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Abstract
Essays in Macroeconomics: Business Cycles and Earnings Inequality
by
Byoungchan Lee
Doctor of Philosophy in Economics
University of California, Berkeley

Professor Yuriy Gorodnichenko, Chair

Does inequality react to stabilization policies and macroeconomic shocks at business
cycle frequencies? Does an unanticipated innovation in inequality impact aggregate demand
and drive cyclical fluctuations? Does the level of inequality influence the propagation of
stabilization policies? To answer these questions, I first investigate which factors of earnings
distributions are represented by a measure of inequality in Chapter 1. Chapter 2 develops
an econometric tool to evaluate the contribution of macroeconomic shocks to the dynamics
of an endogenous variable of interest. Finally, Chapter 3 deals with the questions above.

In Chapter 1, I derive principal components of log earnings distributions in the U.S.
and propose a simple three-factor model to rationalize my empirical results. Using data on
earnings distribution in the U.S. from 1978 to 2013, I find that more than 90 percent of
the total variation in the distribution can be summarized by two underlying factors, which
are related to the location and dispersion of the distribution, where the dispersion factor is
tightly associated with the log P90/P10 index. Moreover, most of the remaining portion is
due to another factor characterizing asymmetric components. To rationalize these findings,
I suggest asymmetric Laplace distributions as a model of log earnings distributions. In
this model, the right-tail of earnings always follows a Pareto distribution, unlike log normal
distributions. Furthermore, it is a tractable distributional family featuring three parameters
representing the location, dispersion, and degree of asymmetry, respectively. I describe the
dynamics of those parameters in the U.S. both in trends and concerning business cycles.
Finally, I illustrate how a conventional Gaussian AR(1) model for individual log earnings
can be easily modified to admit asymmetric Laplace distributions.

Chapter 2 is based on joint work with Yuriy Gorodnichenko, which is forthcoming in

Journal of Business and Statistics under the same title. We propose and study properties of



an estimator of the forecast error variance decomposition in the local projections framework.
We find for empirically relevant sample sizes that, after being bias-corrected with bootstrap,
our estimator performs well in simulations. We also illustrate the workings of our estimator
empirically for monetary policy and productivity shocks.

Chapter 3 deals with questions on the relationship between business cycles and earn-
ings inequality. For an empirical investigation, I construct a novel, high-quality, quarterly
measure of earnings inequality and document the following facts. First, an expansionary
productivity shock and a contractionary government expenditure shock reduce earnings in-
equality significantly at the medium-run, while monetary policy shocks have little effects.
Second, an unanticipated positive innovation in earnings inequality, which summarizes re-
distribution from the poor to the rich, lowers aggregate demand substantially in a U-shaped
manner. Lastly, the power of stabilization policies increases with the level of inequality. To
rationalize these results, I develop a tractable, theoretical framework. I analytically illustrate
that inequality in a simple two-agent model is related to demand shocks in a representative
agent framework. To match the shape and magnitude of the empirical impulse responses, I
further introduce new features including countercyclical earnings risk, an endogenous exten-

sive margin of being credit constrained, and decreasing relative risk aversion preferences.
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Chapter 1

A three-factor Model of Earnings

Distribution

1.1 Introduction

Understanding inequality has been one of the main tasks in our society as the concentration
of earnings among the top workers has intensified over the past several decades. In a more
short-run perspective, the Great Recession has revealed that distributional factors and in-
dividual heterogeneity may have substantial effects on macroeconomic fluctuations. While
the problems of distribution in the long- and short-run have become important, there are
many fundamental but unanswered questions. In this paper, I focus on one specific question
about the essential dimension of a cross-section of resources. That is, “How many factors do
underlie a distributional phenomenon?” My answer is three for earnings.

Distributions of economic resources such as earnings, income, and wealth are complicated,
high-dimensional objects. For a full representation, in principle, we need a vector whose
dimension equals the number of agents in an economy. However, that number is enormous in
data, and even uncountably infinite in theoretical models assuming continuous distributions.
Therefore, carrying the whole distribution as it stands is usually not feasible or meaningful.
Finding an informative set of statistics (i.e., a reduction of the dimension) is necessary for
a better understanding of distributional issues.

I show that a substantial dimension reduction is possible using data on earnings distri-
butions in the U.S. I find that more than 90 percent of the total variation in the distribution

can be summarized by two underlying factors, measuring the location and dispersion. Fur-



thermore, most of the remaining portion is due to another factor characterizing asymmetric
components. Thus, the earnings distribution in the U.S. admits a three-dimensional repre-
sentation.

To rationalize these findings, I propose asymmetric Laplace distributions as a model of log
earnings distributions. This distributional family features a simple, functional form parame-
terized by three factors for the location, dispersion, and degree of asymmetry, respectively. I
document that the estimated distribution fits the data remarkably well. Furthermore, I illus-
trate how a conventional Gaussian AR(1) model for individual log earnings can be adjusted
for asymmetric Laplace distributions while maintaining the tractability of linear Gaussian
models.

Throughout the empirical analysis in this paper, I use annual labor earnings data in the
U.S. from 1978 to 2013. [Song et al| (2018) extract every percentile of real earnings in each
year from a confidential database constructed by the Social Security Administration. This
database contains information on the universe of workers and compensations to their labor
in the U.S. Therefore, it can shed light on the overall shape of the earnings distribution and
its historical evolution in the past several decades.

A distribution is usually characterized by probability densities or cumulative probabilities.
In this paper, I deal with an inverse cumulative distribution function (CDF) y; such that y;(p)
is the 100p-th percentile of the log earnings distribution in the year t. Then the above data are
values of y;(p) for p being 0.01 to 0.99. Hilbert space theories (Rudinl, [1987) and orthogonal
polynomials (Koornwinder et al., 2010) imply that the inverse CDF can be arbitrarily closely
approximated by (finite-order) polynomials. This provides a mathematical background for
reduced-dimension representations of distributions by proving that a few numbers may suffice
to describe a function y;. Indeed, I find that a 9th order polynomial fits the data almost
perfectly. By relying on theoretical properties of orthogonal polynomials, I further document
that there exist some asymmetric components in the U.S. log earnings distribution and their
significance has been declining through the sample period. In other words, the log earnings
distribution has become more symmetric, which is a novel finding up to my knowledge.

While polynomials are intuitive and informative, its coefficients may be correlated to each
other. By extracting principal components out of them, the number of factors can be further
reduced to three (see |Stock and Watson|, 2011} 2016, for an overview of the method). The
first two leading principal components reflect the location and dispersion of the log earnings

distribution up to a rotation, and they explain more than 90 percent of the dynamics of



the distribution. The third factor, which captures most of the remaining, loads mainly on
both tails and moves them into the same direction. Therefore, it measures the degree of
asymmetry or skewness.

Asymmetric Laplace distributions are a simple, tractable distributional family charac-
terized by the same three factors derived empirically (location, dispersion, and skewness). I
introduce the definition and basic properties of this distribution later, while more compre-
hensive analysis is relegated to [Kotz, Kozubowski and Podgodrski| (2001). This distribution
features several attractive characteristics. First, it is directly parametrized by the three fac-
tors, and each of them has clear meanings. Second, the fit of the estimated log earnings
distribution to the data is of impressively high-quality. Furthermore, when the cross-section
of the log earnings is modeled by an asymmetric Laplace distribution, the right-tail of earn-
ings follows a Pareto distribution. This is consistent with the empirical evidence in [Atkinson,
Piketty and Saez (2011)) and [Piketty and Saez| (2003). Finally, making use of its tractability,
one can easily embed asymmetric Laplace distributions into a conventional AR(1) model of
idiosyncratic earnings dynamics.

Based on the estimated parameters, I find novel results that the log earnings distribution
in the U.S. is left-skewed. Furthermore, there is a rising trend in the skewness as well as
the location and dispersion. Therefore, the distribution has become less left-skewed, or
more close to a symmetric one. In this sense, a rising earnings inequality in the U.S. has
two components: (1) a secular trend in the dispersion factor which redistributes resources
from the bottom to the top and (2) a similar trend in the skewness factor which drives the
concentration of earnings in the right-tail while helping the left-tail too.

An increase in the dispersion and skewness of the log earnings distribution may contribute
to a growth in average earnings per worker. Indeed, about 56 percent of the growth in
average earnings per worker during the last several decades is due to the rise in the skewness
factor. Accumulation in the location factor, which is distribution-neutral in a sense that it
parallelly shifts everyone’s log earnings, contributes to only 28 percent of the total growth.
The dispersion factor explains the remaining 16 percent. As a result, most of the growth has
been non-neutral to the allocation of resources across workers, and different income groups
had disparate experiences on the economic growth (Goldin and Katz, 2009; [Krusell et al.
2000; [Piketty, Saez and Zucman), 2018)).

Regarding business cycles, I study cyclical properties of the three factors of the earnings

distribution. Among them, the skewness factor is the most sensitive to aggregate fluctuations



in a procyclical manner. I further investigate the first four cross-sectional moments and find
that the mean and skewness coefficients are procyclical while the standard deviation and
kurtosis coefficient is countercyclical. This is because the log earnings distribution is left-
skewed. As it becomes less left-skewed in expansions, the probability density on extremely
large negative deviations decreases, and this lowers the standard deviation and kurtosis
coefficient.

The high-dimensionality of distributions has been major obstacles to investigations of
relationships between inequality and other components of an economy. In a heterogeneous
agent model of |[Krusell and Smith| (1998), a crucial step in the solution method is to summa-
rize the distribution of cash-on-hand to a scalar (mean), which essentially serves a dimension
reduction. Ahn et al.|(2018]) formally discuss dimension reduction problems in heterogeneous
agent models, where reducing the dimension of cross-sectional distribution and detecting the
most relevant factors are of the utmost importance for numerical tractability.

For an empirical study, the number of distributional factors included in the information
set matters. As an example, suppose that one wants to know relationships between monetary
policy and earnings inequality, and therefore constructs a small vector autoregression model
with real GDP, inflation, federal funds rate, and a measure of earnings inequality, e.g., log
P90/P10 index. Here, one may wonder whether including a single inequality measure is
sufficient to describe the dynamics of the whole distribution. Later in this paper, I will show
that this information set can span most of the variation in the log earnings distribution. To
achieve even higher coverage, one may add a variable tightly connected to the skewness factor.
The main takeaway is that the factor analysis can reduce the dimension of distributional
objects substantially, and this allows for a tractable investigation of distributional issues using
more conventional tools developed for a system of aggregate variables. In this context, this
paper is complementary to Chang, Chen and Schorfheide (2018), who reduce the dimension
of distributions with sieve approximations.

Other applications of asymmetric Laplace distributions in economics include the maxi-
mum likelihood estimation of quantile regressions (Koenker and Machado|, [1999), matching
financial data (Linden| 2001), and the risk management (Taylor, 2019)). However, this dis-
tributional family has not been widely studied concerning cross-sectional distributions of
earnings, income, and wealth. Instead, other parametric families such as log normal, Pareto,
and generalized beta are more frequently used in this context (see Cowell and Flachaire

2015, for a review). Asymmetric Laplace distributions can be a useful model complementary



to these alternatives. Another merit of the asymmetric Laplacian family is that it has a nat-
ural and tractable extension to a dynamic setup. This model complements existing dynamic
models with mixture normal idiosyncratic innovations (Blundell and Preston), [1998; Kaplan,
Moll and Violante|, 2018; |Pistaferri, 2001)).

The rest of the paper is structured as follows. Section introduces the log earnings
data in the U.S. Section covers the factor analysis. I first lay out the basics of dimen-
sion reduction in the space of inverse cumulative distribution functions based on orthogonal
polynomials. Then I derive and study properties of principal components of the log earnings
distribution. Section [I.4]presents asymmetric Laplace distributions and applies it to the U.S.
data in a static and dynamic setup. Section investigates dynamics of the log earnings

distribution at business cycle frequencies. Section concludes.

1.2 Data

Let y; (p) be the 100p-th percentile of the log earnings distribution in the U.S. in the year
t. I analyze {y; (p)} reported by Song et al.| (2018) for p = 0.01,...,0.99 from 1978 to 2013.
Thus, the earnings distribution in the U.S. is represented by a set of 99 percentiles in each
year.

Below I briefly describe the data used to derive y; (p). [Song et al.| (2018) investigate
a confidential database on earnings maintained by the U.S. Social Security Administration
(SSA). It contains annual labor earnings records in Form W-2 of all individuals with a Social
Security number. The earnings data are uncapped and include wages and salaries, bonuses,
exercised stock options, and other fringe benefits.

In the sample of Song et al.| (2018]), individuals are aged between 20 and 60, and earn
more than a minimum threshold. The threshold is set at one-fourth of a full-time Federal
minimum wage, i.e., 1/4 of 52 weeks for 40 hours at the minimum wage rate. All earnings are
in 2013 real values based on the personal consumption expenditure (PCE) deflator. Other
details about the database and sample can be found in [Song et al.| (2018) and references

therein.



1.3 An empirical factor analysis

This section empirically studies the log earnings distribution in the U.S., dented by {v; (p)}.
To do so, I take a two-step approach. First, I change the basis and rewrite y; (p) in terms
of orthogonal polynomials. This will show that we can substantially reduce the dimension
and represent the whole distribution with a few numbers. Furthermore, it will clearly illus-
trate that there exists an asymmetric component in the log earnings distribution. Second,
I derive principal components among the coefficients on orthogonal polynomials and find
that more than 90 percent of the total variation in the distribution can be summarized by
two underlying factors, which are related to the location and the dispersion of the distribu-
tion. Moreover, another factor characterizing the degree of asymmetry accounts most of the

remaining variation.

1.3.1 A short introduction to orthogonal polynomials

Here I provide a short introduction to orthogonal polynomials. The discussions are minimal,
where more details are relegated to |Judd (1998).

For this subsection, let y; be a function from [0, 1] to R mapping p € [0,1] to 100p-th
percentile of log earnings distribution in the U.S. in the year ¢. In other words, y; is an inverse
cumulative distribution function of log earnings. The goal of this subsection is to show that
an infinite dimensional object 1y, can be arbitrarily closely approximated by polynomials,
which are characterized by only a finite number of coefficients.

An inner product between two square-integrable functions f and g is denoted by (f, g) =
fol fg, where the integration is with respect to the Lebesgue measure. I define orthogonal

polynomials as follows/T]

Definition 1.1 (Orthogonal polynomial). A function P, : [0,1] — R is the orthogonal

polynomial of order n if
(i) P, is a polynomial of order n,
(ii) (P, Pn) =1 when n # m,

(iit) [|[Pall = \/(Po, Pr) = 1,

LGiven that the domain is a finite interval and that the weights are uniform in p, the orthogonal polyno-
mials in this paper is a variant of standard Legendre polynomials (see [Judd, [1998]).



foralln,m=20,1,....

Note that {P, : n = 0,1,...} forms an orthogonal set due to (ii) and (iii) implies that
P, has a unit norm.

It is clear that By = 1. For any n > 0, we can recursively find P, by projecting p”
on {P,, : m < n} and scaling the residual to make it a unit vector. For example, P; is
proportional to p — (p, Py) Py = p — 0.5. It is easy to check that Py(p) = v/12(p — 0.5).

Figure depicts the orthogonal polynomials of order 0 to 4. For an odd number n,
P,(p) is symmetric to (0.5,0), while P,(p) is symmetric around p = 0.5 for an even number

n. Now I state the main result in this subsection.

Theorem 1.1. {P,:n=0,1,...} is an orthonormal basis of L?0,1], which is a set of
square integrable functions from [0,1] to R. Furthermore, the following holds for any f €
L2[0,1]:

f={fR)Po+{fP)Pi+- = (f (1.1)

Finally, ||f1I> = X020 | (f, Pu) |-

Proof. The first statement holds because of Weierstrass approximation theorem and Theorem
3.14 in Rudin| (1987). For the other statements, see Rudin| (1987, Ch. 4). O

Theorem illustrates that any square integrable function f, which is an infinite dimen-
sional object, can be represented by countably many coefficients {(f, P,)}. Furthermore,
(f, P,) is small for large n’s because || f||> = 302, | (f, Pu) |* < co. This implies that f can
be closely approximated by an N-th order polynomial >, (f, P,) P, for some N. In other
words, we can characterize f with only a finite number of coefficients (with small errors).

For example, suppose that a random variable Z follows a Pareto distribution with a
cumulative distribution function (CDF) Fyz(z) = 1 — (i)_c for = > 2z > 0 and { > 0.
By writing p = Fz(z), an inverse CDF of log(Z) is given by log(z) = log(z) — %log(l —
p) = log(z) + % (p + 307 +30° + .. .), where the last expression is from the Taylor series of
log(1 — p). Therefore, a Pareto distribution, in a logarithm, can be easily approximated by
a polynomial.

For another example, consider a random variable W whose probability density function
(PDF) fw (w) is symmetric around w. Then its CDF Fy (w) becomes symmetric to (w, 0.5),



and therefore its inverse CDF is symmetric to (0.5, w). Note that P, for an odd number
n is also symmetric to (0.5,0) as shown in Figure E| Thus, the inverse CDF of W is
spanned by {P, P, Ps, Ps, ...}, where Fy is for an upward parallel shift by w . In other
words, { Py, P, Ps, Ps, ...} captures symmetric components in probability density functions,

where { Py, Py, Ps, ... } reflects asymmetric parts.

1.3.2 First-stage factors and loadings

The main takeaway from the discussion above is straightforward: although earnings distribu-
tions are complicated high-dimensional objects, substantial dimension reduction is possible
with the aid of orthogonal polynomials under a mild condition. I now apply this method to
the U.S. earnings distribution.

From now on, ¥, is a 99-dimensional column vector (y;(0.01),...,%:(0.99))" representing
the log earnings distribution in the U.S. in the year ¢. Similarly, P, = (P,(0.01), ..., P,(0.99))

for all n. I consider the following model for y;:

Yt :Oét’opo+Oét,1P1—|—"'+Oét’NPN+ut,N (12)

= P(N)OGEN) + Ut,N,

where PN) = (P, ..., Py) and agN) = (au0,- .- ,th7N)/. The model can be understood
as a factor model with time-varying factors a;,,’s and corresponding loadings P,’s. I estimate
oy, using an ordinary least squares (OLS) regression for each ¢, while the results are similar
when y,P,/99 is used instead in light of Equation (L.1)). Note that y;P,/99 does not depend
on N. Similarly, the OLS estimates of the factors are not sensitive to N because P,’s are
mutually orthogonal in the population.

Figure shows y; and its fitted values for ¢ = 1978. Blue triangles depict yi973(p)
for p = 0.01,...,0.99, where these earnings are in 2013 real values. Black lines represent
the fitted values based on Equation , where the order of polynomial N is 0, 1, 3, and
9, respectively. Note that even relatively low-order polynomials, e.g., a cubic polynomial,
provide a reasonable approximation. When N = 9, the fit becomes almost perfect in the

tails as well as in the middle.

2Formally, P, is symmetric to (0.5,0) when n is odd, while it is symmetric around p = 0.5 for an even
n. One can prove it by induction using a recursion formula (6.3.1) in [Judd| (1998). In doing so, one should
bear in mind that P, there is defined on [—1,1] and not normalized to have a unit norm.



The results for other years are similar. The coefficient of determination R? of Equation
is greater than 95(99) percent in all years for N = 2(3) in Table [1.1} Furthermore,
the second-order orthogonal polynomial P, contributes to the fit by about 1.5 percent in
1980 and 0.5 percent in 2010. This implies that the log earnings distributions in the U.S.
have some asymmetric components, and the degrees of asymmetry have been declining. I
will further discuss the history of the degree and direction of asymmetry in Section [1.4.2]
Finally, the fit is almost perfect for N > 9. Therefore, I fix N at 9 below.

The estimated first-stage factors oy, from 1978 to 2013 for n being 0 to 5 are illustrated in
Figure[I.3] The zeroth order factor shifts every percentile parallelly, and therefore represents
the location of the log earnings distribution in the U.S. A fast rise in oy o during the late 1990s
and the early 2000s is consistent with the findings of Byrne, Fernald and Reinsdorf (2016))
and |Fernald (2015]) that labor productivity growth was exceptionally high at that time when
compared to the preceding and following periods. A secular increase in earnings inequality
is reflected in upward trends in the first- and third-order factors, where the third-order
factor focuses more on the tails than the first-order factor as is shown in Figure [I.I] While
the two factors exhibit broadly similar patterns before the Great Recession, oy 3 decreased
substantially after the Great Recession and did not bounce back to its pre-recession level,
whereas oy ;1 is about 0.88 in both 2008 and 2013. Finally, the magnitude of the second-order
factor implies that there exist some asymmetric components in the log earnings distribution.
However, the absolute value of the factor, and therefore the degree of asymmetry, has become
smaller.

In sum, a small number of factors suffice to describe the log earnings distribution in the
U.S. via the first-stage factor model . Furthermore, there exist some asymmetric com-
ponents, whose contribution to the shape of the distribution has been decreasing. However,
the correlation between «;, across n is non-zero, and therefore we can further reduce the

number of factors by exploiting the comovements of those first-stage factors.

1.3.3 Deep factors and loadings

This subsection introduces a second-stage factor model for oy ,’s, where I employ a princi-
pal component analysis (PCA) for estimation. I investigate the loadings of these principal
components on the log earnings distribution in the U.S. and conclude that three factors are

enough to describe the variation of the whole distribution. Furthermore, I document that



these factors are tightly related to the location, dispersion, and asymmetry (skewness) of the
distribution up to factor rotations.
The second-stage factor model describes the first-stage factors C(EN) in terms of “deep”

factors fi

agN) = a—|—bt+/\1ft71 + "'+)\Mft,M+Ut,M (13)
=a+ bt -+ A(M)ft(M) + Vg, M

where the second-stage loading \,, is a N+1-dimensional vector for all m, A(M) = (A, A,
and ft(M) = (fi1,---, frm)'. a and b are N + 1-dimensional vectors capturing for trends in
ay,'s. For example, when only the first element of b is non-zero, a linearly detrended zeroth
order factor oy is examined with the demeaned o ,,’s for n # 0 in the principal component
analysis. This corresponds to assuming a common linear trend to y; (p) for all p, where the
trend is based on the pure location factor oy affecting all the percentiles parallelly. On the
other hand, detrending oy, for other n’s, and thus having b whose elements other than the
first one are non-zero, imposes different slopes to each percentile, which are given by P(M)b.
Finally, the elements of ft(M) are normalized to have unit variances, where superscripts (V)
and (M) are not specified hereafter.

By combining Equations and , we have a representation of the log earnings
distribution y, based on the deep factors (f,,) and loadings (¥,,):

Yr = ¢ + VU fi +ny, (1.4)
where ¢, = P (a+bt), ¥V = (Vy,..., ¥y ) = PA, and n, = Pv; + uy. Also,
ft = (I)(L)ft_l + €¢, €t ~~ 'lZd (0, Q) s (15)

where L is the lag operator, ®(L) is a lag polynomial matrix, and €2 is a diagonal matrix.
The deep factors (f;,,) and second-stage loadings (\,,) are estimated from Model
by deriving principal components of a;,’s under specific assumptions on trends. Then the
deep factor loadings (V,,) follow directly from the fact that ¥,, = P\, for all m.
I first determine the number of meaningful factors in the log earnings distribution in the
U.S. For the purpose, Table shows eigenvalues corresponding to the leading principal

components, normalized by the sum of all eigenvalues under various assumptions on trends.
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This scree “table” illustrates the contribution of each factor f;,, to the variation in oy in
Equation . For example, when the first-stage factor oy, is directly investigated without
detrending, the deep factors f;i, fi2, and f;3 explain 91, 6, and 2 percent of the total
variance, respectively, where all the other principal components’ contribution is less than 1
percent in total. For the second case, I use the linearly detrended zeroth order factor a;,
and therefore b is proportional to a vector whose first element is one, and the other elements
are zero (e1). The third case is conditional on that f;; equals the detrended oy and therefore
A1 = e;. Because the principal components are derived from (a1, ..., x) without oy,
the corresponding row in Table begins with n = 2. The remaining two cases are for the
detrended ay,, for all m and the differenced first-stage factors Ay ,,, respectively.

Note that the first two factors f;; and f; o capture most of the variation in o and therefore
the log earnings distribution ;. For example, the contribution of f;; and f, 5 is greater than
90 percent in the second case. Furthermore, it seems to be sufficient to include just one more
factor to take account of most of the remaining variances. Deriving principal components
of y, directly from Equation yields almost identical results (e.g., the results for Case 6
based on Ay, is similar to that of Case 5).

Next, I turn to what these leading factors represent. I examine their factor loadings
V,, = P)\,, for Case 2 and 3 in Table while the results are similar for the other cases.
The top three panels in Figure are based on Case 2 (the linearly detrended zeroth order
factor oz o and the demeaned a4 ,,’s for n # 0). The solid lines depict PA,,, which is the effect
of a unit increase in f;,, on y; (p) for each p = 0.01,...,0.99. Here ), is identified as the
m-th eigenvector in the PCA times /Var (f;,), because f;,,’s are normalized to have unit
variance. In Figure [I.4] the first two deep factors seem to span the location and dispersion
effects in combination, while the other one is related to the skewness.

However, f; in Model is identified only up to rotation, because (VR') (Rf;) = ¥ f;
for any orthogonal matrix R. The dotted lines show an example of those loadings WR' on
a rotated factors Rf;. The dotted lines in the first two panels are obtained by rotating
(fi1, fi2)" and the third one is based on a rotation of (f;3, ft74)’. It is more clear with these

3Specifically, I find the rotation matrices in the following way. Let R2(¢) be a two-dimensional rotation
cos(¢) —sin(C)
sin(¢)  cos(¢)
(U1,Ps) Ry(¢1)'. T obtain ¢; by minimizing the dispersion in the effects of this rotated factor on differ-
ent percentiles, i.e., the variance of cos(¢1)¥; — sin(¢q)WPs. I calibrate (o for Ra((2) (ft73,ft’4)/ by making
argmin,, cos((2)¥3 —sin(¢2) ¥4 be around p = 0.69. This specific choice is related to the discussion in Section

L

matrix with an angle (, i.e., Ra(() = ( > For (fm,ftg)/, the rotated loadings become
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rotations that the first two factors jointly span the location and dispersion effects, while the
remaining variation is mostly about skewness.

The bottom three panels illustrate the results when I consider principal components of
(a1, ..., ap) conditioning on f;; being equal to the detrended ayo. When the first deep
factor is pinned down to a pure location effect that shifts all the log percentiles equally,
the leading component in the remaining variation becomes the dispersion, followed by the
skewness. Furthermore, the deep factor loadings, with rotations, are robust to specification
details on trends. This is evident when the top and bottom panels in Figure[T.4]are compared.

The results above have a powerful implication on how empirical studies with distribu-
tional considerations can be conducted. Because the location factor is highly correlated with
aggregate variables like real GDP per capita in a standard information set, adding a single
variable capturing the dispersion or inequality to the information set is enough to span most
of the variation in the earnings distribution. For example, one may include a log P90/P10
index of earnings ¥;(0.9) — 4,(0.1) to the information set to span the second deep factor
and take account of more than 90 percent of the variation in the distribution.ﬁ When more
precision is required, one may consider adding a measure of skewness. Most importantly,
carrying over the entire distribution is unnecessary.

This subsection investigated the second-stage factor model and the implied representation
of 1, in terms of the deep factors f; and loadings W. It was shown that a substantial dimension
reduction relative to the first-stage model is possible. The two leading principal components
can explain more than 90 percent of the dynamics in the whole log earnings distribution
in the U.S., where they reflect the location and dispersion components. Furthermore, the
remaining part is tightly related to a force affecting the skewness by impacting both tails in
the same direction. Therefore, it would be useful to have a distributional family featuring
these three factors for a systematic understanding of distributional issues. It would be even
better if the model is tractable like a log normal distribution, and a Pareto right-tail of

earnings is incorporated in the model.

4Indeed, the log P90/P10 index is highly correlated with the second deep factor f; 2. To see this, let ¢ be a
99-dimensional vector such that 'y, is the log P90/P10 index. From Equation (1.4)), I obtain Var(/y;—/¢;) =
ZTA,/L[:l B2, + Var(/n:), where 8 = (B1,...,Bwm) = V. Thus, the contribution of the m-th deep factor on
the log P90/P10 index can be measured by s,, = 82, /Var(/y; — t'c;). In Case 3, /¢, is a constant, s; = 0
by construction, and s = 0.98. Thus, the log P90/P10 index reflects the second deep factor quite precisely.
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1.4 A simple model of earnings distribution

I propose asymmetric Laplace distributions as a model of the log earnings distributions in
the U.S. in this section. An asymmetric Laplace distribution has a simple probability density
function (PDF) characterized by three parameters. A notable property of this distributional
family is that those parameters correspond to the three deep factors discussed in the previous
section. Furthermore, I show that the fit of the estimated distribution from the asymmetric
Laplacian family to the data (y;) is impressive. Finally, I illustrate how a conventional dy-
namic model for individual log earnings based on a Gaussian AR(1) process can be adjusted

to yield an asymmetric Laplace distribution.

1.4.1 Elementary properties of asymmetric Laplace distributions

I now define an asymmetric Laplace distribution and study basic properties of it. The
materials here are mostly borrowed from Chapter 3 and 6 in | Kotz, Kozubowski and Podgorski

(2001). Most of the proofs are omitted below, and an interested reader may refer to Kotz,
Kozubowski and Podgérski| (2001)).

Definition 1.2 (Asymmetric Laplace distribution). A random variable X has a univariate
asymmetric Laplace distribution if there exist parameters § € R, k > 0, and 0 > 0 such that

the probability density function of X has the following form

g(m)—@L exp(—%]m—eo, if x>0 (1.6)
o 1+ w2 exp(—@kx—@\), if x < 0.

The distribution of X is denoted by AL (0,02, k) J]

Among the three parameters, 6 shifts the location of the distribution without affecting
the shape. The second parameter o captures the dispersion. A larger o implies a more
dispersed distribution because the inputs to the exponential function decrease more slowly
as |x — 0] increases for a larger 0. Finally, x reflects the degree of asymmetry, or skewness.
For example, when x = 1, [ have a symmetric Laplace distribution with mean 6 and variance

0%. When & is less than 1, the distribution becomes skewed to the left. Note that if k < 1,

°k in Equation (1.6) is % in the notation of Kotz, Kozubowski and Podgérski| (2001). I change the
definition of this parameter to make an increase in k corresponds to an increase in a skewness coeflicient.
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—@ > —g. Therefore, for the same deviation of « from 6, g(z) is larger in the left-“wing”
(x < #) than in the right-wing (z > ), which implies a negative skewness.

Figure depicts PDFs of three different asymmetric Laplace distributions and a stan-
dard normal distribution. A dotted line is for a standard normal distribution, where a
dash-dot line represents a symmetric Laplace distribution with the same mean (0) and vari-
ance (1). The Laplace distribution has more probability masses around zero, which is the
value of its location parameter, and in both tails than the normal distribution. A left-skewed
density function, denoted by a solid line, is based on § = —2, 0 = 1, and Kk = 0.7 < 1. Fi-
nally, the last one is illustrated by a dashed line, where its € = 2, 0 = 2, and x = 1. Because
its o is greater than that of the other distributions, its PDF is more spread than the others.

Since the PDF g(-) in (1.6) is simple and tractable, so is its cumulative distribution
function (CDF), denoted by G(-).

Proposition 1.1. Let X ~ AL(0,0% k). Then

1— KdeX _ﬁx_e ll’>9,
Glz)=Pr(X <z)=1{ Ls pé 7 ‘) f = (1.7)
1+nz OXP <_T’i’$ - 0‘) if v < 0.

Specifically, the probability mass in the left-wing is given by

1
0)=Pr(X<0)= . 1.
GO) = Pr(X <0) = —— (1.9
And the inverse CDF also admits an analytic expression.
oK 1— .
Gfl(p) — _ﬁlog (I—GJE)@)) + 0 ZfG(9> S p S 1a (19)

2 log (g7) +0 if0<p<G(H).
Another important property of asymmetric Laplace distributions is its relationship to a

Pareto distribution.

Proposition 1.2. Let X ~ AL(0,02 k). Conditional on X being on the right-wing, i.e.,
X >0, U =exp(X) has a Pareto distribution.

Proof. For z > 0, Pr(X < z|X > 0) = Pﬁfaxf(f) = ng_)é(cgge) = 1 — exp(—&(x — 0)),
where £ = % Therefore, for u > exp(f), Pr(U < u|X > 0) = Pr(X <log(u)|X > 0) =

1-— (%W))é, which is a CDF of a Pareto distribution. O
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Proposition [1.2| implies that when the cross-section of log earnings has an asymmetric
Laplace distribution, earnings at the top have a Pareto tail. This is consistent with empirical
evidence in the U.S. and other countries (Atkinson, Piketty and Saez, [2011; Piketty and Saez,
2003).

Next, I turn to moments and the characteristic function. While (6, 02, k) parametrization
is intuitive, these results can be stated more succinctly with a different parametrization.
Proposition 1.3. Let X ~ AL(0,0% k) and pp = % (FL — %) Then

(i) BE(X) =0+ pu.

(ii) Var(X) = 0% + p?.

(iii) (Coefficient of skewness) E‘(/)i;f{g/)g)d =2 (Hsz/l’i f; 5. This increases monotonically from

—2 to 2 in k.

_ 4
(iv) (Coefficient of kurtosis) % —3=6— W

to 6 (when k is either 0 or oo).

It varies from 8 (when k =1)

(v) (Characteristic function) (1) = E(exp(itX)) = —2W07D__ for 7 € R.

1+i0272—ipr
For symmetric Laplace distributions, = 0 because x = 1. Then the mean and variance
are 0 and o2. When the distribution is skewed, both moments are adjusted accordingly via
. Proposition [1.3] (iii) demonstrates how « reflects the skewness of the distribution.
Another useful characteristic of asymmetric Laplace distributions is that it has a natural

extension to multivariate cases based on the characteristic function.

Definition 1.3 (Multivariate asymmetric Laplace distribution). A d-dimensional random
vector X has a multivariate asymmetric Laplace distribution (MAL) with parameters § € R,
a positive semi-definite matriz X € R™?, and p € R? if its characteristic function has the

form

exp(16'T)

= e RY. 1.10
14 3757 —ip't Jorm (1.10)

U(t) = E(exp(it' X))

I denote the distribution by MAL(O, %, u).

Note that univariate cases in Definition [L.2] are embedded in Definition [[.3l Similar to
Proposition [L.3] it can be shown that F(X) =6 + p and Var(X) = X + py'. Furthermore,
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an affine transformation of X also has a MAL distribution, similar to the multivariate nor-
mal family being closed under affine transformations. This property substantially enhances
tractability of linear dynamic models in Section[1.4.3] and allows for simple representations of
transitions between asymmetric Laplace distributions of log earnings in the U.S. in different

years.

Proposition 1.4. Let X ~ MAL(0,%, ). For a matriz I’ and a vector § with compatible

stzes,
X +86~MAL(TO+ 6, TS, Tp) . (1.11)

Proof. Yrxis(t) = E [exp {itt'(IT'X +9)}] = exp (it'd) E [exp {i(I"t)' X' }] = exp (it'd) ¥x (I"t).
Now replace 1y (I"t) with Equation (1.10)) and compare the result with the characteristic
function of MAL (T'0 + 0, I'ST7, T'p). O

1.4.2 Earnings distribution in the U.S.

The main finding in Section [I.3]was that there exist three factors in the log earnings distribu-
tion in the U.S. And I introduced a specific parametric family above whose three parameters
characterize the location, dispersion, and skewness, respectively. The purpose of this sub-
section is to show that an asymmetric Laplace distribution does fit the data remarkably
well. Furthermore, I document a secular trend in the skewness as well as the dispersion of
the cross-section of the log earnings, which is a novel finding up to my knowledge. I also
decompose growth rates of average earnings into parts due to each parameter.

I find asymmetric Laplace distributions AL(6;, 07, k) that best describe the U.S. earnings
data in years 1978 to 2013. Because |[Song et al.| (2018) set a minimum threshold (1) and drop
observations below it, T use a logarithm of translated earnings 7;(p) = log {exp(v:(p)) — v¢}
for all £ and pﬁ I estimate parameters for each ¢ by solving the following non-linear least

squares problem:

2

minZ{gt(p) ~ G (p; QtaUt,""Jt)} , (1.12)

where the inverse CDF G~! is from Equation (1.9)).

6Setting 14 at 0 deteriorates the fit only at the bottom (e.g., p < 0.04) without changing the other results
substantially.
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To clearly illustrate the fit of asymmetric Laplace distributions to the log earnings, I
focus on the real earnings data in 1978 in the U.S. In the top panel of Figure [1.6] each dia-
mond represent (log (%) or log (%(pel)) ,j[,]t(p)) for p = 0.01,...,0.99. T use log (%)
if p < G(6,), and therefore the log translated earnings 7:(p) lies in the left-wing. Otherwise,
U:(p) is plotted against log (%(51)) for the right-wing. A solid line is based on the fitted
distribution with a similar transformation. I obtain a piecewise linear graph in this manner
that characterizes an asymmetric Laplace distribution (see Equation (|1.9). It is impressive
to note the resemblance between the data and the model-induced distribution.

The bottom panel covers empirical and model-based CDFs of real earnings in 1978.
Diamonds depict several selected percentiles of earnings exp(y;(p)) in the data. A solid line
is for the CDF implied by the estimated asymmetric Laplace distribution of the log earnings,
whereas a dotted line presents the results for a normal distribution estimated similarly to
Equation . While the log normal distribution provides a reasonable approximation to
the data, it overestimates the CDF in the range between P20 and P75 and underestimates
in both tails. The log asymmetric Laplace distribution provides a better fit.

A major implication of the results above is that it suffices to keep track of three variables
0:, o4, and k; when handling the entire U.S. log earnings distribution. Each panel in Figure
illustrates these three parameters of the estimated asymmetric Laplace distributions
(Equation (1.12)) and the three factors that are inferred from the PCA (Equation (L1.3)).
For the PCA, I calculate the principal components conditional on f; 1 = a4 as is the case in
the second row in Figure . f1.3 is subject to a rotation explained in footnote [3| The ticks
on the left (right) vertical axis are for 6;, oy, and k¢ (fi1, fr.2, and fi3), which are denoted
by solid (dotted) lines.

A component of economic growth that is “neutral” to the dispersion or inequality is
captured by the location parameter Ht.ﬂ The dispersion parameter o; has a rising trend,
while it is rather muted during the late 1990s. This reflects a secular trend in earnings
inequality, which is documented by |[Autor, Katz and Kearney| (2008]), Piketty and Saez
(2003), and many others. While o; does not react sensitively to the Great Recession, the
asymmetry (skewness) parameter x; does decline after 2007. Until 2012, it does not return to
its pre-recession level, meaning that the Great Recession hurt the top and the bottom more

than the others, conditional on being employed. Furthermore, x; is less than one throughout

"A proportional change in everyone’s earnings does not affect measures of inequality such as Gini coeffi-
cient, top 10% share, P90/P10 index, coefficient of variation, etc.
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the sample periods. This implies that the U.S. log earnings distribution has more probability
mass in the left-wing and is left-skewed. However, the degree of asymmetry has been declining
as k; increases to one. The log earnings distribution in the U.S. is becoming more symmetric,
consistent with the finding in Section [I.3.2] The share of workers in the left-wing declined
from 71 percent in 1980 to 67 percent in 2013 when calculated using Equation , and the
average throughout the sample periods is about 69 percent.

Therefore, there is an important trend in the skewness as well as the dispersion of the
cross-section of log earnings. However, this trend does not appear in f; 3, which is based
on the PCA in Section [1.3.3] This is because the PCA allocate the correlated components
in both trends to f;» when orthogonalizing the factors. Therefore, f;3 looks almost like
a detrended k; up to a scale. Apart from that, (6;, 04, k;) shares a similar dynamic to
(fias fros fr3). Thus, the parameters of asymmetric Laplace distributions in this section
match the empirical factors I find in Section quite successfully.

The location parameter §; has a homogeneous effect on everyone in the economy. How-
ever, such a distribution-neutral component has not been a dominant driver of the aggregate
earnings growth in the U.S. For example, the slope of a fitted linear trend of 6, is only 43
basis points per year, which is too low relative to the growth rate of real GDP per capita.
Importantly, the other factors can also impact on the growth of average earnings. It is clear
that given the same mode (), a less left-skewed distribution with a larger x has greater av-
erage earnings. Furthermore, increasing the dispersion (o) in log earnings can raise average
earnings.

I provide a decomposition of the growth rate of average earnings into components based on
each parameter. Suppose Y; represent a cross-section of earnings in the year t: Y; = exp(y;) =
exp(9:) + 4. Similar to Proposition |1.3[(v), one can show that E(Y;) = % + 14, where
e = % (/@t — H%) This average earnings per worker grew at a 0.93 percent annual rate
on average from 1981 to 2013 (Table [1.3). E(Y;|o1, k1) calculates this quantity under the
assumption that o and x do not change from their 1981 values. Therefore, by comparing
E(Yi|oy, k1) in 1981 and 2013, we can detect the contribution of 6; on the growth of average
earnings per worker. The growth rate of this quantity is only 26 basis points, taking up only
28 percent of the total average growth rate of E(Y;). E(Y;|k1) is similar, but it fixes only r;

enabling us to assess the effects of g;. A rise in 0; explains an additional 16 basis points in

8E(Y,") exists when —‘f—ft <7< Y2 which is satisfied for all ¢ in the sample when 7 = 1.

otht’
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the growth rate (0.42% - 0.26%), and 60, and o; together explain 44 percent of the growth
rate of F(Y;). Therefore, more than half of the growth in average earnings is based on a rise
in the skewness of the log earnings distribution (k;). In other words, a thickening right-tail
of earnings distribution was a major driver of a rise in average earnings. When calculated
similarly, average earnings of the bottom 50% grew at a 0.28 percent annual rate, which is
much lower than 0.93 percent’| In short, different income groups in the U.S. had starkly
diverging experiences on economic growth (Piketty, Saez and Zucman, [2018)).

On the other hand, the growth rate of real GDP per capita is 1.71 percent, which is almost
a double of that of E(Y;), 0.93 percent. This huge difference is originated mostly from two
sources: a faster rise in the number of workers in the SSA’s data than the population and a
declining labor share in a total income (Elsby, Hobijn and Sahin) 2013; Karabarbounis and
Neiman, [2013; [Koh, Santaeulalia-Llopis and Zheng), 2018)). The number of workers in the
sample of |Song et al. (2018) grew faster than population on average by 0.34 basis points
per year. Furthermore, labor’s shares in gross domestic income decrease on average by 0.41
percent per year. These two changes can lower the growth rate of average earnings relative
to that of real GDP per capita by 75 basis points per year, which account for almost all
differences. Therefore, the growth rate of real GDP per capita may overestimate a rise in
average earnings and experiences of workers belonging to the left-wing of the log earnings
distribution.

So far, we saw that asymmetric Laplace distributions successfully match the log earnings
data in the U.S. I also documented a trend in the log earnings distribution becoming less
left-skewed as well as trends in the dispersion and location. Furthermore, a simple functional
form of the PDF of the asymmetric Laplacian family enabled an easy decomposition of the
growth of average earnings into different factors and different income groups. While the
analysis in this subsection is mostly based on a repeated application of static models to
the earnings data in each year, and therefore highlights tractability of asymmetric Laplacian
family in a static setup, this distribution family can provide a useful framework in a dynamic

setup too.

9By combining Equations ((1.6)), (1.8), and (1.9)), for p < G(#), one can show that E(Y |bottom 100p%) =
g

e {GXP(9) [p(1+ %)) —exp (—@9)} v
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1.4.3 A dynamic model

This subsection provides a simple, linear dynamic model of individual log earnings whose
cross-sectional distribution always has an asymmetric Laplace density. I start from a conven-
tional Gaussian AR(1) model and make a slight adjustment to achieve asymmetric Laplace
distributions. In doing so, I rely on Proposition [1.4] which allows an easy analysis with
substantial tractability.

I consider the following standard AR(1) model of individual log earnings:

Yigr1 = (L= p)E(yiz) + pyie + €11, (1.13)

where €, 4 is an idiosyncratic innovation for all individuals . When y;, and €, ;41 are jointly
normally distributed (e.g., when each of them has a normal marginal density, and they are
independent, they become jointly normally distributed), y; ;41 also has a normal distribution.

A similar property holds for asymmetric Laplacian random variables.

Proposition 1.5. Suppose that

i 0 ; Z 0
Yir | mac | [ A Uti Pt+1jt0t+1 ’ 7Mt ’ (1.14)
€it+1 9t+1 Pt+10t0¢+1 Oi41 Hi+1
for alli. Then
: 0 2
Yit ~ MAL t 7 Oy Ut—';l,lQ 7 et 7 (1.15)
Yit41 s 41 Ot+1,12 Oi4q et

where

Or1 = pOy + 01 + (1 — p) (0 + 12), (1.16a)
Ot+112 = POE + Pri1010141, (1.16b)
Ofey = 014y + 20141000141 + P07, (1.16¢)
Pt1 = Pt + [t (1.16d)

\/§0t+1
\/2‘7t2+1 +#?+1 THt+1

Specifically, y; o1 ~ AL(Op41, 0t2+17 Kiy1) where ki =
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10 0
Proof. Apply Propositionto Equation ([1.14) with I' = ( 1) and § = ((1 ) )
P —-p

(0 + 1)
Il

Therefore, we can make the cross-section of log earnings always follow an asymmetric
Laplace distribution in this manner given the AR(1) model (1.13). This further implies
that the right-tail of the earnings distribution follows a Pareto distribution in every period
(Proposition [1.2). [Gabaix et al| (2016 show that with normal innovations, the canonical
model fails to achieve such a property. A simple refinement in Proposition is
to consider innovations having distributions with fatter tails than Gaussian tails without
changing the basic structure of Model . This is also consistent with empirical findings
in (Guvenen et al|(2015) that earnings shocks are fat-tailed (and left-skewed). Instead, one
may develop a model of fat-tailed innovations by mixing two Gaussian processes, usually
understood as transitory and permanent earnings (Blundell and Preston) [1998; Kaplan,
Moll and Violante, 2018; [Pistaferri, |2001). Asymmetric Laplacian innovations in Model
provide a different framework in which either large (seemingly permanent) shocks or
small (seemingly transitory) shocks are drawn from a single distribution. Note that Laplace
distributions have more probability densities both around the mode () and in tails than
normal distributions (see Figure [L.5]). Therefore, a mixture of two normal distributions
with a small and large standard deviation can be closely approximated by a single Laplace
distribution.

Next, I turn to the estimation of newly introduced parameters 6,, p;, &, fi, and &, where
€it ™~ .A,C(ét, o2, k). In doing so, I fix p in Equation at 0.9136, which is an estimate in
Floden and Lindé| (2001) based on U.S. panel data. To recover the parameters with a ‘bar’
from the estimates of 0,, o;, Ky, and p; = % (/@t — H%) obtained in the previous subsection,

I assume that y;, and €; ;41 are not correlated.

Proposition 1.6. Suppose that Cov(y; s, €;441) = 0. Then

Ori1 =01 — 0, — (1 — p)ps, (1.17a)
Ote1 = Opyr + 201t (pter — ppe) — p*o7, (1.17b)
Hiv1 = fav1 = Pl (1.17¢)

B V26111
t+1 — )
V20 + By — Mg
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i1 = _ut(um_— Pt/ﬁt)' (1.17¢)
Ot0¢+1

Proof. 0,4, and ji,, follow directly from Equations (T.16a]) and (I.16d), respectively. Be-
cause C’ov(ym, €z‘,t+1) = Pt+1010¢41 + fefir1 = 0, Pr410441 = _%ﬁ“ = _%(Nt—&-l - ptl/«t)‘ By

plugging the last expression to Equation (1.16d)), I derive ;.1 and p;11. K11 is obtained by

inverting the definition of y in terms of x given o. O

The above parameters describing idiosyncratic risks are plotted in Figure [I.§ with the
implied mean and standard deviation of ¢;; being equal to 6, + ji; and /57 + ji. Correlation
between y;;—1 and y;, is based on Equation . Because k; is less than 1 (a solid line
in the top-right panel), distributions of idiosyncratic innovations are left-skewed. However,
it is more close to a symmetric distribution than y;,, because x; < 0.8 < k; < 1 for all ¢.
Given less-skewed innovations in every year, the log earnings distribution is becoming more
symmetric as is discussed in Section m E(€;4), depicted in the bottom-left panel by a
sold line, is procyclical, conforming to intuitions. &; shows an upward trend (a dotted line
in the top-left panel), which leads to a positive trend in the standard deviation of ¢;; (a
dotted line in the bottom-left panel) and therefore the dispersion of y; ;. Idiosyncratic risks
should increase to match rising inequality in the data using Model . As a result, the
correlation between y;; and y; ;.1 reduces.

This subsection serves an illustrative purpose of explaining how to handle linear dynamic
models with asymmetric Laplace distributions. The main takeaway from Proposition [1.5|and
[1.6]is that one can work with the same logic and idea that are valid for normal distributions
while maintaining asymmetric Laplace distributions for the cross-section of log earnings.

Applications in the last two subsections deal with the U.S. log earnings distribution
mainly with a focus on the fit and tractability of asymmetric Laplace distributions. Further-
more, I document trends in the skewness factor as well as the location and dispersion factors
of the log earnings distribution. However, certain aspects of distributional issues may be
more relevant in the short-run as they interact with the aggregate economy at the business
cycle frequencies (Auclert, 2017 |Kaplan, Moll and Violante, 2018; Hagedorn, Manovskii and
Mitman, [2019).
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1.5 Cyclical properties of the earnings distribution

This section covers basic statistics characterizing the short-run dynamics of the earnings
distribution in the U.S. in relations to business cycles. I investigate cyclical properties of the
three underlying factors of the log earnings distribution in the U.S. and their implications
on the first four moments of the cross-section of log earnings.

To isolate the cyclical components, I employ Hodrick-Prescott (HP) filters (Hodrick and
Prescott, 1997). 1 calibrate the smoothness parameter of the filter at 6.25 following the
suggestion of Ravn and Uhlig| (2002)) for annual data. The results do not change qualitatively
when different methods for detrending are used, or the smoothness parameter for the HP
filter is 100.

Ten variables are analyzed in Table log real GDP per capita, 6;, o;, k;, moments
of AL(6;,0?, k) including mean, standard deviation, skewness coefficient, and kurtosis co-
efficient, correlation between y;;_; and y;, implied by Equation , and log P90/P10
index in the data (y:(0.9) — 4:(0.1)). The second column displays standard deviations of the
HP-filtered variables. For example, the standard deviation of 6, is 0.80% = 0.008. The next
three columns are for correlations between log real GDP per capita at ¢ + h and the corre-
sponding variable at t. When interpreting the results, one should bear in mind that these
moments are unconditional quantities aggregating the effects of various structural shocks.

Among the three underlying factors, only the asymmetry (skewness) factor &, is procycli-
cal. Its correlation with real GDP per capita is 33%, where 6; and o; are almost orthogonal
to log real GDP per capita. When I use the smoothness parameter of 100, the correlation
between 6, and log real GDP per capita at ¢ becomes 39%, implying procyclicality of the
location factor. Even in this case, o, is very weakly correlated with output dynamics. There-
fore, degrees of asymmetry, or skewness is the major driving force of cyclical fluctuations of
the earnings distribution. This is in line with Guvenen, Ozkan and Song| (2014) emphasizing
the importance of time-varying skewness of idiosyncratic risks with the business cycles.

The procyclicality of k; (and arguably 6;) leads to procyclical movements in the mean of
the estimated log earnings distribution AL(6;, 0?7, k;). This is because as r; increases, more
workers lie in the right-wing of the distribution (see Equation and Proposition [1.3] (i)).
This further yields a positive correlation between the skewness coefficient (Proposition
(iii)) and log real GDP per capita. On the other hand, the standard deviation and kurtosis
coefficient tend to decrease in recessions (Proposition (ii) and (iv)). Because r; < 1,
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the log earnings distribution is left-skewed. As k; increases in expansions, the distribution
becomes less left-skewed, or closer to a symmetric distribution. As probability densities
move from a thicker left-wing to a thinner right-wing, the number of workers with extremely
negative log earnings reduces while that of workers with (relatively) moderately positive log
earnings rises. Therefore, the standard deviation and kurtosis coefficient decrease. As an
extremely large downward movement becomes less likely in a similar vein (k; in Figure is
procyclical), the correlation between y; ;1 and y; ; implied by the model in Section rises
in expansions. This implies that a recession is when y;;_; and y;, become less correlated,
consistent with the idea of counter-cyclical earnings risks (Guvenen, Ozkan and Song), 2014}
Storesletten, Telmer and Yaron, 2004)).

In short, most of the cyclical variations in the moments of log earnings distributions
are driven by fluctuations in ;. By tilting both tails and changing probability densities
at large deviations from the center of the distribution, x; impacts on the cross-sectional
moments substantially. However, it is less clear whether the middle part of the distribution
is also similarly affected by those forces inducing such dynamics in the tails. Indeed, the log
P90/P10 index (y:(0.9) — 4:(0.1)) is only weakly correlated with log real GDP per capita
unlike the other cross-sectional moments in Table [I.4] This is consistent with the findings
in footnote 4| that the log P90/P10 index is tightly related to the dispersion factor oy, which
is almost acyclical. In other words, the cyclical properties of the log earnings distributions
in Table [I.4] are due to the tail dynamics.

1.6 Conclusion

Understanding distributional issues is important because individual heterogeneity matters
for not only individual decisions but also the aggregate economy. While cross-sectional distri-
butions are complicated, high-dimensional objectives, I show that it is possible to represent
the whole distribution with a small number of the underlying factors. The log earnings
distribution in the U.S. have only three major factors, each of them measures the loca-
tion, dispersion, and skewness, respectively. I propose asymmetric Laplace distributions as
a simple model of the log earnings distribution. It is parametrized by these three factors
and has a tractable functional form in both static and dynamic environments. Furthermore,
asymmetric Laplace distributions achieve a better fit to the data than conventional Gaussian

models.
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Given the impressive quality of the three-factor model of the log earnings distribution,
shedding lights on the underlying economic mechanisms which enable such a representation
is an important direction for future research. Developing a method for finite state Markov-
chain approximations of dynamic models such as Rouwenhorst, (1995), Tauchen| (1986)) and
Tauchen and Hussey (1991), but are tailored to asymmetric Laplace distributions is another
topic that would be useful for applied macroeconomic research. From a theoretical angle,
while being speculative, the characterization of a probability measure by a sequence of real
numbers in Section [I.3.1 might provide a convenient technique when dealing with infinite-
dimensional state-variables in dynamic systems (e.g., a cross-section of wealth in incomplete
market models a la Krusell and Smith| (1998))).
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Table 1.1: R? of the first stage factor models with a different N.

Year / Order 1980 1990 2000 2010
N=1 0.9457 0.9421 0.9444 0.9616
N =2 0.9616 0.9609 0.9528 0.9667
N=3 0.9943 0.9954 0.9946 0.9966
N =4 0.9945 0.9957 0.9947 0.9966
N =5 0.9986 0.9991 0.9990 0.9991
N=9 0.9999 0.9999 0.9999 0.9999

Notes: Equation includes an intercept on the right-hand side because Fy = 1, and
therefore the coefficient of determination R? is defined in a usual manner. When N = 0,
R? is zero by definition. With a relatively small number of orthogonal polynomials, we can
approximate the log earnings distribution quite closely. For example, the R? of Equation
in 1980 when a third order polynomial (N = 3) is employed is greater than 99 percent.
Furthermore, the second-order orthogonal polynomial P, makes some contributions to
the fit, which implies that log earnings distributions in the U.S. have some asymmetric
components. Finally, the fit is almost perfect for N > 9.
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Table 1.2: Scree table.

m=1 m =2 m=3 m=4+

Case 1: no detrending (b = 0) 91 6 2 1
Case 2: detrended a (b is proportional to e;) 47 45 7 2
Case 3: f;1 = detrended oy (A = €1) - 82 12 6
Case 4: detrended «y,, for all m 78 15 5 2
Case 5: differenced oy, (Ao = Afy + vy) 58 28 10 4
Case 6: differenced y; (Ay, = U f, + 1) 60 27 9 4

Notes: This table is about the contribution of each factor f;,, to the variation in oy in Equation
based on principal component analyses. For example, when the first-stage factor o ,, is directly
investigated without detrending, the deep factors fi 1, fi2, and f; 3 explain 91, 6, and 2 percent of
the total variance, respectively, where all the other principal components’ contribution is less than
1 percent in total. For the second case, I use the linearly detrended zeroth order factor oo by
assuming that b is a vector whose first element is one and the other elements are zero (e;). The
third case is conditional on fi; being equal to the detrended o, and therefore A\; = e;. Because
the principal components are derived from (ay 1, ..., o, N)/ without a4, the corresponding row in
Table begins with n = 2. The remaining two cases are for the detrended o, for all m and
the differenced first-stage factors Aoy, respectively. Note that the first two factors f;; and fi 2
capture most of the variation in o and therefore the log earnings distribution ;. For example, the
contribution of f;1 and f;o is greater than 90 percent in the second case. Furthermore, it seems
to be sufficient to include just one more factor to take account of most of the remaining variances.
Deriving principal components of y; directly from Equation yields almost identical results (e.g.,
the results for case 6 based on Ay, is similar to that of case 5).
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Table 1.3: Decomposition of the growth from 1981 to 2013.

Variable E(Y;) E(Yi|o1, k1) E(Yi|k1) RGDP per
capita
Units 2013 USD 2013 USD 2013 USD 2013 USD
1981 39,388 39,388 39,388 30,661
2013 53,121 42,800 44,994 53,045
Avg. growth rate (%) 0.93 0.26 0.42 1.71
Decomposition (%) 100 28 44 183
Variable Population SSA Sample  Population / Labor’s Share
SSA Sample
Units Millions Millions % %
1981 230.0 55.5 414 47.7
2013 316.4 85.2 371 41.9
Avg. growth rate (%) 1.00 1.34 -0.34 -0.41
Decomposition (%) 107 143 -37 -43

Notes: Yy represents a cross-section of earnings in the year t: Y; = exp(y¢) = exp(g:) + 1. Similar
to the characteristic function in Proposition (v), one can show that E(Y;) = o) Vg,

Lo
where p; = % (Ht — ﬁ%) This average earnings per worker grew at a 0.93 percent annual rate on
average from 1981 to 2013. E(Y;|o1, k1) calculates this quantity under the assumption that o and
x do not change from their 1981 values. Therefore, by comparing E(Y;|o1, /1) in 1981 and 2013, we
can detect the contribution of 6; on the growth of average earnings per worker. The growth rate of
this quantity is only 26 basis points, taking up only 28 percent of the total average growth rate of
E(Y;). E(Y:|k1) is similar, but it fixes only x; enabling us to assess the effects of 0. A rise in oy
explains an additional 16 basis points in the growth rate (0.42% - 0.26%), and 6; and o, together
explain 44 percent of the growth rate of E(Y;). Therefore, more than half of the growth in the
average earnings is based on a rise in the skewness of the log earnings distribution (k¢). On the
other hand, the growth rate of real GDP per capita is 1.71 percent, which is almost a double of that
of E(Y;). This huge difference is originated mostly from two sources: a faster rise in the number
of workers in the SSA’s data than the population and a declining labor’s share in a total income.
The number of workers in the sample of Song et al.| (2018)) grew faster than population in the U.S.
by 0.34 basis points per year. Furthermore, labor’s shares in gross domestic income decrease by
0.41 percent on average per year. These two change can lower the growth rate of average earnings
relative to that of real GDP per capita by 75 basis points per year, which account for almost all
differences.
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Table 1.4: Cyclical properties of the log earnings distribution in the U.S.

Unit: % std(-) corr(log RGDP per capita at t + h, -)
h=-1 h=0 h=1
log RGDP per capita at ¢ 1.23 31 100 31
Factors
Location (6;) 0.80 -3 4 -25
Dispersion (o) 0.97 -22 -4 12
Asymmetry (k) 0.65 23 33 19

Moments of AL (6, 02, k)

Mean 1.04 42 o1 0
Standard deviation 0.71 -b8 -38 0
Skewness coefficient 2.15 24 34 19
Kurtosis coefficient 4.31 -23 -33 -19
corr(Yit—1,Yit) 0.69 7 41 41
Log P90/P10 index 1.35 0 15 -5

Notes: Ten variables are analyzed in Table [I.4k log real GDP per capita, 6;, oy, £, moments of
AL(0, 02, ki) including mean, standard deviation, skewness coefficient, and kurtosis coefficient,
correlation between y; ;1 and y; ; implied by Equation , and log P90/P10 index in the data
(y:(0.9) —4:(0.1)). All the variables are HP-filtered where the smoothness parameter is 6.25. The
sample period is from 1978 to 2013. The second column displays standard deviations of the HP
filtered variables. For example, the standard deviation of 6; is 0.80% = 0.008. The next three
columns are for correlations between log real GDP per capita at ¢ + h and the corresponding
variable at .
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Orthonormal polynomials, P,(p)
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Figure 1.1: Orthogonal polynomials, P, (p).

Notes: Py =1and P;(p) = V12(p—0.5) as discussed in Section P,, P3, and P, are represented
by a dotted line, a dashed line, and a solid line with diamonds, respectively.
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Goodness-of-fit of the first-stage factor model, 1978
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Figure 1.2: Goodness-of-fit of the first-stage factor model, 1978.

Notes: Blue triangles depict yi978(p), log percentiles of earnings in 1978 for p = 0.01,...,0.99.
These earnings are in 2013 real values. Black lines represent the fitted values based on Equation
, where the order of polynomial N is 0, 1, 3, and 9, respectively. Note that even relatively
low-order polynomials, e.g., a cubic polynomial, provide a reasonable approximation. When N =9,
the fit becomes almost perfect in the tails as well as in the middle.
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Oth order factor oy 1st order factor oy 2nd order factor oy
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Figure 1.3: First-stage factors oy, for n =0,...,5 when N = 9.

Notes: Each panel illustrates the first-stage factors oy, in Equation for each n from 0 to
5. The order of polynomial on the right-hand side N is 9. The zeroth order factor represents
the location of the log earnings distribution in the U.S., where the rising trend captures economic
growth. The secular rise in earnings inequality is reflected in upward trends in the first- and third-
order factors, where the third-order factor focuses more on the tails than the first-order factor as
is shown in Figure [I.I] The magnitude of the second-order factor implies that there exist some
asymmetric components in the log earnings distribution. However, the absolute value of the factor
has become smaller, and therefore the degree of asymmetry has been declining.
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Figure 1.4: Deep factor loadings PA,, for m = 1, 2, and 3 with and without factor
rotations.

Notes: The top three panels are based on Case 2 in Table[I.2] where the linearly detrended zeroth
order factor oy o are investigated in Model and the other oy ,’s are demeaned. The solid lines
depict PA;,, which is the effect of a unit increase in f;,, on y; (p) for each p = 0.01,...,0.99.
Here A, is identified as the m-th eigenvector in the PCA times y/Var (fim), because fi’s are
normalized to have a unit variance. However, in Model , ft is identified only up to a rotation,
because (VR') (Rf:) = W f; for any orthogonal matrix R. The dotted lines show an example of
those loadings WR' on a rotated factors Rf;. The dotted lines in the first two panels are obtained
by rotating (fi1, fr.2)" and the third one is based on a rotation of (f; 3, fi4)’. The bottom three
panels are similar, but illustrate the results for Case 3 in Table [[.2] That is, I derive principal
components of (a1, ... ,oth)/ conditioning on f; 1 being equal to the detrended o g.
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Pdf of AL(#, 0%, k) and N(0,1) distributions
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Figure 1.5: Probability densities of AL(#, 0?2, k) and a standard normal distribution.

Notes: This figure depicts four different PDFs. A dotted line is for a standard normal distribution,
where a dash-dot line represents a symmetric Laplace distribution with the same mean (0) and
variance (1). The Laplace distribution has more probability masses around zero, which is the value
of its location parameter, and in both tails than the normal distribution. A left-skewed density
function, denoted by a solid line, is based on # = —2, 0 = 1, and k¥ = 0.7 < 1. Finally, the last one
is illustrated by a dashed line, where its § =2, 0 =2, and k = 1.
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Goodness-of-fit of AL(0;, 02, kt), 1978
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Figure 1.6: Goodness-of-fit of asymmetric Laplace distributions to the U.S. earnings
data.

Notes: In the top panel, each diamond represent (log (%) or log (%(51)) ,g]t(p)) for p =

0.01,...,0.99 and t = 1978. I use log (%) if p < G(01), and therefore the log translated earnings
1-G(61)

1—
solid line is based on the fitted distribution with a similar transformatiog. In this manner, I obtain
a piecewise linear graph that characterizes an asymmetric Laplace distribution (see Equation )
The bottom panel covers a CDF of real earnings in 1978 in 2013 real values. Diamonds depict several
percentiles of earnings exp(y;(p)) in the data. A solid line is for the CDF implied by the estimated
asymmetric Laplace distribution of the log earnings, whereas a dotted line presents the results for
a normal distribution estimated similarly to Equation . While the log normal distribution
provides a reasonable approximation to the data, it overestimates the CDF in the range between
P20 and P75 and therefore underestimates in both tails. The log asymmetric Laplace distribution
provides a better fit.

Ji(p) lies in the left-wing. Otherwise, 7;(p) is plotted against log ( ) for the right-wing. A

35



Location: 6; and f; Dispersion: o; and fi

10.8 10.45 1.15 2
1075 110.4 111 11
110.35 1.05 10
10.7 1
110.3 1r 1-1
10651 11025 0.95F 1-2
10.6 : : : : 10.2 0.9 : : : : -
1980 1990 2000 2010 1980 1990 2000 2010
Year Year
0.7 Asyn‘lmetry: Ht.??d fis 5
0.7 11
0.68 10 Asymmetric Laplace (Left vertical axis)
-------- PCA (with rotations, Right vertical axis)
0.66 1 1-1
0.64r1 1-2
0.62 Il Il Il Il -
1980 1990 2000 2010
Year

Figure 1.7: Parameters of asymmetric Laplace distributions and factors based on the
PCA.

Notes: Each panel illustrates the three parameters of the estimated asymmetric Laplace distribu-
tions (Equation (1.12))) and the three factors that the PCA (Equation (1.3))) induces. For the PCA,
I calculate the principal components conditional on f; 1 = oy as is the case in the second row in
Figure ft,3 is subject to a rotation explained in footnote [3| The ticks on the left (right) vertical
axis are for ¢, oy, and k¢ (fi1, fi2, and fi3), which are denoted by solid (dotted) lines.
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Figure 1.8: Parameters for idiosyncratic innovations and implied moments.

Notes: 0y, &4, Ry, and pr are constructed as explained in Proposition Mean and standard
deviation of ¢;; equal 0, + iy and \/63 + ﬂ%. Correlation between y;;—1 and y;; is based on
Equation . Because k; is less than 1 (a solid line in the top-right panel), distributions of
idiosyncratic innovations are left-skewed. However, it is more close to a symmetric distribution
than y; ¢, because r; < 0.8 < Ky < 1 for all £. Given less-skewed innovations in every year, the log
earnings distribution is becoming more symmetric as is discussed in Section E(eiy), depicted
in the bottom-left panel by a sold line, is procyclical, conforming to intuitions. o; shows an upward
trend (a dotted line in the top-left panel), which leads to a positive trend in the standard deviation
of €+ (a dotted line in the bottom-left panel) and therefore the dispersion of y;;. Idiosyncratic
risks should increase to match rising inequality in the data using Model . As a result, the
correlation between y; ; and y; ;1 reduces.
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Chapter 2

Forecast Error Variance
Decompositions with Local

Projections

2.1 Introduction

Macroeconomists have been long interested in estimating dynamic responses of output, in-
flation, and other aggregates to structural shocks[] While many analyses use vector autore-
gressions (VARs) or dynamic stochastic general equilibrium (DSGE) models to construct
estimated responses, an increasing number of researchers focus on a single structural shock
and employ single-equation methods to study the dynamic responses. This approach allows
concentrating on well-identified shocks and leaving other sources of variation unspecified. In
addition, these approaches often impose no restrictions on the shape of the impulse response
function. As a result, the local projections (LP) method (Jorda, [2005; Stock and Watson),
2007)) has gained prominence in applied macroeconomic research.

The properties of impulse responses estimated with these methods are well studied (see,
e.g., \Coibion, 2012; Kilian and Kim) [2011)), but little is known about how one can reliably
estimate the quantitative significance of shocks in the single-equation framework. While some
methods for constructing the forecast error variance decompositions (FEVDs) have been

suggested, it usually has been done without investigation of their econometric properties,

!This chapter is based on joint work with Yuriy Gorodnichenko.
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especially for empirically relevant sample sizesﬂ As a result, the vast majority of studies
using single-equation approaches do not report the FEVD for the variable of interest, and
hence one does not know if a given shock accounts for a large share of variation for the
variable.ﬁ This practice contrasts sharply with the nearly universal convention to report
FEVDs in VARs and DSGE models. In this paper, we propose and study finite-sample and
asymptotic properties of a method to construct forecast error variance decompositions in the
local projections framework.

We show that local projections lead to a simple and intuitive way to assess the contri-
bution of identified shocks to the variation of forecast errors at different horizons. While
there are several options to implement this insight, we mostly focus on an estimator based
on the coefficient of determination, or R?. To illustrate the properties of this method, we use
several data generating processes (DPGs), including the Smets and Wouters| (2007) model.
These DGPs cover main profiles of FEVDs documented in previous works. We show that
estimated contributions to the variation of forecast errors may be biased in small samples
and one should use bootstrap to correct for possible biases in the FEVDs estimated by local
projections. We also show that, in simulations, our estimator performs better than alter-
native approaches based on sums of squared estimates of impulse responses. We further
illustrate the performance of our method with actual data and commonly used identified
shocks. In short, our contribution is to develop a new estimator of FEVDs and to assess
finite-sample properties of our estimator and alternative estimators.

We assume in this paper that the researcher has a series of identified shocks. However,
these shocks may be measured with error in practice because, e.g., they are estimated rather
than directly observed. We show that our estimator of FEVDs is downward biased when
the shocks are imperfectly observed. Thus, our point estimates are conservative and likely
provide a lower bound. In a concurrent and complementary work, [Plagborg-Mgller and
Wolfl (2018a) provide set-identified FEVDs given measurement errors in the local projec-

tions framework. Their partially identified untestable bounds could be useful tools for the

2For example, [Jorda| (2005) suggests an estimator close in spirit to LP-A and LP-B estimators that
we cover in Section and Appendix B. Our baseline estimator of FEVDs performs better than these
estimators for empirically relevant sample sizes. Another method is to compute FEVDs by using VARs that
directly include a structural shock (Plagborg-Mgller and Wolf, [20185). While this method identifies the
same population FEVDs; it requires a large number of lags (Baek and Lee, [2019)), a feature that may be
too costly in practice given the curse of dimensionality in VARs and the noise generated by many estimated
parameters.

3Coibion et al. (2017) is among the very few papers reporting FEVDs based on the local projection
method.
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researcher who is interested in upper bounds of the FEVDs.

The rest of the paper is structured as follows. Section [2.2|1ays out a basic setting to derive
the estimator. Section [2.3]introduces our estimator and illustrates its econometric properties.
Section presents simulation results for bivariate and multivariate settings. Section
applies our method to measuring the contribution of monetary policy and productivity shocks
to the forecast error variance of output and inflation in the local projections framework.

Section [2.6] concludes.

2.2 Basics of the forecast error variance decomposition

Consider a generic setup encountered in studies using local projections. Let y; be an en-
dogenous variable of interest. An identified white-noise shocks series {z;} has mean zero and
variance o2. We assume that variation in y due to z is represented by ¥, (L)z; = 322, Vs iZ—i,
where coefficients {¢,;} provide us with the impulse response function of y to z.

The forecast error for the h-period ahead value of the endogenous variable is given by

Jeenji—1 = (Y — Ye-1) = Plyeen — ye-1/21], (2.1)

where Plyiin — yi-1|Q4—1] is the projection of y;y, — y4—1 on the information set Q1 =
{Ay 1,21, AYs_2,22}. To keep the exposition as simple as possible, we focus only on a
single shock and a single endogenous variable for now, but in Section we consider the
case where the information set includes other (“control”) variables. We can decompose the

forecast errors due to innovations in z and other sources of variation as follows:

feahft—1 = V2 02e4n + -+ Vo n2e + Vepnpe—1, (2.2)

where v,y ;-1 is the error term due to innovations orthogonal to {2, zi41, . . ., 2} and Q4.
Following Sims| (1980), we can define the population share of the variances explained by

the contemporaneous and future innovations in z; to the total variations in fiyp;—1:

5, = Var(,ozien + -+ Vo n2)
Var(ft+h|t—1)

(2.3)
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In what follows, we propose and evaluate a method to estimate s; based on equation ([2.3)).

Note that, if we use definitions of [Plaghborg-Mgller and Wolf| (2018a), the object of our
analysis is the forecast variance ratio. Although this definition of s, seems natural, one
should bear in mind several caveats. First, s, depends on §;: adding more control variables
changes the population parameter s; (see Section . Second, the forecast error variance
decomposition for a structural VAR model or a DSGE model is usually defined given an
information set which includes all structural shocks, while s;, above is purely based on the
observables. These two definitions might not coincide if two information sets differ. For
example, if a data generating process is not invertible for structural shocks (the shocks are
not recoverable from the history of observable variables), forecast variance ratio is different

from variance decomposition (see Plagborg-Mgller and Wolf, 20184, for details on this point).

2.3 Estimator

In this section, we introduce our estimator of FEVDs using the coefficient of determination, or
R? of local projections. We discuss asymptotic properties of our estimator and address issues
that may be encountered in practice. Those issues include measurement errors in z;, small-
sample refinements with a focus on biases, and other control variables in the information

set.

2.3.1 R? method

Let Z" = (2zi4n,...,2). It can be shown with some algebra that equation (2.3) can be

written as

-1
Cov(fiimi1, 20) [Var(2!)| Cov(Zl, frinp)
Sy =
" Var(feni-1)

. (2.4)

In the numerator, the first Cov term is a row vector, the Var in the middle is a matrix, and
the last Cov is a column vector. This quantity can be understood as an R? of the population
projection of fip;—1 on Z!, or the probability limit of sample R?’s. This observation suggests
a natural estimator of s,. First, the forecast errors for each horizon h are estimated using
local projections. Second, the estimated forecast errors for the horizon h at time t are

regressed on shocks that happen between t and ¢ + h. The R? in this regression is an
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estimate of sy,.
More precisely, the estimated forecast error f;—1 is the residual of the following re-

gression:

Ly Lz
Yt+h — Yt—1 = Cp + Z %hAyt—i + Z 5?2%—1‘ + ft+h|t71> (2.5)
i=1 i=1
which is an approximation to yii, — Yim1 = cn + Yooy YAy + 00 Bz + franp—1 in

population. Then we run the following regression and calculate its R?:

Jenjt—1 = Qz02t4n + 0+ Qzp2e + Vppnji—1- (2.6)

Thus, our estimator 872 is R? of equation (2.6) which, by construction, is between 0 and 1.
Note that a; in equation corresponds to the impulse response coefficient 1, ;. Because
ft+h‘t_1 in equation ([2.6) is a residual of an OLS regression with an intercept in equation
and the mean of z; is zero, an intercept term in equation is not required. Moreover, the
population mean of both f; 44— and ZI are zeros, and so both centered and non-centered
R?’s are the same in the population. We report results for the non-centered R? below, but
properties are similar when we use the centered R?.

Note that one may implement this estimator by augmenting equation ([2.5)) with shocks
2, ..., 24 and calculating the partial R2. This modification ensures that any predictable
variation in z;, ..., 2z, is removed. In practice, this step likely makes little difference since
z; is typically constructed in a way such that z; is not predictable by lags of macroeconomic
variables.

LP-A and LP-B estimators of s,. While we concentrate on the R? estimator, there
are other options for estimating s,. For example, note that s, admits the following repre-
sentations:

(Z?zo W2 7,) o?

e Var (ft+;zt—1) 0

_ (Z?:o wiz) 03 |
— (E?:o wil) o2+ Var ('Ut+h|t_1> : (2.7)

Thus, one may estimate s, by plugging estimates of ¢, ;’s, 02, Var(feznje—1), or Var(vipi—1)
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into either (2.7 or (2.77).

We estimate v, ;, with local projections by running the following regression:

L’y Lz
Yorn — Y1 = T 3 AP Ay, S B v, (2.8)
=1 =0

where BSL P s an estimator of ¥, 5 (Jordal 2005). Note that, in contrast to equation (2.5,
equation (2.8)) includes the current value of z;. Since we can estimate o2 directly from
the time series of z, we can estimate (Z?:o wﬁz) o2 in equation ([2.7) or (2.77). For the

z

denominator in equation (2.7)), we note that the residual in equation (2.8) can be related
to the forecast error f; ;-1 in equation (2.5). By comparing equations ({2.5) and ([2.8), it

h,LP
becomes clear that fiin—1 = By 2; + riynp—1 for each h. Therefore, we can construct

estimates of the forecast errors, denoted by fﬁﬁdt_l, by adding B{; LP 1 to Pirni—1- Then we

A

can compute Var( fHi-1) that is an estimate of the denominator in equation (2.7), where
ﬁr() denotes a sample variance. We now define a local projection estimator of FEVDs,

which we call “LP-A” estimators, as

( h { Az’,LP}Q) 52
=0 0 z
§LPA o

h = 7. (HhLP ~
VCLT (BO Zt + Tt-‘rh‘t—l)

, (2.9)

where 62 = Var(z).

Although simple, the LP-A estimator does not guarantee that the estimated s, is between
0 and 1. A simple solution to this issue is to split the denominator into variation due to z
and due to v so that <Z?:0 ¢zz) o2 appears in both the numerator and the denominator as
in equation (2.77). Note that

~ rLP Ah,LP Ah—1,LP A~0,LP
Ut+hlt—1 = ft+h|t71 — By = Zt+1 — — Po Zith
DA Ah—1,LP 50,LP
= Tithjt—1 — Bo Zt41 — 0 — Po Rtthy
— A A
. h—1,LP 0,LP . .
and that VAR (rt+h|t_1 — By " 1 — o — By zt+h) is an estimate of Var(vippp—1). We
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use this quantity to define another local projection estimator of FEVDs, or “LP-B”:

A, 2\
GLPB ( ?:0{ OLP} >U§ . (2.10)
< ?:0 { Aé’LP} > 02 + VAR (Tt+h|t 1= ﬁo_l LPZt+1 — 50 LPZt+h)

The LP-A and LP-B estimators are based on a single regression for each horizon,
while the R2 estimator requires two regressions and . While the LP-A and the
LP-B are in some sense simpler (they estimate only one equation and they correspond more
closely to the conventional way to compute FEVD, that is, use squares of estimated impulse
responses to compute variance contributions), we find that the R2 estimator has weakly
better finite-sample performances. To preserve space, we focus on the R2 estimator in the

rest of the paper and relegate the details for the LP-A and LP-B estimators to Appendix B.

2.3.2 Asymptotics

To derive the asymptotic properties of our R2 estimator, we begin with the case where
the forecast errors are observable, not generated. Then we show that using the estimated
forecast errors does not alter the asymptotic distribution. Readers more interested in the

implementation of the estimator may want to skip to the next subsection.

For now, we suppose that fi, = (frir—n—1, fr—17—r—2: - - fLmas+h+1|Lmas) 1S Observable
for any h > 0, where Ly, = max {L,, L,}. We write Z" = (241, ...,2) for all t and h and
define a matrix Z, = (Z}_,,, Z}_y,..., Z} ;). The (non-centered) R* of the regression of

ft+njt—1 on Zth is given by (f7 Pz, frn)/(fi fr), where Pz, = Zy(Z)Zy) 7).

Let 0o = (00,050,04,) , where 10 = (E[202)]) " (E[Z} frniea]) = (a0,

Uon)y b =F [ZthftJrhu_l} = 01002, and 039 = E [ft2+h|t—1} = aj%h A method of mo-

ments estimator § = (9’1,%,%), is as follows: 0, = (Z,Z,)"" (Z, f»), 0, = ’{h, 05 = f;LTZh,

where T}, = T — (Ljaz + h). For £(0) = £(01,0,,05) = %, we have s, = £(6p) and

f;‘ZZf’;fh =¢ (9) Therefore, we first derive the asymptotic distribution of /T ( 0) and
)¢

then apply the delta method to obtain the asymptotic distribution of /7T (€ ( ( )

fn Pz, fn
ﬁ( Ffn 5h>'
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The moment conditions above can be summarized as E [g;+(0)] = 0, where

Z (frvnir — (Z1)'01)
g (0) =g (ft+h|t—1a ZZL, 9) = Zthft+h|t—1 — by : (2.11)

2
ft+h|t—1 — 05

It is clear that the conditions are satisfied only when # = 6, and the system is just-identified.
Therefore, VT (é — 90> LN <0, (Gh732)719h71{2 (G;%Rg)_l), where %’ denotes convergence
in distribution, G g2 = E [Vogitn (60)], Qnprz = X2 (1) , and I'(I) is the autocovari-
ance of gi1n(6p) at lag [ (Hansen| 1982). With some algebra, we can further show that
ghr = —diag (62111, I112) where diag(A, B) is the block diagonal matrix whose diagonal
components are A and B in order, and I}, is the h-dimensional identity matrix .

8%(5/0) = ﬁ (0’270, 0.0, —sh>. By combining the above derivations,

f1 Pz, fn
fhfn

Now we define Ay, e as

we derive the asymptotic distribution of

!/
Proposition 2.1. Let fj, = (fT|T7h71> Jr—1r—h-2,--. ,fLmaz+h+1|Lmaz) and Zy = (Z}_),, 234,
. 7Z2maz+1), for all h > 0, where Ly,qp = max{L,, L,}. The R* of the regression of fiini—1
on Z} is given by (f} Pz, fn)/(f1.fr), where Pz, = Zy(Z}Zy) " Z;,. Furthermore, the following
holds:

/P _ 1
ﬁ <W —_ Sh) i> N (0, Ah’RQ (Gh,RQ) 1Qh,R2 ( ,h,R2) ;Z,R2> 5 (212)
h
where Ap, g2 = U?% (2002, .o 0o n02 a0y sy —Sn), Gure = —diag(o2ly41, Ini2), and

Qp g2 is the long-run variance of giin (6) in equation (2.11). We denote the variance in
B )
equation [212) by Vige = Apre (Ghre) ' Qre (G’h’RQ) A} ge-

However, f;, is not directly observable in practice. We use its estimate th instead, which
is based on equation . Next, we show that the feasible estimator % has the same
asymptotic variance V}, r2 in Proposition 1.

To separate issues from truncation and estimation of the forecast errors, we now assume
that L, and L, are large enough, and the population residual of equation is the true
forecast error. In other words, we assume that (z;, Ay,)’ follows a finite-order Markov process
and focus on the variability in fh due to the estimation of the forecast errors.

For a simple notation, we rewrite equation as Yern — Ye—1 = Wi_10 + frynji—1, where

/ !/ A
Wtfl = (17 Aytflu cee 7Aythy7 Rt—1y- -+ 7thLZ) and ¢ = (Ch77{z7 ce 77?,y)ﬁ{17 ce 7622) . For (b
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being the OLS estimator of ¢, we have ft+h|t_1 = franje—1 — W/, (quS — gb) By stacking up
and defining W matrix accordingly, we obtain f, = f, — W (gzg — qb).

A feasible estimator 6 of 6, based on fj, is given by 8; = (Z;th)f1 (Z;th>, 0y = %}J?,
and 05 = ! é&f " We will show that § = 0 + O, (Tih), and therefore the feasible estimator
0 converges to the infeasible estimator 6 fast enough not to change the asymptotic dis-

tribution of /T (9 — 9), and more specifically, the asymptotic variance. Note that 6; =
(57) " (%) = 0= (52) " (5) (6-0) = 6 - 0 (B [2m1.] + 0, ()

O, (%), which follows from the law of large numbers, the central limit theorem, and stan-

dard asymptotics of OLS estimators. Because W;_; € 1, Z' = (2444, - - . ,zt)/ is orthog-
onal to W;_;. In other words, E [ZZLWLJ — 0. Thus, 6; = 6, — 0,(1)0, (ﬁ) O, (ﬁ) =
él + O, (%) One can similarly show that Oy = éQ + O, (%) and 93 = ég + O, (%) using
E [ZthWt'_J =0 and F {ft+h‘t,1W{_1] = 0. We summarize these results in the following

proposition.

Proposition 2.2. Suppose that (2, Ay,) follows a finite-order Markov process, and therefore
the true residual in equation |2.5 coincides with the population forecast error for large enough
L, and L,. In this case, the feasible R? estimator has the same asymptotic distribution as

the infeasible estimator in Proposition 1. That is,

! Intn

Titn

Vs (fPf _ ) VT (HER ) o) A N0, 21

-1
where Vi, g2 = Ay ge (Gh’pg)_l Qp g2 (G;L R2) A} o is the asymptotic variance in Proposi-

tion 1.

2.3.3 Measurement errors

Empirically identified shocks z; could be measured with errors since e.g., these shocks are
often estimates rather than direct observations. One may handle this issue by considering
noisy measures of underlying structural shocks as external instruments as is the case in
Plagborg-Mgller and Wolf (20184d)) who derive partial-identification results and set-identified
Sh.

Our approach is different. Given measurement errors, we show in Appendix D that

asymptotic biases of our estimators are negative. Therefore, our methods underestimate the
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true s, without further refinements to tackle measurement errors. Furthermore, although
shocks are often estimated and thus are generated regressors, the researcher is often interested
in testing the null of no responses (i.e., s, = 0), and there is no need to adjust inference for
this exercise (Pagan) |1984).

Specifically, we can decompose the true shock into two parts as z; = 2z + 2}, where
superscripts o and u denote observable and unobservable components, respectively. We as-
sume that {(2¢, z%)'} is a white noise process with o2 = Var (2¢), 02 = Var (2), and p,, =
corr (29, z{"). For example, a measurement error m; can be modelled as z{ = z,+m; and z}* =
—my, and 8o p,, < 0. Denote the full information set with €,y = {20, 2{" 1, Ay—1,... }
for now and the econometrician’s information set with Q¢ ;| = {27 ;, Ay;—1,...}. The econo-
metrician’s forecast error fy ., ; is given by ff . 1 = Yern — -1 — P {th - yt,lle_l}.
Note that we project y,1, — -1 on f_,;, while the full-information forecast error fi s—1 is

based on €2, ;. Finally, the econometrician’s regressor is denoted by Zf’e = (zt(ﬁrh, ey zf)/
Proposition 2.3. Given the assumptions above, the followings hold for any |pe.| < 1.
(a) Var (fte+h|t71) > Var (ft+h‘t_1) )

(b) Var (V.o02een + - + V2 p2t) X
= Cov (feopp 1 2) [Var (20)] " Cov (21, feoppn) + Timov2, (1= p2,,) 02,

(C) Sp = Var(wz,OZtJrh‘i‘""‘l‘wz,hzi) Cov(ff“'h“—l’zth,e) [Var<Zth,e)rlcov(Zf’e7 f"'h“_l)
& Var(ff-Fh\t—l) o Var(fe+h\t—1) '

t

For a formal proof, please see Appendix D. Proposition 3(a) covers the forecast error
variance, which is the denominator of s in equation (4). The result implies that the econo-
metrician’s forecast error variance is greater than that based on the full information set.
Furthermore, one can show that the equality holds only for (uninteresting) special cases
such as ¥,(L) = 0, p,., = £1, and 62 = 0. We discuss the numerator of s, in Proposition
3(b). When estimated without taking z;* into consideration, the econometrician’s numerator
in equation (2.4) is less than that under the full information set by 37, V2, (1 — pgu> o2,
Similarly, the difference reduces when v ;s are close to 0, when the observable component
and the unobservable component are highly correlated, and when the variance of the unob-

servable component o2 is small. Because the econometrician’s denominator is greater and the

numerator is less than those based on the full information set, the econometrician’s FEVDs
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are downward biased to zero as illustrated in Proposition 3(c). In other words, our point

estimate is conservative in favor of the hypothesis s; = 0.

2.3.4 Small-sample refinements

While 872 is asymptotically unbiased as illustrated in Proposition 1 and 2, there may exist
substantial finite-sample biases. Note that the OLS estimator in equation ({2.6]) is obtained
by maximizing the sum of explained variation, or R?, which may lead to an upward bias in
382 (Cramer, [1987).

To correct for potential small-sample biases in the estimates of s, and to enhance coverage
rates for confidence bands, we employ a VAR-based bootstrap, where the VAR includes two
variables (2, Ay,)’. We use a VAR-based bootstrap to address challenges associated with
bootstrapping highly persistent data but researches may utilize alternative approachesﬁﬁ

We now discuss the details of the bootstrap procedure. First, we need to choose the order
of the VAR model Ly sg. In simulations below, we rely on the Hannan-Quinn information
criterion (HQIC) for the purpose. We simulate the estimated VAR (Lyag) model Y; = i +
ley;f—l‘i" : "*’CELVARYt—LVAR‘i‘Et to generate artificial time series B times, where Y; = (z;, Ay;)’.
And we use this model to compute s;, the true contribution of z to the forecast error variance

of y at the horizon h for this data generating process. For each b < B, we randomly choose ¢

between 1+ Ly 4p and T to initiate the simulation. Then (z;, Ay,)’, ..., (20— Lyans AV Ly ar)
are used as Yo(b), e ,Y_(bL)V .- Given the initial condition, we randomly draw {egb)} from

the estimated reduced form residuals {€;} with replacement. Using the estimated model

with the above initial conditions and the shuffled residuals, we obtain the simulated series
!/

{(z,fb), Ayt(b)> }, where the first T'z,,1, number of observations are discarded as burn-in. We

/
apply our estimator to {(zt(b), Ayfb)) } and obtain the bootstrap estimate §f2’(b) for each b.

. A g ~R2,(b :

Then we estimate the bias in §/? with bias;, = % DO ®_ s; and compute bias-corrected
. ~R2,B A . . o .

estimates 377 = 52 — bias,. The procedure is similar for VARs.

4One may use alternative implementations of bootstrap to refine asymptotic inference. We tried the block
bootstrap for local projections following Kilian and Kim| (2011). However, this block bootstrap method
performs worse than the VAR-based bootstrap in simulations. Results are in Appendix E1.

50ur bootstrap procedure implicitly assumes homoscedasticity of shocks. If a researcher suspects impor-
tant heteroskedasticity in shocks, one should use alternative bootstrap methods (e.g.,|Gongalves and Kilian,
2004). An extensive discussion of practical considerations for various bootstrap methods is in [Kilian and
Liitkepohl (2017, Ch. 12).
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2.3.5 Standard errors and confidence intervals

We have several options to construct standard errors and confidence intervals. For exam-
ple, one may directly estimate V}, g2 in equations and and derive a symmetric
confidence interval based on the estimated vhr (see Appendix A for details including im-
plementation of pre-whitening following |Andrews and Monahan), 1992)). While this works
asymptotically, its finite-sample performance is not better than bootstrap confidence inter-
vals as discussed in Appendix E3. Furthermore, the estimated standard errors are often
spiky across h’s, which induce non-smooth and erratic confidence bands.

Therefore, we employ a different approach for the simulations and the application in this
paper. To study finite-sample properties of our estimator, we rely on the distribution of

the bootstrap estimates §52’(b). The standard error can be easily obtained from a standard

(b)

o ~R2 o : . . :
deviation of 3 across B replications. Constructing a symmetric confidence interval is

also straightforward. On the other hand, one may want to take the shape of the bootstrap
distribution into consideration when constructing confidence intervals. Let @ﬁi /o and q}fia /2

refer to the § and 1 — § quantiles of the distribution of §52’(b) -LyB, §52’(b). Then the

2 B
100(1 — )% confidence interval is given by {Ljﬁi 2t gne a3 oye + §f2’BC} . Note that we

consider the distribution of §52’(b) —LyP, §52’(b) to make the confidence interval centered

around the estimated FEVD with bias-correction.

2.3.6 Extension

While our analysis has focused on the bivariate case, this framework can be readily general-

ized to include more controls in equation ([2.5)):

L. Lo
Ye+h — Yt—1 = Zﬁzhzt—i + Z C,_ I+ Jithli—1, (2.14)
=1 i1

where C} is the vector of control variables which may include lags of additional variables
and structural shocks other than z;. In the base case, C; consists only of Ay;. Note that for

VAR-based bootstraps, one has to include z; and all variables in C; to simulate data.ﬂ

6 As the number of variables in C; increases, the number of parameters in the VAR increases rapidly. When
C} is a large vector, or when a VAR is not a good representation of the DGP for control variables, VAR-
based bootstrap might not be an appealing option. In this case, one may consider other forms of bootstrap
(e.g., block bootstrap). Alternatively, one may correct for biases by simulating asymptotic distributions of

primitive quantities in equations (2.3)), (2.7)), and (2.7’) such as 1/324, 62, and Var (ﬁt+h|t,1). By considering
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One should bear in mind that, although including or excluding C; or changing the compo-
sition of variables in C} should make little difference of impulse responses estimated with local
projections (provided z; is uncorrelated with other shocks), what goes in C; is potentially
important for FEVDs. Intuitively, by including more controls in C; (that is, information
set €y expands), we (weakly) reduce the size of the forecast error, and hence the amount
of variation to be explained shrinks. In other words, the regressand in equation and
therefore s, change with the list of variables in C;. Thus, one should not be surprised to
observe that the share of variation explained by shocks {z, ..., z;1,} may be sensitive to C;.

Similar to the simple case considered in Section for equation (2.6)), one may want
to use residuals from projecting z; on lags of z; and C} rather than the “raw” shock z;. For
example, when the Cholesky orderings are an identifying assumption, such a procedure is
essential to guarantee that forecastable movements in z;, ..., 2., are not used to account
for variation in ft+h|t_1. In practice, however, shocks z; are constructed in ways to ensure
that z; is not predictable by current values and lags of macroeconomic variables. As a result,
we find in our simulations and applications that purifying structural shocks in this manner

makes little difference.

2.3.7 Taking stock: A cookbook for FEVDs

To summarize our discussion so far, we suggest that the researcher should take the following

steps to estimate FEVDs:

Step 1 Estimate the forecast errors for the horizon h from local projections ([2.5]) or (2.14))

depending on the information set.

Step 2 Regress the estimated forecast errors on the shocks from ¢ to t + h as in equation
(2.6). The R? of this regression measures the share of the forecast error variance

explained by the shock at the horizon h.

Step 3 To improve the small-sample performance of the estimator, a bias-correction step
is recommended for empirically relevant sample sizes. One may rely on a VAR-
based bootstrap to do so, where the lag order can be selected via an information

criterion.

sp, as a non-linear function of those parameters, such simulations would detect biases due to the non-linearity.
See Appendices A and B for implementation and F and G for the results.
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Step 4 For inference, we can calculate the standard error from either the analytical ex-
pression for the asymptotic variance in equation or the distribution of
the bootstrap estimates in Step 3. Similarly, we may construct the confidence
interval by using either the standard error or the quantiles of the bootstrap distri-
bution. We recommend using bootstrap to construct confidence bands, but one
may choose a different approach depending on the data generating process and

the sample size.

2.4 Simulations

This section presents two sets of simulations. The first set shows results for the baseline
bivariate case and studies the performances of R2 methods and VARs for various profiles of
the contribution of z to the forecast error variance of y at different horizons. The second
set uses the estimated Smets and Wouters| (2007)) model to investigate the performance in a
setting with many control variables.

For each data generating process (DGP), we simulate data 2,000 times. When we employ
bootstrap to correct for biases, the number of bootstrap replications is set to B = 2,000
and Tgyrmm = 100. As a benchmark, we also report results based on a corresponding VAR.
This benchmark corresponds to the practice of including shocks into VARs directly (e.g.,
Barakchian and Crowel, 2013; [Basu, Fernald and Kimball, [2006; Ramey, 2011; Romer and
Romer}, [2004,|2010). For the simulations below, we order z; as the first variable in VARs as is
the case in Section [2.3.4 We choose the Hannan-Quinn information criterion (HQIC) as our
benchmark criterion to determine the number of lags in VAR. To make VAR and LP models
comparable, we use HQIC number of lags in the VAR for L, and L, (Plagborg-Mgller and
Wolf, 2018b). Results are similar when we use higher-order VARs, where the lag order is
selected by Akaike information criterion instead of HQIC (Appendix E2).

The sample size for simulated data is 7" = 160, which is common in applied macroeco-
nomic analyses. Results for other sample sizes are reported in Appendices F and G. The

R2,BC ~R2 ~R2,BC
h < 5h < Qhi-aj2 T Sh )

A

coverage rates are calculated as Pr (cjff?a pts where a = 0.1,

and therefore the nominal coverage rate is 90%/]

"We also considered percentile-t bootstrap and found similar results.
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2.4.1 Bivariate Data Generating Processes

We study three data generating processes (DGPs) to cover different shapes of s,. The basic

structure is as follows:

Yy = (L) 2z + wy, 2z~ iid N(0,02),
Uy = Pt + Qy,

(Ape = gy) = pp(Apr—1 — gy) + €7, ef ~ iid N(0,0),
ay = paas_1 + €}, et~ iid N(0,02),

where z, e and e® are mutually independent. p and a are permanent and transitory compo-
nents of u. To find the value of s;, based on ;1 = {Ay;_1, 21, Ays_2, 2t_2, ... }, we need
to find the population M A(oco) representation of Au; = g, + 3222, Ve €1, where {e;} is a
zero mean white-noise series with variance 2, $°5°, wgi < 00, and e; € ;. We assume that
e = 1 without loss of generality, and the Wold Decomposition implies that such represen-

tation exists uniquely. Because z; and e; are uncorrelated at all leads and lags, we can write
s in equation in terms of {1, ;}, {tei}, 02, and o2. Appendix C discusses how one
can use a Kalman filter to derive {¢;} and o7 from p,, pa, 07, and o7.

DGP1 is characterized by hump-shaped 1, and s,. We assume that {1,(L)z} follows
an M A(100) process with the maximum response of 3 after 8 periodsﬁ The resulting profile
of s, is consistent with e.g., predictions about how monetary shocks contribute to variation
in output: there is little to no response of output in the short-run due to various rigidities,
then the response is strong in the medium-run, and the long-run response is zero due to
nominal neutrality (e.g., Christiano, Eichenbaum and Evans, 2005). DGP2 has a strong
response of y to z only in the short-run, and thus the shape of s; is downward-sloping. This
profile is consistent with e.g., how temporary fiscal shocks influence output: the effect of a
government spending increase or a tax cut is large on impact but then the effect gradually
wears out (e.g., Smets and Wouters, 2007)). Finally, DGP3 assumes limj_,» ¢, 5, > 0, so that
z has persistent effects on y and the shape of s, is upward-sloping. This profile is consistent
with e.g., models emphasizing that technology shocks are a key (or even exclusive) source
of variation in output at long horizons (e.g., [Blanchard and Quah, |1989). Table reports

8This value and pattern are motivated by a 3 percent response of real GDP to a 100bp monetary policy
shock estimated in |Coibion| (2012)).
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parameter values for each DGP. Figure plots true impulse responses of y to z (Panel A)
and the contribution of z to forecast error variances of y at different horizons (Panel B).
For DGP1, we find (Table that local projections capture the hump-shaped impulse
response correctly but §%2 without bias-correction fails to match the hump-share dynamics
of sp,: 87 tends to monotonically increase with the horizon. When we use a VAR to estimate
impulse responses and FEVDs, the VAR misses the hump both in the impulse response and
FEVDs as HQIC selects too few lags (on average the number of lags is 1.24). Confidence
bands yield poor coverage rates. This performance reflects the fact that, by construction,
z contributes little to the forecast error variation in y for this DGP at short horizons with
h < 4. Since sy, is between zero and one, we effectively have estimates close to the boundary,
and therefore standard methods are likely to fail. While bootstrap appears to provide some
improvement (e.g., the bias at long horizons as h > 12 when z accounts for a larger share of
the forecast error variance in y is corrected)ﬂ it does not perform consistently better in terms
of the coverage rates because the parameter is at the boundary. When we allow z to explain
5 percent or more of the forecast error variance in y at short horizons, bootstrap brings
coverage rates close to nominal (results are available upon request). Note that, although the
VAR estimators (§,‘Z/AR) are strongly biased, they tend to have smaller variances so that the
root mean squared error (RMSE) is similar in magnitude to that of the %2 estimator. The
large RMSEs underscore difficulties in estimating R? (Cramer} |1987) and hence s,.
Because DGP2 permits an exact, finite-order VAR representationm 5/ AR has good prop-
erties in terms of bias, RMSE, and coverage rates (Table . The local projections recover
the impulse responses properly, but the estimates of FEVDs again overstate the contribution
of z to the unforecasted variation in y at long horizons as h > 12. Note that bootstrap can
correct for this bias. Given that the VAR nests the DGP and that the VAR is more parsi-
monious than local projections, the VAR has a better performance than the 572 estimators.
In the case of DGP3, z has long-lasting effects on y and the VAR underestimates the
responses at long horizons as A > 16 in small samples. Impulse responses estimated with local
projections perform better but also exhibit a downward bias at long horizons. In a similar
spirit, 5/ 4% shows a strong downward bias and % is downward biased by a smaller, but

still considerable amount (this is the case even after we use bootstrap to correct for possible

9The bias can be further reduced by using higher values of L, and L, by reducing errors in ﬂ+h|t_1 due
to the truncation.

0Given the parameter values in Table Ay = g, + (1 — L)(1 —09L) 'z + (1 — 0.9L)"'el. By
pre-multiplying (1 — 0.9L), we have Ay; = 0.1g, + 0.9Ay:—1 — 2¢—1 + 2 + €.
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biases). This performance reflects the fact that HQIC chooses a low number of lags (1.29 lags
on average across simulations). As a result, VARs used to simulate bootstrap samples fail
to capture the degree of persistence in the data. To demonstrate the importance of the lag
order, we report results (Table [2.4) when we use VAR(5) and VAR(10) for bootstrap. As the
number of lags increases, we observe some improvement (e.g., the remaining bias in the bias-
corrected 872 is smaller for VAR(10) than VAR(5)), but these enhancements are achieved
at the price of higher variances in the estimates (e.g., the RMSEs of the bias-corrected 332
are similar for both VARs used for bootstrap). These results suggest that one may want to
overfit VAR for persistent processes at the bootstrap stage.

In summary, we find for small samples that estimating s, precisely is not easy. Nonethe-
less, we also note that the §/? estimator performs reasonably well across the DGPs and
that bootstrap helps to improve the estimator’s properties. In contrast, VARs that include

structural shocks z; tend to perform poorly when a DGP is not nested in a small-order VAR.

2.4.2 Smets-Wouters model

While the bivariate DGPs provide important insights on how the R? estimator performs,
researchers face potentially more complex DGPs and often have more information in practice.
In this section, we use the Smets and Wouters| (2007) model to study the performance of our
estimator in an environment with multiple shocks and many control variables.

As discussed above, different information sets determine different population sj. In the
simulations, we assume that the researcher is interested in explaining variation in output and
that the researcher observes output growth rate, inflation, federal funds rate, and monetary
policy shocks.E| This choice of variables is motivated by the popularity of small VARs which
include output, inflation, and a policy rate to study the effects of monetary policies on the
economy. In this exercise, the shock is ordered first because the Smets-Wouters model allows
contemporaneous responses of macroeconomic variables to policy shocks. When estimating

impulse responses using local projections, we augment equation (2.14) with 1, 2, on the

HFor this information set, we construct the true FEVD using a stationary Kalman filter similar to the
method in Appendix C. We also tried various combinations of shocks and endogenous variables in the
information set and found similar results. Figures for inflation and results with large samples are in Appendix
G. Note that monetary policy shocks are nearly invertible in the Smets-Wouters model (see |Wolfl |2017, for
mode details). While this may be a problem if we use shocks identified and recovered from a DSGE model,
the spirit of our exercise is to assume that we have access to other information (as in e.g., [Romer and Romer,
2004) so that we can observe monetary policy shocks directly.

o4



right-hand side.

We find (Figure that local projections correctly recover the responses of output to
monetary policy shocks, while a low order VAR (lag length is chosen with HQIC) fails to
capture the transitory effect of monetary shocks on output. Consistent with our bivariate
analysis, 872 increase with the horizon while the true s;, exhibits hump-shaped dynamics. s
estimated with a VAR also fails to capture the true dynamics as §%2 flattens out after about
h = 5. Similar to our results in the previous section, we find that bias correction helps 872
to recover the true hump-shaped profile of s;,. Coverage rates are close to nominal at all
horizons after bias-correction. Again, although the VAR estimator of s, is strongly biased,
the variance of the estimator is low so that RMSEs are broadly similar across methods.

We conclude that our proposed methods to estimate FEVDs work reasonably well in more

complex settings.

2.5 Application

To illustrate the properties of our estimators, we use two structural shocks identified in the
literature. The first shock is the monetary policy (MP) innovation identified as in Romer
and Romer| (2004) and extended in |Coibion et al.| (2017)). The second shock is the total factor
productivity (TFP) change identified as in [Fernald| (2014) [] The sample autocorrelations
and the sample partial autocorrelations at non-zero lags are close to zero for both shocks,
that is, the shocks are white noises. The correlation between the shocks is -0.059. Our
objective is to quantify the contribution of these shocks to the variation of output and
inflation. The sample covers 1969Q1-2008Q4 which excludes the period of binding zero
lower bound. The set of variables for local projections includes inflation (annualized growth
rate of GDP deflator, i.e., 400A1n (FP;)), annual GDP growth rate (400A1In (Y;)), federal
funds rate, and both identified shocks. We set Lo = L, = 4 in equation and add
control variables similarly when estimating impulse responses. In the benchmark VAR, we
have all five variables and allow four lags|”|

Consistent with previous studies, we find (Figures and that a contractionary

12 Appendix H presents results for military spending shocks constructed in Ramey and Zubairy| (2018).

13The ordering of variables in the VAR is TFP measure (from Fernald, [2014)), output growth rate, inflation,
monetary policy innovations (from [Coibion et al.,|2017)), and fed funds rate. For the VAR-based analysis, we
follow the practice and compute FEVDs using shocks in these variables where shocks are identified recursively
from reduced-form residuals.
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monetary policy shock lowers output and prices, and that a positive TFP shock raises output
and lowers prices. Impulse responses estimated with a VAR and local projections are similar
at horizons h < Lyagr = 4. However, the estimated impulse responses differ at longer
horizons, and therefore the peak effects and the overall shapes are different. The VAR
estimates of the FEVDs suggest that TFP (MP) shocks account for approximately 10 (3.5)
percent of the forecast error variances of output at horizons longer than 2 years. For inflation,
MP shocks contribute up to 19 percent of the variation in the forecast error of inflation at
the 5-year horizon and little variation at shorter horizons while the contribution of TFP
shocks is generally small. Bias-correction makes no material difference for the forecast error
variance decomposition estimates for all cases but one: the bias-corrected estimate of the
contribution of MP shocks to the variation in the forecast error of inflation at the 5-year
horizon increases to 32 percent.

The local projections estimates of the contribution of the two shocks to the forecast error
variances of output are much larger than the VAR estimates. Moreover, bias-correction tends
to generate lower contributions, consistent with simulations. For example, monetary policy
shocks account for 18 percent of the forecast error variance of output according to the R2
estimate (28 percent without bias-correction) and only 3.5 percent according to the VAR
estimate at the 5-year horizon. Similarly, the VAR estimate of the contribution of MP shocks
to inflation at the 5-year horizon is less than 20 percent, which is a surprising result given
Milton Friedman’s “inflation is always and everywhere a monetary phenomenon.” In contrast,
the R2 estimate of the same FEVD with bias-correction amounts to 44 percent. Also, while
the profile of 3} 4% for output is generally flat after h = 5, %2 has richer dynamics. This is
consistent with what we find in our simulations for DGP1: when the true s is close to zero
for small h’s, 5} 4% fails to match the shape, while $72 is much more successful. The profiles
of 3% and 8/4% for output also differ remarkably for TFP shocks. While 372 increases
in h, /4% flattens around 10 percent after h = 10. At the 5-year horizon, TFP shocks
contribute to 28 percent of the forecast error variance of output based on the R2 estimate

after bias-correction, where the VAR estimate without bias-correction is only 11 percent.

2.6 Concluding remarks

Single-equation methods can offer flexibility and parsimony that many economists seek. The

increasing popularity of these methods, specifically the local projections, calls for further
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development of these tools. An important limitation for practitioners using this framework
has been a lack of simple tools with well-known econometric properties especially in small
samples to assess quantitative significance of a given set of shocks, that is, the contribution
of the shocks to the forecast error variance of the variable of interest. We propose a method
to provide such a metric. In a series of simulation exercises, we document that our method
has good small-sample properties. We also show that conventional approaches to assess the
quantitative significance of two popular structural shocks (monetary policy shocks and total

factor productivity shocks) could have understated the importance of these two shocks.
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Table 2.1: Parameter values for data generating processes (DGPs) used in simulations.

@ZJZ(L) 0z Gy Pp Op Pa Oq
DGP1 Hump-shaped 1 0.5 0.9 0.5 0.9 3
DGP2 (1 — 0.9L)_1 3 0.5 0.9 1.5 - -

DGP3  (1-L)"'(1-09L)"!' 1 05 05 2 0.9 3
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Table 2.2: Simulation results for DGP 1.

Horizon h
0 4 8 12 16 20
Impulse Response
True 0.00 1.39 3.00 2.06 0.88 0.29
Local projections 0.00 1.39 3.00 2.05 0.87 0.29
VAR(HQIC) 000 018 024 025 025 025
Forecast Error Variance Decomposition
True 0.00 0.04 0.19 0.21 0.18 0.14
Average estimate
R2 0.01 0.06 0.20 0.25 0.26 0.27
VAR(HQIC) 0.01 0.02 0.02 0.02 0.03 0.03
Root mean squared error
R2 0.01 0.05 0.11 0.15 0.19 0.22
VAR(HQIC) 0.01 0.03 0.17 0.20 0.16 0.13
Coverage (90 % level, asymptotic)
R2 0.99 0.81 0.69 0.65 0.63 0.61
VAR(HQIC) 0.99 0.75 0.06 0.06 0.07 0.10
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC))
True 0.00 0.04 0.19 0.21 0.18 0.14
Average estimate
R2 0.00 0.02 0.13 0.16 0.13 0.11
VAR(HQIC) 0.00 0.00 0.01 0.01 0.01 0.01
Root mean squared error
R2 0.01 0.05 0.12 0.16 0.17 0.18
VAR(HQIC) 0.01 0.04 0.19 0.21 0.17 0.14
Coverage (90 % level, asymptotic)
R2 0.99 0.95 0.64 0.64 0.72 0.81
VAR(HQIC) 1.00 0.53 0.06 0.05 0.07 0.09

Notes: The table reports the performance of estimators introduced in Section for DGP1.
The sample size is T' = 160, and the number of simulations is 2,000. R2 and VAR stand for

AR2 VAR
Sh

and §; °** estimators of forecast error variance decompositions. The lag order is selected by

the Hannan-Quinn information criterion (HQIC). Confidence intervals for the bias-corrected R2

~R2,BC ~R2

a = 0.1. Confidence intervals for the other estimators are constructed similarly.
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Table 2.3: Simulation results for DGP 2.

Horizon h
0 4 8 12 16 20
Impulse Response
True 3.00 1.97 1.29 0.85 0.56 0.36
Local projections 2.99 1.83 1.07 0.57 0.22 0.06
VAR(HQIC) 2.96 1.93 1.33 0.95 0.71 0.56
Forecast Error Variance Decomposition
True 0.80 0.25 0.10 0.05 0.03 0.02
Average estimate
R2 0.79 0.26 0.15 0.14 0.15 0.19
VAR(HQIC) 0.80 0.27 0.12 0.08 0.06 0.05
Root mean squared error
R2 0.03 0.11 0.12 0.14 0.17 0.21
VAR(HQIC) 0.03 0.08 0.06 0.06 0.05 0.05
Coverage (90 % level, asymptotic)
R2 0.90 0.89 0.89 0.82 0.73 0.67
VAR(HQIC) 0.88 0.90 0.92 0.96 0.97 0.98
Forecast Error Variance Decomposition (bias-corrected, VAR(HQIC))
True 0.80 0.25 0.10 0.05 0.03 0.02
Average estimate
R2 0.81 0.24 0.09 0.03 0.01 0.00
VAR(HQIC) 0.80 0.25 0.10 0.05 0.03 0.02
Root mean squared error
R2 0.03 0.10 0.09 0.09 0.10 0.12
VAR(HQIC) 0.03 0.07 0.06 0.05 0.04 0.04
Coverage (90 % level, asymptotic)
R2 0.92 0.90 0.97 0.97 0.95 0.94
VAR(HQIC) 0.88 0.89 0.91 0.96 0.99 0.99

Notes: The table reports the performance of estimators introduced in Section for DGP2.
The sample size is T = 160, and the number of simulations is 2,000. R2 and VAR stand for

JR2 VAR

51 and 5y *** estimators of forecast error variance decompositions. The lag order is selected by
the Hannan-Quinn information criterion (HQIC). Confidence intervals for the bias-corrected R2

~R2,BC AR2

estimator are given by q;}?m + 8, s Ani—a)2 + 8,
a = 0.1. Confidence intervals for the other estimators are constructed similarly.

60

~R2,BC

} as discussed in Section

2.3.5

, where




Table 2.4: Simulation results for DGP 3 with alternative lag orders in VARs.

Horizon h
0 4 8 12 16 20
Impulse Response
True 1.00 4.10 6.13 7.46 8.33 8.91
Local projections 0.98 3.93 5.75 6.86 7.46 7.70
VAR(5) 093 371 470 494 504  5.08
VAR(10) 0.91 3.65 5.33 6.05 6.17 6.27
Forecast Error Variance Decomposition (bias-corrected, VAR(5))
True 0.06 0.29 0.47 0.58 0.65 0.70
Average estimate
R2 0.06 0.26 0.41 0.49 0.55 0.57
VAR(HQIC) 0.06 0.24 0.32 0.36 0.37 0.38
Root mean squared error
R2 0.04 0.12 0.16 0.19 0.21 0.23
VAR(HQIC) 0.04 0.12 0.20 0.27 0.32 0.35
Coverage (90 % level, asymptotic)
R2 0.81 0.82 0.82 0.84 0.83 0.83
VAR(HQIC) 0.87 0.81 0.66 0.50 0.38 0.32
Forecast Error Variance Decomposition (bias-corrected, VAR(10))
True 0.06 0.29 0.47 0.58 0.65 0.70
Average estimate
R2 0.07 0.29 0.46 0.56 0.62 0.65
VAR(HQIC) 0.06 0.27 0.41 0.49 0.53 0.55
Root mean squared error
R2 0.05 0.12 0.16 0.19 0.21 0.23
VAR(HQIC) 0.04 0.11 0.16 0.19 0.22 0.24
Coverage (90 % level, asymptotic)
R2 00.74 0.78 0.79 0.80 0.82 0.82
VAR(HQIC) 0.87 0.85 0.83 0.81 0.78 0.75

Notes: The table reports the performance of estimators introduced in Section for DGP3.
The sample size is T = 160, and the number of simulations is 2,000. R2 and VAR stand for §52
and §,‘{AR estimators of forecast error variance decompositions. L. and L, are selected by the
Hannan-Quinn information criterion (HQIC) and Ly ag is either 5 or 10. Confidence intervals
for the bias-corrected R2 estimator are given by [gﬁi P §52,BC : qﬁ%—a/Q i 352’ Bc} as discussed
in Section where a = 0.1. Confidence intervals for the other estimators are constructed

similarly. 61



Impulse Response Variance Decomposition
T T T

0.8

Figure 2.1: Population impulse responses and forecast error variance decompositions
for each DGP.

Notes: The left panel shows the impulse response functions for three bivariate data generating
processes (DGPs) in Section The right panel shows the contribution of the structural shocks
to the forecast error variances of an outcome variable for the DGPs.
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Figure 2.3: Real GDP. Sample: 1969:Q1-2008:Q4.

Notes: We estimate impulse responses and forecast error variance decompositions (FEVDs) of real
GDP in Section We focus on total factor productivity (TFP) shocks identified as in |Fernald
(2014)) and monetary policy (MP) shocks of |Romer and Romer| (2004) extended by |Coibion et al.
(2017). The first row covers the estimated impulse responses and 90% bootstrap confidence intervals
in response to a one standard deviation shock to TFP and MP. We depict the results for VARs
(top-left panel) and local projections (LP, top-right panel). The unit of the y-axis is annualized
percent. The second row shows §XAR and 90% bootstrap confidence intervals with and without
bias-correction. The last row is for §f32 and 90% bootstrap confidence intervals with and without
bias-correction.
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Figure 2.4: Inflation. Sample: 1969:Q1-2008:Q4.

Notes: We estimate impulse responses and forecast error variance decompositions (FEVDs) of
inflation in Section We focus on total factor productivity (TFP) shocks identified as in [Fernald
(2014)) and monetary policy (MP) shocks of Romer and Romer| (2004) extended by |Coibion et al.
(2017). The first row covers the estimated impulse responses and 90% bootstrap confidence intervals
in response to a one standard deviation shock to TFP and MP. We depict the results for VARs
(top-left panel) and local projections (LP, top-right panel). The unit of the y-axis is annualized
percent. The second row shows §XAR and 90% bootstrap confidence intervals with and without
bias-correction. The last row is for §§2 and 90% bootstrap confidence intervals with and without
bias-correction.
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Chapter 3

Business Cycles and Earnings

Inequality

[T]he various linkages between heterogeneity and aggregate demand are not yet

well understood, either empirically or theoretically. —|Yellen (2016)

3.1 Introduction

The Great Recession was a pivotal moment for modern business cycle research. One of the
key elements revealed by the recession was that distributional factors could have significant
effects on macroeconomic fluctuations. Indeed, a major objective of policymakers has since
become understanding the interplay between inequality and business cycles and analyzing
what distributional effects various macroeconomic stabilization policies have while achieving
their intended aggregate goals. But this is not the only question that the Great Recession
poses. Another important issue is whether inequality and redistribution contribute to varia-
tion in aggregate demand. If distributional forces can initiate demand-driven business cycles,
appropriate policies should be taken to stabilize the economy. In this regard, it is central
to understand how the power of stabilization policies varies with the level of inequality. Al-
though the Great Recession spurred interest in these questions, research in this area is still
in its infancy. We have limited understanding of the relationship between business cycles,
inequality, and stabilization policies, either empirically or theoretically as underscored by
former Fed chair Janet |Yellen| (2016)).

This paper develops a new framework for studying the linkages between inequality and
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aggregate dynamics. The model highlights key mechanisms for the interaction between
a cross-sectional distribution and aggregate demand while maintaining tractability. The
theory is further connected to the novel empirical findings based on a high-quality quarterly
measure of inequality that I construct. The structural interpretation of my results provides
new insights on the interplay of inequality, business cycles, and stabilization policies.

I investigate the U.S. data where the recent rise in inequality has been most prominent. I
empirically study how drivers of business cycles including shocks to total factor productivity,
monetary policy, and fiscal policy cause variation in inequality at cyclical frequencies. I also
explore the other direction from inequality to macroeconomic fluctuations. I document
that changes in the shape of cross-sectional distributions in combination with heterogeneous
marginal propensities to consume (MPC) across agents may influence aggregate demand.
These results illustrate why inequality matters for both business cycles and policymakers,
and vice versa.

To shed light on the mechanisms through which inequality impacts aggregate demand, I
develop a new theoretical framework. My model captures how inequality, MPCs, and aggre-
gate demand interact in a parsimonious manner. The empirical results are also successfully
rationalized by the model with novel insights on how aggregate consumption demand is
determined. An intriguing policy implication of the model is that the power of monetary
and fiscal policies increases with the level of inequality, where the interaction between in-
equality and MPC plays a key role for the result. This provides yet another reason why
inequality is relevant for stabilization policies and why policymakers should be aware of the
distributional outcomes of their policies, even if their objectives are based only on aggregate
economic conditions.

For the empirical analysis, the biggest hurdle is to find a high-frequency measure of in-
equalityﬂ I resolve the problem by constructing a new quarterly inequality index based on
the Quarterly Census of Employment and Wages (QCEW), a quarterly, publicly available,
administrative database featuring wide coverage. The QCEW publishes counts of employ-
ment and total pre-tax earnings at the U.S. county level by detailed industry classification

codes. The earnings include bonuses, stock options, profit distributions, and some fringe

'Most of the existing measures of inequality are annual such as the top income share of |[Piketty and Saez
(2003)), the top wealth share of [Saez and Zucman| (2016), the log P90/P10 wage ratio of |Autor, Katz and
Kearney| (2008]), and the Gini coeflicient prepared by the U.S. Census Bureau. However, annual data are
not fitting for the time series analysis in this paper due to small sample sizes and difficulties in identifying
high-frequency variations.
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benefits such as cash value of meals and lodging.

I extract an earnings distribution in each quarter from the microdata. Although the
QCEW is not at the individual level, it is disaggregated enough to capture major dynamics of
earnings inequality. Indeed, the number of observations is enormous given the administrative
nature of the data source. Also, inequality series based on the QCEW show similar historical
trends to existing ones based on individual but annual data. Lastly, it is important that my
benchmark measure is the log P90/P10 index, which does not require measuring earnings
within the tails. Instead, my focus is on the “middle class,” who contribute to aggregate
variables significantly.

I study how driving forces of business cycles influence earnings inequality using this new,
high-quality, quarterly time series. I report impulse responses and forecast error variance
decompositions to illustrate the relationships between earnings inequality and shocks to
total factor productivity, monetary policy, and fiscal policy. I employ local projections of
Jorda, (2005) to estimate the impulse response functions and find that an unanticipated
expansion in government spending raises earnings inequality, while a positive productivity
shock lowers it. However, the responses are small and statistically insignificant for the first
two years for both shocks. On the other hand, shocks to monetary policy have little effects
on earnings inequality. For the forecast error variance decompositions, I apply a new and
flexible method with local projections developed by |Gorodnichenko and Lee| (2017)). The
results are consistent with the impulse responses in the sense that only technology and
fiscal policy shocks contribute to earnings inequality significantly in the medium-run. Also,
most of the short-run fluctuations in the new inequality measure are not explained by those
shocks. These facts may provide useful empirical inputs to theoretical heterogeneous agent
models (for example, Gornemann, Kuester and Nakajimal [2016; Guerrieri and Lorenzoni,
2017; [Kaplan, Moll and Violante, 2018; [McKay, Nakamura and Steinsson), 2016; |Mckay and
Reis, 2016).

The next part of the paper investigates the opposite direction, from inequality to busi-
ness cycles. Researchers have spent an enormous amount of time and effort to detect and
evaluate sources of business cycles. While this literature typically focuses on level shocks
on aggregates, I propose to use innovations in inequality as a measure of “redistribution”
shocks. Rising inequality or redistribution from the poor to the rich may reduce aggregate
demand and impact on aggregate variables because marginal propensities to consume (MPC)

decrease in income or wealth (see Dynan, Skinner and Zeldes| 2004; |Johnson, Parker and

63



Souleles, [2006; Parker et al., 2013} Zidar, 2018]).

Specifically, I rely on unanticipated innovations in the time series of earnings inequality,
which are orthogonal to aggregate shocks and macroeconomic variables. These innovations
summarize redistributive forces shifting earnings from the bottom to the top while maintain-
ing aggregate earnings contemporaneously. I show that such redistribution that increases
earnings inequality lowers aggregate demand substantially. Major macroeconomic variables
such as real GDP, consumption, investment, price levels, and the federal funds rate decline
in a U-shaped manner in response to the positive unanticipated innovations. Furthermore,
the responses are large. For example, 35 percent of the forecast error variance of real GDP
per capita at a four-year horizon is due to these innovations. In short, redistribution shocks
seem to be an important driving force of regular business cycle dynamics similar to standard
level shocks to aggregates.

To illustrate the mechanisms through which shocks to inequality affect an economy, I
develop New Keynesian dynamic stochastic general equilibrium (DSGE) models. I study two
models, a simple one for the intuition based on analytical results and a medium-sized one for
the quantitative analysis rationalizing the large, negative, U-shaped responses. The models
feature two agents who are either hand-to-mouth or intertemporal in line with |Campbell and
Mankiw, (1989)) and |Gali, Lopez-Salido and Vallés (2007). Unlike usual two-agent models, I
assume that the labor productivity of both agents differs, where the hand-to-mouth agent is
less productive. This setup is in accordance with the data in the sense that MPCs decrease
in income or wealth, that the probability of being credit constrained decreases in income
(Crook|, 2001, 2006)), and that there is limited participation in financial markets among
households below median wealth (Guiso and Sodini, |2013).

I consider a shock increasing the dispersion of the idiosyncratic labor productivity, which
makes the rich richer and the poor poorer. The main analytical result based on the simple
two-agent New Keynesian (TANK) model is that this earnings inequality shock is isomorphic
to a discount rate shock in a textbook representative agent New Keynesian (RANK) model.
This new finding illustrates in a simple way why individual heterogeneity associated with
earnings inequality can be a micro-foundation for an aggregate demand shock in a RANK
framework.

However, this simple TANK model cannot rationalize the empirical impulse responses,
especially the U-shaped patterns. Thus, I extend the simple model and develop a two-

agent medium-sized DSGE model with three novel features affecting aggregate demand: an
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endogenous extensive margin between two agents, decreasing relative risk aversion (DRRA)
consumption utility, and a small amount of financial income for the credit constrained agents.
In a recession, there may be more consumers subject to credit constraints due to unemploy-
ment risk (Ravn and Sterk, 2017) or countercyclical idiosyncratic earnings risk conditional
on being employed (Guvenen, Ozkan and Song, |2014; Storesletten, Telmer and Yaron, 2004]).
This leads to more consumers having higher MPCs during deeper recessions. Indeed, |Mian,
Rao and Sufi (2013) and Mian and Sufi (2015) document that limited access to credit and
related MPC heterogeneity played a central role in the development of the Great Recession.
I provide a parsimonious characterization of this channel in the model as well as a micro-
foundation for it. Another new feature is that the degree of relative risk aversion (RRA) of
both agents may differ. When the model is estimated, the coefficient of RRA of the hand-
to-mouth agents is higher than that of the intertemporal agents. As agents move from the
credit constrained state to the intertemporal state, their consumption increases and their
coefficients of RRA decrease. This is exactly DRRA preferences because the same agent
alternates between the two states in my model. Note that DRRA preferences also conform
to empirical findings of |Calvet, Campbell and Sodini (2009, Section IV.C). Finally, I as-
sume that the credit-constrained agents also receive non-zero (albeit small) financial income
for three reasons. First, the wealthy hand-to-mouth agents of Kaplan and Violante| (2014
and |[Kaplan, Violante and Weidner (2014]) would hold a significant amount of assets and
receive dividends while they are credit constrained. Second, some wealth poor agents engage
in financial investment (Guiso and Sodini, 2013)). Lastly, this may represents government
transfers and pensions in a parsimonious way. My model further incorporates characteristics
of medium-sized RANK models such as investment or capital utilization adjustment costs,
sticky prices and wages, and habit preferences (Christiano, Eichenbaum and Evans, 2005}
Smets and Wouters, [2007)). Because a consumer is temporarily hand-to-mouth or temporarily
intertemporal, I dub the model “the Temporarily Hand-to-mouth and Intertemporal agent
New Keynesian model,” or in short, “the THINK.”

I estimate the model using a Bayesian impulse response matching method of |Christiano,
Trabandt and Walentin| (2010). This approach enables me to focus on structural shocks with
clearly identified empirical counterparts. The estimated model generates large and U-shaped
impulse responses to the earnings inequality shocks, comparable to the empirical responses to
the unanticipated innovations in inequality. In doing so, the model relies on the interplay of

the three new features discussed above, which induces intriguing dynamics in discount factors
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and aggregate demand. For example, the number of credit constrained agents is time-varying
because of the endogenous extensive margin of being credit constrained and countercyclical
earnings risk. This adds a new component in aggregate consumption demand in the following
way. When aggregate demand decreases in response to an inequality shock, the economy
goes into a recession. Then some agents are hit by large negative idiosyncratic shocks due
to countercyclical earnings risk and unemployment risk. As they become credit constrained
and reduce consumption, aggregate consumption demand decreases and the economy falls
into a deeper recession. Then more agents become credit constrained and so on. Such
distributional effects are crucial for rationalizing the shape and magnitude of the empirical
responses of aggregate consumption to the unanticipated innovations in inequality.

Another important prediction of my theory is that inequality affects the power of stabi-
lization policies. Intuitively, in an economy with high inequality, there may be more people
at the bottom of either income or wealth distribution. Also, these people have higher MPCs
because they do not have enough buffers to absorb shocks. An interaction effect between
more people and higher MPCs makes aggregate consumption demand more sensitive to eco-
nomic conditions including monetary and fiscal policies. This channel is relevant to the
U.S. economy because the share of households with negative net wealth has been increasing
since 1969 (Wolff, |2017). Consistent with these insights, the non-linear dynamics of the
THINK model predicts that the economy responds more strongly to a monetary or govern-
ment spending shock when there are more credit constrained agents. If the interaction effect
also applies to other structural shocks, the aggregate economy may fluctuate more, and so
cyclical volatility in general may be elevated. But on the bright side, stabilization policies
become more powerful too.

Given the policy implication based on the model, I empirically test whether aggregate
variables react differently to policy shocks conditional on the level of inequality. Using a
variety of datasets (state-level, aggregate, various identified shock series, and sample periods),
I find that the U.S. economy responds more strongly to either a monetary or fiscal policy
shock of the same magnitude when income is distributed more unequally.

There are several empirical studies on cyclical variations of inequality. Some focus on the
effects of inflation on poverty or redistribution of nominal wealth (Blank and Blinder; 1986}
Doepke and Schneider, [2006; Romer and Romer, 1999). Others look at differential expo-
sure of individual consumption, earnings, and income to aggregate fluctuations (Parker and

Vissing-Jorgensen, 2009; Guvenen, Ozkan and Song, 2014; Guvenen et al. [2017). Coibion
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et al| (2017) deals with the dynamics of inequality conditional on monetary policy shocks,
which is the most related previous work to this paper. However, this paper differs from
Coibion et al. in several respects. First, I study how inequality impacts business cycles as
well as whether major structural shocks affect inequality, whereas Coibion et al. concen-
trates solely on the effects of monetary policy shocks on inequality. Second, I articulate
mechanisms at play using structural models, while the analysis of Coibion et al. is purely
empirical. Lastly, data sources are different. Coibion et al. constructs measures of inequality
based on the Consumer Expenditure Survey, while I use the QCEW.

My model features both hand-to-mouth and intertemporal agents. Such models have been

used to study monetary policy rules (Bilbiie| [2008; (Gali, Lopez-Salido and Vallés, 2004)) and

effects of government spending shocks (Bilbiie, Meier and Miiller, [2008; |Gali, Lopez-Salido]

and Vallés|, 2007) when there are hand-to-mouth consumers following Campbell and Mankiw|
(1989)). While these models usually assume equally productive agents and ignore distribu-

tional factors, I introduce earnings inequality with heterogeneous labor productivity. This

provides a new, simple theoretical framework for studying inequality and macroeconomic
fluctuations. Furthermore, this parsimonious framework is consistent with the empirical
evidence that less productive workers have higher MPCs and are more likely to be credit
constrained (see (Crookl 2001, [2006; |[Dynan, Skinner and Zeldes, 2004; Johnson, Parker and|
Souleles|, 2006; Parker et al., 2013} |Zidar, 2018)).

There have been papers summarizing individual heterogeneity by a wedge to a discount

factor in an aggregate consumption Euler equation (Braun and Nakajimal, [2012; |Constan-|

tinides and Dulffie, |1996; Werning, 2015)). These papers show exact aggregation is possible

under some restrictive assumptions. I derive a similar result for a canonical TANK model
in a first-order approximation and connect earnings inequality to aggregate demand and
discount rate shocks more explicitly.

Another framework for studying economic fluctuations with distributional issues is based
on heterogeneous agent New Keynesian (HANK) models. These quantitative models gen-

erate a realistic description of cross-sectional distributions of households as an equilibrium

outcome (see Kaplan and Violante, 2018, for a review). Others propose models with two
(or a finite number of) agents as a middle ground between tractable RANK and rich HANK
models and provide analytical expressions highlighting HANK mechanisms
Dogray, [2018; Bilbiie, 2017, Debortoli and Gali, 2017; Ragot| 2018; Ravn and Sterk], 2018]).

I take a similar approach to emphasize insights based on analytical results while utilizing
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efficient tools developed for solving and estimating medium-sized models.

The THINK model features an extensive margin between two agents. [Bilbiie| (2017)
considers an analogous channel with fixed transition probabilities in his analytically tractable
HANK model and illustrates how it relates to the discounted Euler equation of McKay,
Nakamura and Steinsson| (2017). Because the transition probabilities are fixed, the number of
credit constrained agents in his model is constant. My paper goes one step further and makes
transition probabilities vary endogenously with aggregate fluctuations. Because earnings risk
is countercyclical as reported by |Guvenen, Ozkan and Song| (2014)), Ravn and Sterk| (2017,
and Storesletten, Telmer and Yaron| (2004), it is harder for credit constrained agents to
escape from their constraints during a recessions. This would increase the number of credit
constrained agents during economic downturns, constituting a new channel for aggregate
consumption dynamics.

Auclert and Rognlie (2018) also investigate the effects of redistribution shocks on eco-
nomic output in their HANK model. However, the THINK model differs from the model of
Auclert and Rognlie in several respects. First, Auclert and Rognlie work with a continuum
of heterogeneous agents, whereas the THINK model is based on two agents. Second, Au-
clert and Rognlie assume a constant RRA (CRRA) utility function, while I assume a DRRA
preference with habit formation. For the supply block, Auclert and Rognlie let downward
nominal wage rigidities induce room for monetary policies, whereas I introduce both price
and wage stickiness a la [Rotemberg| (1982)). Lastly, my model includes an autoregressive
term in monetary policy rule which does not exist in the model of Auclert and Rognlie.
When all the differences are combined, the models generate divergent predictions on the
effects of earnings inequality shocks. Auclert and Rognlie find that such shocks have little
aggregate effects in their model, which is contrary to the predictions of the THINK model
and my empirical results.

While previous research (e.g.,|Alesina and Perotti, [1996; Bordo and Meissner, |2012; Caird
and Sim, 2017; Kumhof, Ranciere and Winant} 2015 covers why a financial or political
crisis may be related to inequality, little work has been done about the power of stabilization
policies and volatility of regular business cycles given various degrees of inequality. |[Debortoli
and Gali (2017) is a notable exception. Debortoli and Gali compare TANK models with the
fixed but different steady state shares of the hand-to-mouth agents and find that the effects
of monetary policy shocks are significantly larger around the steady state with more hand-to-

mouth agents. In the THINK model, I focus on a non-linear interaction effect between more
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people and higher MPCs around the same steady state. I study fiscal policy shocks as well
as monetary policy shocks, and I also find empirical results consistent with the theoretical
predictions of my THINK model.

The remainder of this paper is organized as follows. Section covers the construction
of the new, high-quality, high-frequency measure of earnings inequality. Section deals
with the responses of earnings inequality to shocks to stabilization policies and total factor
productivity. In Section [3.4] I study the direction from earnings inequality to key aggregate
variables and illustrate that an unanticipated positive innovation in inequality decreases
aggregate demand substantially in a U-shaped manner. Section [3.5]analyzes the mechanisms
through which an inequality shock reduces aggregate demand and generates large, negative,
U-shaped responses in DSGE models. Section discusses the relationship between the
power of stabilization policies and the level of inequality. Section concludes.

3.2 A New Quarterly Measure of Inequality

3.2.1 Data

The Quarterly Census of Employment and Wages (QCEW) is a quarterly, publicly avail-
able, administrative database. The Bureau of Labor Statistics and the State Employment
Security Agencies prepare the data based on reports filed by employers, collected for the
unemployment insurance programs.

The employment series includes all forms of jobs: full-time, part-time, temporary, and
permanent. The wages in the data are pre-tax earnings including bonuses, stock options,
profit distributions, and some fringe benefits such as cash value of meals and lodging.

The main advantages of the QCEW are frequency, coverage, and accuracy. First, the
QCEW is quarterly, whereas most of the other data previously used for studying inequality
are annualE] Moreover, the QCEW covers all counties and industries. Finally, the data are

administrative and therefore observed with little measurement error.

2For example, |Guvenen et al.| (2015)), Guvenen, Ozkan and Song| (2014), and Song et al.| (2018)) use
the Master Earnings File of the U.S. Social Security Administration. [Piketty and Saez| (2003) rely on tax
returns statistics of the Internal Revenue Service. The Current Population Survey (CPS) is analyzed by
Autor, Katz and Kearney| (2008). The CPS has two types of earnings data. The first one is collected
annually in the March annual demographic survey. The other is based on merged outgoing rotation groups
(MORG) available monthly. However, the MORG data are about usual weekly earnings, and therefore it is
not suitable for identifying high-frequency variation in inequality.
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However, the data are not perfect. First, the data are not at the individual-level. The
most granular information available is average earnings and the number of workers in a cell,
where a cell is an industry/county/ownership-type combinationﬂ Thus, measures in this
paper represent between-cell, not within-cell inequality. Moreover, self-employed workers
are not included, and some observations are suppressed due to confidentiality. Finally, the
data cover only earningsﬁ

Despite these limitations, I will show in Section that the log P90/P10 index based
on the QCEW is consistent with the same measure based on the March annual demographic
survey in the Current Population Survey (CPS), which is annual and individual-level (Autor,
Katz and Kearney, 2008). In other words, the QCEW is sufficiently disaggregated, and so
the measurement errors due to the unobservable within-cell inequality seem to be small.

I use several filters to attenuate the potential adverse effects of extreme observations and
seasonality. First, observations with unreasonably small earnings are dropped. Following
Guvenen et al. (2015), the threshold is what can be earned by working one-quarter of full-
time at half of the legal minimum wage rate. Second, I seasonally adjust the percentiles
of the log earnings distribution. These are available at three different levels of aggregation
depending on period: SIC 2-digit for 1975:Q1-2000:Q4, SIC 4-digit for 1984:Q1-2000:Q4, and
NAICS 6-digit for 1990:QQ1-2014:Q4, where SIC and NAICS stand for the Standard Industrial
(Classification codes and the North American Industry Classification System, respectively. I
splice these three series and deflate the combined one using the GDP implicit deflator (see
Appendix A.1 for details)ﬂ

Table shows summary statistics for selected quarters. The top half of Table
displays the number of observations and coverage. The number of cells is greater than two
hundred thousand after a few early quarters, which far exceeds the number of respondents
in a typical survey. The bottom half of the table shows the sizes of the cells. For example,
there are around 66 workers in a median-sized cell, and this corresponds to only 0.00007% of
the total number of workers in the first quarter of 2014. In other words, the sizes of most of

the cells, in which I assume workers earn uniformly divided compensations, are small when

3The ownership code differentiates establishments owned privately, by a local government, by a state
government, by the federal government, and by an international government.

4However, taking capital income into accounts might not affect the log P90/P10 index (the benchmark
measure in this paper) significantly, because capital income is extremely concentrated above the top 10th
percentile.

5All standard macroeconomic variables are obtained from the FRED run by the Federal Reserve Bank of
St. Louis.
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we consider the cross-section of earnings.

3.2.2 Percentiles and Inequality Index

In the right panel of Figure 3.1 I plot the log of selected percentiles of the real earnings
distributions. Median real earnings have not grown as fast as the upper half of the distribu-
tion for the last few decades, and therefore the U.S. real earnings distribution has widened.
Similarly, the gap between the median and the bottom 10th percentile increased throughout
most of the periods (Figure A2 in Appendix A). The late 1990s was an exception during
which the gap was stable. Furthermore, the imprints of historical events such as the dot-
com bubble around 2000 and the sub-prime crisis around 2008 are evident among the top
percentiles.

The log P90/P10 index is on the left panel. When it is compared with an existing, annual
measure reported by |Autor, Katz and Kearney| (2008]), not only the historical pattern but also
the values are similar [f| Because Autor, Katz and Kearney use the CPS which is individual-
level data, this similarity indicates that my quarterly log P90/P10 index is of high-quality.

The new quarterly log P90/P10 index, which is my benchmark inequality measure, has
desirable properties for the following reasons. First, the QCEW is a large administrative
dataset. Second, although within-cell inequality is not observable, the size of most cells is
small. Furthermore, the P90/P10 index is rather robust to changes in within-cell inequality
because the index utilizes only two points in the entire distribution[| Finally, considering
the log P90/P10 index allows us to circumvent measuring inequality within the extreme tails

and to focus on inequality in the “middle class,” who affect aggregate variables significantly:.

3.3 From Aggregate Shocks to Earnings Inequality

This section investigates how earnings inequality reacts to major drivers of business cycles,

using the new, high-quality, quarterly measure of earnings inequality that I construct. The

6T construct three other measures: (i) cross-sectional standard deviation of the log real earnings, (i) Gini
coefficients of the real earnings, and (iii) top 10% earnings share. Although these series replicate historical
patterns successfully, the levels of them are lower than the corresponding measures based on individual-level
data (Figure A3 and A4 in Appendix A).

"Relatedly, [Song et al. (2018)) argue that changes in earnings inequality in the U.S. have been primarily
a between-firm phenomenon, not within-firm. This might explain why ignoring within-cell inequality leads
to little distortions in time series variation.
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estimated impulse response functions and the forecast error variance decompositions consti-

tute novel empirical facts regarding dynamics of earnings inequality.

3.3.1 Shocks and Sample Period

I analyze three structural shocks in relation to the inequality index. The identified shock
series I employ are shocks to total factor productivity (TFP), monetary policy (MP), and
fiscal policy (FP). Fernald| (2014) provides a quarterly, utilization-adjusted series of the TFP.
He deals with both capital and labor utilization, where the adjustment process is similar to
how Basu, Fernald and Kimball (2006) purify annual measures. For a monetary policy
shock, Romer and Romer| (2004) identify the MP shock as an orthogonal component in the
federal funds rate to the Federal Reserves’ information set around the Federal Open Market
Committee meetings. I use an updated version of the shocks from |Coibion et al.| (2017)),
who extend the series to 2008. Finally, I rely on the FP shock series in |Auerbach and
Gorodnichenko| (2012)), which is constructed from comparison of the realized and forecasted
growth rates of government spending. They use the forecasts from the Greenbook and the
Survey of Professional Forecasts.

I select the first quarter of 1978 as the first period in the benchmark sample, when there
was a significant change to coverage of the QCEW | The last period of the sample is the
fourth quarter of 2008, when the updated MP shock series ends.

3.3.2 Impulse Responses

Let yi, 241, Tv2, and 2,3 be the inequality index, TFP, MP, and FP shocks in period ¢,

respectively. The response of ;5 to a unit impulse in x; ; is denoted by vy, ;:

iy = Qe for all & and j. (3.1)

(9xt7j

The impulse response coefficients {1, ;} are estimated by local projections of |Jorda (2005]):

Ly Ly 3
Yirh — Yi—1 = Cp + Z p§h)Ayt—i + Z Z Bz'(,l;)xt—i,j + uz(fyh)7 (3.2)
i—1 i=0 j=1

8Specifically, the Federal Unemployment Compensation Amendments of 1976 became effective on January
1, 1978. This incorporates major changes to state unemployment insurance program on which raw data of
the QCEW are based on. See https://www.bls.gov/cew/cewbultncur.htm#Coverage.
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where ﬁé? captures ¢, ; for each h and j. In other words, {ﬁg}) : h=0,1,...} represents
how the inequality index responds to x; ;.

In Equation (2), lags of Ay, are included on the right-hand side to absorb the predictable
variation. I set L, and L, at six, but the results are robust to the lag length and various
other specifications. Lastly, the identified shocks in Equation (2) are orthogonal. For every
pair of the three shocks, the null of zero correlation is not rejected at the 5% level. Details
of these statistical tests and sensitiveness analysis are in Appendix B.1-B.4.

I similarly estimate how the aggregate earnings in the QCEW react to the shocks and
depict the results with that of the inequality index in Figure 3.2 Given a one standard
deviation positive TFP shock (3 percent, annualized), the aggregate earnings increase with
a peak of around 3 percent (annualized) after 10 quarters, but the inequality index decreases
by around 2.5 log points (annualized) after 3 to 4 years. Thus, the earnings distribution
shifts to the right, while the dispersion among the middle workers shrinks.

This finding may sound contradictory to a view that rising earnings inequality in re-
cent decades is due to skill-biased technological progress (Goldin and Katz, 2009; |Krusell
et al., 2000). However, the results in Figure are about cyclical relationships between
productivity and inequality around trends, not about the trends themselves. Furthermore, a
dynamic stochastic general equilibrium model of Gornemann, Kuester and Nakajima/ (2016))
similarly predicts that earnings inequality decreases when a positive productivity shock hits
an economy.

Reduction in the inequality index is mostly because of compression among the upper
half of the distribution, not the lower half. The log P90/P50 index decreases statistically
significantly at the 10% level while the P50/P10 index does not as illustrated in Figure .
However, the right-tail above P90 reacts differently. Indeed, the P99/P50 index increases by
5 log points (annualized) at the peak in response to a one standard deviation positive TFP
shock ] The top 10% share also rises, contrary to the log P90/P10 index (see Figure B7).

In short, the earnings distribution becomes more right-skewed in response to a posi-
tive TFP shock. While the middle 80% shrinks, (especially the upper part), the right-tail
diverges.

A contractionary MP shock decreases the aggregate earnings while it has little effects

on the earnings dispersion among the employed. |Coibion et al. (2017)) also reports similar

9See figures in Appendix B.5 for how various percentiles respond to the shocks. This specific observation
regarding P99 is in Figure B13.
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results based on a different dataset, especially in their Figure Thus, any redistribution
channel of monetary policy should be from either unemployment risk or financial income,
not from labor earnings conditional on being employed (see Auclert} [2017; |[Kaplan, Moll and
Violante, 2018, for the redistribution channel). In theory, earnings inequality may respond in
either direction to a monetary policy shock. For example, earnings inequality increases given
a contractionary monetary policy shock in the model of (Gornemann, Kuester and Nakajima
(2016). On the other hand, |Dolado, Motyovszki and Pappa; (2018) illustrate how earnings
inequality between high and low-skilled workers could decline in response to a contractionary
monetary policy shock in a NK model with search and matching frictions and capital-skill
complementarity. However, neither of those theoretical predictions is consistent with my
empirical result that the MP shock has little effects on the earnings inequality index.

The earnings distribution widens when government expenditures expand. The responses
in Figure are delayed and persistent like those for the TFP shocks. The peak effects
are 3.8 log points (annualized) after 15 quarters given a one standard deviation shock (4.2
percent, annualized). Similarly, rising dispersion among the upper half is a key to the
reaction because the P90/P50 index increases statistically significantly, while the P50/P10
index does not in Figure Qualitatively, this result is consistent with the prediction
of the model in Heer and Scharrer (2016]). Heer and Scharrer find that an expansionary
government spending shock raises income inequality in an overlapping generations model

with both hand-to-mouth and intertemporal agents.

3.3.3 Forecast Error Variance Decompositions

Next, I evaluate the economic significance of each shock as a driver of earnings inequality at
business cycle frequencies. I decompose the forecast error variance of the inequality index in

relation to each shock. The parameters of interests are

B Var (Z?:o ¢z‘,jl‘t+h—z‘,j)
Var (yt+h — Y1 — P (yt+h - yt—l))’

Sh,j (33)
where the subscript j indexes the type of shocks (TFP, MP, or FP), and P, means a projection
on a period t information set. The forecast error y;ip — yi—1 — Pro1(Yen — Y1) consists
of the effects of {z;;} and an unrelated component: wyiip — Yi—1 — Pt (Yrn — Yi—1) =

Vo jTeih+ o+ Un T+ ugi}? Then the contribution of the shock j’s to the total variance
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of the forecast error is captured by s ;. In other words, it measures the importance of the
shock j in explaining the dynamics of y; at a horizon h.

I employ a bias-corrected R? estimator of Gorodnichenko and Lee (2017) who develop
flexible methods for estimating the forecast error variance decompositions (FEVDs) with
local projections. For the projection P,_;(-) in Equation (3), I use the three shocks and Ay,
at lags 1 to 4.

Unlike other empirical results in this paper, the FEVDs for the FP shock are sensitive to
the periods when the Fed targeted the quantity of non-borrowed reserves between 1979 and
1982[1 Therefore, I plot the results in Figure[3.4 based on the sample both with and without
the early Volcker period, where the latter sample spans from 1983:Q1 to 2008:Q4. Except
for the sensitivity to the early Volcker period, the results are robust to other modifications
in specification (Appendix B.6).

The TFP shock is a major determinant of earnings inequality at a 4-year horizon, ex-
plaining about 20-30 percent of the forecast error variances of the inequality index. The FP
shock is another important factor. About 20 percent of the forecast error variances of the
inequality index at the three to four-year horizons is due to the FP shock after the early
Volcker period. Note that the results for the TFP and FP shocks are consistent with the
delayed and persistent impulse response functions in Figure |3.2] For the MP shock, the
estimated FEVDs are statistically insignificant, similar to the impulse responses in Figure
0.2

In sum, expansionary fiscal policy shocks raise earnings inequality substantially at the
medium-run. On the other hand, earnings inequality does not react to monetary policy
shocks, which is contrary to the predictions of some theoretical heterogeneous agent models.
This further implies that monetary actions are more suitable when policymaker’s objective
is to design earnings distribution-neutral stabilization policies. Finally, total factor produc-
tivity shocks also have the statistically and economically significant medium-run effects on
earnings inequality.

Although macroeconomic factors contribute to cyclical variations in inequality signifi-
cantly, they have little effects on the short-run dynamics. I will show in Section that a
considerable fraction of the short-run movements is similarly unpredictable when the informa-

tion set is substantially extended. The next section investigates a role of this unanticipated

10Relatedly, |Coibion| (2012) and Romer and Romer| (2004)) find that the estimated effects of the MP shock
on output is sensitive to several observations in this period.
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variation in the inequality measure as a potential source of business cycles.

3.4 From Earnings Inequality to Business Cycles

The previous section highlights that drivers of business cycles, (especially shocks to TFP
and fiscal policy), affect earnings inequality. Now I focus on the other direction, from earn-
ings inequality to business cycles. I show that inequality itself impacts aggregate demand
substantially by redistributing economic resources across agents with different MPCs, and
so policies are called for to stabilize business cycles.

This section begins with heuristics of how shocks to earnings inequality can be related
to aggregate demand shocks. For empirical analyses, I rely on unanticipated innovations in
the inequality index, which summarize shocks to individual heterogeneity and redistributive
factors in the economy in a parsimonious manner. In response to an unanticipated innovation
in inequality that represents redistribution of earnings from the bottom to the top, aggregate
variables such as real GDP, price level, and interest rates decline substantially in a U-shaped
manner. The signs of the estimated impulse responses imply that redistribution shocks
reduce aggregate demand. The forecast error variance decompositions further highlight that

these redistributive forces may be an important source of macroeconomic fluctuations.

3.4.1 Inequality, Redistribution, and Aggregate Demand

How can redistribution shocks generate aggregate fluctuations? |Rothschild and Stiglitz
(1970, [1971) show that a mean-preserving spread can reduce aggregate consumption de-
mand given a concave consumption function despite aggregate earnings remaining the same.
Empirical evidence strongly supports the concavity of a consumption function (see |[Dynan,
Skinner and Zeldes| 2004; |Johnson, Parker and Souleles, 2006; Parker et al., 2013} |Zidar,
2018). Therefore, an inequality shock constitutes a negative demand shock in a system of
aggregate variables. Note that two factors are essential for this heuristics. First, the inequal-
ity shock reflects redistribution from the bottom to the top. Second, marginal propensity to

consume decreases in income.
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3.4.2 Unanticipated Innovations in Inequality

To empirically evaluate the mechanism above, I begin with identifying redistribution shocks
from time-series variation. Specifically, I use an unanticipated innovation z;ne, in the in-
equality index y;:

Yt — Yt—1 = F;zgﬂﬁ) + zt,ineq- (34)

The unanticipated innovation in earnings inequality, or in short, inequality shock, is a com-
ponent of 3, orthogonal to the information set denoted by ng), which includes key macroe-
conomic variables such as effective federal funds rate (EFFR), inflation, and growth rate
of real GDP, consumption, and investment, and the structural shocks in Section the
TFP, MP, and FP shocks. Throughout this paper, real GDP, consumption, and investment
are measured in per capita terms. ZEE) also contains an intercept and 6 lags of Ay, and
the variables above. I include a sufficient number of lags to remove predictable variation as
much as possible.

Note that ng) has contemporaneous values of the variables except for Ay,. Thus, the
identification of x;n¢, is equivalent to that of a structural vector autoregression model
with Cholesky ordering where Ay, is the last variable. By purging all contemporaneous
co-movements, I define z; ¢, in a conservative manner.

An omitted variable bias might be a potential threat to my identification. If there is
a demand shock not originating from, but affecting, earnings inequality, this may distort
my empirical results. In this regard, I consider three probable confounding factors: shocks
to an excess bond premium (EBP), news, and consumer confidence. For the EBP, I add a
series built by |Gilchrist and Zakrajsek (2012) to ZEI), which is an average corporate bond
premiums unrelated to the systematic default risk of individual firms. Identification of a
news shock is based on stock prices InS; and T'F P, similar to |Beaudry and Portier (2006)).
The idea is that a component of the stock price unrelated to current productivity reflects
news about the future. Lastly, I employ a measure of Barsky and Sims| (2012)) on consumer
confidence, E5Y. Barsky and Sims show that the E5Y contains information on animal spirits
in the sense of |Lorenzoni| (2009).

Although an uncertainty shock may be another confounding factor, it is unlikely to
quantitatively affect my estimates. The identified x; ;,,e, based on the ZS’”) above is orthogonal
to the uncertainty shock of |Jurado, Ludvigson and Ng (2015)). Furthermore, the shocks do

not Granger-cause each other (see Appendix C.1).
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Figure depicts the identified inequality shocks. It follows a white noise process in the
sense that the autocorrelations and the partial-autocorrelations at every lag are statistically
insignificant. The inequality shock does not Granger-cause the TFP, MP, FP, and uncertainty
shocks, and vice versa. Lastly, either including a dummy variable for the early Volcker period
in Zix) or using a sample from 1983:Q1 delivers effectively identical shock series (see Appendix
C.1).

While it is not easy to rationalize the realized shocks, some of them have narratives
related to distribution of tax changes. The identified series is consistent with leading tax
reforms where the shades in Figure denote when they are signed into law. For example,
the Tax Reform Act of 1986, or Reagan II in Figure [3.5] reduced the top marginal income tax
rates from 50% to 28%. [Piketty and Saez (2003)) note that the earnings distribution widened
as a result at least temporarily. It was signed into law in the middle of the fourth quarter
of 1986, and ;e Was positive in the following quarters. In a similar vein, the Economic
Recovery Tax Act of 1981, or Reagan I, lowered the top tax rates from 70% to 50%, and
the positive unanticipated innovations followed. Another example is the Omnibus Budget
Reconciliation Act of 1993 during the Clinton administration. It raised the top income tax
rates from 31% to 39.6% and the negative x jne,’s in 1993:Q4 and the following quarter may
be related to the reform. Lastly, the Jobs and Growth Tax Relief Reconciliation Act of 2003,
or the Bush tax cut lowered the top rates from 38.6% to 35%. The positive unanticipated

innovations in the third and fourth quarters of 2003 might reflect this change.

3.4.3 Impulse Responses

In the beginning of this section, I raised the hypothesis that more inequality may reduce
aggregate demand by redistributing resources from the bottom to the top. Here I empirically
evaluate the hypothesis by looking at how key macroeconomic variables respond to the
unanticipated innovations in inequality. My results are consistent with the hypothesis in the
sense that real GDP, price level, and interest rates decline at the same time in response to

xt,ineq .

I employ the following local projections to estimate the impulse response functions:

mtJrh — M1 = w}(Lm)xt,ineq + F;nzgm) + UETZ)a (35)

where w,ﬂm) is the parameter of interest, and {w}(Lm) : h = 0,1,...} represents how my,
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responds to a unit shock in inequality. Z,gm) includes macroeconomic variables such as ef-

fective federal funds rate, inflation based on GDP deflator, and growth rates of real GDP,
consumption, and investment, their lags, lags of ¥, and an intercept. Lag length is 6
and the results are robust to the lag specification. When estimating the responses of the
inequality index y, itself in response to the shock xyneq, lags of Ay, are further added to
yASRS

The results in Figure [3.6| are consistent with the hypothesis that redistribution shocks
reduce aggregate demand. A one standard deviation unanticipated innovation in earnings
inequality lowers real GDP by 1.64 percent (annualized) after two yearsﬂ Similarly, real
consumption, investment, and the EFFR decrease. While negative responses of the GDP
deflator after 3 to 4 years are weak, this depends on the inclusion of the early Volcker period
in the sample. When I exclude those periods from the sample, the estimated peak effect
becomes -0.84 percent (annualized) and statistically significant (see Figure C5). The co-
movement that real GDP, consumption, investment, price level, and the policy rate decrease
at the same time is in line with redistribution shocks being negative demand shocks. Note
further that these variables react in a U-shaped manner, where the peak level of the responses
is reached after about 2 years.

The responses are not only statistically significant, but also economically significant.
The magnitudes of the responses are comparable to other prominent structural shocks. For
example, a one standard deviation contractionary monetary policy shock of Romer and
Romer| (2004) reduces real GDP by about 2 percent (annualized) at the peak when estimated
similarly (Figure D2). The TFP shock of Fernald (2014)) also has a similar peak effect on real
GDP (Figure D3). In short, inequality matters for aggregate fluctuations. More inequality
increases the amount of slack in an economy by reducing aggregate demand substantially,
and the results are robust to various modifications to the baseline specification including
different lag length, exclusion of the early Volcker period, and using inequality measures
other than the log P90/P10 index (see Appendix C.2).

Straub, (2018) notes that aggregate implications of inequality may depend on whether
it is based on permanent income or transitory income. Because consumption may be ap-
proximately linear in permanent income, rising permanent income inequality may have little

imprints on aggregate demand. In this regard, it is intriguing that my unanticipated inno-

" Although @4 ineq is a generated regressor, we do not need to adjust the inference when the null hypothesis
is of no effect. See [Coibion and Gorodnichenko (2012, Appendix D) and [Pagan| (1984).
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vations raise the inequality index only temporarily in Figure 3.6 A one standard deviation
innovation in inequality increases the log P90/P10 index approximately by 2 log points
(annualized) concurrently, and the responses gradually return to zero similar to an AR(1)

process. Thus, my series presumably represents shocks to transitory earnings.

3.4.4 Forecast Error Variance Decompositions

This subsection examines the economic importance of the redistribution shocks as a source
of the U.S. business cycles. Specifically, I estimate how much forecast error variances of
aggregate variables are attributable to the unanticipated innovations in earnings inequality.

I use a bias-corrected R? estimator of (Gorodnichenko and Lee| (2017) as in Section [3.3.3|
The estimates for real GDP at a four-year horizon is 35 percent with the lower bound of
its 90 percent confidence band being around 20 percent as depicted in Figure |[3.7. The
results are similar for real consumption and investment, (25 percent and 20 percent at a
four-year horizon, respectively), implying that redistributive forces may be an important
driver of aggregate fluctuations. The unanticipated innovations explain large variation of
the log P90/P10 index in the short-run, consistent with the impulse responses in Figure .
This further resembles the result in Section that a significant fraction of the short-run
variation in the log P90/P10 index is not predictable by shocks to the TFP, MP, and FP.
On the other hand, the EFFR and GDP deflator are mostly driven by other factors. The
results are not sensitive to the specification details (see Appendix C.3)B

Given the results so far, the main conclusion in Section [3.4] is that the redistribution
shocks can reduce aggregate demand substantially in a U-shaped manner. This novel empir-
ical finding leads to natural follow-up questions on mechanisms. The next section develops
DSGE models to investigate the amplification and propagation mechanisms of shocks to
inequality and illustrate how the shape and magnitude of the empirical impulse responses

can be rationalized.

12Because it is not easy to estimate FEVDs precisely based on a finite sample, caution needs to be
exercised when interpreting the results. In particular, the inequality shock might encompass measurement
errors because it is a generated variable. However, |Gorodnichenko and Lee| (2017) show that measurement
errors incur only negative asymptotic biases, and therefore my estimates are conservative in favor of no effect.

85



3.5 Inequality Shocks in DSGE Models

This section introduces inequality shocks into DSGE models. I show that an inequality shock
in a simple two-agent New Keynesian (TANK) model is isomorphic to a discount rate shock in
a textbook representative agent New Keynesian (RANK) model. This implies that earnings
inequality can be a primitive source of an aggregate demand shock in a representative agent
framework. For the quantitative evaluation, I develop the temporarily hand-to-mouth and
intertemporal agent New Keynesian (THINK) model. 1 demonstrate how the model can

replicate the large, negative, U-shaped, empirical impulse responses in Section [3.4]

3.5.1 Inequality Shocks in a Simple Two-Agent New Keynesian
Model

Suppose that there are two types of households. The first type is a hand-to-mouth agent

while the other type can smooth their consumption intertemporally. Following Debortoli

and Gali (2017)), I call the hand-to-mouth agents Keynesians and the others Ricardians.
The Keynesians are credit constrained and cannot engage in intertemporal optimization.

Thus, their consumption is determined by labor earnings:

PCY = ZWiNT, (3.6)

1/(1—¢
where P, = (3 Pt~ dj) "

ep—1)/€ €P/(€P—1)
)( p—1)/ de>

is an aggregate price level, W, is a nominal wage rate,

¢ = (1 (ck

Jit
labor productivity of the Keynesians. They pick hours of work N/ to equate a real wage

is a composite consumption bundle, and ZF denotes
rate and a marginal rate of substitution:

ZK— = — %< (3.7)
where a period utility function is U(CK, N¥) = u(C¥) — v(N¥), and subscripts C' and N

denote the first-derivative with respect to C' and N, respectively.
On the other hand, the Ricardians maximize E; [ > BUCE, NﬁT)] subject to flow
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budget constraints:

BR
thrTCt]j-T + —T = Bt]?i—r—l + Zﬁ—TWtJrTNtI—%i-T + ethJrT - T'tJrTv (38)

T+,
where CE and N[ are consumption and labor supply of the Ricardian agent, Bf is an
amount of risk-free nominal bonds, i; is a nominal interest rate, and ZF is productivity of
the Ricardians. D; denotes aggregate dividends, and I assume that each Ricardian agent
owns 0% share of all of the firms. 55 and 5 represent population shares of the Keynesians
and Ricardians, and therefore #% = 1/5%. T, is lump-sum taxes. The Ricardian’s problem

leads to the following optimality conditions:

uc(CEL) 1414,
1=F 3.9
tﬁuC(Cﬁ) 1+7f, ] (39)
W, NE
Wi _ on(NF) (3.10)

"B ue(CF)

where 7 is price inflation.

Usually in TANK models, ZX and Z[ are the same, and so earnings inequality is excluded
from the analysis. I assume instead that ZX < ZF to introduce distributional factors to the
model. As Keynesians earn less and consume a larger fraction of marginal earnings increases
than Ricardians, the MPCs decrease in earnings in my model, consistent with empirical
evidence.

I assume that the coefficient of RRA of the consumption utility function u(-) at both C*

B ucc(CEYCK _ ucc(CHYCR
uc(CK) uc(CH)

a bar means its value at the steady state and double subscripts are for the second-derivative.

and O is the same and is denoted by v = , where a variable with

Similarly, the inverse Frisch elasticity of labor supply at the steady state is denoted by
_ onn(NEINE onn(NF)NE
LN oy (NF)
Note that aggregate consumption and labor in efficiency unit can be written as follows:

Cy, = s"CK +5°CE, (3.11)
N, =55 ZFNK + sRZENE. (3.12)

I denote the consumption and labor shares of the Keynesians at the steady state by 55 =

sKCK K _ sKZKNK
7 and sy = ==

, where 5% and 5% are defined accordingly.
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Monopolistically competitive firms produce intermediate goods indexed by j € [0, 1].

Firm j takes a demand curve Y;; = (?) Y, as given when choosing its price P;;. Profit

D;,is given by P; Y, ,—W, N, ,— wzp (P—_l — 1) P,Y, where the last term represents quadratic

price-adjustment costs a la Rotemberg| (1982). Each firm maximizes E; [Zi’;a QL +TDj7t+T}

subject to the demand curve and a production function Y}y, = A¢y - Njsir, where QtD,t =
uc(Ct

BT — 7+ The first-order condition at a symmetric equilibrium is as follows:
Y,
—AUWA?+;f1ﬁ11+ﬁjn—E{ %’Qmﬂml@+mﬂ)nﬂlzq(am)
where Mp = £ is the steady state markup and w; is a real wage rate.

Finally, the model’s aggregate resource constraint and policy rule for the central bank

are standard:

cz-+<}t+-¢g’(wf)21;, (3.14)

@:u—mﬁ+m@4+u—mﬂgﬁwmw0+m@, (3.15)

where (G; represents government expenditure, x; is an output gap Y, — f/t” = log(V;/ 17) —
log(Y;*/Y), and Y;* is the level of output when prices are fully flexible. Similarly, other
variables with a check mean log-deviations from their steady state values. I further define
pc as C/Y and ¢g as G/Y.

An inequality shock is an exogenous force decreasing ZX and increasing ZF in such a
way that X2/ + s8ZF = 0 for all . Thus, this shock that increases earnings inequality
is a mean-preserving spread when working hours are equal to the steady state level. The

first-order dynamics of the model can be described by three equations (15)-(17):

(is = Ev [mfa] = 77), (3.16)

71'133 = BEt [ﬂ-t]i;-1:| S\.Tt, (317)

where 7} is the real interest rate under flexible prices, A= GZ—:A, = (1 — 54 ch Lt A) / (53%),
R

and A = (go + = SNV ) / {1 — (sﬁ — ‘;%sg) % . The derivations of the equations are in
C

Appendix D.1. Note that these equations are observationally equivalent to a standard three-

equations NK model of |Gali (2015]) and Woodford, (2003]).
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Inequality matters in this model in two ways. First, distributional parameters 55, 5%, 5&,

and 5% affect how shocks are propagated by changing the slopes of the dynamic IS equation
(16) and the Phillips curve (17). Second, the inequality shock has an effect on ¥, and 7.

I start with the slopes. While X and 7 are related to the distributional parameters in a
complicated manner, there is an interesting special case when the consumption share and
the earnings share of the Keynesians are the same, i.e., 55 = §§H In this case, A = ¢+ ¢lc
and A is independent of the distributional parameters. However, the slope of the dynamic
IS equation still depends on inequality. When 55 = 0 (i.e., there are no Keynesians), the
aggregate elasticity of intertemporal substitution (EIS) % is ‘%‘3, recovering the RANK model
of [Woodford, (2003, p.80). As 55 increases, 7 decreases or the aggregate EIS increases, if the
coefficient of RRA ~ is greater than 1@ This implies that the presence of hand-to-mouth
agents amplifies the effects of real interest rates on aggregate demand[”]

To study the effects of the inequality shocks, suppose that ZtK follows an AR(1) process,
ZK = p, ZK  —o,u?, where 0 < p; < 1. The mean-preserving spread assumption, 55 ZK +
Ef\{,ZtR = 0, implies that that ZtR = pZZvﬁ1 + azg—ﬁuf, and so uZ is a redistribution shock
increasing earnings inequality. This shock affects t111ve economy via both lv/t” and r;'. However,
when 55 = 5K, Y/t” becomes unrelated to the inequality shocks, and therefore uZ propagates
only through the natural rate of interest Tf.ﬁ One can show that

n <K

((még:;ﬁ] = —p}?%ij_i (1—pz)oz < 0. (3.18)
Note that this resembles how a contractionary discount rate shock in a RANK model works:
when utility in the future is less discounted, r}* decreases and a representative agent consumes
less as consumption in the future becomes more important. Therefore, the inequality shock
in the simple TANK model is isomorphic to a demand shock in a RANK model. This further
illustrates why individual heterogeneity can be a source of aggregate demand shocks in a
representative agent framework.

Intuitively, Cv’tK is similar to ZtK , because the Keynesians are hand-to-mouth. On the

13A sufficient condition for Eg =358 is ¢g = % = é When the steady state price markup is 20 percent
(Rotemberg and Woodford}, [1997)), this corresponds to ¢ being equal to 17 percent.

¥ Precisely, the condition is that v+ ¢c (1 + ¢) > 1.

15When s¥ is very large, ¥ becomes negative and an inverted aggregate demand logic of [Bilbiie| (2008)
prevails.

16When Eg # 55 the inequality shock has a supply-side effect of altering f/f” However, this effect is quite
small as long as 55 is close to 55. See Appendix D.1 for an analysis of this general case.
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other hand, the Ricardians want to smooth their consumption intertemporarily, and so Cv’tR
is less volatile than Z. Given a large decrease in C/€ and a small increase in C'F in response
to the inequality shock, there are some negative responses in aggregate consumption C,.
This illustrates why uZ is a negative aggregate demand shock.

Although the simple TANK model above is useful to build intuition, it cannot quanti-
tatively rationalize the U-shaped responses of aggregate consumption estimated in Section
. In the simple TANK model, C, decreases contemporaneously and returns monotonically
to zero. While introducing habit formation in preferences for consumption is useful to in-
duce hump-shaped dynamics in response to monetary policy shocks (Woodford, 2003)), this
is not the case for the inequality shocks. Because the Keynesians consume all of their labor
earnings every period, habit formation does not play a central role and C’tK closely follows
ZK. While the dynamics of Cf are affected by the consumption habit, it responds positively
given an inequality shock that increases ZtR By combining negative AR(1)-like dynamics
of CV’tK and positive hump-shaped responses of CV'tR, it is less likely that C, would decline
in a U-shaped manner. To rationalize the empirical impulse responses and understand the
mechanisms through which inequality shocks propagate, further enhancement is required in

a model.

3.5.2 The THINK Model and Its Quantitative Evaluation

The previous subsection analytically shows that the inequality shock reduces aggregate con-
sumption demand. Here I examine the effects of the inequality shock quantitatively using a
two-agent medium-sized DSGE model building on |Christiano, Eichenbaum and Evans| (2005))
and [Smets and Wouters| (2007). The model combines temporarily hand-to-mouth and in-
tertemporal (THI) agents and New Keynesian (NK) characteristics. When estimated by a
Bayesian impulse response matching method of |Christiano, Trabandt and Walentin| (2010)),
the THINK model successfully generates large, U-shaped impulse responses comparable to

the empirical ones.

Model

The THINK model extends the simple TANK model in several aspects. For individual
heterogeneity, three new features are introduced: an endogenous extensive margin between

the Keynesian and the Ricardian “families," a small amount of financial income for the
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Keynesians, and a decreasing relative risk aversion (DRRA) consumption utility. Various
characteristics of medium-sized RANK models are further incorporated such as investment
and capital utilization adjustment costs, sticky wages, and habit formation in consumption

preferences.

Keynesian and Ricardian Families I introduce an extensive margin of being a credit
constrained or unconstrained agent in the model, which makes the population shares of both
families determined endogenously. Suppose that sX and s? are the number of members in
each family in period t. The transition probability of becoming a Keynesian in period ¢

K and the other transition

among who were a Ricardian in period ¢t — 1 is denoted by ¢~
probabilities are denoted accordingly. The Keynesian family consists of agents who were

either a Keynesian or a Ricardian in the previous period:

sto= st siag (3.19)
It is clear that ¢/ =1 —¢/**, ¢/ =1 — ¢/, and s =1 - sf*.

I assume that the probability of staying in the Keynesian family for an agent who was a

Keynesian in the previous period is as follows:

ki ki (YN StK—1 "
q9  =dq <Y> oK , ny >0 and ns€R. (3.20)

For special cases, the type of an agent is fixed when ¢%% =1, ny =0, 5, = 0, and ¢/** = 1.

If g% = 55 ny =0, n, =0, and ¢*f = 5% agents are credit constrained in an identi-
cally and independently distributed manner. The parameter 7y governs the cyclicality of
g%, As documented by (Guvenen, Ozkan and Song| (2014), Ravn and Sterk (2017), and
Storesletten, Telmer and Yaron (2004)), unemployment risk and idiosyncratic earnings risk
are countercyclical. This implies that more people receive large negative idiosyncratic shocks
and become credit constrained during recessions. A positive ny captures such dynamics by
increasing ¢ when output Y; is low. That is, it is hard to escape from a credit constraint
during economic downturns. On the other hand, 7, influences the persistence of the number
of credit constrained agents. For example, when s, > 5% a positive 7, lowers the prob-
ability of staying in the Keynesian family, which increases the degree of mean-reversion in

the number of credit constrained agents s/*.
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The parameter 1y can be micro-founded as follows. Suppose that earnings of agents
who were credit constrained in the previous period are represented by an inverse Pareto
distribution v; tlYt, where v;; ~ Pareto(ny) for v;; > vy,. I assume further that one needs
to earn more than a threshold to circumvent the credit constraint, where the threshold is
an aggregate variable. In this setup, ¢X% becomes proportional to Y;”™. Intuitively, an
increase in aggregate income affects individual earnings positively and this leads to fewer
credit constrained agents. That is, “a rising tide lifts all boats." Furthermore, 7, can be
related to the (negative) elasticity of the threshold earnings to the number of credit con-
strained agents at the steady state. For example, consider a case where there are more
credit constrained agents than in the steady state. The additional credit constrained agents
would have enough resources not to be constrained at the steady state, and therefore they
are likely to be wealthier on average than those who would be credit constrained at the
steady state. Because those additional credit constrained agents can sell illiquid assets for
cash or pledgeable collateral, less earnings may be enough for these agents to escape from
credit constraints. While such actions are not explicitly modeled here, a positive 7, reflects
this channel by lowering the threshold earnings and making more agents circumvent credit
constraints. On the other hand, banks may become reluctant to issue additional loans to
households when many households are already borrowing from banks. Some of the potential
borrowers may have poor credit condition, and therefore banks may have to pay additional
efforts in screening. This implies that more earnings are required for some consumers not to
be credit constrained. If this channel is important, 7, may be negative. Because the sign of
7, is not clear a priori, I let the support of this parameter include both positive and negative
values for now and let the estimation later pin down a value. See Appendix D.2.3 for details
of the microfoundation.

While one can impose a similar structure on ¢/*, I shut down this channel and let
' = K and ¢f*® = ¢®*%. This is to keep the model parsimonious and keep my analysis
focused. Furthermore, several log points deviations of ¢/* from g#¥ have little effect on sX
because ¢*¥ is small in the benchmark parameters[’|

I assume that each Keynesian receives a positive share 05 of dividends. This is because

even the wealth-poor households have some financial investments (Guiso and Sodini, [2013]).

17Specifically, the log-linearized Equation (19) is that §5% = g% & (35 | +¢F&) + g5 E(5E | +¢FK). Because

v K o . . . ) y y K ) 1 |
Si_]lz = — 555/, the contribution of the time-varying ¢/*% ?Rsigepends on §K = R 5t Both g7 and

g™ are tiny in the benchmark calibration, and therefore g™ ¢;*"* is negligible.
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One may also consider this income as including government transfers to the poor, or pensions.
Finally, |Kaplan, Violante and Weidner| (2014) and |Kaplan and Violante (2014) argue that
there are agents who own a significant amount of assets but credit constrained because most
of their wealth is illiquid. It is natural to suppose that such agents are credit constrained
but receive some financial income.

Similarly, each Ricardian holds Hﬁt share of the stocks. Because the population shares
of two families are time-varying, at least one of 675 and 63, should be also time-varying to
satisfy s 075 + 507, = 1. For simplicity, I fix 0 and let 67, be determined by s;* and s;".
Note that 9§7t = % + 05 and therefore Hg’t increases in sX. This implies that financial
assets are concentrated among fewer people (high 93,5) in a recession when more agents are
credit constrained (high sX). Indeed, the correlation between the HP filtered top 10% wealth
share of [Saez and Zucman| (2016) and log real GDP per capita is -0.26. Finally, I assume
that a condition 65 < Qgt holds in all cases I study.

There is a continuum of agents in both families supplying different types of labor in a
monopolistically competitive way. Subject to quadratic wage adjustment costs in a nominal

wage inflation Wl‘f‘t/ , a Keynesian worker has the following budget constraint:

2
PCl = Zf Wy, N[j — ‘Z’QW (7)) ZEWN[S + 05D, (3.21)

The decisions on the wage rate and the hours are relegated to the type [ labor union. The con-

sumption utility u ((Jﬁ —bECE 1) features an external habit. The (negative) elasticity of the

_ucc(CE—bECE)x (CK_bKCK)
uc(CK—-bKCK) )

When a Ricardian becomes a Keynesian, one brings #5 share of the stocks and leave all

marginal utility function at the steady state is denoted by v =

the other assets to the Ricardian family. On the other hand, when a Keynesian becomes
a Ricardian, one carries all the wealth to the new family. Those assumptions make each
Keynesian hold #% share while the number of Keynesians is not a constant. For equalizing
financial resources available to the new and continuing Ricardians, an intra-family redistri-

bution occurs, which is in a lump sum. A budget constraint for a type [ Ricardian worker is

given by
R Blj?t __ PR R R YW w2 R R, pR
PO+ 15 = Bl + 2 Wl - 5 (xlY) ZEWNE+ 08 D, — Ti+ R, (3.22)
t

where R, denotes the lump sum redistribution inside the Ricardian family.
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I define b and v* similar to their Keynesian counterparts. Note that b% and +# are not
necessarily equal to b and v¥. Iinstead consider decreasing relative risk aversion preferences
in accordance with the empirical results of (Calvet, Campbell and Sodini (2009, Section
IV.C). In the model, at the steady state, this corresponds to a condition that % > %
Agents are more relative risk averse in the Keynesian family where they consume less than

in the Ricardian family.

Labor Market Next, I turn to the labor market. I introduce labor unions whose prefer-
ences are based only on aggregate variables. By minimizing the effects of individual hetero-
geneity on the decision of labor unions, I can make the resulting wage Phillips curve similar
to the RANK counterpart. This allows me to focus on the new features in the demand block,
while reducing deviations in the supply block from the RANK model. I also show that a
competitive labor market induces negatively correlated earnings inequality and consumption
inequality, which is at odds with data. This finding further necessitates a non-competitive
labor market institution such as labor unions.

A labor union for type [ workers chooses a nominal wage rate W;, and supplies N;; =
‘W
ew—1 ey —1

(%j)iew N; in efficiency units, while taking W, and N, = fol Nl;W dl as given. The

union should determine how to allocate the total labor IV;; to the Keynesian and the Ricar-
dian workers. I assume that the union makes working hours of each agent be in proportion
to their steady state values. Thus, Niy = s;* ZF Ny + s{Z' N/} where g—ﬁ = %—l},} for all [
and t. For example, when both agents work the same number of hours at the steady state
(N = NF), the type [ union always assigns common labor hours to both Keynesians and
Ricardians workers (N/y = N/%).

The utility function of the union [ is denoted by Ul. Following [Pencavel (1984), it is

based on the total real earnings e;; and the total labor supply N, : Uf; = u* (61,t — bLet_l) —

2 2
'UL (Nl,t) Where €l7t = <M/l,tNl,t — wTW (WK;) I/VtNt> /Pt and [ (VVtNt — wTW (77'2/[/) WtNt> /Pt
Note that the earnings are subject to quadratic nominal wage adjustment costs, which induce
sticky wages. The utility function u” features an external habit and the elasticities of the

marginal utilities uZ and v% with respect to their inputs at the steady state are denoted by

8An alternative setup is to make labor unions maximize the average utility of members
E, [Zio:o BT (sts Ul r + s§+TU£+T)} where Uf, = u (C;’t - b‘C{fl) —v (Nit) for all ¢, I, and t. However,
the model impulse responses under this setup are similar to what are obtained in the benchmark case. See
Appendix D.2.2.2.
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vF and ¢, respectively. The first-order condition at a symmetric equilibrium for maximizing

E, { 220 ﬁTUlLt +T} yields a standard wage Phillips curve, where the wage markup equals to

Finally, the steady state wage markup is denoted by My, = -

N/ ué” ew—1"

One may instead consider a competitive labor market. For a simple exposition, suppose
that v% = 4f = v and b¥ = b = 0. Then individual labor supply schedule becomes
Equation (8) and (10), or Z! 4+ iy = @N} + 4C* for © € {K, R} in log-linearization. For
structural shocks not affecting ZF or ZX directly, we have y(CF — CK) = —o(NE — NK).

) are

This implies that consumption inequality log ( C::) and earnings inequality log (%}:x?
negatively correlated. Such prediction contradicts empirical findings of |Coibion et al.| (2017)
that consumption inequality increases in response to a contractionary monetary policy shock,
whereas earnings inequality is unresponsive. Therefore, I rule out a competitive labor market

and take another widely used setup, labor unions and sticky wages.

Firms, Monetary Policy, and Aggregate Resource Constraint Here the production
block is briefly discussed because it is similar to that of the RANK, where the details are
relegated to Appendix D.2. A firm j selects four variables: a price P;;, a labor input
Nj4, investment [, and a capital utilization rate v;, given P;, i, I;;—, and a firm-specific
physical capital stock ;;. A nominal profit, which is paid out as dividends, is given by:

2
D;y = PyY;0 — WN;, — ‘ép (71%)" PYy = Piljy — ® (v;0) P, (3.23)

J?t

where the demand for good j is given by Y, ( Igj) Y;. The third term represents nomi-

nal price adjustment costs, which make prices sticky. There are investment adjustment costs
and the law of motion for the physical capital stock is k11 = (1—9)K; ¢+ (1 — Pl ( = )) I;

—)) Lt

The last term in Equation (23) is for adjustment costs to capital utilization. Capltal ser-
vice K, is determined by the utilization rate and the physical capital stock: Kj; = vk, ;.
Finally, a Cobb-Douglas production function is assumed: Y;; = A, K ]{t_aN e

The firm j maximizes the discounted dividends £, [Z:io QL +TDj,t+T} subject to the con-
straints above. The stochastic discount factor th 4, is based on the marginal consumption

utilities weighted by the time-varying population and equity shares:

_ oo St+79 uc t+T + 3t+7—0D t+TuC tor D 394
Qt G T 6 9 9 P ( ° )
D Uc ¢ T 5 D,tuC,t r

95



Finally, an aggregate resource constraint and a policy rule for the central bank are as

follows:
_ wP P\?2 wW w2 v
E—C’t—l—[t—i—Gt—i—?(ﬂt) }/;_I—T( ¢ ) Ntwt—i—q) (l/t)lﬁ',t, (325)
it = (1 — pZ)E—F pﬂt_l + (1 — p,)(cﬂﬂ'f + nyv;g) + O'zui (326)

Calibration and Estimation

The THINK model has many parameters. This subsection discusses how those parameters
are calibrated and estimated. I calibrate parameters when there are commonly used values
or when the empirical impulse responses are less informative about them. This sharpens
identification of the estimator by reducing the number of parameters to be estimated sub-
stantially. Then I estimate the other parameters including newly introduced ones such as 7y,
ns, vX, and the ratio of the marginal consumption utilities a /aZ at the steady state, where
u = u(C* — b'C") for + € {K,R}. For estimation, I match the empirical and the model
impulse responses in a Bayesian framework following (Christiano, Trabandt and Walentin
(2010). This limited information approach allows me to focus on several shocks of interests,
while not being specific about the remaining part of the data generating process.

A list of parameters and their calibrated values can be found in Table [3.2] For example,
3 =0.99 is determined by the steady state investment share ¢; = I/Y. Following Debortoli
and Gali (2017)), I assume that one-fifth of the population are Keynesian in the steady state.
The consumption and earnings share of the Keynesians are based on those of the bottom
quintile households sorted by WealthH For the transition probability from the Ricardian
family to the Keynesian family at the steady state g%, I note that Equation (19) and (20)
lead to

5 = ("% — ", — 5K - Y, (3.27)

where ¢8% =1 - KR =1 — g—quK . Because ny and 7y appear only in the above equation
in the log-linearized system, I fix ¢*¥ and estimate 7y and n,, where 1y and 7, govern the
cyclicality and the persistence of $X, respectively. Assuming ¢*% = 0.0025 implies that 4.5
percent of the Ricardians will transition to the Keynesians after 5 years at the steady state

transition rates. This is similar to the transition probability from positive to strictly negative

19Tn light of the wealthy hand-to-mouth agents of Kaplan and Violante| (2014), I later consider a case with
higher Eé( and 5X. With different parameter estimates, the model generates similar dynamics of aggregate
variables. (see Appendix D.2.2).
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net worth in the Panel Study of Income Dynamics. For example, between 1984 and 1989
(1989 and 1994), the transition probability was 4.4 (4.7) percent in the data.

For adjustment cost parameters ¥p and ¥y, I make the slopes of the price and wage
Phillips curves equal those implied by 75 percent of |Calvo (1983) probabilities of non-
adjustment. Finally, using s5C¥ = 55¢cY, s5 ZKNKw = 58 MptaY, and Equation (21),
one can show that 65 = 0.44. Because 5% = 0.2, this means that about 9 percent of the total
financial income goes to the Keynesians. This may reflect the presence of wealthy hand-to-
mouth agents among the Keynesians, financial income taxation and government transfers,
or pensions.

Next, I explain how the remaining parameters are estimated. Suppose that W is a vector
of impulse response coefficients of interests and an estimator ¥ has an asymptotic normal
distribution N (W, V/T), where T is a sample size. The model parameters and the model-
implied impulse responses are denoted by © and W(©), respectively. A limited information
likelihood p(¥|©) of Kim| (2002) is based on the distribution that ¥ ~ N(¥(0), V /T, where
V is a diagonal matrix following (Christiano, Eichenbaum and Evans (2005) and [Christiano,
Trabandt and Walentin| (2010). Given the likelihood and a prior on O, we can think of a
posterior p(6] %) = p(¥[0)p(©)/p(¥).

U consists of responses of real GDP, consumption, investment, the GDP deflator, and
EFFR to a one standard deviation shock to the inequality, MP, and TFP. I estimate the
responsesof major macroeconomic variables to the MP and TFP shocks using local projec-

)

tions similar to Equation (5), where contemporaneous variables in Zi’” are included only
when the minimum delay assumption is relevant for the identification. Lags of the impulse
response functions that are included in ¥ might matter for the estimation of ©. Because the
minimum delay assumptions are imposed for the inequality and MP shocks in the data, the
contemporaneous responses are nil by construction. Obviously, this assumption may have
further effects at short lags. On the other hand, the TFP shocks are free of such concerns,
and the responses at short lags may provide useful information on the short-run dynamics.
However, including all the lags only for the TFP shocks might overweight the impulse re-
sponses induced by the TFP shocks. Given these consideration, I use the responses at lags
0, 4, 5, ..., 12 and the initial responses are dropped when the minimum delay assumption
is used for the identification. Because there are five variables and three shocks, ¥ includes
5 x (13 —=3) x 3 —9 = 141 moments in total. To simulate the posterior, I draw 200,000

observations using a random walk Metropolis-Hastings algorithm and drop the first 50,000
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observations (see |Herbst and Schorfheide, [2015)). The acceptance rate of the Markov chain
is 34 percent.

The results are summarized in Table [3.3] The Keynesian consumption habit parameter
b¥ is assumed to be 0 because pre-MCMC numerical optimizations assign 0 to b when it is
also estimated. ¥ is 8.39 at the posterior mode, which is much greater than v = 2. This
is consistent with the view that agents become more risk averse when consuming less and
being credit constrained. In line with this view and my results, Guiso and Sodini (2013))
report that the 90th percentile of a cross-section of coefficients of RRA in the U.S. is 16.4.
Given that the population share of the Keynesians is 20 percent and coefficients of RRA
decrease in wealth, my estimate seems reasonable. Note also that ‘“y* — 1’ follows a gamma,
distribution a priori, and so 4% estimates are always larger than 1.

®V (v) denotes the second derivative of the utilization adjustment cost function ®* that
is evaluated at the steady state. |Christiano, Eichenbaum and Evans| (2005)) fix it at 0.000457,
while the estimates of |Justiniano, Primiceri and Tambalotti (2010, 2011]) are about 0.1517_6]
My estimate is 0.23, closer to that of Justiniano, Primiceri and Tambalotti. The second
derivative of the investment adjustment costs ®1;(1) is 1.64, much smaller than 2.48 in
Christiano, Eichenbaum and Evans or 3.14 in |Justiniano, Primiceri and Tambalotti (2011)).
Relatedly, the estimated process of the technology shock is less persistent than usual. For
example, a half-life of the technology shock is 3 quarters given p4 = 0.77, while it takes more
than 3 years given a standard estimate around 0.95. Thus, the THINK model can generate
hump-shaped and persistent responses successfully with small investment adjustment costs
and less persistent inputs.

The estimated ratio of the marginal consumption utilities at the steady state uZ /ul is
3.99. This means that the Keynesian values a marginal consumption good much more than
the Ricardian. The support of 7 is (—1,00) including negative values because the sign of
7 is ambiguous a priori as discussed before. Given the estimates for 7y and ns, Equation
(27) becomes 55 = 0.485K | — 4.27Y;. Thus, a recession with a 1 percent decline in output
increases the number of the Keynesians by 4.27 x 5% = (.85 percentage points.

My interpretation of the magnitude of o4, which represents how much ZtK decreases

concurrently in response to a one standard deviation inequality shock, is as follows. Sup-

20¢Y () and (I;E;’((;) in |Justiniano, Primiceri and Tambalotti (2010) are about 0.03 and 5, respectively,
implying that ®7 (v) is about 0.15, where ®7 is the first derivative of ®”. [Phaneuf, Sims and Victor| (2018)

do a similar algebra for estimates in |Christiano, Eichenbaum and Evans| (2005) and obtain 0.000457.
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pose that there exists a continuum of agents whose idiosyncratic log labor productivity
is denoted by z;;. Let o(z,) be its cross-sectional standard deviation and y; be the log
P90/P10 index. If 2, is normally distributed, o(zi4) = z5=t7g;, where N~(.) is the in-
verse cumulative distribution function of the standard normal distribution. It is because
log(P90/P50) and log(P50/P10) equal N=(0.9) times the standard deviation for a nor-
mally distributed random variable. Furthermore, the population share of the Keynesians is
0.2, and so their productivity can be represented by the 10th percentile of z; ;. This implies
that log(Z/) ~ N=1(0.1)0 () Y] By combining these two equations, I obtain an expression
for ZK and y; that

log(ZK) ~ —%. (3.28)

As shown in Figure 3.6, y; increases by 2 log points (annualized) or 0.5 log points at the
quarterly frequency in response to a one standard deviation inequality shock. This translates
into a 25 log basis points decrease in log(ZX) according to Equation (28), which is similar
to the posterior mode of oz, 30 log basis points.

Figure 3.8 illustrates how major macroeconomic variables respond to a one standard
deviation inequality shock in the model, when © equals the posterior mode. For the earnings
inequality y; in the bottom right panel, I use Equation (28) and plot —2F; [Zﬁh} x 400. The
fit of the model is reasonably good in the sense that the peak effects and the shapes are
similar. Although the model impulse responses have the peaks earlier than the empirical
impulse responses, it is well known that it is hard to generate much delayed responses
with purely forward-looking Phillips curves. Furthermore, the estimated model is good at
replicating the empirical responses to the MP and TFP shocks (see Appendix D.2.2).

Dupor, Han and Tsai| (2009) point out that estimated parameters by matching impulse
responses heavily depend on which shock is studied. Similarly, I find that the estimates in
Table [3.4] vary when impulse responses to each shock are used separately to estimate ©. For
example, 7% based on the TFP shock is 13.28, much greater than that based on either the
inequality shock (6.14) or the MP shock (8.14). On the other hand, using all three shocks
gives a moderate estimate of 8.39. I also review a case where the Keynesians consume and
earn more than the benchmark calibration in light of the wealthy hand-to-mouth agents in the
Keynesian family. When I increase 58 and 5§ by 4 percentage points, % and % decrease

and become closer to % and 1. This reduces heterogeneity in preferences between the two

21Here I ignore the mean of z; ; for simplicity, because I only consider mean-preserving spreads.

99



agents by making the coefficients of RRA and the marginal consumption utility alike. This
change seems reasonable because idiosyncratic labor productivity and the level of individual
consumption become less diverging between the Keynesians and Ricardians in this case.@
It is worth mentioning that the model impulse responses are robust to the different
parameter estimates. For example, the estimates in ‘All shocks’, ‘Inequality shock’, and
‘High 55 and 55’ columns induce almost identical responses of key macroeconomic variables
to the inequality shock (Appendix D.2.2). In other words, it is a robust prediction of the
THINK model that the inequality shock reduces aggregate demand substantially. This calls
for a further inspection on determinants of aggregate demand in the model, which is the

topic for the next subsection.

Aggregate Demand in the THINK Model

This subsection studies amplification and propagation mechanisms of the inequality shock
in the THINK model with a focus on aggregate demand. I investigate where the large,
U-shaped decline in aggregate demand comes from and how they are related to the new
features in the model. Below I discuss C/, CE, I;, and C; in order.

I begin with the consumption of the Keynesians (CX). They are hand-to-mouth and their
consumption is determined by income as in Equation (21). When the inequality shock lowers
the labor productivity of the Keynesians (Z[), they lose earnings and reduce consumption.
However, this ‘direct effect’ may be important only for the first few quarters for three reasons.
First, the population share of the Keynesians (s) is only about 20 percent, and their
consumption share is even less. Second, ZX is not very persistent. Its half-life is about
3 quarters given py = 0.77. Lastly, the dividend income plays a role of countercyclical
transfers. It is because the price markup is countercyclical conditional on the inequality
shock, and so are the dividends. This more or less offsets the effects of the decline in labor

productivity on consumption.

ZInterpretation of oz also differs in this specification. Suppose that z;; — u = p(z;t—1 — p) + €;,+ where
€ir ~ N(0,02) is independent across individual and time. In one extreme, the productivity distribution
of the hand-to-mouth agents is ex ante similar to that of the others, but they receive a large idiosyncratic
shock €; ; which makes their credit constraints bind. In this framework, shocks to log(ZX) is more tightly
related to the dispersion of €; ¢, not z;+, and, an inequality shock originates from an increase in o7. Given
p=0.966 and 07 | = 02 5 = --» = 5% = 0.017 from McKay, Nakamura and Steinsson| (2016)), a rise in the
log P90/P10 index y; by 2 log points (annualized) from its steady state value is induced by oZ = 0.019 > 52.
Then a shock to log(Z[) is approximated by N~1(0.9) x (o — &) = 0.0094. This is based on the extreme
assumption of ex ante identical distributions, and the estimated oz in the high §g and 55 scenario is 0.0061,
less than 0.0094.
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The Ricardians are aware that there is a chance of receiving large negative idiosyncratic
shocks and being credit constrained in the next period. Therefore, the Euler equation for

the Ricardians becomes

L= g, [0 e + afuen 1+ (3.29)
! ug, L+ ] |

where ug, = v (Ctb - b ,f_l) for « € {K,R}. Note that there is a new element in the
stochastic discount factor reflecting precautionary motivations. This raises the Ricardian’s

propensity to save and lowers the interest rate. For example, at the steady state, 1 + i =
—1
Bt {1 + ¢ (C - )} < B71, because uf > ulf. As a result, the benchmark value of
uc
7 is only 0.0022, while 3 is 0.99. When log-linearized around the steady state, the Euler

equation becomes

a, = B(L+1) (qRREt 48] +a i b s Hl}) + (i — B [wf]) (3.30)
where 7, = log(H1%.
motivation in the THINK model. First, (1 +i) < 1, and so Equation (30) resembles
the discounted Euler equation of McKay, Nakamura and Steinsson| (2017). Second, the

The two non-standard aspects in Equation (30) reflects precautionary

Ricardians care for not only ¢, ,, but also @, , because of the uninsurable idiosyncratic
risk.

The inequality shock is a positive productivity shock to the Ricardians. Thus, they will
increase their consumption in response, but with some endogenous delay. There are two
reasons for the delay. First, ug’t features consumption habits. Second, the inequality shock
reduces F; [C’t +1} or equivalently increases L [ﬁg ' +1] When being credit constrained is a
more unpleasant experience than usual, the Ricardians become more cautious (save more
for the future and consume less today). In Equation (30), an increase in E; [&g ' +1} leads
to an increase in {Lgt, corresponding to a decrease in Cff. The fact that the coefficients of
RRA decrease, (i.e., v is greater than 2 bR) further amplifies this effect, because ﬁg 1 =

~vEKCK f1and af, = -2 bR(CR — bRCE ). When the Keynesians reduce consumption, the
marginal consumption utility increases faster than the Ricardians, and therefore Cv'f“ should
decrease more. For these reasons, Cv'tR responds to the inequality shock in a hump-shaped
manner, and the initial increase in C'F is rather muted. This helps the concurrent decline in

CV'tK to propagate and to reduce aggregate demand. However, it is clear that the ‘direct effect’
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on CE cannot drive a recession in response to the inequality shock, because the Ricardians
increase their consumption.

Another component of aggregate demand is investment. The two-agent structure adds

: : : D T Sﬁreg"é{ t+-r+sﬁrrgg t+7ug t+r Py
a new dynamic to it through the discount factor Q. = 3 7Y O SO 7y s B
’ sy Opuc s 90 uc t+7

in Equation (24). In response to the inequality shock, ug . increases a lot, because CK

decreases and vX is high. In other words, one more unit of financial income becomes much
valuable when constrained agents have to reduce their consumption significantly. As a result,
the utility value of the current marginal profit s{05ug, + s{0 u¢, increases and Qf .
decreases. While the other terms in Qt?t 4+, may vary, the marginal utilities are the most
important driver of th . quantitatively (see Appendix D.2.5).

A decline in Q,{?t +- leads to a lower value of a physical capital today. Firm’s optimality
condition related to the shadow value of a one unit of physical capital, denoted by ¢;, is as

follows:

- 5 T T— v
4 = E {Z Qi (1=08)"" [Tﬁﬂtw -o (Vt+r)] } , (3.31)

where 75 is the shadow value of a one unit of capital service K;. Therefore, ¢ decreases
as fot 4 lowers the current value of a physical capital, and so firms reduce investments
accordingly.

Now I combine the discussions so far and look at aggregate consumption in detail. The
following decomposition of aggregate consumption into several pieces highlights a key, new
characteristic of the THINK model. By log-linearizing C; = sXCE + sECI, one obtains:

sK
Gy = SECK 1+ SRCR 4 <sg . sgsR> s (3.32)

The first and second terms represent the direct effects. When the inequality shock reduces
ZtK , consumption of the Keynesians decrease while the opposite holds for the Ricardians.
Those direct effects constitute all of aggregate consumption responses in other TANK models
where agents’ types are fixed. However, my model features an additional channel of distri-
butional effects. In the THINK model, higher $¥ leads to lower aggregate consumption,
because individuals who become credit constrained reduce their consumption substantially.
The last term in Equation (32) represents this channel, where the coefficient on $¥ is neg-
ative when the consumption share of the Keynesian is less than their population share at

the steady state (55 < 5%), or equivalently, CX < C%. Because 5 is countercyclical as
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illustrated in Equation (27), this channel can amplify aggregate fluctuations.

How the three terms in Equation (32) and aggregate consumption react to a one standard
deviation inequality shock is depicted in Figure The left panel is based on the benchmark
parameters and the right one is for the high 55 and 5% case. As discussed above, the direct
effects to the Keynesians contribute little to the responses of aggregate consumption after
a few quarters. While it is more important in the high 55 and 5% case, it is not the most
important component of C, at least after a year. Besides, the direct effects to the Ricardians
are positive. Thus, the negative and U-shaped responses of aggregate consumption are
mostly driven by the distributional effects.

Recall that the inequality shock decreases investment significantly. This negative effect to
aggregate demand, combined with the direct effects to the Keynesian consumption, lowers
economic output. When the economy turns into a recession, idiosyncratic earnings risk
increases and some Ricardians become Keynesians. Then their consumption decreases, which
further reduces aggregate demand. As a result, output decreases, more Ricardians become
Keynesians, and so on. This aggregate demand spiral amplifies the distributional effects
substantially and makes it the most important determinant of aggregate consumptionﬂ

It is clear from equations (27) and (32) that the value of 7y is crucial for determining
the magnitude of the distributional effects. However, it is hard to estimate ny directly
from (27), because there is no available quarterly time series data of sX. Therefore, I
take an indirect route to supplement the discussion and make three points on ny. First,
the Great Recession was a period when access to credit was limited and as a result many
people were credit constrained (Mian, Rao and Sufi, 2013; Mian and Sufi, 2015)). This is
consistent with an implication of a positive 7y in the model that the number of credit
constrained agents increases in recessions. Second, unemployment risk may contribute to
the countercyclical variations in X significantly. Given 7y = 4.32 and other parameters,

Equation (27) becomes §5 = 0.4835K | — 4.27Y;. Thus, the semi-elasticity of sX with respect
sk
ov;

to output is = —4.27 x 5% = —0.85, meaning that the population share of the Keynesian

23Auclert and Rognlie| (2018) also study how an earnings inequality shock affects economic output in their
HANK model and find little aggregate effects. However, the model of Auclert and Rognlie features a CRRA
preference, flexible prices, and no autoregressive term in the monetary policy rule, unlike my THINK model.
When I make the THINK model similar to the model of Auclert and Rognlie by changing parameters as
VE =B pK = bR =0, Mp =1, yp = 0, and p; = 0, the THINK model also predicts little effects of
an inequality shock on real variables. Furthermore, each of the factors above is important for rationalizing
the large, U-shaped, estimated responses in Section [3:4} For example, when I fix p; at 0 while not changing
the other parameters, the peak effect of an inequality shock on real GDP becomes less than half of the
benchmark case (see Appendix D.2.4).
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family increases by 0.85 percentage points when output decreases by 1 percent. A similar
semi-elasticity of unemployment rate with respect to real GDP per capita in the U.S. is -0.44
based on the HP filtered quarterly series. Because there also exists earnings risk conditional
on being employed (Guvenen, Ozkan and Song, [2014)), the implied sensitivity of §& to Y, in
the model may not be unreasonably large. Finally, one may rely on the micro-foundation
in Section [3.5.2 and infer 7y from the left-tail of the earnings distribution. The micro-
foundation assumes that the left-tail of the earnings distribution can be approximated by
an inverse Pareto random variable vy, 1Y, where v;; ~ Pareto(ny) for v;; > v,,. It follows
that the log cumulative distribution function is linear in the log earnings with a slope ny
in the left-tail, and this can be estimated from the QCEW. For example, the estimate is
5.04 based on the data in the first quarter of 2000. One need to exercise caution when
relating this estimate to 7y in the model because of measurement errors, minimum wages,
and unemployment risk. Nevertheless, the estimate for 7y (4.32) may not be unrealistic in
light of the micro-founded slope coefficient (5.04). See Appendix D.2.3 for details on this
estimation.

So far, I have shown how inequality can be a source of demand-driven business cycles.
I introduce three new features to the THINK model, an extensive margin of being credit
constrained, DRRA preferences, and a small amount of financial income for the Keynesians.
Equipped with the new channels, I illustrate how they can rationalize the large, U-shaped,
empirical impulse responses of aggregate variables. In doing so, I use solution and estimation
methods developed for linear systems. However, inequality may have a non-linear effect on
an economy by altering how it responds to policies and other structural shocks. An analysis

of those effects requires a separate approach because of its non-linear nature.

3.6 Inequality and the Power of Stabilization Policies

This section covers policy implications of rising inequality in the U.S. based on the non-
linear dynamics of the THINK model. Intuitively, there are more earnings- or wealth-poor
people in an economy when the level of inequality is higher. They have higher MPCs and an
interaction effect between more people and higher MPCs can make aggregate consumption
demand more sensitive to economic conditions and policies. Consistent with the intuition,
the THINK model predicts that the power of stabilization policies increases in the level of

inequality. Empirical evidence based on various datasets is also in line with the prediction.
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On top of my findings that inequality and redistributive factors can drive macroeconomic
fluctuations, this policy implication provides another reason why understanding inequality

is important for policymakers.

3.6.1 Policy Implications of the THINK Model

For understanding the relationship between the power of stabilization policies and the level
of inequality, the following decomposition of aggregate consumption in the THINK model
is useful. Let dsX = sK — 5% and other linear deviations be denoted similarly. From

C; = sKCK + sECE it follows that
dC; = s%dCF + 3RdCE + (CRdsf + CRdsf) + (dsfdC) + dsfdCE). (3.33)

Note that this is an exact equation, not an approximation. When compared to the log-
linear approximation in Equation (32), it is clear that the first three terms in Equation
(33) correspond to the direct effects to the Keynesian consumption, the direct effects to
the Ricardian consumption, and the distributional effects in Equation (32). However, there
exists an additional term representing the interaction effect between distribution (dsf* and
dsf') and marginal propensities to consume (dCF and dC). Thus, aggregate consumption
demand may become more sensitive to policies when there are more agents with higher
MPCs. If the same mechanism applies to other structural shocks, aggregate fluctuations
may become larger and macroeconomic volatility in general may be elevated. On the bright
side, however, stabilization policies become more powerful too.

Note that high inequality corresponds to high s in the discussion above. This is because
more earnings or income inequality implies that there are more people with higher MPCs
at the bottom of wealth distribution. For example, Wolffi (2017) reports that the share of
households holding non-positive (less than $5,000 constant 1995 dollars) net worth increased
by about 6 (13) percentage points from 1969 to 2013 in the U.S.

I consider two initial states of the model economy: high and low inequality. In the
high (low) inequality state, si*; is 0.25 (0.15) and all the other variables equal their steady
state values, where the range of 10 pernetage points is about the midpoint between 6 and
13 percentage points of Wolff] (2017). To evaluate the non-linear dynamics of the THINK
model, I employ a third-order pruned state-space system approach of Andreasen, Fernandez-

Villaverde and Rubio-Ramirez| (2017) and the generalized impulse response functions of
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Koop, Pesaran and Potter| (1996). The responses of aggregate consumption conditional on
both states are plotted in Figure [3.10f The left panel illustrates the generalized impulse
response functions to a one standard deviation contractionary monetary policy shock, while
the right one is for an expansionary fiscal policy shock. It is clear from both panels that
aggregate consumption reacts more strongly to the policy shocks when the level of inequality
is higher. This implies more powerful stabilization policies conditional on the higher level of
inequality, and the results for other variables are similar (Appendix E.3).

The discussion so far illustrates a mechanism through which the level of inequality can
affect propagation of structural shocks. Among many structural shocks, I concentrate on
monetary and fiscal policy shocks and derive novel policy implications. In the next subsec-
tion, I investigate several datasets to test this theoretical prediction and find qualitatively

consistent results.

3.6.2 Empirical Evidence

Here I test the theoretical prediction above empirically using U.S. data. The main idea is to
include an interaction term between an inequality measure and a structural shock in local
projections. If the coefficient is statistically and economically significant, I would conclude
that inequality matters for the propagation and amplification of stabilization policies.

I examine three different datasets for robustness of the results. The first dataset consists
of quarterly observations of earnings inequality, various aggregate variables, and several
structural shocks in recent decades. The second dataset includes an annual but long history
of income inequality, some aggregate variables, and a military news shock. The last one is
based on state-level annual series of income inequality, real GDP, and military procurement
spending since the 1960s. For identification, I exploit time series variation in the first two
datasets and variation across states and time in the last dataset. For all the data, shocks, and
specifications, the results consistently imply that more inequality leads to larger responses
to policy shocks of the same size, consistent with the theoretical policy implications of my
THINK model.

Recent Data

The first dataset consists of quarterly observations including the MP and FP shocks in
Section 3.3} my log P90/P10 index based on the QCEW, and key macroeconomic variables
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in Section [3.4P% T consider the following local projections with an interaction term:
B _ 7@ (zy) 3.34
Mipn — Mi—1 = Bp®e + YaTeYi—1 + Uy n 27 +ugy, - (3.34)

Given an impulse of a unit structural shock x;, a macroeconomic variable m; responds by
Br + Yryi—1 after h periods, where ;1 is the inequality index in the previous quarter. The
way my reacts to the shock z; depends on the state of inequality y;_1, and the dependence
is parametrized by 7. Zﬁyl) includes an intercept and four lags of x;, y;, xsy;—1, Amy, and
Amyy;. The sample period is from 1978:Q1 to 2008:Q4.

The left panel of Figure [3.11] shows the results for real consumption in response to a
one standard deviation contractionary MP shock conditional on ¥, ; being plus or minus
one standard deviation from the average. It is clear that the contractionary effects of the
MP shock is much stronger when earnings inequality is higher. For example, the t-statistic
for the null hypothesis that ;4 = 0 is —5.15, and so 914 is statistical significant at the 1%
level. The right panel is for a one standard deviation expansionary FP shock conditional
on the same values of y;,_;. Similarly, consumption increases more when earnings are more
unequally distributed. The t-statistic for v = 0is 2.91 and the p—value is only 0.002. Thus, I
conclude that high earnings inequality makes contractionary MP shocks more contractionary
and expansionary FP shocks more expansionary. The estimates for other variables such as

real GDP, investment, price level, and unemployment rate are in line with the findings here
(Appendix E.1).

Historical Data

Although the results above are intriguing, one may worry about a rising trend in inequality
during the sample period. In the worst case, earnings inequality might be just capturing a
trend in the U.S. economy becoming more volatile due to some other reasons.

To address this concern, I look at a long history of inequality and economic growth in
the U.S. throughout the 20th century. The top 10% income share of |[Piketty and Saez (2003))
serves the purpose well because it starts from 1917. Importantly for my identification, it
follows a U-shaped pattern instead of an upward trend.

The cost of extending the sample backward is that there are not many reliable identified

shock series available. A narrative measure of military news shock constructed by Ramey

24See Appendix E.1 for the TFP shocks.
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and Zubairy| (2018)) is an exception. It dates back to 1889. Ramey and Zubairy also provide
real GDP, price level, and unemployment rates in addition to the military news shock. By
combining the two sources, the sample spans from 1917 to 2015.

I estimate Equation (34) using the historical data, where the dependent variable is the
real GDP per capita. As illustrated in Figure the U.S. economy responds more strongly
to the military news shocks when the top 10 percent takes more income. For example, a
military news shock whose present-discounted value is 10 percent of the trend GDP increases
real GDP per capita by 4 percent after 3 years when the top 10% income share is 43.9 percent.
However, the same shock raises real GDP per capita only by 1.5 percent when the top 10%
holds 32.6 percent of income. Also, the t-statistic for 3 = 0 is 4.81 and the null is rejected at
the 1 percent level. Similarly, GDP deflator and the unemployment rate react more strongly

conditional on higher inequality (Appendix E.2).

State-level Data

Finally, I compare states with different levels of inequality. For inequality, I employ Frank-
Sommeiller-Price series for the top 10% income share by state (Frank et al.| 2015). This series
is constructed by applying methods similar to [Piketty and Saez (2003)) at the state-level.
For real state GDP, price level, employment, population, and most importantly, military
procurement spending, I use the data from Nakamura and Steinsson (2014). The sample
period is from 1969 to 2008.

Let m;;, git, and y;; be real GDP per capita, real military procurement spending per
capita, and top 10% income share in state 4 in year t. m; and g; without subscript i refer to

. GG

the same variables at the U.S. level. Instrumental variables D; Tll for all 7 are used for

the first two regressors in Equation (35), where D; is a dummy variable for state i:

Myt+h — Mit—1 3 it — Jit—1 i Jit — Git—1
h T
mii—1 mii—1 mi¢—1

“Yit—1 T Fé,t,hZi,t + Uit h- (3.35)

MG t—1—Mit—2

Z;, includes time and state fixed-effects, , and y; ;1. Standard errors are clus-

i,t—
tered by state.

When the aggregate military expenditures increase, some states receive more military
spending or have higher income inequality on top of that. My identifying assumption,

similar to that of Nakamura and Steinsson, is that the U.S. does not engage in aggregate

108



military buildups because these states are experiencing or expected to suffer from sluggish
growth relative to the others.

The estimated ~;, in Table is positive and statistically significant at the 1 percent
level for h = 1,2, and 3. To fix the idea, consider h = 2, and a military spending shock
amounts to 1% of real state GDP, i.e., % = 0.01. Real state GDP per capita responds
insignificantly when the top 10% share is only 30 percent. However, when y;,; is 40 (50)
percent, the response becomes 5.03 (11.89) percent and statistically significant at the 1
percent level. In other words, fiscal expansion becomes more powerful in states where income
inequality is higher.

In summary, I look at the three datasets so far and rely on several variation to identify
the effects of the level of inequality on the propagation of monetary and fiscal policies. Those

results provide a set of extensive empirical facts consistent with the policy implication of the

THINK model that the power of stabilization policies increases in the level of inequality.

3.7 Conclusion

The Great Recession stimulated interest in how inequality, aggregate fluctuations, and sta-
bilization policies are related. For example, policymakers have become concerned about the
distributional effects of stabilization policies in addition to their aggregate effects. Another
important issue is to understand the direction from inequality to business cycles. If redis-
tribution and inequality affect aggregate demand and how shocks propagate, policymakers
should incorporate such considerations when they design policies to stabilize the economy.
This paper explored these important relationships both empirically and theoretically.

Using a new quarterly measure of earnings inequality based on high-quality administrative
data, I illustrate that inequality matters for policymakers in three aspects. First, earnings
inequality reacts to shocks to fiscal policy and total factor productivity at business cycle
frequencies. Second, unanticipated increases in earnings inequality induce recessions by
reducing aggregate demand. Lastly, high levels of inequality make stabilization policies
more powerful.

I further develop a new, tractable theoretical framework for studying the interaction be-
tween inequality, business cycles, and stabilization policies. This framework rationalizes my
empirical findings and provides novel insights on the mechanisms through which inequality

affects aggregate demand and the power of stabilization policies. The simplicity of the ap-
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proach can help researchers easily link models to data, and thus stimulate further research in
this area which historically relied on computationally intensive heterogeneous agent models.

My results may have implications for other macroeconomic phenomena. For example,
inequality shocks may have contributed to slow recoveries from the Great Recession. The
unanticipated inequality shocks are mostly positive between 2006:Q3 and 2008:Q4. This
may be related to the large, prolonged decline in economic activity afterwards, because the
impulse responses of real GDP to inequality shocks are persistent. Furthermore, my finding
may provide a new interpretation of (a possible end of) the Great Moderation based on an
upward trend in inequality. As discussed in Section [3.6] aggregate consumption demand
can be more sensitive to economic condition when the level of inequality is higher. Because
inequality has been rising in recent decades, this implies the level of cyclical volatility has
been also rising, which may mean an end of the Great Moderation. Finally, my THINK
model predicts that fiscal multipliers can increase in recessions. In the model, the number of
credit constrained agents is countercyclical, and therefore there are more agents with higher
MPCs during economic downturns. This makes aggregate consumption demand sensitive to
shocks, which leads to large fiscal multipliers. Rigorous investigation of these hypotheses is
left for future research.

Incorporating new features introduced in the THINK model into a heterogeneous agent
framework is another topic for future research. Fully-specified HANK models where agents
are endogenously credit constrained may provide an useful laboratory for studying the in-

teraction between inequality and business cycles.
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Table 3.1: Summary statistics.

1975:Q1 1984:Q1 2001:Q1 2014:Q1
Industrial classification SIC SIC NAICS NAICS

2-digit 4-digit 6-digit 6-digit
Number of cells 105,026 219,300 265,805 268,875
Total number of workers, million 59.9 64.8 89.0 96.3
Total earnings, USD billion 145.5 297.6 846.4 1,303.4
Average earnings, USD 2,430 4,590 9,514 13,540

Distribution of the number of workers in a cell

P1 1 1 1 1
P25 24 18 23 23
P50 78 51 64 66
P75 280 167 207 214
P99 8,750 4,109 4,543 4,948

Notes: A cell means an industry/county /ownership-type combination in the QCEW. In the data,
the number of workers is counted in each month, while the earnings are available only quarterly.
Thus, I use the average number of workers over three months in each cell, which may not be an
integer. The fractional parts are rounded in the table. For example, there are about 66 workers in

a median-sized cell in the first quarter of 2014.
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Table 3.2: Model parameters.

Parameter Value Description, Source, and Comment

64 0.99  Time preference. In the SS, 1/6=1—-3d+ (1 — a)/(¢6rMp).
K 8.39¢  Negative elasticity of uX at the SS
bE 0 Consumption habits for the Keynesian,
Pre-MCMC numerical optimization gives 0.
B 2 Negative elasticity of uZ at the SS
br 0.7  Consumption habits for the Ricardian
~E 2 Negative elasticity of ul at the SS
bt 0.7  Earnings habits for the labor unions
ul Jul 3.99° Ratio of the marginal consumption utilities at the SS
5K 0.2  Population share of the Keynesian family at the SS,
Debortoli and Gali (2017)).
55 0.11  Consumption share of the Keynesian family at the SS,
Krueger, Mitman and Perri (2016)).
5N 0.08  Labor share of the Keynesian family at the SS,
Kuhn and Rios-Rull| (2016).
qftE 0.0025 Transition probability from the Ricardian to the Keynesian family,
see Section [3.5.2
Ny 4.32¢  Negative elasticity of ¢¥ to Y;
s 0.51¢  Negative elasticity of ¢5* to s&
© 1/0.54 Elasticity of labor disutility v at the SS. Chetty et al. (2011).

0.025 Capital depreciation rate
a 2/3  Production function: Y = AK'"*N,

or (v) 0.23°  Second derivative of the capital utilization costs at the SS.
¢V () = 0.035 is chosen to make v = 1.

ol,(1) 1.64°  Second derivative of the investment adjustment costs at the SS

Continued on the next page.
Notes: e: estimated, SS: steady state.
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Table 3.2: Model parameters, continued.

Parameter  Value Description, Source, and Comment

Mp 1.2 Gross price markup at the SS, [Rotemberg and Woodford (1997)).
Equivalent to ep = 6.
Vp 233.3  Price adjustment costs. Equivalent to the Calvo probability of 0.75.
My 1.2 Gross wage markup at the SS, Huang and Liu (2002), Griffin (1992).
Equivalent to ey = 6.
Vw 706.3  Wage adjustment costs. Equivalent to the Calvo probability of 0.75.
b 06 CJ/Y.
o1 02 I)Y. pa=G/Y =0.2.
pi 0.9 Monetary policy: interest rate smoothing
Cr 2 Monetary policy: responsiveness to price inflation
Cy 0.15 Monetary policy: responsiveness to output
Pz 0.77¢  Persistence of inequality shocks
PA 0.77¢  Persistence of productivity shocks
PG 0.97  Persistence of government expenditure shocks,

Smets and Wouters| (2007)).

oz 0.0030¢ Standard deviation of inequality shocks

of 0.0008¢ Standard deviation of monetary policy shocks

oA 0.0101¢ Standard deviation of productivity shocks

oG 0.0050 Standard deviation of government expenditure shocks,

Smets and Wouters| (2007)).

Notes: e: estimated, SS: steady state.
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Table 3.3: Parameter estimation, the benchmark case.

Prior Posterior

Parameter Distribution = Mean  St. Dev. Mode Mean P5 P95
vE—1 Gamma 10 5 7.39 7.22 6.98 7.49
oV (V) Gamma 0.1 0.05 0.23 0.18 0.15 0.24
oL (1) Gamma 3 1 1.64 1.74 1.61 1.86
ul/uf -1 Gamma 1 1 2.99 3.25 2.93 3.60
Ny Gamma 3 1.5 4.32 4.07 3.79 4.37

ns +1 Gamma 1.5 0.5 1.51 1.52 1.51 1.53
Pz Beta 0.8 0.05 0.770 0.777 0.763 0.789

PA Beta 0.9 0.05 0.772 0.800 0.767 0.818

oy Inv. Gam. 0.0025 0.0010 0.0030  0.0030  0.0028  0.0032

o Inv. Gam. 0.0013 0.0003 0.0008  0.0009  0.0008  0.0009

oA Inv. Gam. 0.0081 0.0016 0.0101  0.0097  0.0088  0.0112

Notes: The supports of priors are not (—oo,00). For a gamma or an inverse gamma distribution,
the support is (0,00), and a beta distribution is defined on (0,1). This might incur problems near
the boundary when a random walk algorithm suggests a value outside the support. Thus, I re-
parameterize ©. For a beta random variable, I use f(z) = tan(mz — 7/2), and log(-) function is
employed for the others. I write the transformation as © = F(0). I work with © throughout the
estimation and inverse the chained samples to © at the last step. I simulate a Markov chain whose
length is 200,000, and the first 50,000 observations are dropped. The acceptance rate is 34%.
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Table 3.4: Parameter estimation, robustness check.

All Inequality Monetary TFP High 55
Parameter shocks shock shock shock and 5§
« 8.39 6.14 8.14 13.28 7.11
7 (0.15) (0.44) (0.53) (1.35) (0.88)
o (5) 0.23 0.06 0.05 0.19 0.17
v (0.027) (0.004) (0.013) (0.010) (0.003)
o1(1) 1.64 1.69 1.89 2.25 2.23
11 (0.08) (0.07) (0.19) (0.25) (0.13)
ak 3.99 4.90 3.82 1.75 2.01
c/re (0.18) (0.19) (0.21) (0.24) (0.10)
4.32 4.86 5.55 4.67 457
v (0.17) (0.26) (0.37) (0.13) (0.17)
0.51 0.82 0.58 0.39 0.38
s (0.01) (0.04) (0.02) (0.03) (0.02)
0.77 0.78 ] 0.79
Pz (0.007) (0.005) (0.009)
0.77 ) ] 0.85 0.87
Pa (0.016) (0.006) (0.004)
J 0.0030 0.0021 ] 0.0061
z (0.0001) (0.0002) (0.0007)
o 0.0008 ] 0.0008 0.0009
i (0.00001) (0.00002) (0.00002)
0.0101 ] ] 0.0069 0.0061
oA (0.0007) (0.0002) (0.0002)
Log Posterior -70.0 -234.6 -134.6 -132.3 -88.0

Notes: This table displays the posterior mode with the standard deviation in parentheses. The
column labeled as all shocks is based on the benchmark results in Table 3. The next three
columns are for restricted moment conditions.
shock column are obtained by matching responses to a one standard deviation inequality shock
only. The last column is for a case where EIC( = 0.15 and 55 = 0.12 in view of the wealthy hand-
to-mouth agents. The benchmark values are 0.11 and 0.08, respectively, which are based on
the bottom 20 percent of the wealth distribution in the U.S. I report the value of log posterior
based on the posterior distribution in the benchmark case for comparison.
not estimated, e.g., pa in the inequality shock column, I use the prior mean in Table 3 when

evaluating the log posterior at the mode.
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Table 3.5: Responses of state real GDP per capita to government spending shocks condi-
tional on inequality.

h
0 1 2 3 4

3 2.48 -10.24** -22.40%%* -21.12%* -26.78
h (6.54) (4.41) (7.80) (8.46) (12.09)

-5.78 33.31%%* 68.58*** 67.06%** 83.43
T (18.48) (12.51) (21.92) (24.14) (33.67)
Observations 1,746 1,740 1,734 1,684 1,634
Br 4+ - 0.3 0.74 -0.25 -1.83 -1.00 -1.75
Br+vn-0.4 0.16 3.08%H* 5.03*#* 5. 7Q*H* 6.59%*
Bn 4+ vn - 0.5 -0.41 6.41** 11.89%** 12.41°%%* 14.93**

Notes: This table is based on Equation (35). As is clear from the bottom half of the table,
the response of real state GDP to state fiscal expenditure shocks depends on the state top
10% income shares significantly. Standard errors are in parentheses, which are clustered by

state. The number of asterisks denotes statistical significance of the estimate. *: 10%, **:
5%, ***: 1%.
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Log P90/P10 index, QCEW and CPS Log percentiles of real earnings
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Figure 3.1: New inequality index and log percentiles.

Notes: The left panel depicts my new inequality index in comparison with the CPS-based measure,
where the log percentiles of the real earnings distribution from the QCEW are shown in the right
panel. |Autor, Katz and Kearney| (2008) construct the log P90/P10 index from the March annual
demographic survey in the CPS. They focus on male respondents and derive weakly earnings from
annual earnings and number of working weeks. On the other hand, the QCEW covers both male
and female workers. Each percentile is deflated using the GDP implicit deflator.
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Responses of log(P90/P10) & Total Earnings, Responses of log(P90/P10) & Total Earnings,
Total Factor Productivity Shock

Monetary Policy Shock
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Figure 3.2: Effects of structural shocks on the inequality index and aggregate real earnings.

Notes: The solid lines and the shaded area represent how the inequality index responds to a one
standard deviation TFP, MP, and FP shock with the 90% confidence bands. The dash-dot lines
and the dotted lines are for aggregate real earnings from the QCEW. Units are annualized percent
and annualized log points. The bandwidth for the Newey-West variance estimator increases in the
horizon of local projections one for one. For the inequality index, the Phillips-Perron test does
not reject the null of a unit root, while the KPSS test rejects the null of trend-stationarity at the
1 percent level (Kwiatkowski et al., 1992; |Phillips and Perronl 1988). On the other hand, both
tests do not reject own nulls for aggregate earnings. I assume a trend-stationary model in this case
and include djt term and use y;—; in place of Ay;—; in Equation (2). The benchmark result is not
sensitive to the specification details. The results based on other inequality measures, specifications
controlling for the early Volcker period, a model with an oil supply shock of Kilian| (2008), or the
impulse response functions estimated in a shock by shock manner can be found in Appendix B.3.
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Responses of log(P50/P10) & log(P90/P50), Responses of log(P50/P10) & log(P90/P50),
Total Factor Productivity Shock Monetary Policy Shock
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Figure 3.3: Decomposing the responses of the inequality index.

Notes: The solid lines and the shaded area represent how the log P50/P10 index, which represents
the dispersion among the bottom half of earnings distribution, responds to a one standard TFP,
MP, and FP shock. The dash-dot lines and the dotted lines are for the log P90/P50 index. The
results are similar when a dummy variable for the early Volcker period is added or sample after
the period is used (see Appendix B.4). I use Equation (2) and assume that both series have a unit
root based on the results of the Phillips-Perron test and the KPSS test (Kwiatkowski et al., [1992;
Phillips and Perron, 1988)).
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Variance Decomposition of log(P90/P10),
Total Factor Productivity Shock
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Figure 3.4: Variance decomposition of the inequality index.

Notes: The solid lines denote the estimated forecast error variance decompositions (FEVD) based on
the benchmark sample with the shaded area being the bootstrapped 90 percent confidence bands.
The benchmark sample spans from 1978:Q1 to 2008:Q4. The other sample begins in 1983:Q1
after the early Volcker period when the Fed targeted the amount of non-borrowed reserves. The
results using the second sample are represented by the dash-dot and the dotted lines. I use the
bias-corrected R? estimator of |(Gorodnichenko and Lee| (2017) to estimate the FEVDs. Other lag
length, the inclusion of the oil supply shocks of either Kilian (2008) or |Kilian| (2009), and considering
a smaller information set by letting an information set contain only one shock each time do not
change the results significantly (see Appendix B.6).

120



Unanticipated Inequality Shock
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Figure 3.5: Identified unanticipated innovations in earnings inequality.

Notes: This figure plots the unanticipated innovations in earnings inequality (zineq) in Equation
(4). The units are annualized log points. The grey bars depict when major tax reforms in the U.S.
were signed into laws with the name of president who signed: (i) the Economic Recovery Tax Act
of 1981 (ERTA 81), Ronald Reagan, August 13, 1981, (ii) the Tax Reform Act of 1986 (TRA 86),
Ronald Reagan, October 22, 1986, (iii) the Omnibus Budeget Reconciliation Act of 1993 (OBRA
93), Bill Clinton, August 10, 1993, and (iv) the Jobs and Growth Tax Relief Reconciliation Act
of 2003 (JGTRRA 03), George W. Bush, May 28, 2003. The OBRA 93 raised the top marginal
income tax rates while the others did the opposite. Considering the dates when the new tax rates
became effective for the first time does not change the implication from the figure. The first tax
cut following the ERTA 81 happened on October 1, 1981, and ¢ ineq is positive in 1981:Q4. The
income tax rates defined on the TRA 86 were applicable from the tax year 1987, and similarly the
identified shock in 1987:Q1 is positive. The new rates from the OBRA 93 were applied since the
tax year 1993. Because it was signed in the middle of 1993:Q3, it is natural that 1993:Q4 is the
first quarter under the new tax rates. And the identified shock is negative in 1993:Q4. Similarly,
the tax rates from the JGTRRA 03 were valid for the tax year 2003 and it was signed in the middle
of 2003:Q2. Consistently, the identified shock in 2003:Q3 is positive.

121



Response of Real Consumption

1 Response of Real GDP 1
£ £
3 0 b 3
&) ...... .;:' Sf 0
Bt 3
N N
s | el Y e -1
220 e 2
c | e x c
< <
-3 . . . -2 . . :
0 4 8 12 16 0 4 8 12 16
Quarter Quarter
5 Response of Real Investment 05 Response of EFFR
E RN .
2 o
Sf O e %
R 8
o 5 <
© - = o’
< 10 1
0 4 8 12 16 0 4 8 12 16
Quarter Quarter
1 Response of GDP deflator 3 Response of Earnings Inequality
g 0
& g
o -
N 3
© e
> ©
g >
0 4 8 12 16 0 4 8 12 16
Quarter Quarter

—— Empirical IRF - 90% Confidence Band|

Figure 3.6: Responses of macroeconomic variables to an inequality shock.

Notes: The impulse responses are estimated by local projections in Equation (5). The dotted
lines denote the 90 percent confidence bands where the bandwidth for the Newey-West variance
estimator increases in the horizon of local projections one for one. All responses are either in
annualized percent, annualized percentage points, or annualized log points. The bottom right
panel illustrates the response of the log P90/P10 index. The results here are robust to various
specification details (see Appendix C.2).
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Figure 3.7: FEVDs, unanticipated innovations in inequality.

Notes: 1 employ the bias-corrected R? estimator of |Gorodnichenko and Lee (2017) to estimate the
forecast error variance decompositions, where the unanticipated innovations in inequality is from
Section The bias-correction uses bootstrapped samples from a vector autoregression model
for variables in ng) and the inequality shock. The 90 percent bootstrapped confidence bands are
denoted by the dotted lines. The results are robust to specification details (see Appendix C.3).
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Figure 3.8: Matching impulse response functions.

Notes: The empirical impulse response functions and the confidence bands are from Figure 6.
The model is evaluated at the posterior mode and the corresponding impulse response functions
are illustrated by the solid lines with diamonds. For the calibrated parameters and the posterior
mode, see Table 2 and 3. The peak effects of both the empirical and model responses are similar.
Furthermore, the model responses are in the 90 percent confidence bands at most lags. While this
is not the case for small hA’s, I include the moment conditions related to the inequality shocks only
for 4 < h < 12 when evaluating the posterior. This is because the empirical responses for the
variables other than the inequality index at h = 0 are zero by construction, and this obviously
affects estimates for small h’s too.
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Figure 3.9: Decomposition of aggregate consumption responses.

Notes: The dotted line represents F; [Eg Cv'{iT}, the direct effect of a one standard deviation in-

equality shock to the Keynesians’ consumption. The dash-dot line is for E; [EECV’EH}, the direct

effect to the Ricardians’ consumption. The distributional effect, F; [(EIC( — 2—?5@) éffﬁ}, is illus-

trated by the dashed line. The total aggregate consumption response, E; [C’t+7], is shown by the

red solid line with diamonds. The units are annualized percent obtained by multiplying 400 to the
model outcome. The left panel is based on the benchmark parameter estimates, while the right
panel is based on the posterior mode when Eg and 511\(7 are calibrated at 0.15 and 0.12, respectively.
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Figure 3.10: Responses of consumption conditional on the level of inequality, model.

Notes: The generalized impulse responses are based on the third order pruned state-space system
in|Andreasen, Ferndndez-Villaverde and Rubio-Ramirez (2017). In the high inequality state, s ; =
0.25 and all the other variables equal their steady-state values. The low inequality state is based
on sfi 1 = 0.15. Inputs are one standard deviation contractionary monetary policy shocks and
expansionary fiscal policy shocks. The units are annualized percent. The results for other variables
are in Appendix E.3.
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Figure 3.11: Responses of consumption conditional on the level of inequality, recent data.

Notes: Two panels depict the impulse responses of consumption given a one standard deviation
contractionary monetary policy shock and an expansionary fiscal policy shock, respectively. Each
panel plots two sets of results: the impulse responses conditional on the inequality index being one
standard deviation below or above the mean, 1.38 and 1.64, respectively. The results are based on
Equation (34), a local projection with an interaction term between the lagged inequality index and
a shock. The bandwidth for the Newey-West variance estimator increases in the horizon of local
projections one for one. For responses of other macroeconomic variables and the results based on
total factor productivity shocks, see Appendix E.1.

127
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Figure 3.12: Responses of real GDP conditional on the level of inequality, historical data.

Notes: The results in this figure is based on the long historical data of [Piketty and Saez| (2003)
and Ramey and Zubairy (2018). The top 10% income share series of Piketty and Saez is annual,
and therefore the unit for the horizontal axis is a year. The sample period is from 1917 to 2015.
The top 10% income share displays a U-shaped pattern during the sample periods. The results
are based on Equation (34), where the bandwidth for the Newey-West variance estimator increases
in the horizon of local projections one for one. The input is a military news shock whose present
discounted value amounts to 10 percent of the trend GDP. The result for the GDP deflator and
unemployment rate, and further robustness checks are in Appendix E.2.
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