into
two classes: imitation learning and reinforcement learning (RL). In imitation learning
(also called learning from demonstrations) the agent receives behavior examples from
an expert and attempts to solve a task by copying the expert’s behavior. In RL, an agent
attempts to maximize expected reward through interaction with the environment. Our
work combines aspects of both to solve complex tasks.

Imitation Learning: Perhaps the most common form of imitation learning is behavior
cloning (BC), which learns a policy through supervised learning on demonstration state-
action pairs. BC has seen success in autonomous driving (Pomerleau, 1989; Bojarski
et al., 2016), quadcopter navigation (Giusti et al., 2015), locomotion (Nakanishi et al.,
2004; Kalakrishnan et al., 2009). BC struggles outside the manifold of demonstration
data. Dataset Aggregation (DAGGER) augments the dataset by interleaving the learned
and expert policy to address this problem of accumulating errors (Ross et al., 2011).
However, DAGGER is difficult to use in practice as it requires access to an expert during
all of training, instead of just a set of demonstrations.

Fundamentally, BC approaches are limited because they do not take into account the
task or environment. Inverse reinforcement learning (IRL) (A. Ng and Russell, 2000) is
another form of imitation learning where a reward function is inferred from the demon-
strations. Among other tasks, IRL has been applied to navigation (Ziebart et al., 2008),
autonomous helicopter flight (Abbeel and Andrew Y Ng, 2004), and manipulation (Finn
et al., 2016a). Since our work assumes knowledge of a reward function, we omit compar-
isons to IRL approaches.

Reinforcement Learning: Reinforcement learning methods have been harder to ap-
ply in robotics, but are heavily investigated because of the autonomy they could enable.
Through RL, robots have learned to play table tennis (Peters et al., 2010), swing up a
cartpole, and balance a unicycle (Marc Peter Deisenroth and Rasmussen, 2011). A re-
newal of interest in RL cascaded from success in games (Mnih et al., 2015; D. Silver
et al., 2016b), especially because of the ability of RL with large function approximators
(ie. deep RL) to learn control from raw pixels. Robotics has been more challenging in
general but there has been significant progress. Deep RL has been applied to manip-
ulation tasks (LevineFDA15), grasping (Pinto and Abhinav Gupta, 2016; Levine et al.,
2016b), opening a door (S. Gu et al., 2017), and locomotion (Lillicrap et al., 2016; Mnih
et al., 2016; Schulman et al., 2015). However, results have been attained predominantly
in simulation per high sample complexity, typically caused by exploration challenges.

59

Robotic Block Stacking: Block stacking has been studied from the early days of AI
and robotics as a task that encapsulates many difficulties of more complicated tasks we
want to solve, including multi-step planning and complex contacts. SHRDLU (Winograd,
1972) was one of the pioneering works, but studied block arrangements only in terms
of logic and natural language understanding. More recent work on task and motion
planning considers both logical and physical aspects of the task (Leslie Pack Kaelbling
and Lozano-Perez, 2011; Kavraki et al., 1996; S. Srivastava et al., 2014), but requires
domain-specific engineering. In this work we study how an agent can learn this task
without the need of domain-specific engineering.

One RL method, PILCO (Marc Peter Deisenroth and Rasmussen, 2011) has been ap-
plied to a simple version of stacking blocks where the task is to place a block on a
tower (Marc Peter Deisenroth et al., 2011a). Methods such as PILCO based on learning
forward models naturally have trouble modelling the sharply discontinuous dynamics
of contacts; although they can learn to place a block, it is a much harder problem to grasp
the block in the first place. One-shot Imitation (Duan et al., 2017) learns to stack blocks in
a way that generalizes to new target configurations, but uses more than 100,000 demon-
strations to train the system. A heavily shaped reward can be used to learn to stack a
Lego block on another with RL (Popov et al., 2017). In contrast, our method can succeed
from fully sparse rewards and handle stacking several blocks.

Combining RL and Imitation Learning: Previous work has combined reinforcement
learning with demonstrations. Demonstrations have been used to accelerate learning on
classical tasks such as cart-pole swing-up and balance (Schaal, 1997). This work initial-
ized policies and (in model-based methods) initialized forward models with demonstra-
tions. Initializing policies from demonstrations for RL has been used for learning to hit
a baseball (Peters and Schaal, 2008c) and for underactuated swing-up (Kober and Peter,
2008). Beyond initialization, we show how to extract more knowledge from demonstra-
tions by using them effectively throughout the entire training process.

Our method is closest to two recent approaches — Deep Q-Learning From Demonstra-
tions (DQfD) (Hester et al., 2018) and DDPG From Demonstrations (DDPGfD) (Veerk et
al., 2017) which combine demonstrations with reinforcement learning. DQfD improves
learning speed on Atari, including a margin loss which encourages the expert actions
to have higher Q-values than all other actions. This loss can make improving upon the
demonstrator policy impossible which is not the case for our method. Prior work has
previously explored improving beyond the demonstrator policy in simple environments
by introducing slack variables (Kim et al., 2013), but our method uses a learned value to
actively inform the improvement. DDPGfD solves simple robotics tasks akin to peg inser-

60

tion using DDPG with demonstrations in the replay buffer. In contrast to this prior work,
the tasks we consider exhibit additional difficulties that are of key interest in robotics:
multi-step behaviours, and generalization to varying goal states. While previous work
focuses on speeding up already solvable tasks, we show that we can extend the state of
the art in RL with demonstrations by introducing new methods to incorporate demon-
strations.

5.3 background

5.3.1 DDPG

Recall that many RL algorithms involve estimating the expected return from a given
state after taking an action:

Qπ(st,at) = Eri,si∼E,ai∼π[Rt|st,at] (12)
= Ert,st+1∼E[rt + γEat+1∼π[Q

π(st+1,at+1)]] (13)

We call Qπ the action-value function. Equation 13 is a recursive version of equation 12,
and is known as the Bellman equation. The Bellman equation allows for methods to esti-
mate Q that resemble dynamic programming. The Bellman equation allows for methods
to estimate Q that resemble dynamic programming, enabling data re-use and sample ef-
ficiency. Because data re-use and sample efficiency is extremely important for real-world
robot learning, methods that use Bellman bootstrapping will be used throughout this
thesis.

Our method combines demonstrations with one such method: Deep Deterministic
Policy Gradients (DDPG) (Lillicrap et al., 2016). DDPG is an off-policy model-free re-
inforcement learning algorithm for continuous control which can utilize large function
approximators such as neural networks. DDPG is an actor-critic method, which bridges
the gap between policy gradient methods and value approximation methods for RL. At
a high level, DDPG learns an action-value function (critic) by minimizing the Bellman er-
ror, while simultaneously learning a policy (actor) by directly maximizing the estimated
action-value function with respect to the parameters of the policy.

Concretely, DDPG maintains an actor function π(s) with parameters θπ, a critic func-
tion Q(s,a) with parameters θQ, and a replay buffer R as a set of tuples (st,at, rt, st+1)
for each transition experienced. DDPG alternates between running the policy to collect
experience and updating the parameters. Training rollouts are collected with extra noise

61

for exploration: at = π(s) +N, where N is a noise process.
During each training step, DDPG samples a minibatch consisting of N tuples from R

to update the actor and critic networks. DDPG minimizes the following loss L w.r.t. θQ
to update the critic:

yi = ri + γQ(si+1,π(si+1)) (14)

L =
1

N

∑
i

(yi −Q(si,ai|θQ))2 (15)

The actor parameters θπ are updated using the policy gradient:

∇θπJ =
1

N

∑
i

∇aQ(s,a|θQ)|s=si,a=π(s)∇θππ(s|θπ)|si (16)

To stabilize learning, the Q value in equation 14 is usually computed using a separate
network (called the target network) whose weights are an exponential average over time
of the critic network. This results in smoother target values.

Note that DDPG is a natural fit for using demonstrations. Since DDPG can be trained
off-policy, we can use demonstration data as off-policy training data. We also take advan-
tage of the action-value function Q(s,a) learned by DDPG to better use demonstrations.

5.3.2 Multi-Goal RL

Instead of the standard RL setting, we train agents with parametrized goals, which lead
to more general policies (Schaul et al., 2015b) and have recently been shown to make
learning with sparse rewards easier (Andrychowicz et al., 2017b). Goals describe the
task we expect the agent to perform in the given episode, in our case they specify the
desired positions of all objects. We sample the goal g at he beginning of every episode.
The function approximators, here π and Q, take the current goal as an additional input.

5.3.3 Hindsight Experience Replay (HER)

To handle varying task instances and parametrized goals, we use Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017b). The key insight of HER is that even in failed
rollouts where no reward was obtained, the agent can transform them into successful
ones by assuming that a state it saw in the rollout was the actual goal. HER can be
used with any off-policy RL algorithm assuming that for every state we can find a goal

62

corresponding to this state (i.e. a goal which leads to a positive reward in this state).
For every episode the agent experiences, we store it in the replay buffer twice: once

with the original goal pursued in the episode and once with the goal corresponding to
the final state achieved in the episode, as if the agent intended on reaching this state
from the very beginning.

5.4 method

Our method combines DDPG and demonstrations in several ways to maximally use
demonstrations to improve learning. We describe our method below and evaluate these
ideas in our experiments.

5.4.1 Demonstration Buffer

First, we maintain a second replay buffer RD where we store our demonstration data in
the same format as R. In each minibatch, we draw an extra ND examples from RD to use
as off-policy replay data for the update step. These examples are included in both the
actor and critic update. This idea has been introduced in (Veerk et al., 2017).

5.4.2 Behavior Cloning Loss

Second, we introduce a new loss computed only on the demonstration examples for
training the actor.

LBC =

ND∑
i=1

π(si|θπ) − ai
2 (17)

This loss is a standard loss in imitation learning, but we show that using it as an auxiliary
loss for RL improves learning significantly. The gradient applied to the actor parameters
θπ is:

λ1∇θπJ− λ2∇θπLBC (18)

(Note that we maximize J and minimize LBC.) Using this loss directly prevents the
learned policy from improving significantly beyond the demonstration policy, as the
actor is always tied back to the demonstrations. Next, we show how to account for sub-
optimal demonstrations using the learned action-value function.

63

5.4.3 Q-Filter

We account for the possibility that demonstrations can be suboptimal by applying the
behavior cloning loss only to states where the critic Q(s,a) determines that the demon-
strator action is better than the actor action:

LBC =

ND∑
i=1

π(si|θπ) − ai
2
1Q(si,ai)>Q(si,π(si)) (19)

The gradient applied to the actor parameters is as in equation 18. We label this method
using the behavior cloning loss and Q-filter “Ours” in the following experiments.

5.4.4 Resets to demonstration states

To overcome the problem of sparse rewards in very long horizon tasks, we reset some
training episodes using states and goals from demonstration episodes. Restarts from
within demonstrations expose the agent to higher reward states during training. This
method makes the additional assumption that we can restart episodes from a given
state, as is true in simulation.

To reset to a demonstration state, we first sample a demonstration D =

(x0,u0, x1,u1, ...xN,uN) from the set of demonstrations. We then uniformly sample a state
xi from D. As in HER, we use the final state achieved in the demonstration as the goal.
We roll out the trajectory with the given initial state and goal for the usual number of
timesteps. At evaluation time, we do not use this procedure.

We label our method with the behavior cloning loss, Q-filter, and resets from demon-
stration states as “Ours, Resets” in the following experiments.

5.5 experimental setup

5.5.1 Environments

We evaluate our method on several simulated MuJoCo (Todorov et al., 2012) environ-
ments. In all experiments, we use a simulated 7-DOF Fetch Robotics arm with parallel
grippers to manipulate one or more objects placed on a table in front of the robot.

The agent receives the positions of the relevant objects on the table as its observations.
The control for the agent is continuous and 4-dimensional: 3 dimensions that specify

64

0M 2M 4M 6M 8M 10M

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 R
a
te

Pushing

0M 2M 4M 6M 8M 10M

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 R
a
te

Sliding

Ours

HER

BC

0M 2M 4M 6M 8M 10M

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 R
a
te

Pick and Place

Figure 22: Baseline comparisons on tasks from (Andrychowicz et al., 2017b). Frames from the
learned policy are shown above each task. Our method significantly outperforms the
baselines. On the right plot, the HER baseline always fails.

the desired end-effector position1 and 1 dimension that specifies the desired distance
between the robot fingers. The agent is controlled at 50Hz frequency.

We collect demonstrations in a virtual reality environment. The demonstrator sees a
rendering of the same observations as the agent, and records actions through a HTC
Vive interface at the same frequency as the agent. We have the option to accept or reject
a demonstration; we only accept demonstrations we judge to be mostly correct. The
demonstrations are not optimal. The most extreme example is the “sliding” task, where
only 7 of the 100 demonstrations are successful, but the agent still sees rewards for these
demonstrations with HER.

5.5.2 Training Details

To train our models, we use Adam (D. Kingma and Ba, 2015) as the optimizer with
learning rate 10−3. We use N = 1024,ND = 128, λ1 = 10−3, λ2 = 1.0/ND. The discount
factor γ is 0.98. We use 100 demonstrations to initialize RD. The function approximators
π and Q are deep neural networks with ReLU activations and L2 regularization with
the coefficient 5× 10−3. The final activation function for π is tanh, and the output value
is scaled to the range of each action dimension. To explore during training, we sample
random actions uniformly within the action space with probability 0.1 at every step,
and the noise process N is uniform over ±10% of the maximum value of each action
dimension. Task-specific information, including network architectures, are provided in

1 In the 10cm x 10cm x 10cm cube around the current gripper position

65

the next section.

5.5.3 Overview of Experiments

We perform three sets of experiments. In Sec. 5.6, we provide a comparison to previous
work. In Sec. 5.7 we solve block stacking, a difficult multi-step task with complex contacts
that the baselines struggle to solve. In Sec. 5.8 we do ablations of our own method to
show the effect of individual components.

5.6 comparison with prior work

5.6.1 Tasks

We first show the results of our method on the simulated tasks presented in the Hind-
sight Experience Replay paper (Andrychowicz et al., 2017b). We apply our method to
three tasks:

1. Pushing. A block placed randomly on the table must be moved to a target location
on the table by the robot (fingers are blocked to avoid grasping).

2. Sliding. A puck placed randomly on the table must be moved to a given target
location. The target is outside the robot’s reach so it must apply enough force that
the puck reaches the target and stops due to friction.

3. Pick-and-place. A block placed randomly on the table must be moved to a target
location in the air. Note that the original paper used a form of initializing from
favorable states to solve this task. We omit this for our experiment but discuss and
evaluate the initialization idea in an ablation.

As in the prior work, we use a fully sparse reward for this task. The agent is penalized
if the object is not at its goal position:

rt =

0, if ||xi − gi|| < δ

−1, otherwise
(20)

where the threshold δ is 5cm.

66

5.6.2 Results

Fig. 22 compares our method to HER without demonstrations and behavior cloning. Our
method is significantly faster at learning these tasks than HER, and achieves significantly
better policies than behavior cloning does. Measuring the number of timesteps to get to
convergence, we exhibit a 4x speedup over HER in pushing, a 2x speedup over HER in
sliding, and our method solves the pick-and-place task while HER baseline cannot solve
it at all.

The pick-and-place task showcases the shortcoming of RL in sparse reward settings,
even with HER. In pick-and-place, the key action is to grasp the block. If the robot could
manage to grasp it a small fraction of the time, HER discovers how to achieve goals in
the air and reinforces the grasping behavior. However, grasping the block with random
actions is extremely unlikely. Our method pushes the policy towards demonstration
actions, which are more likely to succeed.

In the HER paper, HER solves the pick-and-place task by initializing half of the roll-
outs with the gripper grasping the block. With this addition, pick-and-place becomes the
easiest of the three tasks tested. This initialization is similar in spirit to our initialization
idea, but takes advantage of the fact that pick-and-place with any goal can be solved
starting from a block grasped at a certain location. This is not always true (for example,
if there are multiple objects to be moved) and finding such a keyframe for other tasks
would be difficult, requiring some engineering and sacrificing autonomy. Instead, our
method guides the exploration towards grasping the block through demonstrations. Pro-
viding demonstrations does not require expert knowledge of the learning system, which
makes it a more compelling way to provide prior information.

5.7 multi-step experiments

5.7.1 Block Stacking Task

To show that our method can solve more complex tasks with longer horizon and sparser
reward, we study the task of block stacking in a simulated environment as shown in
Fig. 47 with the same physical properties as the previous experiments. Our experiments
show that our approach can solve the task in full and learn a policy to stack 6 blocks
with demonstrations and RL. To measure and communicate various properties of our
method, we also show experiments on stacking fewer blocks, a subset of the full task.

We initialize the task with blocks at 6 random locations x1...x6. We also provide 6 goal

67

locations g1...g6. To form a tower of blocks, we let g1 = x1 and gi = gi−1 + (0, 0, 5cm) for
i ∈ 2, 3, 4, 5.

By stacking N blocks, we mean N blocks reach their target locations. Since the target
locations are always on top of x1, we start with the first block already in position. So
stacking N blocks involves N− 1 pick-and-place actions. To solve stacking N, we allow
the agent 50 ∗ (N− 1) timesteps. This means that to stack 6 blocks, the robot executes 250

actions or 5 seconds.
We recorded 100 demonstrations to stack 6 blocks, and use subsets of these demon-

strations as demonstrations for stacking fewer blocks. The demonstrations are not per-
fect; they include occasionally dropping blocks, but our method can handle suboptimal
demonstrations. We still rejected more than half the demonstrations and excluded them
from the demonstration data because we knocked down the tower of blocks when releas-
ing a block.

5.7.2 Rewards

Two different reward functions are used. To test the performance of our method under
fully sparse reward, we reward the agent only if all blocks are at their goal positions:

rt = min
i

1||xi−gi||<δ (21)

The threshold δ is the size of a block, 5cm. We call this the “sparse” reward.
To enable solving the longer horizon tasks of stacking 4 or more blocks, we use the

“step” reward :
rt = −1+

∑
i

1||xi−gi||<δ (22)

Note the step reward is still very sparse; the robot only sees the reward change when
it moves a block into its target location. We subtract 1 only to make the reward more
interpretable, as in the initial state the first block is already at its target.

Regardless of the reward type, an episode is considered successful for computing
success rate if all blocks are at their goal position in their final state.

5.7.3 Network architectures

We use a 4 layer networks with 256 hidden units per layer for π and Q for the HER
tasks and stacking 3 or fewer blocks. For stacking 4 blocks or more, we use an attention

68

Task Ours
Ours,
Resets BC HER

BC+
HER

Stack 2, Sparse 99% 97% 65% 0% 65%
Stack 3, Sparse 99% 89% 1% 0% 1%
Stack 4, Sparse 1% 54% - - -
Stack 4, Step 91% 73% 0% 0% 0%
Stack 5, Step 49% 50% - - -
Stack 6, Step 4% 32% - - -

Figure 23: Comparison of our method against baselines. The value reported is the median of the
best performance (success rate) of all randomly seeded runs of each method.

mechanism (Bahdanau et al., 2015) for the actor and a larger network. The attention
mechanism uses a 3 layer network with 128 hidden units per layer to query the states
and goals with one shared head. Once a state and goal is extracted, we use a 5 layer
network with 256 hidden units per layer after the attention mechanism. Attention speeds
up training slightly but does not change training outcomes.

5.7.4 Baselines

We include the following methods to compare our method to baselines on stacking 2 to
6 blocks. 2

Ours: Refers to our method as described in section 5.4.3.
Ours, Resets: Refers to our method as described in section 5.4.3 with resets from demon-
stration states (Sec. 5.4.4).
BC: This method uses behavior cloning to learn a policy. Given the set of demonstration
transitions RD, we train the policy π by supervised learning. Behavior cloning requires
much less computation than RL. For a fairer comparison, we performed a large hyper-
parameter sweep over various networks sizes, attention hyperparameters, and learning
rates and report the success rate achieved by the best policy found.
HER: This method is exactly the one described in Hindsight Experience Replay

2 Because of computational constraints, we were limited to 5 random seeds per method for stacking 3

blocks, 2 random seeds per method for stacking 4 and 5 blocks, and 1 random seed per method for
stacking 6 blocks. Although we are careful to draw conclusions from few random seeds, the results are
consistent with our collective experience training these models. We report the median of the random seeds
everywhere applicable.

69

0M 50M 100M 150M 200M 250M 300M 350M 400M

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 R
a
te

Stack 3, Sparse Reward

Ours

Ours, Resets

No Q-Filter

No BC

No HER

Figure 24: Ablation results on stacking 3 blocks with a fully sparse reward. We run each method
5 times with random seeds. The bold line shows the median of the 5 runs while each
training run is plotted in a lighter color. Note “No HER” is always at 0% success rate.
Our method without resets learns faster than the ablations. Our method with resets
initially learns faster but converges to a worse success rate.

(Andrychowicz et al., 2017b), using HER and DDPG.
BC+HER: This method first initializes a policy (actor) with BC, then finetunes the policy
with RL as described above.

5.7.5 Results

We are able to learn much longer horizon tasks than the other methods, as shown in Fig.
23. The stacking task is extremely difficult using HER without demonstrations because
the chance of grasping an object using random actions is close to 0. Initializing a policy
with demonstrations and then running RL also fails since the actor updates depend on
a reasonable critic and although the actor is pretrained, the critic is not. The pretrained
actor weights are therefore destroyed in the very first epoch, and the result is no better
than BC alone. We attempted variants of this method where initially the critic was trained
from replay data. However, this also fails without seeing on-policy data.

The results with sparse rewards are very encouraging. We are able to stack 3 blocks
with a fully sparse reward without resetting to the states from demonstrations, and 4

blocks with a fully sparse reward if we use resetting. With resets from demonstration
states and the step reward, we are able to learn a policy to stack 6 blocks.

70

0M 100M 200M 300M 400M 500M 600M 700M 800M
0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 R
a
te

Stack 4, Step Reward

Ours

Ours, Resets

No Q-Filter

No BC

0M 100M 200M 300M 400M 500M 600M 700M 800M

Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
w
a
rd

0M 500M 1000M 1500M
0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
u
cc

e
ss

 R
a
te

Stack 5, Step Reward

Ours

Ours, Resets

No Q-Filter

0M 500M 1000M 1500M

Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
w
a
rd

0M 500M 1000M 1500M 2000M
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
u
cc

e
ss

 R
a
te

Stack 6, Step Reward

Ours

Ours, Resets

0M 500M 1000M 1500M 2000M

Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e
w
a
rd

Figure 25: Ablation results on longer horizon tasks with a step reward. The upper row shows the
success rate while the lower row shows the average reward at the final step of each
episode obtained by different algorithms. For stacking 4 and 5 blocks, we use 2 random
seeds per method. The median of the runs is shown in bold and each training run is
plotted in a lighter color. Note that for stacking 4 blocks, the “No BC” method is always
at 0% success rate. As the number of blocks increases, resets from demonstrations
becomes more important to learn the task.

5.8 ablation experiments

In this section we perform a series of ablation experiments to measure the importance of
various components of our method. We evaluate our method on stacking 3 to 6 blocks.

We perform the following ablations on the best performing of our models on each
task:
No BC Loss: This method does not apply the behavior cloning gradient during training.
It still has access to demonstrations through the demonstration replay buffer.
No Q-Filter: This method uses standard behavioral cloning loss instead of the loss from
equation Eq. 19, which means that the actor tries to mimic the demonstrator’s behaviour
regardless of the critic.
No HER: Hindsight Experience Replay is not used.

71

5.8.1 Behavior Cloning Loss

Without the behavior cloning loss, the method is significantly worse in every task we
try. Fig. 24 shows the training curve for learning to stack 3 blocks with a fully sparse
reward. Without the behavior cloning loss, the system is about 2x slower to learn. On
longer horizon tasks, we do not achieve any success without this loss.

To see why, consider the training curves for stacking 4 blocks shown in Fig. 25. The
“No BC” policy learns to stack only one additional block. Without the behavior cloning
loss, the agent only has access to the demonstrations through the demonstration replay
buffer. This allows it to view high-reward states and incentivizes the agent to stack more
blocks, but there is a stronger disincentive: stacking the tower higher is risky and could
result in lower reward if the agent knocks over a block that is already correctly placed.
Because of this risk, which is fundamentally just another instance of the agent finding a
local optimum in a shaped reward, the agent learns the safer behavior of pausing after
achieving a certain reward. Explicitly weighting behavior cloning steps into gradient
updates forces the policy to continue the task.

5.8.2 Q-Filter

The Q-Filter is effective in accelerating learning and achieving optimal performance. Fig.
24 shows that the method without filtering is slower to learn. One issue with the be-
havior cloning loss is that if the demonstrations are suboptimal, the learned policy will
also be suboptimal. Filtering by Q-value gives a natural way to anneal the effect of the
demonstrations as it automatically disables the BC loss when a better action is found.
However, it gives mixed results on the longer horizon tasks. One explanation is that
in the step reward case, learning relies less on the demonstrations because the reward
signal is stronger. Therefore, the training is less affected by suboptimal demonstrations.

5.8.3 Resets From Demonstrations

We find that initializing rollouts from within demonstration states greatly helps to learn
to stack 5 and 6 blocks but hurts training with fewer blocks, as shown in Fig. 25. Note
that even where resets from demonstration states helps the final success rate, learning
takes off faster when this technique is not used. However, since stacking the tower higher
is risky, the agent learns the safer behavior of stopping after achieving a certain reward.
Resetting from demonstration states alleviates this problem because the agent regularly

72

experiences higher rewards.
This method changes the sampled state distribution, biasing it towards later states.

It also inflates the Q values unrealistically. Therefore, on tasks where the RL algorithm
does not get stuck in solving a subset of the full problem, it could hurt performance.

5.9 discussion and future work

We present a system to utilize demonstrations along with reinforcement learning to
solve complicated multi-step tasks. We believe this can accelerate learning of many tasks,
especially those with sparse rewards or other difficulties in exploration. Our method is
very general, and can be applied on any continuous control task where a success criterion
can be specified and demonstrations obtained.

An exciting future direction is to train policies directly on a physical robot. Fig. 22

shows that learning the pick-and-place task takes about 1 million timesteps, which is
about 6 hours of real world interaction time. This can realistically be trained on a physical
robot, short-cutting the simulation-reality gap entirely. Many automation tasks found
in factories and warehouses are similar to pick-and-place but without the variation in
initial and goal states, so the samples required could be much lower. With our method,
no expert needs to be in the loop to train these systems: demonstrations can be collected
by users without knowledge about machine learning or robotics and rewards could be
directly obtained from human feedback.

A major limitation of this work is sample efficiency on solving harder tasks. While we
could not solve these tasks with other learning methods, our method requires a large
amount of experience which is impractical outside of simulation. To run these tasks
on physical robots, the sample efficiency will have to improved considerably. We also
require demonstrations which are not easy to collect for all tasks. If demonstrations are
not available but the environment can be reset to arbitrary states, one way to learn goal-
reaching but avoid using demonstrations is to reuse successful rollouts as in (Florensa
et al., 2018b).

Finally, our method of resets from demonstration states requires the ability to reset to
arbitrary states. Although we can solve many long-horizon tasks without this ability, it
is very effective for the hardest tasks. Resetting from demonstration rollouts resembles
curriculum learning: we solve a hard task by first solving easier tasks. If the environment
does not afford setting arbitrary states, then other curriculum methods will have to be
used.

73

6
AWA C : A C C E L E R AT I N G O N L I N E R E I N F O R C E M E N T L E A R N I N G
W I T H O F F L I N E D ATA S E T S

6.1 introduction

Learning models that generalize effectively to complex open-world settings, from im-
age recognition (Krizhevsky et al., 2012) to natural language processing (Devlin et al.,
2019), relies on large, high-capacity models as well as large, diverse, and representative
datasets. Leveraging this recipe of pre-training from large-scale offline datasets has the
potential to provide significant benefits for reinforcement learning (RL) as well, both in
terms of generalization and sample complexity. But most existing RL algorithms collect
data online from scratch every time a new policy is learned, which can quickly become
impractical in domains like robotics where physical data collection has a non-trivial cost.
In the same way that powerful models in computer vision and NLP are often pre-trained
on large, general-purpose datasets and then fine-tuned on task-specific data, practical in-
stantiations of reinforcement learning for real world robotics problems will need to be
able to incorporate large amounts of prior data effectively into the learning process,
while still collecting additional data online for the task at hand. Doing so effectively will
make the online data collection process much more practical while still allowing robots
operating in the real world to continue improving their behavior.

For data-driven reinforcement learning, offline datasets consist of trajectories of states,
actions and associated rewards. This data can potentially come from demonstrations
for the desired task (Schaal, 1997; Atkeson and Schaal, 1997), suboptimal policies (Gao
et al., 2018), demonstrations for related tasks (Zhou et al., 2019), or even just random
exploration in the environment. Depending on the quality of the data that is provided,
useful knowledge can be extracted about the dynamics of the world, about the task being
solved, or both. Effective data-driven methods for deep reinforcement learning should
be able to use this data to pre-train offline while improving with online fine-tuning.

74

D = {(s, a, s0, r)j}

⇡✓(a|s)

Update

⇡✓

p(s0|s, a)

(s, a, s0, r)

Q� Update

⇡✓ Q��

- off-policy data
- expert demos
- prior runs of RL

1. O✏ine Learning 2. Online Fine-tuning

�
Figure 26: We study learning policies by offline learning on a prior dataset D and then fine-tuning

with online interaction. The prior data could be obtained via prior runs of RL, expert
demonstrations, or any other source of transitions. Our method, advantage weighted
actor critic (AWAC) is able to learn effectively from offline data and fine-tune in order
to reach expert-level performance after collecting a limited amount of interaction data.
Videos and data are available at awacrl.github.io

Since this prior data can come from a variety of sources, we would like to design an
algorithm that does not utilize different types of data in any privileged way. For example,
the previous chapter incorporated demonstrations into RL directly by aiming to mimic
these demonstrations (A. Nair et al., 2018a), which is desirable when the demonstrations
are known to be optimal, but imposes strict requirements on the type of offline data,
and can cause undesirable bias when the prior data is not optimal. While prior methods
for fully offline RL provide a mechanism for utilizing offline data (Fujimoto et al., 2019a;
Kumar et al., 2019a), as we will show in our experiments, such methods generally are
not effective for fine-tuning with online data as they are often too conservative. In effect,
prior methods require us to choose: Do we assume prior data is optimal or not? Do
we use only offline data, or only online data? To make it feasible to learn policies for
open-world settings, we need algorithms that learn successfully in any of these cases.

In this work, we study how to build RL algorithms that are effective for pre-training
from off-policy datasets, but also well suited to continuous improvement with online
data collection. We systematically analyze the challenges with using standard off-policy
RL algorithms (Haarnoja et al., 2018a; Kumar et al., 2019a; Abdolmaleki et al., 2018)
for this problem, and introduce a simple actor critic algorithm that elegantly bridges
data-driven pre-training from offline data and improvement with online data collection.
Our method, which uses dynamic programming to train a critic but a supervised learn-
ing style update to train a constrained actor, combines the best of supervised learning
and actor-critic algorithms. Dynamic programming can leverage off-policy data and en-
able sample-efficient learning. The simple supervised actor update implicitly enforces
a constraint that mitigates the effects of distribution shift when learning from offline

75

https://awacrl.github.io/

Figure 27: Utilizing prior data for online learning allows us to solve challenging real-world
robotics tasks, such as this dexterous manipulation task where the learned policy must
control a 4-fingered hand to reposition an object.

data (Fujimoto et al., 2019a; Kumar et al., 2019a), while avoiding overly conservative
updates.

We evaluate our algorithm on a wide variety of robotic control tasks, using a set of
simulated dexterous manipulation problems as well as three separate real-world robots:
drawer opening with a 7-DoF robotic arm, picking up an object with a multi-fingered
hand, and rotating a valve with a 3-fingered claw. Our algorithm, Advantage Weighted
Actor Critic (AWAC), is able to quickly learn successful policies for these challenging
tasks, in spite of high dimensional action spaces and uninformative, sparse reward sig-
nals. We show that AWAC finetunes much more efficiently after offline pretraining as
compared to prior methods and, given a fixed time budget, attains significantly better
performance on the real-world tasks. Moreover, AWAC can utilize different types of prior
data without any algorithmic changes: demonstrations, suboptimal data, or random ex-
ploration data. The contribution of this work is not just another RL algorithm, but a
systematic study of what makes offline pre-training with online fine-tuning unique com-
pared to the standard RL paradigm, which then directly motivates a simple algorithm,
AWAC, to address these challenges. We additionally discuss the design decisions re-
quired for applying AWAC as a practical tool for real-world robotic skill learning.

6.2 preliminaries

Recall the standard reinforcement learning notation, with states s, actions a, policy
π(a|s), rewards r(s, a), and dynamics p(s ′|s, a). The discounted return is defined as
Rt =

∑T
i=t γ

ir(si, ai), for a discount factor γ and horizon T which may be infinite. The

76

objective of an RL agent is to maximize the expected discounted return J(π) = Epπ(τ)[R0]

under the distribution induced by the policy. The optimal policy can be learned directly
(e.g., using policy gradient to estimate ∇J(π) (R. J. Williams, 1992)), but this is often
ineffective due to high variance of the estimator. Many algorithms attempt to reduce
this variance by making use of the value function Vπ(s) = Epπ(τ)[Rt|s], action-value func-
tion Qπ(s, a) = Epπ(τ)[Rt|s, a], or advantage Aπ(s, a) = Qπ(s, a) − Vπ(s). The action-value
function for a policy can be written recursively via the Bellman equation:

Qπ(s, a) = r(s, a) + γEp(s ′|s,a)[V
π(s ′)] (23)

= r(s, a) + γEp(s ′|s,a)[Eπ(a ′|s ′)[Q
π(s ′, a ′)]]. (24)

Instead of estimating policy gradients directly, actor-critic algorithms maximize returns
by alternating between two phases (Konda and Tsitsiklis, 2000): policy evaluation and
policy improvement. During the policy evaluation phase, the critic Qπ(s, a) is estimated
for the current policy π. This can be accomplished by repeatedly applying the Bellman
operator B, corresponding to the right-hand side of Equation 24, as defined below:

BπQ(s, a) = r(s, a) + γEp(s ′|s,a)[Eπ(a ′|s ′)[Q
π(s ′, a ′)]]. (25)

By iterating according to Qk+1 = BπQk, Qk converges to Qπ (R. S. Sutton and Barto,
1998). With function approximation, we cannot apply the Bellman operator exactly, and
instead minimize the Bellman error with respect to Q-function parameters φk:

φk = arg min
φ

ED[(Qφ(s, a) − y)2], (26)

y = r(s, a) + γEs ′,a ′[Qφk−1(s
′, a ′)]. (27)

During policy improvement, the actor π is typically updated based on the current esti-
mate of Qπ. A commonly used technique (Lillicrap et al., 2016; Fujimoto et al., 2018b;
Haarnoja et al., 2018a) is to update the actor πθk(a|s) via likelihood ratio or pathwise
derivatives to optimize the following objective, such that the expected value of the Q-
function Qπ is maximized:

θk = arg max
θ

Es∼D[Eπθ(a|s)[Qφk(s, a)]] (28)

Actor-critic algorithms are widely used in deep RL (Mnih et al., 2016; Lillicrap et al.,
2016; Haarnoja et al., 2018a; Fujimoto et al., 2018b). With a Q-function estimator, they

77

can in principle utilize off-policy data when used with a replay buffer for storing prior
transition tuples, which we will denote β, to sample previous transitions, although we
show that this by itself is insufficient for our problem setting.

6.3 challenges in offline rl with online fine-tuning

In this section, we study the unique challenges that exist when pre-training using offline
data, followed by fine-tuning with online data collection. We first describe the problem,
and then analyze what makes this problem difficult for prior methods.

6.3.1 Problem Definition

A static dataset of transitions, D = {(s, a, s ′, r)j}, is provided to the algorithm at the be-
ginning of training. This dataset can be sampled from an arbitrary policy or mixture of
policies, and may even be collected by a human expert. This definition is general and
encompasses many scenarios: learning from demonstrations, random data, prior RL ex-
periments, or even from multi-task data. Given the dataset D, our goal is to leverage
D for pre-training and use a small amount of online interaction to learn the optimal
policy π∗(a|s), as depicted in Fig 26. This setting is representative of many real-world
RL settings, where prior data is available and the aim is to learn new skills efficiently.
We first study existing algorithms empirically in this setting on the HalfCheetah-v2 Gym
environment1. The prior dataset consists of 15 demonstrations from an expert policy and
100 suboptimal trajectories sampled from a behavioral clone of these demonstrations. All
methods for the remainder of this chapter incorporate the prior dataset, unless explicitly
labeled “scratch”.

6.3.2 Data Efficiency

One of the simplest ways to utilize prior data such as demonstrations for RL is to pre-
train a policy with imitation learning, and fine-tune with on-policy RL (Abhishek Gupta
et al., 2019a; Rajeswaran et al., 2018). This approach has two drawbacks: (1) prior data
may not be optimal; (2) on-policy fine-tuning is data inefficient as it does not reuse the
prior data in the RL stage. In our setting, data efficiency is vital. To this end, we require

1 We use this environment for analysis because it helps understand and accentuate the differences between
different algorithms. More challenging environments like the ones shown in Fig 29 are too hard to solve
to analyze variants of different methods.

78

A
ve

ra
ge

R
et

ur
ns

0K 50K 100K 150K 200K
Timesteps

0

2500

5000

7500

1. Data Efficiency from Prior Data

AWAC (Ours)
AWR [41]

DAPG [46]
MARWIL [55]

0K 50K 100K 150K 200K
Timesteps

2. Actor-Critic Methods

AWAC (Ours)
SACfD-pretrain

SACfD-prior [54]
SAC-scratch [18]

0K 50K 100K 150K 200K
Timesteps

3. Policy Constraint Methods

BEAR [30]
BEAR-loose

Offline Training

Offline data
Online data

Figure 28: Analysis of prior methods on HalfCheetah-v2 using offline RL with online fine-tuning.
(1) On-policy methods (DAPG, AWR, MARWIL) learn relatively slowly, even with
access to prior data. We present our method, AWAC, as an example of how off-policy
RL methods can learn much faster. (2) Variants of soft actor-critic (SAC) with offline
training (performed before timestep 0) and fine-tuning. We see a “dip” in the initial
performance, even if the policy is pretrained with behavioral cloning. (3) Offline RL
method BEAR (Kumar et al., 2019a) on offline training and fine-tuning, including a
“loose” variant of BEAR with a weakened constraint. Standard offline RL methods
fine-tune slowly, while the “loose” BEAR variant experiences a similar dip as SAC. (4)
We show that the fit of the behavior models π̂β used by these offline methods degrades
as new data is added to the buffer during fine-tuning, potentially explaining their poor
fine-tuning performance.

algorithms that are able to reuse arbitrary off-policy data during online RL for data-
efficient fine-tuning. We find that algorithms that use on-policy fine-tuning (Rajeswaran
et al., 2018; Abhishek Gupta et al., 2019a), or Monte-Carlo return estimation (Peters
and Schaal, 2007a; Q. Wang et al., 2018a; Peng et al., 2019a) are generally much less
efficient than off-policy actor-critic algorithms, which iterate between improving π and
estimating Qπ via Bellman backups. This can be seen from the results in Figure 28 plot
1, where on-policy methods like DAPG (Rajeswaran et al., 2018) and Monte-Carlo return
methods like AWR (Peng et al., 2019a) and MARWIL (Q. Wang et al., 2018a) are an order
of magnitude slower than off-policy actor-critic methods. Actor-critic methods, shown
in Figure 28 plot 2, can in principle use off-policy data. However, as we will discuss
next, naïvely applying these algorithms to our problem suffers from a different set of
challenges.

6.3.3 Bootstrap Error in Offline Learning with Actor-Critic Methods

When standard off-policy actor-critic methods are applied to this problem setting, they
perform poorly, as shown in the second plot in Figure 28: despite having a prior dataset
in the replay buffer, these algorithms do not benefit significantly from offline training.
We evaluate soft actor critic (Haarnoja et al., 2018a), a state-of-the-art actor-critic algo-

79

rithm for continuous control. Note that “SAC-scratch,” which does not receive the prior
data, performs similarly to “SACfD-prior,” which does have access to the prior data, indi-
cating that the off-policy RL algorithm is not actually able to make use of the off-policy
data for pre-training. Moreover, even if the SAC is policy is pre-trained by behavior
cloning, labeled “SACfD-pretrain”, we still observe an initial decrease in performance,
and performance similar to learning from scratch.

This challenge can be attributed to off-policy bootstrapping error accumulation, as
observed in several prior works (R. S. Sutton and Barto, 1998; Kumar et al., 2019a; Yifan
Wu et al., 2020; Levine et al., 2020; Fujimoto et al., 2019a). In actor-critic algorithms, the
target value Q(s ′, a ′), with a ′ ∼ π, is used to update Q(s, a). When a ′ is outside of the
data distribution, Q(s ′, a ′) will be inaccurate, leading to accumulation of error on static
datasets.

Offline RL algorithms (Fujimoto et al., 2019a; Kumar et al., 2019a; Yifan Wu et al., 2020)
propose to address this issue by explicitly adding constraints on the policy improvement
update (Equation 28) to avoid bootstrapping on out-of-distribution actions, leading to a
policy update of this form:

arg max
θ

Es∼D[Eπθ(a|s)[Qφk(s, a)]] s.t. D(πθ,πβ) 6 ε. (29)

Here, πθ is the actor being updated, and πβ(a|s) represents the (potentially unknown)
distribution from which all of the data seen so far (both offline data and online data)
was generated. In the case of a replay buffer, πβ corresponds to a mixture distribu-
tion over all past policies. Typically, πβ is not known, especially for offline data, and
must be estimated from the data itself. Many offline RL algorithms (Kumar et al.,
2019a; Fujimoto et al., 2019a; Noah Y. Siegel et al., 2020b) explicitly fit a parametric
model to samples for the distribution πβ via maximum likelihood estimation, where
samples from πβ are obtained simply by sampling uniformly from the data seen thus
far: π̂β = maxπ̂β Es,a∼πβ [log π̂β(a|s)]. After estimating π̂β, prior methods implement
the constraint given in Equation 29 in various ways, including penalties on the policy
update (Kumar et al., 2019a; Yifan Wu et al., 2020) or architecture choices for sampling
actions for policy training (Fujimoto et al., 2019a; Noah Y. Siegel et al., 2020b). As we will
see next, the requirement for accurate estimation of π̂β makes these methods difficult to
use with online fine-tuning.

80

6.3.4 Excessively Conservative Online Learning

While offline RL algorithms with constraints (Kumar et al., 2019a; Fujimoto et al., 2019a;
Yifan Wu et al., 2020) perform well offline, they struggle to improve with fine-tuning,
as shown in the third plot in Figure 28. We see that the purely offline RL performance
(at “0K” in Fig. 28) is much better than the standard off-policy methods shown in Sec-
tion 6.3.3. However, with additional iterations of online fine-tuning, the performance
increases very slowly (as seen from the slope of the BEAR curve in Fig 28). What causes
this phenomenon?

This can be attributed to challenges in fitting an accurate behavior model as data is
collected online during fine-tuning. In the offline setting, behavior models must only
be trained once via maximum likelihood, but in the online setting, the behavior model
must be updated online to track incoming data. Training density models online (in the
“streaming” setting) is a challenging research problem (Ramapuram et al., 2017), made
more difficult by a potentially complex multi-modal behavior distribution induced by
the mixture of online and offline data. To understand this, we plot the log likelihood
of learned behavior models on the dataset during online and offline training for the
HalfCheetah task. As we can see in the plot, the accuracy of the behavior models (logπβ
on the y-axis) reduces during online fine-tuning, indicating that it is not fitting the new
data well during online training. When the behavior models are inaccurate or unable to
model new data well, constrained optimization becomes too conservative, resulting in
limited improvement with fine-tuning. This analysis suggests that, in order to address
our problem setting, we require an off-policy RL algorithm that constrains the policy to
prevent offline instability and error accumulation, but not so conservatively that it pre-
vents online fine-tuning due to imperfect behavior modeling. Our proposed algorithm,
which we discuss in the next section, accomplishes this by employing an implicit con-
straint, which does not require any explicit modeling of the behavior policy.

6.4 advantage weighted actor critic : a simple algorithm for fine-
tuning from offline datasets

In this section, we will describe the advantage weighted actor-critic (AWAC) algorithm,
which trains an off-policy critic and an actor with an implicit policy constraint. We will
show AWAC mitigates the challenges outlined in Section 6.3. AWAC follows the design
for actor-critic algorithms as described in Section 11.3, with a policy evaluation step to
learn Qπ and a policy improvement step to update π. AWAC uses off-policy temporal-

81

difference learning to estimate Qπ in the policy evaluation step, and a policy improve-
ment update that is able to obtain the benefits of offline RL algorithms at training from
prior datasets, while avoiding the overly conservative behavior described in Section 6.3.4.
We describe the policy improvement step in AWAC below, and then summarize the en-
tire algorithm.

Policy improvement for AWAC proceeds by learning a policy that maximizes the value
of the critic learned in the policy evaluation step via TD bootstrapping. If done naively,
this can lead to the issues described in Section 6.3.4, but we can avoid the challenges
of bootstrap error accumulation by restricting the policy distribution to stay close to
the data observed thus far during the actor update, while maximizing the value of the
critic. At iteration k, AWAC therefore optimizes the policy to maximize the estimated Q-
functionQπk(s, a) at every state, while constraining it to stay close to the actions observed
in the data, similar to prior offline RL methods, though this constraint will be enforced
differently. Note from the definition of the advantage in Section 11.3 that optimizing
Qπk(s, a) is equivalent to optimizing Aπk(s, a). We can therefore write this optimization
as:

πk+1 = arg max
π∈Π

Ea∼π(·|s)[A
πk(s, a)] (30)

s.t. DKL(π(·|s)||πβ(·|s)) 6 ε. (31)

As we saw in Section 6.3.3, enforcing the constraint by incorporating an explicit learned
behavior model (Kumar et al., 2019a; Fujimoto et al., 2019a; Yifan Wu et al., 2020; Noah
Y. Siegel et al., 2020b) leads to poor fine-tuning performance. Instead, we enforce the
constraint implicitly, without learning a behavior model. We first derive the solution to
the constrained optimization in Equation 30 to obtain a non-parametric closed form
for the actor. This solution is then projected onto the parametric policy class without
any explicit behavior model. The analytic solution to Equation 30 can be obtained by
enforcing the KKT conditions (Peters and Schaal, 2007a; Peters et al., 2010; Peng et al.,
2019a). The Lagrangian is:

L(π, λ) = Ea∼π(·|s)[A
πk(s, a)] + λ(ε−DKL(π(·|s)||πβ(·|s))), (32)

and the closed form solution to this problem is π∗(a|s) ∝ πβ(a|s) exp
(
1
λA

πk(s, a)
)
. When

using function approximators, such as deep neural networks as we do, we need to project
the non-parametric solution into our policy space. For a policy πθ with parameters θ, this
can be done by minimizing the KL divergence of πθ from the optimal non-parametric

82

solution π∗ under the data distribution ρπβ(s):

arg min
θ

ρπβ(s)
[DKL(π

∗(·|s)||πθ(·|s))] (33)

= arg min
θ

ρπβ(s)
[
π∗(·|s)[− logπθ(·|s)]

]
(34)

Note that the parametric policy could be projected with either direction of KL divergence.
Choosing the reverse KL results in explicit penalty methods (Yifan Wu et al., 2020) that
rely on evaluating the density of a learned behavior model. Instead, by using forward
KL, we can compute the policy update by sampling directly from β:

θk+1 = arg max
θ

s,a∼β

[
logπθ(a|s) exp

(
1

λ
Aπk(s, a)

)]
. (35)

This actor update amounts to weighted maximum likelihood (i.e., supervised learning),
where the targets are obtained by re-weighting the state-action pairs observed in the
current dataset by the predicted advantages from the learned critic, without explicitly
learning any parametric behavior model, simply sampling (s,a) from the replay buffer
β. See Appendix D.1 for a more detailed derivation and Appendix D.2 for specific im-
plementation details.
Avoiding explicit behavior modeling. Note that the update in Equation 35 completely
avoids any modeling of the previously observed data β with a parametric model. By
avoiding any explicit learning of the behavior model AWAC is far less conservative
than methods which fit a model π̂β explicitly, and better incorporates new data dur-
ing online fine-tuning, as seen from our results in Section 9.5. This derivation is related
to AWR (Peng et al., 2019a), with the main difference that AWAC uses an off-policy
Q-function Qπ to estimate the advantage, which greatly improves efficiency and even
final performance (see results in Section 6.6.1.1). The update also resembles ABM-MPO,
but ABM-MPO does require modeling the behavior policy which, as discussed in Sec-
tion 6.3.4, can lead to poor fine-tuning. In Section 6.6.1.1, AWAC outperforms ABM-MPO
on a range of challenging tasks.
Policy evaluation. During policy evaluation, we estimate the action-value Qπ(s, a) for
the current policy π, as described in Section 11.3. We utilize a temporal difference learn-
ing scheme for policy evaluation (Haarnoja et al., 2018a; Fujimoto et al., 2018b), min-
imizing the Bellman error as described in Equation 25. This enables us to learn very
efficiently from off-policy data. This is particularly important in our problem setting to
effectively use the offline dataset, and allows us to significantly outperform alternatives

83

using Monte-Carlo evaluation or TD(λ) to estimate returns (Peng et al., 2019a).

Algorithm 4 Advantage Weighted Actor Critic (AWAC)

1: Dataset D = {(s, a, s ′, r)j}
2: Initialize buffer β = D

3: Initialize πθ, Qφ
4: for iteration i = 1, 2, ... do
5: Sample batch (s, a, s ′, r) ∼ β
6: y = r(s, a) + γEs ′,a ′[Qφk−1(s

′, a ′)]
7: φ← arg minφ ED[(Qφ(s, a) − y)2]
8: θ← arg maxθ s,a∼β

[
logπθ(a|s) exp

(
1
λA

πk(s, a)
)]

9: if i > num_offline_steps then
10: τ1, . . . , τK ∼ pπθ(τ)
11: β← β∪ {τ1, . . . , τK}
12: end if
13: end for=0

Algorithm summary. The full AWAC algorithm for offline RL with online fine-tuning
is summarized in Algorithm 4. In a practical implementation, we can parameterize the
actor and the critic by neural networks and perform SGD updates from Eqn. 35 and
Eqn. 26. Specific details are provided in Appendix D.2. AWAC ensures data efficiency
with off-policy critic estimation via bootstrapping, and avoids offline bootstrap error
with a constrained actor update. By avoiding explicit modeling of the behavior policy,
AWAC avoids overly conservative updates.

While AWAC is related to several prior RL algorithms, we note that there are key
differences that make it particularly amenable to the problem setting we are considering
– offline RL with online fine-tuning – that other methods are unable to tackle. As we
show in our experimental analysis with direct comparisons to prior work, every one of
the design decisions being made in this work are important for algorithm performance.
As compared to AWR (Peng et al., 2019a), AWAC uses TD bootstrapping for significantly
more efficient and even asymptotically better performance. As compared to offline RL
techniques like ABM (Noah Y. Siegel et al., 2020b), MPO (Abdolmaleki et al., 2018), BEAR
(Kumar et al., 2019a) or BCQ (Fujimoto et al., 2019a) this work is able to avoid the need
for any behavior modeling, thereby enabling the online fine-tuning part of the problem
much better. As shown in Fig 29, when these seemingly ablations are made to AWAC,
the algorithm performs significantly worse.

84

Su
cc

es
s

R
at

e

0K 200K 400K 600K 800K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 pen-binary-v0

0K 200K 400K 600K 800K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 door-binary-v0

0M 1M 2M 3M 4M
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 relocate-binary-v0

AWAC (Ours)
ABM [49]

AWR [41]
MARWIL [55]

BEAR [30]
BRAC [59]

DAPG [46]
SACfD [54]

SAC+BC [39]

Figure 29: Comparative evaluation on the dexterous manipulation tasks. These tasks are difficult
due to their high action dimensionality and reward sparsity. We see that AWAC is
able to learn these tasks with little online data collection required (100K samples ≈
16 minutes of equivalent real-world interaction time). Meanwhile, most prior methods
are not able to solve the harder two tasks: door opening and object relocation.

6.5 related work

Off-policy RL algorithms are designed to reuse off-policy data during training, and have
been studied extensively (Konda and Tsitsiklis, 2000; Degris et al., 2012; Mnih et al.,
2016; Haarnoja et al., 2018a; Fujimoto et al., 2018b; Bhatnagar et al., 2009; Peters and
Schaal, 2008a; S. Zhang et al., 2019; Wawrzynski, 2009; Balduzzi and Ghifary, 2015).
While standard off-policy methods are able to benefit from including data seen during a
training run, as we show in Section 6.3.3 they struggle when training from previously
collected offline data from other policies, due to error accumulation with distribution
shift (Fujimoto et al., 2019a; Kumar et al., 2019a). Offline RL methods aim to address
this issue, often by constraining the actor updates to avoid excessive deviation from
the data distribution (Lange et al., 2012b; P. S. Thomas and Brunskill, 2016; Hallak et
al., 2015; Hallak et al., 2016; Hallak and Mannor, 2017; Agarwal et al., 2019; Kumar
et al., 2019a; Fujimoto et al., 2019a; Fakoor et al., 2019; Nachum et al., 2019; Noah Y.
Siegel et al., 2020b; Levine et al., 2020; Ruiyi Zhang et al., 2020). One class of these
methods utilize importance sampling (P. S. Thomas and Brunskill, 2016; Ruiyi Zhang
et al., 2020; Nachum et al., 2019; Degris et al., 2012; Jiang and L. Li, 2016; Hallak and
Mannor, 2017). Another class of methods perform offline reinforcement learning via
dynamic programming, with an explicit constraint to prevent deviation from the data
distribution (Lange et al., 2012b; Kumar et al., 2019a; Fujimoto et al., 2019a; Yifan Wu
et al., 2020; Jaques et al., 2019). While these algorithms perform well in the purely offline
settings, we show in Section 6.3.4 that such methods tend to be overly conservative,
and therefore may not learn efficiently when fine-tuning with online data collection. In

85

contrast, our algorithm AWAC is comparable to these algorithms for offline pre-training,
but learns much more efficiently during subsequent fine-tuning.

Prior work has also considered the special case of learning from demonstration data.
One class of algorithms initializes the policy via behavioral cloning from demonstrations,
and then fine-tunes with reinforcement learning (Peters and Schaal, 2008c; Ijspeert et al.,
2002; Theodorou et al., 2010; Kim et al., 2013; Rajeswaran et al., 2018; Abhishek Gupta
et al., 2019a; H. Zhu et al., 2019). Most such methods use on-policy fine-tuning, which
is less sample-efficient than off-policy methods that perform value function estimation.
Other prior works have incorporated demonstration data into the replay buffer using
off-policy RL methods (Veerk et al., 2017; A. Nair et al., 2017). We show in Section 6.3.3
that these strategies can result in a large dip in performance during online fine-tuning,
due to the inability to pre-train an effective value function from offline data. In contrast,
our work shows that using supervised learning style policy updates can allow for better
bootstrapping from demonstrations as compared to Veerk et al. (2017) and A. Nair et al.
(2017).

Our method builds on algorithms that implement a maximum likelihood objective for
the actor, based on an expectation-maximization formulation of RL (Peters and Schaal,
2007a; Neumann and Peters, 2008; Theodorou et al., 2010; Peters et al., 2010; Peng et
al., 2019a; Abdolmaleki et al., 2018; Q. Wang et al., 2018a). Most closely related to our
method in this respect are the algorithms proposed by Peng et al. (2019a) (AWR) and
Noah Y. Siegel et al. (2020b) (ABM). Unlike AWR, which estimates the value function of
the behavior policy, Vπβ via Monte-Carlo estimation or TD−λ, our algorithm estimates
the Q-function of the current policy Qπ via bootstrapping, enabling much more effi-
cient learning, as shown in our experiments. Unlike ABM, our method does not require
learning a separate function approximator to model the behavior policy πβ, and instead
directly samples the dataset. As we discussed in Section 6.3.4, modeling πβ can be a
major challenge for online fine-tuning. While these distinctions may seem somewhat
subtle, they are important and we show in our experiments that they result in a large
difference in algorithm performance. Finally, our work goes beyond the analysis in prior
work, by studying the issues associated with pre-training and fine-tuning in Section 6.3.
Closely to our work, Ziyu Wang et al. (2020b) proposed critic regularized regression for
offline RL, which uses off-policy Q-learning and an equivalent policy update. In contrast
to this concurrent work, we specifically study the offline pretraining online fine-tuning
problem, which this prior work does not address, analyze why other methods are inef-
fective in this setting, and show that our approach enables strong fine-tuning results on
challenging dextrous manipulation tasks and real-world robotic systems.

86

Figure 30: Illustration of dexterous manipulation tasks in simulation. These tasks exhibit sparse
rewards, high-dimensional control, and complex contact physics.

The idea of bootstrapping learning from prior data for real-world robotic learning is
not a new one; in fact, it has been extensively explored in the context of providing ini-
tial rollouts to bootstrap policy search (Kober and Peter, 2008; Peters and Schaal, 2008c;
Kormushev et al., 2010), initializing dynamic motion primitives (Bentivegna et al., 2003;
Kormushev et al., 2010; Mlling et al., 2013) in the context of on-policy reinforcement
learning algorithms (Rajeswaran et al., 2018; H. Zhu et al., 2019), inferring reward shap-
ing (Yuchen Wu et al., 2020) and even for inferring reward functions (Ziebart et al., 2008;
Abbeel and Andrew Y Ng, 2004). Our work shows how we can generalize the idea of
bootstrapping robotic learning from prior data to include arbitrary sub-optimal data
rather than just demonstration data and shows the ability to continue improving beyond
this data as well.

6.6 experimental evaluation

In our experimental evaluation we aim to answer the following question:
1. Does AWAC effectively combine prior data with online experience to learn complex

robotic control tasks more efficiently than prior methods?
2. Is AWAC able to learn from sub-optimal or random data?
3. Does AWAC provide a practical way to bootstrap real-world robotic reinforcement

learning?
In the following sections, we study these questions using several challenging and high-
dimensional simulated robotic tasks, as well as three separate real-world robotic plat-
forms. Videos of all experiments are available at awacrl.github.io

87

https://awacrl.github.io/

6.6.1 Simulated Experiments

We study the first two questions in challenging simulation environments.

6.6.1.1 Comparative Evaluation When Bootstrapping From Prior Data

We study tasks in simulation that have significant exploration challenges, where offline
learning and online fine-tuning are likely to be effective. We begin our analysis with a set
of challenging sparse reward dexterous manipulation tasks proposed by Rajeswaran et
al. (2018) in simulation. These tasks involve complex manipulation skills using a 28-DoF
five-fingered hand in the MuJoCo simulator (Todorov et al., 2012) shown in Figure 29:
in-hand rotation of a pen, opening a door by unlatching the handle, and picking up a
sphere and relocating it to a target location. The reward functions in these environments
are binary 0-1 rewards for task completion. 2 Rajeswaran et al. (2018) provide 25 human
demonstrations for each task, which are not fully optimal but do solve the task. Since this
dataset is small, we generated another 500 trajectories of interaction data by constructing
a behavioral cloned policy, and then sampling from this policy.

First, we compare our method on these dexterous manipulation tasks against prior
methods for off-policy learning, offline learning, and bootstrapping from demonstra-
tions. Specific implementation details are discussed in Appendix D.4. The results are
shown in Fig. 29. Our method is able to leverage the prior data to quickly attain good
performance, and the efficient off-policy actor-critic component of our approach fine-
tunes much more quickly than demonstration augmented policy gradient (DAPG), the
method proposed by Rajeswaran et al. (2018). For example, our method solves the pen
task in 120K timesteps, the equivalent of just 20 minutes of online interaction. While
the baseline comparisons and ablations make some amount of progress on the pen task,
alternative off-policy RL and offline RL algorithms are largely unable to solve the door
and relocate task in the time-frame considered. We find that the design decisions to use
off-policy critic estimation allow AWAC to outperform AWR (Peng et al., 2019a) while
the implicit behavior modeling allows AWAC to significantly outperform ABM (Noah Y.
Siegel et al., 2020b), although ABM does make some progress. Rajeswaran et al. (2018)
show that DAPG can solve variants of these tasks with more well-shaped rewards, but
requires considerably more samples.

2 Rajeswaran et al. (2018) use a combination of task completion factors as the sparse reward. For instance,
in the door task, the sparse reward as a function of the door position d was r = 101d>1.35 + 81d>1.0 +
21d>1.2 − 0.1||d− 1.57||2. We only use the fully sparse success measure r = 1d>1.4, which is substantially
more difficult.

88

A
ve

ra
ge

R
et

ur
n

5000 10000 15000 20000
Timesteps

100

80

60

40

RobelTurnFixed-v0

10000 20000 30000 40000
Timesteps

100

95

90

85

SawyerDrawerOpening-v0

0 10000 20000 30000 40000 50000
Timesteps

225

200

175

150

125

100
SawyerDHandReposition-v0

AWAC (Ours)
SACfD [39]
SAC+BC [54]
BC

Figure 31: Algorithm comparison on three real-world robotic environments. Images of real world
robotic tasks are pictured above. Left: a three fingered D’claw must rotate a valve 180◦.
Middle: a Sawyer robot must slide open a drawer using a hook attachment. Right: a
dexterous hand attached to a Sawyer robot must re-position an object to to the center of
the table. On each task, AWAC trained offline achieves reasonable performance (shown
at timestep 0) and then steadily improves from online interaction. Other methods,
which also all have access to prior data, fail to utilize the prior data effectively offline
and therefore exhibit slow or no online improvement. Videos of all experiments are
available at awacrl.github.io

Additionally, we evaluated all methods on the Gym MuJoCo locomotion benchmarks,
similarly providing demonstrations as offline data. The results plots for these experi-
ments are included in Appendix D.5 in the supplementary materials. These tasks are
substantially easier than the sparse reward manipulation tasks described above, and a
number of prior methods also perform well. SAC+BC and BRAC perform on par with
our method on the HalfCheetah task, and ABM performs on par with our method on the
Ant task, while our method outperforms all others on the Walker2D task. However, our
method matches or exceeds the best prior method in all cases, whereas no other single
prior method attains good performance on all tasks.

89

https://awacrl.github.io/

6.6.1.2 Fine-Tuning from Random Policy Data

0K 20K 40K 60K 80K 100K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Learning From Random Data

AWAC
BEAR

BRAC
ABM

SAC
SAC+BC

Figure 32: Comparison of fine-tuning from an initial dataset of suboptimal data on a Sawyer
robot pushing task.

An advantage of using off-policy RL for reinforcement learning is that we can also in-
corporate suboptimal data, rather than demonstrations. In this experiment, we evaluate
on a simulated tabletop pushing environment with a Sawyer robot pictured in Fig 29

and described further in Appendix D.3. To study the potential to learn from suboptimal
data, we use an off-policy dataset of 500 trajectories generated by a random process. The
task is to push an object to a target location in a 40cm x 20cm goal space. The results
are shown in Figure 32. We see that while many methods begin at the same initial per-
formance, AWAC learns the fastest online and is actually able to make use of the offline
dataset effectively.

6.6.2 Real-World Robot Learning with Prior Data

We next evaluate AWAC and several baselines on a range of real-world robotic systems,
shown in the top row of Fig 31. We study the following tasks: rotating a valve with a 3-
fingered claw, repositioning an object with a 4-fingered hand, and opening a drawer with
a Sawyer robotic arm. The dexterous manipulation tasks involve fine finger coordination
to properly reorient and reposition objects, as well as high dimensional state and action
spaces. The Sawyer drawer opening task requires accurate arm movements to properly
hook the end-effector into the handle of the drawer. To ensure continuous operation,

90

all environments are fitted with an automated reset mechanism that executes before
each trajectory is collected, allowing us to run real-world experiments without human
supervision. Since real-world experiments are significantly more time-consuming, we
could not compare to the full range of prior methods in the real world, but we include
comparisons with the following methods: direct behavioral cloning (BC) of the provided
data (which is reasonable in these settings, since the prior data includes demonstrations),
off-policy RL with soft actor-critic (SAC) (Haarnoja et al., 2018a), where the prior data is
included in the replay buffer and used to pretrain the policy (which refer to as SACfD),
and a modified version of SAC that includes an added behavioral cloning loss (SAC+BC),
which is analogous to A. Nair et al. (2018a) or an off-policy version of Rajeswaran et al.
(2018). Further implementation details of these algorithms are provided in Appendix D.4
in the supplementary materials.

Next, we describe the experimental setup for hardware experiments. Precise details of
the hardware setup can be found in Appendix D.8 in the supplementary materials.
Dexterous Manipulation with a 3-Fingered Claw. This task requires controlling a 3-
fingered, 9 DoF robotic hand, introduced by Ahn et al. (2019), to rotate a 4-pronged valve
object by 180 degrees. To properly perform this task, multiple fingers need to coordinate
to stably and efficiently rotate the valve into the desired orientation. The state space of
the system consists of the joint angles of all the 9 joints in the claw, and the action space
consists of the joint positions of the fingers, which are followed by the robot using a
low-level PID controller. The reward for this task is sparse: −1 if the valve is rotated
within 0.25 radians of the target, and 0 otherwise. Note that this reward function is
significantly more difficult than the dense, well-shaped reward function typically used
in prior work (Ahn et al., 2019). The prior data consists of 10 trajectories collected using
kinesthetic teaching, combined this with 200 trajectories obtained through executing a
policy trained via imitation learning in the environment.
Drawer Opening with a Sawyer Arm. This task requires controlling a Sawyer arm to
slide open a drawer. The robot uses 3-dimensional end-effector control, and is equipped
with a hook attachment to make the drawer opening possible. The state space is 4-
dimensional, consisting of the position of the robot end-effector and the linear position
of the drawer, measured using an encoder. The reward is sparse: −1 if the drawer is
open beyond a threshold and 0 otherwise. For this task, the prior data consists of 10

demonstration trajectories collected using via teleoperation with a 3D mouse, as well
as 500 trajectories obtained through executing a policy trained via imitation learning in
the environment. This task is challenging because it requires very precise insertion of
the hook attachment into the opening, as pictured in Fig 31, before the robot can open

91

the drawer. Due to the sparse reward, making learning progress on this task requires
utilizing prior data to construct an initial policy that at least sometimes succeeds.
Dexterous Manipulation with a Robotic Hand. This task requires controlling a 4-
fingered robotic hand mounted on a Sawyer robotic arm to reposition an object (Ab-
hishek Gupta et al., 2021). The task requires careful coordination between the hand and
the arm to manipulate the object accurately. The reward for this task is a combination of
the negative distance between the hand and the object and the negative distance between
the object and the target. The actions are 19-dimensional, consisting of 16-dimensional
finger control and 3-dimensional end effector control of the arm. For this task, the prior
data of 19 trajectories were collected using kinesthetic teaching and combined with 50
trajectories obtained by executing a policy trained with imitation learning on this data.

The results on these tasks are shown in Figure 31. We first see that AWAC attains
performance that is comparable to the best prior method from offline training alone, as
indicated by the value at time step 0 (which corresponds to the beginning of online fine-
tuning). This means that, during online interaction, AWAC collects data that is of higher
quality, and improves more quickly. The prior methods struggle to improve from online
training on these tasks, likely because the sparse reward function and challenging dy-
namics make progress very difficult from a bad initialization. These results suggest that
AWAC is effectively able to leverage prior data to bootstrap online reinforcement learn-
ing in the real world, even on tasks with difficult and uninformative reward functions.

6.7 discussion and future work

We have discussed the challenges existing RL methods face when fine-tuning from prior
datasets, and proposed an algorithm, AWAC, for this setting. The key insight in AWAC
is that an implicitly constrained actor-critic algorithm is able to both train offline and
continue to improve with more experience. We provide detailed empirical analysis of
the design decisions behind AWAC, showing the importance of off-policy learning, boot-
strapping and the particular form of implicit constraint enforcement. To validate these
ideas, we evaluate on a variety of simulated and real world robotic problems.

While AWAC is able to effectively leverage prior data for significantly accelerating
learning, it does run into some limitations. Firstly, it can be challenging to choose the
appropriate threshold for constrained optimization. Resolving this would involve ex-
ploring adaptive threshold tuning schemes. Secondly, while AWAC is able to avoid over-
conservative behavior empirically, in future work, we hope to analyze theoretical factors
that go into building a good finetuning algorithm. And lastly, in the future we plan on

92

applying AWAC to more broadly incorporate data across different robots, labs and tasks
rather than just on isolated setups. By doing so, we hope to enable an even wider array
of robotic applications.

6.8 contribution statement

The work in this chapter was performed in collaboration with Abhishek Gupta, Murtaza
Dalal, and Sergey Levine (A. Nair et al., 2020). A.N. and A.G. were joint first co-authors.
A.N. proposed the project, managed the project, and implemented the algorithm. A.N.
and M.D. conducted the simulation experiments. A.G. advised the project and conducted
the real-world dextrous manipulation experiments. A.N. conducted the remaining real-
world robot experiments. A.N. and A.G. co-wrote the paper. S.L. advised the project and
assisted with writing.

93

7
O F F L I N E R E I N F O R C E M E N T L E A R N I N G W I T H I M P L I C I T
Q - L E A R N I N G

Offline reinforcement learning (RL) addresses the problem of learning effective poli-
cies entirely from previously collected data, without online interaction (Fujimoto et al.,
2019b; Lange et al., 2012a). This is very appealing in a range of real-world domains,
from robotics to logistics and operations research, where real-world exploration with
untrained policies is costly or dangerous, but prior data is available. However, this also
carries with it major challenges: improving the policy beyond the level of the behav-
ior policy that collected the data requires estimating values for actions other than those
that were seen in the dataset, and this, in turn, requires trading off policy improvement
against distributional shift, since the values of actions that are too different from those in
the data are unlikely to be estimated accurately. Prior methods generally address this by
either constraining the policy to limit how far it deviates from the behavior policy (Fuji-
moto et al., 2019b; Yifan Wu et al., 2019; Fujimoto and S. S. Gu, 2021; Kumar et al., 2019b;
A. Nair et al., 2020; Ziyu Wang et al., 2020a), or by regularizing the learned value func-
tions to assign low values to out-of-distribution actions (Kumar et al., 2020b; Kostrikov
et al., 2021a). Nevertheless, this imposes a trade-off between how much the policy im-
proves and how vulnerable it is to misestimation due to distributional shift. Can we
devise an offline RL method that avoids this issue by never needing to directly query or
estimate values for actions that were not seen in the data?

In this work, we start from an observation that in-distribution constraints widely used
in prior work might not be sufficient to avoid value function extrapolation, and we ask
whether it is possible to learn an optimal policy with in-sample learning, without ever
querying the values of any unseen actions. The key idea in our method is to approxi-
mate an upper expectile of the distribution over values with respect to the distribution of
dataset actions for each state. We alternate between fitting this value function with expec-
tile regression, and then using it to compute Bellman backups for training theQ-function.

94

We show that we can do this simply by modifying the loss function in a SARSA-style
TD backup, without ever using out-of-sample actions in the target value. Once this Q-
function has converged, we extract the corresponding policy using advantage-weighted
behavioral cloning. This approach does not require explicit constraints or explicit regu-
larization of out-of-distribution actions during value function training, though our pol-
icy extraction step does implicitly enforce a constraint, as discussed in prior work on
advantage-weighted regression (Peters and Schaal, 2007b; Peng et al., 2019b; A. Nair et
al., 2020; Ziyu Wang et al., 2020a).

Our main contribution is implicit Q-learning (IQL), a new offline RL algorithm that
avoids ever querying values of unseen actions while still being able to perform multi-step
dynamic programming updates. Our method is easy to implement by making a small
change to the loss function in a simple SARSA-like TD update and is computationally
very efficient. Furthermore, our approach demonstrates the state-of-the-art performance
on D4RL, a popular benchmark for offline reinforcement learning. In particular, our
approach significantly improves over the prior state-of-the-art on challenging Ant Maze
tasks that require to “stitch” several sub-optimal trajectories. Finally, we demonstrate
that our approach is suitable for finetuning; after initialization from offline RL, IQL is
capable of improving policy performance utilizing additional interactions.

7.1 related work

A significant portion of recently proposed offline RL methods are based on either con-
strained or regularized approximate dynamic programming (e.g., Q-learning or actor-
critic methods), with the constraint or regularizer serving to limit deviation from the
behavior policy. We will refer to these methods as “multi-step dynamic programming”
algorithms, since they perform true dynamic programming for multiple iterations, and
therefore can in principle recover the optimal policy if provided with high-coverage data.
The constraints can be implemented via an explicit density model (Yifan Wu et al., 2019;
Fujimoto et al., 2019b; Kumar et al., 2019b; Ghasemipour et al., 2021), implicit divergence
constraints (A. Nair et al., 2020; Ziyu Wang et al., 2020a; Peters and Schaal, 2007b; Peng
et al., 2019b; Noah Y Siegel et al., 2020a), or by adding a supervised learning term to the
policy improvement objective (Fujimoto and S. S. Gu, 2021). Several works have also pro-
posed to directly regularize the Q-function to produce low values for out-of-distribution
actions (Kostrikov et al., 2021a; Kumar et al., 2020b; Fakoor et al., 2021). Our method is
also a multi-step dynamic programming algorithm. However, in contrast to prior works,
our method completely avoids directly querying the learned Q-function with unseen ac-

95

tions during training, removing the need for any constraint during this stage, though the
subsequent policy extraction, which is based on advantage-weighted regression (Peng et
al., 2019b; A. Nair et al., 2020), does apply an implicit constraint. However, this policy
does not actually influence value function training.

In contrast to multi-step dynamic programming methods, several recent works have
proposed methods that rely either on a single step of policy iteration, fitting the value
function or Q-function of the behavior policy and then extracting the corresponding
greedy policy (Peng et al., 2019b; Brandfonbrener et al., 2021; Gulcehre et al., 2021), or
else avoid value functions completely and utilize behavioral cloning-style objectives (L.
Chen et al., 2021). We collectively refer to these as “single-step” approaches. These meth-
ods avoid needing to query unseen actions as well, since they either use no value func-
tion at all, or learn the value function of the behavior policy. Although these methods
are simple to implement and effective on the MuJoCo locomotion tasks in D4RL, we
show that such single-step methods perform very poorly on more complex datasets
in D4RL, which require combining parts of suboptimal trajectories (“stitching”). Prior
multi-step dynamic programming methods perform much better in such settings, as
does our method. We discuss this distinction in more detail in Section 7.3.1. Our method
also shares the simplicity and computational efficiency of single-step approaches, pro-
viding an appealing combination of the strengths of both types of methods.

Our method is based on estimating the characteristics of a random variable. Several
recent works involve approximating statistical quantities of the value function distribu-
tion. In particular, quantile regression (Koenker and Hallock, 2001) has been previously
used in reinforcement learning to estimate the quantile function of a state-action value
function (Dabney et al., 2018b; Dabney et al., 2018a; Kuznetsov et al., 2020). Although our
method is related, in that we perform expectile regression, our aim is not to estimate the
distribution of values that results from stochastic transitions, but rather estimate expec-
tiles of the state value function with respect to random actions. This is a very different
statistic: our aim is not to determine how the Q-value can vary with different future
outcomes, but how the Q-value can vary with different actions while averaging together
future outcomes due to stochastic dynamics. While prior work on distributional RL can also
be used for offline RL, it would suffer from the same action extrapolation issues as other
methods, and would require similar constraints or regularization, while our method
does not.

96

7.2 implicit q-learning

Like many recent offline RL methods, our work builds on approximate dynamic pro-
gramming methods that minimize temporal difference error, according to the following
loss:

LTD(θ) = E(s,a,s ′)∼D[(r(s,a) + γmax
a ′
Qθ̂(s

′,a ′) −Qθ(s,a))2], (36)

where D is the dataset, Qθ(s,a) is a parameterized Q-function, Qθ̂(s,a) is a target net-
work (e.g., with soft parameters updates defined via Polyak averaging), and the policy
is defined as π(s) = arg maxaQθ(s,a). Most recent offline RL methods modify either the
value function loss (above) to regularize the value function in a way that keeps the result-
ing policy close to the data, or constrain the arg max policy directly. This is important
because out-of-distribution actions a ′ can produce erroneous values for Qθ̂(s

′,a ′) in the
above objective, often leading to overestimation as the policy is defined to maximize the
(estimated) Q-value.

In this work, we aim to entirely avoid querying out-of-sample (unseen) actions in our
TD loss. Although the goal of this work is to approximate the optimal Q-function, we
start by considering fitted Q evaluation with a SARSA-style objective which has been
considered in prior work on Offline Reinforcement Learning (Brandfonbrener et al., 2021;
Gulcehre et al., 2021). This objective aims to learn the value of the dataset policy πβ (also
called the behavior policy):

L(θ) = E(s,a,s ′,a ′)∼D[(r(s,a) + γQθ̂(s
′,a ′) −Qθ(s,a))2]. (37)

This objective never queries values for out-of-sample actions, in contrast to Equation (36).
One specific property of this objective that is important for this work is that it uses mean
squared error (MSE) that fits Qθ(s,a) to predict the mean statistics of the TD targets.
Thus, if we assume unlimited capacity and no sampling error, the optimal parameters
should satisfy

Qθ∗(s,a) ≈ r(s,a) + γEs ′∼p(·|s,a)
a ′∼πβ(·|s)

[Qθ̂(s
′,a ′)]. (38)

Prior work (Brandfonbrener et al., 2021; Gulcehre et al., 2021; Peng et al., 2019b) has
proposed directly using this objective to learn Qπβ , and then train the policy πψ to
maximize Qπβ . This avoids any issues with out-of-distribution actions, since the TD
loss only uses dataset actions. However, while this procedure works well empirically on
simple MuJoCo locomotion tasks in D4RL, we will show that it performs very poorly on
more complex tasks that benefit from multi-step dynamic programming. In our method,

97

which we derive next, we retain the benefits of using this SARSA-like objective, but
modify it so that it allows us to perform multi-step dynamic programming and learn a
near-optimal Q-function.

Our method will perform a Q-function update similar to Equation (37), but we will
aim to estimate the maximum Q-value over actions that are in the support of the data
distribution. Crucially, we will show that it is possible to do this without ever querying the
learned Q-function on out-of-sample actions by utilizing expectile regression. Formally, the
value function we aim to learn is given by:

L(θ) = E(s,a,s ′)∼D[(r(s,a) + γ max
a ′∈A

s.t. πβ(a ′|s ′)>0

Qθ̂(s
′,a ′) −Qθ(s,a))2]. (39)

Our algorithm, implicit Q-Learning (IQL), aims to estimate this objective while evaluat-
ing the Q-function only on the state-action pairs in the dataset. To this end, we propose
to fit Qθ(s,a) to estimate state-conditional expectiles of the target values, and show
that specific expectiles approximate the maximization defined above. In Section 7.2.4 we
show that this approach performs multi-step dynamic programming in theory, and in
Section 7.3.1 we show that it does so in practice.

7.2.1 Expectile Regression

Practical methods for estimating various statistics of a random variable have been thor-
oughly studies in applied statistics and econometrics. The τ ∈ (0, 1) expectile of some
random variable X is defined as a solution to the asymmetric least squares problem:

arg min
mτ

Ex∼X[L
τ
2(x−mτ)], where Lτ2(u) = |τ− 1(u < 0)|u2.

That is, for τ > 0.5, this asymmetric loss function downweights the contributions of
x values smaller than mτ while giving more weights to larger values (see Figure 33,
left). Expectile regression is closely related to quantile regression (Koenker and Hallock,
2001), which is a popular technique for estimating quantiles of a distribution widely
used in reinforcement learning (Dabney et al., 2018b; Dabney et al., 2018a) 1. The quantile

1 Our method could also be derived with quantiles, but since we are not interested in learning all of the
expectiles/quantiles, unlike prior work (Dabney et al., 2018b; Dabney et al., 2018a), it is more convenient
to estimate a single expectile because this involves a simple modification to the MSE loss that is already
used in standard RL methods. We found it to work somewhat better than quantile regression with its
corresponding `1 loss.

98

1.0 0.5 0.0 0.5 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

|
(u

<
0)

|u
2

= 0.01
= 0.1
= 0.5(MSE)
= 0.9
= 0.99

2 0 2
x

0.0

0.1

0.2

0.3

0.4

p(
x)

m0.01
m0.1
m0.5
m0.9
m0.99

1.0 0.5 0.0 0.5 1.0
x

0.5

0.0

0.5

1.0

1.5

y m0.01(x)
m0.1(x)
m0.5(x)
m0.9(x)
m0.99(x)

Figure 33: Left: The asymmetric squared loss used for expectile regression. τ = 0.5 corresponds
to the standard mean squared error loss, while τ = 0.9 gives more weight to pos-
itives differences. Center: Expectiles of a normal distribution. Right: an example of
estimating state conditional expectiles of a two-dimensional random variable. Each x
corresponds to a distribution over y. We can approximate a maximum of this random
variable with expectile regression: τ = 0.5 correspond to the conditional mean statistics
of the distribution, while τ ≈ 1 approximates the maximum operator over in-support
values of y.

regression loss is defined as an asymmetric `1 loss.
We can also use this formulation to predict expectiles of a conditional distribution:

arg min
mτ(x)

E(x,y)∼D[L
τ
2(y−mτ(x))].

Figure 33 (right) illustrates conditional expectile regression on a simple two-dimensional
distribution. Note that we can optimize this objective with stochastic gradient descent. It
provides unbiased gradients and is easy to implement with standard machine learning
libraries.

7.2.2 Learning the Value Function with Expectile Regression

Expectile regression provides us with a powerful framework to estimate statistics of a
random variable beyond mean regression. We can use expectile regression to modify the
policy evaluation objective in Equation (37) to predict an upper expectile of the TD tar-
gets that approximates the maximum of r(s,a) + γQθ̂(s

′,a ′) over actions a ′ constrained
to the dataset actions, as in Equation (39). This leads to the following expectile regression

99

objective:

L(θ) = E(s,a,s ′,a ′)∼D[L
τ
2(r(s,a) + γQθ̂(s

′,a ′) −Qθ(s,a))].

However, this formulation has a significant drawback. Instead of estimating expectiles
just with respect to the actions in the support of the data, it also incorporates stochasticity
that comes from the environment dynamics s ′ ∼ p(·|s,a). Therefore, a large target value
might not necessarily reflect the existence of a single action that achieves that value, but
rather a “lucky” sample that happened to have transitioned into a good state. We resolve
this by introducing a separate value function that approximates an expectile only with
respect to the action distribution, leading to the following loss:

LV(ψ) = E(s,a) ∼D[L
τ
2(Qθ̂(s,a) − Vψ(s))]. (40)

We can then use this estimate to update the Q-functions with the MSE loss, which av-
erages over the stochasticity from the transitions and avoids the “lucky” sample issue
mentioned above:

LQ(θ) = E(s,a,s ′) ∼D[(r(s,a) + γVψ(s
′) −Qθ(s,a))2]. (41)

Note that these losses do not use any explicit policy, and only utilize actions from the
dataset for both objectives, similarly to SARSA-style policy evaluation. In Section 7.2.4,
we will show that this procedure recovers the optimal Q-function under some assump-
tions. Also, even though only one action is available for every state in the dataset for
continuous action spaces, due to neural network generalization, the expectile regression
does not result in SARSA-style policy evaluation as shown in Section 7.3.2.

7.2.3 Policy Extraction and Algorithm Summary

While our modified TD learning procedure learns an approximation to the optimal Q-
function, it does not explicitly represent the corresponding policy, and therefore requires
a separate policy extraction step. While one can consider any technique for policy extrac-
tion that constrains the learned policy to stay close to the dataset actions, we aim for a
simple method for policy extraction. As before, we aim to avoid using out-of-samples ac-
tions. Therefore, we extract the policy with advantage-weighted regression (Peters and
Schaal, 2007b; Peng et al., 2019b) previously successfully used for policy extraction in

100

Offline RL (Q. Wang et al., 2018b; A. Nair et al., 2020; Brandfonbrener et al., 2021):

Lπ(φ) = E(s,a) ∼D[exp(β(Qθ̂(s,a) − Vψ(s))) logπφ(a|s)], (42)

where β ∈ [0,∞) is an inverse temperature. Note that this objective does not clone all
actions from the dataset but, as shown in prior work, this objective learns a policy that
maximizes the Q-values subject to a distribution constraint (Peters and Schaal, 2007b;
Peng et al., 2019b; A. Nair et al., 2020). This step can be seen as selecting and cloning the
most optimal actions in the dataset.

Algorithm 5 Implicit Q-learning

0: Initialize parameters ψ, θ, θ̂, φ.
0: TD learning (IQL):
0: for each gradient step do
0: ψ← ψ− λV∇ψLV(ψ)
0: θ← θ− λQ∇θLQ(θ)
0: θ̂← (1−α)θ̂+αθ

0: Policy extraction (AWR):
0: for each gradient step do
0: φ← φ− λπ∇φLπ(φ)

=0

Our final algorithm consists of two stages. First,
we fit the value function and Q, performing a
number of gradient updates alternating between
Eqn. (40) and (41). Second, we perform stochastic
gradient descent on Equation (42). For both steps,
we use a version of clipped double Q-learning (Fu-
jimoto et al., 2018a), taking a minimum of two Q-
functions for V-function and policy updates. We
summarize our final method in Algorithm 5. Note
that the policy does not influence the value func-
tion in any way, and therefore extraction could be
performed either concurrently or after TD learning.
Concurrent learning provides a way to use IQL with online finetuning, as we discuss in
Section 7.3.3.

7.2.4 Analysis

In this section, we will show that IQL can recover the optimal value function under the
dataset support constraints. First, we prove a simple lemma that we will then use to
show how our approach can enable learning the optimal value function.

Lemma 3. Let X be a real-valued random variable with a bounded support and supremum
of the support is x∗. Then,

lim
τ→1

mτ = x
∗

One can show that expectiles of a random variable have the same supremum x∗. More-
over, for all τ1 and τ2 such that τ1 < τ2, we get mτ1 6 mτ2 . Therefore, the limit follows
from the properties of bounded monotonically non-decreasing functions.

101

In the following theorems, we show that under certain assumptions, our method in-
deed approximates the optimal state-action value Q∗ and performs multi-step dynam-
ical programming. We first prove a technical lemma relating different expectiles of the
Q-function, and then derive our main result regarding the optimality of our method.

For the sake of simplicity, we introduce the following notation for our analysis. Let
Eτx∼X[x] be a τth expectile of X (e.g., E0.5 corresponds to the standard expectation). Then,
we define Vτ(s) and Qτ(s,a), which correspond to optimal solutions of Eqn. 40 and 41

correspondingly, recursively as:

Vτ(s) = Eτa∼πβ(·|s)[Qτ(s,a)],

Qτ(s,a) = r(s,a) + γEs ′∼p(·|s,a)[Vτ(s
′)].

Lemma 4. For all s, τ1 and τ2 such that τ1 < τ2 we get Vτ1(s) 6 Vτ2(s).

Proof. The proof follows the policy improvement proof (R. S. Sutton and Barto, 2018).
See Appendix E.1.

Corollary 1. For any τ and s we have Vτ(s) 6 max a∈A
s.t. πβ(a|s)>0

Q∗(s,a) where Vτ(s) is

defined as above and Q∗(s,a) is an optimal state-action value function constrained to the
dataset and defined as

Q∗(s,a) = r(s,a) + γEs ′∼p(·|s,a)

 max
a ′∈A

s.t. πβ(a ′|s ′)>0

Q∗(s ′,a ′)

 .

Proof. The proof follows from the observation that convex combination is smaller than
maximum.

Theorem 1.
lim
τ→1

Vτ(s) = max
a∈A

s.t. πβ(a|s)>0

Q∗(s,a).

Proof. Follows from combining Lemma 3 and Corollary 1.

102

Therefore, for a larger value of τ < 1, we get a better approximation of the maximum. On
the other hand, it also becomes a more challenging optimization problem. Thus, we treat
τ as a hyperparameter. Due to the property discussed in Theorem 1 we dub our method
implicit Q-learning (IQL). We also emphasize that our value learning method defines the
entire spectrum of methods between SARSA (τ = 0.5) and Q-Learning (τ→ 1). Note that
in contrast to other multi-step methods, IQL absorbs the policy improvement step into
value learning. Therefore, fitting Q-function corresponds to the policy evaluation step,
while fitting the value function with IQL corresponds to implicit policy improvement.

7.3 experimental evaluation

Our experiments aim to evaluate our method comparatively, in contrast to prior offline
RL methods, and in particular to understand how our approach compares both to single-
step methods and multi-step dynamic programming approaches. We will first demon-
strate the benefits of multi-step dynamic programming methods, such as ours, in contrast
to single-step methods, showing that on some problems this difference can be extremely
large. We will then compare IQL with state-of-the-art single-step and multi-step algo-
rithms on the D4RL (Fu et al., 2020) benchmark tasks, studying the degree to which we
can learn effective policies using only the actions in the dataset. We examine domains
that contain near-optimal trajectories, where single-step methods perform well, as well
as domains with no optimal trajectories at all, which require multi-step dynamic pro-
gramming. Finally, we will study how IQL compares to prior methods when finetuning
with online RL starting from an offline RL initialization.

7.3.1 The Difference Between One-Step Policy Improvement and IQL

We first use a simple maze environment to illustrate the importance of multi-step dy-
namic programming for offline RL. The maze has a u-shape, a single start state, and a
single goal state (see Figure 34a). The agent receives a reward of 10 for entering the goal
state and zero reward for all other transitions. With a probability of 0.25, the agent tran-
sitions to a random state, and otherwise to the commanded state. The dataset consists
of 1 optimal trajectory and 99 trajectories with uniform random actions. Due to a short
horizon of the problem, we use γ = 0.9.

Figure 34 (c, d) illustrates the difference between single-step methods which fit
Qπ(s,a) via SARSA-style objective, in this case represented by Onepstep RL (Brand-
fonbrener et al., 2021; Q. Wang et al., 2018b; Gulcehre et al., 2021) and IQL with τ = 0.95.
Note that these methods represent a special case of our method with τ = 0.5. Although

103

(a) toy maze MDP (b) true optimal V? (c) One-step Policy Eval.
0

2

4

6

8

10

(d) IQL

Figure 34: Evaluation of our algorithm on a toy umaze environment (a). When the static dataset
is heavily corrupted by suboptimal actions, one-step policy evaluation results in a
value function that degrades to zero far from the rewarding states too quickly (c). Our
algorithm aims to learn a near-optimal value function, combining the best properties
of SARSA-style evaluation with the ability to perform multi-step dynamic program-
ming, leading to value functions that are much closer to optimality (shown in (b)) and
producing a much better policy (d).

states closer to the high reward state will still have higher values, these values decay
much faster as we move further away than they would for the optimal value function,
and the resulting policy is highly suboptimal. Since IQL (d) performs iterative dynamic
programming, it correctly propagates the signal, and the values are no longer dominated
by noise. The resulting value function closely matches the true optimal value function
(b).

7.3.2 Comparisons on Offline RL Benchmarks

Next, we evaluate our approach on the D4RL benchmark in comparison to prior meth-
ods (see Table 1). The MuJoCo tasks in D4RL consist of the Gym locomotion tasks, the
Ant Maze tasks, and the Adroit and Kitchen robotic manipulation environments. Some
prior works, particularly those proposing one-step methods, focus entirely on the Gym
locomotion tasks. However, these tasks include a significant fraction of near-optimal tra-
jectories in the dataset. In contrast, the Ant Maze tasks, especially the medium and large
ones, contain very few or no near-optimal trajectories, making them very challenging
for one-step methods. These domains require “stitching” parts of suboptimal trajecto-
ries that travel between different states to find a path from the start to the goal of the
maze (Fu et al., 2020). As we will show, multi-step dynamic programming is essential
in these domains. The Adroit and Kitchen tasks are comparatively less discriminating,
and we found that most RL methods perform similarly to imitation learning in these
domains (Florence et al., 2021). We therefore focus our analysis on the Gym locomotion
and Ant Maze domains, but include full Adroit and Kitchen results in Appendix E.2 for

104

completeness.

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

25

50

75

Ep
iso

de
 R

et
ur

n

antmaze-medium-play-v0

= 0.5(MSE)
= 0.7
= 0.9

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

20

40

Ep
iso

de
 R

et
ur

n

antmaze-large-play-v0

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

20

0

20

V(
s)

w/ CDQ

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

150

200

V(
s)

w/o CDQ

Figure 35: Left: Estimating a larger expectile τ is
crucial for antmaze tasks that require dynamical
programming (’stitching’). Right: Clipped dou-
ble Q-Learning (CDQ) is crucial for learning val-
ues for τ = 0.9.

comparisons and baselines . We
compare to methods that are representa-
tive of both multi-step dynamic program-
ming and one-step approaches. In the for-
mer category, we compare to CQL (Ku-
mar et al., 2020b), TD3+BC (Fujimoto and
S. S. Gu, 2021), and AWAC (A. Nair et
al., 2020). In the latter category, we com-
pare to Onestep RL (Brandfonbrener et al.,
2021) and Decision Transformers (L. Chen
et al., 2021). We obtained the Decision
Transformers results on Ant Maze subsets
of D4RL tasks using the author-provided
implementation2 and following authors in-
structions communicated over email. We
obtained results for TD3+BC and Onestep
RL (Exp. Weight) directly from the au-
thors. Note that L. Chen et al. (2021) and Brandfonbrener et al. (2021) incorrectly report
results for some prior methods, such as CQL, using the “-v0” environments. These gen-
erally produce lower scores than the “-v2” environments that these papers use for their
own methods. We use the “-v2” environments for all methods to ensure a fair compar-
ison, resulting in higher values for CQL. Because of this fix, our reported CQL scores
are higher than all other prior methods. We obtained results for “-v2” datasets using an
author-suggested implementation.3 On the Gym locomotion tasks (halfcheetah, hopper,
walker2d), we find that IQL performs comparably to the best performing prior method,
CQL. On the more challenging Ant Maze task, IQL outperforms CQL, and outperforms
the one-step methods by a very large margin.

runtime . Our approach is also computationally faster than the baselines (see Ta-
ble 1). For the baselines, we measure runtime for our reimplementations of the methods
in JAX (Bradbury et al., 2018) built on top of JAXRL (Kostrikov, 2021), which are typi-
cally faster than the original implementations. For example, the original implementation
of CQL takes more than 4 hours to perform 1M updates, while ours takes only 80 min-
utes. Even so, IQL still requires about 4x less time than our reimplementation of CQL

2 https://github.com/kzl/decision-transformer
3 https://github.com/young-geng/CQL

105

on average, and is comparable to the fastest prior one-step methods. We did not reimple-
ment Decision Transformers due to their complexity and report runtime of the original
implementation.

effect of τ hyperparameter . We also demonstrate that it is crucial to compute
a larger expectile on tasks that require “stitching” (see Figure 35). We provide complete
results in Appendix E.2. With larger values of τ, our method approximates Q-learning
better, leading to better performance on the Ant Maze tasks. Moreover, due to neural
network generalization, values learned with expectile regression increase with a larger
τ and do not degrade to behavior policy values (τ = 0.5). Finally, clipped double Q-
Learning is crucial for estimating values for a larger τ = 0.9.

7.3.3 Online Fine-tuning after Offline RL

The policies obtained by offline RL can often be improved with a small amount of on-
line interaction. IQL is well-suited for online fine-tuning for two reasons. First, IQL has
strong offline performance, as shown in the previous section, which provides a good
initialization. Second, IQL implements a weighted behavioral cloning policy extraction
step, which has previously been shown to allow for better online policy improvement
compared to other types of offline constraints (A. Nair et al., 2020). To evaluate the
finetuning capability of various RL algorithms, we first run offline RL on each dataset,
then run 1M steps of online RL, and then report the final performance. We compare to
AWAC (A. Nair et al., 2020), which has been proposed specifically for online finetuning,
and CQL (Kumar et al., 2020b), which showed the best performance among prior meth-
ods in our experiments in the previous section. Exact experimental details are provided
in Appendix E.3. We use the challenging Ant Maze D4RL domains (Fu et al., 2020), as
well as the high-dimensional dexterous manipulation environments from Rajeswaran et
al. (2018), which A. Nair et al. (2020) propose to use to study online adaptation with
AWAC. Results are shown in Table 21. On the Ant Maze domains, IQL significantly out-
performs both prior methods after online finetuning. CQL attains the second best score,
while AWAC performs comparatively worse due to much weaker offline initialization.
On the dexterous hand tasks, IQL performs significantly better than AWAC on relocate-
binary-v0, comparably on door-binary-v0, and slightly worse on pen-binary-v0, with the
best overall score.

106

7.4 conclusion

We presented implicit Q-Learning (IQL), a general algorithm for offline RL that com-
pletely avoids any queries to values of out-of-sample actions during training while still
enabling multi-step dynamic programming. To our knowledge, this is the first method
that combines both of these features. This has a number of important benefits. First, our
algorithm is computationally efficient: we can perform 1M updates on one GTX1080

GPU in less than 20 minutes. Second, it is simple to implement, requiring only mi-
nor modifications over a standard SARSA-like TD algorithm, and performing policy
extraction with a simple weighted behavioral cloning procedure resembling supervised
learning. Finally, despite the simplicity and efficiency of this method, we show that it
attains excellent performance across all of the tasks in the D4RL benchmark, matching
the best prior methods on the MuJoCo locomotion tasks, and exceeding the state-of-the-
art performance on the challenging ant maze environments, where multi-step dynamic
programming is essential for good performance.

7.5 contribution statement

The work in this chapter was performed in collaboration with Ilya Kostrikov and Sergey
Levine (Kostrikov et al., 2021b). I.K. led the project and was the first author. I.K. pro-
posed to use expectile regression for offline RL, implemented the offline RL algorithm,
conducted the offline RL experiments, and wrote the majority of the paper. A.N. assisted
in developing the method, conducted the online finetuning experiments in 7.3.3, and re-
leased a re-implementation of the algorithm in PyTorch (the original implementation
released by I.K. used Jax). S.L. advised the project and assisted with writing.

107

Table 1: Averaged normalized scores on MuJoCo locomotion and Ant Maze tasks. Our method
outperforms prior methods on the challenging Ant Maze tasks, which require dynamic
programming, and is competitive with the best prior methods on the locomotion tasks.

Dataset BC 10%BC BCQ DT ABM AWAC Onestep RL TD3+BC CQL IQL (Ours)

halfcheetah-m-v2 42.6 42.5 47.0 42.6±0.1 53.6 43.5 48.4±0.1 48.3±0.3 44.0±5.4 47.4±0.2

hopper-m-v2 52.9 56.9 56.7 67.6±1.0 0.7 57.0 59.6±2.5 59.3±4.2 58.5±2.1 66.2±5.7

walker2d-m-v2 75.3 75.0 72.6 74.0±1.4 0.5 72.4 81.8±2.2 83.7±2.1 72.5±0.8 78.3± 8.7

halfcheetah-m-r-v2 36.6 40.6 40.4 36.6±0.8 50.5 40.5 38.1±1.3 44.6±0.5 45.5±0.5 44.2±1.2

hopper-m-r-v2 18.1 75.9 53.3 82.7±7.0 49.6 37.2 97.5±0.7 60.9±18.8 95.0±6.4 94.7±8.6

walker2d-m-r-v2 26.0 62.5 52.1 66.6±3.0 53.8 27.0 49.5±12.0 81.8±5.5 77.2±5.5 73.8±7.1

halfcheetah-m-e-v2 55.2 92.9 89.1 86.8±1.3 18.5 42.8 93.4±1.6 90.7±4.3 91.6±2.8 86.7±5.3

hopper-m-e-v2 52.5 110.9 81.8 107.6±1.8 0.7 55.8 103.3±1.9 98.0±9.4 105.4±6.8 91.5±14.3

walker2d-m-e-v2 107.5 109.0 109.5 108.1±0.2 3.5 74.5 113.0±0.4 110.1±0.5 108.8±0.7 109.6±1.0

locomotion-v2 total 466.7 666.2 602.5 672.6±16.6 231.4 450.7 684.6±22.7 677.4±44.5 698.5±31.0 692.4±52.1

antmaze-u-v0 54.6 62.8 89.8 59.2 59.9 56.7 64.3 78.6 74.0 87.5 ± 2.6

antmaze-u-d-v0 45.6 50.2 83.0 53.0 48.7 49.3 60.7 71.4 84.0 62.2 ± 13.8

antmaze-m-p-v0 0.0 5.4 15.0 0.0 0.0 0.0 0.3 10.6 61.2 71.2 ± 7.3

antmaze-m-d-v0 0.0 9.8 0.0 0.0 0.5 0.7 0.0 3.0 53.7 70.0 ± 10.9

antmaze-l-p-v0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.2 15.8 39.6±5.8

antmaze-l-d-v0 0.0 6.0 0.0 0.0 0.0 1.0 0.0 0.0 14.9 47.5±9.5

antmaze-v0 total 100.2 134.2 187.8 112.2 109.1 107.7 125.3 163.8 303.6 378.0±49.9

total 566.9 800.4 790.3 784.8 340.5 558.4 809.9 841.2 1002.1 1070.4±102.0

kitchen-v0 total 154.5 - - - - - - - 144.6 159.8±22.6

adroit-v0 total 104.5 - - - - - - - 93.6 118.1±30.7

total+kitchen+adroit 825.9 - - - - - - - 1240.3 1348.3±155.3

runtime 10m 10m 960m 20m 20m∗
20m 80m 20m

∗: Note that it is challenging to compare one-step and multi-step methods directly. Also,
Brandfonbrener et al., 2021 reports results for a set of hyperparameters, such as batch
and network size, that is significantly different from other methods. We report results

for the original hyperparameters and runtime for a comparable set of hyperparameters.

108

Dataset AWAC CQL IQL (Ours)

antmaze-umaze-v0 56.7→ 59.0 70.1→ 99.4 88.0→ 96.3

antmaze-umaze-diverse-v0 49.3→ 49.0 31.1→ 99.4 67.0→ 49.0

antmaze-medium-play-v0 0.0→ 0.0 23.0→ 0.0 69.0→ 89.2

antmaze-medium-diverse-v0 0.7→ 0.3 23.0→ 32.3 71.8→ 91.4

antmaze-large-play-v0 0.0→ 0.0 1.0→ 0.0 36.8→ 51.8

antmaze-large-diverse-v0 1.0→ 0.0 1.0→ 0.0 42.2→ 59.8

antmaze-v0 total 107.7→ 108.3 151.5→ 231.1 374.8→ 437.5

pen-binary-v0 44.6→ 70.3 31.2→ 9.9 37.4→ 60.7

door-binary-v0 1.3→ 30.1 0.2→ 0.0 0.7→ 32.3

relocate-binary-v0 0.8→ 2.7 0.1→ 0.0 0.0→ 31.0

hand-v0 total 46.7→ 103.1 31.5→ 9.9 38.1→ 124.0

total 154.4→ 211.4 182.8→ 241.0 412.9→ 561.5

Table 2: Online finetuning results showing the initial performance after offline RL, and perfor-
mance after 1M steps of online RL. In all tasks, IQL is able to finetune to a significantly higher
performance than the offline initialization, with final performance that is comparable to or better
than the best of either AWAC or CQL on all tasks except pen-binary-v0.

109

8
R E S I D U A L R E I N F O R C E M E N T L E A R N I N G F O R R O B O T C O N T R O L

8.1 introduction

While prior knowledge arriving in the form of prior data is very general, in realistic
applications we may have access to more structured types of prior knowledge. In the
following chapters, we investigate industrial robotics as an application area. Robots in
today’s manufacturing environments typically perform repetitive tasks, and often lack
the ability to handle variability and uncertainty. Commonly used control algorithms,
such as PID regulators and the computed torque method, usually follow predefined
trajectories with little adaptive behavior. Many manufacturing tasks require some degree
of adaptability or feedback to the environment, but significant engineering effort and
expertise is required to design feedback control algorithms for these industrial robots.
The engineering time for fine tuning such a controller might be similar in cost to the
robot hardware itself. Being able to quickly and easily design feedback controllers for
industrial robots would significantly broaden the space of manufacturing tasks that can
be automated by robots.

Why is designing a feedback controller for many tasks hard with classical methods?
While conventional feedback control methods can solve tasks such as path following ef-
ficiently, applications that involve contacts between the robot and its environment are
difficult to approach with conventional control methods. Identifying and characterizing
contacts and friction is difficult—even if a physical model provides reasonable contact
behavior, identifying the physical parameters of a contact interaction accurately is very
hard. Hence, it is often difficult to achieve adaptable yet robust control behavior, and
significant control tuning effort is required as soon as these elements are introduced. An-
other drawback of conventional control methods is their lack of behavior generalization.
Thus, all possible system behaviors must be considered a priori at design time.

Reinforcement learning (RL) methods hold the promise of solving these challenges

110

rtUser Defined

User Defined

Reward

Controller + ut

max
✓

E[rt]⇡✓st

Figure 36: We train an agent directly in the real world to solve a model assembly task involving
contacts and unstable objects. An outline of our method, which consists of combining
hand-engineered controllers with a residual RL controller, is shown on the left. Roll-
outs of residual RL solving the block insertion task are shown on the right. Residual
RL is capable of learning a feedback controller that adapts to variations in the orien-
tations of the standing blocks and successfully completes the task of inserting a block
between them. Videos are available at residualrl.github.io

.

because they allow agents to learn behaviors through interaction with their surrounding
environments and ideally generalize to new scenarios that differ from the specifications
at the control design stage. Moreover, RL can handle control problems that are difficult
to approach with conventional controllers because the control goal can be specified indi-
rectly as a term in a reward function and not explicitly as the result of a control action.
All of these aspects are considered enablers for truly autonomous manufacturing sys-
tems and important for fully flexible lot-size one manufacturing (Kannengiesser et al.,
2017). However, standard RL methods require the robot learn through interaction, which
can be unsafe initially, and collecting the amount of interaction that is needed to learn a
complex skill from scratch can be time consuming.

In this chapter, we study control problems that are difficult to approach with conven-
tional feedback control methods. However, the problems possess structure that can be
partially handled with conventional feedback control, e.g. with impedance control. The
residual part of the control task, which is the part that must consider contacts and exter-
nal object dynamics, is solved with RL. The outputs of the conventional controller and
RL are superposed to form the commanded control. The main contribution of this paper
is a methodology that combines conventional feedback control with deep RL methods
and is illustrated in Fig. 47. Our main motivation is a control approach that is suitable
for real-world control problems in manufacturing, where the exploratory behavior of RL
is a safety concern and the data requirements of deep RL can be expensive. We provide a
thorough evaluation of our method on a block assembly task in simulation and on phys-
ical hardware. When the initial orientation of the blocks is noisy, our hand-designed

111

http://residualrl.github.io

controller fails to solve the task, while residual RL successfully learns to perform the
task in under 3 hours. This suggests that we could usefully apply our method to practi-
cal manufacturing problems.

8.2 preliminaries

In this section, we set up our problem and summarize the foundations of classical control
and reinforcement learning that we build on in our approach.

8.2.1 Problem Statement - System Theoretic Interpretation

The class of control problems that we are dealing with in this paper can be viewed from
a dynamical systems point of view as follows. Consider a dynamical system that consists
of a fully actuated robot and underactuated objects in the robot’s environment. The robot
and the objects in its environment are described by their states sm and so, respectively.
The robot can be controlled through the control input u while the objects cannot be
directly controlled. However, the robot’s states are coupled with the objects’ states so
that indirect control of so is possible through u. This is for example the case if the agent
has large inertia and is interacting with small parts as is common in manufacturing. The
states of agent and objects can either be fully observable or they can be estimated from
measurements.

The time-discrete equations of motion of the overall dynamical system comprise the
robot and objects and can be stated as

st+1 =

sm,t+1

so,t+1

 =

 A(sm,t) 0

B(sm,t, so,t) C(so,t)

sm,t

so,t

+D

ut
0

 , (43)

where the states can also be subject to algebraic constraints, which we do no state explic-
itly here.

The type of control objectives that we are interested in can be summarized as con-
trolling the agent in order to manipulate the objects while also fulfilling a geometric
objective such as trajectory following. It is difficult to solve the control problem directly
with conventional feedback control approaches, which compute the difference between a
desired and a measured state variable. In order to achieve best system performance feed-
back control methods require well understood and modeled state transition dynamics.

112

Finding the optimal control parameters can be difficult or even impossible if the system
dynamics are not fully known.

In equation 43 the state transition matrices although A(sm) and C(so) are usually
known to a certain extent, because they represent rigid body dynamics, the coupling
matrix B(sm, so) is usually not known. Physical interactions such as contacts and friction
forces are the dominant effects that B(sm, so) needs to capture, which also applies to
algebraic constraints, which are functions of sm and so as well. Hence, conventional
feedback control synthesis for determining u to control so is very difficult, and requires
trial and error in practice. Another difficulty for directly designing feedback controllers
is due to the fact that, for many control objectives, the states so need to fulfill conditions
that cannot be expressed as deviations (errors) from desired states. This is often the case
when we only know the final goal rather than a full trajectory.

Instead of directly designing a feedback control system, we can instead specify the goal
via a reward function. These reward functions can depend on both sm and so, where the
terms that depend on sm are position related objectives. Reinforcement learning can be
used to maximize the reward function in a model-free way. In reinforcement learning, we
simply attempt to maximize expected return. Unlike the previous section, RL does not
attempt to model the unknown coupled dynamics of the agent and the object. Instead,
it finds actions that maximizes rewards, without making any assumptions about the
system dynamics. The final objective is to learn a policy ut = π(st) to maximize expected
returns Rt =

∑T
i=t γ

(i−t)ri.

8.3 method

Based on the analysis in Sec. 11.3, we introduce a control system that consists of two
parts. The first part is based on conventional feedback control theory and maximize all
reward terms that are functions of sm. An RL method is superposed and maximizes the
reward terms that are functions of so.

8.3.1 Residual Reinforcement Learning

In most robotics tasks, we consider rewards of the form:

rt = f(sm) + g(so). (44)

113

The term f(sm) is assumed to be a function, which represents a geometric relationship
of robot states, such as a Euclidean distance or a desired trajectory. The second term of
the sum g(so) can be a general class of functions. Concretely, in our model assembly
task, f(sm) is the reward for moving the robot gripper between the standing blocks,
while g(so) is the reward for keeping the standing blocks upright and in their original
positions.

The key insight of residual RL is that in many tasks, f(sm) can be easily optimized a
priori of any environment interaction by conventional controllers, while g(so) may be eas-
ier to learn with RL which can learn fine-grained hand-engineered feedback controllers
even with friction and contacts. To take advantage of the efficiency of conventional con-
trollers but also the flexbility of RL, we choose:

u = πH(sm) + πθ(sm, so) (45)

as the control action, where πH(sm) is the human-designed controller and πθ(sm, so) is
a learned policy parametrized by θ and optimized by an RL algorithm to maximize
expected returns on the task.

Inserting equation 49 into equation 43 one can see that a properly designed feedback
control law for πH(sm) is able to provide exponentially stable error dynamics of sm if the
learned controller πθ is neglected and the sub statespace is stabilizable. This is equivalent
to maximizing equation 44 for the case f represents errors between actual and desired
states.

The residual controller πθ(sm, so) can now be used to maximize the reward term g(so)

in equation 44. Since the control sequence equation 49 enters equation 43 through the
dynamics of sm and sm is in fact the control input to the dynamics of so, we cannot
simply use the a-priori hand-engineered feedback controller to achieve zero error of sm
and independently achieve the control objective on so. Through the coupling of states we
need to perform an overall optimization of equation 49, whereby the hand-engineered
feedback controller provides internal structures and eases the optimization related to the
reward term f(sm).

8.3.2 Method Summary

Our method is summarized in Algorithm 6. The key idea is to combine the flexibility of
RL with the efficiency of conventional controllers by additively combining a learnable
parametrized policy with a fixed hand-engineered controller.

114

Algorithm 6 Residual reinforcement learning

Require: policy πθ, hand-engineered controller πH.
1: for n = 0, ...,N− 1 episodes do
2: Initialize random process N for exploration
3: Sample initial state s0 ∼ E.
4: for t = 0, ...,H− 1 steps do
5: Get policy action ut = πθ(st) +Nt.
6: Get action to execute u ′t = ut + πH(st).
7: Get next state st+1 ∼ p(· | st,u ′t).
8: Store (st,ut, st+1) into replay buffer R.
9: Sample set of transitions (s,u, s ′) ∼ R.

10: Optimize θ using RL with sampled transitions.
11: end for
12: end for=0

As our underlying RL algorithm, we use a variant of twin delayed deep determinis-
tic policy gradients (TD3) as described in Fujimoto et al., 2018b. TD3 is a value-based
RL algorithm for continuous control based off of the deep deterministic policy gradi-
ent (DDPG) algorithm Lillicrap et al., 2016. We have found that TD3 is stable, sample-
efficient, and requires little manual tuning compared to DDPG. We used the publicly
available rlkit implementation of TD3 V. Pong et al., 2018. Our method is indepen-
dent of the choice of RL algorithm, and we could apply residual RL to any other RL
algorithm.

8.4 experimental setup

We evaluate our method on the task shown in Fig. 37, both in simulation and in the
real world. This section introduces the details of the experimental setup and provides an
overview of the experiments.

8.4.1 Simulated Environment

We use MuJoCo (Todorov et al., 2012), a full-featured simulator for model-based opti-
mization considering body contacts, to evaluate our method in simulation. This environ-
ment consists of a simulated Sawyer robot arm with seven degrees of freedom and a
parallel gripper. We command the robot with a Cartesian-space position controller.

115

https://github.com/vitchyr/rlkit

0K 100K 200K 300K 400K 500K

Timesteps

0.0

0.2

0.4

0.6

0.8

S
u

cc
es

s
R

at
e

Simulation Learning Curve

Residual RL

Only RL

1K 2K 2K 3K

Timesteps

−5

−4

−3

−2

A
ve

ra
ge

R
et

u
rn

Real-World Learning Curves

Residual RL

Only RL

Figure 37: Block assembly task in simulation (left) and real-world (right). The task is to insert
a block between the two blocks on the table without moving the blocks or tipping
them over. In the learning curves, we compare our method with RL without any hand-
engineered controller1. In both simulation and real-world experiments, we see that
residual RL learns faster than RL alone, while achieving better performance than the
hand-engineered controller.

8.4.2 Real-World Environment

The real-world environment is largely the same as the simulated environment, except
for the controller, rewards, and observations. We command the robot with a compliant
joint-space impedance controller we have developed to be smooth and tolerant of con-
tacts. The positioning of the block being inserted is similar to the simulation but the
observation is estimated from a camera-based tracking system as we do not have access
to ground truth position information.

8.4.3 Overview of Experiments

In our experiments we evaluate the following research questions:
1. Does incorporating a hand-designed controller improve the performance and

sample-efficiency of RL algorithms, while still being able to recover from an im-
perfect hand-designed controller?

2. Can our method allow robots to be more tolerant of variation in the environment?
3. Can our method successfully control noisy systems, compared to classical control

methods?

1 In all simulation plots, we use 10 random seeds and report a 95% confidence interval for the mean.

116

8.5 experiments

8.5.1 Sample Efficiency of Residual RL

In this section, we compare our residual RL method with the human controller alone
and RL alone. The following methods are compared:

1. Only RL: using the same underlying RL algorithm as our method but without
adding a hand-engineered policy

2. Residual RL: our method which trains a superposition of the hand-engineered
controller and a neural network policy, with RL

8.5.2 Effect of Environment Variation

In automation, environments can be subject to noise and solving manufacturing tasks
become more difficult as variability in the environment increases. It is difficult to man-
ually design feedback controllers that are robust to environment variation, as it might
require significant human expertise and tuning. In this experiment, we vary the initial
orientation of the blocks during each episode and demonstrate that residual RL can still
solve the task. We compare its performance to that of the hand-engineered controller.

To introduce variability in simulation, on every reset we sampled the ro-
tation of each block independently from a uniform distribution U[−r, r], r ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

Similarly, in the real world experiments, on every reset we randomly rotated each
block to one of three orientations: straight, tilted clockwise, or tilted counterclockwise
(tilt was ± 20◦ from original position).

8.5.3 Recovering from Control Noise

Due to a host of issues, such as defective hardware or poorly tuned controller parameters,
feedback controllers might have induced noise. Conventional feedback control policies
are determined a priori and do not adapt their behavior from data. However, RL methods
are known for their ability to cope with shifting noise distributions and are capable of
recovering from such issues.

In this experiment, we introduce a control noise, including biased control noise,
and demonstrate that residual RL can still successfully solve the task, while a hand-
engineered controller cannot. The control noise follows a normal distribution and is

117

Misaligned? No Yes

Residual RL 20/20 15/20

Hand-engineered 20/20 2/20

(a)

0K 2K 4K 6K 8K

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Real World, Misaligned Blocks

Residual RL

Hand Engineered

(b)

0 500 1000 1500 2000 2500 3000

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
R

at
e

Real World, Control Bias

µ = 0.0

µ = 0.1

µ = 0.2

(c)

Figure 38: Outcome of our residual RL method in different experiments during the block assem-
bly task in the real-world. Success rate is recorded manually by human judgment of
whether the blocks stayed upright and ended in the correct position. Plot (a) compares
the insertion success of residual RL and hand-designed controller depending on the
block orientation during run time. Plot (b) shows the success rate of the insertion pro-
cess during training, where on every reset the blocks are randomly rotated: straight,
tilted clockwise, or tilted counterclockwise (± 20◦) and plot (c) shows the increasing
success rate of our method for biased controllers as well even as control bias increases.

added to the control output of the system at every step:

u ′t = ut +N(µ,σ2) (46)

To test tolerance to control noise, we set µ = 0 and vary σ ∈ [0.01, 0.1]. In theory, RL
could adapt to a noisy controller by learning more robust solutions to the task which are
less sensitive to perturbations.

Furthermore, to test tolerance to a biased controller, we set σ = 0.05 and vary µ ∈
[0, 0.2]. To optimize the task reward, RL can learn to simply counteract the bias.

8.5.4 Sim-to-Real with Residual RL

As an alternative to analytic solutions of real-world control problems, we can often in-
stead model the forward dynamics of the problem (ie. a simulator). With access to such
a model, we can first find a solution to the problem with our possibly inaccurate model,
and then use residual RL to find a realistic control solution in the real world.

In this experiment, we attempt the block insertion task with the side blocks fixed in
place. The hand-engineered policy πH in this case comes from training a parametric
policy in simulation of the same scenario (with deep RL). We then use this policy as
initialization for residual RL in the real world.

118

0.0 0.1 0.2 0.3

Block Rotation Noise

−6

−5

−4

F
in

al
A

ve
ra

ge
R

et
u

rn

Simulation, Effect of Variation

(a)

0.02 0.04 0.06 0.08 0.10

Noise Standard Deviation

−8

−6

−4

Simulation, Effect of Control Noise

(b)

0.00 0.05 0.10 0.15 0.20

Noise Mean

−20

−15

−10

−5

Simulation, Effect of Control Bias

Residual RL

Hand-Engineered

(c)

Figure 39: Simulation results for different experiments. In each plot, the final average return ob-
tained by running the method for various settings of a parameter is shown. Plot (a)
shows that residual RL can adjust to noise in the environment caused by rotation of
the blocks in a range of 0 to 0.3 rad. In plot (b), residual RL finds robust strategies in
order to reduce the effect of control noise, as the final average return is not greatly
affected by the magnitude of noise. Plot (c) shows that residual RL can compensate
for biased controllers and maintains good performance as control bias increases, while
the performance of the hand-designed controller dramatically deteriorates with higher
control bias.

8.6 results

We trained our method to optimize the insertion process in simulation as well as on
physical hardware. This section provides the results of our discussed experiments and
shows the functionality of our method.

8.6.1 Sample Efficiency of Residual RL

First, we compare residual RL and pure RL without a hand-engineered controller on
the insertion task. Fig. 37 shows in simulation and real-world that residual RL achieves
a better final performance and requires less samples than RL alone, both in simulation
and on physical hardware. Unlike residual RL, the pure RL approach needs to learn the
structure of the position control problem from scratch, which explains the difference in
sample efficiency. As samples are expensive to collect in the real world, residual RL is
better suited for solving real-world tasks. Moreover, RL shows a broader spatial variance
during training and needs to explore a wider set of states compared to residual RL,
which can be potentially dangerous in hardware deployments.

119

8.6.2 Effect of Environment Variation

In previous set of experiments, both standing blocks were placed in their initial position
without any position or orientation error. In this case, the hand-engineered controller
performs well, as both blocks are placed such that there is a sufficiently large defined
gap for insertion. However, once the initial orientation of the blocks is randomized, the
gap between the blocks and the goal position does not afford directly inserting from
above. Therefore, the hand-engineered controller struggles to solve the insertion task,
succeeding in only 2/20 trials, while residual RL still succeeds in 15/20 trials. These
results are summarized in Fig. 38 (a). Rollouts from the learned policy are included in 47.
In this experiment, the agent demonstrably learns consistent small corrective feedback
behaviors in order to slightly nudge the blocks in the right direction without tipping
them over, a behavior that is very difficult to manually specify.

The result of this experiment showcases the strength of residual RL. Since the human
controller specifies the general trajectory of the optimal policy, environment samples are
required only to learn this corrective feedback behavior. The real-world learning curve
for the experiment in Fig. 38 (b) shows that this behavior is gradually acquired over the
course of eight thousand samples, which is only about three hours of real-world training
time.

We further studied the effect of the block orientation changing after every reset in
simulation. The results are shown in Fig. 39 (a). The simulation results show that the
performance of the hand-engineered controller decreases as the block rotation angle
increases, whereas our control method maintains a constant average performance over
different variations.

8.6.3 Recovering from Control Noise

In this experiment, we observe that residual RL is able to cope with actuator noise, in-
cluding biased actuator noise. Quantitative results for simulation are shown in Fig. 39 (b)
and (c). In Fig. 39 (c) our method keeps the average return constant and correct for biased
controllers even as control bias increases, whereas the hand-engineered controller cannot
compensate biased input and its performance deteriorates as control bias increases. The
same applies for adding control noise to the control output as shown in Fig. 39 (b).

For the hardware experiments, only biased actuator noise is investigated. These results
are shown in Fig. 38 (c). These learning curves show that even as more control bias is
introduced, training in the real world proceeds without significant issues. This result

120

suggests the potential for RL to address practical issues in automation such as sensor
drift.

8.6.4 Sim-to-Real with Residual RL

The result of the sim-to-real experiment is shown in Fig. 40. In this experiment, each
setting was run with three random seeds. Adding policy initialization from simulation
significantly speeds up both RL and residual RL. In particular, residual RL with policy
initialization from simulation successfully solves the task extremely quickly: in under
one thousand timesteps of environment interaction. This method poses a highly sample
efficient, practical way to solve robotics problems with difficult contact dynamics.

8.7 related work

Reinforcement learning for robotics holds the promise of greater autonomy and reliabil-
ity, which could be vital to improving our manufacturing processes beyond its current
limitations. RL methods have been difficult to apply in robotics because of sample effi-
ciency, safety, and stability issues. Still, RL has been used to allow robots to learn tasks
such as playing table tennis (Peters et al., 2010), swinging up a cartpole and balancing
a unicycle (Marc Peter Deisenroth and Rasmussen, 2011), grasping (Pinto et al., 2017;
Levine et al., 2017), opening a door (S. Gu et al., 2017), and general manipulation tasks
(Levine et al., 2016a; Haarnoja et al., 2018a). RL, particularly deep RL, tends to be data-
hungry; even learning simple tasks can require many hours of interaction. To bring these
methods into factories and warehouses, they must be able to consistently solve complex
tasks, multi-step tasks. One way to enable these methods to solve these complex tasks is
to introduce prior human knowledge into the learning system, as our method does.

Prior work in RL has incorporated human prior knowledge for solving tasks
in various ways. One such way is reward shaping (Andrew Y. Ng et al., 1999),
where additional rewards auxiliary to the real objective are included in or-
der to guide the agent towards the desired behavior. Reward shaping can ef-
fectively encode a policy. For example, to train an agent to perform block
stacking, each step can be encoded into the reward (Popov et al., 2017).

Figure 40: Real-world block insertion results us-
ing residual RL for sim-to-real transfer. “Sim” in-
dicates that the real-world policy was initialized
by reinforcement learning in simulation. Resid-
ual RL with simulation initialization successfully
solves the task with little environment experi-
ence required.

Often, intensive reward shaping is key for
RL to succeed at a task and prior work has
even considered reward shaping as part of
the learning system (Daniel et al., 2014).

121

Reward shaping in order to tune agent be-
havior is a very manual process and recov-
ering a good policy with reward shaping
can be as difficult as specifying the policy
itself. Hence, in our method we allow for
human specification of both rewards and
policies—whichever might be more practi-
cal for a particular task.

Further work has incorporated more
specialized human knowledge into RL sys-
tems. One approach is to use trajectory
planners in RL in order to solve robotics tasks (G. Thomas et al., 2018). However, since
the method optimizes trajectory following instead of the task reward, generalization can
be difficult when aspects of the environment change. Other work has focused on human
feedback (Loftin et al., 2014; Saunders et al., 2018; Torrey and Taylor, 2013; Frank et al.,
2008; Christiano et al., 2017) to inform the agent about rewards or to encourage safety.
However, in many robotics tasks, providing enough information about the task through
incremental human feedback is difficult.

Another way to include prior knowledge in RL is through demonstrations (Peters
and Schaal, 2008c; Kober and Peter, 2008; Rajeswaran et al., 2018; Hester et al., 2018;
Veerk et al., 2017; A. Nair et al., 2018a). Demonstrations can substantially simplify the
exploration problem as the agent begins training having already received examples of
high-reward transitions and therefore knows where to explore (Subramanian et al., 2016).
However, providing demonstrations requires humans to be able to teleoperate the robot
to perform the task. In contrast, our method only requires a conventional controller for
motion, which ships with most robots.

Prior knowledge can also be induced through neural network architecture choices.
Deep residual networks with additive residual blocks achieved state of the art results in
many computer vision tasks by enabling training of extremely deep networks (He et al.,
2016). In RL, structured control nets showed improvement on several tasks by splitting
the policy into a linear module and a non-linear module (Srouji et al., 2018). Prior work
in adaptive flight control has also considered compensating linearized controllers with
neural networks (Johnson and Calise, 2000). Most closely related to our work, residual
policy learning concurrently and independently explores training a residual policy in
the context of simulated long-horizon, sparse-reward tasks with environment variation
and sensor noise (T. Silver et al., 2018). Our work instead focuses on achieving practical

122

real-world training of contact-intensive tasks.

8.8 conclusion

In this chapter, we studied the combination of conventional feedback control methods
with deep RL. We presented a control method that utilizes conventional feedback control
along with RL to solve complicated manipulation tasks involving friction and contacts
with unstable objects. We believe this approach can accelerate learning of many tasks,
especially those where the control problem can be solved in large part by prior knowl-
edge but requires some model-free reasoning to solve perfectly. Our results demonstrate
that the combination of conventional feedback control and RL can circumvent the dis-
advantages of both and provide a sample efficient controller that can cope with contact
dynamics.

8.9 contribution statement

The work in this chapter was performed in collaboration with Tobias Johannink, Shikhar
Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll, Juan Aparicio Ojea,
Eugen Solowjow, Sergey Levine (Johannink et al., 2019). T.J., S.B., and A.N. were joint
co-first authors. A.N. proposed the project idea, managed the project, assisted with im-
plementation, and wrote the paper. T.J. conducted the real-world experiments with as-
sistance from J.L. The simulation experiments were conducted by S.B. The project was
advised by A.K., M.L., and J.A.O. Both E.S. and S.L. advised on the project and assisted
with writing.

123

9
D E E P R E I N F O R C E M E N T L E A R N I N G F O R I N D U S T R I A L
I N S E RT I O N TA S K S W I T H V I S U A L I N P U T S A N D N AT U R A L
R E WA R D S

9.1 introduction

In the previous chapter, we covered a method - residual RL - for incorporating con-
ventional feedback controllers within deep reinforcement learning. In this chapter, we
will use residual RL specifically for the task of industrial connector insertion. Many
such industrial tasks are on the edge of automation but require a degree of adaptability
that is difficult to achieve with conventional robotic automation techniques. While stan-
dard control methods, such as PID controllers, are heavily employed to automate many
tasks in the context of positioning, tasks that require significant adaptability or tight
visual perception-control loops are often beyond the capabilities of such methods, and
therefore are typically performed manually. Standard control methods can struggle in
presence of complex dynamical phenomena that are hard to model analytically, such as
complex contacts. Reinforcement learning (RL) offers a different solution, relying on trial
and error learning instead of accurate modeling to construct an effective controller. RL
with expressive function approximation, i.e. deep RL, has further shown to automatically
handle high dimensional inputs such as images (Mnih et al., 2013).

However, deep RL has thus far not seen wide adoption in the automation commu-
nity due to several practical obstacles. Sample efficiency is one obstacle: tasks must be
completed without excessive interaction time or wear and tear on the robot. Progress in
recent years on developing better RL algorithms has led to significantly better sample
efficiency, even in dynamically complicated tasks (Haarnoja et al., 2018a; Hessel et al.,
2018), but remains a challenge for deploying RL in real-world robotics contexts. Another
major, often underappreciated, obstacle is goal specification: while prior work in RL as-
sumes a reward signal to optimize, it is often carefully shaped to allow the system to

124

USB

D-Sub

Model-E

Figure 41: We train policies directly in the real world to solve connector insertion tasks from raw
pixel input and without access to ground-truth state information for reward functions.
Left: top-down views of the connectors. Middle: a rollout from a learned policy that
successfully completes the insertion task for each connector is shown. Right: a full view
of the robot setup. Videos of the results are available at industrial-insertion-rl.github.io

learn (Andrew Y. Ng et al., 1999; Popov et al., 2017; Daniel et al., 2014). Obtaining such
dense reward signals can be a significant challenge, as one must additionally build a per-
ception system that allows computing dense rewards on state representations. Shaping a
reward function so that an agent can learn from it is also a manual process that requires
considerable manual effort. An ideal RL system would learn from rewards that are nat-
ural and easy to specify. How can we enable robots to autonomously perform complex
tasks without significant engineering effort to design perception and reward systems?

We first consider an end-to-end approach that learns a policy from images, where
the images serve as both the state representation and the goal specification. Using goal
images is not fully general, but can successfully represent tasks when the task is to reach
a final desired state (A. Nair et al., 2018b). Specifying goals via goal images is convenient,
and makes it possible to specify goals with minimal manual effort. Using images as
the state representation also allows a robot to learn behaviors that utilize direct visual
feedback, which provides some robustness to sensor and actuator noise.

Secondly, we consider learning from simple and sparse reward signals. Sparse rewards
can often be obtained conveniently, for instance from human-provided labels or simple
instrumentation. In many electronic assembly tasks, which we consider here, we can
directly detect whether the electronics are functional, and use that signal as a reward.
Learning from sparse rewards poses a challenge, as exploration with sparse reward sig-
nals is difficult, but by using sufficient prior information about the task, one can over-
come this challenge. To handle this challenge, we extend the residual RL approach Jo-
hannink et al., 2019; T. Silver et al., 2018, which learns a parametric policy on top of a

125

https://industrial-insertion-rl.github.io/

fixed, hand-specified controller, to the setting of vision-based manipulation.
In our experiments, we show that we can successfully complete real-world tight tol-

erance assembly tasks, such as inserting USB connectors, using RL from images with
reward signals that are convenient for users to specify. We can learn from only a sparse
reward based on the electrical connection for a USB adapter plug, and we demonstrate
learning insertion skills with rewards based only on goal images. These reward signals
require no extra engineering and are easy to specify for many tasks. Beyond showing
the feasibility of RL for solving these tasks, we evaluate multiple RL algorithms across
three tasks and study their robustness to imprecise positioning and noise.

9.2 related work

Learning has been applied previously in a variety of robotics contexts. Different forms of
learning have enabled autonomous driving (Pomerleau, 1989), biped locomotion (Nakan-
ishi et al., 2004), block stacking (Marc Peter Deisenroth et al., 2011b), grasping (Pinto and
Abhinav Gupta, 2016), and navigation (Giusti et al., 2015; Pathak et al., 2018). Among
these methods, many involve reinforcement learning, where an agent learns to perform
a task by maximizing a reward signal. Reinforcement learning algorithms have been de-
veloped and applied to teach robots to perform tasks such as balancing a robot (Marc
Peter Deisenroth and Rasmussen, 2011), playing ping-pong (Peters et al., 2010) and base-
ball (Peters and Schaal, 2008c). The use of large function approximators, such as neural
networks, in RL has further broadened the generality of RL (Mnih et al., 2013). Such
techniques, called “deep” RL, have further allowed robots to be trained directly in the
real world to perform fine-grained manipulation tasks from vision (Levine et al., 2016a),
open doors (S. Gu et al., 2016), play hockey (Chebotar et al., 2017a), stack Lego blocks
(M. Zhang et al., 2019), use dexterous hands (H. Zhu et al., 2019), and grasp objects
(Kalashnikov et al., 2018b). In this work we further explore solving real-world robotics
tasks using RL.

Many RL algorithms introduce prior information about the specific task to be solved.
One common method is reward shaping (Andrew Y. Ng et al., 1999), but reward shaping
can become arbitrarily difficult as the complexity of the task increases. Other methods
incorporate a trajectory planner (G. Thomas et al., 2018) but for complex assembly tasks,
trajectory planners require a host of information about objects and geometries which can
be difficult to provide.

Another body of work on incorporating prior information studies using demonstra-
tions either to initialize a policy (Peters and Schaal, 2008c; Kober and Peter, 2008), infer

126

reward functions using inverse reinforcement learning (Finn et al., 2016a; Ziebart et al.,
2008) or to improve the policy throughout the learning procedure (Hester et al., 2018; A.
Nair et al., 2018a; Rajeswaran et al., 2018). These methods require multiple demonstra-
tions, which can be difficult to collect, especially for assembly tasks, although learning
a reward function by classifying goal states (Singh et al., 2019) may partially alleviate
this issue. More recently, manually specifying a policy and learning the residual task has
been proposed (Johannink et al., 2019; T. Silver et al., 2018). In this work we evaluate
both residual RL and combining RL with learning from demonstrations.

Previous work has also tackled high precision assembly tasks, especially insertion-type
tasks. One line of work focuses on obtaining high dimensional observations, including
geometry, forces, joint positions and velocities (R. Li et al., 2014; Tamar et al., 2017; Inoue
et al., 2017; Luo et al., 2019), but this information is not easily procured, increasing com-
plexity of the experiments and the supervision required. Other work relies on external
trajectory planning or very high precision control (Inoue et al., 2017; Tamar et al., 2017),
but this can be brittle to error in other components of the system, such as perception. We
show how our method not only solves insertion tasks with much less information about
the environment, but also does so under noisy conditions.

9.3 electric connector plug insertion tasks

In this work, we empirically evaluate learning methods on a set of electric connec-
tor assembly tasks, pictured in Fig. 41. Connector plug insertions are difficult for two
reasons. First, the robot must be very precise in lining up the plug with its socket.

Figure 42: Illustration of the robot’s cascade con-
trol scheme. The actions ut are computed at a
frequency of up to 10Hz, desired joint angles are
obtained by inverse kinematics, and a joint-space
impedance controller with anti-windup PID con-
trol commands actuator torques at 1000Hz.

As we show in our experiments, errors as
small as ±1mm can lead to consistent fail-
ure.

Second, there is significant friction
when the connector plug touches the
socket, and the robot must learn to ap-
ply sufficient force in order to insert the
plug. Image sequences of successful inser-
tions are shown in Fig. 41, where it is
also possible to see details of the gripper
setup that we used to ensure a failure free,
fully automated training process. In our
experiments, we use a 7 degrees of free-

127

dom Sawyer robot with end-effector con-
trol, meaning that the action signal ut can be interpreted as the relative end-effector
movement in Cartesian coordinates. The robot’s underlying internal control pipeline is
illustrated in Figure 42.

To comprehensively evaluate connector assembly tasks, we experiment on a variety of
connectors. Each connector offers a different challenge in terms of required precision and
force to overcome friction. We chose to benchmark the controllers performance on the
insertion of a USB connector, a U-Sub connector, and a waterproof Model-E connector
manufactured by MISUMI. All the explored use cases were part of the IROS 2017 Robotic
Grasping and Manipulation Competition (Falco et al., 2018), included as part of a task
board developed by NIST to benchmark the performance of assembly robots.

9.3.1 Adapters

In the following we describe the used adapters, USB, D-Sub, and Model-E. The observed
difficulty of the insertion increases in that order.

USB. The USB connector is a ubiquitous, widely-used connector and offers a challeng-
ing insertion task. Because the adapter becomes smoother and therefore easier to insert
over time due to wear and tear, we periodically replace the adapter. Of the three tested
adapters, the USB adapter is the easiest.

D-sub. Inserting this adapter requires aligning several pins correctly, and is therefore
more sensitive than inserting the USB adapter. It also requires more downward force
due to a tighter fit.

Model-E. This adapter is the most difficult of the three tested connectors as it contains
several edges and grooves to align and requires significant downward force to success-
fully insert the part.

9.3.2 Experimental Settings

We consider three settings in our experiments in order to evaluate how plausible it is to
solve these tasks with more convenient state representations and reward functions and
to evaluate the performance of different algorithms changes as the setting is modified.

3.2.1 Visual. In this experiment, we evaluate whether the RL algorithms can learn
to perform the connector assembly tasks from vision without having access to state
information. The state provided to the learned policy is a 32× 32 grayscale image, such
as shown in Fig. 43.

128

Figure 43: Successful insertion on the Model-E
connector. The image-based RL algorithms re-
ceives only receives the 32× 32 grayscale image
as the observation.

For goal specification, we use a goal im-
age, avoiding the need for state informa-
tion to compute rewards. The reward is
the pixelwise L1 distance to the given goal
image. Being able to learn from such a
setup is compelling as it does not require
any extra state estimation and many tasks
can be specified easily by a goal image.

3.2.2. Sparse. In this experiment, the
reward is obtained by directly measuring
whether the connection is alive and trans-
mitting:

r =

1, if insertion signal detected

0, else.
(47)

This is the exact true reward for the task of connecting a cable, and can be naturally
obtained in many manufacturing systems. As state, the robot is given the Cartesian
coordinates of the end-effector xt and the vertical force fz that is acting on the end-
effector. We could only automatically detect the USB connection, so we only include the
USB adapter for the sparse experiments.

3.2.3. Dense. In this experiment, the robot receives a manually shaped reward based
on the distance to the target location x∗. We use the reward function

rt = −α · ‖xt − x∗‖1 −
β

(‖xt − x∗‖2 + ε)
−ϕ · fz, (48)

where 0 < ε � 1. The hyperparameters are set to α = 100, β = 0.002, and ϕ = 0.1.
When an insertion is indicated through a distance measurement, the sign of the force
term flips, so that ϕ = −0.1 when the connector is inserted. This rewards the agent for
pressing down after an insertion and showed to improve the learning process. The force
measurements are calibrated before each rollout to account for measurement bias and to
decouple the measurements from the robot pose.

129

9.4 methods

To solve the connector insertion tasks, we consider and evaluate a variety of RL algo-
rithms.

9.4.1 Efficient Off-Policy Reinforcement Learning

In this paper we specifically consider two off-policy continuous control reinforcement
learning algorithms that lend themselves well to real-world learning as they are sample
efficient, stable, and require little hyperparameter tuning.

Twin Delayed Deep Deterministic Policy Gradients (TD3). Like DDPG, TD3 opti-
mizes a deterministic policy (Fujimoto et al., 2018b) but uses two Q-function approxima-
tors to reduce value overestimation Van Hasselt et al., 2016 and delayed policy updates
to stabilize training.

Soft Actor Critic (SAC). SAC is an off-policy value-based reinforcement learning
method based on the maximum entropy reinforcement learning framework with a
stochastic policy (Haarnoja et al., 2018a).

We used the implementation of these RL algorithms publicly available at rlkit (V.
Pong et al., 2018).

9.4.2 Residual Reinforcement Learning

As discussed in chapter 8, instead of randomly exploring from scratch, we can inject
prior information into an RL algorithm in order to speed up the training process, as
well as to minimize unsafe exploration behavior. In residual RL, actions ut are chosen by
additively combining a fixed policy πH(st) with a parametric policy πθ(ut|st):

ut = πH(st) + πθ(st). (49)

The parameters θ can be learned using any RL algorithm. In this work, we evaluate
both SAC and TD3, explained in the previous section.

A simple P-controller serves as the hand-designed controller πH of our experiments.
The P-controller operates in Cartesian space and calculates the current control action by

πH(st) = −kp · (xt − x∗), (50)

where x∗ denotes the commanded goal location. As control gains we use kp = [1, 1, 0.3].

130

https://github.com/vitchyr/rlkit

This P-controller quickly centers the end-effector above the goal position and reaches the
goal after about 10 time steps from the reset position, which is located 5cm above the
goal.

0.0K 0.5K 1.0K 1.5K 2.0K 2.5K
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

Fi
na

l D
ist

an
ce

 [m
]

USB Insertion Task

0.0K 0.5K 1.0K 1.5K 2.0K 2.5K
Timesteps

0.000

0.005

0.010

0.015

0.020
D-Sub Connector

0K 1K 2K 3K 4K 5K 6K
Timesteps

0.00

0.02

0.04

0.06

Model-E Connector
Residual RL
RL + LfD
RL

Figure 44: Resulting final mean distance during the vision-based training. The comparison in-
cludes RL, residual RL, and RL with learning from demonstrations. Only residual RL
manages to deal with the high-dimensional input and consistently solve all the tasks
after the given amount of training. The other methods learn to move downwards, but
often get stuck in the beginning of the insertion and fail to recover from unsuccessful
attempts.

9.4.3 Learning from Demonstrations

Another method to incorporate prior information is to use demonstrations from an ex-
pert policy to guide exploration during RL. We first collected demonstrations with a joy-
stick controller. Then, we add a behavior cloning loss while performing RL that pushes
the policy towards the demonstrator actions, as previously considered in (A. Nair et al.,
2018a). Instead of DDPG, the underlying algorithm RL algorithm used is TD3.

9.5 experiments

We evaluate our method, which combines residual RL with easy-to-obtain reward sig-
nals, on a variety of connector assembly tasks performed on a real robot. In this section,
we consider two types of natural rewards that are intuitive for users to provide: an image
directly specifying a goal and a binary sparse reward indicating success. For both cases,
we report success rates on tasks they solve. We aim to answer the following questions:
(1) Can such trained policies provide comparable performance to policies that are trained
with densely-shaped rewards? (2) Are these trained policies robust to small variations
and noise?

5.1 Vision-based Learning. For the vision-based learning experiments, we use only

131

raw image observations and `1 distance between the current image and goal image as the
reward signal. Sample images that the robot received are shown in Fig. 43. We evaluate
this type of reward on all three connectors. In our experiments, we use 32× 32 grayscale
images.

5.2 Learning from Sparse Rewards. In the sparse reward experiment, we use the
binary signal of the connector being electrically connected as the reward signal. This
experiment is most applicable to electronic manufacturing settings where the electrical
connection between connectors can be directly measured. We only evaluate the sparse
reward setting on the USB connector, as it was straightforward to obtain the electrical
connection signal.

5.3 Perfect State Information. After evaluating the tasks in the above settings, we
further evaluate with full state information with a dense and carefully shaped reward
signal, given in Eq. 48, that incorporates distance to the goal and force information.
Evaluating in this setting gives us an “oracle” that can be compared to the previous
experiments in order to understand how much of a challenge sparse or image rewards
pose for various algorithms.

5.4 Robustness. For safe and reliable future usage, it is required that the insertion
controller is robust against small measurement or calibration errors that can occur when
disassembling and reassembling a mechanical system. In this experiment, small goal
perturbations are introduced in order to uncover the required setup precision of our
algorithms.

5.5 Exploration Comparison. One advantage of using reinforcement learning is the
exploratory behavior that allows the controller to adapt from new experiences unlike
a deterministic control law. The two RL algorithms we consider in this paper, SAC and
TD3, explore differently. SAC maintains a stochastic policy, and the algorithm also adapts
the stochasticity through training. TD3 has a deterministic policy, but uses another noise
process (in our case Gaussian) to inject exploratory behavior during training time. We
compare the two algorithms, as well as when they are used in conjunction with residual
RL, in order to evaluate the effect of the different exploration schemes.

9.6 results

We analyze the performance of policies learned with residual RL, as well as other meth-
ods, based on their ability to achieve the task goal, as well as the distance of the final
object location to the goal pose over the course of training. To study the robustness of
the learned policies, we also evaluate them in conditions where the goal connector posi-

132

D-Sub Connector
Goal

Perfect Noisy

Pure RL

Dense 16% 0%

Images, SAC 0% 0%

Images, TD3 12% 12%

RL + LfD Images 52% 52%

Residual RL

Dense 100% 60%

Images, SAC 100% 64%

Images, TD3 52% 52%

Human P-Controller 100% 44%

Model-E Connector
Goal

Perfect Noisy

Pure RL
Dense 0% 0%
Images, SAC 0% 0%
Images, TD3 0% 0%

RL + LfD Images 20% 20%

Residual RL
Dense 100% 76%
Images, SAC 100% 76%
Images, TD3 0% 0%

Human P-Controller 52% 24%

Table 3: We report average success out of 25 policy executions after training is finished for each
method. For noisy goals, noise is added in form of ±1mm perturbations of the goal
location. Residual RL, particularly with SAC, tends to be the best performing method
across all three connectors. For the Model-E connector, only residual RL solves the task
in the given amount of training time.

133

tion is perturbed, in order to understand the tolerance of RL policies to imprecise object
placement.

9.6.1 Vision-based Learning

The results of the vision-based experiment are shown in Fig. 44. Our experiments show
that a successful and consistent vision-based insertion policy can be learned from rela-
tively few samples using residual RL.

This result suggests that goal-specification through images is a practical way to solve
these types of industrial tasks. Although image-based rewards are often very sparse and
hard to learn from, in this case the distance between images corresponds to a relatively
dense reward signal which is sufficient to distinguish the different stages of the insertion
process.

Interestingly, during training with standard RL, the policy would sometimes learn to
“hack” the reward signal by moving down in the image in front of or behind the socket.
In contrast, the stabilizing human-engineered controller in residual RL provides suffi-
cient horizontal control to prevent this. The initial controller also scaffolds the learning
process, by providing a very strong initialization that requires the reinforcement learn-
ing algorithm to only learn the final phase of the insertion. This produces substantially
better performance in conjunction with vision-based rewards.

9.6.2 Learning From Sparse Rewards

In this experiment, we compare these methods on the USB insertion task with sparse
rewards. The results are reported in Fig. 45. All methods are able to achieve very high
success rates in the sparse setting. This result shows that we can learn precise industrial
insertion tasks in sparse-reward settings, which can often be obtained much more easily
than a dense, shaped reward. In fact, prior work has found that the final policy for sparse
rewards can outperform the final policy for dense rewards as it does not suffer from a
misspecified objective (Andrychowicz et al., 2017b).

9.6.3 Perfect State Information

The results of the experiment with perfect state information and dense rewards is shown
in Fig. 46. In this case, residual RL still outperforms standard RL, though the better-

134

USB Connector Goal
Perfect Noisy

Pure RL

Dense 28% 20%
Sparse, SAC 16% 8%
Sparse, TD3 44% 28%
Images, SAC 36% 32%
Images, TD3 28% 28%

RL + LfD Sparse 100% 32%
Images 88% 60%

Residual RL

Dense 100% 84%
Sparse, SAC 88% 84%
Sparse, TD3 100% 36%
Images, SAC 100% 80%
Images, TD3 0% 0%

Human P-Controller 100% 60%

0K 1K 2K 3K 4K 5K 6K 7K 8K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

USB Insertion Task, Sparse Reward

Residual RL
RL + LfD
RL

Figure 45: Learning curves for solving the USB
insertion task with a sparse reward. Final dis-
tance to goal is shown; lower is better. Residual
RL and RL with learning from demonstrations
both solve the task relatively quickly, while RL
alone takes about twice as long to solve the task
at the same performance.

Table 4: Learning curves for solving the USB insertion task with a sparse reward. Final distance
to goal is shown; lower is better. Residual RL and RL with learning from demonstrations
both solve the task relatively quickly, while RL alone takes about twice as long to solve
the task at the same performance.

shaped reward enables standard RL to make more initial progress than with the other
reward signals. However, the hand-designed shaped reward function makes it harder for
the policy to actually perform the full insertion, potentially because the more complex
reward landscape provides other competing goals to the policy. The final performance
with sparse rewards on the USB insertion task is substantially better.

9.6.4 Robustness

In the previous set of experiments, the goal locations were known exactly. In this case,
the hand-engineered controller performs well. However, once noise is added to the goal
location, the deterministic P-controller struggles. To test robustness, a goal perturbation
is created artificially, and the controllers are tested under this condition. All results of
our robustness evaluations are listed in Fig. 3 and Fig. ??. In the presence of a ±1mm
perturbation, the residual RL controller succeeds more often on the USB and D-Sub
tasks, and significantly more often on the Model-E task. Unlike the hand-engineered

135

0K 2K 4K 6K 8K
Timesteps

0.00

0.02

0.04

Fi
na

l D
ist

an
ce

 [m
]

USB Insertion Task

0K 2K 4K 6K 8K 10K
Timesteps

0.005

0.010

0.015

0.020
D-Sub Connector

0K 1K 2K 3K
Timesteps

0.00

0.01

0.02

0.03
Model-E Connector

Residual RL
RL

Figure 46: Plots of the final mean distance to the goal during the state-based training. Final dis-
tances greater than 0.01m indicate unsuccessful insertions. Here, the residual RL ap-
proach performs noticeably better than pure RL and is often able to solve the task
during the exploration in the early stages of the training.

controller, residual RL consistently solved this task and overcame goal perturbations
in 16/25 trials. The agent demonstrably learns small but consistent corrective feedback
behaviors in order to move in the right direction during the descent motion, a behavior
that is very difficult to specify manually. This behavior illustrates the strength of residual
RL. Since the human controller already specifies the general trajectory of the optimal
policy, environment samples are only required to learn this corrective feedback behavior.

9.6.5 Exploration Comparison

All experiments were also performed using TD3 instead of SAC. The final success rates
of these experiments are included in Fig. 3. When combined with residual RL, SAC
and TD3 perform comparably. However, TD3 is often substantially less robust. These
results are likely explained by the exploration strategy of the two algorithms. TD3 has
a deterministic policy and fixed noise during training, so once it observes some high-
reward states, it quickly learns to repeat that trajectory. SAC adapts the noise to the
correct scale, helping SAC stay robust to small perturbations, and because SAC learns
the value function for a stochastic policy, it is able to handle some degree of additive
noise effectively. We found that the outputted action of TD3 approaches the extreme
values at the edge of the allowed action space, while SAC executed less extreme actions,
which likely further improved robustness.

9.7 conclusion

In this paper, we studied deep reinforcement learning in a practical setting, and demon-
strated that deep RL can solve complex industrial assembly tasks with tight tolerances.

136

We showed that we can learn insertion policies with raw image observations with either
binary outcome-based rewards, or rewards based on on goal images. We conducted a
series of experiments for various connector type assemblies, and demonstrated the fea-
sibility of our method under challenging conditions, such as noisy goal specification
and complex connector geometries. Reinforcement learning algorithms that can auto-
matically learn complex assembly tasks with easy-to-specify reward functions have the
potential to automate a wide range of assembly tasks, making this technology a promis-
ing direction forward for flexible and capable robotic manipulators.

There remains significant challenges for applying these techniques in more complex
environments. One practical direction for future work is focusing on multi-stage assem-
bly tasks through vision. This would pose a challenge to the goal-based policies as the
background would be visually more complex. Moreover, multi-step tasks involve adapt-
ing to previous mistakes or inaccuracies, which could be difficult but should be able to
be handled by RL. Extending the presented approach to multi-stage assembly tasks will
pave the road to a higher robot autonomy in flexible manufacturing.

9.8 contribution statement

The work in this chapter was performed in collaboration with Gerrit Schoettler, Jian-
lan Luo, Shikhar Bahl, Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine (Gerrit
Schoettler et al., 2019). G.S., and A.N. were joint co-first authors. A.N. managed the
project, assisted with implementation, and wrote the paper. G.S. conducted the real-
world experiments with assistance from J.L. The simulation experiments were conducted
by S.B. The project was advised by J.A.O. Both E.S. and S.L. advised on the project and
assisted with writing.

137

10
L E A R N I N G O N T H E J O B : I N D U S T R I A L I N S E RT I O N O F N O V E L
C O N N E C T O R S F R O M V I S I O N

10.1 introduction

The previous chaper demonstrated industrial insertion for single connectors from vision,
but the true promise of learning-based robotics is generalization beyond the training data
for robust policies in novel scenarios. Generalizable policies require broad and diverse
datasets, but for realistic applications, learning policies that can always generalize in
zero shot to new objects and environments is often infeasible – indeed, even humans do
not exhibit such universal generalization capabilities. Instead, when faced with a task
that we don’t precisely know how to do, we can quickly learn the task by leveraging
our prior knowledge and a little bit of practice. Reinforcement learning provides us with
a way to implement this kind of learning on the job, using online finetuning in the new
domain or task, and potentially even extending it into a lifelong learning system where
the robot improves its generalization capacity continually with each new task it masters.

However, instantiating this concept in a practical robotics setting requires overcoming
a number of obstacles. The robot must be able to combine large amounts of diverse
offline data with small amounts of targeted online experience, and do so in a way that
doesn’t require revisiting previously learned tasks or domains, which means that we
need an offline RL algorithm that supports online finetuning. Perhaps more importantly,
the entire finetuning process must be supported by the robot’s own sensors, without
privileged information or environment instrumentation, so as to retain the benefits of
autonomous learning. In particular, this means that when adapting to a new task, the
robot must be able to evaluate on its own whether it is making progress on the task,
using a learned reward function.

We study this problem in the setting of learning a policy from vision for performing in-
dustrial insertion tasks. This family of assembly tasks, including plugging in connectors

138

Policy

Offline RL

Offline Data:
50 Connectors

Q, V

Reward

DAIB

DAIB

Online RL (Test Connector)

<latexit sha1_base64="Y9kVcOwHuMvdZascKwnEmr8pHIc=">AAAB8XicdVDLSgNBEOyNrxhfUY9eBoMQL8sm5nkLevEYwTwwWcLsZJIMmZ1dZmaFsOQvvHhQxKt/482/cbKJoKIFDUVVN91dXsiZ0o7zYaXW1jc2t9LbmZ3dvf2D7OFRWwWRJLRFAh7IrocV5UzQlmaa024oKfY9Tjve9Grhd+6pVCwQt3oWUtfHY8FGjGBtpLv+BOtYzvPqfJDNOXa9XK6UqyghtWI9IU6xdoEKtpMgBys0B9n3/jAgkU+FJhwr1Ss4oXZjLDUjnM4z/UjREJMpHtOeoQL7VLlxcvEcnRlliEaBNCU0StTvEzH2lZr5nun0sZ6o395C/MvrRXpUc2MmwkhTQZaLRhFHOkCL99GQSUo0nxmCiWTmVkQmWGKiTUgZE8LXp+h/0i7ahYpduinlGperONJwAqeQhwJUoQHX0IQWEBDwAE/wbCnr0XqxXpetKWs1cww/YL19At/mkRQ=</latexit>

r̂(s)

<latexit sha1_base64="sgKXx6lhiHyJlnWaKSSnumTPgtQ=">AAAB73icdVDJSgNBEK1xjXGLevTSGIR4GWZi1lvQi8cIZoFkCD2dnqRJz2J3jxDG/IQXD4p49Xe8+Td2JhFU9EHB470qquq5EWdSWdaHsbK6tr6xmdnKbu/s7u3nDg7bMowFoS0S8lB0XSwpZwFtKaY47UaCYt/ltONOLud+544KycLgRk0j6vh4FDCPEay01O1HrIDv5dkgl7fMerlcKVdRSmrFekqsYu0c2aaVIg9LNAe59/4wJLFPA0U4lrJnW5FyEiwUI5zOsv1Y0giTCR7RnqYB9ql0kvTeGTrVyhB5odAVKJSq3ycS7Es59V3d6WM1lr+9ufiX14uVV3MSFkSxogFZLPJijlSI5s+jIROUKD7VBBPB9K2IjLHAROmIsjqEr0/R/6RdNO2KWbou5RsXyzgycAwnUAAbqtCAK2hCCwhweIAneDZujUfjxXhdtK4Yy5kj+AHj7RMgyJAP</latexit>

⇡(a|s)

Collect rollouts
Finetune π, Q, V

Le
ar

ne
d

Sk
ill

Figure 47: We use offline reinforcement learning on insertion data on a diverse set of connectors
(left) followed by online finetuning to solve a connector-socket insertion task from
vision on a previously unseen connector (right).

139

into sockets, screwdrivers into screw intrusions, setting screws, and so on, are found in
many stages of manufacturing. When automated in factories today, these tasks are done
by robots with specialized control algorithms that rely on precise localization of the
socket location. For robots to perform these insertion tasks in industrial and warehouse
settings with less human supervision, or in unstructured environments such as homes,
they must rely on highly accurate state information of the external world (ie. socket
position and in-hand pose estimation). But such state estimation, using either machine
learning or computer vision approaches, is brittle on unseen connectors. To solve the
general problem of inserting a novel connector, one promising solution is to generalize
previously collected experience of connector insertion to learn a policy to insert connec-
tors from vision. Among these tasks, there is enough variability to require generalization
and adaptation, but also enough internal structural regularity that we expect transfer be-
tween different connectors. We first collected a large offline dataset with insertion data of
50 connectors across 2 robots and diverse backgrounds with actions, images, and sparse
reward labels. How can a robot generalize from vision to test connectors in this setting,
utilizing offline reinforcement learning from this data to enable active online fine-tuning
on a new connector?

The key insight is that we need to (1) find common structure between domains while
preserving important domain-specific information and (2) adapt to new tasks quickly
with online data if the zero-shot solution is not sufficient. For finding common structure
while preserving important domain-specific information, we propose a split representa-
tion that combines domain adversarial neural networks Ganin et al., 2016 for domain
invariance and a variational information bottleneck Alemi et al., 2017 for controlling the
flow of domain-specific information. This representation, which we call domain adver-
sarial information bottleneck (DAIB) is used first for learning a robust reward function
to detect successful insertions for an unseen connector. Next, we use the representation
for training a reward function, policy, and Q function that can also generalize to new
connectors, by modifying implicit Q-learning (IQL), an offline RL algorithm amenable to
online fine-tuning, to use DAIB. Then, during online finetuning, this auxiliary objective
can be used in combination with online RL to enable fast learning of novel connectors.

We present two major contributions. First, we propose a novel representation learning
method that allows better generalization of policies and reward functions. This enables
fast finetuning of vision-based IQL policies on a new domain. Second, we present a
system based off of this representation learning method to insert connectors robustly
from vision without the need of accurate socket localization, both for observations and
rewards. We outperform a regression-based baseline on the same dataset that attempts

140

to localize the socket. We show that new tasks can be fine-tuned within 200 trials, given
our dataset of off-policy data from Y prior tasks of Z trajectories. This system allows us
to finetune IQL to a test connector, increasing performance significantly over the offline
performance. Our dataset of robotic insertion of 50 connectors, as well as pretrained
features and reward models will be made public at <URL>.

10.2 related work

Our work proposes a system for finetuning an offline reinforcement learning policy on
new tasks in realistic industrial insertion scenarios, using a novel representation learning
method for generalization to a test domain. In this section, we discuss prior work on
reinforcement learning, industrial insertion, and representation learning.

Reinforcement learning for robotics. Reinforcement learning has been applied suc-
cessfully to a variety of robotics tasks in both manipulation Peters and Schaal, 2008c;
Kober and Peter, 2008; Marc Peter Deisenroth and Rasmussen, 2011; Levine et al., 2016a;
Levine et al., 2017; H. Zhu et al., 2019 and locomotion Giusti et al., 2015; Nakanishi et al.,
2004; Kalakrishnan et al., 2009 settings. To utilize offline datasets with diverse data in
robotics, algorithms developed for offline reinforcement learning Fujimoto et al., 2019a;
Kumar et al., 2020a; A. Nair et al., 2020; Yifan Wu et al., 2020 have been studied in the
robotics setting Singh et al., 2020b; Singh et al., 2020a; Chebotar et al., 2021; Kalashnikov
et al., 2021; Kumar et al., 2021. A subset of offline RL algorithms are amenable to fine-
tuning A. Nair et al., 2020; Villaflor et al., 2020; Meng et al., 2021; S. Lee et al., 2021;
Kostrikov et al., 2021b. Our work builds on the direction of offline pretraining followed
by online finetuning in robotics. But beyond this line of work, we focus on finetuning
from visual input in realistic settings with multiple domains and without ground truth
reward functions at test time.

In this respect, our work is closest to prior work on self-supervised RL that does
not assume an external reward function and instead learns it from data. One class
of self-supervised reinforcement learning methods uses goal-conditioned RL with self-
supervised rewards L P Kaelbling, 1993; Schaul et al., 2015b; Adrien Baranes and Pierre-
Yves Oudeyer, 2012b; Andrychowicz et al., 2017b; A. Nair et al., 2018b; Nachum et al.,
2018; Held et al., 2018; Pr et al., 2018c; Warde-Farley et al., 2019; Vitchyr H Pong et al.,
2020a; Khazatsky et al., 2021b. While general, this class of methods is a poor fit for
industrial insertion, as high precision is required in both the policy and in evaluating
rewards. Instead, we train a domain generalizing reward classifier from prior data. Prior
methods have used learned rewards Vitchyr H. Pong et al., 2022 and classifier rewards

141

have been proposed as a scalable solution for robotics tasks previously Fu et al., 2018;
Singh et al., 2019. However, learned rewards have not been shown to be useful for fine-
tuning in novel robotic domains previously. Because we focus on applying offline RL
and fine-tuning from vision in the industrial insertion setting in this work, few-domain
generalization of the reward function is vital for our method to work in practice.

Robotic insertion. Prior work has discussed reinforcement learning for robotic in-
sertion. Initial work in this direction focuses on learning for a single connector from
ground-truth state information Lian et al., 2021; Johannink et al., 2019; Gerrit Schoettler
et al., 2019. In this case, the RL algorithm must learn to navigate the specific dynamics
of the single connector, but does not generalize across connectors. More recent work has
considered using meta-learning to generalize and improve few-shot between domains G.
Schoettler et al., 2020. Zhao et al. use offline reinforcement learning and finetuning com-
bined with meta-learning to adapt to a new connector T. Z. Zhao et al., 2022. This work
assumes a known position of the socket and consistent grasping of the connector, and
is robust to a small amount (±1mm) of noise. In the case of known socket position
with a small amount of error, the learning algorithm must learn a structured noise or
exploration strategy that can overcome these errors. In contrast, we initialize connectors
within ±20mm of the socket (20× the initial variance), which requires the robot to rely
on visual feedback since blind exploration will rarely succeed.

Closest to our work is prior work that also uses pixel input for robotic insertion. Luo et
al. incorporate vision alongside proprioception, using a VAE to embed pixel input Jian-
lan Luo et al., 2021. InsertionNet uses a vision system to localize the object and socket,
operating on a "residual policy" which is learned from state by supervised learning Spec-
tor and D. D. Castro, 2021. InsertionNet 2.0 incorporates contrastive representation learn-
ing to improve performance. These prior works collect data on a single connector and
then show robust insertion of that connector. In contrast, our work focuses on what
can be done to leverage prior experience for a novel connector without having access
to localization of the socket for supervision. Our work also demonstrates robustness
to significantly larger variation in initial connector pose, up to 20mm error, than prior
work. For visual generalization to a test connector from our offline dataset of 50 training
connectors, a suitable representation learning method is vital.

Representation learning objectives for reinforcement learning. Many prior meth-
ods have explored representation methods for improving the sample efficiency of RL
algorithms. These include reconstructive objectives Lange and M. A. Riedmiller, 2010;
Lange et al., 2012c; Finn et al., 2016b, bisimulation Ferns et al., 2004; P. S. Castro, 2020;
A. Zhang et al., 2021, contrastive methods Laskin et al., 2020; Nguyen et al., 2021, la-

142

tent space prediction Schwarzer et al., 2020, mutual information , and other auxiliary
tasks Jonschkowski et al., 2017a; Ghosh et al., 2018; Sax et al., 2019. In this work, the ma-
jor representation learning challenge for finetuning to function is to be able to generalize
to new domains from prior domains. Thus, most closely related to our work is work on
domain generalization and domain adaptation. Domain adaptation methods generalize
from source domains to a target domain, usually by matching the distribution of features
between domains via matching statistics Tzeng et al., 2014; B. Sun and Saenko, 2016;
Long et al., 2015 or using an adversarial loss Ganin et al., 2016; Bousmalis et al., 2016.
Successfully matching distributions makes features indistinguishable; however, in our
case, it may be possible that domain-specific information is also important. In robotics,
domain adaptation has been applied successfully in the sim-to-real setting Bousmalis
et al., 2017; James et al., 2018.

In this work, we focus on two unique aspects of representation learning for reinforce-
ment learning. First, stabilizing and accelerating offline reinforcement learning and fine-
tuning of convolutional neural network policies. Second, aligning domains via reward
labels in order to generalize well to new domains and finetune quickly in the new do-
main.

10.3 background

10.3.1 Reinforcement learning.

In reinforcement learning, we consider a Markov Decision Process with states st ∈ S,
actions at ∈ A, dynamics p(st+1|st,at), and reward rt. The reinforcement learning agent
learns a policy π(at|st) to maximize the discounted return Rt =

∑T
i=t γ

(i− t)rt, where
the horizon T may be infinite, and γ is the discount factor.

A variety of algorithms have been developed for this purpose. In many practical
robotics settings including ours, collecting data on a test task is difficult but one can
collect a prior dataset of transitions D. To take advantage of data from other domains,
we use techniques from offline reinforcement learning. Offline reinforcement learning
methods address the problem of exploiting value estimates of out-of-distribution actions
by adding either a regularization term or avoiding sampling of out-of-distribution ac-
tions. Of these, a subset are amenable to online finetuning. In this work, we base our
method off of implicit Q-learning (IQL) Kostrikov et al., 2021b, which has shown strong
performance in both offline reinforcement learning and finetuning.

143

10.4 problem setting

In this paper, we focus on learning “on the job” when an offline learned RL policy does
not solve a task fully. To do so, our problem setup reflects the problem of domain gener-
alization. We assume access to a prior dataset of nd domains drawn from a distribution
of domains p(D), with each domain Dd = {τdi }

nd
d=1 containing trajectories of transitions

τdi = {(st,at, rt, st+1)d}. These trajectories can be of arbitrary quality as in the offline RL
literature. The challenge is to extract artifacts - in our case, a policy, value function, and
reward model - from this data that successfully maximize reward in a test domain Dtest.
Since data from the test domain is not available for offline reinforcement learning, we
must assume some structural similarity between the training domain and test domain.
As shown in the domain generalization and adaptation literature, different assumptions
result in different algorithms.

In our case, we study the family of industrial insertion tasks. At a coarse level, these
tasks are all variants of peg insertion. However, at a finer level, the structural similarity
of the reward function and expert policy to solve these tasks is clustered into groups of
connectors - for instance, NEMA connectors or Deutsch DT series as shown in figure 48.
Within each group of connectors, there is similarity between the visual features required
to align the connector and socket, the depth at which a success is achieved.

10.5 method

The overall goal of our method is to be able to learn to insert previously unseen con-
nectors. Because this requires domain generalization, we will first describe our represen-
tation learning objective that enables this for reward functions that generalize to new
domains using this objective. Then we describe how we modify offline RL and online
fine-tuning method with this representation that allows us to generalize policies and
value functions to new scenes.

10.5.1 Domain adversarial information bottleneck.

First, to detect success in novel environments, we will need a reward function that gener-
alizes to new connectors. To do so, we train a reward classification model on the collected
dataset consisting of images x, domain label d, and binary reward labels r. In this sec-
tion, we will describe how use the domain adversarial information bottleneck to learn
an intermediate representation z = gφ(x) to improve generalization of the reward model

144

in this setting in the context of supervised learning.
The base objective function for the reward model R(z) is binary cross entropy.

Lreward(R; x,d, r) = −r logR(z) − (1− r) log(1− R(z)). (51)

The representation should allow us to generalize to an unseen domain by capturing
the common structure from previously seen domains. The most commonly proposed
approach for generalizing to new domains is domain invariance. However, full domain
invariance is not always what we want. In our setting, if our representation was com-
pletely domain invariant, it could not take advantage of the domain-specific informa-
tion about certain connectors: when the reward is obtained for each connector visually,
domain-specific cues that the policy or Q function can take advantage of, and so on.

Instead, we can consider a split representation z = (zI, zS) consisting of a domain
invariant representation zI and a domain specific representation zS. Can we design an
objective to factorize the two representations, such that it improves generalization to new
domains?

For enforcing domain invariance of zI, we can take inspiration from domain adversar-
ial neural networks (DANN) Ganin et al., 2016, which backpropagates the signal from a
domain classifier into the representation. The domain classifier Fψ is trained to minimize
negative log likelihood:

Ldomain(F; x,d) = − log Fψ(zI)d. (52)

For training the reward model, Ladv = −Ldomain(F; x,d) is added as an auxiliary objec-
tive, adversarially optimizing zI to worsen the domain classifier likelihood.

The auxiliary loss imposes a cost for any domain specific information in ZI, but as
discussed earlier, allowing for some domain-specific information may be important for
the classifier to perform well. But if we simply concatenate a representation zS without a
domain invariance loss, the features zI degenerate to be completely uninformative when
trained, leading to reduced performance as we show in our experiments. We need to
somehow limit the information content of zS, so that the domain invariant structure
is still captured by zI. A natural tool to accomplish this is the variational information
bottleneck (VIB) Alemi et al., 2017. To learn a split representation, we constrain the
information through zS:

L = Lreward(z) +Ladv s.t. I(x; zS) 6 C. (53)

Following Alemi et al. Alemi et al., 2017, we can turn this into an unconstrained

145

problem and compute the evidence lower bound:

LR = Eε∼p(ε)L(Z) +Ladv +β[KL(p(Z|X)||p(Z))]︸ ︷︷ ︸
LDAIB(Z)

(54)

In the following sections, we will describe how we utilize this objective in an offline
RL and online finetuning framework.

10.5.2 Offline reinforcement learning.

Next, we will describe how we incorporate domain generalization into IQL Kostrikov
et al., 2021b, an offline reinforcement learning algorithm. IQL learns a Q function and
value function by quantile regression, then extracts a policy with advantage-weighted re-
gression Peng et al., 2019a. We want each model: policy, Q-function, and value function,
to be trained with a domain adversarial information bottleneck. Although this represen-
tation could be shared in principle, in practice we find significantly worse performance
with shared representations.

IQL learns a Q function and value function by quantile regression, optimizing:

LQ = E(s,a,s ′)∼D

[
(r(s,g) + γV̄(s ′) −Q(s,a))2

]
(55)

LV = E(s,a)∼D

[
Lτ2(Q̄(s,a) − V(s))2

]
(56)

. where Lτ2(u) = |τ− 1(u < 0)|u2, and · indicates a stop gradient. A policy is extracted
from the value function with advantage-weighted regression Peng et al., 2019a:

Lπ = E(s,a)∼D
[
logπ(a|s) exp(Ā(s,a)/β)

]
(57)

where A(s,a) = Q(s,a) − V(s).
We incorporate a domain adversarial information bottleneck to the policy to enable

domain generalization. Let Zπ = φπ(X) represent the output of a convolutional neural
network representation of the input image. We optimize the following policy loss:

L ′π = Lπ +LDAIB(Z). (58)

We find that using DAIB for the policy bottleneck enables consistent performance across
connectors, as explained further in section 10.7.2.

146

10.5.3 Online finetuning

When faced with a new connector, the offline RL trained policy may not generalize zero-
shot. In these instances, we want to be able to actively finetune the policy to solve the
task. We rely on the pretrained reward model and value function to do so, using online
interaction in the test environment. In the online finetuning phase, we collect trajectories
using the pretrained policy with additional exploration noise. In this phase, we do not
assume a ground truth reward, as this requires accurate state estimation and localization.
Instead, we evaluate the reward from the reward model. For a transition (s,a, s ′), we
compute the predicted reward r̂ = R(F(s ′)) and append (s,a, s ′, r̂) to the replay buffer.
We then run the batch gradient descent updates of the policy, Q function, and value
function according to equations 55, 56, and 58. In each batch we use 25% online data,
with no data augmentations, and 75% offline data with data augmentations.

For this phase, both the policy and value function use a deterministic encoding in the
information bottleneck, using the mean of the output distribution as the sampled value.
We freeze the representation and do not train it further in the online finetuning phase.

10.6 robot setup

Our robot setup for connector insertion is pictured in Fig 48. We use two 7 DoF Sawyer
robots from Rethink Robotics for collecting data and running experiments. The robot is
commanded with an end-effector controller, where the action a corresponds to relative
end-effector movement in Cartesian coordinates. The resulting desired joint angles are
computed via inverse kinematics, and then executed with a joint-space velocity controller
with force limits for safety and to prevent dislodging connectors from a grasped position.

We initially collect a dataset of insertions of 50 connectors. For each connector, it is
grasped by the robot and the socket is mounted to a clamp. Before data collection, the
robot is manually placed in a successful grasp position and a calibration procedure
captures the initial pose for detecting ground truth success. During data collection, the
robot follows a manual insertion strategy of moving downwards if within 1mm of the
center-line of the socket, and moving towards the center-line of the connector otherwise.
Noisy actions are executed with probability 0.2 to visit a diverse set of states and induce
recovery behavior in the prior data.

We want to utilize this data to allow the robot to generalize to a held-out connector
not seen during training.

147

Connector Localize
Straight

Down

Random

Search

Spiral

Search

Ours

(offline)

Ours

(online)

DT12-1 3/20 1/20 7/20 4/20 7/20 19/20

Mega 1x1 3/20 1/20 1/20 15/20 5/20 16/20

NEMA 15 0/20 1/20 0/20 3/20 11/20 15/20

Europlug 6/20 4/20 6/20 4/20 10/20 15/20

Table 5: Insertion scenario I: the initial position of the gripper is located ±10mm from the socket
centered around the socket.

10.7 experiments

We design our experiments to answer the following questions.
• Does the domain adversarial information bottleneck improve accuracy for reward

classification?
• Can offline reinforcement learning followed by online fine-tuning be a solution

for industrial insertion of novel connectors, and does it outperform a supervised
localization model combined with a manually scripted control strategy?

10.7.1 Reward Classification

To learn a generalizable reward function and to evaluate the proposed domain gener-
alization method, we first need to learn a reward classifier from the offline data. The
accuracy of this reward classifier has a significant impact on whether online finetuning
with the learned reward will successfully solve a task; if the reward is inaccurate, the
policy can adversarially learn to go to regions of incorrect high reward. We train the
reward classifier on a subset of the data consisting of 25 connectors and evaluated on a
set of five held-out connectors. During training and evaluation, the data is rebalanced to
be 50% positive and 50% negative samples per connector. In Table 8, we report the mean
accuracy of each method averaged across the five held-out connectors.

We compare the following methods. Our method, DAIB uses a domain adversarial
objective in combination with a variational information bottleneck as detailed in sec-
tion 10.5.1. DANN enforces domain invariance using a domain adversarial neural net-
work Ganin et al., 2016. DAIB, λ = 0 adds an additional network path from the input im-

148

Connector Localize
Straight

Down

Random

Search

Spiral

Search

Ours

(offline)

Ours

(online)

DT12-1 0/20 0/20 0/20 0/20 0/20 18/20

Mega 1x1 0/20 1/20 0/20 17/20 0/20 20/20

NEMA 15 0/20 0/20 0/20 0/20 6/20 17/20

Europlug 0/20 0/20 0/20 0/20 2/20 15/20

Table 6: Insertion scenario II: the initial position of the gripper is sampled from a box 10-20mm
from the socket. This scenario is more difficult as moving straight down almost never
solves the task. The baselines in this series of experiments use localization model initially,
then follow the baseline strategy.

age to the reward classifier as in DAIB, but without enforcing an information bottleneck.
VIB enforces a variational information bottleneck only without domain invariance Alemi
et al., 2017. ERM has no auxiliary representation learning objectives.

Method Acc.

DAIB (Ours) 88%

DANN 71%

DAIB, λ = 0 77%

VIB 79%

ERM 76%

Table 8: Compari-
son of test
accuracy on
reward clas-
sification.

The results are presented in Table 8. We see that our method,
DAIB, is able to achieve an 88% accuracy, significantly higher than
other methods. DANN, which enforces domain invariance, is the
worst performing. This poor performance shows that the domain
invariance assumption is too strong for the task of reward classi-
fication; connector insertion does require domain-specific informa-
tion. The DANN + no VIB method achieves similar accuracy as
ERM, since the network can just make the domain invariant fea-
tures degenerate and bypass the domain adversarial objective. The
VIB alone slightly improves performance over ERM because of a
regularizing effect. But all methods achieve significantly worse ac-
curacy than DAIB. Next, armed with an accurate reward model, we
investigate finetuning connectors using the learned reward model.

10.7.2 Self-Supervised Fine-tuning

For insertion of a novel connector, we first run offline training of RL on a set of connectors
excluding that connector or close variants (eg. same connector on a different robot), to
obtain a policy, Q function, and value function. Then, we run online finetuning of RL

149

Reward Policy Offline Online

DT12-1 DAIB DAIB 0/20 18/20

DAIB - 0/20 4/20

- - 0/20 0/20

Mega 1x1 DAIB DAIB 0/20 20/20

DAIB - 3/20 20/20

- - 3/20 0/20

NEMA 15 DAIB DAIB 6/20 17/20

DAIB - 0/20 2/20

- - 0/20 0/20

Europlug DAIB DAIB 2/20 15/20

DAIB - 1/20 12/20

- - 0/20 15/20

Table 7: Ablation of using the domain adversarial information bottleneck (DAIB) for the reward
and for the policy across all four test connectors. The only consistent setting where
finetuning occurs across all four connectors is using the DAIB for both reward and policy.
Removing the bottleneck for the policy significantly reduces finetuning performance on
two tasks, but still finetunes on the other two. Removing the bottleneck for the reward
prevents finetuning except for the Europlug connector.

150

on the novel connector. We evaluate four connector insertion tasks: a Deutsch DT 12-
way connector, a Megablock, a NEMA 15-5 connector, and a Europlug connector. We
also evaluate in two settings: a relatively easier scenario where the initial location of the
connector is centered around the socket with ±10mm noise, and a harder scenario where
the initial location of the connector is offset from the socket by 10− 20mm.

In the easier ±10mm setting, we compare against the four following baselines. Local-
ize: regress on to the state positions in the same offline data at each step and execute an
expert policy towards that goal location which moves horizontally until within 1mm of
the goal, then move straight down. Straight down: move straight down from the start-
ing position. Random search: from the initial starting position, move straight down and
then move to 5 randomly sampled positions while pressing down. Spiral search: from
the initial starting position, move straight down and then move in a spiral while press-
ing down. Each method including ours is executed for 20 time steps per trajectory for
evaluation.

The results are reported in Table 5. We see that the performance of most methods are
inconsistent, but DAIB online successfully solves the task to > 75% success for all four
connectors.

In the harder 10 − 20mm setting, we compare against similar baselines but straight
down, random search, and spiral search from the initial position always fail because
the initial position is too far away from the socket. Instead, for these three methods,
we first execute the localization model and move to that goal position, then run the
corresponding strategy.

The results for the harder insertion scenario is reported in Table 6. In this case, the
performance of most methods, including DAIB offline, on most connectors, is poor. How-
ever, DAIB online is able to solve these tasks after 200 trials of finetuning. Importantly,
even when the initial performance is 0/20 as in the DT 12-way connector, DAIB can
improve because of well-shaped value functions guiding the policy towards the correct
solution. In practice, we see that even when the initial policy is poor and does not get
close to the socket, the finetuned policy quickly makes contact with the socket within a
few trials. Further trials are required for finetuning to actually observe successes through
stochastic exploration to perfect the policy.

10.8 discussion

We have discussed utilizing a novel domain generalization method, the domain adver-
sarial information bottleneck (DAIB), for enabling fast online finetuning of RL policies.

151

We applied this method combined with IQL on a family of industrial insertion tasks
and demonstrated how the system can learn on the job to finetune to test connectors
with minimal human supervision. This scheme can generally be incorporated in many
scenarios where robot datasets contain highly correlated data from related domains - a
common scenario due to hardware and environment setup costs.

One main limitation of the method is its strong reliance on the reward model. If the
reward model predicts false positives in a region, that can cause the finetuning process
to wrongly cause the policy to visit that region, especially if the false positive occurs at
a dynamically easier to reach state. Combining classifiers with reinforcement learning
is prone to this kind of failure mode, as discussed previously in Fu et al., 2018. More
careful application of domain adaptation methods that incorporate statistics of the online
finetuning process might alleviate this issue.

10.9 contribution statement

This work is in preparation for submission, done in collaboration with Brian Zhu, Gokul
Narayanan, Eugen Solowjow, and Sergey Levine. AN led the project, proposed the idea,
and designed the experiments. The implementation and experiments were shared be-
tween AN and BZ. The writing was done by AN primarily. GN, ES, and SL advised and
assisted with writing.

152

Type A Black Type A White Type A Brown Type A Pink Type A Rotated Type B Brown

Aux Craftsman 6mm Craftsman 7mm Craftsman 10mm Craftsman 14mm Craftsman square

DC Lightning DT2 DT3 DT4 DT6

DT8 DVI DX Ethernet green Ethernet red Ethernet

IEC 320 Key copper Key silver Key pink Megablock 1x1 Megablock 2x2

Model E RCA Red RCA Yellow USB USB-B USB-C

VGA Displayport Mini DP PS2 HDMI DSub

Figure 48: Frames from our dataset of 50 connectors.

153

Part III

A F F O R D A N C E L E A R N I N G I N U N S E E N
E N V I R O N M E N T S

11
L E A R N I N G N E W S K I L L S B Y I M A G I N I N G V I S U A L A F F O R D A N C E S

11.1 introduction

Suppose that you need to learn to open a new kind of drawer in a kitchen. While this
new skill might demand some amount of trial and error, you would likely be able to use
your mental model and past experience to imagine the drawer in the open position, and
perhaps even imagine likely intermediate steps, such as grasping the handle, even if you
do not yet know precisely how to perform the task. Borrowing the terminology put for-
ward by Gibson (Gibson, 1979), the drawer presents the affordance of being “openable,”
and you are aware of this affordance from your past experience with other similar ob-
jects. In fact, infants learn about affordances such as movability, suckability, graspability,
and digestibility through interaction and sensory feedback (Berger, 2014). Learning and
utilizing affordances through interaction allows an agent to acquire diverse, meaningful
experiences even in unfamiliar situations. However, this way of learning new skills dif-
fers markedly from the approach taken by most robotic learning algorithms: the most
widely used exploration methods are generally undirected, and focus more on seeking
out novelty and surprise (Houthooft et al., 2016; Tang et al., 2017; Pathak et al., 2017),
rather than familiar and previously seen outcomes. In this chapter, we study how robots
operating entirely from pixel input can learn about affordances and, when faced with
a new and unfamiliar environment, can utilize a previously trained model of possible
outcomes to propose potential goals that they can practice in this new environment, so
as to explore and update their policy efficiently.

We study affordance learning through the framework of self-supervised goal-
conditioned reinforcement learning (RL). Learning a new skill in this framework requires
generalization in terms of goal setting (affordances) and generalization in terms of goal
reaching (behavior). Prior methods for goal-conditioned RL learn a policy to reach a goal
state without the need for an externally provided reward function, and are able to mas-

155

Prior Dataset D {⌧1, ⌧2, ..., ⌧N}
Prior Dataset D {⌧1, ⌧2, ..., ⌧N}

Online Learning in "new

Representation z = �(s)
Representation z = �(s)

s0

3. train
⇡ online

A↵ordance p✓(zg|zs)
p✓(zg|zs)

Behavior ⇡(a|z, zg)
⇡(a|z, zg)

2. rollout
⇡(a|z, zg)

zg ⇠ p✓(·|z0)
goal zg ⇠
1. sample

O✏ine Learning

O✏ine Learning

"5 : grasping cup

"1 : drawer opening "2 : lid on pot "3 : relocate bag

"4 : drawer closing

"8 : relocate tiger"7 : grasp football

"6 : pushing/pulling

"new : new drawer

Figure 49: We propose a system for efficient self-supervised robot learning in an unseen environ-
ment Enew by utilizing prior data D of trajectories from related similar environments
Ei ∼ p(E). Tasks are specified via a target goal image. From prior data, we learn an
encoder z = φ(s) of images (representation) for compressing observations and self-
generating rewards, a model of what tasks might be tested in the new environment
(affordance), and goal-conditioned policy to accomplish a given task (behavior). While
this provides reasonable performance in some test environments, perfecting the pol-
icy in test environments may require additional interaction in the test environment.
Dropped in a test environment Enew without a given goal, we run RL online in order
to practice potential tasks, with goals sampled from the affordance model. Online be-
havior learning allows us to improve the policy π for Enew even when it contains new
and unseen objects.

156

ter skills such as pushing and grasping objects from image observations (Agrawal et al.,
2016; A. Nair et al., 2018b; Lynch et al., 2019; A. Nair et al., 2019a). They learn skills
by setting goals to explore, and learning a policy to reach them. However, while these
prior works have studied how to learn goal-conditioned policies in individual environ-
ments, they do not consider what happens when the robot enters a new environment
where the policy does not simply generalize zero-shot and needs to be trained further.
Our approach to solving tasks in this setting is to learn affordances, represented by a
generative model of possible outcomes, and then sample possible affordances in a new
environment to explore the new environment efficiently.

Our method, visuomotor affordance learning (VAL), uses expressive conditional mod-
els for learning generalizable affordances, along with off-policy RL to learn generalizable
behaviors. First, we propose to use more expressive generative models for RL to learn
compressed representations of images that can reconstruct unseen objects and help the
policy generalize to them. Second, we propose to learn an expressive conditional gener-
ative model that generalizes past data to set meaningful goals for novel environments,
enabling an understanding of object affordances. Third, we demonstrate how we can
use off-policy RL with all prior data to initialize a general-purpose goal-conditioned
policy, then fine-tune the policy with additional data to master a skill in a new envi-
ronment. Combining RL and representation learning, we show that we are able to learn
skills with a small amount of online exploration on novel objects in real-world robotic
scenarios such as object grasping, relocation, and drawer opening and closing.

The main contribution of this work is to present a learning system that can learn
robotic skills entirely from image pixels in novel environments by utilizing prior data to
generate goals and generalize behavior in new settings. We demonstrate that our method
can learn complex manipulation skills including grasping, drawer opening, pushing, and
object re-positioning for a diverse set of objects in simulation. We also demonstrate our
method in the real world on a Sawyer robot, where our method is able to learn tasks
such as grasping and placing unseen objects and opening and closing unseen drawers
after only five minutes of online interaction.

11.2 related work

RL has been applied previously to robotic manipulation (Kober and Peter, 2008; Pe-
ters et al., 2010; Levine et al., 2016a), and also various other applications from playing
games (Mnih et al., 2013; D. Silver et al., 2016a) to locomotion (Benbrahim and Franklin,
1997; Kohl and Stone, 2004; Marc Peter Deisenroth and Rasmussen, 2011; G. Williams

157

et al., 2017). Such approaches require an external reward function, but obtaining this
reward function itself poses a challenge to exploring in novel uninstrumented environ-
ments as we consider in this paper. Thus, in this work we focus on self-supervised RL
methods that that do not assume externally provided reward functions.

When learning without an externally provided reward function, one common idea is
to use novelty-based intrinsic reward functions (Chentanez et al., 2005; Lopes et al., 2012;
M. Bellemare et al., 2016; Houthooft et al., 2016; Stadie et al., 2016; Pathak et al., 2017).
State novelty-based methods eventually visit all possible states, but do not necessarily
learn a useful policy from purely optimizing the exploration objective. An alternative
exploration framework that learns a useful policy even solely from the intrinsic objective
is goal reaching (L P Kaelbling, 1993; Schaul et al., 2015b; Adrien Baranes and Pierre-Yves
Oudeyer, 2012b; Andrychowicz et al., 2017b; A. Nair et al., 2018b; Nachum et al., 2018;
Held et al., 2018; Pr et al., 2018c; Warde-Farley et al., 2019; Vitchyr H Pong et al., 2020a):
by picking a distance measure between states, setting goals, and attempting to reach
them, an agent can discover all potential goals in its environment. We refer the reader
to the survey of Colas et al. (Colas et al., 2021) for a full classification and discussion
of these methods. However, these prior methods do not study the question of how to
set goals in new environments, which is vital for collecting coherent experience when
faced with a new task. Our method utilizes representation learning and off-policy RL to
generalize prior experience to set exploration goals in new settings.

Another line of work explores the use of affordances in RL, robotics, and control, his-
torically through the lens of perception (Zech et al., 2017; Hassanin et al., 2018; Yamanobe
et al., 2018). Affordances have also been discussed previously in reinforcement learning
in order to accelerate planning in model-based RL by planning over only a subset of rel-
evant actions (Abel et al., 2014; Khetarpal et al., 2020; Xu et al., 2021). Our work is more
related to the view of affordances in developmental robotics, where affordances were
hypothesized to be useful for learning general manipulation skills (Hart and Grupen,
2010; Min et al., 2016). In our work, we show how goal-conditioned RL utilizing from
prior data can put these ideas into practice on real-world robotics systems.

Most similar to our work is context-conditioned reinforcement learning with imagined
goals (CCRIG), which learns a conditional variational auto-encoder (CVAE) (Sohn et al.,
2015) that generates goals conditional on the current scene (A. Nair et al., 2019a), as
covered in chapter 3. CCRIG was able to learn pushing skills that generalized mainly
to object color and partially to object geometry. Our work extends CCRIG in a number
of ways. First, we learn expressive generative models that are able to generate goals in
scenes with significantly more visual diversity. Second, we learn a diverse set of skills

158

(e.g., grasping, drawer opening, object placing) that require the goal generation to un-
derstand affordances of the environment. Finally, we show that we can use off-policy RL
on prior experience, in addition to fine-tuning further on a single specific task to learn
new skills. These differences allow our method to better operate in real-world scenarios,
as borne out in our experiments.

11.3 preliminaries

In this section, we cover preliminaries on RL, goal-conditioned RL, and self-supervised
visual RL.
Goal-conditioned reinforcement learning. In goal-conditioned RL, we augment the
standard Markov decision process (MDP), which is defined in terms of states st ∈ S,
actions at ∈ A, and environment dynamics st+1 ∼ p(·|st, at), with goals g ∈ G that rep-
resent the agent’s intention to perform one of a variety of tasks drawn from the task
family p(g). The reward function is also goal-conditioned, and given by some function
r(s, g). The discounted return is defined as Rt =

∑H
i=0 γ

ir(si, g), where γ is a discount
factor and H is the horizon, which may be infinite. The aim of the agent is to optimize
a policy π(at|st, g) to maximize the expected discounted return J(π) = Eg[R0]. Efficient
off-policy RL algorithms have been proposed to learn goal-conditioned policies (Schaul
et al., 2015b; Andrychowicz et al., 2017b).
Self-supervised visual reinforcement learning. For scalable robot learning, we can-
not always assume known shaped reward functions for tasks. In the absence of such
reward functions, Andrychowicz et al. propose goal-state reaching as a natural objec-
tive (Andrychowicz et al., 2017b): tasks are defined by state outcomes, where the goal
space G = S, the state space, and the reward is a goal-reaching objective r(s, g) =

−1||s−g||>ε. The task distribution p(g) is chosen to be the feasible states of the robot
and objects it interacts with.

But when states are high-dimensional (e.g., images), two issues arise: we do not know
the task distribution p(g), and exact reaching of a target goal state is impractical. Re-
inforcement learning with imagined goals (RIG) (A. Nair et al., 2018b) addresses these
issues with a generative model, which is used to learn a latent space of observations and
similarity metric on images. Specifically, a variational auto-encoder (D. P. Kingma and
Welling, 2014) with encoder φ(zt|st) and prior p(z) is learned. At training time, the robot
sets goals for itself in latent space by sampling a goal latent zg ∼ p(z) and learns a policy
π(zt, zg) to reach latent goals. At test time, the robot can be tasked with a goal image g
and execute the learned policy with goal latent zg ∼ φ(·|g) to match the goal image. In

159

this way, goal-conditioned RL with generative models enables self-supervised learning
in a single environment E where the task distribution p(g) is not known apriori.

11.4 problem setting

We now consider acting in a distribution of environments p(E) with shared structure.1

Each environment Ei has its own task distribution pi(g). As before, tasks are defined by
goal states, so pi(g) represents the potential outcomes of interest in that environment. We
assume that the outcomes of interest depends only on the appearance of the environment.
When E is fully observed, this means p(g|s0) is shared across environments. As prior
data, the robot has access to a training dataset D = {τ1, τ2, . . . τN} of trajectories from
prior environments, where the trajectories achieve a final outcome sT ∼ pi(g) – that is,
they succeed on tasks from the underlying task distribution for that environment. Now,
the robot is placed in a new environment Enew ∼ p(E), and must learn to solve tasks in
the new environment through self-supervised practice at training time, such that it can
accomplish tasks sampled from pi(g) at test time. The environments we consider vary
visually and dynamically in terms of the objects that are present and potential tasks
they afford, such as being able to lift various objects and open different drawers; such
real-world variation is presented in Figure 49.

Thus, the agent in this new setting must generalize its prior experience D to practice
potential skills it may be asked to perform at test time in the new environment efficiently,
even when it encounters novel objects. At test time, the robot is evaluated in terms of its
ability to accomplish a task in Enew specified by a goal image. To perform well in this
setting, a method must attempt to infer pnew(g), which should be possible since p(g|s0)
is common across environments and D contains trajectories that achieve goals from the
same distribution. Note that given observations from Enew, the agent may still have to
practice the various behaviors the environment affords if there are multiple, since the
test task distribution is unknown at training time.

1 Meta-learning approaches have also studied learning a new task quickly, given experience on a set of
related MDPs (Duan et al., 2016; Finn et al., 2017; Rakelly et al., 2019). The aims of our method are related
to meta-learning, in that we also aim to learn in new environments more quickly, but we do not assume
being given user-specified tasks or rewards to solve in the new environment.

160

Algorithm 7 Visual Affordance Learning

Require: Dataset D, policy π(a|z, zg), Q-function Q(z, a, zg), RL algorithm A, replay
buffer R, relabeling strategy pRS(z), environment family p(E).

1: Learn encoder φ(z|s) by generative model of D
2: Learn affordances p(zt|z0) by generative model of D
3: Add latent encoding of D to the replay buffer
4: Initialize π and Q by running A offline
5: Sample Enew ∼ p(E), Enew = (pnew(s0),πnew(st+1|s, a))
6: for 1, . . . ,Nepisodes do
7: Sample initial state s0 ∼ pnew(s0).
8: Sample goal zg ∼ p(zt|z0)
9: for t = 0, . . . ,H do

10: Sample at ∼ π(·|zt, zg)
11: Sample st+1 ∼ pnew(·|st, at)
12: end for
13: Store trajectory (z1, a1, . . . , zH) in replay buffer R.
14: for 1, . . . ,Ntrain_steps do
15: Sample transition (zt, at, zt+1, zg)
16: Relabel with z ′g ∼ pRS(zg) and recompute reward
17: Update π and Q with relabeled transition using A

18: end for
19: end for=0

11.5 visuomotor affordance learning

In this section, we present visuomotor affordance learning (VAL), our method for self-
supervised learning in novel environments utilizing prior data from related environ-
ments. VAL consists of three learning phases: (A) an affordance learning phase to learn
affordances from the prior data, (B) an offline behavior learning phase to learn behaviors
from the prior data, and (C) an online behavior learning phase where the agent actively
interacts with the test environment using affordances and learns potential behaviors in
the new environment. The overall method is summarized in Algorithm 7.

11.5.1 Affordance Learning

The affordance learning system must generate goals that induce coherent exploration
trajectories even in new environments. We would like to learn a model that, given an

161

observation s0 in a new environment, generates a potential goal state the agent might
be tasked to reach. With high-dimensional image observations, attempting to sample
such goal states directly is a difficult generative modeling problem. Instead, we first
learn a lower-dimensional latent space p(zt|st) by training a generative model through
image reconstruction. With sufficiently expressive models and enough data, the gener-
ative model represents images in a manner that it can reconstruct even unseen objects.
Given such a latent space, we can then learn affordances by training a conditional model
p(zt|z0) to generate goals that are plausible outcomes of an initial state, even for unseen
environments.

To instantiate these two models, we must choose a class of latent variable gen-
erative models for p(st|zt) and conditional affordance models p(zt|z0). For the first,
while many choices would be suitable, including models such as variational auto-
encoders (VAEs) (D. P. Kingma and Welling, 2014) and generative adversarial networks
(GANs) (Goodfellow et al., 2014; Donahue et al., 2017), in our implementation we use
the VQVAE model (Aaron van den Oord et al., 2017). The VQVAE is expressive enough
to represent very diverse datasets, and be able to reconstruct even unseen objects with
a high level of detail. We do not require image reconstructions for our method, but the
ability to partially reconstruct unseen objects suggests that model expressively repre-
sents geometry and color information that may be important for learning affordances
and behaviors. In the VQVAE case, φ is deterministic, so we will use the shorthand for
the latent embedding zt = φ(st), where zt is the continuous latent resulting after quanti-
zation. In our experiments, we compare this choice of model to other expressive models:
VAE (D. P. Kingma and Welling, 2014), CVAE (Sohn et al., 2015), and BiGAN (Donahue
et al., 2017).

Next, given a latent space, we need to sample potential goals from this space that is
predictive of which goals might be tasked at test time in the new environment Enew.
We use a conditional PixelCNN model (Aaron van den Oord et al., 2016) in the latent
space to do so, conditioned on the initial state s0. The PixelCNN model is trained to
maximize Eτ∼D,(s0,st)∼τ,z∼φ(·|s)[logpθ(zt|z0)], where θ is the parameters of the PixelCNN
density model. To generate exploration goals, we sample zg ∼ pθ(·|z0), where z0 = φ(s0)
is the encoding of an image of the current setting. The PixelCNN model in VAL being
conditional allows us to generate meaningful goals that might be achievable with a
novel object. As we show in Section 11.6.1, the conditional model allows us to sample
affordances such as opening drawers and lifting objects, even for new environments that
are visually complex with variation in the identity, color, geometry, and functionality of
objects.

162

11.5.2 Offline Behavior Learning

Given learned affordances of what behaviors the agent may be tasked with, the agent
needs to learn how to actually accomplish those behaviors. In this phase, we wish to
learn a reasonable goal-conditioned policy with offline RL. While trained on a limited
fixed offline dataset, the hope is that the policy can generalize learning from offline data
to accomplish desired behaviors in a new environment, allowing us to either perform
tasks successfully zero-shot without further learning, or collect meaningful exploration
data in the next phase (Section 11.5.3).

To learn with offline RL while allowing the possibility of quickly fine-tuning in a new
environment, we use advantage weighted actor critic (AWAC) (A. Nair et al., 2020) as the
underlying RL algorithm. AWAC is an off-policy RL algorithm that has shown strong
performance in utilizing prior data for offline pretraining while still being amenable to
online fine-tuning. The aim of behavior learning is to optimize a goal-conditioned pol-
icy π(a|z, zg) which is able to solve any task in the task distribution p(zg). We do not
assume an external reward function, so we require a reward function to optimize. Fol-
lowing prior work (Andrychowicz et al., 2017b; A. Nair et al., 2018b), we optimize a goal
reaching objective: to maximize the density pZg(z = zg); in practice we use the sparse
reward function r(z, zg) = −1||z−zg||>ε, where ε is a fixed threshold as it encourages
fully solving tasks in a binary fashion. For a particular transition in the replay buffer
(zt, at, zt+1, zg, r), we can also relabel the goal with a new goal z ′g and the recompute the
reward. In practice we keep zg with 20% probability, future hindsight experience replay
with 40% probability, and sample z ′g ∼ p(zt|z0) with 40% probability. Importantly, due to
using a compressed representation, we can expect that zt in any new environment will
be semantically similar to past experience. Thus, in this phase, we can obtain a policy
that generalizes partially to a new environment.

11.5.3 Online Behavior Learning

Guaranteeing zero-shot generalization for every possible new environment is in general
impossible. Instead, we will discuss how to finetune in a specific environment Enew using
affordances. In this phase, we utilize the learned affordances which inform what tasks to
perform, and the offline learned behaviors that inform how to perform those tasks.

At online training time, the new task distribution pnew(g) is unknown, so we use
the affordance model to sample potential tasks. Thus, to collect coherent exploration
data, we sample goals from the affordance module zg ∼ pθ(·|z0) and roll out the goal-

163

Initial Image

CVQVAE (Ours)

CCVAE

Figure 50: Samples on unseen objects in the real world. In each column, the top image is the con-
ditioning image s0 and the images below are conditionally sampled images from the
corresponding generative model. Our model, CVQVAE, generates clear and diverse
samples.

conditioned policy π(a|z, zg). We then iterate between improving the policy with off-
policy RL, and collecting exploration data and appending it to the replay buffer. To
learn a new task, exploration data in the new environment for fine-tuning the policy is
extremely valuable, so this iteration allows us to quickly fine-tune. The online learning
process is illustrated in the bottom box in Figure 49.

In summary, VAL enables self-supervised learning in novel environments utilizing
prior data. We first learn a generative model for learning a latent space and affordances,
and learn how to accomplish tasks with off-policy RL. Then, both are used in an online
behavior learning phase to perfect potential behaviors in a new environment. The overall
method is summarized in Algorithm 7.

11.6 real-world experimental evaluation

We first evaluate our method in a real-world manipulation setting with a Sawyer robot
and diverse objects and tasks. This setting is very challenging due to the variety of
objects, scenes, and tasks that the robot interacts with, and being limited to using image
inputs.

Real-world setting. The real-world setting is shown in Figure 49. A Sawyer robot is
controlled at 5Hz with 4 degrees of control: 3 dimensions of end-effector velocity control
in Euclidean space and one dimension to open and close the gripper. The environments
span 10 drawer handles, 10 pot handles, 40 toys, and 60 distractor objects. To create a new
environment E in the real world, we randomly sample one interaction object as well as 2-

164

Task
VAL (Ours)
Offline→ Online

CCRIG
Offline→ Online

(1) Pickup shoe 12.5%→ 50% 0%→ 16.6%

(2) Drawer closing 25%→ 100% 0%→ 12.5%

(3) Drawer opening 62.5%→ 100% 0%→ 0%

(4) Place object in tray 25%→ 75% 0%→ 0%

(5) Lid on pot 37.5%→ 87.5% 0%→ 0%

s0 sT d(zg)

VAL training VAL testing

s0 sT sg

(1)

(2)

(3)

(4)

(5)

Figure 51: Real-world results. Left, success rates per method for the five tasks tested. We report
the offline performance, followed by the performance after five minutes of online fine-
tuning. With VAL, we see reasonable initial offline performance followed by significant
improvement on all tasks. Meanwhile CCRIG fails to succeed any of the tasks. Right,
film strips of VAL during training (left, with decoded affordance proposals) and testing
(right, with goal images) are visualized. Videos are available at https://sites.google.
com/view/val-rl

3 distractor objects. The behaviors that the environments afford therefore span grasping
and relocating toys, opening and closing drawers, as well as covering and uncovering
pots. Each test environment contains an unseen interaction object and a random set of
2-3 distractor objects, with all positions randomized.

Our experiments aim to answer the following questions:
1. Does the learned generative model sample plausible affordances in new scenes?
2. Is VAL able to accelerate learning of real-world manipulation skills online in new

settings?

11.6.1 Generative Models for Affordance Learning

Expressive generative models enable us to propose desired outcomes in new environ-
ments even when the current policy cannot yet achieve them. We can preview this capa-
bility by inspecting the training procedure of the models, which also gives insights into
which models will tend to perform well when used for interactive learning. Specifically,
we inspect model samples to see if the model can actually output plausible candidate
affordances. We evaluate our model, which combines a VQVAE with a conditional pixel
CNN, and prior models that have been used in self-supervised RL as well as other ex-
pressive generative models. We compare (1) VAE (D. P. Kingma and Welling, 2014), (2)
CVAE (Sohn et al., 2015), (3) BiGAN (Donahue et al., 2017), (4) Conditional BiGAN, (5)

165

https://sites.google.com/view/val-rl
https://sites.google.com/view/val-rl

Ours, a VQVAE with a conditional PixelCNN.
Sampled affordances are shown in Figure 50. Our model is able to sample coherent

tasks to perform where other methods produce indistinct or uninterruptible samples.
For example, the VQVAE model turns an unseen drawer (with a wide handle) into one
with a thin handle, which exists in the prior data. This illustrates its ability to utilize
prior data for generating conducive goals for online RL. CCVAE samples are usually
less coherent, often missing the object completely and not capturing the geometry of
unseen objects. The CBiGAN also struggles to produce realistic images, while the VAE
fails completely as it is not a conditional model cannot represent the wide diversity of
potential images.

11.6.2 Real-World Visuomotor Affordance Learning

Next, we investigate whether VAL can handle real-world visual complexity and object
diversity to learn control policies for varied tasks on a Sawyer robot. The setup is shown
in Figure 49: the robot is tasked with fine-tuning in a particular environment, beginning
with about 1,000 trajectories of prior data for affordance learning and offline behavior
learning. The protocol for collecting prior data, as well as examples of images from the
data are shown in Appendix F.0.1.

After pretraining affordances, a policy, and a Q function on the prior data, the robot
is dropped in a new test environment. We evaluate five test environments which each
contain distractor objects as well as objects that may be interacted with such a shoe
that can be picked up, drawers than can be opened or closed, and a lid which may be
placed on a pot. These behaviors are demonstrated on similar objects in the prior dataset,
but the objects during test time are previously unseen - for instance, the drawer has a
different handle. The agent can interact with the environment without supervision to
collect more data and improve the policy; then to evaluate, the agent is tasked with a
specific goal image that corresponds to a task such as opening a closed drawer.

Results running VAL in the real world are shown in the table in Figure 51, reporting
the success rates on five test tasks for our method and CCRIG both offline and after
one epoch of online training, which includes 10 interactive trials, amounting to less
than five minutes of real-world interaction time. On all five tasks, VAL shows nontrivial
offline performance followed by strong online improvement. Qualitatively, our method
is able to learn behaviors such as recovering from a missed grasp by returning to the
grasp. Film strips of our method are shown on the right side of Figure 51. In contrast,
CCRIG struggles to make progress on all five tasks. CCRIG fails for two reasons. First,

166

0K 100K 200K 300K 400K 500K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Place Object in Tray

0K 50K 100K 150K 200K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 Open/Close Drawer, Button

0K 100K 200K 300K 400K 500K
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0 Pick and Place

VAL
CCRIG
RIG
CBiGAN-RIG
BiGAN-RIG

Figure 52: Learning curves for simulation experiments, fine-tuning on an unseen environment.
Our method is able to learn these tasks online, while none of the baselines or prior
methods are able to make meaningful learning progress in this setting. A successful
rollout of each task in a test environment is shown above the corresponding plots.

Figure 53: Randomly sampled scenes from our simulated multi-task environment. To practice in
a sampled scene, the agent must infer the potential behaviors that the scene affords.

the quality of the sampled affordances are significantly poorer. Second, as can be seen
in videos, CCRIG sometimes comes close to solving the task, but does not fully solve it,
preventing improvement after subsequent training.

11.7 experimental evaluation in simulation

In order to further study and understand VAL, we carry out more experiments in simu-
lation, where we can better control the quantity of data and ablate parts of the method.
These experiments aim to answer the following questions:

1. Does VAL outperform prior self-supervised RL methods in accelerating learning a
new task from prior data?

2. Can VAL scale with additional data for affordance and behavior learning?
Simulated setting. Randomly generated workspaces in our simulated multi-task en-

vironment are shown in Figure 55. In this PyBullet simulation (Coumans and Bai, n.d.),

167

s0 sT d(zg)

VAL training

(1) Place object in tray

(2) Open drawer, handle

(3) Open/close drawer, button

(4) Pick and place

Figure 54: Training rollouts from VAL. For each environment, the reconstruction of a sampled
affordance is shown on the rightmost column, and frames from a trajectory attempting
to achieve that affordance is shown on the left.

the robot is faced with multiple potential tasks in each environment based on which
objects are present: opening and closing a drawer by the handle, opening and closing a
different drawer by pressing a button, grasping objects, and moving objects into drawers
or a box. To sample a new environment E, we randomize the existence, position, color,
and orientation of the following: two drawers, a box, a button, and an object. If an ob-
ject is present it is chosen from a set of 84 object geometries. To successfully learn in a
test environment, the method must be able to explore in the environment based on the
behaviors that environment affords.

11.7.1 Self-Supervised Online Fine-Tuning from Prior Data

We first compare VAL against prior methods in this simulated setting. The robot receives
a prior dataset D of trajectories in the pre-training environments, which is utilized for
learning affordances and offline RL. The details of this dataset are explained further in
Appendix F.0.2. After the pre-training phase, the robot is placed in a test setting and
begins online fine-tuning. We evaluate the policy on goal images in the new environ-
ment, sampled from expert trajectories, and report whether the final state of the policy’s
trajectory matches the state of the goal image within a chosen threshold.

Learning curves of the online training phase for various objects are shown in Figure 52.
We see that for each task, VAL outperforms prior methods which do not make progress
on learning these tasks at all. On the drawer opening task, offline RL achieves nontrivial
performance of about 60%, but online interaction allows fine-tuning to over 90% success
rate.

168

Initial Image

CVQVAE (Ours)

CCVAE

CBiGAN

VAE

Figure 55: Samples on test environments in simulation. In each column, the top image is the
conditioning image s0 and the images below are conditionally sampled images. The
left four columns are relatively successful samples for our affordance model, each
showing the potential outcome of a behavior. The right two columns are failure modes,
lacking diversity or altering an object’s geometry or color.

How is VAL able to outperform prior methods so significantly? One major reason
is the quality of sampled goals. Samples for the affordance model for the simulated
domain are shown in Figure 55. We compare (1) VAE (D. P. Kingma and Welling, 2014),
(2) CVAE (Sohn et al., 2015), (3) BiGAN (Donahue et al., 2017), (4) Conditional BiGAN,
(5) Ours, a VQVAE with a conditional PixelCNN. Our model produces diverse, coherent
samples of possible outcomes (i.e., affordances) in new scenes with novel objects. In
comparison to our model, conditional VAE samples tend to be blurry and do not capture
the geometry of unseen objects well.

11.7.2 Scalable Robot Learning with VAL

For general-purpose robot learning, we would ideally like to learn diverse skills contin-
uously, using prior experience to perpetually improve at learning new skills. To study
this possibility, we examine whether solving tasks in a new environment can be sped up
by collecting larger amounts of prior experience. In this experiment conducted in simu-
lation in order to carefully control the data quantity, the robot receives a prior dataset D
of K trajectories for running VAL to grasp an unseen object in a new environment. We
vary K to observe whether the method can benefit from larger amounts of prior data.

Learning curves of the online training phase, averaged over five test objects, are shown
in Figure 56. First, we see from the starting point of each curve that the offline policy al-
ready generalizes to some level for grasping objects, but the average success rate is only
around 35%. Importantly, note that training on more data only slightly improves gener-
alization after offline training (at timestep 0). Then, fine-tuning results in rapid policy

169

0K 25K 50K 75K 100K 125K 150K
Timesteps

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

ate

Grasping, Varying Prior Data

3000
2000
1000
500
250

Figure 56: Learning curves for simulated grasping of novel objects with VAL, using data from
an increasing number of training objects for offline RL. We collect 50 trajectories per
training object, and each line is labeled with the total number of training trajectories.

improvement up to around 65% success rate after only 150,000 timesteps when utilizing
the most prior data, compared to 40% with the least prior data. Thus, more prior data sig-
nificantly accelerates learning in new environments even when the initial performance
is comparable. This suggests that VAL can be deployed in a continual learning setting,
with each new task being learned faster as it benefits from the increasing dataset size.

11.8 conclusion

We present visuomotor affordance learning (VAL), a method for learning tasks online
in a new environment without supervision, utilizing trajectories from other related envi-
ronments. VAL uses expressive generative models to learn visual affordances, combines
these affordances with off-policy goal-conditioned RL to learn skills offline, and then
fine-tunes in a new environment online. Like deep learning in domains such as com-
puter vision (Krizhevsky et al., 2012) and natural language processing (Devlin et al.,
2019) which have been driven by large datasets and generalization, robotics will likely
require learning from a similar scale of data. In future work, VAL could enable such
systems by allowing autonomous collection of coherent exploration data in diverse real-
world settings.

170

11.9 contribution statement

The work in this chapter was performed in collaboration with Alexander Khazatsky,
Ashvin Nair, Daniel Jing, and Sergey Levine (Khazatsky et al., 2021b). A.K. and A.N.
were joint first co-authors. A.N. proposed the affordance idea and managed the project.
A.K. conducted the simulated experiments with assistance from A.N. A.K. and A.N. con-
ducted the real-world experiments. D.J. assisted in implementing baselines in simulation
experiments. S.L. advised the project and assisted with writing.

171

12
P L A N N I N G T O P R A C T I C E : E F F I C I E N T O N L I N E F I N E - T U N I N G B Y
C O M P O S I N G G O A L S I N L AT E N T S PA C E

12.1 introduction

While goal-conditioned policies can be trained effectively for relatively short-horizon
tasks, temporally extended multi-stage can pose a significant challenge for current meth-
ods. These tasks present a major exploration challenge during online learning, and a
major challenge for credit assignment during offline learning. In this chapter, we aim
to address these challenges by combining two ideas. The first is that long-horizon goal-
reaching tasks can be decomposed into shorter-horizon tasks consisting of subgoals. The
second is that these subgoals can be used to fine-tune a goal-conditioned policy online,
even if its performance from offline data is poor. The first idea enables us to address
the exploration challenge, by automatically generating intermediate subgoals that can
be “practiced” on the way to a longer-horizon final goal. In the framework of goal-
conditioned RL, solving long-horizon tasks can be reduced to the problem of optimiza-
tion over a sequence of subgoals for the goal-conditioned policy, and this optimization
over subgoals can be regarded as a kind of high-level planning, where the optimizer
selects waypoints for achieving a distant goal. The high-level planner itself can use a
learned high-level model.

However, if we rely entirely on offline data, credit assignment challenges make it
difficult to perform longer-horizon tasks even with subgoal planning. Even if the offline
RL policy performs well on each individual skill, there may be errors from stitching
skills together because the initial states of each stage diverge from the offline data when
they are composed together. In practice, this leads to poor performance when using
only offline training. Therefore, the second key idea in our work is to utilize subgoal
planning not merely to perform a multi-stage task, but also to make it possible to practice
that task to finetune it online. While online training for temporally extended tasks is

172

(· |) π(· | ,)

Figure 57: Our method, Plan to Practice (PTP), solves long-horizon goal-conditioned tasks by
combining planning and fine-tuning. We begin with an offline dataset containing a
variety of behaviors, and train a subgoal generator and goal-conditioned policy on
this data. Then, to learn a more complex multi-stage tasks, we optimize over subgoals
using the subgoal generator, which corresponds to a planning procedure over (visual)
subgoals, and fine-tune the policy with online RL by practicing these subgoals. This
enables the robot to solve multi-stage tasks directly from images.

ordinarily difficult, by addressing the exploration challenge with subgoal planning, we
make it possible for the robot to practice a series of relatively short-horizon tasks, which
makes this kind of finetuning feasible. Thus, the planner acts both as a higher level policy
when performing the task, and as a scaffolding curriculum for finetuning the lower-level
goal-conditioned policy By collecting data actively in a specific environment, we can
directly experience the distribution shift and can use reinforcement learning to improve
performance under this shift.

To this end, we propose Planning to Practice (PTP), an approach that efficiently trains
a goal-conditioned policy to solve multi-step tasks by setting subgoals to exploit the com-

173

positional structure of the offline data. An outline is shown in Fig. 57. Our approach is
based around a planner that composes generated subgoals to guide the goal-conditioned
policy during an online fine-tuning phase. To propose diverse and reachable subgoals
to form the candidate plans, we design a conditional subgoal generator based on con-
ditional variational autoencoder (CVAE) (Sohn et al., 2015). Through training on the
offline dataset, the conditional subgoal generator captures the distribution of reachable
subgoals from a given state and generates sequences of subgoals from the learned latent
space in a recursive manner. Our subgoal planning algorithm hierarchically searches for
subgoals in a coarse-to-fine manner using multiple conditional subgoal generators that
trained to generate goals at different temporal resolutions. Both the goal-conditioned
policy and the conditional subgoal generators are pre-trained on the offline data, and
the policy is fine-tuned on the novel target task.

Our main contribution is a system for learning to solve long-horizon goal-reaching
tasks by fine-tuning the goal-conditioned policy with subgoal planning in a learned la-
tent space. We evaluate our approach on multi-stage robotic manipulation tasks with raw
image observations and image goals in both simulation and the real world. After being
pre-trained on short demonstrations of primitive interactions, our approach is able to
find feasible subgoal sequences as plans for unseen final goals by recursively generating
subgoals with the learned conditional subgoal generators. By comparing our approach
with both model-free methods and prior approaches that optimize over subgoals, we
demonstrate that the produced plans significantly improve the learning efficiency and
the resultant success rates during the online fine-tuning.

12.2 related work

We propose to use a combination of optimization-based planning and fine-tuning with
goal-conditioned reinforcement learning from prior data in order to allow robots to learn
temporally extended skills. In this section, we cover prior methods in offline RL, plan-
ning, goal-conditioned RL, and how they relate to our method.

Learning from prior data. Offline reinforcement learning methods learn from prior
data (Lange et al., 2012a; Fujimoto et al., 2019b; Kumar et al., 2019b; C. Zhang et al.,
2021; Kumar et al., 2020b; Fujimoto and S. S. Gu, 2021; Singh et al., 2020b), and can also
finetune through online interaction (A. Nair et al., 2020; Villaflor et al., 2020; Lu et al.,
2021; Khazatsky et al., 2021a; S. Lee et al., 2021; Meng et al., 2021). Such methods have
been used in a variety of robotic settings (Kalashnikov et al., 2018a; Cabi et al., 2019;
Kalashnikov et al., 2021; Lu et al., 2021). Our focus is not on introducing new offline

174

RL methods. Rather, our work shows that planning over subgoals for a goal-conditioned
policy that is pretrained offline can enable finetuning for temporally extended skills that
would otherwise be very difficult to learn.

Goal-conditioned reinforcement learning. The aim of goal-conditioned reinforcement
learning (GCRL) is to control the agent to efficiently reach specified goal states (Leslie
Pack Kaelbling, 1993; Schaul et al., 2015a; Eysenbach et al., 2021). Compared to policies
that are trained to solve a fixed task, the same goal-conditioned policy can perform a va-
riety of tasks when it is commanded with different goals. Such flexibility allows GCRL to
better share knowledge across different tasks and make use of goal relabeling techniques
to improve the sample efficiency without meticulous reward engineering (Andrychow-
icz et al., 2017a; Vitchyr H. Pong et al., 2020b; M. Fang et al., 2019; Ding et al., 2019;
Abhishek Gupta et al., 2019b; H. Sun et al., 2019; Eysenbach et al., 2020; Ghosh et al.,
2021). Prior has explored various strategies for proposing goals for exploration (A. Nair
et al., 2018b; A. Nair et al., 2019b; Khazatsky et al., 2021a; Chane-Sane et al., 2021), and
studied goal-conditioned RL from offline data (Chebotar et al., 2021). However, such
works generally aim to learn short-horizon behaviors, and learning to reach goals that
require multiple stages (e.g., several manipulation primitives) is very difficult, as shown
in our experiments. Our work aims to extend model-free goal-conditioned RL meth-
ods by incorporating elements of planning to enable effective finetuning for multi-stage
tasks.

Planning. A wide range of methods have been developed for planning in robotics. At
the most abstract level, symbolic task planning searches over discrete logical formulas
to accomplish abstract goals (Fikes and Nilsson, 1971). Motion planning methods solve
the geometric problem of reaching a goal configuration with dynamics and collision con-
straints (Kavraki et al., 1996; Koenig and Likhachev, 2002; Karaman and Frazzoli, 2011;
Zucker et al., 2013; Kalakrishnan et al., 2011a). Prior methods have also considered task
and motion planning as a combined problem (S. Srivastava et al., 2014). These meth-
ods generally assume high-level structured representations of environments and tasks,
which can be difficult to actualize in real-world environments. Since in our setting we
only have image inputs and not structured scene representations, we focus on methods
that can handle raw images for observations and task specification.

Combining goal-conditioned RL and planning. A number of recent works have
sought to integrate concepts from planning with goal-conditioned policies in order to
plan sequences of subgoals for longer-horizon tasks (Nasiriany et al., 2019; Eysenbach
et al., 2019; K. Fang et al., 2019; Charlesworth and Montana, 2020; Pertsch et al., 2020;
Sharma et al., 2021; T. Zhang et al., 2021). These prior methods either propose subgoals

175

from the set of previously seen states, or directly optimize over subgoals, often by utiliz-
ing a latent variable model to obtain a concise representation of image-based states (A.
Nair et al., 2018b; Ichter et al., 2018; S. Nair and Finn, 2019; Nasiriany et al., 2019; Pertsch
et al., 2020; Khazatsky et al., 2021a; Chane-Sane et al., 2021). The method we employ is
most closely related conceptually to the method proposed by Pertsch et al. (Pertsch et al.,
2020), which also employs a hierarchical subgoal optimization, and the method proposed
by Nasiriany et al. (Nasiriany et al., 2019), which also optimizes over sequences of latent
vectors from a generative model. Our approach makes a number of low-level improve-
ments, including the use of a conditional generative model (A. Nair et al., 2019b), which
we show leads to significantly better performance. More importantly, our method differs
conceptually from these prior works in that our focus is specifically on utilizing subgoal
optimization as a way to enable finetuning goal-conditioned policies for longer-horizon
tasks. We show that it is in fact this capacity to enable effective finetuning that enables
our method to solve more complex multi-stage tasks in our experiments.

12.3 problem statement

In this paper, we consider the problem of learning to complete a long-horizon task spec-
ified by a goal image. The robot learns over a variety of initial configurations and goal
distributions, which cover a range of behaviors such as opening or closing a drawer, and
picking, placing, or pushing an object. As prior data, the robot has access to an offline
dataset of trajectories Doffline = {τ1, τ2, . . . , τN} for offline pre-training. In each trajectory,
the robot is controlled by a human tele-operator or a scripted policy to achieve one of the
goals the environment affords. A goal-conditioned policy is pre-trained on this dataset
using offline RL algorithms.

After offline pre-training, the robot is placed in a particular environment that it has
online access to interact in. Even though the initial configuration of this environment
may have been included in the set of training environments, the goal distribution for
this environment at test time requires sequencing multiple skills together, which is not
present in the offline data. For instance, as shown in Fig. 57, the robot would need to
first slide away the can that blocks the drawer, then reaches the handle of the drawer,
and finally opens the drawer.

Naïvely running offline RL may not solve the long-horizon test tasks for two reasons.
First, the robot is given a test goal distribution that is long horizon but offline dataset
consists of individual skills. The method needs to somehow compose these individual
skills autonomously in order to succeed at goals drawn from the test distribution. Second,

176

offline RL may not solve the task due to distribution shift. Distribution shift appears
in two forms: distribution shift between transitions in the prior data and transitions
obtained by the actively rolling out the policy, and the distribution shift introduced when
performing tasks sequentially. If the robot may actively interact in the new environment
to improve its policy, how can the robot further practice and improve its performance?

12.4 preliminaries

We consider a goal-conditioned Markov Decision Process (MDP) denoted by a tupleM =

(S,A, ρ,P,G,γ) with state space S, action space A, initial state probability ρ, transition
probability P, a goal space G, and discount factor γ. In each episode, a desired goal
sg ∈ G is sampled for the robot to reach. At each time step t, a goal-conditioned policy
π(at|st, sg) selects an action at ∈ A conditioned on the current state st and goal sg. After
each step, the robot receives the goal-reaching reward rt(st+1, sg). The robot aims to
reach the goal by maximizing the average cumulative reward E[Σtγ

trt]. Our approach
learns a goal-conditioned policy π for solving the target task specified by a desired
final goal sg. The goal-conditioned policy is pre-trained on a previously collected offline
dataset Doffline and then fine-tuned to reach sg by accumulating data into an online
replay buffer Donline. Doffline contains diverse short-horizon interactions with objects in
the environment. During online fine-tuning, we would like the policy to learn to improve
and compose these short-horizon behavior for multi-stage tasks specified by sg.

Defining informative goal-reaching rewards and extracting useful state representations
from high-dimensional raw observations such as images can be challenging. Following
the practice in prior work (A. Nair et al., 2018b; Khazatsky et al., 2021a), we pre-train a
state encoder h = φ(s) to extract the latent state representation h. By encoding the states
and goals to the latent space, we can obtain an informative goal-reaching reward function
rt = R(ht+1,hg) by computing ht+1 = φ(st+1) and hg = φ(sg). Specifically, R(ht+1,hg)
returns 0 when ||ht+1,hg|| < ε and -1 otherwise, where ε is a selected threshold. In
addition, we also use φ(st+1) as the backbone feature extractor in all of our models that
take s as an input. For simplicity, we directly use s to denote h in the rest of the paper.
The details of the state encoder are explained in Sec. 12.6.2.

12.5 planning to practice

We propose Planning to Practice (PTP), an approach that efficiently fine-tunes a goal-
conditioned policy to solve novel tasks. To enable the robot to efficiently learn to solve

177

the target task, we propose to use subgoals to facilitate the online fine-tuning of the
goal-conditioned policy. Given the initial state s0 and the goal state sg, we search for a
sequence of K subgoals ŝ1 : K = ŝ1, ..., ŝK to guide the robot to reach sg. Such subgoals
will inform the goal-conditioned policy π(a|s, sg) what is the immediate next step on the
path to sg and provide the policy more dense reward signals compared to directly using
the final goal. We choose the sequence of subgoals at the beginning of each episode and
feed the first subgoal in the sequence to the goal-conditioned policy. The policy will
switch to the next subgoal in the sequence when the current subgoal is reached or the
time budget assigned for the current subgoal runs out.

The main challenge is to search for a sequence of subgoals that can lead to the desired
final goals while ensuring each subgoal is a valid state that can be reached from the
previous subgoal. Particularly when the states correspond to full images, most vectors
will not actually represent valid states, and indeed naïvely optimizing over image pixels
may simply result in out-of-distribution inputs that lead to erroneous results when input
into the goal-conditioned policy.

As outlined in Fig. 57, we devise a method to effectively propose and select valid
subgoal sequences to guide online fine-tuning by means of a generative model. At the
heart of our approach is a conditional subgoal generator g(·|s0) that recursively produces
candidate subgoals in a hierarchical manner conditioned on the initial state s0. To find
the optimal sequence of subgoals ŝ∗1:K, we first sample N candidate sequences ŝ11:K, ..., ŝN1:K
from the state space using the conditional subgoal generator. Then we rank the candi-
date sequences using a cost function c(s0, ŝ1:K, sg). The sequence that corresponds to the
lowest cost will be selected as ŝ∗1:K for the goal-conditioned policy. Through this sampling-
based planning procedure, we choose the subgoal for guiding the goal-conditioned pol-
icy π during online fine-tuning. The overall algorithm is summarized in Algorithm 8.
Next we describe the design of each module in details.

12.5.1 Conditional Subgoal Generation

The effectiveness of our planner relies on the generation of diverse and feasible se-
quences of subgoals as candidates. Specifically, we would like to generate the candidates
by sampling from the distribution of suitable subgoal sequences p(ŝ1, ..., ŝK|s0) condi-
tioned on the initial state s0. Most existing methods independently sample the subgoal
at each step from a learned prior distribution (Pertsch et al., 2020) or a replay buffer (Ey-
senbach et al., 2019), which is unlikely to propose useful plans for tasks with large,
combinatorial state spaces (i.e., with multiple objects).

178

Algorithm 8 Planning To Practice (PTP)

Require: set of final goals G, time horizon T , offline data Doffline, number of subgoals K.
0: Train π(a|s, sg) and g(s, z) on Doffline.
0: Initialize the online replay buffer Donline ← ∅.
0: while not converged do
0: Reset the environment and observe s0.
0: Sample sg from G.
0: Plan for the subgoals ŝ1:K.
0: k← 1

0: for t = 1, ..., T do
0: Compute the action at ← π(at|st, ŝK)
0: Observe the state st+1 and the reward rt
0: Donline ← Donline ∪ (st,at, rt, st+1).
0: if t (mod ∆t) == 0 or ||st+1 − ŝK|| < ε then
0: k← min(k+ 1,K)
0: Train π on batches sampled from Doffline and Donline.

=0

We propose to break down p(ŝ1, ..., ŝK|s0) into p(ŝ1|s0)Πki=1p(ŝi|ŝi−1) through modeling
the conditional distribution p(s ′|s) of the reachable next subgoal s ′. By utilizing temporal
compositionality, the conditional subgoal generation paradigm improves generalization
and enables generation of sequences of arbitrary lengths.

We use a conditional variational encoder (CVAE) (Sohn et al., 2015) to capture the
distribution of reachable goals p(s ′|s). In the CVAE, we define the decoder as g(s, z) and
the encoder as q(z|s, s ′), where z is the learned latent representation of the transitions
and it is sampled from a prior probability p(z). To propose a sequence of subgoals,
we use g(s, z) as the conditional subgoal generator. Conditioned on the initial state s0,
the first subgoal ŝ1 can be generated as ŝ1 = g(s0, z1) given the sampled z1. Then the
ith subgoal can be recursively generated by sampling zi ∼ p(z) and computing ŝi =

g(ŝi−1, zi) given the previous subgoal ŝi−1. In this way, we could sample a sequence of
i.i.d. latent representations z1, ..., zK and recursively generate ŝ1, ..., ŝK conditioned on the
initial state s0 using the conditional subgoal generator.

The CVAE is trained to minimize the evidence lower bound (ELBO) (D. P. Kingma
and Welling, 2014) of p(s ′|s) given the offline dataset D. During training, we sample
transitions (st, sτ) from the offline dataset to form the minibatches, where τ = t+∆t is a
future step that is ∆t steps ahead. Instead of using a fixed ∆t, we sample ∆t from a range
for each transition to provide richer data. To encourage the trained model to be robust

179

Algorithm 9 Plan(s0, sg,L,K,M,N)

Require: the initial state s0, the goal state sg, number of subgoals K, number of levels L,
multiplier M, number of samples N.

0: Sample N latent action sequences {zi1:K}
N
i=1.

0: Recursively generate subgoals {ŝi1:K}
N
i=1 using g(s, z).

0: Select z∗1:K and ŝ∗1:K of the lowest cost.
0: Update z∗1:K and ŝ∗1:K using MPPI.
0: if L = 1 then
0: return ŝ∗1:K
0: else
0: Denote ŝ∗0 ← s0.
0: Initialize the plan Ŝ as an empty list
0: for i = 1, ...,K do
0: Append Plan(ŝ∗i−1, ŝ

∗
i ,L− 1,M,M,N) to S

0: return Ŝ

=0

to compounding errors, we sample sequences composed of multiple states and use the
subgoal reconstructed at the previous step as the context in the next step. Therefore, the
objective for training the conditional subgoal generator is:

Eq(z|st,sτ)||sτ − g(st, z)||
2 +DKL[q(z|st, sτ)||p(z)] (59)

where DKL[·||·] indicates the KL-Divergence.

12.5.2 Efficient Planning in the Latent Space

We build a planner that efficiently searches for sequences of subgoals in the latent
space as shown in Algorithm 9. To tackle the large search space of candidate subgoal
sequences, we design a hierarchical planning algorithm that searches for subgoals in a
coarse-to-fine manner and re-use the previously selected subgoals as candidates in new
episodes.

The hierarchical planning is conducted at L levels with different temporal resolutions
∆t1, ..., ∆tL. The temporal resolution of each level is an integral multiple of that of the
previous level, i. e., ∆ti =M∆ti−1, whereM is a scaling factor and is set to 2 in our exper-
iments. We first plan for the subgoals ŝ11, ŝ

1
2, ... on the first level. Then the subgoals ŝl1:K of

finer temporal resolution are planned on each level l to connect the subgoals planned on

180

the previous level l− 1. Specifically, given the adjacent subgoals ŝl−1i and ŝl−1i+1 produced
on the previous level, we plan for a segment ofM subgoals ŝli∗M+1, ..., ŝl(i+1)∗M on the level

l, by treating ŝl−1i and ŝl−1i+1 as the initial state and final goal state in Eqn. 61. The planned
segments are returned to the previous level and concatenated as a more fine-grained
plan. For this purpose, we train L conditional subgoal generators to propose subgoals
that are ∆t1, ..., ∆tL steps away, respectively. In contrast to the prior work (Pertsch et al.,
2020), the conditional subgoal generators enable us to plan for unseen goals that are be-
yond the temporal horizon of the demonstrations in the offline dataset by exploiting the
compositional structure of the demonstrations. By recursively generating the subgoals
across time at each level, we only need to enforce that the temporal resolution of the top
level ∆tL is smaller than since the the conditional subgoal generator f1(s, z) needs to be
trained on trajectories at least ∆tL + 1 steps in length.

We maintain a latent plan buffer for each level to further facilitate the planning with
the conditional subgoal generator. After each episode, the selected latent representations
on each level are appended to the corresponding latent plan buffer. In each target task,
the subgoals are supposed to have the same semantic meaning. In spite of the variations
of the initial and goals state in each episode, the optimal plans in the latent space can
often be similar to each other. Therefore, we sample half of the latent representations
from the prior distribution p(z) and the other half from the latent plan buffer among the
initial samples to enhance the chance of finding a close initial guess.

We build our planner upon the model predictive path integral (MPPI) (Gandhi et
al., 2021), which iteratively optimizes the plan through importance sampling. In each
interaction, we perturb the chosen plan in the latent space with a small Gaussian noise
as new candidates.

12.5.3 Cost Function For Feasible Subgoals

To provide informative guidance to the policy π(a|s, sg), we would like that the final
goal sg can be reached at the end of the episode while encouraging the transition be-
tween each pair of subgoals to be feasible within a limited time budget. As explained
in Sec. 12.4, the goal state is considered to be reached when the Euclidean distance be-
tween the last subgoal in the plan and the desired goal is less than a threshold δ in
the learned latent space. The feasibility of each transition between adjacent subgoals can
be measured using the goal-conditioned value function V(s, s ′) trained by the reinforce-
ment learning algorithm. Therefore, finding the subgoals ŝ∗1:K can be formulated as a

181

Task A

Task B

Task C

Task A

Task B

Task C

Real World Simulation

Figure 58: Target tasks. Three multi-stage tasks are designed for our experiments in the simula-
tion and the real world respectively. In each target task, the robot needs to strategically
interacts with the environment (e. g.first takes out an object in the drawer then closes
the drawer). The initial state and the desired goal state are shown for each task.

Figure 59: Quantitative comparison in simulation. The average success rate across 3 runs is
shown with the shaded region indicating the standard deviation. The negative x-axis
indicates the epochs of offline pre-training and positive x-axis indicates epochs of
online fine-tuning. Using offline learning and planning, our method PTP is able to
solve these tasks partially (at 0 epochs). Then with online finetuning the performance
improves further. In contrast, prior methods have lower offline performance and do
not fine-tune successfully in most cases, as they do not collect coherent online data.

constrained optimization problem:

minimize ||sg − ŝK|| (60)
subject to V(ŝi, ŝi+1) > δ, for i = 0, ...,K− 1

182

where we use ŝ0 = s0 to denote the initial state for convenience. By re-writing Eq. 60 as
a Lagrangian, we obtain the cost function with a weight η:

c(s0, ŝ1:K, sg) = ||sg − ŝK||+ η

K−1∑
i=0

V(ŝi, ŝi+1) (61)

The details of our method are explained in Sec. 12.6.2.

12.6 experiments

In our experiments, we aim to answer the following questions: 1) Can PTP propose and
select feasible subgoals as plans for real-world robotic manipulation tasks? 2) Can the
subgoals planned by PTP facilitate online fine-tuning of the goal-conditioned policies to
solve target tasks unseen in the offline dataset? 3) How does each design option affect
the performance of PTP? Videos of our experimental results are available on the project
website: sites.google.com/view/planning-to-practice

12.6.1 Experimental Setup

Environment. As shown in Fig. 58, our experiments are conducted in a table-top ma-
nipulation environment with a Sawyer robot. At the beginning of each episode, a fixed
drawer and two movable objects are randomly placed on the table. The robot can change
the state of the environment by opening/closing the drawer, sliding the objects, and
picking and placing objects into different destinations, . At each time step, the robot re-
ceives a 48 x 48 RGB image via a Logitech C920 camera as the observation and takes a
5-dimensional continuous action to change the gripper status through position control.
The action dictates the change of the coordinates along the three axes, the change of the
rotation, and the status of the fingers. We use PyBullet (Coumans and Bai, n.d.) for our
simulated experiments.

Prior data. The prior data consists of varied demonstrations for different primitive
tasks. In each demonstrated trajectory, we randomly initialize the environment and per-
form primitive interactions such as opening the drawer and poking the object. These
trajectories are collected using teleoperation in the real world, and a scripted policy that
uses privileged information of the environment (e.g., the object pose and the status of
the drawer) in simulation. The trajectories vary in length from 5 to 150 time steps, with
2,344 trajectories in the real world and 4,000 in simulation.

183

https://sites.google.com/view/planning-to-practice

Target tasks. In each target task, a desired goal state is specified by a 48 x 48 RGB
image (same dimension with the observation). The robot is tasked to reach the goal
state by interacting with the objects on the table. Task success for our evaluation is
determined based on the object positions at the end of each episode (this metric is not
used for learning). As shown in Fig. 58, we design three target tasks that require multi-
stage interactions with the environment to complete. These target tasks are designed
with temporal dependencies between stages (e. g.the robot needs to first move away a
can that blocks the drawer before opening the drawer). The transitions from the initial
state to the goal state are unseen in the offline data. The episode length is 400 steps in
simulation and 125 steps in the real world, which are much longer than the time horizon
of the demonstrations.

Baselines and ablations. We compare PTP with 3 baselines and 3 ablations. Model-
Free uses a policy directly conditioned on the final goal and conducts online fine-tuning
without using any subgoals. LEAP (Nasiriany et al., 2019) learns a variational auto-
encoder (VAE) (D. P. Kingma and Welling, 2014) to capture the prior distribution of
states and plans for subgoals without conditioning on any context. GCP (Pertsch et al.,
2020) learns a goal predictor that hierarchically generates intermediate subgoals between
the initial state and the goal state. To analyze the design options in PTP, we also compare
with variations of our method by removing the latent plan buffer (PTP (w/o B)), the hier-
archical planning algorithm (PTP (w/o H)), and both of these two designs (PTP (w/o H
and B)). All methods use the same neural network architecture in the goal-conditioned
policy and are pre-trained on the same offline dataset.

12.6.2 Implementation Details

Following Khazatsky et al., 2021a, we use a vector quantized variational autoencoder
(VQ-VAE) (Aron van den Oord et al., 2017) as the state encoder, which encodes a
48 × 48 × 3 image to a 720-dimensional encoding. The conditional subgoal generator
is implemented with a U-Net architecture (Ronneberger et al., 2015) and decodes the
subgoal from a 8-dimensional latent representations conditioned on the encoding of the
current state. In our planner, we use L = 3, K = 8, M = 2, N = 1024, and we run
MPPI for 5 iteration on each level. g is trained to predict subgoals that are 15, 30, and 60

steps away. Implicit Q-Learning (IQL) (Kostrikov et al., 2021b) is used as the underlying
RL algorithm for offline pre-training and online fine-tuning with default hyperparame-
ters. We use the same network architectures for the policy and the value functions from
(Khazatsky et al., 2021a) for simulation experiments. For real-world experiments, we use

184

LE
A

P
G

C
P

O
ur

s
LE

A
P

G
C

P
O

ur
s

Task A

Task B

LE
A

P
G

C
P

O
ur

s

Task C Final Goal

Final Goal

Final Goal

Initial State

Initial State

Initial State

Figure 60: Planned subgoal sequences. Each row shows the sequence of subgoals produced by
each method. The initial state and the final goal are shown at the two ends.

a convolutional neural network instead. We use Adam optimizer with a learning rate of
3 · 10−4 and a batch size of 1024. During training, we relabel the goal with future hind-
sight experience replay (Andrychowicz et al., 2017a) with 70% probability. We use ε = 3

for the reward function defined in Sec. 12.4, η = 0.01 in Eqn. 61.

185

12.6.3 Quantitative Comparisons

We evaluate PTP and baselines on three unseen target tasks. We use simulated versions
of these tasks for comparisons and ablations, and real-world tasks, where all pretraining
and finetuning uses only real-world data, to evaluate the practical effectiveness of the
method.

Simulation. We first pre-train the goal-conditioned policy on the offline dataset for
100 epochs and the run online fine-tuning for the target task for 150 epochs. Each epoch
takes 2,000 simulation steps (only during fine-tuning) and 2,000 training iterations. We
run online fine-tuning using each method with 3 different random seeds. After each
epoch, we test the policy in the target task for 5 episodes. We report the average success
rate across 3 runs in Fig. 59 where the negative x-axis indicates the offline pre-training
epochs and positive x-axis indicates the online fine-tuning epochs.

As shown in Fig. 59, our full model consistently outperforms baselines with a large
performance gap. The generated subgoals not only enables the pre-trained policy to
achieve higher success rate by breaking down the hard problems into easier pieces, but
also introduces larger performance improvements during online fine-tuning. After fine-
tuning for 150 epochs, the policy achieves the success rates of 84.9%, 59.9%, 49.3% in the
three target tasks respectively. Compared to the policy pre-trained on the offline dataset,
the performance is significantly improved (+31.6%, +37.8%, and +13.8%). When directly
using the final goal or subgoals generated by baseline methods, the policy’s performance
plateaus at around 0.0% to 30.0% and does not improve much during online fine-tuning.

We found that the hierarchical planner and the latent plan buffer are crucial for PTP’s
performance. Without these two design options, the planner often suffers from the large
search space of possible subgoal sequences and the resultant success rates decrease. The
latent plan buffer significantly improves the performance of non-hierarchical PTP while
it has a minor effect on hierarchical PTP.

Real-world evaluation. We pre-train the policy for 200 epochs and fine-tune it for 10

epochs. In each epoch, we run 10,000 training iterations and collect 1,000 steps in the
real world. We train on three target tasks which are shown in Figure 58, and report the
success rate of the goal-conditioned policy before and after online fine-tuning in Table 9.
Planning enables the robot to succeed partially with just the offline initialized policy,
achieving success rates of 12.5%, 75.0% and 25.0% on the three tasks. (When the offline
policy is conditioned on only the final goal image without planning, the success rate is
0%.) Then in each task, we fine-tune to a significantly higher success rate.

Qualitatively, at the beginning of fine-tuning, the robot often fails, deviating from the

186

Table 9: The real-world success rates before and after online fine-tuning. The tasks are described
in Sec. 12.6.1.

Task
PTP (Ours)

Offline→ Online

GCP

Offline→ Online

Task A 12.5%→ 62.5% 12.5%→ 0.0%

Task B 75.0%→ 100.0% 50.0%→ 75.0%

Task C 25.0%→ 50.0% 25.0%→ 12.5%

planned subgoals or colliding with the environment. With the planned subgoals, the orig-
inal long-horizon task is broken down to short snippets that are easier to complete. Even
if a subgoal is not reached successfully at first, the data is useful to collect additional
experience and fine-tune the policy. After fine-tuning for 4-5 epochs, we already ob-
serve that the robot’s performance reaching subgoals during training time significantly
improves, collecting even more coherent and useful data. After 10 epochs, we achieve
success rates of 62.5%, 100.0% and 50.0%. In comparison, GCP cannot provide useful
guidance to the policy when the generated goals are noisy.

12.6.4 Generated Subgoals

In Fig. 60, we present qualitative results of the generated subgoals for each task in the
real world. Each row shows a sequence of generated subgoals produced by the planner
in each method. In all the three target tasks, PTP successfully plans for a sequence of sub-
goals that can lead to the desired final goal. The transition between adjacent subgoals are
feasible within a short period of time. By comparison, both of the baseline methods fail
to generate reasonable plans. Without conditioning on the current state, LEAP (Nasiri-
any et al., 2019) can hardly produce any realistic images of the environment. Most of
the generated subgoals are highly noisy images with duplicated robot arms and objects.
The quality of the subgoals produced by GCP (Pertsch et al., 2020) is higher than that
of LEAP but still much worse than ours. GCP cannot generalize well for the initial state
and the goal state that are out of the distribution of the offline dataset, which contains
only short snippets of demonstrations.

187

12.7 conclusion and discussion

We presented PTP, a method for real-world learning of temporally extended skills by
utilizing planning and fine-tuning to stitch together skills from prior data. First, planning
is used to convert a long-horizon task into achievable subgoals for a lower level goal-
conditioned policy trained from prior data. Then, the goal-conditioned policy is further
fine-tuned with active online interaction, mitigating the distribution shift between the
offline data and actual states seen during rollouts. This procedure allows robots to extend
their capabilities autonomously, composing previously seen data into more complicated
and useful skills.

12.8 contribution statement

The work in this chapter was performed in collaboration with Kuan Fang, Patrick Yin,
and Sergey Levine (K. Fang et al., 2022). K.F. and P.Y. were joint first-coauthors. The
idea of using an affordance model to set goals for finetuning was developed jointly by
K.F. and A.N. The project was primarly managed by K.F. The majority of the simluation
experiments were conducted by K.F. and P.Y. The first three authors conducted base-
line experiments. The real-world experiments were conducted primarily by P.Y. with
assistance from K.F. and A.N. The paper was written by K.F., with A.N. assisting. S.L.
advised the project and assisted with writing.

188

13
C O N C L U S I O N

In sum, we have covered two major directions forward for enabling scalable robot learn-
ing. In Part I, we covered self-supervised goal-conditioned learning for learning mul-
titask policies from raw observations with minimal human supervision. In effect, this
enables a robot to be dropped in an environment and set goals autonomously. In Part II,
we covered using prior knowledge to accelerate reinforcement learning. In Part III, we
explored combining these directions to enable affordance-driven robotic agents. In this
final chapter, we discuss further implications of this work as well as future directions.

Offline reinforcement learning. The paradigm of offline reinforcement learning fol-
lowed by online finetuning follows the broader trend in machine learning, where large
expressive models trained on large datasets can be successfully fine-tuned for specific
problems with relatively less data and compute available. The development of offline
reinforcement learning algorithms, including the ones in this thesis (see chapter 6, 7),
enables the analogous capability for control (Levine et al., 2020). Policies and value func-
tions can be pretrained offline, and then fine-tuned online. This capability is especially
important in the reinforcement learning setting because, unlike the supervised learning
setting, reinforcement learning agents can often collect data, and this data will often be
the most task-relevant data in the presence of distribution shift. For instance, a robot
may be placed in a new home; the ability to fine-tune on newly collected data which
may be out of the training distribution is vital for the robot to accomplish tasks in the
new home, and reduces the necessity of perfect zero-shot performance. Such a capability
can also be the basis for continual lifelong learning, by enabling the collection of high
quality data in diverse environments.

In this thesis, we have discussed robotics as the main domain. Offline reinforcement
learning is a clear fit for robotics as it is a difficult control problem and requires general-
ization from raw pixel and other sensory observations, an area of clear strength for deep

189

learning methods. But beyond robotics, many other control and sequential decision mak-
ing problems are on the cusp of being realistically automated - in finance, logistics, job
scheduling, natural language understanding, chip design, science, healthcare, human-
computer interaction, and more. Each domain has unique challenges, depending on the
cost of collecting offline data, cost of building accurate simulators, cost of online data,
and safety considerations of running policies online. But in many of these domains, the
underlying control problem is often today treated as a prediction problem. The availabil-
ity of stable, usable offline RL algorithms to capture the control nature of these problems
can enable significant progress.

Self-supervision and goal-conditioned reinforcement learning. The other major
theme covered in this thesis is multi-task learning via a continuous latent variable. We
saw how a latent variable model can be used for autonomously setting goals, evaluating
rewards, and learning a policy that can generalize across tasks. In this work, we mainly
focused on reconstructive latent variable models, such as variational auto-encoders (D. P.
Kingma and Welling, 2014). But more generally, the recipe of goal-conditioned reinforce-
ment learning combined with latent variable models and goal relabeling can be applied
to arbitrary latent variable models. This could enable more convenient task specification
modalities such as language commands, demonstrations, or human feedback of policy
executions, with significant sharing of the underlying RL algorithm when accommodat-
ing new modalities.

Even more generally, the recurring theme of machine learning – the “bitter lesson” ac-
cording to R. Sutton (2019) – is that general methods that leverage computation and
data excel in the long run as opposed to methods that limit themselves by embed-
ding domain-specific assumptions. Realizing this vision in robotics is difficult due to
all the unscalable components of real-world robotics systems: bespoke robot controllers,
physical resets, instrumentation for reward and state estimation, and safety. Operating
in the usual single-task reinforcement learning formalism hides this complexity. Self-
supervised goal-conditioned RL combined with the ability to use offline datasets has the
potential to address many of these questions in a scalable way: autonomous goal setting
for resets, obviating the need for reward engineering with self-supervised reward func-
tions, operating from raw sensor input without state estimation, and maintaining safe ex-
ploration by using offline learned policies. With these obstacles solved, goal-conditioned
RL from prior data can be a data sponge that can take advantage of large-scale robot
data to learn generalizble policies and create robust, adaptable robotic systems.

190

B I B L I O G R A P H Y

Abbeel, Pieter and Andrew Y Ng (2004). “Apprenticeship learning via inverse reinforce-
ment learning.” In: International Conference on Machine Learning (ICML), p. 1 (cit. on
pp. 59, 87).

Abdolmaleki, Abbas, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess,
and Martin Riedmiller (2018). “Maximum a Posteriori Policy Optimisation.” In: Inter-
national Conference on Learning Representations (ICLR), pp. 1–19 (cit. on pp. 75, 84, 86,
265).

Abel, David, Gabriel Barth-Maron, James Macglashan, and Stefanie Tellex (2014). “To-
ward Affordance-Aware Planning.” In: RSS Workshop on Affordances in Vision for Cog-
nitive Robotics. url: https://vimeo.com/88689171 (cit. on p. 158).

Adolph, Karen E and John M Franchak (2017). “The development of motor behavior.”
In: doi: 10.1002/wcs.1430 (cit. on p. 1).

Agarwal, Rishabh, Dale Schuurmans, and Mohammad Norouzi (2019). “An Optimistic
Perspective on Offline Reinforcement Learning.” In: International Conference on Ma-
chine Learning (ICML). eprint: 1907.04543v2 (cit. on p. 85).

Agrawal, Pulkit, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine (2016).
“Learning to Poke by Poking: Experiential Learning of Intuitive Physics.” In: Advances
in Neural Information Processing Systems (NeurIPS). eprint: 1606.07419. url: http:
//arxiv.org/abs/1606.07419 (cit. on pp. 9, 26, 27, 157).

Ahn, Michael, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey
Levine, and Vikash Kumar (Sept. 2019). “ROBEL: Robotics Benchmarks for Learning
with Low-Cost Robots.” In: Conference on Robot Learning (CoRL). arXiv. eprint: 1909.
11639. url: http://arxiv.org/abs/1909.11639 (cit. on p. 91).

Alemi, Alexander A., Ian S. Fischer, Joshua V. Dillon, and Kevin P. Murphy (2017). “Deep
Variational Information Bottleneck.” In: (cit. on pp. 140, 145, 149).

Andrychowicz, Marcin, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Joshua Tobin, P. Abbeel, and Wojciech Zaremba (2017a).
“Hindsight Experience Replay.” In: Advances in Neural Information Processing Systems
(cit. on pp. 175, 185).

Andrychowicz, Marcin, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob Mcgrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba (2017b).

191

https://vimeo.com/88689171
https://doi.org/10.1002/wcs.1430
1907.04543v2
1606.07419
http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1606.07419
1909.11639
1909.11639
http://arxiv.org/abs/1909.11639

“Hindsight Experience Replay.” In: Advances in Neural Information Processing Systems
(NeurIPS). eprint: 1707.01495. url: https://arxiv.org/pdf/1707.01495.pdf%
20http://arxiv.org/abs/1707.01495 (cit. on pp. 10, 15, 18, 20, 27, 30, 37, 39, 44, 45,
57, 62, 65, 66, 70, 134, 141, 158, 159, 163, 229, 231, 250, 251, 257).

Ang, Kiam Heong, G. Chong, and Yun Li (2005). “PID control system analysis, design,
and technology.” In: 13.4, pp. 559–576. doi: 10.1109/TCST.2005.847331 (cit. on p. 1).

Atkeson, Christopher G and Stefan Schaal (1997). “Robot Learning From Demonstra-
tion.” In: International Conference on Machine Learning (ICML). url: http://www.cc.
gatech.edu/fac/fChris. (cit. on p. 74).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate.” In: International Conference on
Learning Representations (ICLR). url: https://arxiv.org/pdf/1409.0473.pdf (cit. on
p. 69).

Balduzzi, David and Muhammad Ghifary (2015). “Compatible Value Gradients for Rein-
forcement Learning of Continuous Deep Policies.” In: abs/1509.03005. eprint: 1509.
03005. url: http://arxiv.org/abs/1509.03005 (cit. on p. 85).

Baranes, A and P-Y Oudeyer (2012). “Active Learning of Inverse Models with Intrinsi-
cally Motivated Goal Exploration in Robots.” In: 61.1, pp. 49–73. doi: 10.1016/j.
robot.2012.05.008. eprint: arXiv:1301.4862v1. url: http://dx.doi.org/10.1016/
j.robot.2012.05.008 (cit. on p. 10).

Baranes, Adrien and Pierre-Yves Oudeyer (2012a). “Active Learning of Inverse Models
with Intrinsically Motivated Goal Exploration in Robots.” In: 61.1, pp. 49–73. doi:
10.1016/j.robot.2012.05.008. eprint: arXiv:1301.4862v1. url: http://dx.doi.
org/10.1016/j.robot.2012.05.008 (cit. on p. 46).

Baranes, Adrien and Pierre-Yves Oudeyer (2012b). “Active Learning of Inverse Models
with Intrinsically Motivated Goal Exploration in Robots.” In: 61.1, pp. 49–73. doi:
10.1016/j.robot.2012.05.008. eprint: arXiv:1301.4862v1. url: http://dx.doi.
org/10.1016/j.robot.2012.05.008 (cit. on pp. 141, 158).

Barber, David and Felix V Agakov (2004). “Information maximization in noisy chan-
nels: A variational approach.” In: Advances in Neural Information Processing Systems,
pp. 201–208 (cit. on p. 44).

Bellemare, Marc, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos (2016). “Unifying count-based exploration and intrinsic motivation.”
In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1471–1479 (cit. on
pp. 16, 45, 158).

192

1707.01495
https://arxiv.org/pdf/1707.01495.pdf%20http://arxiv.org/abs/1707.01495
https://arxiv.org/pdf/1707.01495.pdf%20http://arxiv.org/abs/1707.01495
https://doi.org/10.1109/TCST.2005.847331
http://www.cc.gatech.edu/fac/fChris.
http://www.cc.gatech.edu/fac/fChris.
https://arxiv.org/pdf/1409.0473.pdf
1509.03005
1509.03005
http://arxiv.org/abs/1509.03005
https://doi.org/10.1016/j.robot.2012.05.008
https://doi.org/10.1016/j.robot.2012.05.008
arXiv:1301.4862v1
http://dx.doi.org/10.1016/j.robot.2012.05.008
http://dx.doi.org/10.1016/j.robot.2012.05.008
https://doi.org/10.1016/j.robot.2012.05.008
arXiv:1301.4862v1
http://dx.doi.org/10.1016/j.robot.2012.05.008
http://dx.doi.org/10.1016/j.robot.2012.05.008
https://doi.org/10.1016/j.robot.2012.05.008
arXiv:1301.4862v1
http://dx.doi.org/10.1016/j.robot.2012.05.008
http://dx.doi.org/10.1016/j.robot.2012.05.008

Bellemare, Marc G., Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C.
Machado, Subhodeep Moitra, Sameera S. Ponda, and Ziyu Wang (Dec. 2020). “Au-
tonomous navigation of stratospheric balloons using reinforcement learning.” In: 588

(7836), pp. 77–82. issn: 1476-4687. doi: 10.1038/s41586-020-2939-8. url: https:
//www.nature.com/articles/s41586-020-2939-8 (cit. on p. 2).

Benbrahim, Hamid and Judy A. Franklin (Dec. 1997). “Biped dynamic walking using
reinforcement learning.” In: 22.3-4, pp. 283–302. issn: 09218890. doi: 10.1016/S0921-
8890(97)00043-2 (cit. on p. 157).

Bentivegna, Darrin C., Gordon Cheng, and Christopher G. Atkeson (2003). “Learning
from Observation and from Practice Using Behavioral Primitives.” In: Robotics Re-
search, The Eleventh International Symposium, ISRR, October 19-22, 2003, Siena, Italy.
Ed. by Paolo Dario and Raja Chatila. Vol. 15. Springer Tracts in Advanced Robotics.
Springer, pp. 551–560. doi: 10.1007/11008941_59. url: https://doi.org/10.1007/
11008941%5C_59 (cit. on p. 87).

Berger, Kathleen (2014). The Developing Person Through the Life Span (cit. on p. 155).
Bhatnagar, Shalabh, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee

(2009). “Natural actor-critic algorithms.” In: 45.11, pp. 2471–2482. doi: 10.1016/j.
automatica.2009.07.008. url: https://doi.org/10.1016/j.automatica.2009.07.
008 (cit. on p. 85).

Bohg, Jeannette and Danica Kragic (2010). “Learning grasping points with shape con-
text.” In: 58.4, pp. 362–377 (cit. on p. 26).

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, Karol Zieba, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba (2016). “End to End Learning
for Self-Driving Cars.” In: abs/1604.0, pp. 1–9. eprint: 1604.07316. url: https://
arxiv.org/pdf/1604.07316.pdf%20http://arxiv.org/abs/1604.07316 (cit. on
p. 59).

Bousmalis, Konstantinos, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal
Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine,
and Vincent Vanhoucke (2017). Using Simulation and Domain Adaptation to Improve
Efficiency of Deep Robotic Grasping (cit. on p. 143).

Bousmalis, Konstantinos, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Du-
mitru Erhan (2016). “Domain Separation Networks.” In: Nips. eprint: 1608.06019
(cit. on p. 143).

193

https://doi.org/10.1038/s41586-020-2939-8
https://www.nature.com/articles/s41586-020-2939-8
https://www.nature.com/articles/s41586-020-2939-8
https://doi.org/10.1016/S0921-8890(97)00043-2
https://doi.org/10.1016/S0921-8890(97)00043-2
https://doi.org/10.1007/11008941_59
https://doi.org/10.1007/11008941%5C_59
https://doi.org/10.1007/11008941%5C_59
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1016/j.automatica.2009.07.008
https://doi.org/10.1016/j.automatica.2009.07.008
1604.07316
https://arxiv.org/pdf/1604.07316.pdf%20http://arxiv.org/abs/1604.07316
https://arxiv.org/pdf/1604.07316.pdf%20http://arxiv.org/abs/1604.07316
1608.06019

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang (2018). JAX: composable transformations of Python+NumPy pro-
grams. Version 0.2.5. url: http://github.com/google/jax (cit. on pp. 105, 274).

Brandfonbrener, David, William F Whitney, Rajesh Ranganath, and Joan Bruna (2021).
“Offline RL Without Off-Policy Evaluation.” In: (cit. on pp. 96, 97, 101, 103, 105, 108,
274).

Burda, Yuri, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A
Efros (2019). “Large-scale study of curiosity-driven learning.” In: International Confer-
ence on Learning Representations (ICLR) (cit. on p. 45).

Burda, Yuri, Harrison Edwards, Amos Storkey, and Oleg Klimov (2018). “Exploration by
random network distillation.” In: (cit. on p. 45).

Cabi, Serkan, Sergio Gmez Colmenarejo, Alexander Novikov, Ksenia Konyushkova,
Scott Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al.
(2019). “Scaling data-driven robotics with reward sketching and batch reinforcement
learning.” In: (cit. on p. 174).

Castro, Pablo Samuel (2020). “Scalable methods for computing state similarity in deter-
ministic Markov Decision Processes.” In: Association for the Advancement of Artificial
Intelligence (AAAI) (cit. on p. 142).

Chane-Sane, Elliot, Cordelia Schmid, and Ivan Laptev (2021). “Goal-Conditioned Rein-
forcement Learning with Imagined Subgoals.” In: ICML (cit. on pp. 175, 176).

Charlesworth, Henry and G. Montana (2020). “PlanGAN: Model-based Planning With
Sparse Rewards and Multiple Goals.” In: abs/2006.00900 (cit. on p. 175).

Chebotar, Yevgen, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley,
Alex Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, and Sergey Levine (Apr.
2021). “Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic
Skills.” In: (cit. on pp. 141, 175).

Chebotar, Yevgen, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal,
and Sergey Levine (2017a). “Combining Model-Based and Model-Free Updates for
Trajectory-Centric Reinforcement Learning.” In: International Conference on Machine
Learning (ICML). url: https://arxiv.org/pdf/1703.03078.pdf (cit. on p. 126).

Chebotar, Yevgen, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey
Levine (2017b). “Path integral guided policy search.” In: 2017 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, pp. 3381–3388 (cit. on p. 53).

194

http://github.com/google/jax
https://arxiv.org/pdf/1703.03078.pdf

Chen, Lili, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch (2021). “Decision transformer:
Reinforcement learning via sequence modeling.” In: (cit. on pp. 96, 105).

Chen, Xi, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel
(2016). “Infogan: Interpretable representation learning by information maximizing
generative adversarial nets.” In: Advances in Neural Information Processing Systems
(NeurIPS), pp. 2172–2180. eprint: 1606.03657. url: http://arxiv.org/abs/1606.
03657 (cit. on p. 10).

Chentanez, Nuttapong, Andrew G Barto, and Satinder P Singh (2005). “Intrinsically mo-
tivated reinforcement learning.” In: Advances in neural information processing systems,
pp. 1281–1288 (cit. on pp. 45, 158).

Cheung, Brian, Jesse A Livezey, Arjun K Bansal, and Bruno A Olshausen (2014). “Dis-
covering hidden factors of variation in deep networks.” In: (cit. on p. 10).

Christiano, Paul F, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario
Amodei (2017). “Deep reinforcement learning from human preferences.” In: Advances
in Neural Information Processing Systems (NeurIPS). eprint: 1706.03741. url: https:
//arxiv.org/pdf/1706.03741.pdf%20http://arxiv.org/abs/1706.03741 (cit. on
p. 122).

Colas, Cdric, Pierre Fournier, Olivier Sigaud, and Pierre-Yves Oudeyer (2018a). “CURI-
OUS: Intrinsically Motivated Multi-Task, Multi-Goal Reinforcement Learning.” In:
abs/1810.06284 (cit. on p. 46).

Colas, Cdric, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer (2021). Intrinsically
Motivated Goal-Conditioned Reinforcement Learning: a Short Survey. Tech. rep. eprint:
2012.09830v2 (cit. on p. 158).

Colas, Cdric, Olivier Sigaud, and Pierre-Yves Oudeyer (2018b). “GEP-PG: Decoupling
Exploration and Exploitation in Deep Reinforcement Learning Algorithms.” In: (cit.
on p. 45).

Coumans, Erwin and Yunfei Bai (n.d.). PyBullet, a Python module for physics simulation for
games, robotics and machine learning. http://pybullet.org (cit. on pp. 167, 183).

Dabney, Will, Georg Ostrovski, David Silver, and Rmi Munos (2018a). “Implicit quan-
tile networks for distributional reinforcement learning.” In: International conference on
machine learning. PMLR, pp. 1096–1105 (cit. on pp. 96, 98).

Dabney, Will, Mark Rowland, Marc G Bellemare, and Rmi Munos (2018b). “Distribu-
tional reinforcement learning with quantile regression.” In: Thirty-Second AAAI Con-
ference on Artificial Intelligence (cit. on pp. 96, 98).

195

1606.03657
http://arxiv.org/abs/1606.03657
http://arxiv.org/abs/1606.03657
1706.03741
https://arxiv.org/pdf/1706.03741.pdf%20http://arxiv.org/abs/1706.03741
https://arxiv.org/pdf/1706.03741.pdf%20http://arxiv.org/abs/1706.03741
2012.09830v2
http://pybullet.org

Daniel, Christian, Malte Viering, Jan Metz, Oliver Kroemer, and Jan Peters (2014). “Ac-
tive Reward Learning.” In: Robotics: Science and Systems (RSS). url: http://www.
roboticsproceedings.org/rss10/p31.pdf (cit. on pp. 121, 125).

Degrave, Jonas, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de
las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keel-
ing, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean Marc Moret, Seb Noury,
Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, Stefano Coda,
Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Koray Kavukcuoglu, Demis Hassabis,
and Martin Riedmiller (Feb. 2022). “Magnetic control of tokamak plasmas through
deep reinforcement learning.” In: 602 (7897), pp. 414–419. issn: 1476-4687. doi: 10.
1038/s41586-021-04301-9. url: https://www.nature.com/articles/s41586-021-
04301-9 (cit. on p. 2).

Degris, Thomas, Martha White, and Richard S. Sutton (May 2012). “Off-Policy Actor-
Critic.” In: International Conference on Machine Learning (ICML). eprint: 1205.4839.
url: http://arxiv.org/abs/1205.4839 (cit. on p. 85).

Deisenroth, M. P., P. Englert, J. Peters, and D. Fox (May 2014). “Multi-task policy search
for robotics.” In: 2014 IEEE International Conference on Robotics and Automation (ICRA),
pp. 3876–3881. doi: 10.1109/ICRA.2014.6907421 (cit. on p. 26).

Deisenroth, Marc Peter and Carl Edward Rasmussen (2011). “PILCO: A model-based
and data-efficient approach to policy search.” In: International Conference on Machine
Learning (ICML), pp. 465–472. url: http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.
pdf (cit. on pp. 2, 26, 59, 60, 121, 126, 141, 157).

Deisenroth, Marc Peter, Carl Edward Rasmussen, and Dieter Fox (2011a). “Learning to
Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning.” In:
VII, pp. 57–64 (cit. on pp. 58, 60).

Deisenroth, Marc Peter, Carl Edward Rasmussen, and Dieter Fox (2011b). “Learning to
Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning.” In:
VII, pp. 57–64. url: http://www.roboticsproceedings.org/rss07/p08.pdf (cit. on
p. 126).

Desjardins, Guillaume, Aaron Courville, and Yoshua Bengio (2012). “Disentangling fac-
tors of variation via generative entangling.” In: abs/1210.5 (cit. on p. 10).

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (Oct. 2019). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.” In:
Association for Compuational Linguistics (ACL). eprint: 1810.04805. url: http://arxiv.
org/abs/1810.04805 (cit. on pp. 2, 74, 170).

196

http://www.roboticsproceedings.org/rss10/p31.pdf
http://www.roboticsproceedings.org/rss10/p31.pdf
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-021-04301-9
1205.4839
http://arxiv.org/abs/1205.4839
https://doi.org/10.1109/ICRA.2014.6907421
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
http://www.roboticsproceedings.org/rss07/p08.pdf
1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

Ding, Yiming, Carlos Florensa, Mariano Phielipp, and P. Abbeel (2019). “Goal-
conditioned Imitation Learning.” In: NeurIPS (cit. on p. 175).

Donahue, Jeff, Philipp Krhenbhl, and Trevor Darrell (May 2017). “Adversarial Feature
Learning.” In: International Conference on Learning Representations (ICLR). eprint: 1605.
09782. url: http://arxiv.org/abs/1605.09782 (cit. on pp. 162, 165, 169).

Duan, Yan, Marcin Andrychowicz, Bradly C. Stadie, Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba (2017). “One-Shot Imitation Learn-
ing.” In: Advances in Neural Information Processing Systems (NeurIPS). eprint: 1703.
07326 (cit. on pp. 58, 60).

Duan, Yan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel
(Nov. 2016). “RL$
2$: Fast Reinforcement Learning via Slow Reinforcement Learning.” In: eprint: 1611.
02779. url: http://arxiv.org/abs/1611.02779 (cit. on p. 160).

Ebert, Frederik, Sudeep Dasari, Alex X Lee, Sergey Levine, and Chelsea Finn (2018).
“Robustness via Retrying: Closed-Loop Robotic Manipulation with Self-Supervised
Learning.” In: Conference on Robot Learning (CoRL). eprint: 1810.03043v1. url: https:
//arxiv.org/pdf/1810.03043.pdf (cit. on p. 27).

Ebert, Frederik, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine
(n.d.). “Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-
Based Robotic Control.” In: (). eprint: 1812.00568v1. url: https://sites.google.
com/view/visualforesight (cit. on p. 27).

Ebert, Frederik, Chelsea Finn, Alex X Lee, and Sergey Levine (2017). “Self-Supervised
Visual Planning with Temporal Skip Connections.” In: Conference on Robot Learning
(CoRL). url: https://128.84.21.199/pdf/1710.05268.pdf%20https://arxiv.org/
pdf/1710.05268.pdf (cit. on pp. 9, 27).

Ekvall, Staffan and Danica Kragic (2004). “Interactive grasp learning based on human
demonstration.” In: IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004. Vol. 4. IEEE, pp. 3519–3524 (cit. on p. 26).

Eysenbach, Benjamin, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov (2020).
“Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement.”
In: abs/2002.11089 (cit. on p. 175).

Eysenbach, Benjamin, Abhishek Gupta, Julian Ibarz, and Sergey Levine (2018). “Diversity
is All You Need: Learning Skills without a Reward Function.” In: (cit. on pp. 16, 45).

Eysenbach, Benjamin, Ruslan Salakhutdinov, and Sergey Levine (2019). “Search on the
Replay Buffer: Bridging Planning and Reinforcement Learning.” In: NeurIPS (cit. on
pp. 175, 178).

197

1605.09782
1605.09782
http://arxiv.org/abs/1605.09782
1703.07326
1703.07326
1611.02779
1611.02779
http://arxiv.org/abs/1611.02779
1810.03043v1
https://arxiv.org/pdf/1810.03043.pdf
https://arxiv.org/pdf/1810.03043.pdf
1812.00568v1
https://sites.google.com/view/visualforesight
https://sites.google.com/view/visualforesight
https://128.84.21.199/pdf/1710.05268.pdf%20https://arxiv.org/pdf/1710.05268.pdf
https://128.84.21.199/pdf/1710.05268.pdf%20https://arxiv.org/pdf/1710.05268.pdf

Eysenbach, Benjamin, Ruslan Salakhutdinov, and Sergey Levine (2021). “C-Learning:
Learning to Achieve Goals via Recursive Classification.” In: abs/2011.08909 (cit. on
p. 175).

Fakoor, Rasool, Pratik Chaudhari, and Alexander J Smola (2019). “P3O: Policy-on Policy-
off Policy Optimization.” In: Conference on Uncertainty in Artificial Intelligence (UAI).
eprint: 1905.01756v2. url: https://github.com/rasoolfa/P3O. (cit. on p. 85).

Fakoor, Rasool, Jonas Mueller, Kavosh Asadi, Pratik Chaudhari, and Alexander J Smola
(2021). “Continuous doubly constrained batch reinforcement learning.” In: (cit. on
p. 95).

Falco, Joe, Yu Sun, and Maximo Roa (2018). “Robotic Grasping and Manipulation Com-
petition: Competitor Feedback and Lessons Learned.” In: Robotic Grasping and Manip-
ulation. Ed. by Yu Sun and Joe Falco. Springer International Publishing, pp. 180–189.
isbn: 978-3-319-94568-2 (cit. on p. 128).

Fang, Kuan, Patrick Yin, Ashvin Nair, and Sergey Levine (2022). “Planning to Practice:
Efficient Online Fine-Tuning
by Composing Goals in Latent Space.” In: International Conference on Robotics and
Automation (ICRA) (cit. on p. 188).

Fang, Kuan, Yuke Zhu, Animesh Garg, Silvio Savarese, and Li Fei-Fei (2019). “Dynamics
Learning with Cascaded Variational Inference for Multi-Step Manipulation.” In: (cit.
on p. 175).

Fang, Meng, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang (2019). “Curriculum-
guided Hindsight Experience Replay.” In: NeurIPS (cit. on p. 175).

Ferns, Norm, Prakash Panangaden, and Doina Precup (2004). “Metrics for Finite Markov
Decision Processes.” In: Uncertainty in Artificial Intelligence (UAI). Banff, Canada,
pp. 162–169. isbn: 0-9749039-0-6. url: http://dl.acm.org/citation.cfm?id=
1036843.1036863 (cit. on p. 142).

Fikes, Richard E and Nils J Nilsson (1971). “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving.” In: (cit. on p. 175).

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (2017). “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks.” In: International Conference on Machine Learn-
ing (ICML). url: https://arxiv.org/pdf/1703.03400.pdf (cit. on p. 160).

Finn, Chelsea and Sergey Levine (2016). “Deep Visual Foresight for Planning Robot Mo-
tion.” In: Advances in Neural Information Processing Systems (NeurIPS). eprint: 1610.
00696. url: https://arxiv.org/pdf/1610.00696.pdf%20http://arxiv.org/abs/
1610.00696 (cit. on pp. 9, 27).

198

1905.01756v2
https://github.com/rasoolfa/P3O.
http://dl.acm.org/citation.cfm?id=1036843.1036863
http://dl.acm.org/citation.cfm?id=1036843.1036863
https://arxiv.org/pdf/1703.03400.pdf
1610.00696
1610.00696
https://arxiv.org/pdf/1610.00696.pdf%20http://arxiv.org/abs/1610.00696
https://arxiv.org/pdf/1610.00696.pdf%20http://arxiv.org/abs/1610.00696

Finn, Chelsea, Sergey Levine, and Pieter Abbeel (2016a). “Guided Cost Learning: Deep
Inverse Optimal Control via Policy Optimization.” In: International Conference on Ma-
chine Learning (ICML). url: https://arxiv.org/pdf/1603.00448.pdf (cit. on pp. 59,
127).

Finn, Chelsea, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel
(2016b). “Deep spatial autoencoders for visuomotor learning.” In: IEEE International
Conference on Robotics and Automation (ICRA). Vol. 2016-June. IEEE, pp. 512–519. isbn:
9781467380263. doi: 10.1109/ICRA.2016.7487173. eprint: 1509.06113 (cit. on pp. 10,
17, 142).

Florence, Pete, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson (2021). “Implicit
Behavioral Cloning.” In: (cit. on p. 104).

Florensa, Carlos, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin
Riedmiller (2018a). “Self-supervised Learning of Image Embedding for Continuous
Control.” In: Workshop on Inference to Control at NeurIPS (cit. on pp. 39, 45, 257).

Florensa, Carlos, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin
Riedmiller (2019). “Self-supervised Learning of Image Embedding for Continuous
Control.” In: (cit. on p. 27).

Florensa, Carlos, Yan Duan, and Pieter Abbeel (2017). “Stochastic neural networks for
hierarchical reinforcement learning.” In: (cit. on pp. 16, 45).

Florensa, Carlos, David Held, Markus Wulfmeier, and Pieter Abbeel (2018b). “Reverse
Curriculum Generation for Reinforcement Learning.” In: International Conference on
Learning Representations (ICLR). eprint: 1707.05300. url: https://arxiv.org/pdf/
1707.05300.pdf%20http://arxiv.org/abs/1707.05300 (cit. on p. 73).

Frank, Jordan, Shie Mannor, and Doina Precup (2008). “Reinforcement Learning in the
Presence of Rare Events.” In: International Conference on Machine Learning (ICML). url:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.4737%7B%5C&

%7Drep=rep1%7B%5C&%7Dtype=pdf (cit. on p. 122).
Fu, Justin, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine (Apr. 2020).

“D4RL: Datasets for Deep Data-Driven Reinforcement Learning.” In: eprint: 2004.
07219. url: http://arxiv.org/abs/2004.07219 (cit. on pp. 103, 104, 106, 270, 271).

Fu, Justin, John D Co-Reyes, and Sergey Levine (2017). “EX 2 : Exploration with Exem-
plar Models for Deep Reinforcement Learning.” In: Advances in Neural Information
Processing Systems (NeurIPS). url: https : / / papers . nips . cc / paper / 6851 - ex2 -

exploration- with- exemplar-models- for- deep- reinforcement- learning.pdf%

20https://arxiv.org/pdf/1703.01260.pdf (cit. on p. 45).

199

https://arxiv.org/pdf/1603.00448.pdf
https://doi.org/10.1109/ICRA.2016.7487173
1509.06113
1707.05300
https://arxiv.org/pdf/1707.05300.pdf%20http://arxiv.org/abs/1707.05300
https://arxiv.org/pdf/1707.05300.pdf%20http://arxiv.org/abs/1707.05300
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.4737%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.4737%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
2004.07219
2004.07219
http://arxiv.org/abs/2004.07219
https://papers.nips.cc/paper/6851-ex2-exploration-with-exemplar-models-for-deep-reinforcement-learning.pdf%20https://arxiv.org/pdf/1703.01260.pdf
https://papers.nips.cc/paper/6851-ex2-exploration-with-exemplar-models-for-deep-reinforcement-learning.pdf%20https://arxiv.org/pdf/1703.01260.pdf
https://papers.nips.cc/paper/6851-ex2-exploration-with-exemplar-models-for-deep-reinforcement-learning.pdf%20https://arxiv.org/pdf/1703.01260.pdf

Fu, Justin, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine (May 2018). “Varia-
tional Inverse Control with Events: A General Framework for Data-Driven Reward
Definition.” In: Advances in Neural Information Processing Systems (NeurIPS). eprint:
1805.11686. url: http://arxiv.org/abs/1805.11686 (cit. on pp. 142, 152).

Fujimoto, Scott and Shixiang Shane Gu (2021). “A Minimalist Approach to Offline Rein-
forcement Learning.” In: (cit. on pp. 94, 95, 105, 174, 279).

Fujimoto, Scott, Herke Hoof, and David Meger (2018a). “Addressing function approxi-
mation error in actor-critic methods.” In: International Conference on Machine Learning.
PMLR, pp. 1587–1596 (cit. on p. 101).

Fujimoto, Scott, Herke van Hoof, and David Meger (2018b). “Addressing Function Ap-
proximation Error in Actor-Critic Methods.” In: (cit. on pp. 12, 13, 16, 18, 30, 77, 83,
85, 115, 130, 244, 245, 250, 259).

Fujimoto, Scott, David Meger, and Doina Precup (Dec. 2019a). “Off-Policy Deep Re-
inforcement Learning without Exploration.” In: International Conference on Machine
Learning (ICML). eprint: 1812.02900. url: http://arxiv.org/abs/1812.02900 (cit.
on pp. 75, 76, 80–82, 84, 85, 141).

Fujimoto, Scott, David Meger, and Doina Precup (2019b). “Off-policy deep reinforcement
learning without exploration.” In: International Conference on Machine Learning. PMLR,
pp. 2052–2062 (cit. on pp. 94, 95, 174, 278, 279).

Gandhi, Manan S., Bogdan Vlahov, Jason Gibson, Grady Williams, and Evangelos A.
Theodorou (2021). “Robust Model Predictive Path Integral Control: Analysis and
Performance Guarantees.” In: 6, pp. 1423–1430 (cit. on p. 181).

Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
Franois Laviolette, Mario Marchand, and Victor Lempitsky (May 2016). “Domain-
Adversarial Training of Neural Networks.” In: url: http://arxiv.org/abs/1505.
07818 (cit. on pp. 140, 143, 145, 148).

Gao, Yang, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell (2018). “Re-
inforcement Learning from Imperfect Demonstrations.” In: abs/1802.05313. eprint:
1802.05313. url: http://arxiv.org/abs/1802.05313 (cit. on p. 74).

Ghasemipour, Seyed Kamyar Seyed, Dale Schuurmans, and Shixiang Shane Gu (2021).
“Emaq: Expected-max q-learning operator for simple yet effective offline and online
rl.” In: International Conference on Machine Learning. PMLR, pp. 3682–3691 (cit. on
p. 95).

Ghosh, Dibya, Abhishek Gupta, and Sergey Levine (2018). “Learning actionable rep-
resentations with goal-conditioned policies.” In: International Conference on Learning
Representations (ICLR) (cit. on p. 143).

200

1805.11686
http://arxiv.org/abs/1805.11686
1812.02900
http://arxiv.org/abs/1812.02900
http://arxiv.org/abs/1505.07818
http://arxiv.org/abs/1505.07818
1802.05313
http://arxiv.org/abs/1802.05313

Ghosh, Dibya, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Ey-
senbach, and Sergey Levine (2021). “Learning to Reach Goals via Iterated Supervised
Learning.” In: (cit. on p. 175).

Gibson, James (1979). The Ecological Approach to Visual Perception (cit. on p. 155).
Giusti, Alessandro, Jrme Jerome Guzzi, Dan C Cirean, Fang-Lin He, Juan P Rodrguez,

Flavio Fontana, Matthias Faessler, Christian Forster, Jrgen Jurgen Schmidhuber, Gi-
anni Di Caro, Davide Scaramuzza, Luca M Gambardella, Dan C. Ciresan, Fang-Lin
He, Juan P. Rodriguez, Flavio Fontana, Matthias Faessler, Christian Forster, Jrgen Ju-
rgen Schmidhuber, Gianni Di Caro, Davide Scaramuzza, and Luca M Gambardella
(2015). “A Machine Learning Approach to Visual Perception of Forest Trails for Mo-
bile Robots.” In: IEEE Robotics and Automation Letters (RAL). Vol. 1. 2, pp. 2377–3766.
isbn: 9781467380256. doi: 10 . 1109 / LRA . 2015 . 2509024. url: http : / / bit . ly /

perceivingtrails.%20http://ieeexplore.ieee.org/document/7358076/ (cit. on
pp. 59, 126, 141).

Goodfellow, Ian J, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio (2014). “Generative Adversarial Nets.”
In: Advances in Neural Information Processing Systems (NeurIPS). url: https://arxiv.
org/pdf/1406.2661.pdf (cit. on p. 162).

Graves, Alex, Greg Wayne, and Ivo Danihelka (2014). “Neural Turing Machines.” In:
abs/1410.5, pp. 1–26. issn: 2041-1723. doi: 10.3389/neuro.12.006.2007. eprint:
arXiv:1410.5401v2. url: http://arxiv.org/abs/1410.5401 (cit. on p. 2).

Gu, Shixiang, Ethan Holly, Timothy Lillicrap, and Sergey Levine (2017). “Deep Reinforce-
ment Learning for Robotic Manipulation with Asynchronous Off-Policy Updates.”
In: issn: 0028-0836. doi: 10 . 1038 / nature20101. eprint: 1610 . 00633. url: https :

//arxiv.org/pdf/1610.00633.pdf%20http://arxiv.org/abs/1610.00633 (cit. on
pp. 59, 121).

Gu, Shixiang, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine (2016). “Continu-
ous Deep Q-Learning with Model-based Acceleration.” In: International Conference on
Machine Learning (ICML). isbn: 3405062780. doi: 10.3390/robotics2030122. eprint:
1603.00748. url: https://arxiv.org/pdf/1603.00748.pdf%20http://arxiv.org/
abs/1603.00748 (cit. on pp. 26, 126).

Gulcehre, Caglar, Sergio Gmez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas
Paine, Konrad Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, and Nando
de Freitas (2021). “Regularized behavior value estimation.” In: (cit. on pp. 96, 97,
103).

201

https://doi.org/10.1109/LRA.2015.2509024
http://bit.ly/perceivingtrails.%20http://ieeexplore.ieee.org/document/7358076/
http://bit.ly/perceivingtrails.%20http://ieeexplore.ieee.org/document/7358076/
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://doi.org/10.3389/neuro.12.006.2007
arXiv:1410.5401v2
http://arxiv.org/abs/1410.5401
https://doi.org/10.1038/nature20101
1610.00633
https://arxiv.org/pdf/1610.00633.pdf%20http://arxiv.org/abs/1610.00633
https://arxiv.org/pdf/1610.00633.pdf%20http://arxiv.org/abs/1610.00633
https://doi.org/10.3390/robotics2030122
1603.00748
https://arxiv.org/pdf/1603.00748.pdf%20http://arxiv.org/abs/1603.00748
https://arxiv.org/pdf/1603.00748.pdf%20http://arxiv.org/abs/1603.00748

Gupta, Abhishek, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine (2018a). “Un-
supervised Meta-Learning for Reinforcement Learning.” In: abs:1806.04640 (cit. on
p. 45).

Gupta, Abhishek, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman (Oct.
2019a). “Relay Policy Learning: Solving Long-Horizon Tasks via Imitation and Re-
inforcement Learning.” In: Conference on Robot Learning (CoRL). eprint: 1910.11956.
url: http://arxiv.org/abs/1910.11956 (cit. on pp. 78, 79, 86).

Gupta, Abhishek, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman
(2019b). “Relay Policy Learning: Solving Long-Horizon Tasks via Imitation and Re-
inforcement Learning.” In: CoRL (cit. on p. 175).

Gupta, Abhishek, Russell Mendonca, Yuxuan Liu, Pieter Abbeel, and Sergey Levine
(2018b). “Meta-Reinforcement Learning of Structured Exploration Strategies.” In: Ad-
vances in Neural Information Processing Systems (NIPS). eprint: arXiv:1802.07245v1.
url: https://arxiv.org/pdf/1802.07245.pdf (cit. on p. 45).

Gupta, Abhishek, Justin Yu, Tony Zhao, Vikash Kumar, Kelvin Xu, Thomas Devlin,
Aaron Rovinsky, and Sergey Levine (2021). “Reset-Free Reinforcement Learning via
Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human
Intervention.” In: International Conference on Robotics and Automation (ICRA) (cit. on
p. 92).

Ha, David and Jrgen Schmidhuber (2018). “World Models.” In: (cit. on p. 10).
Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine (2018a). “Soft Actor-

Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic
Actor.” In: International Conference on Machine Learning (ICML). eprint: arXiv:1801.
01290v2. url: https://arxiv.org/pdf/1801.01290.pdf (cit. on pp. 2, 75, 77, 79, 83,
85, 91, 121, 124, 130, 259, 264, 268).

Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine
(2018b). “Soft Actor-Critic Algorithms and Applications.” In: abs/1812.05905 (cit. on
pp. 50, 244, 245, 250).

Hallak, Assaf and Shie Mannor (2017). “Consistent On-Line Off-Policy Evaluation.” In:
International Conference on Machine Learning (ICML). eprint: 1702.07121v1 (cit. on
p. 85).

Hallak, Assaf, Francois Schnitzler, Timothy Mann, and Shie Mannor (2015). “Off-policy
Model-based Learning under Unknown Factored Dynamics.” In: International Confer-
ence on Machine Learning (ICML) (cit. on p. 85).

202

1910.11956
http://arxiv.org/abs/1910.11956
arXiv:1802.07245v1
https://arxiv.org/pdf/1802.07245.pdf
arXiv:1801.01290v2
arXiv:1801.01290v2
https://arxiv.org/pdf/1801.01290.pdf
1702.07121v1

Hallak, Assaf, Aviv Tamar, Rmi Munos, and Shie Mannor (2016). “Generalized Emphatic
Temporal Difference Learning: Bias-Variance Analysis.” In: Association for the Advance-
ment of Artificial Intelligence (AAAI). eprint: 1509.05172v2 (cit. on p. 85).

Hart, Stephen and Roderic Grupen (2010). “Learning Generalizable Control Programs.”
In: IEEE Transactions on Autonomous Mental Development (cit. on p. 158).

Hassanin, Mohammed, Salman Khan, and Murat Tahtali (2018). Visual Affordance and
Function Understanding: A Survey. Tech. rep. 1. eprint: 1807.06775v1 (cit. on p. 158).

Hausman, Karol, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Ried-
miller (2018). “Learning an Embedding Space for Transferable Robot Skills.” In: In-
ternational Conference on Learning Representations (ICLR), pp. 1–16 (cit. on p. 45).

Hazan, Elad, Sham M. Kakade, Karan Singh, and Abby Van Soest (2019). “Provably
Efficient Maximum Entropy Exploration.” In: (cit. on pp. 45, 52, 251).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep Residual Learn-
ing for Image Recognition.” In: Conference on Computer Vision and Pattern Recognition
(CVPR). eprint: 1512.03385v1. url: http://image- net.org/challenges/LSVRC/
2015/ (cit. on p. 122).

Heek, Jonathan, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre,
Andreas Steiner, and Marc van Zee (2020). Flax: A neural network library and ecosystem
for JAX. Version 0.3.5. url: http://github.com/google/flax (cit. on p. 274).

Held, David, Xinyang Geng, Carlos Florensa, and Pieter Abbeel (2018). “Automatic Goal
Generation for Reinforcement Learning Agents.” In: International Conference on Ma-
chine Learning (ICML). url: https://arxiv.org/pdf/1705.06366.pdf (cit. on pp. 46,
50, 141, 158).

Hessel, Matteo, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will
Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver (2018). Rainbow:
Combining Improvements in Deep Reinforcement Learning. eprint: 1710.02298v1. url:
www.aaai.org%20https://arxiv.org/pdf/1710.02298.pdf (cit. on p. 124).

Hester, Todd, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan
Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John
Agapiou, Joel Z Leibo, and Audrunas Gruslys (2018). “Learning from Demonstra-
tions for Real World Reinforcement Learning.” In: AAAI Conference on Artificial Intel-
ligence. eprint: 1704.03732. url: https://arxiv.org/pdf/1704.03732.pdf%20http:
//arxiv.org/abs/1704.03732 (cit. on pp. 60, 122, 127).

Higgins, Irina, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner (2017a). “$$-VAE: Learning

203

1509.05172v2
1807.06775v1
1512.03385v1
http://image-net.org/challenges/LSVRC/2015/
http://image-net.org/challenges/LSVRC/2015/
http://github.com/google/flax
https://arxiv.org/pdf/1705.06366.pdf
1710.02298v1
www.aaai.org%20https://arxiv.org/pdf/1710.02298.pdf
1704.03732
https://arxiv.org/pdf/1704.03732.pdf%20http://arxiv.org/abs/1704.03732
https://arxiv.org/pdf/1704.03732.pdf%20http://arxiv.org/abs/1704.03732

basic visual concepts with a constrained variational framework.” In: (cit. on pp. 12,
44).

Higgins, Irina, Arka Pal, Andrei A Rusu, Loic Matthey, Christopher P Burgess, Alexan-
der Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner (2017b).
“Darla: Improving zero-shot transfer in reinforcement learning.” In: (cit. on p. 10).

Hogan, Neville (Mar. 1985). “Impedance Control: An Approach to Manipulation: Part
IIImplementation.” In: 107.1, pp. 8–16. issn: 0022-0434. doi: 10.1115/1.3140713.
eprint: https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/
107/1/8/5492420/8_1.pdf. url: https://doi.org/10.1115/1.3140713 (cit. on
p. 1).

Houthooft, Rein, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel
(2016). “Variational Information Maximizing Exploration.” In: Advances in Neural In-
formation Processing Systems (NeurIPS). eprint: 1605.09674 (cit. on pp. 155, 158).

Ichter, Brian, James Harrison, and Marco Pavone (Sept. 2018). “Learning Sampling Dis-
tributions for Robot Motion Planning.” In: pp. 7087–7094. issn: 10504729. doi: 10.
1109/ICRA.2018.8460730 (cit. on p. 176).

Ijspeert, Auke Jan, Jun Nakanishi, and Stefan Schaal (2002). “Learning Attractor Land-
scapes for Learning Motor Primitives.” In: Advances in Neural Information Processing
Systems (NeurIPS), pp. 1547–1554. isbn: 1049-5258. url: https://papers.nips.cc/
paper/2140-learning-attractor-landscapes-for-learning-motor-primitives.

pdf (cit. on p. 86).
Inoue, Tadanobu, Giovanni De Magistris, Asim Munawar, Tsuyoshi Yokoya, and Ryuki

Tachibana (2017). “Deep reinforcement learning for high precision assembly tasks.”
In: IROS, pp. 819–825 (cit. on p. 127).

James, Stephen, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan,
Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis (Dec. 2018).
“Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-
Canonical Adaptation Networks.” In: url: http://arxiv.org/abs/1812.07252
(cit. on p. 143).

Jaques, Natasha, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, gata
Lapedriza, Noah Jones, Shixiang Gu, and Rosalind W. Picard (2019). “Way Off-Policy
Batch Deep Reinforcement Learning of Implicit Human Preferences in Dialog.” In:
abs/1907.00456. eprint: 1907.00456. url: http://arxiv.org/abs/1907.00456 (cit. on
p. 85).

204

https://doi.org/10.1115/1.3140713
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/107/1/8/5492420/8_1.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/107/1/8/5492420/8_1.pdf
https://doi.org/10.1115/1.3140713
1605.09674
https://doi.org/10.1109/ICRA.2018.8460730
https://doi.org/10.1109/ICRA.2018.8460730
https://papers.nips.cc/paper/2140-learning-attractor-landscapes-for-learning-motor-primitives.pdf
https://papers.nips.cc/paper/2140-learning-attractor-landscapes-for-learning-motor-primitives.pdf
https://papers.nips.cc/paper/2140-learning-attractor-landscapes-for-learning-motor-primitives.pdf
http://arxiv.org/abs/1812.07252
1907.00456
http://arxiv.org/abs/1907.00456

Jiang, Nan and Lihong Li (2016). “Doubly Robust Off-policy Value Evaluation for Rein-
forcement Learning.” In: International Conference on Machine Learning (ICML). eprint:
1511.03722v3 (cit. on p. 85).

Johannink, Tobias, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias
Loskyll, Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine (2019). “Resid-
ual Reinforcement Learning for Robot Control.” In: IEEE International Conference on
Robotics and Automation (ICRA). eprint: 1812.03201v2. url: https://arxiv.org/pdf/
1812.03201.pdf (cit. on pp. 4, 123, 125, 127, 142).

Johnson, Eric and Anthony Calise (2000). “Pseudo-Control Hedging: A New Method
For Adaptive Control.” In: Advances in Navigation Guidance and Control Technology
Workshop. url: https://www.researchgate.net/publication/2492500%7B%5C_
%7DPseudo - Control % 7B % 5C _ %7DHedging % 7B % 5C _ %7DA % 7B % 5C _ %7DNew % 7B % 5C _

%7DMethod%7B%5C_%7DFor%7B%5C_%7DAdaptive%7B%5C_%7DControl (cit. on p. 122).
Jonschkowski, Rico, Roland Hafner, Jonathan Scholz, and Martin Riedmiller (May 2017a).

“PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured State
Representations.” In: isbn: 1705.09805v3. url: https : / / arxiv . org / abs / 1705 .

09805v3 (cit. on p. 143).
Jonschkowski, Rico, Roland Hafner, Jonathan Scholz, and Martin Riedmiller (2017b).

“Pves: Position-velocity encoders for unsupervised learning of structured state repre-
sentations.” In: (cit. on p. 10).

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin dek, Anna Potapenko,
Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew
Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler,
Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin
Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David
Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli,
and Demis Hassabis (2021). “Highly accurate protein structure prediction with Al-
phaFold.” In: 596.7873, pp. 583–589. doi: 10.1038/s41586-021-03819-2. url: https:
//doi.org/10.1038/s41586-021-03819-2 (cit. on p. 2).

Kaelbling, L P (1993). “Learning to achieve goals.” In: International Joint Conference on
Artificial Intelligence (IJCAI). Vol. vol.2, pp. 1094–8 (cit. on pp. 9, 10, 15, 27, 37, 39, 45,
141, 158, 250, 257).

Kaelbling, Leslie Pack (1993). “Learning to Achieve Goals.” In: IJCAI (cit. on p. 175).
Kaelbling, Leslie Pack and Tomas Lozano-Perez (2011). “Hierarchical task and motion

planning in the now.” In: pp. 1470–1477. issn: 10504729. doi: 10.1109/ICRA.2011.

205

1511.03722v3
1812.03201v2
https://arxiv.org/pdf/1812.03201.pdf
https://arxiv.org/pdf/1812.03201.pdf
https://www.researchgate.net/publication/2492500%7B%5C_%7DPseudo-Control%7B%5C_%7DHedging%7B%5C_%7DA%7B%5C_%7DNew%7B%5C_%7DMethod%7B%5C_%7DFor%7B%5C_%7DAdaptive%7B%5C_%7DControl
https://www.researchgate.net/publication/2492500%7B%5C_%7DPseudo-Control%7B%5C_%7DHedging%7B%5C_%7DA%7B%5C_%7DNew%7B%5C_%7DMethod%7B%5C_%7DFor%7B%5C_%7DAdaptive%7B%5C_%7DControl
https://www.researchgate.net/publication/2492500%7B%5C_%7DPseudo-Control%7B%5C_%7DHedging%7B%5C_%7DA%7B%5C_%7DNew%7B%5C_%7DMethod%7B%5C_%7DFor%7B%5C_%7DAdaptive%7B%5C_%7DControl
https://arxiv.org/abs/1705.09805v3
https://arxiv.org/abs/1705.09805v3
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391

5980391. url: http://people.csail.mit.edu/lpk/papers/hpn2.pdf%20http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980391 (cit. on
pp. 1, 60).

Kahn, Gregory, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine (2018).
“Self-supervised Deep Reinforcement Learning with Generalized Computation
Graphs for Robot Navigation.” In: IEEE International Conference on Robotics and Au-
tomation (ICRA). eprint: 1709.10489v3. url: https://arxiv.org/pdf/1709.10489.
pdf (cit. on p. 26).

Kalakrishnan, Mrinal, Jonas Buchli, Peter Pastor, and Stefan Schaal (2009). “Learn-
ing Locomotion over Rough Terrain using Terrain Templates.” In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). url: https : / / pdfs .

semanticscholar.org/02db/2c0100ffb02592e8738d0ffcf454224f4b1b.pdf (cit. on
pp. 59, 141).

Kalakrishnan, Mrinal, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan
Schaal (2011a). “STOMP: Stochastic trajectory optimization for motion planning.”
In: pp. 4569–4574. issn: 10504729. doi: 10.1109/ICRA.2011.5980280 (cit. on p. 175).

Kalakrishnan, Mrinal, Ludovic Righetti, Peter Pastor, and Stefan Schaal (2011b). “Learn-
ing force control policies for compliant manipulation.” In: 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, pp. 4639–4644 (cit. on p. 53).

Kalashnikov, Dmitry, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. (2018a).
“Scalable deep reinforcement learning for vision-based robotic manipulation.” In:
Conference on Robot Learning. PMLR, pp. 651–673 (cit. on p. 174).

Kalashnikov, Dmitry, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey
Levine (2018b). “QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based
Robotic Manipulation.” In: Conference on Robot Learning (CoRL). eprint: 1806.10293v3.
url: https://goo.gl/ykQn6g. (cit. on p. 126).

Kalashnikov, Dmitry, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey
Levine (n.d.). “Scalable Deep Reinforcement Learning for Vision-Based Robotic Ma-
nipulation.” In: Proceedings of The 2nd Conference on Robot Learning. Vol. 87. Proceed-
ings of Machine Learning Research. PMLR, pp. 651–673 (cit. on p. 34).

Kalashnikov, Dmitry, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jon-
schkowski, Chelsea Finn, Sergey Levine, and Karol Hausman (2021). “MT-Opt: Con-

206

https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391
http://people.csail.mit.edu/lpk/papers/hpn2.pdf%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980391
http://people.csail.mit.edu/lpk/papers/hpn2.pdf%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980391
1709.10489v3
https://arxiv.org/pdf/1709.10489.pdf
https://arxiv.org/pdf/1709.10489.pdf
https://pdfs.semanticscholar.org/02db/2c0100ffb02592e8738d0ffcf454224f4b1b.pdf
https://pdfs.semanticscholar.org/02db/2c0100ffb02592e8738d0ffcf454224f4b1b.pdf
https://doi.org/10.1109/ICRA.2011.5980280
1806.10293v3
https://goo.gl/ykQn6g.

tinuous Multi-Task Robotic Reinforcement Learning at Scale.” In: (cit. on pp. 141,
174).

Kannengiesser, Udo, Richard Heininger, Lubomir Billy, Pavol Terpak, Matthias
Neubauer, Chris Stary, Dennis Majoe, Alexandra Totter, and David Bonaldi (Jan.
2017). Lot-Size One Production, pp. 69–111. isbn: 978-3-319-48465-5. doi: 10.1007/978-
3-319-48466-2_4 (cit. on p. 111).

Karaman, Sertac and Emilio Frazzoli (June 2011). “Sampling-based algorithms for op-
timal motion planning:” in: 30 (7), pp. 846–894. issn: 02783649. doi: 10 . 1177 /

0278364911406761 (cit. on pp. 1, 175).
Kavraki, Lydia, Petr Svestka, J-C Latombe, and Mark Overmars (1996). “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces.” In: 12.4,
pp. 566–580 (cit. on pp. 60, 175).

Khazatsky, Alexander, Ashvin Nair, Dan Jing, and Sergey Levine (2021a). “What Can
I Do Here? Learning New Skills by Imagining Visual Affordances.” In: pp. 14291–
14297 (cit. on pp. 5, 174–177, 184).

Khazatsky, Alexander, Ashvin Nair, Daniel Jing, and Sergey Levine (June 2021b). “What
Can I Do Here? Learning New Skills by Imagining Visual Affordances.” In: Interna-
tional Conference on Robotics and Automation (ICRA). eprint: 2106.00671. url: https:
//arxiv.org/abs/2106.00671v2 (cit. on pp. 141, 171).

Khetarpal, Khimya, Zafarali Ahmed, Gheorghe Comanici, David Abel, and Doina Precup
(2020). “What can I do here? A Theory of Affordances in Reinforcement Learning.”
In: International Conference on Machine Learning (ICML). eprint: 2006.15085v1 (cit. on
p. 158).

Kim, Beomjoon, Amir-Massoud Farahmand, Joelle Pineau, and Doina Precup (2013).
“Learning from Limited Demonstrations.” In: Advances in Neural Information Process-
ing Systems (NeurIPS). url: https://papers.nips.cc/paper/4918-learning-from-
limited-demonstrations.pdf (cit. on pp. 60, 86).

Kingma, Diederik and Jimmy Ba (2015). “Adam: A method for stochastic optimization.”
In: (cit. on pp. 65, 274).

Kingma, Diederik P and Max Welling (2014). “Auto-Encoding Variational Bayes.” In:
International Conference on Learning Representations (ICLR). url: https://arxiv.org/
pdf/1312.6114.pdf (cit. on pp. 8, 12, 159, 162, 165, 169, 179, 184, 190).

Kober, Jens, J Andrew Bagnell, and Jan Peters (2013). “Reinforcement learning in robotics:
A survey.” In: 32.11, pp. 1238–1274 (cit. on pp. 2, 26).

Kober, Jens and J. Peter (2008). “Policy search for motor primitives in robotics.” In: Ad-
vances in Neural Information Processing Systems (NeurIPS). Vol. 97, pp. 83–117. isbn:

207

https://doi.org/10.1007/978-3-319-48466-2_4
https://doi.org/10.1007/978-3-319-48466-2_4
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
2106.00671
https://arxiv.org/abs/2106.00671v2
https://arxiv.org/abs/2106.00671v2
2006.15085v1
https://papers.nips.cc/paper/4918-learning-from-limited-demonstrations.pdf
https://papers.nips.cc/paper/4918-learning-from-limited-demonstrations.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1312.6114.pdf

1099401052236. doi: 10.1007/978-3-319-03194-1_4. url: http://papers.nips.
cc/paper/3545-policy-search-for-motor-primitives-in-robotics.pdf (cit. on
pp. 60, 87, 122, 126, 141, 157).

Koenig, Sven and Maxim Likhachev (2002). “D* Lite.” In: (cit. on p. 175).
Koenker, Roger and Kevin F Hallock (2001). “Quantile regression.” In: 15.4, pp. 143–156

(cit. on pp. 96, 98).
Kohl, Nate and Peter Stone (2004). “Machine Learning for Fast Quadrupedal Locomo-

tion.” In: AAAI Conference on Artificial Intelligence, pp. 611–616. url: http://www.cs.
utexas.edu/%7B%5C%%7D7Bnate,pstone%7B%5C%%7D7D (cit. on p. 157).

Konda, Vijay R and John N Tsitsiklis (2000). “Actor-Critic Algorithms.” In: Advances in
Neural Information Processing Systems (NeurIPS) (cit. on pp. 77, 85).

Kormushev, Petar, Sylvain Calinon, and Darwin G. Caldwell (2010). “Robot motor skill
coordination with EM-based Reinforcement Learning.” In: 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan.
IEEE, pp. 3232–3237. doi: 10.1109/IROS.2010.5649089. url: https://doi.org/10.
1109/IROS.2010.5649089 (cit. on p. 87).

Kostrikov, Ilya (Oct. 2021). JAXRL: Implementations of Reinforcement Learning algorithms in
JAX. doi: 10.5281/zenodo.5535154. url: https://github.com/ikostrikov/jaxrl
(cit. on p. 105).

Kostrikov, Ilya, Rob Fergus, Jonathan Tompson, and Ofir Nachum (2021a). “Offline re-
inforcement learning with fisher divergence critic regularization.” In: International
Conference on Machine Learning. PMLR, pp. 5774–5783 (cit. on pp. 94, 95, 279).

Kostrikov, Ilya, Ashvin Nair, and Sergey Levine (2021b). “Offline reinforcement learning
with implicit q-learning.” In: (cit. on pp. 4, 107, 141, 143, 146, 184).

Krainin, Michael, Brian Curless, and Dieter Fox (2011). “Autonomous generation of com-
plete 3D object models using next best view manipulation planning.” In: 2011 IEEE
International Conference on Robotics and Automation. IEEE, pp. 5031–5037 (cit. on p. 26).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification
with deep convolutional neural networks.” In: Advances in Neural Information Process-
ing Systems (NeurIPS), pp. 1097–1105 (cit. on pp. 2, 74, 170).

Kroemer, Oliver, Renaud Detry, Justus Piater, and Jan Peters (2010). “Combining Active
Learning and Reactive Control for Robot Grasping.” In: 58.9, pp. 1105–1116. url:
https://orbi.uliege.be//bitstream/2268/60643/1/Kroemer-2010-RAS-author-

postprint.pdf (cit. on p. 26).
Kumar, Aviral, Justin Fu, George Tucker, and Sergey Levine (June 2019a). “Stabilizing

Off-Policy Q-Learning via Bootstrapping Error Reduction.” In: Advances in Neural

208

https://doi.org/10.1007/978-3-319-03194-1_4
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics.pdf
http://papers.nips.cc/paper/3545-policy-search-for-motor-primitives-in-robotics.pdf
http://www.cs.utexas.edu/%7B%5C%%7D7Bnate,pstone%7B%5C%%7D7D
http://www.cs.utexas.edu/%7B%5C%%7D7Bnate,pstone%7B%5C%%7D7D
https://doi.org/10.1109/IROS.2010.5649089
https://doi.org/10.1109/IROS.2010.5649089
https://doi.org/10.1109/IROS.2010.5649089
https://doi.org/10.5281/zenodo.5535154
https://github.com/ikostrikov/jaxrl
https://orbi.uliege.be//bitstream/2268/60643/1/Kroemer-2010-RAS-author-postprint.pdf
https://orbi.uliege.be//bitstream/2268/60643/1/Kroemer-2010-RAS-author-postprint.pdf

Information Processing Systems (NeurIPS). eprint: 1906.00949. url: http://arxiv.
org/abs/1906.00949 (cit. on pp. 75, 76, 79–82, 84, 85, 268, 270).

Kumar, Aviral, Justin Fu, George Tucker, and Sergey Levine (2019b). “Stabilizing off-
policy q-learning via bootstrapping error reduction.” In: (cit. on pp. 94, 95, 174, 279).

Kumar, Aviral, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine (Sept. 2021).
“A Workflow for Offline Model-Free Robotic Reinforcement Learning.” In: doi: 10.
48550/arxiv.2109.10813. url: https://arxiv.org/abs/2109.10813v2 (cit. on
p. 141).

Kumar, Aviral, Aurick Zhou, George Tucker, and Sergey Levine (2020a). “Conservative
Q-Learning for Offline Reinforcement Learning.” In: Advances in Neural Information
Processing Systems (NeurIPS). eprint: 2006.04779v1 (cit. on pp. 141, 269).

Kumar, Aviral, Aurick Zhou, George Tucker, and Sergey Levine (2020b). “Conservative
q-learning for offline reinforcement learning.” In: (cit. on pp. 94, 95, 105, 106, 174,
277, 279).

Kuznetsov, Arsenii, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov (2020).
“Controlling overestimation bias with truncated mixture of continuous distributional
quantile critics.” In: International Conference on Machine Learning. PMLR, pp. 5556–
5566 (cit. on p. 96).

Lange, Sascha, Thomas Gabel, and Martin Riedmiller (2012a). “Batch reinforcement
learning.” In: Reinforcement learning. Springer, pp. 45–73 (cit. on pp. 94, 174).

Lange, Sascha, Thomas Gabel, and Martin A. Riedmiller (2012b). “Batch Reinforcement
Learning.” In: Reinforcement Learning. Ed. by Marco Wiering and Martijn van Otterlo.
Vol. 12. Adaptation, Learning, and Optimization. Springer, pp. 45–73. doi: 10.1007/
978-3-642-27645-3_2. url: https://doi.org/10.1007/978-3-642-27645-3%5C_2
(cit. on p. 85).

Lange, Sascha, Martin Riedmiller, Arne Voigtlander, and Arne Voigtlnder (2012c). “Au-
tonomous reinforcement learning on raw visual input data in a real world applica-
tion.” In: International Joint Conference on Neural Networks (IJCNN). June. IEEE, pp. 1–8.
isbn: 9781467314909. doi: 10.1109/IJCNN.2012.6252823 (cit. on pp. 9, 10, 142).

Lange, Sascha and Martin A Riedmiller (2010). “Deep learning of visual control policies.”
In: European Symposium on Artificial Neural Networks (ESANN). Citeseer. url: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6898%7B%5C&

%7Drep=rep1%7B%5C&%7Dtype=pdf (cit. on pp. 17, 142).
Laskin, Michael, Aravind Srinivas, and Pieter Abbeel (2020). “CURL: Contrastive unsu-

pervised representations for reinforcement learning.” In: International Conference on
Machine Learning (ICML). PMLR, pp. 5639–5650 (cit. on p. 142).

209

1906.00949
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949
https://doi.org/10.48550/arxiv.2109.10813
https://doi.org/10.48550/arxiv.2109.10813
https://arxiv.org/abs/2109.10813v2
2006.04779v1
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3%5C_2
https://doi.org/10.1109/IJCNN.2012.6252823
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6898%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6898%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6898%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf

LaValle, Steven M (2006). Planning algorithms. Cambridge university press (cit. on p. 1).
Lee, Alex, Sergey Levine, and Pieter Abbeel (2017). “Learning Visual Servoing with Deep

Features and Fitted Q-Iteration.” In: International Conference on Learning Representa-
tions (ICLR). url: https://arxiv.org/pdf/1703.11000.pdf (cit. on p. 10).

Lee, Alex X, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey
Levine (n.d.). “Stochastic Adversarial Video Prediction.” In: eprint: 1804.01523v1.
url: https://alexlee-gk.github.io/video%7B%5C_%7Dprediction (cit. on p. 27).

Lee, Joonho ; Jemin ; Hwangbo, Lorenz ; Wellhausen, Vladlen ; Koltun, and Marco
Hutter (2020). “Learning quadrupedal locomotion over challenging terrain.” In: doi:
10.3929/ethz-b-000448343. url: https://doi.org/10.3929/ethz-b-000448343
(cit. on p. 2).

Lee, Seunghyun, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin (2021).
“Offline-to-Online Reinforcement Learning via Balanced Replay and Pessimistic Q-
Ensemble.” In: (cit. on pp. 141, 174).

Levine, Sergey, Chelsea Finn, Trevor Darrell, and Pieter Abbeel (2016a). “End-to-End
Training of Deep Visuomotor Policies.” In: 17.1, pp. 1334–1373. issn: 15337928. doi:
10.1007/s13398-014-0173-7.2. eprint: 1504.00702. url: https://arxiv.org/pdf/
1504.00702.pdf (cit. on pp. 9, 18, 26, 121, 126, 141, 157).

Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu (2020). Offline Reinforcement
Learning: Tutorial, Review, and Perspectives on Open Problems. Tech. rep. eprint: 2005.
01643v1 (cit. on pp. 80, 85, 189).

Levine, Sergey, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen (2016b). “Learning
Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale
Data Collection.” In: (cit. on p. 59).

Levine, Sergey, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen (2017). “Learning
Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale
Data Collection.” In: (cit. on pp. 2, 9, 26, 27, 121, 141).

Levy, Andrew, Robert Platt, and Kate Saenko (2017). “Hierarchical Actor-Critic.” In: (cit.
on p. 10).

Li, Rui, Robert Platt, Wenzhen Yuan, Andreas Ten Pas, Nathan Roscup, Mandayam A
Srinivasan, and Edward Adelson (2014). “Localization and Manipulation of Small
Parts Using GelSight Tactile Sensing.” In: International Conference on Intelligent Robots
and Systems (IROS). url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.448.7123%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf (cit. on p. 127).

Lian, Wenzhao, Tim Kelch, Dirk Holz, Adam Norton, and Stefan Schaal (2021). “Bench-
marking Off-The-Shelf Solutions to Robotic Assembly Tasks.” In: IEEE International

210

https://arxiv.org/pdf/1703.11000.pdf
1804.01523v1
https://alexlee-gk.github.io/video%7B%5C_%7Dprediction
https://doi.org/10.3929/ethz-b-000448343
https://doi.org/10.3929/ethz-b-000448343
https://doi.org/10.1007/s13398-014-0173-7.2
1504.00702
https://arxiv.org/pdf/1504.00702.pdf
https://arxiv.org/pdf/1504.00702.pdf
2005.01643v1
2005.01643v1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.448.7123%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.448.7123%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf

Conference on Intelligent Robots and Systems (IROS). eprint: 2103 . 05140v1 (cit. on
p. 142).

Lillicrap, Timothy P, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra (2016). “Continuous control with deep rein-
forcement learning.” In: International Conference on Learning Representations (ICLR).
isbn: 0-7803-3213-X. doi: 10.1613/jair.301. eprint: 9605103. url: https://arxiv.
org/pdf/1509.02971.pdf (cit. on pp. 2, 9, 12, 39, 59, 61, 77, 115, 257, 268).

Lin, Xingyu, Harjatin Singh Baweja, and David Held (2019). “Reinforcement Learning
without Ground-Truth State.” In: eprint: 1905.07866v1. url: https://arxiv.org/
pdf/1905.07866.pdf (cit. on p. 27).

Loftin, Robert, James Macglashan, Bei Peng, Matthew E Taylor, Michael L Littman, Jeff
Huang, and David L Roberts (2014). “A Strategy-Aware Technique for Learning Be-
haviors from Discrete Human Feedback.” In: AAAI Conference on Artificial Intelligence,
pp. 937–943. isbn: 9781577356783 (cit. on p. 122).

Long, Mingsheng, Yue Cao, Jianmin Wang, and Michael I. Jordan (Feb. 2015). “Learning
Transferable Features with Deep Adaptation Networks.” In: url: http://arxiv.org/
abs/1502.02791 (cit. on p. 143).

Lopes, Manuel, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer (2012). “Explo-
ration in model-based reinforcement learning by empirically estimating learning
progress.” In: Advances in Neural Information Processing Systems, pp. 206–214 (cit. on
pp. 45, 158).

Lu, Yao, Karol Hausman, Yevgen Chebotar, Mengyuan Yan, Eric Jang, Alexander Herzog,
Ted Xiao, Alex Irpan, Mohi Khansari, Dmitry Kalashnikov, and Sergey Levine (2021).
“AW-Opt: Learning Robotic Skills with Imitation and Reinforcement at Scale.” In:
(cit. on p. 174).

Luo, J, E Solowjow, C Wen, J Aparicio Ojea, A Agogino, A Tamar, and Abbeel
P (2019). “Reinforcement Learning on Variable Impedance Controller for High-
Precision Robotic Assembly.” In: ICRA (cit. on p. 127).

Luo, Jianlan, Oleg Sushkov, Rugile Pevceviciute, Wenzhao Lian, Chang Su, Mel Vecerik,
Ning Ye, Stefan Schaal, and Jon Scholz (Mar. 2021). “Robust Multi-Modal Policies
for Industrial Assembly via Reinforcement Learning and Demonstrations: A Large-
Scale Study.” In: Robotics: Science and Systems (RSS). eprint: 2103.11512. url: https:
//arxiv.org/abs/2103.11512v3 (cit. on p. 142).

Lynch, Corey, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey
Levine, and Pierre Sermanet (Mar. 2019). “Learning Latent Plans from Play.” In: Con-

211

2103.05140v1
https://doi.org/10.1613/jair.301
9605103
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
1905.07866v1
https://arxiv.org/pdf/1905.07866.pdf
https://arxiv.org/pdf/1905.07866.pdf
http://arxiv.org/abs/1502.02791
http://arxiv.org/abs/1502.02791
2103.11512
https://arxiv.org/abs/2103.11512v3
https://arxiv.org/abs/2103.11512v3

ference on Robot Learning (CoRL). eprint: 1903.01973. url: http://arxiv.org/abs/
1903.01973 (cit. on p. 157).

Martinez, David, Guillem Alenya, Pablo Jimenez, Carme Torras, Jrgen Rossmann, Nils
Wantia, Eren Erdal Aksoy, Simon Haller, and Justus Piater (2014). “Active learning
of manipulation sequences.” In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 5671–5678 (cit. on p. 26).

Mason, Matthew T. (1981). “Compliance and Force Control for Computer Controlled
Manipulators.” In: 11.6, pp. 418–432. doi: 10.1109/TSMC.1981.4308708 (cit. on p. 1).

Meng, Linghui, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang,
Ying Wen, Haifeng Zhang, Jun Wang, and Bo Xu (2021). “Offline Pre-trained Multi-
Agent Decision Transformer: One Big Sequence Model Tackles All SMAC Tasks.” In:
(cit. on pp. 141, 174).

Min, Huaqing, An Yi, Ronghua Luo, Jinhui Zhu, and Sheng Bi (2016). “Affordance Re-
search in Developmental Robotics: A Survey.” In: 8.4. doi: 10 . 1109 / TCDS . 2016 .

2614992. url: http : / / www . ieee . org / publications % 7B % 5C _ %7Dstandards /

publications/rights/index.html (cit. on p. 158).
Mlling, Katharina, Jens Kober, Oliver Kroemer, and Jan Peters (2013). “Learning to select

and generalize striking movements in robot table tennis.” In: 32.3, pp. 263–279. doi:
10.1177/0278364912472380. url: https://doi.org/10.1177/0278364912472380
(cit. on p. 87).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller (2013). “Playing Atari with Deep Reinforce-
ment Learning.” In: NIPS Workshop on Deep Learning, pp. 1–9. isbn: 1476-4687 (Elec-
tronic) 0028-0836 (Linking). doi: 10 . 1038 / nature14236. eprint: 1312 . 5602. url:
https://arxiv.org/pdf/1312.5602.pdf%20http://arxiv.org/abs/1312.5602%

20https://www.cs.toronto.edu/%7B~%7Dvmnih/docs/dqn.pdf (cit. on pp. 26, 124,
126, 157).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc
G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostro-
vski, et al. (2015). “Human-level control through deep reinforcement learning.” In:
518.7540, pp. 529–533 (cit. on pp. 2, 59).

Mnih, Volodymyr, Adri Puigdomnech Badia, Mehdi Mirza, Alex Graves, Tim Harley,
Timothy P Lillicrap, David Silver, Koray Kavukcuoglu, Korayk@google Com, and
Google Deepmind (2016). “Asynchronous Methods for Deep Reinforcement Learn-
ing.” In: International Conference on Machine Learning (ICML). url: https://arxiv.
org/pdf/1602.01783.pdf (cit. on pp. 12, 59, 77, 85).

212

1903.01973
http://arxiv.org/abs/1903.01973
http://arxiv.org/abs/1903.01973
https://doi.org/10.1109/TSMC.1981.4308708
https://doi.org/10.1109/TCDS.2016.2614992
https://doi.org/10.1109/TCDS.2016.2614992
http://www.ieee.org/publications%7B%5C_%7Dstandards/publications/rights/index.html
http://www.ieee.org/publications%7B%5C_%7Dstandards/publications/rights/index.html
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1038/nature14236
1312.5602
https://arxiv.org/pdf/1312.5602.pdf%20http://arxiv.org/abs/1312.5602%20https://www.cs.toronto.edu/%7B~%7Dvmnih/docs/dqn.pdf
https://arxiv.org/pdf/1312.5602.pdf%20http://arxiv.org/abs/1312.5602%20https://www.cs.toronto.edu/%7B~%7Dvmnih/docs/dqn.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf

Mohamed, Shakir and Danilo Jimenez Rezende (2015). “Variational information max-
imisation for intrinsically motivated reinforcement learning.” In: Advances in neural
information processing systems, pp. 2125–2133 (cit. on p. 45).

Nachum, Ofir, Yinlam Chow, Bo Dai, and Lihong Li (June 2019). “DualDICE: Behavior-
Agnostic Estimation of Discounted Stationary Distribution Corrections.” In: Advances
in Neural Information Processing Systems (NeurIPS). eprint: 1906.04733. url: http:
//arxiv.org/abs/1906.04733 (cit. on pp. 85, 269).

Nachum, Ofir, Shane Shixiang Gu, Honglak Lee, and Sergey Levine (2018). “Data-
Efficient Hierarchical Reinforcement Learning.” In: Advances in Neural Information
Processing Systems (NeurIPS). eprint: arXiv : 1805 . 08296v2. url: https : / / sites .

google.com/view/efficient-hrl (cit. on pp. 24, 46, 141, 158).
Nair, Ashvin, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen Berseth, and

Sergey Levine (Oct. 2019a). “Contextual Imagined Goals for Self-Supervised Robotic
Learning.” In: Conference on Robot Learning (CoRL). eprint: 1910.11670. url: http:
//arxiv.org/abs/1910.11670 (cit. on pp. 4, 157, 158).

Nair, Ashvin, Shikhar Bahl, Alexander Khazatsky, Vitchyr H. Pong, Glen Berseth, and
Sergey Levine (2019b). “Contextual Imagined Goals for Self-Supervised Robotic
Learning.” In: CoRL (cit. on pp. 175, 176).

Nair, Ashvin, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik,
Sergey Levine, Dian Chen, Phillip Isola, Pieter Abbeel, Jitendra Malik, and Sergey
Levine (2017). “Combining Self-Supervised Learning and Imitation for Vision-Based
Rope Manipulation.” In: IEEE International Conference on Robotics and Automation
(ICRA). isbn: 9781509046331. doi: 10.1109/ICRA.2017.7989247. eprint: 1703.02018
(cit. on p. 86).

Nair, Ashvin, Murtaza Dalal, Abhishek Gupta, and Sergey Levine (June 2020). “Acceler-
ating Online Reinforcement Learning with Offline Datasets.” In: eprint: 2006.09359.
url: http://arxiv.org/abs/2006.09359 (cit. on pp. 4, 93–96, 101, 105, 106, 141, 163,
174, 277, 282).

Nair, Ashvin, Bob Mcgrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel
(2018a). “Overcoming Exploration in Reinforcement Learning with Demonstrations.”
In: IEEE International Conference on Robotics and Automation (ICRA). url: https://
arxiv.org/pdf/1709.10089.pdf (cit. on pp. 4, 75, 91, 122, 127, 131, 268).

Nair, Ashvin, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine
(2018b). “Visual Reinforcement Learning with Imagined Goals.” In: Advances in Neu-
ral Information Processing Systems (NeurIPS). eprint: arXiv:1807.04742v1. url: https:

213

1906.04733
http://arxiv.org/abs/1906.04733
http://arxiv.org/abs/1906.04733
arXiv:1805.08296v2
https://sites.google.com/view/efficient-hrl
https://sites.google.com/view/efficient-hrl
1910.11670
http://arxiv.org/abs/1910.11670
http://arxiv.org/abs/1910.11670
https://doi.org/10.1109/ICRA.2017.7989247
1703.02018
2006.09359
http://arxiv.org/abs/2006.09359
https://arxiv.org/pdf/1709.10089.pdf
https://arxiv.org/pdf/1709.10089.pdf
arXiv:1807.04742v1
https://sites.google.com/site/
https://sites.google.com/site/
https://sites.google.com/site/

//sites.google.com/site/ (cit. on pp. 4, 23, 24, 27, 30, 31, 35, 39, 44, 45, 51, 125, 141,
157–159, 163, 175–177, 247, 250, 251, 257).

Nair, Suraj and Chelsea Finn (2019). “Hierarchical foresight: Self-supervised learning of
long-horizon tasks via visual subgoal generation.” In: (cit. on p. 176).

Nakanishi, Jun, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal, and Mitsuo
Kawato (2004). “Learning from demonstration and adaptation of biped locomotion.”
In: Robotics and Autonomous Systems. Vol. 47. 2-3, pp. 79–91. isbn: 0921-8890. doi:
10.1016/j.robot.2004.03.003. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.77.534%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf (cit. on
pp. 59, 126, 141).

Nasiriany, Soroush, Vitchyr H. Pong, Steven Lin, and Sergey Levine (2019). “Planning
with Goal-Conditioned Policies.” In: NeurIPS (cit. on pp. 175, 176, 184, 187).

Neumann, Gerhard and Jan Peters (2008). “Fitted Q-iteration by Advantage Weighted
Regression.” In: Advances in Neural Information Processing Systems (NeurIPS) (cit. on
pp. 86, 260).

Ng, Andrew and Stuart Russell (2000). “Algorithms for Inverse Reinforcement Learn-
ing.” In: International Conference on Machine Learning (ICML). url: http : / / ai .

stanford.edu/%7B~%7Dang/papers/icml00-irl.pdf (cit. on p. 59).
Ng, Andrew Y., Daishi Harada, and Stuart Russell (1999). “Policy invariance under re-

ward transformations: Theory and application to reward shaping.” In: International
Conference on Machine Learning (ICML). url: https://www-cs.stanford.edu/people/
ang/papers/shaping-icml99.pdf (cit. on pp. 121, 125, 126).

Nguyen, Tung, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon (June 2021). “Tempo-
ral Predictive Coding For Model-Based Planning In Latent Space.” In: doi: 10.48550/
arxiv.2106.07156. url: https://arxiv.org/abs/2106.07156v1 (cit. on p. 142).

Nielsen, Frank and Richard Nock (2010). “Entropies and cross-entropies of exponential
families.” In: Image Processing (ICIP), 2010 17th IEEE International Conference on. IEEE,
pp. 3621–3624 (cit. on pp. 242, 243).

Oh, Junhyuk, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder Singh (2015).
“Action-Conditional Video Prediction using Deep Networks in Atari Games.” In: Ad-
vances in Neural Information Processing Systems (NeurIPS). url: https://arxiv.org/
pdf/1507.08750v1.pdf (cit. on p. 9).

Oord, Aaron van den, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves,
and Koray Kavukcuoglu (June 2016). “Conditional Image Generation with PixelCNN
Decoders.” In: Advances in Neural Information Processing Systems. Neural information

214

https://sites.google.com/site/
https://sites.google.com/site/
https://sites.google.com/site/
https://sites.google.com/site/
https://doi.org/10.1016/j.robot.2004.03.003
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.534%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.534%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://ai.stanford.edu/%7B~%7Dang/papers/icml00-irl.pdf
http://ai.stanford.edu/%7B~%7Dang/papers/icml00-irl.pdf
https://www-cs.stanford.edu/people/ang/papers/shaping-icml99.pdf
https://www-cs.stanford.edu/people/ang/papers/shaping-icml99.pdf
https://doi.org/10.48550/arxiv.2106.07156
https://doi.org/10.48550/arxiv.2106.07156
https://arxiv.org/abs/2106.07156v1
https://arxiv.org/pdf/1507.08750v1.pdf
https://arxiv.org/pdf/1507.08750v1.pdf

processing systems foundation, pp. 4797–4805. eprint: 1606.05328. url: http://
arxiv.org/abs/1606.05328 (cit. on pp. 162, 282).

Oord, Aaron van den, Oriol Vinyals, and Koray Kavukcuoglu (Nov. 2017). “Neural Dis-
crete Representation Learning.” In: Advances in Neural Information Processing Systems.
Vol. 2017-Decem. Neural information processing systems foundation, pp. 6307–6316.
eprint: 1711.00937. url: http://arxiv.org/abs/1711.00937 (cit. on pp. 162, 282).

Oord, Aron van den, Oriol Vinyals, and Koray Kavukcuoglu (2017). “Neural Discrete
Representation Learning.” In: NeurIPS (cit. on p. 184).

OpenAI, : Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysaw
Dbiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse,
Rafal Jzefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Hen-
rique P. d. O. Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schnei-
der, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang (Dec.
2019). “Dota 2 with Large Scale Deep Reinforcement Learning.” In: doi: 10.48550/
arxiv.1912.06680. url: https://arxiv.org/abs/1912.06680v1 (cit. on p. 2).

Ostrovski, Georg, Marc G Bellemare, Aron Oord, and Rmi Munos (2017). “Count-Based
Exploration with Neural Density Models.” In: International Conference on Machine
Learning (ICML), pp. 2721–2730 (cit. on p. 45).

Pathak, Deepak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell (2017). “Curiosity-
Driven Exploration by Self-Supervised Prediction.” In: International Conference on Ma-
chine Learning (ICML). IEEE, pp. 488–489. eprint: 1705.05363 (cit. on pp. 16, 45, 155,
158).

Pathak, Deepak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide
Shentu, Evan Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell (2018).
“Zero-Shot Visual Imitation.” In: International Conference on Learning Representations
(ICLR). url: https://arxiv.org/pdf/1804.08606.pdf (cit. on pp. 9, 126).

Peng, Xue Bin, Aviral Kumar, Grace Zhang, and Sergey Levine (Sept. 2019a).
“Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement
Learning.” In: eprint: 1910.00177. url: http://arxiv.org/abs/1910.00177 (cit.
on pp. 79, 82–84, 86, 88, 146, 258, 260, 265, 267).

Peng, Xue Bin, Aviral Kumar, Grace Zhang, and Sergey Levine (2019b). “Advantage-
weighted regression: Simple and scalable off-policy reinforcement learning.” In: (cit.
on pp. 95–97, 100, 101).

Pertsch, Karl, Oleh Rybkin, Frederik Ebert, Chelsea Finn, Dinesh Jayaraman, and Sergey
Levine (2020). “Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors.” In: abs/2006.13205 (cit. on pp. 175, 176, 178, 181, 184, 187).

215

1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
1711.00937
http://arxiv.org/abs/1711.00937
https://doi.org/10.48550/arxiv.1912.06680
https://doi.org/10.48550/arxiv.1912.06680
https://arxiv.org/abs/1912.06680v1
1705.05363
https://arxiv.org/pdf/1804.08606.pdf
1910.00177
http://arxiv.org/abs/1910.00177

Peters, Jan, Katharina Mlling, and Yasemin Altn (2010). “Relative Entropy Policy Search.”
In: AAAI Conference on Artificial Intelligence, pp. 1607–1612. url: https : / / pdfs .

semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf%20http:

//www-clmc.usc.edu/publications/P/Peters%7B%5C_%7DPOTTNCOAIPGAT%7B%5C_

%7D2010.pdf (cit. on pp. 26, 59, 82, 86, 121, 126, 157, 258).
Peters, Jan and Stefan Schaal (2007a). “Reinforcement Learning by Reward-weighted

Regression for Operational Space Control.” In: International Conference on Machine
Learning (ICML). url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.79.6266%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf (cit. on pp. 79, 82, 86).

Peters, Jan and Stefan Schaal (2007b). “Reinforcement learning by reward-weighted re-
gression for operational space control.” In: Proceedings of the 24th international confer-
ence on Machine learning, pp. 745–750 (cit. on pp. 95, 100, 101).

Peters, Jan and Stefan Schaal (2008a). “Natural Actor-Critic.” In: 71.7-9, pp. 1180–1190.
doi: 10.1016/j.neucom.2007.11.026. url: https://doi.org/10.1016/j.neucom.
2007.11.026 (cit. on p. 85).

Peters, Jan and Stefan Schaal (2008b). “Reinforcement learning of motor skills with pol-
icy gradients.” In: 21.4. Robotics and Neuroscience, pp. 682–697. issn: 0893-6080.
doi: https : / / doi . org / 10 . 1016 / j . neunet . 2008 . 02 . 003. url: http : / / www .

sciencedirect.com/science/article/pii/S0893608008000701 (cit. on p. 26).
Peters, Jan and Stefan Schaal (2008c). “Reinforcement learning of motor skills with policy

gradients.” In: 21.4, pp. 682–697. issn: 08936080. doi: 10.1016/j.neunet.2008.02.
003. eprint: arXiv:1411.3159v1. url: https://pdfs.semanticscholar.org/eb5b/
459c8a3e56064158fb3514eeab763486e437 . pdf (cit. on pp. 26, 60, 86, 87, 122, 126,
141).

Pinto, Lerrel, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter
Abbeel (2018). “Asymmetric Actor Critic for Image-Based Robot Learning.” In: (cit.
on p. 9).

Pinto, Lerrel, James Davidson, Rahul Sukthankar, and Abhinav Gupta (2017). “Robust
Adversarial Reinforcement Learning.” In: International Conference on Machine Learning
(ICML). url: https://arxiv.org/pdf/1703.02702.pdf (cit. on pp. 26, 121).

Pinto, Lerrel and Abhinav Gupta (2016). “Supersizing Self-supervision: Learning to
Grasp from 50K Tries and 700 Robot Hours.” In: (cit. on pp. 9, 26, 27, 59, 126).

Plappert, Matthias, Marcin Andrychowicz, Alex Ray, Bob Mcgrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar,
and Wojciech Zaremba (2018). “Multi-Goal Reinforcement Learning: Challenging

216

https://pdfs.semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf%20http://www-clmc.usc.edu/publications/P/Peters%7B%5C_%7DPOTTNCOAIPGAT%7B%5C_%7D2010.pdf
https://pdfs.semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf%20http://www-clmc.usc.edu/publications/P/Peters%7B%5C_%7DPOTTNCOAIPGAT%7B%5C_%7D2010.pdf
https://pdfs.semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf%20http://www-clmc.usc.edu/publications/P/Peters%7B%5C_%7DPOTTNCOAIPGAT%7B%5C_%7D2010.pdf
https://pdfs.semanticscholar.org/ff47/526838ce85d77a50197a0c5f6ee5095156aa.pdf%20http://www-clmc.usc.edu/publications/P/Peters%7B%5C_%7DPOTTNCOAIPGAT%7B%5C_%7D2010.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.6266%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.6266%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
https://doi.org/10.1016/j.neucom.2007.11.026
https://doi.org/10.1016/j.neucom.2007.11.026
https://doi.org/10.1016/j.neucom.2007.11.026
https://doi.org/https://doi.org/10.1016/j.neunet.2008.02.003
http://www.sciencedirect.com/science/article/pii/S0893608008000701
http://www.sciencedirect.com/science/article/pii/S0893608008000701
https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/10.1016/j.neunet.2008.02.003
arXiv:1411.3159v1
https://pdfs.semanticscholar.org/eb5b/459c8a3e56064158fb3514eeab763486e437.pdf
https://pdfs.semanticscholar.org/eb5b/459c8a3e56064158fb3514eeab763486e437.pdf
https://arxiv.org/pdf/1703.02702.pdf

Robotics Environments and Request for Research.” In: eprint: arXiv:1802.09464v2.
url: http://fetchrobotics.com/ (cit. on p. 231).

Pomerleau, Dean A (1989). “Alvinn: An autonomous land vehicle in a neural network.”
In: Advances in Neural Information Processing Systems (NeurIPS), pp. 305–313. isbn: 1-
558-60015-9. url: http://repository.cmu.edu/compsci (cit. on pp. 59, 126).

Pong, Vitchyr, Shixiang Gu, Murtaza Dalal, and Sergey Levine (2018). “Temporal Dif-
ference Models: Model-Free Deep RL For Model-Based Control.” In: International
Conference on Learning Representations (ICLR). url: https://arxiv.org/pdf/1802.
09081.pdf (cit. on pp. 10, 39, 45, 115, 130, 257).

Pong, Vitchyr H, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey
Levine (2020a). “Skew-Fit: State-Covering Self-Supervised Reinforcement Learning.”
In: International Conference on Machine Learning (ICML). eprint: 1903.03698v2. url:
https://arxiv.org/pdf/1903.03698.pdf (cit. on pp. 141, 158).

Pong, Vitchyr H., Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey
Levine (2019). “Skew-Fit: State-Covering Self-Supervised Reinforcement Learning.”
In: abs/1903.03698. eprint: 1903.03698. url: http://arxiv.org/abs/1903.03698
(cit. on pp. 4, 24, 27, 30, 55).

Pong, Vitchyr H., Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey
Levine (2020b). “Skew-Fit: State-Covering Self-Supervised Reinforcement Learning.”
In: abs/1903.03698 (cit. on p. 175).

Pong, Vitchyr H., Ashvin Nair, Laura Smith, Catherine Huang, and Sergey Levine (2022).
“Offline Meta-Reinforcement Learning with Online Self-Supervision.” In: (cit. on
p. 141).

Ponomarenko, Nikolay, Lina Jin, Oleg Ieremeiev, Vladimir Lukin, Karen Egiazarian,
Jaakko Astola, Benoit Vozel, Kacem Chehdi, Marco Carli, Federica Battisti, et al.
(2015). “Image database TID2013: Peculiarities, results and perspectives.” In: 30,
pp. 57–77 (cit. on p. 7).

Popov, Ivaylo, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-maron,
Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, Martin Riedmiller, and Mar-
tin Riedmiller Deepmind (2017). “Data-efficient Deep Reinforcement Learning for
Dexterous Manipulation.” In: abs/1704.0. eprint: 1704.03073. url: https://arxiv.
org/pdf/1704.03073.pdf (cit. on pp. 60, 121, 125).

Pr, Alexandre, Sebastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer (2018a). “Un-
supervised Learning of Goal Spaces for Intrinsically Motivated Goal Exploration.” In:
International Conference on Learning Representations (ICLR). url: https://arxiv.org/
pdf/1803.00781.pdf (cit. on p. 10).

217

arXiv:1802.09464v2
http://fetchrobotics.com/
http://repository.cmu.edu/compsci
https://arxiv.org/pdf/1802.09081.pdf
https://arxiv.org/pdf/1802.09081.pdf
1903.03698v2
https://arxiv.org/pdf/1903.03698.pdf
1903.03698
http://arxiv.org/abs/1903.03698
1704.03073
https://arxiv.org/pdf/1704.03073.pdf
https://arxiv.org/pdf/1704.03073.pdf
https://arxiv.org/pdf/1803.00781.pdf
https://arxiv.org/pdf/1803.00781.pdf

Pr, Alexandre, Sebastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer (2018b). “Un-
supervised Learning of Goal Spaces for Intrinsically Motivated Goal Exploration.” In:
International Conference on Learning Representations (ICLR). url: https://arxiv.org/
pdf/1803.00781.pdf (cit. on p. 45).

Pr, Alexandre, Sebastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer (2018c). “Un-
supervised Learning of Goal Spaces for Intrinsically Motivated Goal Exploration.” In:
International Conference on Learning Representations (ICLR). url: https://arxiv.org/
pdf/1803.00781.pdf (cit. on pp. 141, 158).

Rajeswaran, Aravind, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel
Todorov, and Sergey Levine (2018). “Learning Complex Dexterous Manipulation
with Deep Reinforcement Learning and Demonstrations.” In: Robotics: Science and
Systems. url: https://arxiv.org/pdf/1709.10087.pdf (cit. on pp. 78, 79, 86–88, 91,
106, 122, 127, 261, 263, 266, 267, 277).

Rakelly, Kate, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine (2019). “Ef-
ficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables.”
In: International Conference on Machine Learning (ICML). url: https://github.com/
katerakelly/oyster. (cit. on p. 160).

Ramapuram, Jason, Magda Gregorova, and Alexandros Kalousis (May 2017). “Lifelong
Generative Modeling.” In: eprint: 1705.09847. url: http://arxiv.org/abs/1705.
09847 (cit. on p. 81).

Rauber, Paulo, Filipe Mutz, and Juergen Jrgen Schmidhuber (2017). “Hindsight policy
gradients.” In: CoRR. Vol. abs/1711.0. url: https://arxiv.org/pdf/1711.06006.pdf
(cit. on p. 10).

Reed, Scott, Kihyuk Sohn, Yuting Zhang, and Honglak Lee (2014). “Learning to disen-
tangle factors of variation with manifold interaction.” In: International Conference on
Machine Learning (ICML), pp. 1431–1439 (cit. on p. 10).

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun (June 2015). “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks.” In: 39 (6),
pp. 1137–1149. issn: 01628828. doi: 10.48550/arxiv.1506.01497. url: https://
arxiv.org/abs/1506.01497v3 (cit. on p. 2).

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-Net: Convolutional Net-
works for Biomedical Image Segmentation.” In: MICCAI (cit. on p. 184).

Ross, Stphane, Geoffrey J Gordon, and J Andrew Bagnell (2011). “A Reduction of Im-
itation Learning and Structured Prediction to No-Regret Online Learning.” In: In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS). url: https :

218

https://arxiv.org/pdf/1803.00781.pdf
https://arxiv.org/pdf/1803.00781.pdf
https://arxiv.org/pdf/1803.00781.pdf
https://arxiv.org/pdf/1803.00781.pdf
https://arxiv.org/pdf/1709.10087.pdf
https://github.com/katerakelly/oyster.
https://github.com/katerakelly/oyster.
1705.09847
http://arxiv.org/abs/1705.09847
http://arxiv.org/abs/1705.09847
https://arxiv.org/pdf/1711.06006.pdf
https://doi.org/10.48550/arxiv.1506.01497
https://arxiv.org/abs/1506.01497v3
https://arxiv.org/abs/1506.01497v3
https://arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/publications/Ross-AIStats11-NoRegret.pdf
https://arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/publications/Ross-AIStats11-NoRegret.pdf
https://arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/publications/Ross-AIStats11-NoRegret.pdf

//arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/

publications/Ross-AIStats11-NoRegret.pdf (cit. on p. 59).
Rubin, Donald B (1988). “Using the SIR algorithm to simulate posterior distributions.”

In: 3, pp. 395–402 (cit. on p. 41).
Rusu, Andrei A, Matej Vecerik, Thomas Rothrl, Nicolas Heess, Razvan Pascanu, and

Raia Hadsell (2017). “Sim-to-real robot learning from pixels with progressive nets.”
In: (cit. on p. 21).

Sacerdoti, Earl D. (1974). “Planning in a hierarchy of abstraction spaces.” In: 5.2, pp. 115–
135. issn: 0004-3702. doi: https://doi.org/10.1016/0004-3702(74)90026-5. url:
https://www.sciencedirect.com/science/article/pii/0004370274900265 (cit. on
p. 1).

Saunders, William, Girish Sastry, Andreas Stuhlmller, and Owain Evans (2018). “Trial
without Error: Towards Safe Reinforcement Learning via Human Intervention.”
In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
eprint: arXiv:1707.05173v1. url: https://arxiv.org/pdf/1707.05173.pdf (cit. on
p. 122).

Savinov, Nikolay, Anton Raichuk, Raphal Marinier, Damien Vincent, Marc Pollefeys, Tim-
othy Lillicrap, and Sylvain Gelly (2018). “Episodic curiosity through reachability.” In:
(cit. on p. 45).

Sax, Alexander, Bradley Emi, Amir Zamir, Leonidas Guibas, Silvio Savarese, and Jitendra
Malik (2019). “Mid-Level Visual Representations Improve Generalization and Sample
Efficiency for Learning Visuomotor Policies.” In: Conference on Robot Learning (CoRL).
eprint: 1812.11971v3. url: http://perceptual.actor/ (cit. on p. 143).

Schaal, Stefan (1997). “Learning from demonstration.” In: Advances in Neural Information
Processing Systems (NeurIPS). 9, pp. 1040–1046. isbn: 1558604863. doi: 10.1016/j.
robot.2004.03.001. url: http://www.cc.gatech.edulfac%20http://wwwiaim.
ira.uka.de/users/rogalla/WebOrdnerMaterial/ml-robotlearning.pdf%20http:

//www.cc.gatech.edulfac/Stefan.Schaal (cit. on pp. 60, 74).
Schaul, Tom, Dan Horgan, Karol Gregor, and David Silver (2015a). “Universal Value

Function Approximators.” In: ICML (cit. on p. 175).
Schaul, Tom, Daniel Horgan, Karol Gregor, and David Silver (2015b). “Universal Value

Function Approximators.” In: International Conference on Machine Learning (ICML),
pp. 1312–1320. isbn: 9781510810587. url: http://proceedings.mlr.press/v37/
schaul15.pdf%20http://jmlr.org/proceedings/papers/v37/schaul15.html (cit.
on pp. 9, 27, 39, 45, 62, 141, 158, 159, 251, 257).

219

https://arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/publications/Ross-AIStats11-NoRegret.pdf
https://arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/publications/Ross-AIStats11-NoRegret.pdf
https://arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/publications/Ross-AIStats11-NoRegret.pdf
https://arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/publications/Ross-AIStats11-NoRegret.pdf
https://arxiv.org/pdf/1011.0686.pdf%20https://www.cs.cmu.edu/%7B~%7Dsross1/publications/Ross-AIStats11-NoRegret.pdf
https://doi.org/https://doi.org/10.1016/0004-3702(74)90026-5
https://www.sciencedirect.com/science/article/pii/0004370274900265
arXiv:1707.05173v1
https://arxiv.org/pdf/1707.05173.pdf
1812.11971v3
http://perceptual.actor/
https://doi.org/10.1016/j.robot.2004.03.001
https://doi.org/10.1016/j.robot.2004.03.001
http://www.cc.gatech.edulfac%20http://wwwiaim.ira.uka.de/users/rogalla/WebOrdnerMaterial/ml-robotlearning.pdf%20http://www.cc.gatech.edulfac/Stefan.Schaal
http://www.cc.gatech.edulfac%20http://wwwiaim.ira.uka.de/users/rogalla/WebOrdnerMaterial/ml-robotlearning.pdf%20http://www.cc.gatech.edulfac/Stefan.Schaal
http://www.cc.gatech.edulfac%20http://wwwiaim.ira.uka.de/users/rogalla/WebOrdnerMaterial/ml-robotlearning.pdf%20http://www.cc.gatech.edulfac/Stefan.Schaal
http://proceedings.mlr.press/v37/schaul15.pdf%20http://jmlr.org/proceedings/papers/v37/schaul15.html
http://proceedings.mlr.press/v37/schaul15.pdf%20http://jmlr.org/proceedings/papers/v37/schaul15.html

Schenck, Connor and Dieter Fox (2017). “Visual closed-loop control for pouring liq-
uids.” In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
pp. 2629–2636 (cit. on p. 26).

Schmidhuber, Jrgen (1992). “Learning factorial codes by predictability minimization.” In:
4.6, pp. 863–879 (cit. on p. 10).

Schoettler, G., A. Nair, J.A. Ojea, S. Levine, and E. Solowjow (2020). Meta-reinforcement
learning for robotic industrial insertion tasks (cit. on p. 142).

Schoettler, Gerrit, Ashvin Nair, Jianlan Luo, Shikhar Bahl, Juan Aparicio Ojea, Eugen
Solowjow, and Sergey Levine (2019). “Deep Reinforcement Learning for Industrial
Insertion Tasks with Visual Inputs and Natural Rewards.” In: eprint: 1906.05841v2
(cit. on pp. 4, 137, 142).

Schulman, John, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel
(2015). “Trust Region Policy Optimization.” In: International Conference on Machine
Learning (ICML). isbn: 0375-9687. doi: 10.1063/1.4927398. eprint: 1502.05477. url:
https://arxiv.org/pdf/1502.05477.pdf%20http://arxiv.org/abs/1502.05477

(cit. on pp. 2, 59).
Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov Openai

(2017). “Proximal Policy Optimization Algorithms.” In: url: https://arxiv.org/
pdf/1707.06347.pdf (cit. on p. 2).

Schwarzer, Max, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and
Philip Bachman (July 2020). “Data-Efficient Reinforcement Learning with Self-
Predictive Representations.” In: doi: 10 . 48550 / arxiv . 2007 . 05929. url: https :

//arxiv.org/abs/2007.05929v4 (cit. on p. 143).
Sermanet, Pierre, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,

and Sergey Levine (2017). “Time-Contrastive Networks: Self-Supervised Learning
from Video.” In: (cit. on p. 10).

Sharma, Archit, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn
(2021). “Autonomous Reinforcement Learning via Subgoal Curricula.” In: (cit. on
p. 175).

Siegel, Noah Y, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki,
Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Ried-
miller (2020a). “Keep doing what worked: Behavioral modelling priors for offline
reinforcement learning.” In: (cit. on pp. 95, 279).

Siegel, Noah Y., Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki,
Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Ried-

220

1906.05841v2
https://doi.org/10.1063/1.4927398
1502.05477
https://arxiv.org/pdf/1502.05477.pdf%20http://arxiv.org/abs/1502.05477
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://doi.org/10.48550/arxiv.2007.05929
https://arxiv.org/abs/2007.05929v4
https://arxiv.org/abs/2007.05929v4

miller (2020b). Keep Doing What Worked: Behavioral Modelling Priors for Offline Rein-
forcement Learning. eprint: 2002.08396 (cit. on pp. 80, 82, 84–86, 88, 260, 265, 268).

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis (Jan. 2016a). “Mastering the game of Go with deep neural net-
works and tree search.” In: 529.7587, pp. 484–489. issn: 0028-0836. doi: 10.1038/
nature16961. eprint: 1610.00633. url: http://dx.doi.org/10.1038/nature16961%
20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/

v529 / n7587 / abs / nature16961 . html % 7B % 5C # %7Dsupplementary - information %

20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-

go.pdf (cit. on pp. 2, 26, 157).
Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis (Jan. 2016b). “Mastering the game of Go with deep neural net-
works and tree search.” In: 529.7587, pp. 484–489. issn: 0028-0836. doi: 10.1038/
nature16961. eprint: 1610.00633. url: http://dx.doi.org/10.1038/nature16961%
20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/

v529 / n7587 / abs / nature16961 . html % 7B % 5C # %7Dsupplementary - information %

20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-

go.pdf (cit. on p. 59).
Silver, Tom, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling (2018). “Residual Policy

Learning.” In: eprint: 1812.06298. url: http://arxiv.org/abs/1812.06298 (cit. on
pp. 122, 125, 127).

Singh, Avi, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine
(2020a). “Parrot: Data-Driven Behavioral Priors for Reinforcement Learning.” In: url:
https://sites.google.com/view/parrot-rl. (cit. on p. 141).

Singh, Avi, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine (Apr.
2019). “End-to-End Robotic Reinforcement Learning without Reward Engineering.”
In: Robotics: Science and Systems (RSS). eprint: 1904.07854. url: http://arxiv.org/
abs/1904.07854 (cit. on pp. 127, 142).

221

2002.08396
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
1610.00633
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
1610.00633
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
http://dx.doi.org/10.1038/nature16961%20http://10.0.4.14/nature16961%20http://www.nature.com/nature/journal/v529/n7587/abs/nature16961.html%7B%5C#%7Dsupplementary-information%20http://airesearch.com/wp-content/uploads/2016/01/deepmind-mastering-go.pdf
1812.06298
http://arxiv.org/abs/1812.06298
https://sites.google.com/view/parrot-rl.
1904.07854
http://arxiv.org/abs/1904.07854
http://arxiv.org/abs/1904.07854

Singh, Avi, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine
(2020b). “COG: Connecting new skills to past experience with offline reinforcement
learning.” In: CoRL (cit. on pp. 141, 174).

Smith, Linda and Michael Gasser (2005). “The development of embodied cognition: Six
lessons from babies.” In: 11.1-2, pp. 13–29. url: https://www.cogsci.msu.edu/DSS/
2010-2011/Smith/6lessons.pdf (cit. on p. 7).

Sohn, Kihyuk, Xinchen Yan, and Honglak Lee (2015). “Learning Structured Output Rep-
resentation using Deep Conditional Generative Models.” In: Advances in Neural In-
formation Processing Systems (NeurIPS). url: https : / / papers . nips . cc / paper /

5775-learning-structured-output-representation-using-deep-conditional-

generative-models.pdf (cit. on pp. 28, 158, 162, 165, 169, 174, 179, 282).
Spector, Oren and Dotan Di Castro (July 2021). “InsertionNet - A Scalable Solution for

Insertion.” In: 6.3, pp. 5509–5516. doi: 10.1109/LRA.2021.3076971 (cit. on p. 142).
Srinivas, Aravind, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn (2018).

“Universal Planning Networks.” In: International Conference on Machine Learning
(ICML). eprint: arXiv:1804.00645v2. url: https://sites.google. (cit. on p. 10).

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov (2014). “Dropout: a simple way to prevent neural networks from over-
fitting.” In: 15.1, pp. 1929–1958 (cit. on p. 274).

Srivastava, Siddharth, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and
Pieter Abbeel (2014). “Combined Task and Motion Planning Through an Extensible
Planner-Independent Interface Layer.” In: IEEE International Conference on Robotics
and Automation (ICRA). url: https://people.eecs.berkeley.edu/%7B~%7Drussell/
papers/icra14-planrob.pdf (cit. on pp. 60, 175).

Srouji, Mario, Jian Zhang, and Ruslan Salakhutdinov (2018). “Structured Control Nets
for Deep Reinforcement Learning.” In: International Conference on Machine Learning
(ICML). eprint: 1802.08311. url: http://arxiv.org/abs/1802.08311 (cit. on p. 122).

Stadie, Bradly C, Sergey Levine, and Pieter Abbeel (2016). “Incentivizing Exploration In
Reinforcement Learning With Deep Predictive Models.” In: International Conference
on Learning Representations (ICLR). url: https://arxiv.org/pdf/1507.00814.pdf
(cit. on pp. 45, 158).

Subramanian, Kaushik, Charles L Isbell, and Andrea L Thomaz (2016). “Exploration
from Demonstration for Interactive Reinforcement Learning.” In: International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS). url: www.ifaamas.org
(cit. on p. 122).

222

https://www.cogsci.msu.edu/DSS/2010-2011/Smith/6lessons.pdf
https://www.cogsci.msu.edu/DSS/2010-2011/Smith/6lessons.pdf
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
https://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
https://doi.org/10.1109/LRA.2021.3076971
arXiv:1804.00645v2
https://sites.google.
https://people.eecs.berkeley.edu/%7B~%7Drussell/papers/icra14-planrob.pdf
https://people.eecs.berkeley.edu/%7B~%7Drussell/papers/icra14-planrob.pdf
1802.08311
http://arxiv.org/abs/1802.08311
https://arxiv.org/pdf/1507.00814.pdf
www.ifaamas.org

Sun, Baochen and Kate Saenko (July 2016). “Deep CORAL: Correlation Alignment for
Deep Domain Adaptation.” In: url: http://arxiv.org/abs/1607.01719 (cit. on
p. 143).

Sun, Hao, Zhizhong Li, Xiaotong Liu, Dahua Lin, and Bolei Zhou (2019). “Policy Contin-
uation with Hindsight Inverse Dynamics.” In: NeurIPS (cit. on p. 175).

Sutton, Richard (2019). The Bitter Lesson. url: http : / / www . incompleteideas . net /

IncIdeas/BitterLesson.html (cit. on p. 190).
Sutton, Richard S and Andrew G Barto (1998). Reinforcement Learning: An Introduction.

url: http://incompleteideas.net/sutton/book/bookdraft2016sep.pdf%20https:
//webdocs.cs.ualberta.ca/%7B~%7Dsutton/book/bookdraft2016sep.pdf (cit. on
pp. 77, 80).

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction.
MIT press (cit. on p. 102).

Sutton, Richard S, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski,
Adam White, and Doina Precup (2011). “Horde: A Scalable Real-time Architec-
ture for Learning Knowledge from Unsupervised Sensorimotor Interaction.” In:
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
Vol. 10, pp. 761–768. url: https : / / www . cs . swarthmore . edu / %7B~ % 7Dmeeden /

DevelopmentalRobotics/horde1.pdf (cit. on p. 9).
Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between MDPs and semi-

MDPs: A framework for temporal abstraction in reinforcement learning.” In: 112.1-2,
pp. 181–211 (cit. on pp. 45, 49, 252).

Tamar, Aviv, Garrett Thomas, Tianhao Zhang, Sergey Levine, and Pieter Abbeel (2017).
“Learning from the hindsight plan Episodic MPC improvement.” In: ICRA, pp. 336–
343 (cit. on p. 127).

Tang, Haoran, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John
Schulman, Filip De Turck, and Pieter Abbeel (2017). “#Exploration: A Study of
Count-Based Exploration for Deep Reinforcement Learning.” In: Advances in Neu-
ral Information Processing Systems (NeurIPS). eprint: arXiv:1611.04717v3. url: https:
//arxiv.org/pdf/1611.04717.pdf (cit. on pp. 45, 50, 155).

Theodorou, Evangelos A, Jonas Buchli, Jonas@buchli Org, Stefan Schaal, and Ss-
chaal@usc Edu (2010). “A Generalized Path Integral Control Approach to Reinforce-
ment Learning.” In: 11, pp. 3137–3181. url: http://www.jmlr.org/papers/volume11/
theodorou10a/theodorou10a.pdf (cit. on p. 86).

Thomas, Garrett, Melissa Chien, Aviv Tamar, Juan Aparicio Ojea, and Pieter Abbeel
(2018). “Learning Robotic Assembly from CAD.” In: IEEE International Conference on

223

http://arxiv.org/abs/1607.01719
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://incompleteideas.net/sutton/book/bookdraft2016sep.pdf%20https://webdocs.cs.ualberta.ca/%7B~%7Dsutton/book/bookdraft2016sep.pdf
http://incompleteideas.net/sutton/book/bookdraft2016sep.pdf%20https://webdocs.cs.ualberta.ca/%7B~%7Dsutton/book/bookdraft2016sep.pdf
https://www.cs.swarthmore.edu/%7B~%7Dmeeden/DevelopmentalRobotics/horde1.pdf
https://www.cs.swarthmore.edu/%7B~%7Dmeeden/DevelopmentalRobotics/horde1.pdf
arXiv:1611.04717v3
https://arxiv.org/pdf/1611.04717.pdf
https://arxiv.org/pdf/1611.04717.pdf
http://www.jmlr.org/papers/volume11/theodorou10a/theodorou10a.pdf
http://www.jmlr.org/papers/volume11/theodorou10a/theodorou10a.pdf

Robotics and Automation (ICRA). url: https://arxiv.org/pdf/1803.07635.pdf (cit.
on pp. 122, 126).

Thomas, Philip S. and Emma Brunskill (2016). “Data-Efficient Off-Policy Policy Evalua-
tion for Reinforcement Learning.” In: Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. Ed. by Maria-
Florina Balcan and Kilian Q. Weinberger. Vol. 48. JMLR Workshop and Conference
Proceedings. JMLR.org, pp. 2139–2148. url: http://proceedings.mlr.press/v48/
thomasa16.html (cit. on p. 85).

Thomas, Valentin, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beaudoin,
Marie-Jean Meurs, Joelle Pineau, Doina Precup, Yoshua Bengio, Valentin Thoma,
Joelle Pineau, Doina Precup, and Yoshua Bengio (2017). “Independently Controllable
Factors.” In: NIPS Workshop. url: https://arxiv.org/pdf/1703.07718.pdf%20https:
//arxiv.org/pdf/1708.01289.pdf (cit. on p. 10).

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “MuJoCo: A physics engine for
model-based control.” In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 5026–5033. isbn: 9781467317375. doi: 10 . 1109 / IROS . 2012 .

6386109. url: https : / / homes . cs . washington . edu / %7B~ % 7Dtodorov / papers /

TodorovIROS12.pdf (cit. on pp. 17, 31, 64, 88, 115, 256).
Torrey, Lisa and Matthew E Taylor (2013). “Teaching on a Budget: Agents Advising

Agents in Reinforcement Learning.” In: International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). url: www.ifaamas.org (cit. on p. 122).

Tzeng, Eric, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell (Dec. 2014).
“Deep Domain Confusion: Maximizing for Domain Invariance.” In: url: http://
arxiv.org/abs/1412.3474 (cit. on p. 143).

Van Hasselt, Hado, Arthur Guez, and David Silver (2016). “Deep Reinforcement Learn-
ing with Double Q-learning.” In: Association for the Advancement of Artificial Intelligence
(AAAI). isbn: 1509.06461v3. eprint: 1509.06461v3. url: www.aaai.org (cit. on p. 130).

Veeriah, Vivek, Junhyuk Oh, and Satinder Singh (2018). “Many-goals reinforcement
learning.” In: (cit. on p. 46).

Veerk, Matej, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot,
Nicolas Heess, Thomas Rothrl, Thomas Lampe, and Martin Riedmiller (2017). “Lever-
aging Demonstrations for Deep Reinforcement Learning on Robotics Problems with
Sparse Rewards.” In: abs/1707.0. url: https://arxiv.org/pdf/1707.08817.pdf
(cit. on pp. 57, 60, 63, 86, 122, 268).

Villaflor, Adam, John Dolan, and Jeff Schneider (2020). “Fine-tuning Offline Reinforce-
ment Learning With Model-Based Policy Optimization.” In: (cit. on pp. 141, 174).

224

https://arxiv.org/pdf/1803.07635.pdf
http://proceedings.mlr.press/v48/thomasa16.html
http://proceedings.mlr.press/v48/thomasa16.html
https://arxiv.org/pdf/1703.07718.pdf%20https://arxiv.org/pdf/1708.01289.pdf
https://arxiv.org/pdf/1703.07718.pdf%20https://arxiv.org/pdf/1708.01289.pdf
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
https://homes.cs.washington.edu/%7B~%7Dtodorov/papers/TodorovIROS12.pdf
https://homes.cs.washington.edu/%7B~%7Dtodorov/papers/TodorovIROS12.pdf
www.ifaamas.org
http://arxiv.org/abs/1412.3474
http://arxiv.org/abs/1412.3474
1509.06461v3
www.aaai.org
https://arxiv.org/pdf/1707.08817.pdf

Vinyals, Oriol et al. (Oct. 2019). “Grandmaster level in StarCraft II using multi-agent
reinforcement learning.” In: 575 (7782), pp. 350–354. issn: 1476-4687. doi: 10.1038/
s41586-019-1724-z. url: https://www.nature.com/articles/s41586-019-1724-z
(cit. on p. 2).

Wang, Qing, Jiechao Xiong, Lei Han, Peng Sun, Han Liu, and Tong Zhang (2018a). “Ex-
ponentially Weighted Imitation Learning for Batched Historical Data.” In: Neural
Information Processing Systems (NeurIPS) (cit. on pp. 79, 86, 260, 265, 267).

Wang, Qing, Jiechao Xiong, Lei Han, Peng Sun, Han Liu, and Tong Zhang (2018b). “Ex-
ponentially Weighted Imitation Learning for Batched Historical Data.” In: NeurIPS,
pp. 6291–6300 (cit. on pp. 101, 103).

Wang, Zhongkui, Keung Or, and Shinichi Hirai (2020). “A dual-mode soft gripper for
food packaging.” In: 125, p. 103427. issn: 0921-8890. doi: https://doi.org/10.1016/
j.robot.2020.103427. url: https://www.sciencedirect.com/science/article/
pii/S0921889019300879 (cit. on p. 1).

Wang, Ziyu, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott Reed,
Bobak Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al.
(2020a). “Critic regularized regression.” In: (cit. on pp. 94, 95).

Wang, Ziyu, Alexander Novikov, Konrad Zona, Jost Tobias Springenberg, Scott Reed,
Bobak Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, and
Nando De Freitas (2020b). “Critic Regularized Regression.” In: eprint: 2006.15134v1
(cit. on p. 86).

Warde-Farley, David, Tom Van De Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen,
and Mnih Volodymyr (2019). “Unsupervised Control Through Non-Parametric Dis-
criminative Rewards.” In: International Conference on Learning Representations (ICLR).
isbn: 1811.11359v1. eprint: 1811.11359v1. url: https://arxiv.org/pdf/1811.11359.
pdf (cit. on pp. 24, 27, 141, 158).

Warde-Farley, David, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen,
and Volodymyr Mnih (2018). “Unsupervised Control Through Non-Parametric Dis-
criminative Rewards.” In: abs/1811.11359 (cit. on pp. 45, 50, 52, 257).

Watter, Manuel, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller
(2015). “Embed to Control: A Locally Linear Latent Dynamics Model for Control
from Raw Images.” In: Advances in Neural Information Processing Systems (NeurIPS),
pp. 2728–2736. eprint: 1506.07365. url: https://arxiv.org/pdf/1506.07365.pdf%
20http://arxiv.org/abs/1506.07365 (cit. on pp. 9, 10, 27).

225

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://www.nature.com/articles/s41586-019-1724-z
https://doi.org/https://doi.org/10.1016/j.robot.2020.103427
https://doi.org/https://doi.org/10.1016/j.robot.2020.103427
https://www.sciencedirect.com/science/article/pii/S0921889019300879
https://www.sciencedirect.com/science/article/pii/S0921889019300879
2006.15134v1
1811.11359v1
https://arxiv.org/pdf/1811.11359.pdf
https://arxiv.org/pdf/1811.11359.pdf
1506.07365
https://arxiv.org/pdf/1506.07365.pdf%20http://arxiv.org/abs/1506.07365
https://arxiv.org/pdf/1506.07365.pdf%20http://arxiv.org/abs/1506.07365

Wawrzynski, Pawel (2009). “Real-time reinforcement learning by sequential Actor-Critics
and experience replay.” In: 22.10, pp. 1484–1497. doi: 10.1016/j.neunet.2009.05.
011. url: https://doi.org/10.1016/j.neunet.2009.05.011 (cit. on p. 85).

Williams, Grady, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron
Boots, and Evangelos A Theodorou (2017). “Information Theoretic MPC for Model-
Based Reinforcement Learning.” In: IEEE International Conference on Robotics and
Automation (ICRA). url: http : / / www . cc . gatech . edu / %7B~ % 7Dbboots3 / files /

InformationTheoreticMPC.pdf (cit. on p. 157).
Williams, Ronald J (1992). “Simple Statistical Gradient-Following Algorithms for Con-

nectionist Reinforcement Learning.” In: pp. 229–256 (cit. on p. 77).
Winograd, Terry (1972). Understanding Natural Language. Academic Press (cit. on p. 60).
Wu, Yifan, George Tucker, and Ofir Nachum (2019). “Behavior regularized offline rein-

forcement learning.” In: (cit. on pp. 94, 95, 279).
Wu, Yifan, George Tucker, and Ofir Nachum (Nov. 2020). “Behavior Regularized Of-

fline Reinforcement Learning.” In: International Conference on Learning Representations
(ICLR). eprint: 1911.11361. url: http://arxiv.org/abs/1911.11361 (cit. on pp. 80–
83, 85, 141, 264, 268).

Wu, Yuchen, Melissa Mozifian, and Florian Shkurti (2020). Shaping Rewards for Rein-
forcement Learning with Imperfect Demonstrations using Generative Models. eprint: 2011.
01298 (cit. on p. 87).

Xu, Danfei, Ajay Mandlekar, Roberto Martn-Martn, Yuke Zhu, Silvio Savarese, and Li
Fei-Fei (2021). “Deep Affordance Foresight: Planning Through What Can Be Done
in the Future.” In: International Conference on Robotics and Automation (ICRA). eprint:
2011.08424v1. url: https://sites.google.com/stanford.edu/daf (cit. on p. 158).

Yamanobe, Natsuki, Weiwei Wan, Ixchel G. Ramirez-Alpizar, Damien Petit, Tokuo Tsuji,
Shuichi Akizuki, Manabu Hashimoto, Kazuyuki Nagata, and Kensuke Harada (Jan.
2018). “A Brief Review of Affordance in Robotic Manipulation Research.” In: 36,
pp. 327–337. doi: 10.7210/jrsj.36.327 (cit. on p. 158).

Zech, Philipp, Simon Haller, Safoura Rezapour Lakani, Barry Ridge, Emre Ugur, and
Justus Piater (2017). “Computational models of affordance in robotics: a taxonomy
and systematic classification.” In: 25.5, pp. 235–271. doi: 10.1177/1059712317726357.
eprint: https://doi.org/10.1177/1059712317726357. url: https://doi.org/10.
1177/1059712317726357 (cit. on p. 158).

Zhang, Amy, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey
Levine (2021). “Learning Invariant Representations for Reinforcement Learning with-

226

https://doi.org/10.1016/j.neunet.2009.05.011
https://doi.org/10.1016/j.neunet.2009.05.011
https://doi.org/10.1016/j.neunet.2009.05.011
http://www.cc.gatech.edu/%7B~%7Dbboots3/files/InformationTheoreticMPC.pdf
http://www.cc.gatech.edu/%7B~%7Dbboots3/files/InformationTheoreticMPC.pdf
1911.11361
http://arxiv.org/abs/1911.11361
2011.01298
2011.01298
2011.08424v1
https://sites.google.com/stanford.edu/daf
https://doi.org/10.7210/jrsj.36.327
https://doi.org/10.1177/1059712317726357
https://doi.org/10.1177/1059712317726357
https://doi.org/10.1177/1059712317726357
https://doi.org/10.1177/1059712317726357

out Reconstruction.” In: International Conference on Learning Representations. url:
https://openreview.net/forum?id=-2FCwDKRREu (cit. on p. 142).

Zhang, Chi, Sanmukh Rao Kuppannagari, and Viktor Prasanna (2021). {BRAC}+: Go-
ing Deeper with Behavior Regularized Offline Reinforcement Learning. url: https : / /

openreview.net/forum?id=bMCfFepJXM (cit. on p. 174).
Zhang, Marvin, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, and

Sergey Levine (Aug. 2019). “SOLAR: Deep Structured Representations for Model-
Based Reinforcement Learning.” In: International Conference on Machine Learning
(ICML). eprint: 1808.09105. url: http://arxiv.org/abs/1808.09105 (cit. on pp. 27,
126).

Zhang, Richard, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang (2018).
“The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.” In: (cit.
on p. 8).

Zhang, Ruiyi, Bo Dai, Lihong Li, and Dale Schuurmans (Feb. 2020). “GenDICE: General-
ized Offline Estimation of Stationary Values.” In: International Conference on Learning
Representations (ICLR). eprint: 2002.09072. url: http://arxiv.org/abs/2002.09072
(cit. on p. 85).

Zhang, Shangtong, Wendelin Boehmer, and Shimon Whiteson (2019). “Generalized Off-
Policy Actor-Critic.” In: Advances in Neural Information Processing Systems 32. Ed. by
H. Wallach, H. Larochelle, A. Beygelzimer, F. dlch-Buc, E. Fox, and R. Garnett. Cur-
ran Associates, Inc., pp. 2001–2011. url: http://papers.nips.cc/paper/8474-
generalized-off-policy-actor-critic.pdf (cit. on p. 85).

Zhang, Tianjun, Benjamin Eysenbach, Ruslan Salakhutdinov, Sergey Levine, and Joseph
E. Gonzalez (2021). “C-Planning: An Automatic Curriculum for Learning Goal-
Reaching Tasks.” In: abs/2110.12080 (cit. on p. 175).

Zhao, Rui, Xudong Sun, and Volker Tresp (2019). “Maximum Entropy-Regularized
Multi-Goal Reinforcement Learning.” In: International Conference on Machine Learning,
pp. 7553–7562 (cit. on p. 50).

Zhao, Rui and Volker Tresp (2019). “Curiosity-Driven Experience Prioritization via Den-
sity Estimation.” In: abs/1902.08039. eprint: 1902.08039. url: http://arxiv.org/
abs/1902.08039 (cit. on p. 46).

Zhao, Tony Z., Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Nicolas Heess, Jon
Scholz, Stefan Schaal, and Sergey Levine (Oct. 2022). “Offline Meta-Reinforcement
Learning for Industrial Insertion.” In: doi: 10.48550/arxiv.2110.04276. url: https:
//arxiv.org/abs/2110.04276v3 (cit. on p. 142).

227

https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=bMCfFepJXM
https://openreview.net/forum?id=bMCfFepJXM
1808.09105
http://arxiv.org/abs/1808.09105
2002.09072
http://arxiv.org/abs/2002.09072
http://papers.nips.cc/paper/8474-generalized-off-policy-actor-critic.pdf
http://papers.nips.cc/paper/8474-generalized-off-policy-actor-critic.pdf
1902.08039
http://arxiv.org/abs/1902.08039
http://arxiv.org/abs/1902.08039
https://doi.org/10.48550/arxiv.2110.04276
https://arxiv.org/abs/2110.04276v3
https://arxiv.org/abs/2110.04276v3

Zhou, Allan, Eric Jang, Daniel Kappler, Alexander Herzog, Mohi Khansari, Paul
Wohlhart, Yunfei Bai, Mrinal Kalakrishnan, Sergey Levine, and Chelsea Finn
(2019). “Watch, Try, Learn: Meta-Learning from Demonstrations and Reward.” In:
abs/1906.03352. eprint: 1906.03352. url: http://arxiv.org/abs/1906.03352 (cit. on
p. 74).

Zhu, Henry, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar
(Oct. 2019). “Dexterous Manipulation with Deep Reinforcement Learning: Efficient,
General, and Low-Cost.” In: IEEE International Conference on Robotics and Automation
(ICRA). Vol. 2019-May. Institute of Electrical and Electronics Engineers Inc., pp. 3651–
3657. eprint: 1810.06045. url: http://arxiv.org/abs/1810.06045 (cit. on pp. 86, 87,
126, 141).

Zhu, Yuke, Josiah Wong, Ajay Mandlekar, and Roberto Martn-Martn (2020). “robosuite:
A Modular Simulation Framework and Benchmark for Robot Learning.” In: arXiv
preprint arXiv:2009.12293 (cit. on p. 281).

Ziebart, Brian D, Andrew Maas, J Andrew Bagnell, and Anind K Dey (2008). “Maximum
Entropy Inverse Reinforcement Learning.” In: AAAI Conference on Artificial Intelli-
gence, pp. 1433–1438. isbn: 9781577353683 (ISBN). eprint: arXiv:1507.04888v2. url:
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf%20http://www.scopus.

com/inward/record.url?eid=2-s2.0-57749097473%7B%5C&%7DpartnerID=40%7B%5C%

%7D5Cnhttp://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf (cit. on pp. 59, 87,
127).

Zucker, Matt, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klingen-
smith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa (2013).
“CHOMP: Covariant Hamiltonian Optimization for Motion Planning.” In: (cit. on
pp. 1, 175).

228

1906.03352
http://arxiv.org/abs/1906.03352
1810.06045
http://arxiv.org/abs/1810.06045
arXiv:1507.04888v2
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf%20http://www.scopus.com/inward/record.url?eid=2-s2.0-57749097473%7B%5C&%7DpartnerID=40%7B%5C%%7D5Cnhttp://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf%20http://www.scopus.com/inward/record.url?eid=2-s2.0-57749097473%7B%5C&%7DpartnerID=40%7B%5C%%7D5Cnhttp://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf%20http://www.scopus.com/inward/record.url?eid=2-s2.0-57749097473%7B%5C&%7DpartnerID=40%7B%5C%%7D5Cnhttp://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf

A
A P P E N D I X : C H A P T E R 2

Supplementary Material

a.1 complete ablative results

a.1.1 Relabeling strategy ablation

In this experiment, we compare different goal resampling strategies for training the Q
function. We consider: Future, relabeling the goal for a transition by sampling uniformly
from future states in the trajectory as done in Andrychowicz et al. (2017b); VAE, sampling
goals from the VAE only; RIG, relabeling goals with probability 0.5 from the VAE and
probability 0.5 using the future strategy; and None, no relabeling. Figure 61 shows the
effect of different relabeling strategies with our method.

0K 2K 4K 6K 8K 10K
Timesteps

0.05

0.10

0.15

0.20

Fi
na

l D
ist

an
ce

 to
 G

oa
l Visual Reacher

0K 50K 100K 150K 200K 250K
Timesteps

0.150

0.175

0.200

0.225

Visual Pusher

0K 100K 200K 300K 400K 500K
Timesteps

0.15

0.20

0.25

0.30

0.35 Visual Multi-object Pusher

RIG
None
Future
VAE

Figure 61: Relabeling ablation simulated results, showing final distance to goal vs environment
steps. RIG (red), which uses a mixture of VAE and future, consistently matches or
outperforms the other methods.

229

a.1.2 Reward type ablation

In this experiment, we change only the reward function that we use to train the goal-
conditioned valued function to show the effect of using the latent distance reward. We
include the following methods for comparison: Latent Distance, which is the reward used
in RIG, i.e. A = I in Equation equation 5; Log Probability, which uses the Mahalanobis
distance in Equation equation 5, where A is the precision matrix of the encoder; and
Pixel MSE, which computes mean-squared error (MSE) between state and goal in pixel
space. To compute the pixel MSE for a sampled latent goal, we decode the goal latent
using the VAE decoder, pψ, to generate the corresponding goal image. Figure 62 shows
the effect of different rewards with our method.

0K 2K 4K 6K 8K 10K
Timesteps

0.00

0.05

0.10

0.15

0.20

Fi
na

l D
ist

an
ce

 to
 G

oa
l Visual Reacher

0K 50K 100K 150K 200K 250K
Timesteps

0.16

0.18

0.20

0.22 Visual Pusher

0K 50K 100K 150K 200K 250K
Timesteps

0.20

0.25

0.30

Visual Multi-object Pusher

RIG
Log Prob.
Pixel MSE

Figure 62: Reward type ablation simulated results, showing final distance to goal vs environment
steps. RIG (red), which uses latent distance for the reward, consistently matches or
outperforms the other reward types.

a.1.3 Online training ablation

Rather than pre-training the VAE on a set of images collected by a random policy, here
we train the VAE in an online manner: the VAE is not trained when we initially collect
data with our policy. After every 3000 environment steps, we train the VAE on all of the
images observed by the policy. We show in Figure 63 that this online training results in
a good policy and is substantially better than leaving the VAE untrained. These results
show that the representation learning can be done simultaneously as the reinforcement
learning portion of RIG, eliminating the need to have a predefined set of images to train
the VAE.

The Visual Pusher experiment for this ablation is performed on a slightly easier version
of the Visual Pusher used for the main results. In particular, the goal space is reduced to
be three quarters of its original size in the lateral dimension.

230

2K 4K 6K
Timesteps

0.10

0.15

Fi
na

l D
ist

an
ce

 to
 G

oa
l Visual Reacher Online Ablation

Online Offline

0K 50K 100K 150K
Timesteps

0.125

0.150

0.175

0.200

Fi
na

l D
ist

an
ce

 to
 G

oa
l Visual Pusher, Online Ablation

Online Offline

Figure 63: Online vs offline VAE training ablation simulated results, showing final distance to
goal vs environment steps. Given no pre-training phase, training the VAE online (red),
outperforms no training of the VAE, and also performs well.

a.1.4 Comparison to Hindsight Experience Replay

In this section, we study in isolation the effect of sampling goals from the goal space
directly for Q-learning, as covered in Section 2.4.3. Like hindsight experience replay
Andrychowicz et al., 2017b, in this section we assume access to state information and
the goal space, so we do not use a VAE.

To match the original work as closely as possible, this comparison was based off of the
OpenAI baselines code Plappert et al., 2018 and we compare on the same Fetch robotics
tasks. To minimize sample complexity and due to computational constraints, we use sin-
gle threaded training with rollout_batch_size=1, n_cycles=1, batch_size=256. For
testing, n_test_rollouts=1 and the results are averaged over the last 100 test episodes.
Number of updates per cycle corresponds to n_batches.

On the plots, “Future” indicates the future strategy as presented in Andrychowicz et
al. (2017b) with k = 4. “Ours” indicates resampling goals with probability 0.5 from the
"future" strategy with k = 4 and probability 0.5 uniformly from the environment goal
space. Each method is shown with dense and sparse rewards.

231

0K 200K 400K 600K 800K 1000K
Timesteps

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Pusher, 64 Updates/Cycle

0K 200K 400K 600K 800K 1000K
Timesteps

0.00

0.25

0.50

0.75

1.00
FetchSlide, 64 Updates/Cycle

0K 200K 400K 600K 800K 1000K
Timesteps

0.00

0.25

0.50

0.75

1.00
Pick-and-Place, 64 Updates/Cycle

Ours, Sparse
HER, Sparse
Ours, Dense
HER, Dense

0K 200K 400K 600K 800K 1000K
Timesteps

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

ate

Pusher, 256 Updates/Cycle

0K 200K 400K 600K 800K 1000K
Timesteps

0.00

0.25

0.50

0.75

1.00
FetchSlide, 256 Updates/Cycle

0K 200K 400K 600K 800K 1000K
Timesteps

0.00

0.25

0.50

0.75

1.00
Pick-and-Place, 256 Updates/Cycle

Ours, Sparse
HER, Sparse
Ours, Dense
HER, Dense

Figure 64: Comparison between our relabeling strategy and HER. Each column shows a different
task from the OpenAI Fetch robotics suite. The top row uses 64 gradient updates per
training cycle and the bottom row uses 256 updates per cycle. Our relabeling strategy
is significantly better for both sparse and dense rewards, and for higher number of
updates per cycle.

Results are shown in Figure 64. Our resampling strategy with sparse rewards consis-
tently performs the best on the three tasks. Furthermore, it performs reasonably well
with dense rewards, unlike HER alone which often fails with dense rewards. While the
evaluation metric used here, success rate, is favorable to the sparse reward setting, learn-
ing with dense rewards is usually more sample efficient on most tasks and being able to
do off-policy goal relabeling with dense rewards is important for RIG.

Finally, as the number of gradient updates per training cycle is increased, the perfor-
mance of our strategy improves while HER does not improve and sometimes performs
worse. As we apply reinforcement learning to real-world tasks, being able to reduce the
required number of samples on hardware is one of the key bottlenecks. Increasing the
number of gradient updates costs more compute but reduces the number of samples
required to learn the tasks.

a.2 hyperparameters

Table 10 lists the hyperparameters used for the experiments.

232

a.3 environment details

Below we provide a more detailed description of the simulated environments.
Visual Reacher: A MuJoCo environment with a 7-DoF Sawyer arm reaching goal po-

sitions. The arm is shown on the left of Figure 2 with two extra objects for the Visual
Multi-Object Pusher environment (see below). The end-effector (EE) is constrained to a
2-dimensional rectangle parallel to a table. The action controls EE velocity within a max-
imum velocity. The underlying state is the EE position e, and the underlying goal is to
reach a desired EE position, ge.

Visual Pusher: A MuJoCo environment with a 7-DoF Sawyer arm and a small puck on
a table that the arm must push to a target push. Control is the same as in Visual Reacher.
The underlying state is the EE position, e and puck position p. The underlying goal is
for the EE to reach a desired position ge and the puck to reach a desired position p.

Visual Multi-Object Pusher: A copy of the Visual Pusher environment with two pucks.
The underlying state is the EE position, e and puck positions p1 and p2. The underlying
goal is for the EE to reach desired position ge and the pucks to reach desired positions
g1 and g2 respectively also constrained to each half of the workspace. Each puck and
respective goal is initialized in half of the workspace.

Videos of our method in simulated and real-world environments can be found at
https://sites.google.com/site/visualrlwithimaginedgoals/.

233

https://sites.google.com/site/visualrlwithimaginedgoals/

Hyperparameter Value Comments

Mixture coefficient λ 0.5 See relabeling strategy ablation

training batches per time step 4 Marginal improvements after 4

Exploration Policy OU, θ = 0.15,σ = 0.3 Outperformed Gaussian and ε-greedy

β for β-VAE 5 Values around [1, 10] were effective

Critic Learning Rate 10−3 Did not tune

Critic Regularization None Did not tune

Actor Learning Rate 10−3 Did not tune

Actor Regularization None Did not tune

Optimizer Adam Did not tune

Target Update Rate (τ) 10−2 Did not tune

Target Update Period 2 time steps Did not tune

Target Policy Noise 0.2 Did not tune

Target Policy Noise Clip 0.5 Did not tune

Batch Size 128 Did not tune

Discount Factor 0.99 Did not tune

Reward Scaling 10−4 Did not tune

Normalized Observations False Did not tune

Gradient Clipping False Did not tune

Table 10: Hyper-parameters used for all experiments.

234

B
A P P E N D I X : C H A P T E R 3

b.1 multi-color 2d navigation experiments

In order to study generalizing to varying appearance and dynamics with CC-RIG, we
introduced the multi-color 2D point navigation environment shown in 65. The goal is
to navigate a point robot around the central walls. The arrangement of the walls is
randomly chosen from a set of 15 possible configurations in each rollout, and the color
of the circle indicating the position of the point robot is generated from a random RGB
value. Thus at test time, the agent sees new colors it has never trained on.

First, we see from the samples in Figure 65 that the learned latent space for the CC-
VAE is more reasonable than a VAE: it preserves color and wall information in samples
and represents only the colored circle position in the latent variable zt. This improves
the capability of our algorithm to learn in several ways: it provides a more informative
reward function, and gives us better goal sampling for both exploration rollouts and
experience relabeling when training the Q function.

Learning curves obtained by training the different methods above in this environment
are presented in the main paper Figure 73. This task is trivial for the oracle method to
learn, as it directly receives state information and does not need to generalize between
different object appearances. CC-RIG requires more samples to learn, but eventually
approaches the oracle performance. RIG plateaus with poor performance in comparison.

235

b.2 off-policy experiments

Because we use off-policy RL methods, one major benefit is that we can bootstrap train-
ing from large interaction datasets rather than requiring on on-policy data collection.
This is particularly vital in the real-world, where on-policy data collection is expensive
in terms of human effort, and repeatedly tuning on-policy methods for complex tasks is
likely to be impractical. Our robot experiments are therefore run by starting with a fixed
initial dataset of 50,000 samples (about 3 hours) of random interaction with 20 objects,
which is used for both training the CC-VAE as well as RL. Our simulated experiments
are conducted with online data-collection to make comparison with prior work clearer,
but in this section we show that bootstrapping with off-policy training is possible in
these settings as well.

In our simulated experiments, we first collect 100,000 samples (1000 trajectories) with
random actions. This data is used both to train the CC-VAE and as off-policy data. When
we begin RL, we load these samples into the replay buffer and perform 100,000 gradient
updates of RL. As shown in Figure 66, this allows us to begin online data collection with
a reasonably good policy. But we see that online data collection does improve slightly
beyond this initial policy. In dynamically sensitive environments or environments where
random actions do not provide meaningful interaction, this online data collection may
still be very valuable.

236

Figure 65: The pointmass environment is shown. Left, we compare samples from our CC-VAE
model to a standard VAE. The initial image s0 is shown on the top row, and samples
conditioned on s0 are shown below. Our model coherently maintains object color and
geometry in its samples, suggesting that the context conditioned model can success-
fully factor out the scene-specific object identity from the variable object position. This
enables the use of the CC-VAE for goal proposals in visually diverse scenes. Right, roll-
outs from CC-RIG are shown. We see that during collecting training rollouts, the policy
succeeds in coherent exploration by generating reachable goals. Then, given a goal im-
age at test time, the policy successfully reaches the goal. Videos of rollouts on all envi-
ronments, both simulation and real-world, can be found at https://ccrig.github.io/

237

https://ccrig.github.io/

0K 200K 400K 600K 800K 1000K
Timesteps

0.175

0.200

0.225

0.250

Fi
na

l D
ist

an
ce

 to
 G

oa
l

Multi-color Pusher, Off-policy

200K 400K 600K 800K 1000K
Timesteps

2

4
Fi

na
l D

ist
an

ce
 to

 G
oa

l

Multi-Color 2D Navigation, Off-policy
Online training after off-policy pretraining
Online training

Figure 66: Off-policy learning results in simulated environments. These experiments begin with
100K samples from random interaction loaded into the replay buffer. The red lines (off-
policy pre-training) additionally do 100K steps of Q learning before starting on-line
data collection. We see that off-policy pre-training results in proficient initial perfor-
mance from a fixed dataset, which is extremely useful in domains such as robotics
where collecting new samples is expensive.

238

C
A P P E N D I X : C H A P T E R 4

c.1 proofs

The definitions of continuity and convergence for pseudo-metrics are similar to those for
metrics, and we state them below.

A function f : Q 7→ Q is continuous with respect to a pseudo-metric d if for any p ∈ Q

and any scalar ε > 0, there exists a δ such that for all q ∈ Q,

d(p,q) < δ =⇒ d(f(p), f(q)) < ε.

An infinite sequence p1,p2 . . . converges to a value p with respect to a pseudo-metric
d, which we write as

lim
t→∞pt → p,

if

lim
t→∞d(pt,p)→ 0.

Note that if f is continuous, then

lim
t→∞dH(pt,q)→ 0 =⇒ lim

t→∞dH(f(pt), f(q))→ 0.

c.1.1 Proof of Lemma 3.1

Lemma 5. Let S be a compact set. Define the set of distributions Q = {p : support(p) ⊆ S}.

239

Let F : Q 7→ Q be continuous with respect to the pseudometric dH(p,q) , |H(p) −H(q)|

and H(F(p)) > H(p) with equality if and only if p is the uniform probability distribution
on S, denoted as US. Define the sequence of distributions P = (p1,p2, . . .) by starting with
any p1 ∈ Q and recursively defining pt+1 = F(pt). The sequence P converges to US with
respect to dH. In other words, limt→0 |H(pt) −H(US)|→ 0.

Proof. The idea of the proof is to show that the distance (with respect to dH) between
pt and US converges to a value. If this value is 0, then the proof is complete since US

uniquely has zero distance to itself. Otherwise, we will show that this implies that F is
not continuous, which a contradiction.

For shorthand, define dt to be the dH-distance to the uniform distribution, as in

dt , dH(pt,US).

First we prove that dt converges. Since the entropies of the sequence (p1, . . .) monotoni-
cally increase, we have that

d1 > d2 >

We also know that dt is lower bounded by 0, and so by the monotonic convergence
theorem, we have that

lim
t→∞dt → d∗.

for some value d∗ > 0.
To prove the lemma, we want to show that d∗ = 0. Suppose, for contradiction, that

d∗ 6= 0. Then consider any distribution, q∗, such that dH(q∗,US) = d∗. Such a distribu-
tion always exists since we can continuously interpolate entropy values between H(p1)

and H(US) with a mixture distribution. Note that q∗ 6= US since dH(US,US) = 0. Since
limt→∞ dt → d∗, we have that

lim
t→∞dH(pt,q∗)→ 0, (62)

and so

lim
t→∞pt → q∗.

240

Because the function F is continuous with respect to dH, Equation 62 implies that

lim
t→∞dH(F(pt),F(q∗))→ 0.

However, since F(pt) = pt+1 we can equivalently write the above equation as

lim
t→∞dH(pt+1,F(q∗))→ 0.

which, through a change of index variables, implies that

lim
t→∞pt → F(q∗)

Since q∗ is not the uniform distribution, we have that H(F(q∗)) > H(q∗), which implies
that F(q∗) and q∗ are unique distributions. So, pt converges to two distinct values, q∗

and F(q∗), which is a contradiction. Thus, it must be the case that d∗ = 0, completing
the proof.

c.1.2 Proof of Lemma 3.2

Lemma 6. Given two distribution p(x) and q(x) where p� q and

0 < Covp[logp(X), logq(X)] (63)

define the distribution pα as

pα(x) =
1

Zα
p(x)q(x)α

where α ∈ R and Zα is the normalizing factor. Let Hα(α) be the entropy of pα. Then there
exists a constant a > 0 such that for all α ∈ [−a, 0),

Hα(α) > Hα(0) = H(p). (64)

Proof. Observe that {pα : α ∈ [−1, 0]} is a one-dimensional exponential family

pα(x) = e
αT(x)−A(α)+k(x)

with log carrier density k(x) = logp(x), natural parameter α, sufficient statistic T(x) =

241

logq(x), and log-normalizer A(α) =
∫
X e

αT(x)+k(x)dx. As shown in Nielsen and Nock,
2010, the entropy of a distribution from a one-dimensional exponential family with pa-
rameter α is given by:

Hα(α) , H(pα) = A(α) −αA
′(α) − Epα[k(X)]

The derivative with respect to α is then

d

dα
Hα(α) = −αA ′′(α) −

d

dα
Epα[k(x)]

= −αA ′′(α) − Eα[k(x)(T(x) −A
′(α)]

= −αVarpα[T(x)] − Covpα[k(x), T(x)]

where we use the fact that the nth derivative of A(α) give the n central moment, i.e.
A ′(α) = Epα[T(x)] and A ′′(α) = Varpα [T(x)]. The derivative of α = 0 is

d

dα
Hα(0) = −Covp0 [k(x), T(x)]

= −Covp[logp(x), logq(x)]

which is negative by assumption. Because the derivative at α = 0 is negative, then there
exists a constant a > 0 such that for all α ∈ [−a, 0], Hα(α) > Hα(0) = H(p).

The paper applies to the case where q = qGφ and p = pSφ. When we take N → ∞, we
have that pskewed corresponds to pα above.

c.1.3 Simple Case Proof

We prove the convergence directly for the (even more) simplified case when pθ = p(S |

qGφt) using a similar technique:

Lemma 7. Assume the set S has finite volume so that its uniform distribution US is well
defined and has finite entropy. Given any distribution p(s) whose support is S, recursively
define pt with p1 = p and

pt+1(s) =
1

Ztα
pt(s)α, ∀s ∈ S

242

where Ztα is the normalizing constant and α ∈ [0, 1).
The sequence (p1,p2, . . .) converges to US, the uniform distribution S.

Proof. If α = 0, then p2 (and all subsequent distributions) will clearly be the uniform
distribution. We now study the case where α ∈ (0, 1).

At each iteration t, define the one-dimensional exponential family {ptθ : θ ∈ [0, 1]}
where ptθ is

ptθ(s) = e
θT(s)−A(θ)+k(s)

with log carrier density k(s) = 0, natural parameter θ, sufficient statistic T(s) = logpt(s),
and log-normalizer A(θ) =

∫
S e
θT(s)ds. As shown in Nielsen and Nock, 2010, the entropy

of a distribution from a one-dimensional exponential family with parameter θ is given
by:

Ht
θ(θ) , H(ptθ) = A(θ) − θA

′(θ)

The derivative with respect to θ is then

d

dθ
dHt

θ(θ) = −θA ′′(θ)

= −θVars∼ptθ
[T(s)]

= −θVars∼ptθ
[logpt(s)] (65)

6 0

where we use the fact that the nth derivative of A(θ) is the n central moment, i.e.
A ′′(θ) = Vars∼ptθ

[T(s)]. Since variance is always non-negative, this means the entropy is
monotonically decreasing with θ. Note that pt+1 is a member of this exponential family,
with parameter θ = α ∈ (0, 1). So

H(pt+1) = Ht
θ(α) > Ht

θ(1) = H(pt)

which implies

H(p1) 6 H(p2) 6

This monotonically increasing sequence is upper bounded by the entropy of the uniform
distribution, and so this sequence must converge.

243

The sequence can only converge if d
dθH

t
θ(θ) converges to zero. However, because α is

bounded away from 0, Equation 65 states that this can only happen if

Vars∼ptθ
[logpt(s)]→ 0. (66)

Because pt has full support, then so does ptθ. Thus, Equation 66 is only true if logpt(s)
converges to a constant, i.e. pt converges to the uniform distribution.

c.2 additional experiments

c.2.1 Sensitivity Analysis

sensitivity to rl algorithm In our experiments, we combined Skew-Fit with
soft actor critic (SAC) (Haarnoja et al., 2018b). We conduct a set of experiments to
test whether Skew-Fit may be used with other RL algorithms for training the goal-
conditioned policy. To that end, we replaced SAC with twin delayed deep deterministic
policy gradient (TD3) (Fujimoto et al., 2018b) and ran the same Skew-Fit experiments
on Visual Door, Visual Pusher, and Visual Pickup. In Figure 67, we see that Skew-Fit
performs consistently well with both SAC and TD3, demonstrating that Skew-Fit is ben-
eficial across multiple RL algorithms.

sensitivity to α hyperparameter We study the sensitivity of the α hyperpa-
rameter by testing values of α ∈ [−1,−0.75,−0.5,−0.25, 0] on the Visual Door and Visual
Pusher task. The results are included in Figure 68 and shows that our method is robust to
different parameters of α, particularly for the more challenging Visual Pusher task. Also,
the method consistently outperform α = 0, which is equivalent to sampling uniformly
from the replay buffer.

c.2.2 Variance Ablation

We measure the gradient variance of training a VAE on an unbalanced Visual Door
image dataset with Skew-Fit vs Skew-Fit with importance sampling (IS) vs no Skew-Fit
(labeled MLE). We construct the imbalanced dataset by rolling out a random policy in
the environment and collecting the visual observations. Most of the images contained
the door in a closed position; in a few, the door was opened. In Figure 69, we see that
the gradient variance for Skew-Fit with IS is catastrophically large for large values of

244

Figure 67: We compare using SAC (Haarnoja et al., 2018b) and TD3 (Fujimoto et al., 2018b) as the un-
derlying RL algorithm on Visual Door, Visual Pusher and Visual Pickup. We see that Skew-Fit
works consistently well with both SAC and TD3, demonstrating that Skew-Fit may be used
with various RL algorithms. For the experiments presented in Section 9.5, we used SAC.

245

-.25
=-.5
=-.75
=-1
=0 (No Skew-Fit)

50K 100K 150K 200K 250K 300K 350KTimesteps
0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Fin
al O

bje
ct D

ista
nce

Visual Object Pickup Ablation

20K 30K 40K 50K 60K 70KTimesteps
0.0

0.1

0.2

0.3

0.4

0.5

Fin
al A

ng
le D

iffe
ren

ce

Visual Door Opening

100K 200K 300KTimesteps
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

Fin
al P

uck
 Di

sta
nce

Visual Puck Pushing Ablation

Figure 68: We sweep different values of α on Visual Door, Visual Pusher and Visual Pickup. Skew-Fit
helps the final performance on the Visual Door task, and outperforms No Skew-Fit (α = 0)
as seen in the zoomed in version of the plot. In the more challenging Visual Pusher task, we
see that Skew-Fit consistently helps and halves the final distance. Similarly, we observe that
Skew-Fit consistently outperforms No Skew-fit on Visual Pickup. Note that alpha=-1 is not
always the optimal setting for each environment, but outperforms α = 0 in each case in terms
of final performance.

α. In contrast, for Skew-Fit with SIR, which is what we use in practice, the variance is
relatively similar to that of MLE. Additionally we trained three VAE’s, one with MLE on
a uniform dataset of valid door opening images, one with Skew-Fit on the unbalanced
dataset from above, and one with MLE on the same unbalanced dataset. As expected, the
VAE that has access to the uniform dataset gets the lowest negative log likelihood score.
This is the oracle method, since in practice we would only have access to imbalanced
data. As shown in Table 11, Skew-Fit considerably outperforms MLE, getting a much
closer to oracle log likelihood score.

246

Figure 69: Gradient variance averaged across parameters in last epoch of training VAEs. Values of α less
than −1 are numerically unstable for importance sampling (IS), but not for Skew-Fit.

Method NLL

MLE on uniform (oracle) 20175.4

Skew-Fit on unbalanced 20175.9

MLE on unbalanced 20178.03

Table 11: Despite training on a unbalanced Visual Door dataset (see Figure 7 of paper), the negative log-
likelihood (NLL) of Skew-Fit evaluated on a uniform dataset matches that of a VAE trained on
a uniform dataset.

c.2.3 Goal and Performance Visualization

We visualize the goals sampled from Skew-Fit as well as those sampled when using the
prior method, RIG (A. Nair et al., 2018b). As shown in Figure 70 and Figure 71, the
generative model qGφ results in much more diverse samples when trained with Skew-Fit.
We we see in Figure 72, this results in a policy that more consistently reaches the goal
image.

c.3 implementation details

247

Figure 70: Proposed goals from the VAE for RIG and with Skew-Fit on the Visual Pickup, Visual Pusher,
and Visual Door environments. Standard RIG produces goals where the door is closed and the
object and puck is in the same position, while RIG + Skew-Fit proposes goals with varied puck
positions, occasional object goals in the air, and both open and closed door angles.

248

Figure 71: Proposed goals from the VAE for RIG (left) and with RIG + Skew-Fit (right) on the Real World
Visual Door environment. Standard RIG produces goals where the door is closed while RIG +
Skew-Fit proposes goals with both open and closed door angles.

c.3.1 Likelihood Estimation using β-VAE

We estimate the density under the VAE by using a sample-wise approximation to the
marginal over x estimated using importance sampling:

qGφt(x) = Ez∼qθt(z|x)

[
p(z)

qθt(z|x)
pψt(x | z)

]
≈ 1

N

N∑
i=1

[
p(z)

qθt(z|x)
pψt(x | z)

]
.

where qθ is the encoder, pψ is the decoder, and p(z) is the prior, which in this case is
unit Gaussian. We found that sampling N = 10 latents for estimating the density worked
well in practice.

c.3.2 Oracle 2D Navigation Experiments

We initialize the VAE to the bottom left corner of the environment for Four Rooms. Both
the encoder and decoder have 2 hidden layers with [400, 300] units, ReLU hidden acti-
vations, and no output activations. The VAE has a latent dimension of 8 and a Gaussian
decoder trained with a fixed variance, batch size of 256, and 1000 batches at each itera-

249

Figure 72: Example reached goals by Skew-Fit and RIG. The first column of each environment section
specifies the target goal while the second and third columns show reached goals by Skew-Fit
and RIG. Both methods learn how to reach goals close to the initial position, but only Skew-Fit
learns to reach the more difficult goals.

tion. The VAE is trained on the exploration data buffer every 1000 rollouts.

c.3.3 Implementation of SAC and Prior Work

For all experiments, we trained the goal-conditioned policy using soft actor critic
(SAC) (Haarnoja et al., 2018b). To make the method goal-conditioned, we concatenate the
target XY-goal to the state vector. During training, we retroactively relabel the goals (L P
Kaelbling, 1993; Andrychowicz et al., 2017b) by sampling from the goal distribution with
probabilty 0.5. Note that the original RIG A. Nair et al., 2018b paper used TD3 Fujimoto
et al., 2018b, which we also replaced with SAC in our implementation of RIG. We found
that maximum entropy policies in general improved the performance of RIG, and that
we did not need to add noise on top of the stochastic policy’s noise. In the prior RIG
method, the VAE was pre-trained on a uniform sampling of images from the state space

250

of each environment. In order to ensure a fair comparison to Skew-Fit, we forego pre-
training and instead train the VAE alongside RL, using the variant described in the RIG
paper. For our RL network architectures and training scheme, we use fully connected
networks for the policy, Q-function and value networks with two hidden layers of size
400 and 300 each. We also delay training any of these networks for 10000 time steps in
order to collect sufficient data for the replay buffer as well as to ensure the latent space
of the VAE is relatively stable (since we continuously train the VAE concurrently with
RL training). As in RIG, we train a goal-conditioned value functions Schaul et al., 2015b
using hindsight experience replay Andrychowicz et al., 2017b, relabelling 50% of explo-
ration goals as goals sampled from the VAE prior N(0, 1) and 30% from future goals in
the trajectory.

For our implementation of (Hazan et al., 2019), we trained the policies with the reward

r(s) = rSkew-Fit(s) + λ · rHazan et al.(s)

For rHazan et al., we use the reward described in Section 5.2 of Hazan et al. (2019), which
requires an estimated likelihood of the state. To compute these likelihood, we use the
same method as in Skew-Fit (see Section C.3.1). With 3 seeds each, we tuned λ across val-
ues [100, 10, 1, 0.1, 0.01, 0.001] for the door task, but all values performed poorly. For the
pushing and picking tasks, we tested values across [1, 0.1, 0.01, 0.001, 0.0001] and found
that 0.1 and 0.01 performed best for each task, respectively.

c.3.4 RIG with Skew-Fit Summary

10 provides detailed pseudo-code for how we combined our method with RIG. Steps
that were removed from the base RIG algorithm are highlighted in blue and steps that
were added are highlighted in red. The main differences between the two are (1) not
needing to pre-train the β-VAE, (2) sampling exploration goals from the buffer using
pskewed instead of the VAE prior, (3) relabeling with replay buffer goals sampled using
pskewed instead of from the VAE prior, and (4) training the VAE on replay buffer data
data sampled using pskewed instead of uniformly.

c.3.5 Vision-Based Continuous Control Experiments

In our experiments, we use an image size of 48x48. For our VAE architecture, we use a
modified version of the architecture used in the original RIG paper A. Nair et al., 2018b.

251

Our VAE has three convolutional layers with kernel sizes: 5x5, 3x3, and 3x3, number of
output filters: 16, 32, and 64 and strides: 3, 2, and 2. We then have a fully connected layer
with the latent dimension number of units, and then reverse the architecture with de-
convolution layers. We vary the latent dimension of the VAE, the β term of the VAE and
the α term for Skew-Fit based on the environment. Additionally, we vary the training
schedule of the VAE based on the environment. See the table at the end of the appendix
for more details. Our VAE has a Gaussian decoder with identity variance, meaning that
we train the decoder with a mean-squared error loss.

When training the VAE alongside RL, we found the following three schedules to be
effective for different environments:

1. For first 5K steps: Train VAE using standard MLE training every 500 time steps
for 1000 batches. After that, train VAE using Skew-Fit every 500 time steps for 200
batches.

2. For first 5K steps: Train VAE using standard MLE training every 500 time steps
for 1000 batches. For the next 45K steps, train VAE using Skew-Fit every 500 steps
for 200 batches. After that, train VAE using Skew-Fit every 1000 time steps for 200
batches.

3. For first 40K steps: Train VAE using standard MLE training every 4000 time steps
for 1000 batches. Afterwards, train VAE using Skew-Fit every 4000 time steps for
200 batches.

We found that initially training the VAE without Skew-Fit improved the stability of
the algorithm. This is due to the fact that density estimates under the VAE are con-
stantly changing and inaccurate during the early phases of training. Therefore, it made
little sense to use those estimates to prioritize goals early on in training. Instead, we
simply train using MLE training for the first 5K timesteps, and after that we perform
Skew-Fit according to the VAE schedules above. Table 12 lists the hyper-parameters that
were shared across the continuous control experiments. Table 13 lists hyper-parameters
specific to each environment. Additionally, Section C.3.4 discusses the combined RIG +
Skew-Fit algorithm.

c.4 environment details

Four Rooms: A 20 x 20 2D pointmass environment in the shape of four rooms (R. S. Sutton
et al., 1999). The observation is the 2D position of the agent, and the agent must specify a
target 2D position as the action. The dynamics of the environment are the following: first,
the agent is teleported to the target position, specified by the action. Then a Gaussian

252

Hyper-parameter Value Comments

training batches per time step 2 Marginal improvements after 2

Exploration Noise None (SAC policy is stochastic) Did not tune

RL Batch Size 1024 smaller batch sizes work as well

VAE Batch Size 64 Did not tune

Discount Factor 0.99 Did not tune

Reward Scaling 1 Did not tune

Policy Hidden Sizes [400, 300] Did not tune

Policy Hidden Activation ReLU Did not tune

Q-Function Hidden Sizes [400, 300] Did not tune

Q-Function Hidden Activation ReLU Did not tune

Replay Buffer Size 100000 Did not tune

Number of Latents for Estimating
Density (N) 10 Marginal improvements beyond 10

Table 12: General hyper-parameters used for all visual experiments.

Hyper-parameter Visual Pusher Visual Door Visual Pickup Real World Visual Door

Path Length 50 100 50 100

β for β-VAE 20 20 30 60

Latent Dimension Size 4 16 16 16

α for Skew-Fit −1 −1/2 −1 −1/2

VAE Training Schedule 2 1 2 1

Sample Goals From qGφ pskewed pskewed pskewed

Table 13: Environment specific hyper-parameters for the visual experiments

253

Algorithm 10 RIG and RIG + Skew-Fit. Blue text denotes RIG specific steps and red text denotes RIG +
Skew-Fit specific steps

Require: β-VAE mean encoder qφ, β-VAE decoder pψ, policy πθ, goal-conditioned value function Qw,
skew parameter α, VAE Training Schedule.

1: Collect D = {s(i)} using random initial policy.
2: Train β-VAE on data uniformly sampled from D.
3: Fit prior p(z) to latent encodings {µφ(s

(i))}.
4: for n = 0, ...,N− 1 episodes do
5: Sample latent goal from prior zg ∼ p(z).
6: Sample state sg ∼ pskewedn and encode zg = qφ(sg) if R is nonempty. Otherwise sample zg ∼ p(z)
7: Sample initial state s0 from the environment.
8: for t = 0, ...,H− 1 steps do
9: Get action at ∼ πθ(qφ(st), zg).

10: Get next state st+1 ∼ p(· | st,at).
11: Store (st,at, st+1, zg) into replay buffer R.
12: Sample transition (s,a, s ′, zg) ∼ R.
13: Encode z = qφ(s), z ′ = qφ(s ′).
14: (Probability 0.5) replace zg with z ′g ∼ p(z).
15: (Probability 0.5) replace zg with qφ(s ′′) where s ′′ ∼ pskewedn .
16: Compute new reward r = −||z ′ − zg||.
17: Minimize Bellman Error using (z,a, z ′, zg, r).
18: end for
19: for t = 0, ...,H− 1 steps do
20: for i = 0, ...,k− 1 steps do
21: Sample future state shi , t < hi 6 H− 1.
22: Store (st,at, st+1,qφ(shi)) into R.
23: end for
24: end for
25: Construct skewed replay buffer distribution pskewedn+1 using data from R with Equation 10.
26: if total steps < 5000 then
27: Fine-tune β-VAE on data uniformly sampled from R according to VAE Training Schedule.
28: else
29: Fine-tune β-VAE on data uniformly sampled from R according to VAE Training Schedule.
30: Fine-tune β-VAE on data sampled from pskewedn+1 according to VAE Training Schedule.
31: end if
32: end for=0

254

Hyper-parameter Value

training batches per time step .25

Exploration Noise None (SAC policy is stochastic)

RL Batch Size 512

VAE Batch Size 64

Discount Factor 299
300

Reward Scaling 10

Path length 300

Policy Hidden Sizes [400, 300]

Policy Hidden Activation ReLU

Q-Function Hidden Sizes [400, 300]

Q-Function Hidden Activation ReLU

Replay Buffer Size 1000000

Number of Latents for Estimating
Density (N) 10

β for β-VAE 10

Latent Dimension Size 2

α for Skew-Fit −2.5

VAE Training Schedule 3

Sample Goals From pskewed

Table 14: Hyper-parameters used for the ant experiment.

change in position with mean 0 and standard deviation 0.0605 is applied1. If the action
would result in the agent moving through or into a wall, then the agent will be stopped

1 In the main paper, we rounded this to 0.06, but this difference does not matter.

255

at the wall instead.
Ant: A MuJoCo (Todorov et al., 2012) ant environment. The observation is a 3D posi-

tion and velocities, orientation, joint angles, and velocity of the joint angles of the ant (8
total). The observation space is 29 dimensions. The agent controls the ant through the
joints, which is 8 dimensions. The goal is a target 2D position, and the reward is the
negative Euclidean distance between the achieved 2D position and target 2D position.

Visual Pusher: A MuJoCo environment with a 7-DoF Sawyer arm and a small puck
on a table that the arm must push to a target position. The agent controls the arm
by commanding x,y position for the end effector (EE). The underlying state is the EE
position, e and puck position p. The evaluation metric is the distance between the goal
and final puck positions. The hand goal/state space is a 10x10 cm2 box and the puck
goal/state space is a 30x20 cm2 box. Both the hand and puck spaces are centered around
the origin. The action space ranges in the interval [−1, 1] in the x and y dimensions.

Visual Door: A MuJoCo environment with a 7-DoF Sawyer arm and a door on a table
that the arm must pull open to a target angle. Control is the same as in Visual Pusher.
The evaluation metric is the distance between the goal and final door angle, measured
in radians. In this environment, we do not reset the position of the hand or door at the
end of each trajectory. The state/goal space is a 5x20x15 cm3 box in the x,y, z dimension
respectively for the arm and an angle between [0, .83] radians. The action space ranges
in the interval [−1, 1] in the x, y and z dimensions.

Visual Pickup: A MuJoCo environment with the same robot as Visual Pusher, but now
with a different object. The object is cube-shaped, but a larger intangible sphere is over-
laid on top so that it is easier for the agent to see. Moreover, the robot is constrained to
move in 2 dimension: it only controls the y, z arm positions. The x position of both the
arm and the object is fixed. The evaluation metric is the distance between the goal and
final object position. For the purpose of evaluation, 75% of the goals have the object in
the air and 25% have the object on the ground. The state/goal space for both the object
and the arm is 10cm in the y dimension and 13cm in the z dimension. The action space
ranges in the interval [−1, 1] in the y and z dimensions.

Real World Visual Door: A Rethink Sawyer Robot with a door on a table. The arm must
pull the door open to a target angle. The agent controls the arm by commanding the
x,y, z velocity of the EE. Our controller commands actions at a rate of up to 10Hz with
the scale of actions ranging up to 1cm in magnitude. The underlying state and goal is
the same as in Visual Door. Again we do not reset the position of the hand or door at the
end of each trajectory. We obtain images using a Kinect Sensor. The state/goal space for
the environment is a 10x10x10 cm3 box. The action space ranges in the interval [−1, 1]

256

(in cm) in the x, y and z dimensions. The door angle lies in the range [0, 45] degrees.

c.5 goal-conditioned reinforcement learning minimizes H(G | S)

Some goal-conditioned RL methods such as Warde-Farley et al. (2018); A. Nair et al.
(2018b) present methods for minimizing a lower bound for H(G | S), by approximating
logp(G | S) and using it as the reward. Other goal-conditioned RL methods (L P Kael-
bling, 1993; Lillicrap et al., 2016; Schaul et al., 2015b; Andrychowicz et al., 2017b; V. Pong
et al., 2018; Florensa et al., 2018a) are not developed with the intention of minimizing
the conditional entropy H(G | S). Nevertheless, one can see that goal-conditioned RL
generally minimizes H(G | S) by noting that the optimal goal-conditioned policy will
deterministically reach the goal. The corresponding conditional entropy of the goal given
the state, H(G | S), would be zero, since given the current state, there would be no uncer-
tainty over the goal (the goal must have been the current state since the policy is optimal).
So, the objective of goal-conditioned RL can be interpreted as finding a policy such that
H(G | S) = 0. Since zero is the minimum value of H(G | S), then goal-conditioned RL
can be interpreted as minimizing H(G | S).

257

D
A P P E N D I X : C H A P T E R 6

d.1 algorithm derivation details

The full optimization problem we solve, given the previous off-policy advantage estimate
Aπk and buffer distribution πβ, is given below:

πk+1 = arg max
π∈Π

Ea∼π(·|s)[A
πk(s, a)] (67)

s.t. DKL(π(·|s)||πβ(·|s)) 6 ε (68)∫
a
π(a|s)da = 1. (69)

Our derivation follows Peters et al. (2010) and Peng et al. (2019a). The analytic solution
for the constrained optimization problem above can be obtained by enforcing the KKT
conditions. The Lagrangian is:

L(π, λ,α) =Ea∼π(·|s)[A
πk(s, a)] (70)

+ λ(ε−DKL(π(·|s)||πβ(·|s))) (71)

+α(1−

∫
a
π(a|s)da). (72)

Differentiating with respect to π gives:

∂L

∂π
= Aπk(s, a) − λ logπβ(a|s) + λ logπ(a|s) + λ−α. (73)

258

Setting ∂L
∂π to zero and solving for π gives the closed form solution to this problem:

π∗(a|s) =
1

Z(s)
πβ(a|s) exp

(
1

λ
Aπk(s, a)

)
, (74)

Next, we project the solution into the space of parametric policies. For a policy πθ with
parameters θ, this can be done by minimizing the KL divergence of πθ from the optimal
non-parametric solution π∗ under the data distribution ρπβ(s):

arg min
θ

ρπβ(s)
[DKL(π

∗(·|s)||πθ(·|s))] (75)

= arg min
θ

ρπβ(s)
[
π∗(·|s)[− logπθ(·|s)]

]
(76)

Note that in the projection step, the parametric policy could be projected with either
direction of KL divergence. However, choosing the reverse KL direction has a key advan-
tage: it allows us to optimize θ as a maximum likelihood problem with an expectation
over data s,a ∼ β, rather than sampling actions from the policy that may be out of dis-
tribution for the Q function. In our experiments we show that this decision is vital for
stable off-policy learning.

Furthermore, assume discrete policies with a minimum probably density of πθ > αθ.
Then the upper bound:

DKL(π
∗||πθ) 6

2

αθ
DTV(π

∗,πθ)2 (77)

6
1

αθ
DKL(πθ||π

∗) (78)

holds by the Pinsker’s inequality, whereDTV denotes the total variation distance between
distributions. Thus minimizing the reverse KL also bounds the forward KL. Note that
we can control the minimum α if desired by applying Laplace smoothing to the policy.

d.2 implementation details

We implement the algorithm building on top of twin soft actor-critic (Haarnoja et al.,
2018a), which incorporates the twin Q-function architecture from twin delayed deep
deterministic policy gradient (TD3) from Fujimoto et al. (2018b). All off-policy algorithm
comparisons (SAC, BRAC, MPO, ABM, BEAR) are implemented from the same skeleton.

259

The base hyperparameters are given in Table 16. The policy update is replaced with:

θk+1 = arg max
θ

s,a∼β

[
logπθ(a|s)

1

Z(s)
exp

(
1

λ
Aπk(s, a)

)]
. (79)

Env Use Z(s) Omit Z(s)

pen 84% 98%

door 0% 95%

relocate 0% 54%

Table 15: Success rates after online fine-tuning (after 800K steps for pen, door and 4M steps for
relocate) using AWAC with and without Z(s) weight. These results show that although
we can estimate Z(s), weighting by Z(s) actually results in worse performance.

Similar to advantage weight regression (Peng et al., 2019a) and other prior work (Neu-
mann and Peters, 2008; Q. Wang et al., 2018a; Noah Y. Siegel et al., 2020b), we
disregard the per-state normalizing constant Z(s) =

∫
a πθ(a|s) exp

(
1
λA

πk(s, a)
)
da =

Ea∼πθ(·|s)[A
πk(s, a)]. We did experiment with estimating this expectation per batch ele-

ment with K = 10 samples, but found that this generally made performance worse,
perhaps because errors in the estimation of Z(s) caused more harm than the benefit the
method derived from estimating this value. We report success rate results for variants of
our method with and without Z(s) estimation in Table 15.

While prior work (Neumann and Peters, 2008; Q. Wang et al., 2018a; Peng et al.,
2019a) has generally ignored the omission of Z(s) without any specific justification, it
is possible to bound this value both above and below using the Cauchy-Schwarz and
reverse Cauchy-Schwarz (Polya-Szego) inequalities, as follows. Let f(a) = π(a|s) and
g(a) = exp(A(s, a)/λ). Note f(a) > 0 for stochastic policies and g(a) > 0. By Cauchy-

Schwarz, Z(s) =
∫

a f(a)g(a)da 6
√∫

a f(a)
2da

∫
a g(a)

2da = C1. To apply Polya-Szego, let
mf and mg be the minimum of f and g respectively and Mf,Mg be the maximum. Then

Z(s) > 2(
√
MfMg
mfmg

+
mfmg
MfMg

)−1C1 = C2. We therefore have C1 6 Z(s) 6 C2, though the
bounds are generally not tight.

A further, more intuitive argument for why omitting Z(s) may be harmless in practice
comes from observing that this normalizing factor only affects the relative weight of
different states in the training objective, not different actions. The state distribution in β
already differs from the distribution over states that will be visited by πθ, and therefore

260

preserving this state distribution is likely to be of limited utility to downstream policy
performance. Indeed, we would expect that sufficiently expressive policies would be
less affected by small to moderate variability in the state weights. On the other hand,
inaccurate estimates of Z(s) may throw off the training objective by increasing variance,
similar to the effect of degenerate importance weights.

The Lagrange multiplier λ is treated as a hyperparameter in our method. In this work
we use λ = 0.3 for the manipulation environments and λ = 1.0 for the MuJoCo bench-
mark environments. One could adaptively learn λ with a dual gradient descent proce-
dure, but this would require access to πβ.

As rewards for the dextrous manipulation environments are non-positive, we clamp
the Q value for these experiments to be at most zero. We find this stabilizes training
slightly.

d.3 environment-specific details

We evaluate our method on three domains: dexterous manipulation environments,
Sawyer manipulation environments, and MuJoCo benchmark environments. In the fol-
lowing sections we describe specific details.

d.3.1 Dexterous Manipulation Environments

These environments are modified from those proposed by Rajeswaran et al. (2018).

pen-binary-v0 . The task is to spin a pen into a given orientation. The action dimen-
sion is 24 and the observation dimension is 45. Let the position and orientation of the
pen be denoted by xp and xo respectively, and the desired position and orientation be
denoted by dp and do respectively. The reward function is r = 1|xp−dp|60.0751|xo·do|60.95 -
1. In Rajeswaran et al. (2018), the episode was terminated when the pen fell out of the
hand; we did not include this early termination condition.

door-binary-v0 . The task is to open a door, which requires first twisting a latch.
The action dimension is 28 and the observation dimension is 39. Let d denote the angle
of the door. The reward function is r = 1d>1.4 - 1.

relocate-binary-v0 . The task is to relocate an object to a goal location. The action
dimension is 30 and the observation dimension is 39. Let xp denote the object position

261

Hyper-parameter Value

Training Batches Per Timestep 1

Exploration Noise None (stochastic policy)

RL Batch Size 1024

Discount Factor 0.99

Reward Scaling 1

Replay Buffer Size 1000000

Number of pretraining steps 25000

Policy Hidden Sizes [256, 256, 256, 256]

Policy Hidden Activation ReLU

Policy Weight Decay 10−4

Policy Learning Rate 3× 10−4

Q Hidden Sizes [256, 256, 256, 256]

Q Hidden Activation ReLU

Q Weight Decay 0

Q Learning Rate 3× 10−4

Target Network τ 5× 10−3

Table 16: Hyper-parameters used for RL experiments.

262

and dp denote the desired position. The reward is r = 1|xp−dp|60.1 - 1.

d.3.2 Sawyer Manipulation Environment

sawyerpush-v0 . This environment is included in the Multiworld library. The task is
to push a puck to a goal position in a 40cm x 20cm, and the reward function is the nega-
tive distance between the puck and goal position. When using this environment, we use
hindsight experience replay for goal-conditioned reinforcement learning. The random
dataset for prior data was collected by rolling out an Ornstein-Uhlenbeck process with
θ = 0.15 and σ = 0.3.

d.3.3 Off-Policy Data Performance

The performances of the expert data, behavior cloning (BC) on the expert data (1), and BC
on the combined expert+BC data (2) are included in Table 17. For Gym benchmarks we
report average return, and expert data is collected by a trained SAC policy. For dextrous
manipulation tasks we report the success rate, and the expert data consists of human
demonstrations provided by Rajeswaran et al. (2018).

Env Expert BC (1) BC (2)

cheetah 9962 2507 4524

walker 5062 2040 1701

ant 5207 687 1704

pen 1 0.73 0.76

door 1 0.10 0.00

relocate 1 0.02 0.01

Table 17: Performance of the off-policy data for each environment. BC (1) indicates BC on the
expert data, while BC (2) indicates BC on the combined expert+BC data used as off-
policy data for pretraining.

263

https://github.com/vitchyr/multiworld

Name Q̂ Policy Objective π̂β? Constraint

SAC Qπ DKL(πθ||Q̄) No None

SAC + BC Qπ Mixed No None

BCQ Qπ DKL(πθ||Q̄) Yes Support (`∞)

BEAR Qπ DKL(πθ||Q̄) Yes Support (MMD)

AWR Qβ DKL(Q̄||πθ) No Implicit

MPO Qπ DKL(Q̄||πθ) Yes∗ Prior

ABM-MPO Qπ DKL(Q̄||πθ) Yes Learned Prior

DAPG - J(πθ) No None

BRAC Qπ DKL(πθ||Q̄) Yes Explicit KL penalty

AWAC (Ours) Qπ DKL(Q̄||πθ) No Implicit

Table 18: Comparison of prior algorithms that can incorporate prior datasets. See section D.4
for specific implementation details. We argue that avoiding estimating π̂β (i.e., π̂β is
“No”) is important when learning with complex datasets that include experience from
multiple policies, as in the case of online fine-tuning, and maintaining a constraint of
some sort is essential for offline training. At the same time, sample-efficient learning
requires using Qπ for the critic. Our algorithm is the only one that fulfills all of these
requirements.

d.4 baseline implementation details

We used public implementations of prior methods (DAPG, AWR) when available. We
implemented the remaining algorithms in our framework, which also allows us to un-
derstand the effects of changing individual components of the method. In the section,
we describe the implementation details. The full overview of algorithms is given in Fig-
ure 18.

Behavior Cloning (BC). This method learns a policy with supervised learning on
demonstration data.

Soft Actor Critic (SAC). Using the soft actor critic algorithm from (Haarnoja et al.,
2018a), we follow the exact same procedure as our method in order to incorporate prior
data, initializing the policy with behavior cloning on demonstrations and adding all
prior data to the replay buffer.

Behavior Regularized Actor Critic (BRAC). We implement BRAC as described in (Yi-
fan Wu et al., 2020) by adding policy regularization log(πβ(a|s)) where πβ is a behavior

264

policy trained with supervised learning on the replay buffer. We add all prior data to the
replay buffer before online training.

Advantage Weighted Regression (AWR). Using the advantage weighted regression
algorithm from (Peng et al., 2019a), we add all prior data to the replay buffer before
online training. We use the implementation provided by Peng et al. (2019a), with the key
difference from our method being that AWR uses TD(λ) on the replay buffer for policy
evaluation.

Monotonic Advantage Re-Weighted Imitation Learning (MARWIL). Monotonic ad-
vantage re-weighted imitation learning was proposed by Q. Wang et al. (2018a) for of-
fline imitation learning. MARWIL was not demonstrated in online RL settings, but we
evaluate it for offline pretraining followed by online fine-tuning as we do other offline al-
gorithms. Although derived differently, MARWIL and AWR are similar algorithms and
only differ in value estimation: MARWIL uses the on-policy single-path advantage es-
timate A(s,a) = Qπβ(s,a) − Vπβ(s) instead of TD(λ) as in AWR. Thus, we implement
MARWIL by modifying the implementation of AWR.

Maximum a Posteriori Policy Optimization (MPO). We evaluate the MPO algorithm
presented by Abdolmaleki et al. (2018). Due to a public implementation being unavail-
able, we modify our algorithm to be as close to MPO as possible. In particular, we change
the policy update in Skew-Fit to be:

θi ←− arg max
θi

Es∼D,a∼π(a|s)[
logπθi(a|s) exp(

1

β
Qπβ(s,a))

]
. (80)

Note that in MPO, actions for the update are sampled from the policy and the Q-function
is used instead of advantage for weights. We failed to see offline or online improvement
with this implementation in most environments, so we omit this comparison in favor of
ABM.

Advantage-Weighted Behavior Model (ABM). We evaluate ABM, the method devel-
oped in Noah Y. Siegel et al. (2020b). As with MPO, we modify our method to implement
ABM, as there is no public implementation of the method. ABM first trains an advantage

265

model πθabm(a|s):

θabm = arg max
θi

Eτ∼D |τ|∑
t=1

logπθabm(at|st)f(R(τt:N) − V̂(s))

 . (81)

where f is an increasing non-negative function, chosen to be f = 1+. In place of an
advantage computed by empirical returns R(τt:N) − V̂(s) we use the advantage estimate
computed per transition by the Q value Q(s,a) − V(s). This is favorable for running
ABM online, as computing R(τt:N) − V̂(s) is similar to AWR, which shows slow online
improvement. We then use the policy update:

θi ←− arg max
θi

Es∼D,a∼πabm(a|s)[
logπθi(a|s) exp

(
1

λ
(Qπi(s,a) − Vπi(s))

)]
. (82)

Additionally, for this method, actions for the update are sampled from a behavior pol-
icy trained to match the replay buffer and the value function is computed as Vπ(s) =

Qπ(s,a) s.t. a ∼ π.
Demonstration Augmented Policy Gradient (DAPG). We directly utilize the code

provided in (Rajeswaran et al., 2018) to compare against our method. Since DAPG is
an on-policy method, we only provide the demonstration data to the DAPG code to
bootstrap the initial policy from.

Bootstrapping Error Accumulation Reduction (BEAR). We utilize the implementation
of BEAR provided in rlkit. We provide the demonstration and off-policy data to the
method together. Since the original method only involved training offline, we modify
the algorithm to include an online training phase. In general we found that the MMD
constraint in the method was too conservative. As a result, in order to obtain the results
displayed in our paper, we swept the MMD threshold value and chose the one with the
best final performance after offline training with offline fine-tuning.

266

https://github.com/vitchyr/rlkit

A
ve

ra
ge

R
et

ur
n

0K 100K 200K 300K 400K 500K
Timesteps

0

2000

4000

6000

8000

10000 HalfCheetah-v2

0K 100K 200K 300K 400K 500K
Timesteps

2000

0

2000

4000

6000 Ant-v2

0K 100K 200K 300K 400K 500K
Timesteps

1000

0

1000

2000

3000

4000

5000 Walker2d-v2

AWAC (Ours)
ABM [49]

AWR [41]
MARWIL [55]

BEAR [30]
BRAC [59]

DAPG [46]
SACfD [54]

SAC+BC [39]

Figure 73: Comparison of our method and prior methods on standard MuJoCo benchmark tasks.
These tasks are much easier than the dexterous manipulation tasks, and allow us to
better inspect the performance of methods in the setting of offline pretraining followed
by online fine-tuning. SAC+BC and BRAC perform on par with our method on the
HalfCheetah task, and ABM performs on par with our method on the Ant task, while
our method outperforms all others on the Walker2D task. Our method matches or
exceeds the best prior method in all cases, whereas no other single prior method
attains good performance on all of the tasks.

d.5 gym benchmark results from prior data

In this section, we provide a comparative evaluation on MuJoCo benchmark tasks for
analysis. These tasks are simpler, with dense rewards and relatively lower action and
observation dimensionality. Thus, many prior methods can make good progress on these
tasks. These experiments allow us to understand more precisely which design decisions
are crucial. For each task, we collect 15 demonstration trajectories using a pre-trained
expert on each task, and 100 trajectories of off-policy data by rolling out a behavioral
cloned policy trained on the demonstrations. The same data is made available to all
methods. The results are presented in Figure 73. AWAC is consistently the best or on
par with the best-performing method. No other single method consistently attains the
best results – on HalfCheetah, SAC + BC and BRAC are competitive, while on Ant-v2

ABM is competitive with AWAC. We summarize the results according to the challenges
in Section 6.3.

Data efficiency. The three methods that do not estimate Qπ are DAPG (Rajeswaran et
al., 2018), AWR (Peng et al., 2019a), and MARWIL (Q. Wang et al., 2018a). Across all three
tasks, we see that these methods are somewhat worse offline than the best performing
offline methods, and exhibit steady but very slow improvement during fine-tuning. In
robotics, data efficiency is vital, so these algorithms are not good candidates for practical

267

real-world applications.
Bootstrap error in offline learning. For SAC (Haarnoja et al., 2018a), across all three

tasks, we see that the offline performance at epoch 0 is generally poor. Due to the data
in the replay buffer, SAC with prior data does learn faster than from scratch, but AWAC
is faster to solve the tasks in general. SAC with additional data in the replay buffer is
similar to the approach proposed by Veerk et al. (2017). SAC+BC reproduces A. Nair
et al. (2018a) but uses SAC instead of DDPG (Lillicrap et al., 2016) as the underlying
RL algorithm. We find that these algorithms exhibit a characteristic dip at the start of
learning. Although this dip is only present in the early part of the learning curve, a poor
initial policy and lack of steady policy improvement can be a safety concern and a sig-
nificant hindrance in real-world applications. Moreover, recall that in the more difficult
dextrous manipulation tasks, these algorithms do not show any significant learning.

Conservative online learning. Finally, we consider conservative offline algorithms:
ABM (Noah Y. Siegel et al., 2020b), BEAR (Kumar et al., 2019a), and BRAC (Yifan Wu et
al., 2020). We found that BRAC performs similarly to SAC for working hyperparameters.
BEAR trains well offline – on Ant and Walker2d, BEAR significantly outperforms prior
methods before online experience. However, online improvement is slow for BEAR and
the final performance across all three tasks is much lower than AWAC. The closest in
performance to our method is ABM, which is comparable on Ant-v2, but much slower
on other domains.

268

d.6 extra baseline comparisons (cql , algaedice)

In this section, we add comparisons to constrained Q-learning (CQL) (Kumar et al.,
2020a) and AlgaeDICE (Nachum et al., 2019). For CQL, we use the authors’ implemen-
tation, modified for additionally online-finetuning instead of only offline training. For
AlgaeDICE, we use the publicly available implementation, modified to load prior data
and perform 25K pretraining steps before online RL. The results are presented in Fig-
ure 74.

Figure 74: Comparison of our method (AWAC) with CQL and AlgaeDICE. CQL and AWAC per-
form similarly offline, but CQL does not improve when fine-tuning online. AlgaeDICE
does not perform well for offline pretraining.

269

d.7 online fine-tuning from d4rl

In this experiment, we evaluate the performance of varied data quality (random,
medium, medium-expert, and expert) datasets included in D4RL (Fu et al., 2020), a
dataset intended for offline RL. The results are obtained by first by training offline and
then fine-tuning online on each setting for 500,000 additional steps. The performance of
BEAR (Kumar et al., 2019a) is attached as reference. We attempted to fine-tune BEAR on-
line using the same protocol as AWAC but the performance did not improve and often
decreased; thus we report the offline performance. All performances are scaled to 0 to
100, where 0 is the average returns of a random policy and 100 is the average returns of
an expert policy (obtained by training online with SAC), as is standard for D4RL.

The results are presented in Figure 75. First, we observe that AWAC (offline) is com-
petitive with BEAR, a commonly used offline RL algorithm. Then, AWAC is able to make
progress in solving the tasks with online fine-tuning, even when initialized from random
data or “medium” quality data, as shown by the performance of AWAC (online). In al-
most all settings, AWAC (online) is the best performing or tied with BEAR. In four of
the six lower quality (random or medium) data settings, AWAC (online) is significantly
better than BEAR; it is reasonable that AWAC excels in the lower-quality data regime be-
cause there is more room for online improvement, while both offline RL methods often
start at high performance when initialized from higher-quality data.

270

AWAC

(offline)

AWAC

(online)
BEAR

HalfCheetah random 2.2 52.9 25.5

medium 37.4 41.1 38.6

medium-expert 36.8 41.0 51.7

expert 78.5 105.6 108.2

Hopper random 9.6 62.8 9.5

medium 72.0 91.0 47.6

medium-expert 80.9 111.9 4.0

expert 85.2 111.8 110.3

Walker2D random 5.1 11.7 6.7

medium 30.1 79.1 33.2

medium-expert 42.7 78.3 10.8

expert 57.0 103.0 106.1

Figure 75: Comparison of our method (AWAC) fine-tuning on varying data quality datasets in
D4RL (Fu et al., 2020). AWAC is able to improve its offline performance by further
fine-tuning online.

d.8 hardware experimental setup

Here, we provide further details of the hardware experimental setups, which are pictured
in Fig 76.
Dexterous Manipulation with a 3 Fingered Claw.

• State space: 22 dimensions, consisting of joint angles of the robot and rotational
position of the object.

• Action space: 9 dimensions, consisting of desired joint angles of the robot.
• Reward: −1 if the valve is rotated within 0.25 radians of the target, and 0 otherwise.
• Prior data: 10 demonstrations collected by kinesthetic teaching and 200 trajectories

271

Figure 76: Full views of the robot hardware setups. Videos are available at awacrl.github.io

of behavior cloned data.
Drawer Opening with a Sawyer Arm.

• State space: 4 dimensions, end effector position of the robot and rotational position
of the motor attached to the drawer.

• Action space: 3 dimensions, for velocity control of end-effector position.
• Reward: −1 if the motor is rotated more than 15 radians of the reset position, and
0 otherwise.

• Prior data: 10 demonstrations collected using a 3DConnexion Spacemouse device
and 500 trajectories of behavior cloning data.

Dexterous Manipulation with a Robotic Hand.

• State space: 25 dimensions, consisting of joint angles of the hand, end effector
positions of the arm, object position and target position.

• Action space: 19 dimensions, consisting of desired 16 joint angles of the hand and
3 dimensions for end-effector control of the arm.

• Reward: let o be the position of the object, h be the position of the hand, and g be
the target location of the object. Then r = −||o− h||− 3||o− g||.

• Prior data: 19 demonstrations obtained via kinesthetic teaching and 50 trajectories
of behavior cloned data.

272

https://awacrl.github.io/

E
A P P E N D I X : C H A P T E R 7

e.1 proofs

e.1.1 Proof of Lemma 4

Proof. We can rewrite Vτ1(s) as

Vτ1(s) = E
τ1
a∼µ(·|s)[r(s,a) + γEs ′∼p(·|s,a)[Vτ1(s

′)]]

6 E
τ2
a∼µ(·|s)[r(s,a) + γEs ′∼p(·|s,a)[Vτ1(s

′)]]

= E
τ2
a∼µ(·|s)[r(s,a) + γEs ′∼p(·|s,a)E

τ1
a ′∼µ(·|s ′)[r(s

′,a ′) + γEs ′′∼p(·|s ′,a ′)[Vτ1(s
′′)]]

6 E
τ2
a∼µ(·|s)[r(s,a) + γEs ′∼p(·|s,a)E

τ2
a ′∼µ(·|s ′)[r(s

′,a ′) + γEs ′′∼p(·|s ′,a ′)[Vτ1(s
′′)]]

= E
τ2
a∼µ(·|s)[r(s,a) + γEs ′∼p(·|s,a)E

τ2
a ′∼µ(·|s ′)[r(s

′,a ′) + γEs ′′∼p(·|s ′,a ′)E
τ1
a ′′∼µ(·|s ′′)[r(s

′′,a ′′) + . . .]]
...
6 Vτ2(s)

e.2 experimental details

experimental details . For the MuJoCo locomotion tasks, we average mean re-
turns overs 10 evaluation trajectories and 10 random seeds. For the Ant Maze tasks,
we average over 100 evaluation trajectories. We standardize MuJoCo locomotion task re-
wards by dividing by the difference of returns of the best and worst trajectories in each
dataset. Following the suggestions of the authors of the dataset, we subtract 1 from re-

273

wards for the Ant Maze datasets. We use τ = 0.9 and β = 10.0 for Ant Maze tasks and
τ = 0.7 and β = 3.0 for MuJoCo locomotion tasks. We use Adam optimizer (D. Kingma
and Ba, 2015) with a learning rate 3 · 10−4 and 2 layer MLP with ReLU activations and
256 hidden units for all networks. We use cosine schedule for the actor learning rate. We
parameterize the policy as a Gaussian distribution with a state-independent standard de-
viation. We update the target network with soft updates with parameter α = 0.005. And
following Brandfonbrener et al., 2021 we clip exponentiated advantages to (−∞, 100].
We implemented our method in the JAX (Bradbury et al., 2018) framework using the
Flax (Heek et al., 2020) neural networks library.

extended results on locomotion and ant maze tasks . We present learning
curves for MuJoCo locomotion tasks in Figure 77. We also present results on Locomotion
and Ant Maze for different values of τ in Figure 78 and Table 19. We want to emphasize
that τ = 0.5 corresponds to using the mean squared error instead of expectile regression.

Table 19: Effect of τ. Fitting V(s) with mean squared error (τ = 0.5) is not sufficient to propagate
the signal through recursion and fails to solve more challenging medium and large
tasks.

IQL w/ τ = 0.5 (MSE) IQL w/ τ = 0.7 IQL w/ τ = 0.9

antmaze-umaze-v0 44.2±7.2 87.0±2.3 87.5±2.6

antmaze-umaze-diverse-v0 53.6 ±12.7 57.2±11.9 62.2±13.8

antmaze-medium-play-v0 0.0±0.0 4.0±2.0 71.2 ±7.3

antmaze-medium-diverse-v0 0.0 ±0.0 2.6±1.4 70.0±10.9

antmaze-large-play-v0 0.0±0.0 0.2±0.4 39.6 ±5.8

antmaze-large-diverse-v0 0.0 ±0.0 1.2±1.6 47.5±9.5

total 97.8±19.9 152.2±19.6 378.0±49.9

results on franca kitchen and adoit tasks . For Franca Kitchen and Adroit
tasks we use τ = 0.7 and the inverse temperature β = 0.5. Due to the size of the dataset,
we also apply Dropout (N. Srivastava et al., 2014) with dropout rate of 0.1 to regularize
the policy network. See complete results in Table 20.

274

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

hopper-medium-v2
IQL

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100
Ep

iso
de

 R
et

ur
n

hopper-medium-expert-v2

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

hopper-medium-replay-v2

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

halfcheetah-medium-v2

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

halfcheetah-medium-expert-v2

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

halfcheetah-medium-replay-v2

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

walker2d-medium-v2

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

walker2d-medium-expert-v2

0.0 0.5 1.0
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

walker2d-medium-replay-v2

Figure 77: Learning curves for MuJoCo locomotion tasks.

275

Table 20: Evaluation on Franca Kitchen and Adroit tasks from D4RL

dataset BC BRAC-p BEAR Onestep RL CQL Ours

kitchen-complete-v0 65.0 0.0 0.0 - 43.8 62.5

kitchen-partial-v0 38.0 0.0 0.0 - 49.8 46.3

kitchen-mixed-v0 51.5 0.0 0.0 - 51.0 51.0

kitchen-v0 total 154.5 0.0 0.0 - 144.6 159.8

pen-human-v0 63.9 8.1 -1.0 - 37.5 71.5

hammer-human-v0 1.2 0.3 0.3 - 4.4 1.4

door-human-v0 2 -0.3 -0.3 - 9.9 4.3

relocate-human-v0 0.1 -0.3 -0.3 - 0.2 0.1

pen-cloned-v0 37 1.6 26.5 60.0 39.2 37.3

hammer-cloned-v0 0.6 0.3 0.3 2.1 2.1 2.1

door-cloned-v0 0.0 -0.1 -0.1 0.4 0.4 1.6

relocate-cloned-v0 -0.3 -0.3 -0.3 -0.1 -0.1 -0.2

adroit-v0 total 104.5 9.3 25.1 - 93.6 118.1

total 259 9.3 25.1 - 238.2 277.9

276

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

antmaze-umaze-v0

= 0.5(MSE)
= 0.7
= 0.9

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

antmaze-medium-play-v0

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

antmaze-large-play-v0

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

antmaze-umaze-diverse-v0

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100
Ep

iso
de

 R
et

ur
n

antmaze-medium-diverse-v0

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
iso

de
 R

et
ur

n

antmaze-large-diverse-v0

Figure 78: Results on Ant Maze for different values of τ. Note that τ = 0.5 corresponds to using
the mean squared error instead of expectile regression.

e.3 finetuning experimental details

For finetuning experiments, we first run offline RL for 1M gradient steps. Then we con-
tinue training while collecting data actively in the environment and adding that data
to the replay buffer, running 1 gradient update / environment step. All other training
details are kept the same between the offline RL phase and the online RL phase. For dex-
trous manipulation environments (Rajeswaran et al., 2018), we use τ = 0.8 and β = 3.0,
25000 offline training steps, and add Gaussian noise with standard deviation σ = 0.03 to
the policy for exploration.

For baselines we compare to the original implementations of AWAC (A. Nair et
al., 2020) and CQL (Kumar et al., 2020b). For AWAC we used https://github.com/

rail-berkeley/rlkit/tree/master/rlkit. We found AWAC to overfit heavily with too
many offline gradient steps, and instead used 25000 offline gradient steps as in the orig-
inal paper. For the dextrous manipulation results, we report average return normalized
from 0 to 100 for consistency, instead of success rate at the final timestep, as reported in A.
Nair et al. (2020). For CQL, we used https://github.com/aviralkumar2907/CQL. Our re-
produced results offline are worse than the reported results, particularly on medium and
large antmaze environments. We were not able to improve these results after checking

277

https://github.com/rail-berkeley/rlkit/tree/master/rlkit
https://github.com/rail-berkeley/rlkit/tree/master/rlkit
https://github.com/aviralkumar2907/CQL

Dataset Offline Online

antmaze-umaze-v0 70.1→ 99.4 86.7→ 96.0

antmaze-umaze-diverse-v0 31.1→ 99.4 75.0→ 84.0

antmaze-medium-play-v0 23.0→ 0.0 72.0→ 95.0

antmaze-medium-diverse-v0 23.0→ 32.3 68.3→ 92.0

antmaze-large-play-v0 1.0→ 0.0 25.5→ 46.0

antmaze-large-diverse-v0 1.0→ 0.0 42.6→ 60.7

pen-binary-v0 46.2 ± 6.3 63.3 ± 1.9

door-binary-v0 1.3 ± 0.7 42.0 ± 3.2

relocate-binary-v0 0.3 ± 0.4 23.3 ± 14.5

Table 21: Error bars for fine-tuning experiments with 20 seeds, showing one standard deviation.

for discrepancies with the CQL paper authors and running CQL with an alternative im-
plementation (https://github.com/tensorflow/agents). Thus, although for offline ex-
periments (Table 1) we report results from the original paper, for finetuning experiments
we did not have this option and report our own results running CQL in Table 21.

e.4 connections to prior work

In this section, we discuss how our approach is related to prior work on offline reinforce-
ment learning. In particular, we discuss connections to BCQ Fujimoto et al., 2019b.

Our batch constrained optimization objective is similar to BCQ (Fujimoto et al., 2019b).
In particular, the authors of BCQ build on the Q-learning framework and define the
policy as

π(s) = arg max
a

s.t.(s,a)∈D

Q(s,a). (83)

Note that in contrast to the standard Q-learning, maximization in Equation (83) is per-
formed only over the state-action pairs that appear in the dataset. In Fujimoto et al.,
2019b, these constraints are implemented via fitting a generative model µ(·|s) on the
dataset, sampling several candidate actions from this generative model, and taking an

278

https://github.com/tensorflow/agents

argmax over these actions:

π(s) = arg max
{ai|ai∼µ(·|s),i=1...N}

Q(s,ai).

However, this generative model can still produce out-of-dataset actions that will lead to
querying undefined Q-values. Thus, our work introduces an alternative way to optimize
this objective without requiring an additional density model. Our approach avoids this
issue by enforcing the hard constraints via estimating expectiles. Also, it is worth men-
tioning that a number of sampled actions N in BCQ has similar properties to choosing a
particular expectile τ in our approach.

Note that our algorithm for optimal value approximation does not require an explicit
policy, in contrast to other algorithms for offline reinforcement learning for continuous
action spaces (Fujimoto et al., 2019b; Fujimoto and S. S. Gu, 2021; Yifan Wu et al., 2019;
Kostrikov et al., 2021a; Kumar et al., 2019b; Kumar et al., 2020b). Thus, we do not need
to alternate between actor and critic updates, though with continuous actions, we must
still extract an actor at the end once the critic converges.

e.5 different estimators of V (s)

We also evaluate different ways to estimate the value function V(s) (Table 22). We com-
pare V(s) learned with expectile regression as in IQL with V(s) estimated with several
samples from the learned policy as in ABM (Noah Y Siegel et al., 2020a). In particular,
we use N = 20 to estimate the value function.

279

Table 22: Different estimators of V(s)

IQL V(s) =
∑N
i=1Q(s,ai)/N

hopper-medium-v2 66.2±5.7 69.5±3.9

hopper-medium-expert-v2 91.5±14.3 75.8±37.8

hopper-medium-replay-v2 94.7±8.6 64.7±22.6

halfcheetah-medium-v2 47.4±0.2 47.2±0.2

halfcheetah-medium-expert-v2 86.7±5.3 93.0±0.9

halfcheetah-medium-replay-v2 44.2±1.2 45.1±0.3

walker2d-medium-v2 78.3±8.7 72.0±24.6

walker2d-medium-expert-v2 109.6±1.0 110.7±0.4

walker2d-medium-replay-v2 73.8±7.1 83.3±3.0

locomotion total 692.4±52.1 661.4±93.7

antmaze-umaze-v0 87.5±2.6 96.4±1.8

antmaze-medium-play-v0 71.2±7.3 0.0±0.0

antmaze-large-play-v0 39.6±5.8 0.0±0.0

antmaze-umaze-diverse-v0 62.2±13.8 57.5±6.3

antmaze-medium-diverse-v0 70.0±10.9 0.0±0.0

antmaze-large-diverse-v0 47.5±9.5 0.0±0.0

antmaze total 378.0±49.9 153.9±8.1

280

F
A P P E N D I X : C H A P T E R 1 1

f.0.1 Real-World Experimental Details

Our real-world data used in experiments consists of 830 trajectories (61,482 transitions)
collected by a human using a 3Dconnexion SpaceMouse device. Instructions for interfac-
ing with the SpaceMouse is available publicly at https://github.com/vitchyr/rlkit/
tree/master/rlkit/demos/spacemouse, with the device code adapted from the Robo-
Suite library Y. Zhu et al., 2020. A full view of the robot and the view from the camera
can be seen in Figure 79.

Across our dataset, we interact with 10 drawer handles, 10 pot handles, 40 toys, and
60 distractor objects. Every 10 trajectories we randomly sample one or more interaction
objects as well as two or more distractor objects. Before each rollout we randomize all
object positions. The trajectories can be grouped into four separate categories: picking
and placing toys, putting toys into a tray, opening a door and closing a drawer, and
placing and removing a lid on a pot. To artificially increase the size of our dataset and
make our policy robust to light changes and camera nudges, we utilize color jittering
and random cropping during training. As there was an unequal amount of data per
category, we re-balanced the dataset by using a different number of data augmentations
per category. The final amount of task-specific data used per experiment is reported in
Table 28.

We additionally collected unscripted play data mixing all of the above behaviors with
more object diversity, but did not use this data in this paper. With this data, there are
1,984 trajectories (137,111 transitions), covering 20 drawer handles, 20 pot handles, 60

toys, and 60 distractor objects. We also collected an additional 508 trajectories of on-
policy robot data. The entire dataset is available on our website: https://sites.google.
com/view/val-rl.

281

https://github.com/vitchyr/rlkit/tree/master/rlkit/demos/spacemouse
https://github.com/vitchyr/rlkit/tree/master/rlkit/demos/spacemouse
https://sites.google.com/view/val-rl
https://sites.google.com/view/val-rl

f.0.2 Simulation Experimental Details

Our simulated dataset consists of 8,000 trajectories (400,000 transitions). Before sampling
each trajectory, we randomize the existence, position, color, and orientation of the follow-
ing: two drawers, a box, a button, and an object. If an object is present it is chosen from a
set of 84 object geometries. The trajectories are generated by a scripted policy which col-
lects play data by interacting with all the present objects in a random order. The scripted
behavior includes: opening and closing a drawer by the handle, opening and closing
a different drawer by pressing a button, and re-positioning objects. All simulated RL
experiments were run with 5 seeds.

f.0.3 Algorithm Details

Visuomotor affordance learning (VAL) builds off the rlkit codebase available at https:
//github.com/vitchyr/rlkit. We will release our code at our website, https://sites.
google.com/view/val-rl. Below, we list the specific hyperparameters used in our exper-
iments for each component. In VAL, we first collect an offline data D, run representation
learning, then offline RL, and finally online RL for a specific environment.

In the representation learning phase, we first train the VQVAE Aaron van den Oord
et al., 2017 on D. We then encode the entire dataset with the VQVAE to obtain discrete
latent variables, and then independently train the PixelCNN Aaron van den Oord et al.,
2016 on discrete latent code dataset. For the CCRIG experiments, we train a CCVAE Sohn
et al., 2015 on D.

In the offline RL phase, we run advantage weighted actor critic (AWAC) A. Nair et
al., 2020 on the offline data to obtain a single policy and Q-function. This policy and
Q-function can then be fine-tuned to a specific environment by running online RL.

All hyperparameters are provided below for these algorithms are provided below in
tables 23, 24, 25, 26, 27.

282

https://github.com/vitchyr/rlkit
https://github.com/vitchyr/rlkit
https://sites.google.com/view/val-rl
https://sites.google.com/view/val-rl

Hyper-parameter Value

Training Batches Per Timestep 1

Exploration Noise None (stochastic policy)

RL Batch Size 1024

Discount Factor 0.99

Reward Scaling 1

Replay Buffer Size 1000000

Number of pretraining steps 25000

Policy Hidden Sizes [256, 256, 256, 256]

Policy Hidden Activation ReLU

Policy Weight Decay 10−4

Policy Learning Rate 3× 10−4

Q Hidden Sizes [256, 256]

Q Hidden Activation ReLU

Q Weight Decay 0

Q Learning Rate 3× 10−4

Target Network τ 5× 10−3

Relabeling strategy pRS(z) 50% future, 30% prior, 20% rollout

Table 23: Hyper-parameters used for RL (AWAC) experiments.

283

Figure 79: Left, full view of Sawyer robot setup. Right, camera view.

Hyper-parameter Value

Brightness (Color Jitter) [0.75, 1.25]

Contrast (Color Jitter) [0.9, 1.1]

Saturation (Color Jitter) [0.9, 1.1]

Hue (Color Jitter) [−0.1, 0.1]

Size (Random Resized Crop) 48

Scale (Random Resized Crop) [0.9, 1.0]

Ratio (Random Resized Crop) [0.9, 1.1]

Interpolation (Random Resized Crop) Antialiasing

Table 24: Hyper-parameters used for data augmentation.

284

Figure 80: Images from the prior dataset. The dataset contains 830 trajectories. We have released
the full prior dataset (containing 1,984 trajectories) along with on-policy robot execu-
tions at our website, https://sites.google.com/view/val-rl

285

https://sites.google.com/view/val-rl

Hyper-parameter Value

Convolution Layers 3

Convolution Hidden Size 128

Residual Layers 3

Residual Hidden Size 64

Embedding Size 5

Dictionary Size 512

Commitment Cost 0.25

EMA Embedding False

Table 25: Hyper-parameters used for VQVAE training.

Hyper-parameter Value

Batch Size 32

Layers 15

Learning Rate 0.0003

Latent Conditioning Type Continuous

Table 26: Hyper-parameters used for PixelCNN experiments.

286

Hyper-parameter Value

Convolution Layers 3

Convolution Hidden Size 128

Residual Layers 3

Residual Hidden Size 64

Embedding Size 5

Conditioning Embedding Size 1

Table 27: Hyper-parameters used for CCVAE training.

Hyper-parameter Value

Tray 25% task specific data

Pick and Place 25% task specific data

Close Drawer 20% task specific data

Open Drawer 20% task specific data

Place Lid 17% task specific data

Table 28: Hyper-parameters used for task-specific replay buffer re-balancing (through data aug-
mentation).

287

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	Reinforcement Learning with Imagined Goals
	2 Visual Reinforcement Learning with Imagined Goals
	2.1 Introduction
	2.2 Related Work
	2.3 Background
	2.4 Goal-Conditioned Policies with Unsupervised Representation Learning
	2.5 Experiments
	2.6 Discussion and Future Work
	2.7 Contribution Statement

	3 Contextual Imagined Goals for Self-Supervised Robotic Learning
	3.1 Introduction
	3.2 Related Work
	3.3 Background
	3.4 Self-Supervised Learning with Context-Conditioned Representations
	3.5 Experiments
	3.6 Conclusion
	3.7 Contribution Statement

	4 SkewFit: State-Covering Self-Supervised Reinforcement Learning
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Skew-Fit: Learning a Maximum Entropy Goal Distribution
	4.4 Training Goal-Conditioned Policies with Skew-Fit
	4.5 Related Work
	4.6 Experiments
	4.7 Conclusion
	4.8 Contribution Statement

	Accelerating Reinforcement Learning with Prior Knowledge
	5 Overcoming Exploration in Reinforcement Learning with Demonstrations
	5.1 Introduction
	5.2 Related Work
	5.3 Background
	5.4 Method
	5.5 Experimental Setup
	5.6 Comparison With Prior Work
	5.7 Multi-Step Experiments
	5.8 Ablation Experiments
	5.9 Discussion and Future Work

	6 AWAC: Accelerating Online Reinforcement Learning with Offline Datasets
	6.1 Introduction
	6.2 Preliminaries
	6.3 Challenges in Offline RL with Online Fine-tuning
	6.4 Advantage Weighted Actor Critic: A Simple Algorithm for Fine-tuning from Offline Datasets
	6.5 Related Work
	6.6 Experimental Evaluation
	6.7 Discussion and Future Work
	6.8 Contribution Statement

	7 Offline Reinforcement Learning with Implicit Q-Learning
	7.1 Related work
	7.2 Implicit Q-Learning
	7.3 Experimental Evaluation
	7.4 Conclusion
	7.5 Contribution Statement

	8 Residual Reinforcement Learning for Robot Control
	8.1 Introduction
	8.2 Preliminaries
	8.3 Method
	8.4 Experimental Setup
	8.5 Experiments
	8.6 Results
	8.7 Related Work
	8.8 Conclusion
	8.9 Contribution Statement

	9 Deep Reinforcement Learning for Industrial Insertion Tasks with Visual Inputs and Natural Rewards
	9.1 Introduction
	9.2 Related Work
	9.3 Electric Connector Plug Insertion Tasks
	9.4 Methods
	9.5 Experiments
	9.6 Results
	9.7 Conclusion
	9.8 Contribution Statement

	10 Learning on the Job: Industrial Insertion of Novel Connectors from Vision
	10.1 Introduction
	10.2 Related Work
	10.3 Background
	10.4 Problem Setting
	10.5 Method
	10.6 Robot Setup
	10.7 Experiments
	10.8 Discussion
	10.9 Contribution Statement

	Affordance Learning in Unseen Environments
	11 Learning New Skills by Imagining Visual Affordances
	11.1 Introduction
	11.2 Related Work
	11.3 Preliminaries
	11.4 Problem Setting
	11.5 Visuomotor Affordance Learning
	11.6 Real-World Experimental Evaluation
	11.7 Experimental Evaluation in Simulation
	11.8 Conclusion
	11.9 Contribution Statement

	12 Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in Latent Space
	12.1 Introduction
	12.2 Related Work
	12.3 Problem Statement
	12.4 Preliminaries
	12.5 Planning to Practice
	12.6 Experiments
	12.7 Conclusion and Discussion
	12.8 Contribution Statement

	13 Conclusion
	A Appendix: Chapter 2
	A.1 Complete Ablative Results
	A.2 Hyperparameters
	A.3 Environment Details

	B Appendix: Chapter 3
	B.1 Multi-Color 2D Navigation Experiments
	B.2 Off-Policy Experiments

	C Appendix: Chapter 4
	C.1 Proofs
	C.2 Additional Experiments
	C.3 Implementation Details
	C.4 Environment Details
	C.5 Goal-Conditioned Reinforcement Learning Minimizes H(GS)

	D Appendix: Chapter 6
	D.1 Algorithm Derivation Details
	D.2 Implementation Details
	D.3 Environment-Specific Details
	D.4 Baseline Implementation Details
	D.5 Gym Benchmark Results From Prior Data
	D.6 Extra Baseline Comparisons (CQL, AlgaeDICE)
	D.7 Online Fine-Tuning From D4RL
	D.8 Hardware Experimental Setup

	E Appendix: Chapter 7
	E.1 Proofs
	E.2 Experimental details
	E.3 Finetuning experimental details
	E.4 Connections to prior work
	E.5 Different Estimators of V(s)

	F Appendix: Chapter 11

