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Abstract

Targeted learning of individual effects and individualized treatments using an
instrumental variable

by

Boriska Toth

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

We consider estimation of causal effects when treatment assignment is po-
tentially subject to unmeasured confounding, but a valid instrumental variable
is available. Moreover, our models capture treatment effect heterogeneity, and
we allow conditioning on an arbitrary subset of baseline covariates in estimat-
ing causal effects. We develop detailed methodology to estimate several types
of quantities of interest: 1) the dose-response curve, where our parameter of
interest is the projection unto a finite-dimensional working model; 2) the mean
outcome under an optimal treatment regime, subject to a cost constraint; and
3) the mean outcome under an optimal intent-to-treat regime, subject to a
cost constraint, in which an optimal intervention is done on the instrumental
variable. These quantities have a central role for calculating and evaluating
individualized treatment regimes. We use semiparametric modeling through-
out and make minimal assumptions. Our estimate of the dose-response curve
allows treatment to be continuous and makes slightly weaker assumptions than
previous research. This work is the first to estimate the effect of an optimal
treatment regime in the instrumental variables setting. For each of our pa-
rameters of interest, we establish identifiability, derive the efficient influence
curve, and develop a new targeted minimum loss-based estimator (TMLE).
In accordance with the TMLE methodology, these substitution estimators are
asymptotically efficient and double robust. Detailed simulations confirm these
desirable properties, and that our estimators can greatly outperform standard
approaches. We also apply our estimator to a real dataset to estimate the
effect of parents’ education on their infant’s health.
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Finally, I thank Diána Lolka for the infusion of sweetness, healing, and
inspiration.



1

Chapter 1

Introduction

Utilizing instrumental variables. When estimating a causal effect in an
observational study, the problem of unmeasured confounding is a pervasive
caveat. It is similarly problematic in inferring a causal effect of a treatment in
an experiment where the treatment isn’t fully randomized. A classic solution
for obtaining a consistent estimate is to use an instrumental variable, assuming
one exists. Informally, an instrumental variable, or instrument, is a variable
Z that affects the outcome Y only through its effect on the treatment A, and
the residual (error) term of the instrument is uncorrelated with the residual
term of the outcome (Imbens and Angrist 1994, Angrist et al 1996, Angrist
and Krueger 1991). Thus, the instrument produces exogenous variation in the
treatment.

Instrumental variables have been used widely in biostatistics and espe-
cially econometrics to obtain consistent estimates of a treatment effect. (See
(Brookhart et al 2010) for a large collection of references.) They are a basic
tool for inferring the causal effect of a clinical treatment or a medication on
a health outcome, as large-scale randomization of patients is often not fea-
sible. In these settings, the instrumental variable is usually some attribute
that is related to the health care a patient receives, but is not at the level
of individual patients. Thus, the instrument is not confounded by factors af-
fecting an individual’s response to treatment. For example, (Newhouse and
McClellan 1998) exploit regional variation in the availability of catheterization
and revascularization procedures as their instrument in estimating the effect
of these procedures on reducing mortality in heart attack patients. Another
important setting for instrumental variables in health research is when the
treatment is randomly assigned, but non-compliance is significant. Then the
random treatment assignment serves as an ideal instrument. (van der Laan et
al 2007) describe this setting. An example of the use of instruments in social
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science research is the data analysis we give in chapter 3. In this dataset, the
extent to which individuals were affected by a school reform program serves
as the instrument for estimating the effect of parents’ education on their new-
born’s health.

Causal effects given arbitrary subgroups of the population. Most
commonly, instrumental variables are used to estimate a simple pointwise
treatment effect. This work, on the other hand, solves the more complex
problem of estimating functions involving an arbitrary subset V of baseline co-
variates W . In chapter 3, the causal effect of treatment (dose-response curve)
as a function of V ⊆ W is estimated. In chapters 4-5, the optimal dynamic
treatment rule as a function of covariates V (and under cost constraints) is
derived, for the purpose of estimating the mean outcome under this optimal
rule. We allow binary or continuous outcomes Y , and make no restrictions on
the type of data unless otherwise noted.

Modeling heterogenous treatment effects can improve the precision of a
statistical model. Moreover, it is of paramount importance in many applica-
tions to make estimates of treatment effect that are conditional on individual
characteristics, see for instance (Imai and Strauss 2011). This is especially
so in clinical settings. These days there is great interest and computational
feasibility in designing individualized treatment regimes based on a patient’s
characteristics and biomarkers. The paradigm of precision medicine calls for
incorporating genetic, environmental and lifestyle variables into treatment de-
cisions. For estimating the dose-response curve in chapter 3, we take the
expected causal effect given V , so far an infinite dimensional parameter, and
project that function of V unto a user-supplied working model of finite dimen-
sion. Our model allows A to be continuous and makes slightly weaker causal
assumptions than previous work. Furthermore, it is important when estimat-
ing the causal effect as a function of covariates V that V can be a strict subset
of all baseline covariates W . As an example, medical data often involves a
large space of covariates, and conditioning on many covariates in estimating
relevant components of the data-generating distribution can be helpful in: 1)
decreasing the variance of estimated conditional means, and 2) ensuring that
the instrument induces exogenous variation given the covariates. However, a
physician typically has a smaller set of patient variables that are available and
that s/he considers reliable predictors. Thus the causal effect as a function of
an arbitrary subset of baseline covariates is of great use.

Outcomes under optimal treatment rules. Another natural param-
eter of interest is the population mean outcome under an optimal treatment
rule, pursued in chapters in 4 and 5. Coupling statistical estimation with op-
timization within the same model is a standard problem across many fields,
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with a large body of previous work in engineering and statistics. This work is
the first to estimate the effect of an optimal dynamic treatment (ODT) regime
in the instrumental variables setting. The underlying parameter of interest
in an ODT problem is often the actual optimal treatment rule, as a function
of covariates. However, that is an infinite dimensional parameter, so instead
we target the mean outcome under the optimal rule. We solve the estimation
problem both for the setting where the dynamic intervention is on the treat-
ment variable A (chapter 5), and where the intervention is on the instrument
Z (chapter 4).

A good example of the usefulness of both these models is for analyzing the
get-out-the-vote campaign described in (Arceneaux et al 2006). A large-scale
voter mobilization experiment was done in which individuals were randomly
assigned (instrument Z) to a treatment of receiving a phone call, and there is
unmeasured confounding between an individual actually receiving the phone
call (treatment A) and their voting behavior (outcome Y ). Many baseline
covariates are known. It is of significant interest to both political parties and
social scientists to learn the optimal assignment of individuals to the treat-
ment of a phone call when subject to a cost constraint, given their individual
characteristics. One parameter of interest is: what would be the mean out-
come under the optimal selection of individuals to receive the phone calls?
Chapter 5 deals with this scenario of the optimal dynamic treatment regime,
when optimally intervening on treatment variable A. Chapter 4, on the other
hand, focuses on the optimal dynamic treatment regime when the ‘treatment’
is actually an intervention done on the instrumental variable Z. In settings
where unmeasured confounding is a potential problem, it is often not possible
in practice to intervene directly on the treatment variable. It might not be
possible to actually control whether individuals pick up the phone. Thus, the
mean outcome under optimal intervention on the instrument is also a parame-
ter of interest. We call this the optimal dynamic intent-to-treat mechanism, so
named because the instrument is often a randomized assignment to treatment
or encouragement mechanism. Under our randomization assumption on Z, the
optimal dynamic intent-to-treat problem is the same as an optimal dynamic
treatment problem when considering Z to be the treatment variable that is
unconfounded with Y .

The problem of finding the optimal deterministic treatment rule is NP-hard
(Karp 1972). However, when allowing possible non-deterministic treatments,
there is a simple closed form solution for the optimal dynamic treatment, or the
optimal dynamic intent-to-treat. The optimal rule is to treat all strata with
the highest marginal gain per marginal cost, so that the total cost of the policy
equals the cost constraint. Chapter 4 gives realistic conditions under which
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we have a well-behaved estimation problem, with pathwise differentiability.
Under these conditions, the optimal solution is a deterministic rule.

Semiparametric methodology. While instrumental variables are widely
used to infer causal effects, the majority of studies make use of strong assump-
tions about the structure of the data and typically rely on parametric models
(Terza et al. 2008). In contrast, this work uses semiparametric modelling.
Beyond the criteria that there is a valid instrument, we make use of the single
structural assumption that the expected value of the outcome is linear in the
treatment, conditional on the covariates. This assumption is used in virtually
all similar works; however, as we discuss below, even this single assumption
can be weakened.

We use targeted minimum loss estimation (TMLE), which is a methodology
for semiparametric estimation that has very favorable theoretical properties
and can be superior to other estimators in practice (van der Laan and Rubin
2006, van der Laan and Rose 2011). The TMLE procedure targets only those
components of the data-generating distribution that are relevant to the statis-
tical parameter of interest. Initial estimates are formed of certain components,
by data-adaptively learning on a library of prediction algorithms. The initial
estimates are then fluctuated one or more times in a direction that removes
bias and optimizes for semiparametric efficiency.

The TMLE method has a robustness guarantee: it produces consistent esti-
mates even when the functional form is not known for all relevant components.
The most common such scenario is when the conditional distribution of the
outcome cannot be estimated consistently, and one only has information about
the form of the distributions generating the instrument and treatment. TMLE
also guarantees asymptotic efficiency when all relevant components and nui-
sance parameters are consistently estimated. Thus, under certain conditions,
the TMLE estimator is optimal in having the asymptotically lowest variance
for a consistent estimator in a general semiparametric model, thereby achieving
the semiparametric Cramer-Rao lower bound (Newey 1990). Another benefi-
cial property is asymptotic linearity. This ensures that TMLE-based estimates
are close to normally-distributed for moderate sample sizes, which makes for
accurate coverage of confidence intervals.

TMLE has the advantage over other semiparametric efficient estimators
that it imposes constraints to ensure that the estimator matches the data
well. It is a substitution estimator, meaning that the final estimate is made
by evaluating the parameter of interest on the estimates of its relevant com-
ponents, where these estimates respect bounds observed in the data. These
properties have been linked to good performance in sparse data in (Gruber
and van der Laan 2010), while we demonstrate performance gains over other
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estimators in continuous data having sharp boundaries in section 3.3.
Extensive simulation results validate the strong performance of our TMLE-

based estimator. In estimating the dose-response curve, TMLE can show enor-
mous bias removal for a moderate gain in variance. It can have both lower
bias and lower variance than an incorrectly specified parametric model, due to
the vastly better fit resulting from data-adaptive learning. In addition, it can
show superior finite-sample performance over other semiparametric efficient
estimators for certain types of data, and demonstrates good coverage, with
95% confidence intervals that were typically 1-2% too wide. For the param-
eters involving optimal dynamic treatments, TMLE demonstrates reduction
in finite-sample bias over a consistent initial substitution estimator, and the
cross-validated (Zheng and van der Laan 2011) version of TMLE was typically
found to have the best performance. The empirical variance of the TMLE-
based estimators appears to converge to the semiparametric efficiency bound.
Consistency in the case of partial misspecification was confirmed, in the sense
of lemma 16. Our simulations also addressed the important question of to
what extent improved statistical estimation can lead to better optimization
results. We were able to demonstrate significant increases in the value of the
mean outcome under the estimated optimal rule, when a larger library of data-
adaptive learners achieved a closer fit. The known distribution was used to
evaluate the true mean outcome under an estimated optimal rule here.

Chapter 2: Background

We first give background on the basic notions of semiparametric efficiency the-
ory. Next, we describe the targeted minimum loss based-estimation (TMLE)
methodology. We conclude with a literature review.

Chapter 3: Estimating the dose-response

function using an instrument.

We define a causal parameter of interest for estimating the dose-response curve
as a function of covariates V ⊆ W . We give a causal model making minimal
assumptions and prove identifiability. The canonical gradient is then derived,
and three different TMLE-based estimators given for the target parameter.
In detailed simulations, we show the performance of each of these estimators,
and compare with standard methods, both parametric and semiparametric.
We present an application to the (Chou et al 2010) dataset to estimate the
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effect of parents’ education on their infant’s health. Finally, we briefly describe
a test for unmeasured confounding using the estimators developed.

Chapter 4: Estimating the outcome under

optimal dynamic intent-to-treat.

We give assumptions for estimating the mean counterfactual outcome, under
optimal assignment of instrumental variable Z and given cost constraints. We
then prove a simple closed form solution, and remark on its extension to a
continuous or categorical instrument. Next, the canonical gradient is derived,
and a TMLE based on a single-step fluctuation given. Desirable theoretical
properties for estimation and inference are proved. Finally, detailed simula-
tions are presented to confirm the theoretical results and demonstrate the link
between effective optimization and precise statistical estimation.

Chapter 5: Estimating the outcome under

optimal dynamic treatment, using an

instrument.

We consider the problem of estimating the mean counterfactual outcome under
the optimal treatment rule given a cost constraint, when an instrumental vari-
able is needed for identifiability. We state the causal model, assumptions, and
identifiability results. The canonical gradient is derived and we check that it is
contained in the tangent space of the model. We also derive a remainder term,
and describe the theoretical properties of our estimators that follow from it.
Two TMLE estimators are presented in this chapter, one that is iterative and
based on likelihood maximization, and one that involves solving a numerically
challenging equation in a single step.
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Chapter 2

Background

2.1 Semiparametric efficiency theory.

(See for instance (van der Vaart 2000) for a reference.) Recall that an efficient
estimator is one that achieves the optimal asymptotic variance among regular
semiparametric estimators. We briefly give a few relevant definitions.

An estimator is asymptotically linear if, informally, it is asymptotically
equivalent to a sample average. Formally, we have that an estimator Ψ∗n for
estimating true parameter Ψ(P0) from an iid sample (O1, .., On) is asymptoti-
cally linear if√
n(Ψ∗n − Ψ(P0)) = 1√

n

∑n
i=1 Ψ̇P (Oi) + oP (1), where Ψ̇P is a zero mean, finite

variance function. Ψ̇P is called the influence function.
Recall that a parameter Ψ is pathwise differentiable at P0 relative to a

tangent space of a model P at P0 if there exists a continuous linear map Ψ̇P0

such that for every score function g in the tangent space and submodel t→ Pt
with score function g, we have
Ψ(Pt)−Ψ(P0)

t
→ Ψ̇P0 g. By the Riesz representation theorem, we have Ψ̇P0 g =∫

Ψ̃P0 gdP0 where Ψ̃P0 is an “influence function”. The efficient influence curve
is the unique influence function whose coordinate functions are contained in
the closure of the linear span of the tangent space.

An estimator is efficient if it is asymptotically linear with the efficient
influence curve as its influence function. Thus, we have that for an efficient
estimator Ψ∗n estimating true parameter Ψ(P0) from an iid sample (O1, ..., On):
Ψ∗n−Ψ(P0) = 1

n

∑n
i=1D

∗(P0)(Oi) + oP ( 1√
n
), where D∗ is the efficient influence

curve.
The proof that the optimal asymptotic variance is the variance of the effi-

cient influence curve (where optimality is among regular semiparametric esti-
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mators) is a short proof. Essentially, one checks the lower bound on variance
guaranteed by the Cramer-Rao inequality, in the direction of the hardest sub-
model (that having greatest variance).

2.2 Targeted maximum likelihood estimation.

The targeted minimum loss-based framework

Targeted minimum loss-based estimation (TMLE) is a method to construct a
semi-parametric substitution estimator of a target parameter Ψ(P0) of a true
distribution P0 ∈M, whereM is a semiparametric statistical model (van der
Laan and Rubin 2006, van der Laan and Rose 2011). The estimate is based
on sampling n i.i.d. data points (O1, ..., On) from P0. It is consistent and
asymptotically efficient under certain conditions.

(1) One first notes that the parameter of interest Ψ(P0) depends on P0 only
through relevant components Q0 of the full distribution P0, in other words,
Ψ(P0) = Ψ(Q0) 1. TMLE targets these relevant components by only estimating
these Q0 and certain nuisance parameters g0

2 that are needed for updating
the relevant components. An initial estimate (Q0

n, gn) is formed of the relevant
components and nuisance parameters. This is typically done using the Super
Learner (see below) approach described in (van der Laan et al 2007), in which
the best combination of learning algorithms is chosen from a library using
cross-validation. (2) Then the relevant components Q0

n are fluctuated, possibly
in an iterative process, in an optimal direction for removing bias efficiently. (3)
Finally, one evaluates the statistical target parameter on the updated relevant
components Q∗n, and arrives at estimate ψ∗n = Ψ(Q∗n).

Note that the final estimate of ψ∗n is formed by evaluating the target pa-
rameter on estimates of relevant components that are consistent with a single
data-generating distribution, and with the observed bounds of the data. This
property of being a substitution estimator has been shown to be conducive to
good performance in practice (Gruber and van der Laan 2010).

We use notation such as Q0
n, where the subscript clarifies that an empirical

estimate is being made from the sample of size n, while the superscript refers
to the estimate being an initial one (“zeroeth” iteration). To fluctuate the
initial components Q0

n to updated components Q1
n, one defines a fluctuation

1We are abusing notation here for the sake of convenience by using Ψ(·) to denote both
the mapping from the full distribution to Rd, and from the relevant components to Rd.

2The nuisance parameters are those components g0 of the efficient influence curve
D∗(Q0, g0) that Ψ(Q0) does not depend on.
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function ε → Q(ε|gn). gn is an estimate of the nuisance parameters, and
the fluctuation of Q0

n can depend on gn, although we sometimes drop the
explicit dependency in the notation, and use Q(ε) to denote Q(ε|gn). One
also defines a loss function L(), where we set Q1

n = Q0
n(ε0n|gn) by solving for

fluctuation ε0n = argminε L(Q0
n(ε|gn), gn, (O1, ..., On)). We use the convention

that when the fluctuation parameter ε is zero, Q0
n(ε|gn) = Q0

n. This procedure
of updating Qk+1

n = Qk
n(εkn|gn) might need to be iterated to convergence. In

some versions of TMLE, the nuisance parameters gn are also updated, using a
fluctuation function and loss function similarly. The requirement is to choose
the fluctuation and loss functions so that, upon convergence of the components
to their final estimateQ∗n and g∗n, the efficient influence curve equation is solved:

Pn D
∗(Q∗n, g

∗
n) = 0

Pn denotes the empirical distribution (O1, ..., On), and we use the shorthand
notation Pnf = 1

n

∑n
i=1 f(Oi). The equation above is the basis for the guaran-

tees of consistency (under partial misspecification) and asymptotic efficiency
(under correct specification of relevant components and nuisance parameters).

To give a few examples, the loss function might be the mean squared error,
or the negative log likelihood function. For instance, for the estimator using
iterative updating presented in section 3.2, we use fluctuation µ1

n = µ0
n+ε·C0

Y,n,
with µ = E(Y |W,Z) and CY as defined in section 4.1. The loss function is
L(Q0

n(ε|gn), gn, (O1, ..., On)) =
∑n

i=1 (Y [i]− µ0
n[i]− ε · C0

Y,n[i])
2
.

2.3 Literature review.

Estimating the dose-response curve using an instrument. Let W be a
vector of baseline covariates, and m(W ) denote the marginal causal effect of
treatment given W . Most prior work on estimating the marginal causal effect
of a treatment using an instrument deal with either the case where a scalar
average effect E(m(W )) is estimated, or the entire curve m(W ) is estimated.
In contrast, our work estimates E(m(W )|V ) for V possibly a strict subset of
W . (Tan 2010) is another work that lets V be any subset of W and gives
estimators for the marginal effect of the treatment on Y , conditional on V
and level of treatment. However, their marginal effect is assumed to take a
parametric form.

(Ogburn et al) is a recent work that also proposes a semiparametric es-
timator for the marginal causal effect given a strict subset of the covariates
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V ⊆ W 3. They also present an estimator for the best least-squares projection
of the true causal effect unto a parametric working model. Their estimators
use the method estimating equations, and are efficient and double robust, but
are not substitution estimators. In addition, (Ogburn et al) restrict attention
to the case of a binary instrument and treatment, and make slightly stronger
assumptions about the instrument than we do (for instance, they assume no
confounding between the instrument and treatment).

(Abadie 2003) gives an estimator for the treatment effect in compliers as
a function of W . However, the instrument propensity score P (Z|W ) must be
estimated consistently in his approach. Both (van der Laan et al 2007) and
(Robins 2004) present semiparametric, consistent, and locally efficient estima-
tors for the effect of treatment on an outcome, as a function of covariates W ,
as motivated by the setting where Z is the randomized assignment to a binary
treatment, and A is the binary compliance with treatment. The counterfactual
outcomes are assumed to follow a parametric form E(Y (A = 0)|W,Z,A) =
m̃(W,Z,A). The former work gives a solution for binary outcomes using the
method of estimating equations, so that their estimator is double robust to
misspecification of either Pr(Z|W ) or E(Y (A = 0)|W,Z,A).

For the special case of a null V where a scalar average effect is estimated,
semiparametric efficient approaches abound (see for instance: Cheng et al
2009; Hong and Nekipelov 2010; Kasy 2009). (Uysal 2011) and (Tan 2006)
describe doubly robust estimators, where either the propensity score Pr(Z|W ),
or the conditional means given the instrument, must be correctly specified.

(Clarke and Windmeijer 2010a and 2010b) discuss a number of approaches
for dealing with binary outcomes in the instrumental variables setting.

Optimal dynamic treatments.
(Luedtke and van der Laan 2016a) is a recent work that gives a TMLE

estimator for the mean outcome under optimal dynamic treatment given a
cost constraint. While we state the ODT problem in chapter 4 in terms of
finding the optimal value of an instrumental variable when there is potentially
confounding between the treatment and outcome, that problem is very similar
to the one solved in (Luedtke and van der Laan 2016a). The main difference is
that we allow a cost function that depends on covariates, while only unit costs
are considered in the previous work. Hence, there is a simpler closed-form
solution to the optimal rule in that work. (Luedtke and van der Laan 2106a)
require that the optimal treatment has a unique solution. In (Luedtke and
van der Laan 2016b), the authors expand greatly on this issue of possible non-

3Ogburn et al’s work was accepted for publication around the time this work was com-
pleted.
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unique solutions. They show that a unique solution for the optimal treatment
is needed for pathwise differentiability of the mean outcome, which in turn is
necessary for deriving a regular asymptotically linear (RAL) estimator. They
also derive a martingale-based estimator that gives root-n confidence intervals,
even when pathwise differentiability does not hold. The conditions we require
in 4.2 and 5.2 are adopted from these works.

A large body of work focuses on the case of optimal treatment regimes in the
unconstrained case, such as (Robins 2004). More recently, various approaches
tackle the constrained ODT problem: (Zhang et al 2012) describe a solution
that assumes the optimal treatment regime is indexed by a finite dimensional
parameter, while (Chakraborty et al 2013) describe a bootstrapping method
for learning ODT regimes with confidence intervals that shrink at a slower
than root-n rate. (Chakraborty and Moodie 2013) gives a review of recent
work on the constrained case.
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Chapter 3

Estimating the dose-response
function.

3.1 The model and causal parameter of

interest

We use the notation that P0 and E0 refer to the true probability distribution
and expectation, respectively, and Pn and En the empirical counterparts. We
observe n i.i.d. copies O1, . . . , On of a random variable O = (W,Z,A, Y ) ∼ P0,
where P0 is its probability distribution. Here W denotes the measured baseline
covariates, and Z denotes the subsequently (in time) realized instrument that is
believed to only affect the final outcome Y through the intermediate treatment
variable A. The goal of the study is to assess a causal effect of treatment A on
outcome Y . We consider the case in which it is believed that A is a function of
both the measured W and also unmeasured confounders. As a consequence,
methods that rely on the assumption of no unmeasured confounding will likely
be biased. Figure 1 shows how the variables in our model are related; the
arrows indicate the direction of causation.

Using the structural equation framework of (Pearl 2000), we assume that
each variable is a function of other variables that affect it and a random term
(also called error term). Let U denote the error terms. Thus, we have
W = fW (UW ), Z = fZ(W,UZ), A = fA(W,Z,UA), Y = fY (W,Z,A, UY )
where U = (UW , UZ , UA, UY ) ∼ PU,0 is an exogenous random variable, and fW ,
fZ , fA, fY may be unspecified or partially specified (for instance, we might
know that the instrument is randomized). UY is the term that reflects possible
confounding between A and Y . When Y is binary, we assume UY = (ŨY , U

′
Y ),

where the ŨY component contains the potentially confounded, residual term,
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Figure 3.1: Causal diagram

with Pr(Y = 1|W,Z,A, ŨY ) = f̃Y (W,Z,A, ŨY )1

Assumption 1 parts 1)-3) below need to be made to guarantee that Z is
a valid instrument for estimating the effect of A on Y . Part 4), in turn, is
needed for identifiability of the causal effect.

Assumption 1 Assumptions ensuring that Z is a valid instrument:

1. Exclusion restriction. Z only affects outcome Y through its effect on
treatment A. Thus, fY (W,Z,A, UY ) = fY (W,A,UY ).

2. Exogeneity of the instrument. E(UY |W,Z) = 0 for any W,Z.

1The U ′Y term is an exogenous r.v. whose purpose is for sampling binary Y . Let
U ′Y be a Unif[-.5,.5] r.v. (we set it to have 0 mean to conform to assumption 2.) Then

Y = 1((U ′Y + .5) < f̃Y (W,Z,A, ŨY )).
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3. Z induces variation in A. Var0[E0(A|Z,W )|W ] > 0 for all W .

Structural equation for outcome Y :

4. Y = Am0(W ) + θ0(W ) + UY for continuous Y , and
Pr(Y = 1|W,A, ŨY ) = Am0(W ) + θ0(W ) + ŨY for binary Y ,
where UY = (ŨY , U

′
Y ) for an exogenous r.v. U ′Y .

In other words, although we don’t assume that A is randomized with re-
spect to Y , we do assume that Z is randomized with respect to Y , conditional
on W in both cases. The third assumption guarantees that for every value of
covariates W , there is variation in the instrument, and that the instrument
induces variation in the treatment.

The linearity in A of the structural equation for Y is necessary for identi-
fying the treatment effect using an instrument unless further assumptions are
made. In the common case where the treatment A is binary, this assumption
always holds, and we have a fully general semi-parametric model that only
assumes Z is a valid instrument. It should also be noted that unlike many
instrument-based estimators, we don’t require the instrument to be random-
ized with respect to treatment (UZ ⊥⊥ UA| W is not necessary).

We use the counterfactual framework of (Pearl 2000) to define the causal
parameter of interest. Let counterfactual outcome Y (a) denote the outcome
given by the structural equations if the treatment variable were set to A = a,
and all other variables, including the exogenous terms, were unchanged. We
have that Y (a) = a · m0(W ) + θ0(W ) + UY for all possible values a ∈ A,
where A denotes a support of A. We can now define the marginal causal effect
we’re interested in as E0(Y (a)−Y (0)) and observe that it equals a ·Em0(W ).
Similarly, define adjusted causal effects E0(Y (a)− Y (0) | V ) conditional on a
user supplied covariate V ⊂ W . These causal effects are functions of m0(W )
and the distribution of W .

Causal effect of interest:
The marginal causal effect is E0(Y (a)− Y (0)) = a · Em0(W ).
The adjusted causal effect is E0(Y (a)− Y (0) | V ) = a · E(m0(W ) | V ), given
a user supplied covariate V ⊂ W .

Note that m0(W ) represents the causal effect of one unit of treatment given
W .

Notation: Let ρ0(Z,W ) = Pr0(Z|W ). Let Π0(Z,W ) ≡ E0(A | Z,W ) be
the conditional mean of A given Z,W .
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Let µ0(Z,W ) ≡ E0(Y | Π0(Z,W ),W ) be the expected value of Y , given
W and Π0(Z,W ).

The instrumental variable assumption that E(UY |Z,W ) = 0 implies

E0(Y | Π0(Z,W ),W ) = Π0(Z,W )m0(W ) + θ0(W )

Thus, our structural equation model implies a semiparametric regression model
for E0(Y | Π0(Z,W ),W ). Note that for a pair of values z and z1, we have

E0(Y | Z = z,W )− E0(Y | Z = z1,W ) = {Π0(z,W )− Π0(z1,W )}m0(W )

From this equation, we get an identifiability result for m0, stated below as a
formal lemma.

Lemma 1 Let Π0(Z,W ) ≡ E0(A | Z,W ). Let dZ,0 be the conditional prob-
ability distribution of Z, given W . Let W be a support of the distribution
PW,0 of W . Let w ∈ W. By assumption 1 above, Var(Π0(z, w)|W = w) > 0,
so there exists two values (z, z1) in a support of dZ,0(· | W = w) for which
Π0(z, w)− Π0(z1, w) 6= 0. Thus

m0(w) =
E0(Y | Z = z,W = w)− E0(Y | Z = z1,W = w)

Π0(z, w)− Π0(z1, w)
,

which demonstrates that m0(w) is identified as a function of P0.

Statistical model: The above stated causal model implies the statistical
modelM consisting of all probability distributions P of O = (W,Z,A, Y ) sat-
isfying the semiparametric regression model EP (Y | Z,W ) = Π(P )(Z,W )m(P )(W )+
θ(P )(W ) for some unspecified functionsm(P ), θ(P ), and Π(P )(Z,W ) = EP (A |
Z,W ). Π(P )(Z,W ) must satisfy VarP [Π(P )(Z,W )|W ] > 0 for all W . Notice
that when Z is binary, the semiparametric regression equation is always sat-
isfied for some m, θ.

Causal parameter: We define our causal parameter of interest to be the
projection of the dose-response curve E0(Y (a)−Y (0) | V ) = aE0(m0(W ) | V )
on a working model. Let {amβ(v) : β} be a working model for E0(Y (a)−Y (0) |
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V ). Specifically, given some weight function h(A, V ), let

β0 = arg min
β
E0

∑
a

h(a, V ){aE(m0(W ) | V )− amβ(V )}2 (3.1)

= arg min
β
E0

∑
a

h(a, V )a2{E(m0(W ) | V )−mβ(V )}2 (3.2)

= arg min
β
E0

∑
a

h(a, V )a2{m0(W )−mβ(V )}2 (3.3)

≡ arg min
β
E0 j(V ){m0(W )−mβ(V )}2, (3.4)

where we defined j(V ) ≡
∑

a h(a, V )a2.
For example, if V is empty, and mβ(v) = β, then E0(Y (a)− Y (0)) = β0a.

We can also select V = W and mβ(w) = βTw, in which case βT0 w is the pro-
jection of m0(w) on this linear working model {βTW : β}.

Statistical target parameter: Our target parameter is ψ0 = β0.
Let Ψ : M → Rd be the target parameter mapping so that Ψ(P0) =

ψ0 = β0, which exists under the identifiability assumptions stated in Lemma
1. We note that ψ0 = Ψ(P0) = Ψ(m0, PW,0) only depends on P0 through
m0 and PW,0, while m0, as statistical parameter of P0, is identified as a
function of µ0 = E0(Y | Z,W ) under the semiparametric regression model
µ0 = E0(Y | Z,W ) = π0(Z,W )m0(W ) + θ0(W ).

The statistical estimation problem is now defined. We observe n i.i.d.
copies of O = (W,Z,A, Y ) ∼ P0 ∈ M, and we want to estimate ψ0 = Ψ(P0)
defined in terms of the mapping Ψ :M→ Rd.

Weakening the structural assumption.
We briefly note that the structural assumption Y = fY (W,A,UY ) = Am(W )+
θ(W ) + UY can be weakened in many cases when Z is a continuous variable.
For a general equation Y = fY (W,A,UY ) = q(W,A) + UY , where q(W,A) is
any function, we can write a Taylor approximation for a k-degree polynomial
in A as

fY (W,A,UY ) = Akmk(W ) + Ak−1mk−1(W ) + ...+ Am1(W ) +m0(W ) + UY

Now suppose we have (k + 1) values of Z: (Zk, Zk−1, ...., Z0). We have that
E(Y |Zi,W ) = E(Ak|Zi,W )mk(W ) + E(Ak−1|Zi,W )mk−1(W ) + ... + m0(W ).
This means if the equation below is solvable (the matrix shown is not singular),
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then we can identify
(mk(W ),mk−1(W ), ...,m0(W )).E(Y |Zk,W )

...
E(Y |Z0,W )

 =

E(Ak|Zk,W ) E(Ak−1|Zk,W ) · · ·
...

. . .
...

E(Ak|Z0,W ) E(Ak−1|Z0,W ) · · ·


mk(W )

...
m0(W )


3.2 Targeted minimum loss based estimation

Assuming a parametric form mα(W ) for the effect of
treatment as a function of covariates

We are interested in both the scenario when the treatment effect function
m(W ) is unconstrained, and when it has a parametric form m0 = mα0 for
some model {mα : α} and finite-dimensional α. We focus on the first case in
this chapter for deriving a detailed TMLE methodology. However, the second
case is also widely applicable. In section 3.6 we derive the efficient influence
curve for Ψ0 in the setting of a parametric function mα(W ). TMLE-based
estimators can be derived for that model analogously to the three estimators
derived in this chapter.

The efficient influence curve of Ψ0

The efficient influence curve for Ψ is derived in section 3.6. Recall our semi-
parametric model, and notation PW,0, π0, ρ0(Z,W ),m0(W ), θ0(W ), from sec-
tion 3.1. Also, define h1(V ) ≡

∑
a h(a, V )a2 d

dβ0
mβ0(V ), which has the same

dimension as β0, where h(a, V ) is defined in section 3.1.

Lemma 2 The efficient influence curve of Ψ :M→ Rd is given by

D∗(P0) = D∗W (P0)

+c−1
0

h1(V )
σ2(W )

(π0(Z,W )− E0(π0(Z,W ) | W ))(Y − π0(Z,W )m0(W )− θ0(W ))

−c−1
0

h1(V )
σ2(W )

{(π0(Z,W )− E0(π0(Z,W ) | W ))m0(W )} (A− π0(Z,W ))

≡ D∗W (P0) + CY (Z,W )(Y − π0(Z,W )m0(W )− θ0(W ))
−CA(Z,W )(A− π0(Z,W ))

≡ D∗W (P0) +D∗Y (P0)−D∗A(P0),

(3.5)

where

c0 ≡ E0

∑
a

h(a, V )a2

{
d

dβ0

mβ0(V )

}2

,
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which is a d× d matrix, and

D∗W (P0) ≡ c−1
0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )(m0(W )−mβ0(V ))

σ2(W ) = Varρ0(Π0(Z,W ) | W ))

h(W ) = c−1
0

h1(V )

σ2(W )

CY (Z,W ) = h(W )(π0(Z,W )− Eρ0(π0(Z,W ) | W ))

CA(Z,W ) = CY (Z,W )m0(W ).

Note that D∗(P0) will be a vector-valued function in general.
Here is the TMLE estimation procedure for our marginal structural model:

Step 1: Forming initial estimates.

Components of P0 that need to be estimated: Initial estimates must
be formed of relevant components Q0

n = (m0
n(W ), PW,n), and

nuisance parameters g0
n = (Π0

n(Z,W ), E0
n(Π0

n|W ),Var0
n(Π0

n|W ), θ0
n(W )).

Super Learner. We use the Super Learner approach to form initial
estimates (van der Laan et al 2007), and software implementation in R (http:
//cran.r-project.org/web/packages/SuperLearner/index.html). Super
Learner is a data-adaptive technique to choose the best linear combination
of learning algorithms from a library. The objective that is minimized is the
cross-validated empirical mean squared error. Each candidate learning algo-
rithm is trained on all the data except for a hold-out test set, and this process
is repeated over different hold-out sets so all data points are included in a test
set. The linear combination of candidate learners that minimizes MSE over
all test sets in chosen. This method has the very desirable guarantees that: 1)
if none of the candidate learners converge at a parametric rate, Super Learner
asymptotically attains the same risk as the oracle learner, which selects the
true optimal combination of learners and 2) if one of the candidate learners
uses a parametric model and contains the true data-generating distribution,
Super Learner converges at an almost-parametric rate.
See section 3.3 for a list of candidate learning algorithms we use for forming
the initial estimates.

Step 2: Fluctuating the relevant components Q0
n.

http://cran.r-project.org/web/packages/SuperLearner/index.html
http://cran.r-project.org/web/packages/SuperLearner/index.html
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We present three versions of TMLE in this paper: one where the rele-
vant components and nuisance parameters are fluctuated iteratively, and two
versions of the non-iterative TMLE described below.

Non-iterative TMLE. Suppose we have a fluctuation function ε →
Q(ε|gn) so that we can solve for ε the equation:

PnD
∗(Q0

n(ε|gn), gn) = 0 (3.6)

Then the efficient influence curve is satisfied in a single update and there
is no need for iteration. This case corresponds to using the loss function

L(Q, g, (O1, ..., On)) =
∣∣ 1
n

∑n
i=1 D

∗(Q, g)(Oi)
∣∣2. In a single step, a solution can

be found so the loss function takes its lower bound of 0.
It turns out that we can solve equation 3.6 without updating PW by setting

it to its empirical distribution PW = PW,n of the baseline covariates. Thus, we
need to solve

PnD
∗(Q∗n = {m0

n(ε), PW,n}, gn) = 0 (3.7)

where we drop the explicit dependency of m0
n(ε) on gn in the notation. Sec-

tion 3.2 describes versions of this non-iterative estimator that use logistic and
linear fluctuations for m0

n(ε).

Step 3: Obtain final estimate β∗n = Ψ(m∗n, PW,n).

Properties of TMLE.

See section 3.6 for sketches of proofs.

Efficiency
(See van der Laan and Robins 2003, and van der Laan and Rubin 2006.)

Theorem 1 (Asymptotic efficiency.) Suppose all initial estimates (Q0
n, g

0
n)

are consistent, and that D∗(Q∗n, g
∗
n) belongs to a P0-Donsker class. Then the

final estimate Ψ(Q∗n) is asymptotically efficient, with

Ψ(Q∗n)−Ψ(Q0) =
[
Pn − P0

]
D∗(Q0, g0) + oP (1/

√
n) (3.8)

Consistency under misspecification
Recall our notation Π(Z,W ) = E(A|Z,W ) and ρ(Z,W ) = Pr(Z|W ).

TMLE yields a consistent estimate for Ψ∗ = β∗n under 3 scenarios of partial
misspecification of components:
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1. Initial estimates Π0 and ρ0 are consistent.

2. Initial estimates m0 and ρ0 are consistent.

3. Initial estimates m0 and θ0 are consistent.

Estimator using a logistic fluctuation for scalar ψ

This estimator has the advantage that it can match the bounds of the observed
data in estimating E(Y |W,Π(Z,W )).

In accordance with the non-iterative TMLE procedure, we want to find ε
such that PnD

∗(Q∗n = {m0
n(ε), PW,n}, gn) = 0 according to equation 3.7.

A pre-processing step is done of converting Y -values to the range [0,1]
using a linear mapping Y → Ỹ , where Ỹ = 0 corresponds to min(Y ) in
the dataset and Ỹ = 1 to max(Y ). Thus, we can use the mapping Ỹ =
(Y −min(Y ))/(max(Y )−min(Y )). The equation E(Y | Π(Z,W ),W ) =
Π(Z,W )m(W )+θ(W ) can be written as E(Ỹ | Π(Z,W ),W ) = Π(Z,W )m̃(W )+
θ̃(W ), where m̃(W ) = m(W )/(max(Y ) − min(Y )) ∈ [−1, 1] and θ̃(W ) =
(θ(W ) − min(Y ))/(max(Y ) − min(Y )) ∈ [0, 1]. Now initial estimates can be
formed of all relevant components and nuisance parameters using the modified
data set (W,Z,A, Ỹ ).

Replacing m0
n(ε) with m̃0

n(ε), we use this fluctuation function in equation
3.7:

m̃0
n(ε)(W ) = 2× logistic(logit(

m̃0
n(W ) + 1

2
) + εT · h(W ))− 1 (3.9)

where logistic() denotes the function logistic(x) = 1
1+e−x

and logit() its inverse
logit(y) = log y

1−y . This corresponds to the mapping f(ε) = logistic(logit(f) +

ε · h) where f is m̃0
n scaled to be in [0, 1].

Inspecting the efficient influence curve, we have that the first term
Pn D

∗
W (Q∗n, gn) = 0, because this expression is equivalent to

β∗n = arg minβ PW,nj(V ){m∗n(W ) −mβ(V )}2, which holds by definition of β∗n.
Also, we have that the
+/− h(W )(π(Z,W )−E(π(Z,W ) | W ))(π(Z,W )m(W )) terms cancel. Thus
D∗(Q, g) reduces to h(W )(π(Z,W )−E(π(Z,W ) | W ))(Y −A ·m(W )−θ(W ))
so we need to find ε such that

Pn D
∗(m̃0

n(ε), PW,n, g
0
n) =

1

n

n∑
i=1

h0
n(W )(π0

n(Z,W )− E0
n(π0

n | W ))(Ỹ − A · m̃0
n(ε)(W )− θ̃0

n(W )) = 0
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for m̃0
n(ε)(W ) defined in 3.9.

Since E0(Ỹ −A ·m̃0(W )− θ̃0(W )|Z,W ) = 0, the equation above has a solution
ε for any reasonable initial estimates (Q0

n = {m̃0
n, PW,n}, g0

n). For k = dim(β),
we have a k-dimensional equation in k-dimensional ε. When k = 1 and we
need a scalar ε, we can use a bisection method as a computationally simple
way to compute ε. One first finds left and right boundaries ε1, ε2 such that

En h
0
n(W )(π0

n(Z,W )− E0
n(π0

n | W ))(A · m̃0
n(ε1)(W )) ≤

En h
0
n(W )(π0

n(Z,W )− E0
n(π0

n | W ))(Ỹ − θ̃0
n(W )) ≤

En h
0
n(W )(π0

n(Z,W )− E0
n(π0

n | W ))(A · m̃0
n(ε2)(W ))

where En denotes the empirical mean. Then one iteratively shrinks the dis-
tance between the left and right boundaries ε1 and ε2 until a suitably close
approximation to the solution is found.

Once one solves for ε and finds m̃∗n = m̃0
n(ε), one converts back to the

original scale for outcome Y , by setting m∗n = m̃∗n · (max(Y )−min(Y )). Then
the parameter of interest is evaluated by finding Ψ(m∗n, PW,n) = β∗n.

When the parameter of interest ψ is vector-valued, solving the efficient
influence curve equation using a logistic fluctuation translates to a non-convex
multi-dimensional optimization problem with no known analytical solution.
Various numerical techniques and software packages are available.

One application of this estimator is to use a tighter bound forE(Y |Π(Z,W ),W )
than the bounds of the data. For instance, when Y is a rare binary outcome,
its conditional mean for any value of W might lie in a far smaller interval than
[0, 1].

Estimator using a linear fluctuation

Once again, we want to find ε such that PnD
∗(Q∗n = {m0

n(ε), PW,n}, gn) =
0 according to 3.7. A TMLE-based estimator that is especially simple to
understand and implement involves using a simple linear fluctuation

m0
n(ε)(W ) = m0

n(W ) + h(W )T · ε

and solving for ε in a single non-iterative step. h(W ) = c−1
0

h1(V )
σ2(W )

as defined in
lemma 2.

As usual, we form initial estimates of all relevant components and nuisance
parameters. In solving the efficient influence curve equation 3.7, once again
we have that Pn D

∗
W (Q∗n, gn) = 0, and we can simplify to get

En h
0
n(W )(π0

n)− E0
n(π0

n(Z,W ) | W ))(Y − A ·m0
n(W )− θ0

n(W ))
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= En h
0
n(W )(π0

n − E0
n(π0

n(Z,W ) | W ))(A · h0
n(W )

T
ε)

We can solve for (generally vector-valued) ε by finding the solution to a
simple system of linear equations. As usual, we then set m∗n = m0

n(ε) =
m0
n(W ) + h(W )T · ε, and evaluate the parameter of interest ψ∗n = Ψ(m∗n, PW,n)

by finding the projection β∗n of m∗n unto the working model {mβ(v) : β}.
This approach is simple and achieves the same asymptotic guarantees as

any of the other formulations of TMLE. However, it has the drawback com-
pared to the version described above using logistic fluctuation that the final
estimate µ∗n = Π0

n ·m∗n + θ0
n is not constrained to observe the bounds of Y in

the data.

Estimator using iterative updating

One estimation method in the TMLE framework we developed involves iter-
atively updating relevant components and nuisance parameters until conver-
gence to components (Q∗n, g

∗
n) such that the efficient influence curve equation

is satisfied: Pn D
∗(Q∗n, g

∗
n) = 0.

As usual, initial estimates are formed of all relevant components Q0
n and the

nuisance parameters g0
n. We set PW to its empirical distribution PW = PW,n

and never update that component. Next, at each iteration until convergence,
we fluctuate components as follows:

(i) Let k denote the iteration number. For µ = E(Y |W,Z), and CY (Z,W ) =
h(W )(π(Z,W )− E(π(Z,W ) | W )) as defined in section 3.1 and lemma 2, we
have:

µk+1
n = µkn + ε · Ck

Y,n

ε = arg min
n∑
i=1

(Y [i]− µkn[i]− ε · Ck
Y,n[i])2

Note that by setting mk+1
n = mk

n+ε ·hkn, and θk+1
n = θkn+ε · [−hknE(Πk

n|W )],

where hkn refers to h(W ) = c−1
0

h1(V )
σ2(W )

, we have that µk+1
n = mk+1

n · Πk
n + θk+1

n

and thus remains in our marginal structural model.

(ii) Given µk+1
n , we update Ck+1

A,n = Ck
Y,nm

k+1
n and then fluctuate Πk

n(Z,W ) =

Ek
n(A|Z,W ) as follows. If A is continuous, we first replace A with linear trans-

formation A′ ∈ [0, 1], where A′ = (A − min(A))/(range(A)), and apply the
inverse transformation to get the final Π(Z,W ).



CHAPTER 3. ESTIMATING THE DOSE-RESPONSE FUNCTION. 23

Πk+1
n = Πk

n(ε) = logistic(logit(Πk
n) + ε · Ck+1

A,n )

ε = arg min
n∑
i=1

[
− A[i] · log(Πk

n(ε)[i])− (1− A[i]) · log(1− Πk
n(ε)[i])

]
where the logistic function is 1

1+e−x
and the logit its inverse. The optimization

above is solved using standard logistic regression software, even though the
independent variable can be continuous in [0, 1] here. We then update
Ck+1
Y,n = hkn · ( Πk+1

n − E
[
Πk+1
n (Z,W |W )

]
).

(iii) Finally, we update theE(Π(Z,W )|W )-component to be E(Πk+1
n (Z,W )|W ),

and σ2(W ) = Var(Π(Z,W )|W ) as Var(Πk+1
n (Z,W )|W ), using the initial esti-

mates for the relevant parts of Pr(Z|W ).

This algorithm converges to components (Q∗n, g
∗
n). In each step of updating

µkn, Πk
n, we are solving for εk to minimize

∑n
i=1 L(P k

n (ε))(Oi), for some loss func-
tion L and parametric submodel P (ε). Thus we have d

dε

∑n
i=1 L(P k

n (ε))(Oi)|ε=εk =
0. As the algorithm converges, we have that the objective

∑n
i=1 L(P ∗n(ε))(Oi)

is minimized with ε = 0; in other words, the components (Q∗n, g
∗
n) are al-

ready optimal for the loss function and do not get fluctuated. Thus, we have
d
dε

∑n
i=1 L(P ∗n(ε))(Oi)|ε=0 = 0.

It is easy to check that for the loss function used to update µkn, we have
d
dε
L(P (ε))|ε=0 = CY · (Y −µ) = D∗Y , so we have Pn D

∗
Y = 0 upon convergence.

Similarly, for the loss function used to update Πk
n, we have d

dε
L(P (ε))|ε=0 =

CA · (A − Π) = D∗A, so we have Pn D∗A = 0 upon convergence. We have
that the first term Pn D

∗
W = 0, because this expression is equivalent to β∗n =

arg minβ PW,nj(V ){m∗n(W )−mβ(V )}2, which holds by definition of β∗n. Thus,
PnD

∗(Q∗n, g
∗
n) = 0 and we have a valid TMLE procedure.

3.3 Simulation results

We show results from a number of simulations. We compare all three versions
of a TMLE-based estimator proposed above to several standard methods: 1)
a likewise semiparametric, locally efficient estimator based on the method of
estimating equations; 2) two-stage least squares, which is a standard paramet-
ric approach; 3) a biased estimate of the causal effect of A on Y ignoring the
confounding.

There are two cases we use for the parameter of interest: Scalar. We
estimate a constant mean causal effect E(Y (1) − Y (0)) = E(m(W )) = β =
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mβ(v). Vector-valued linear. We use a linear working model mβ(w) = βT
(

1
w

)
for E(Y (1)− Y (0)|W ) = m(W ).

Standard approaches for comparison.

The method of estimating equations

(van der Laan and Robins 2003) presents background on the method of esti-
mating equations. When the efficient influence curve is an explicit function of
the parameter of interest Ψ0, under regularity conditions, one can solve for Ψ
using the equation

PnD
∗(P ) = Pn D

∗(PW ,Π,E(Π|W ),Var(Π|W )m, θ,Ψ) = 0

The components of D∗ are estimated using Super Learner, just as with TMLE.
Estimating equations has the same properties of local efficiency and robust-
ness to misspecification as the TMLE-based estimators: when all relevant
components and nuisance parameters are estimated consistently, the estimate
is asymptotically efficient, and as long as (PW ,Π

0
n,E

0
n(Π|W ),Var0

n(Π|W )) are
estimated consistently, the estimate for the parameter of interest Ψ = β is
consistent.

In the scalar case, our estimating equation is

En

[
c−1

0 j(V )(m(W )− β) +D∗Y (P )(Y, Z,W )−D∗A(P )(A,Z,W )

]
= 0

where the D∗Y , D∗A terms to do not depend on β.
For the case of a linear working model, the estimating equation is

En

[
c−1

0 j(V )

(
1

W

)
(m(W )−β′

(
1

W

)
)+D∗Y (P )(Y, Z,W )−D∗A(P )(A,Z,W )

]
= 0

which can also be solved as a linear equation of β. The terms D∗Y , D∗A do not
depend on β and are vector-valued here.

Two-stage least squares

The most widely used solution to estimating the effect of a treatment on an
outcome in the presence of a confounder and valid instrument is to use a linear
model for both the “first-stage” equation A = αZZ + αWW + α11 + εA and
the “second stage”: Y = βAA + βWW + β11 + εY . When there is a single
instrumental variable and treatment, which is the case we study, a solution for
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scalar β̂ that is consistent and asymptotically optimal among linear models
is β̂ = ((Z,W, 1)′(A,W, 1))−1((Z,W, 1)′Y ). This estimate corresponds to the
two-stage least squares solution where one estimates A∗ = E(A|Z,W ) using
a linear model, and then estimates the effect of (A∗,W ) on Y using a linear
model again (having exogenous variation).

When estimating a vector-valued causal effect, we find A∗ = E(A|Z,W )
and then do linear regression of Y on cross terms A∗ × (1,W ) and covariates
(1,W ), thus finding a linear treatment effect modifier function m(W ) and a
linear additive effect function θ(W ). 2SLS is a parametric model and is in
general not consistent for estimating our causal parameter of interest.

Ignoring the confounding

We include a “confounded” estimator in each table that ignores the unmea-
sured confounding between the treatment and outcome, and does not use an
instrument. We use a correctly specified parametric model for m(W ), θ(W ),
and estimate their parameters using E(Y |W,A) = A ·m(W ) + θ(W ), which
will give a biased estimate for m(W ) by ignoring the confounding between A
and the residual term. The correctly specified model for m(W ) converges at a
parametric rate, and for large n, we isolate the effect of the bias arising from
not using an instrument.

Initial estimates.

For the semiparametric approaches (our three estimators based on TMLE,
and estimating equations), initial estimates are formed as follows. We use the
empirical distribution of W for PW and never update this component. For
Var0

n(Π0
n(Z,W )|W ) and E0

n(Π0
n(Z,W )|W ), noting that our instrument Z is

binary in the simulations below, we estimate P (Z = 1|W ) = E(Z|W ) and
find the expectation and variance of Π0

n(Z,W ) from P (Z = 1|W ), instead of
directly estimating them as a function of Z, W . Thus we need initial estimates
for E(Z|W ),Π(Z,W ), θ(W ),m(W ) from the data.

For Π(Z,W ) in cases where A is binary, and for E(Z|W ), we use as candi-
date learners the following R packages (see the corresponding function speci-
fications in Super Learner): glm, step, knn, DSA.2, svm, randomForest
(Sinisi and van der Laan 2004). For glm (generalized linear models), step
(stepwise model selection using AIC), and svm (support vector machines), we
use both linear and second-order terms. In addition, we use cross-validation
to find the highest degree of polynomial terms in glm that results in the lowest
prediction error, thus using terms of degree higher than two with glm. For
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Π(Z,W ) in cases where A is continuous, we use candidate learners glm, step,
svm, randomForest, nnet and polymars.

For m(W ) and θ(W ) which involve continuous outcomes, we use candidate
learners glm, step, svm, and polymars. We need to predict m(W ) and
θ(W ) so that µ(Z,W ) = π(Z,W ) ·m(W ) + θ(W ) retains the structural form.
We include Π × m(W ) cross-terms as well as θ(W ) terms, having various
functional forms for parameterizing m(W ), θ(W ).

Results.

In the simulations that follow, we use the following general format for generat-
ing data. In accordance with R’s notation, the right-hand side of the formulas
specify the regressors but leave the link function unspecified. εAY is a con-
founding term, while the treatment effect modifier function mW can be highly
non-linear.

W ∼ N(µ,Σ)

Z ∼ Binom(p(W ))

A ∼ W + Z + εAY

Y ∼ A ·m(W ) + θ(W ) + εAY

Nonlinear design 1

We test our estimators in the case of highly nonlinear treatment effect modifi-
cation m(W ) ∼ eW in tables 6.1 and 6.2. As we show, 2SLS can be extremely
biased in recovering the correct projection of m(W ) unto a linear working
model. We use W ∼ N(3, 1), p = .5 for Z, and a continuous treatment
generated as a linear function of its regressor terms.

Scalar parameter. (Table 6.1.) The true effect is 33.23, sample size of
n = 1000 is relatively small for using an instrumental variable, and 10,000
repetitions are made. The “initial substitution” estimator is formed by sub-
stituting the estimates of relevant components into the parameter of interest,
which is just β0

n = Ψ(Q0
n) = EW,nm

0
n(W ) here, or the estimated mean treat-

ment effect. When consistent initial estimates are formed of all components of
D∗ using Super Learner, we observed a bias of just .0038, and variance of .6990
for the initial substitution estimator. The three new methods all performed
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very similarly, achieving lower bias than the initial substitution estimator, as
well as slightly lower variance. Since all relevant components are consistently
specified, the TMLE-based estimators are asymptotically guaranteed to have
the lowest possible variance within the class of consistent estimators in our
semiparametric model. The same asymptotic guarantees hold for the estimat-
ing equations estimator, which achieves similar magnitude bias and slightly
higher variance than the TMLE-based estimators. The two-stage least squares
(2SLS) estimator, in contrast, achieves not only much higher bias but vastly
higher variance than the semiparametric estimators, even though it is a para-
metric estimator. The highly misspecified linear model that 2SLS fits for the
conditional outcome brings about the bias and large finite-sample variance.
Finally, the estimate that ignores confounding has a bias of about 21.

In table 6.2, we use an inconsistent initial estimate of Q(W,R), namely, we
fit an incorrect linear model m(W ) = b′

(
1
W

)
. Thus, the substitution estimator

essentially functions like 2SLS. The confounded and 2SLS estimators are un-
changed. The TMLE-based estimators often show bias removal at the expense
of some increase in variance as compared to the unfluctuated initial substi-
tution estimator in the case of misspecification. However we don’t see that
here with the modest sample size (n=1000), for which the initial substitution
estimator has fairly large variance in this simulation. Also, in this case of a
scalar parameter, the bias of the initial estimator was quite small (less than
2%). Performing the TMLE fluctuation step causes neither an improvement
nor substantial decline in performance here.

Vector-valued parameter. For the projection of m0(W ) unto a linear
working model, the true two-dimensional parameter of interest is [−64.2, 32.3].

2SLS solves the following optimization in the second stage:
arg minβ1,β2

∑n
i=1(Y −Π(Z,W )βT1

(
1
W

)
− βT2

(
1
W

)
)2. β1 is output as the param-

eter of interest. It is easy to check that this can give a very different solution
than a semiparametric approach which estimates a function m(W ) that can
take a variety of functional forms, and then solves β = arg min

∑n
i=1(m(W )−

βT
(

1
W

)
)2. Specifically, let εβ(W ) = m(W ) − βT

(
1
W

)
denote the vector of

residuals in approximating m(W ) by βT
(

1
W

)
. Then in the case of a linear

θ(W ), 2SLS solves arg minβ
∑n

i=1(Π(Z,W )εβ(W ))2, while the semiparametric
approach solves arg minβ

∑n
i=1(εβ(W ))2.

We see in table 6.2 that 2SLS has a mean absolute bias of around 136.
A typical value for its estimate is [−224, 90]. It is useless for estimating our
parameter of interest without knowing the functional form for m(W ) a pri-
ori. The confounded estimator that is fully correctly specified in its functional
forms but ignores confounding has a bias of roughly 10. All the semipara-
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metric approaches achieve very low bias when initial estimates are consistent.
Furthermore, they all achieve similar and low variance for a large sample size,
as the n = 10000 column shows. For the sample sizes in our simulation,
the 2SLS estimator is not only extremely biased, it also has larger variance
than the semiparametric estimators, due to the large mismatch between the
second-stage linear model it fits and the data-generating process.

The right-hand side of table 6.2 shows an incorrect linear fit for m(W )
to form an inconsistent initial estimate of µ(Z,W ). The initial substitution
estimator works essentially like two-stage least squares in this case. We delib-
erately start with this enormously biased initial estimator to see if the semi-
parametric estimators can remove bias sufficiently. Indeed, we see very low
finite-sample bias for the three semiparametric consistent estimators. The it-
erative TMLE-based approach performs best here, with mean absolute bias
around just .25 at n = 10000 (compared to a mean absolute effect around 48).
Furthermore, while the variance of the semiparametric consistent estimators
can be an order of magnitude higher than for the initial substitution estimator
when n = 1000, the variances are at a comparable scale for n = 10000.

Scalar effect, nonlinear design 2

In table 6.3, we generate a continuous outcome such that E(Y |Z,W ) lies
within sharp boundaries covering a much smaller range than Y . TMLE using
the logistic fluctuation has been shown to be especially effective with simi-
larly generated data, where the data or conditional outcome falls within sharp
cutoffs (Gruber and van der Laan 2010).

We use a 3-dimensional W ∼ N(1, 1), p = .5 for Z, a binary treatment
generated using the binomial link function. The confounding term is εAY ∼
N(0, 5). m(W ) and θ(W ) are continuous, and they each have the form a ·
plogis(βW ) + b, for some constants a, b. Thus, m(W ) and θ(W ) fall within
some bounds [b, a + b]. Furthermore, the parameters are set so that many
values for each function are close to the boundaries.

The true effect is 1.00, and we use n = 1000. We see that without using
an instrument, the estimate is confounded by more than 50%. For the case
of consistently specifying all initial estimates, we include the correct paramet-
ric form for E(Y |Z,W ) in Super Learner’s library. In this case the initial
substitution estimator has both lowest bias and lowest variance. The logistic
fluctuation and estimating equations estimators also do well with relatively
low bias and variance, followed by the iterative and linear fluctuation TMLE,
and finally, 2SLS has the highest MSE of the unconfounded estimators. In the
right hand of table 6.3, we misspecify the initial estimate for E(Y |Z,W ) as a
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second-order polynomial. In this case, TMLE using logistic fluctuation is the
clear winner. It achieves an MSE (dominated by the variance) of .34, com-
pared to roughly .45 for the other semiparametric approaches. It also achieves
a large reduction in bias for minimal gain in variance compared to the initial
substitution estimator.

Vector-valued effect, linear model

In table 6.4, we use a linear model for m(W ), so that two-stage least squares
with the correctly specified cross terms Π(Z,W )×W estimates µ(Z,W ) con-
sistently. Here we use a 3-dimensional covariate W ∼ N(2, 1), Z is binary and
of the form E(Z|W ) = plogis(α′W +α0). Treatment A is also binary and uses
the logit link function; m(W ) = βT

(
1
W

)
.

We see that although 2SLS uses the correct second-stage specification for
E(Y |W,Z), it remains slightly biased for all n, with .2 mean absolute bias
(about 17%), since E(A|W,Z) uses a nonlinear link function. The confounded
estimate has (mean absolute) bias of .34. The semiparametric consistent es-
timators have much lower bias than 2SLS even for n = 1000, with linear
fluctuation and estimating equations achieving lower bias than the initial sub-
stitution estimator. The table reflects the roughly

√
n decrease in bias of the

consistent estimators and decrease in SD of all estimators. The initial substi-
tution estimator has just slightly higher SD than 2SLS, as the former chooses
the correct linear model from a library of methods.

When we use an inconsistent initial estimate for µ(Z,W ): one of the coef-
ficients in β is fixed to an incorrect value and then a linear model is fit (Super
Learner is only used for estimating Pr(Z|W ), Π(Z,W )). This makes for a
mean absolute bias of roughly 1.5 in the initial substitution estimator (corre-
sponding to an error of 100%). The three semiparametric consistent estimates
successfully remove bias; the two TMLE-based approaches have particularly
low bias (about 94% of the bias is removed for n = 10000). The semipara-
metric estimates have mean SD’s of only around .3 for n=10,000 where mean
absolute effect is 1.5. The linear fluctuation TMLE-based estimator performs
the best overall, with lowest bias and variance for large samples.

Confidence intervals

Table 6.5 shows 95% confidence intervals corresponding to tables 6.2, 6.4.
These are calculated separately for each component of the vector-valued pa-
rameter of interest. For the semiparametric estimators, as proved in (van der
Laan and Rubin 2006), the following equation holds:
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Ψ(Q∗n)−Ψ(Q0) =
[
Pn−P0

]
D∗(Q∗n, g

∗
n)−

[
Pn−P0

]
Proj(D∗(Q∗n, g

∗
n)|Tang(g0))+oP (

1√
n

)

Here Proj(D∗(Q∗n, g
∗
n)|Tang(g0)) denotes the projection of the efficient in-

fluence curve D∗ unto the tangent space of nuisance parameters, T (g0). It
thus follows that a conservative estimator for the variance of β∗n = Ψ(Q∗n)
is the variance of D∗(Q∗, g∗). Note that when all its components are consis-
tently estimated, under regularity conditions, [Pn − P0] D∗(Q∗, g∗) = [Pn −
P0] D∗(Q0, g0) + oP ( 1√

n
), and thus the semiparametric efficiency bound is

achieved. For the three semiparametric consistent estimators, shown at the
top of the list in table 6.5, we use the estimated variance of the efficient in-
fluence curve D∗(Q∗, g∗) to calculate confidence interval width. For the other
three estimators, we simply use the empirical variance. For these cases, we
demonstrate that even when “cheating” by accurately knowing the correct
width of the confidence intervals, coverage is still very poor due to the bias of
the estimators.

We see that for all three semiparametric estimators, the coverage is gener-
ally overestimated, as the theory suggests, but is usually not too far from 95%.
For the case of consistent initial estimates, coverage is around 96% when esti-
mating a linear treatment effect and closer to 97% when estimating a nonlinear
effect. Similar results holds when using misspecified initial estimates; however,
estimating equations has poor coverage (in the 80’s) due to finite-sample bias.
The initial substitution estimator is consistent when the initial estimates of
components are; however, it has coverage slightly below 95% even when using
the empirical variance to estimate the variance. This could be due to its not
being normally distributed. When the initial estimates of components is not
consistent, the initial substitution estimator can be heavily biased, and we
see 0 coverage for most columns, even using an accurate variance. Likewise
the large bias of the confounded and 2SLS estimators for the case of the non-
linear treatment effect causes 0 coverage. When a linear treatment effect is
estimated, both the confounded and 2SLS estimators exhibit poor coverage
that deteriorates with n. In the case of 2SLS, the bias is due to the mismatch
between the linear model and the nonlinear distribution of the conditional
treatment Π(Z,W ).



CHAPTER 3. ESTIMATING THE DOSE-RESPONSE FUNCTION. 31

3.4 Application to a dataset: estimating the

effect of parents’ education on infant

health

We apply our TMLE-based estimators in the context of a program that ex-
panded schooling in Taiwan. In 1968, Taiwan expanded mandatory schooling
from 6 years to 9 years, and more than 150 new junior high schools were
opened in 1968-1973 to accommodate this program. Prior to this expansion of
schools, enrollment in junior high was based on a competitive process in which
only part of the population of 12-14 year-old children was accepted. There
is significant variation in how much the schooling expansion program affected
an individual’s access to education based on the individual’s birth cohort and
county of residence. In counties where there were previously relatively few
educated people and spots in school beyond grade 6, many new junior high
schools were opened per child. Thus, program intensity as a function of birth
cohort and county serves as an instrumental variable that causes exogenous
variation in people’s educational attainment. This lets one make a consistent
estimate of the effect of parents’ education on their child’s health.

The school expansion program caused junior high enrollment to jump from
62% to 75% within a year in 1968, before leveling off around 84% in 1973.

We use the same dataset as (Chou et al 2010). The treatment variable is
either the mother’s or the father’s education in years (starting from first grade).
There are four outcomes we study: low birth weight (< 2500g), neonatal
mortality (in the first 27 days after birth), postneonatal mortality (between
day 28 and 365), and infant mortality (either neonatal or postneonatal). The
instrument is the cumulative number of new junior highs opened in a county
by the time a birth cohort reaches junior high, per 1000 children age 12-14
in that year. This serves as a proxy for the intensity of the school expansion
program for a particular birth-county cohort. The data is taken by checking
every birth certificate for children born in Taiwan between 1978 and 1999. The
birth certificates list for both parents their ages, number of years of education,
and county of birth (which we use as a usually correct guess for the county
in which the parent went to school), as well as the incidence of low birth
weight. Birth certificates are matched to death certificates from a similar
period using a unique identification number issued for each person born to
ascertain if an infant death has taken place. The previous study done on this
dataset (Chou et al 2010) used standard OLS and 2SLS, which are sensitive
to highly collinear regressors, and as a result separately estimated the effect of
father’s and mother’s education on infant’s health. To ease comparison with
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prior results, we do the same here. Only datapoints where the father was
born in [1943-1968], or the mother in [1948-1968] were included in the study.
Those points where the parent was at most 12 years old in 1968 constitute
the treatment group, and the rest the control group where the instrument
Z is 0 (for those who were unaffected by the school reform). This resulted
in a sample size of about 6.5 million, of which roughly 4 million were in the
treatment group, for either case of parent.

We reestimate (Chou et al 2010)’s scalar effect estimates using our TMLE-
based approach. We also give previously unpublished estimates of treatment
effect heterogeneity as a function of the parent’s and children’s birth cohorts.

The usefulness of the semiparametric approaches depend on the σ2(W ) =
Var(Π(Z,W )|W ) term being large (recall Π(Z,W ) = E(A|Z,W )). This term
captures the strength of the instrument in predicting the treatment given W ,
and the variance of the instrument-based estimators blow up when σ2 is small.
Our instrument only depends on the parent’s birth cohort and the county, so
σ2 would be 0 if we include both these variables in W . Since most variation
in Z is by county (of parent’s birth), we do not include county in W , and
use as covariates W only parent’s and child’s birth cohort, coding these as
dummy variables. In addition, we remove datapoints where σ2(W ) = 0, which
corresponds to including only points where the parent was born after or in
1956. People born earlier were unaffected by the schooling reform.

We need to check that county (parent’s county of birth) does not serve as
a confounder causing UZ , UY to be correlated. Using modified outcome Y ′

(the log-odds ratio for a binary health outcome, see below), we compare the
between-county vs the within-county variation. We see that, for any of the
4 health outcomes, and using either mother’s or father’s county, fixing W , at
most 1.1% of the variation in Y ′ is between-county, but on average only .5%.
Thus, we can rule out that confounding from county will effect our estimates.
The IV-assumptions in section 3 are satisfied.

Table 3.1 shows summary statistics. Note that for the outcome of post-
neonatal mortality, we only include datapoints where the child survived the
neonatal period.

We perform our TMLE-based estimates using the noniterative, linear-
fluctuation estimator, as this was found to perform well across multiple simu-
lations, and had low bootstrap variance on the data, suggesting a good fit. We
use the same library of initial estimates described above in section 3.3, and the
empirical distribution for the probability of a county given the birth cohorts,
Pr(Z|W ). Since our outcomes are binary with relatively few positives, and the
covariates are indicator variables that divide the dataset into cells, we mod-
ify our dataset (W,Z,A, Y ) −→ (W,Z, Ā, Y ′) when forming initial estimates
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Table 3.1: Means and SDs of variables.

Mothers Fathers

Sample size 4,101,825 4,001,970

Program intensity (R) 0.22 0.22
(0.11) (0.11)

Parent’s years of schooling 9.93 10.67
(1.46) (1.15)

Percentage of low-birthweight births 4.50 4.80
(1.24) (1.25)

Neonatal mortality (deaths per 2.32 2.33
thousand births) (2.38) (2.38)

Postneonatal mortality (deaths per 3.50 3.38
thousand neonatal survivors) (2.56) (2.71)

Infant mortality (deaths per 5.81 5.71
thousand births) (3.58) (3.67)

Note: the SDs for the binary outcomes (low birth weight, and mortality) are
the SD’s for the average rates within each cell (in which county, and parent
and child’s birth cohorts are fixed). Each cell is weighted by its sample size

for the relevant outcome (for example, the total number of births in a cell for
infant mortality) in finding the SD.

Π(Z,W ), m(W ), θ(W ). Āi is the average value of education A in the ith cell
given by the parent and child’s birth cohorts and the county (thus, fixing W
and Z). Y ′ is the log-odds ratio given by Cox’s modified logistic transforma-
tion: Y ′i = log Ni+.5

Di−Ni+.5 , where there are Di total points in the i-th cell, and
Ni of these are 1, for one of the four outcomes of interest.

Tables 6.6-6.7 give estimates of the scalar treatment effects. For the OLS
and 2SLS estimates, we include the parent and child’s birth cohorts as co-
variates, with heteroscedasticity-robust standard errors (White’s method as
implemented in R’s sandwich package).

We use the final semiparametric model of the components that TMLE fits
(PW ,Π(Z,W ), etc...), as well as a linear 2SLS model to estimate the number of
adverse infant health outcomes prevented by schooling reform. Using our mod-
ified log-odds outcome Yi

′ = log Ni+.5
Di−Ni+.5 , where i indexes a cell, we estimate

the counterfactuals for Y ′ without the schooling reform, denoted Y ′(Z = 0).
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We have Y ′(Z = 0) = m(W )Π(Z = 0,W ) + θ(W ), where
Π(Z = 0,W ) estimates the counterfactual E(A(Z = 0)|W ). Then we con-
vert from Yi

′(Z = 0) to Ni(Z = 0), which is the (counterfactual) number
of adverse outcomes in a cell. ∆N =

∑
cellsNi(Z = 0) − Ni gives the esti-

mated total reduction in an adverse outcome from the schooling reform. We
also show the linear 2SLS model’s estimate. In this case, Y ′(Z = 0) simpli-
fies to (1, (1, 0,W )′β1,W )T (β2), where β1, β2 are the first- and second-stage
coefficients, indexing (1, Z,W )T , and (1, A,W )T , respectively.

As tables 6.6-6.7 show, estimates of the scalar effect of (a parent’s) ed-
ucation on the log-odds ratio of (infant’s) health outcome range from -.2 to
-1.0. The estimated percent reduction in adverse outcomes ranges from 1.5%
for low birthweight (father’s education is treatment, TMLE is the estimator)
to 16.7% for neonatal mortality (with mother’s education, TMLE estimator).
The results imply a significant human benefit from the schooling reform re-
garding health: our TMLE estimator estimates roughly 1850 infant deaths
were spared as an indirect effect of schooling reform.2 The TMLE estimator
finds a significantly greater reduction in adverse outcomes than 2SLS when
the outcome is neonatal mortality and mother’s education is the treatment,
and for infant mortality when father’s education is the treatment. TMLE
and 2SLS yield similar estimates for the effect for low-birthweight/mother’s-
education and postneonatal-mortality/father’s-education, while TMLE gives a
somewhat lower estimate than 2SLS in the remaining two cases. The beneficial
effect of father’s education on infant and postneonatal mortality was highly
significant for either estimation method, while the effect of mother’s education
on neonatal mortality was highly significant only for the TMLE estimator.

The use of a library of learners (TMLE) instead of a linear parametric
model (2SLS) is reflected in the better fit and higher cross-validated R2 value
achieved for both stages. The “first stage” of the method of instruments refers
to fitting Π(Z,W ) in our semiparametric model, and the “second stage” to
fitting µ(Z,W ). Especially for the second stage of father’s education, there is
a large gain in R2 of .2-.3 from using data-adaptive learning. SuperLearner
chooses a least-squares linear model with largest weight in every case; however,
our semiparametric model for E(Y |Z,W ) = Π(Z,W )m(W )+θ(W ) even when
m(W ), θ(W ) are set to be linear in W is more flexible than the standard linear
2SLS model E(Y |Z,W ) = βAE(A|Z,W ) + βTW

(
1
W

)
, and we include quadratic

terms in W . Support vector machine is also chosen with large weight for
both stages, and Random Forest for the first stage. The instrument is slightly

2This estimate is made using semiparametric, TMLE-based estimates of the effect of
father’s education on reducing infant mortality in the treated population.
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stronger for predicting mother’s education than father’s, which might explain
the higher first-stage R2 values for mother’s education.

As expected, our semiparametric estimator typically has higher variance
than 2SLS; however, this is not always true, as TMLE achieves a better fit,
which can make for a lower variance despite the added complexity of choosing
from various learners.

We had expected that OLS would be biased from unmeasured confounding
between a parent’s education and his/her infant’s health. One would expect
that confounding factors would increase parents’ education and decrease ad-
verse health effects, or vice versa, biasing the OLS estimates to overestimate
the beneficial effects of education. Surprisingly, we saw that the OLS estimates
were smaller in magnitude that either of the instrument-based estimates for
several columns in our table. One possible explanation is there might not have
been significant unmeasured confounding. Indeed, the Hausman-Wu (F-) test
for exogeneity gives low evidence in support of confounding.

In tables 6.8-6.9, we estimate the treatment effect modification, where the
parent’s or child’s membership in a particular birth cohort is a modifier (given
by the dummy variables W ). As before, we estimate a vector-valued parameter
β using a linear working model {mβ(W ) = βT

(
1
W

)
|β}. Since all covariates in

W are binary indicators for birth cohorts, the coefficients in β can be directly
compared to one another to reflect treatment effect modification.

The six effect modifiers that are largest in magnitude for each case are
shown. The child being born in the late 70’s or 80’s often corresponded to a
substantial increase in the beneficial effects of parent’s education. The father
being born in 1965, 1967, or 1968 corresponded to increased beneficial effects
of his education on his infant’s mortality. However, the effect of mother’s
education on her child’s good health was found be diminished for babies born
in 1998 or 1999. Virtually all the treatment effect modifiers shown are highly
significant for mothers, as well as for fathers when postneonatal mortality
is the outcome. The largest magnitude effect modifiers were not necessarily
the most statistically significant ones, so the treatment effect modifiers are
summarized for each case both as original and as standardized values (effect
modifier ÷ SE). There were roughly 33 total effect modifiers. We see that
for some cases, a significant fraction of the effect modifiers had a coefficient
of statistically significant magnitude (neonatal mortality for mothers, and low
birthweight and postneonatal mortality for fathers).
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3.5 Discussion

Our simulations reflect that even compared to a parametric estimator for the
scalar effect of interest, such as two-stage least squares, the semiparametric
efficient estimates can have both lower bias and far lower variance due to the
better fit with relevant components of the data-generating distribution. We
also showed that two-stage least squares can be enormously biased when esti-
mating a vector-valued parameter, while TMLE is very effective at removing
bias with only a moderate gain in variance in finite samples. Using TMLE
with a logistic fluctuation can give the best performance when the conditional
mean of the outcome follows sharp cutoffs, and each of the three TMLE-based
estimators we describe has datasets on which is it the strongest performer. Fi-
nally, using the (estimated) variance of the efficient influence curve to estimate
the standard error gives confidence intervals that are just slightly conservative.
The confidence intervals based on TMLE can perform better than those based
on a conventional semiparametric estimator.

We performed an extensive data analysis estimating the effect of parents’
education on their infant’s health in the context of a schooling reform in Tai-
wan. We identified a number of birth cohorts, pertaining to either the parent
or the infant, that significantly increased, or decreased, the beneficial effect of
education on health.

Several avenues for future work are of interest. One is to work with instru-
mental variables in the context of more complex causal models, such as when
there are multiple instruments and treatments. This may for example occur
in the setting of longitudinal data where each time point has an instrument,
or in the context that a multivariate instrument is used to control for a mul-
tivariate confounded treatment. A number of extensions are of interest along
empirical lines as well. For instance, future work could apply our methods
to data having a very high-dimensional covariate space W , where V is a tiny
subset of W , in finding the effect of the treatment given V .

3.6 Proofs

Proofs of properties of the TMLE-based estimators

Consistency under partial misspecification.

TMLE is constructed so that the efficient influence curve equation holds. We
can explicitly write this as a function of the final estimate Ψ∗ = β∗ using the
definition of β. Thus we have
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PnD
∗(Q∗, g∗, β∗) = 0 (we drop the n-subscript notation here). Since

PnD
∗(Q∗, g∗, β∗) converges to P0D

∗(Q′, g′, β′), where {Q′, g′, β′} are the com-
ponents in the limiting distribution, when the true parameter of interest
β′ = β0 solves P0D

∗(Q′, g′, β′) = 0, for some case of consistent specification of
some of {Q′, g′}, then we have that β∗ −→ β0 for our TMLE estimators.

Simplifying slightly, we get that P0D
∗(Q, g, β) = 0 reduces to

P0 c
−1
0 h1(m−mβ) (3.10)

+ P0 c
−1
0

h1

σ2
(Π− E(Π))((m0 −m)Π0 − (θ0 − θ)) (3.11)

= 0 (3.12)

TMLE yields a consistent estimate for Ψ∗ = β∗ under 3 scenarios of partial
misspecification of components given below, with the reasoning sketched. Note
that for the non-iterative versions of TMLE, only m0 is updated, and the
initial estimates are the same as the final estimates for the other components.
For iterative TMLE, it is easy to check that when an initial estimate for a
component is consistent, so is the final estimate (i.e. at every step k, εkA → 0
when Π0 is consistent ).

1. Initial estimates Π0 and Pr0(Z|W ) are consistent.

We have E0( (Π0(Z,W ) − E0(Π0)|W )Π0(Z,W ) |W ) = σ2(W ) since
Π, EΠ|W are correctly specified. Also, since E0( (Π0(Z,W )−E0(Π0)|W ) |W ) =
0, the term involving (θ0(W ) − θ(W )) is 0 in expectation. Thus, 3.11
reduces to
P0 c

−1
0 h1(m0−m), so P0D

∗(Q, g, β) = 0 becomes P0 c
−1
0 h1(m0−mβ) = 0,

and this is solved by β = β0 by definition of β.

2. Initial estimates m0 and Pr0(Z|W ) are consistent.

The term in 3.11 involving (m0−m) is 0 by the consistency of m, and the
term involving (θ0−θ) is also 0 since E0( Π(Z,W )−E0(Π(Z,W )|W ) |W ) =
0. Thus, we have P0 c

−1
0 h1(m0 −mβ) = 0, which is solved by β = β0 by

definition of β.

3. Initial estimates m0 and θ0 are consistent.
3.11 goes to 0 because both m0 − m = 0, θ0 − θ = 0. The rest of the
reasoning is the same as above.

Efficiency under correct specification of all relevant components
and nuisance parameters.

(See van der Laan and Robins 2003, and van der Laan and Rubin 2006.)
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Suppose all initial estimates (Q0
n, g

0
n) are consistent, and that

Var0(D∗(Q∗n, g
∗
n) − D∗(Q0, g0)) ∈ oP (1). Then the final estimate Ψ(Q∗n) is

asymptotically efficient, with

Ψ(Q∗n)−Ψ(Q0) =
[
Pn − P0

]
D∗(Q0, g0) + op(1/

√
n) (3.13)

Sketch of proof: Note that when all initial estimates are consistent, then
so are all final estimates (Q∗n, g

∗
n). In the non-iterative case, only m0

n(W )
is updated and m∗n → m0

n when the other components are consistent (see
Consistency proof above). Using the definition of the canonical gradient D∗

at (Q∗n, g0) and calculating a remainder term (see van der Laan and Robins
2003), we have

Ψ(Q∗n)−Ψ(Q0) = −P0 D
∗(Q∗n, g

∗
n) + op(1/

√
n) (3.14)

Using the key property of TMLE that PnD
∗(Q∗n, g

∗
n) = 0, and the fact that

Var0(D∗(Q∗n, g
∗
n) − D∗(Q0, g0))2 ∈ oP (1) when all components {Q∗n, g∗n} are

consistent, and the Donsker class assumption in theorem 1 we get

Ψ(Q∗n)−Ψ(Q0)

=
[
Pn − P0

]
D∗(Q∗n, g

∗
n) + op(1/

√
n)

=
[
Pn − P0

]
D∗(Q0, g0) +

[
Pn − P0

]
(D∗(Q∗n, g

∗
n)−D∗(Q0, g0)) + op(1/

√
n)

=
[
Pn − P0

]
D∗(Q0, g0) + op(1/

√
n)

Efficient influence curve of target parameter

We determine the efficient influence curve of Ψ : M → Rd in a two step
process. Firstly, we determine the efficient influence curve in the model in
which Π0 is assumed to be known. Subsequently, we compute the correction
term that yields the efficient influence curve in our model of interest in which
Π0 is unspecified.

Efficient influence curve in model in which Π0 is known.

First, we consider the statistical model M(π0) ⊂ M in which Π0(Z,W ) =
E0(A | Z,W ) is known. For the sake of the derivation of the canonical gradi-
ent, let W ∈ RN be discrete with support W so that we can view our model
as a high dimensional parametric model, allowing us to re-use previously es-
tablished results. That is, we represent the semiparametric regression model
as E0(Y | Z,W ) = Π0(Z,W )

∑
wm0(w)I(W = w) + θ0(W ) so that it corre-

sponds with a linear regression fm0(Z,W ) = Π0(Z,W )
∑

wm0(w)I(W = w)



CHAPTER 3. ESTIMATING THE DOSE-RESPONSE FUNCTION. 39

in which m0 represents the coefficient vector. Define the N -dimensional vec-
tor h(Π0)(Z,W ) = d/dm0fm0(Z,W ) = (Π0(Z,W )I(W = w) : w ∈ W). By
previous results on the semiparametric regression model, a gradient for the
N -dimensional parameter m(P ) at P = P0 ∈M(π0) is given by

D∗m,Π0
(P0) = C(π0)−1(h(Π0)(Z,W )−E(h(Π0)(Z,W ) | W ))(Y−fm0(Z,W )−θ0(W )),

where C(π0) is a N ×N matrix defined as

C(π0) = E0{d/dm0fm0(Z,W )− E0(d/dm0fm0(Z,W ) | W )}2

= E0{(I(W = w){Π0(Z,W )− E0(Π0(Z,W ) | W} : w}2

= Diag
(
E0{I(W = w){Π0(Z,W )− E0(Π0(Z,W ) | W = w)}2} : w

)
= Diag

(
PW,0(w)E0

(
{Π0(Z,W )− E0(Π0(Z,W ) | W )}2 | W = w

)
: w
)
.

For notational convenience, given a vector X, we used notation X2 for the
matrix XX>. We also used the notation Diag(x) for the N × N diagonal
matrix with diagonal elements defined by vector x. Thus, the inverse of C(π0)
exists in closed form and is given by:

C(π0)−1 = Diag

(
1

PW,0(w)E0({Π0(Z,W )− E0(Π0(Z,W ) | W )}2 | W = w)
: w

)
.

This yields the following formula for the efficient influence curve of m0 in model
M(π0):

D∗m,Π0,w
(P0) = 1

PW,0(w)E0({Π0(Z,W )−E0(Π0(Z,W )|W )}2|W=w)

I(W = w)(Π0(Z,W )− E0(Π0(Z,W ) | W ))(Y − Π0(Z,W )m0(W )− θ0(W )),

where D∗m,Π0
(P0) is N × 1 vector with components D∗m0,Π0,w

(P0) indexed by
w ∈ W . We can further simplify this as follows:

D∗m,Π0,w
(P0)(W,Z, Y ) = 1

PW,0(w)E0({Π0(Z,W )−E0(Π0(Z,W )|W )}2|W=w)

I(W = w)(Π0(Z,w)− E0(Π0(Z,W ) | W = w))(Y − Π0(Z,w)m0(w)− θ0(w)).

This gradient equals the canonical gradient of m0 in this model M(π0),
if E0((Y − E0(Y | Π0,W ))2 | Z,W ) is only a function of W . For example,
this would hold if E(U2

Y | Z,W ) = E0(U2
Y | W ). This might be a reasonable

assumption for an instrumental variable Z. For the sake of presentation, we
work with this gradient due to its relative simplicity. and the fact that it still
equals the actual canonical gradient under this assumption.

We have that ψ0 = φ(m0, PW,0) for a mapping

φ(m0.PW,0) = arg min
β
E0

∑
a

h(a, V )a2 (m0(W )−mβ(V ))2 ,
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defined by working model {mβ : β}. Let dφ(m0, PW,0)(hm, hW ) = d
dm0

φ(m0, PW,0)(hm)+
d

dPW,0
φ(m0, PW,0)(hW ) be the directional derivative in direction (hm, hW ). The

gradient of Ψ :M(Π0)→ Rd is given byD∗ψ,Π0
(P0) = d

dm0
φ(m0, PW,0)D∗m,Π0

(P0)+
d

dPW,0
φ(m0, PW,0)ICW , where ICW (O) = (I(W = w)− PW,0(w) : w). We note

that β0 = φ(m0, PW,0) solves the following d× 1 equation

U(β0,m0, PW,0) ≡ E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )(m0(W )−mβ0(V )) = 0.

By the implicit function theorem, the directional derivative of β0 = φ(m0, PW,0)
is given by

dφ(m0, PW,0)(hm, hW ) = −
{

d
dβ0
U(β0,m0, PW,0)

}−1{
d

dm0
U(β0,m0, PW,0)(hm) + d

dPW,0
U(β0,m0, PW,0)(hW )

}
.

We need to apply this directional derivative to (hm, hW ) = (D∗m,Π0
(P0), ICW ).

Recall we assumed that mβ is linear in β. We have

c0 ≡ −
d

dβ0

U(β0,m0) = E0

∑
a

h(a, V )a2

{
d

dβ0

mβ0(V )

}2

,

which is a d× d matrix. Note that if mβ(V ) =
∑

j βjVj, then this reduces to

c0 = E0

∑
a

h(a, V )a2~V ~V >,

where ~V = (V1, . . . , Vd). We have

d

dPW,0
U(β0,m0, PW,0)(hW ) =

∑
w

hW (w)
∑
a

h(a, v)a2 d

dβ0

mβ0(v)(m0(w)−mβ0(v)).

Thus, the latter expression applied to ICW (O) yields c−1
0 D∗W (P0), where

D∗W (P0) ≡
∑
a

h(a, V )a2 d

dβ0

mβ0(V )(m0(W )−mβ0(V )).

In addition, the directional derivative d
dε
U(β0,m0 + εhm, PW,0)|ε=0 in the di-

rection of the function hm is given by

d

dm0

U(β0,m0, PW,0)(hm) = E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )hm(W ).
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We conclude that

dφ(m0, PW,0)(hm, hW ) = D∗W (P0)+c−1
0

{
E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )D∗m,W (P0)

}
.

We conclude that the canonical gradient of Ψ :M(Π0)→ Rd is given by

D∗ψ,Π0
(P0)(O) = D∗W (P0)(O)

+c−1
0 E0

∑
a h(a, V )a2 d

dβ0
mβ0(V )D∗m,W (P0)

= c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V )(m0(W )−mβ0(V ))

+c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) 1

E0({Π0(Z,W )−E(Π0(Z,W )|W )}2|W )

(Π0(Z,W )− E0(Π0(Z,W ) | W ))(Y − Π0(Z,W )m0(W )− θ0(W )).

We state this result in the following lemma and also state a robustness result
for this efficient influence curve.

Lemma 3 The efficient influence curve of Ψ :M(Π0)→ Rd is given by

D∗ψ,Π0
(P0) = c−1

0

∑
a h(a, V )a2 d

dβ0
mβ0(V )(m0(W )−mβ0(V ))

+c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) 1

E0({Π0(Z,W )−E(Π0(Z,W )|W )}2|W )

(Π0(Z,W )− E0(Π0(Z,W ) | W ))(Y − Π0(Z,W )m0(W )− θ0(W )).

Assume the linear working model mβ(V ) = β~V . Let h1(V ) =
∑

a h(a, V )a2~V .
We have that for all θ, (ρ0 below refers to Pr(Z|W )):

P0D
∗
ψ,Π0

(g0,m, θ) = 0 if E0h1(V )(m−m0)(W ) = 0,

or, equivalently, if ψ ≡ Ψ(m,PW,0) = Ψ(m0, PW,0) = ψ0.

Efficient influence curve in model in which Π0 is unknown

We will now derive the efficient influence curve in model M in which Π0 is
unknown, which is obtained by adding a correction term Dπ(P0) to the above
derived D∗ψ,Π0

(P0). The correction term Dπ(P0) that needs to be added to
D∗ψ,Π0

is the influence curve of P0{D∗ψ,Π0
(πn)−D∗ψ,Π0

(π0)}, where D∗ψ,Π0
(π) =

D∗ψ,Π0
(β0, θ0,m0, ρ0, π) is the efficient influence curve in model M(π0), as de-

rived above with π0 replaced by π, and πn is the nonparametric NPMLE of
π0. Let h1(V ) ≡

∑
a h(a, v)a2 d

dβ0
mβ0(v). Let π(ε) = π + εη. We plug in for η

the influence curve of the NPMLE Πn(z, w), which is given by

η(z, w) =
I(Z = z,W = w)

P0(z, w)
(A− Π(Z,W )).
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We have
Dπ(P0) = d

dε
P0D

∗
ψ(π(ε))

∣∣
ε=0

= P0c
−1
0 h1(V )

{
−2E0((π−E(π|W ))(η−E(η|W ))|W )

E0((π−E(π|W ))2|W )

(π − E(π | W )(Y − πm0 − θ0)}
+P0c

−1
0 h1(V )

{
(η−E(η|W ))(Y−πm0−θ0)
E0((π−E(π|W ))2|W )

}
−P0c

−1
0 h1(V )

{
(π−E(π|W ))ηm0

E0((π−E(π|W ))2|W )

}
.

By writing the expectation w.r.t. P0 as an expectation of a conditional expec-
tation, given Z,W , and noting that E(Y − π0m0 − θ0 | Z,W ) = 0, it follows
that the first two terms equal zero. Thus,

Dπ(P0) = −P0c
−1
0 h1(V )

{
(π−E0(π|W ))ηm0

E0((π−E0(π|W ))2|W )

}
.

This yields as correction term:

Dπ(P0) = −(A− Π0(Z,W ))
∫
z,w

P0(z, w)c−1
0 h1(V )

{
(π−E(π|W ))

I(Z=z,W=w)
P0(z,w)

m0

E0((π−E(π|W ))2|W )

}
= −(A− Π0(Z,W ))c−1

0 h1(V )
{

(π(Z,W )−E(π(Z,W )|W ))m0(W )
E0((π(Z,W )−E0(π(Z,W )|W ))2|W )

}
.

This proves the following lemma.

Lemma 4 The efficient influence curve of Ψ :M→ Rd is given by

D∗(P0) = D∗W (P0)

+c−1
0

h1(V )
σ2(ρ0,π0)(W )

(π0(Z,W )− E0(π0(Z,W ) | W ))(Y − π0(Z,W )m0(W )− θ0(W ))

−c−1
0

h1(V )
σ2(ρ0,π0)(W )

{(π0(Z,W )− E0(π0(Z,W ) | W ))m0(W )} (A− π0(Z,W ))

≡ D∗W (P0) + CY (ρ0, π0)(Z,W )(Y − π0(Z,W )m0(W )− θ0(W ))
−CA(ρ0, π0,m0)(A− π0(Z,W ))

≡ D∗W (P0) +D∗Y (P0)−D∗A(P0),

where

σ2(ρ0, π0)(W ) = E0({Π0(Z,W )− E(Π0(Z,W ) | W )}2 | W )

h(ρ0, π0)(W ) = c−1
0

h1(V )

σ2(ρ0, π0)(W )

CY (ρ0, π0)(Z,W ) = h(ρ0, π0)(W )(π0(Z,W )− Eρ0(π0(Z,W ) | W ))

CA(ρ0, π0,m0)(Z,W ) = CY (ρ0, π0)(Z,W )m0(W ).
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Double robustness of efficient influence curve: We already showed
P0D

∗(π0, ρ0,m, θ) = 0 if φ(m,PW,0) = φ(m0, PW,0). If φ(m,PW,0) = φ(m0, PW,0)
(i.e., ψ = ψ0), then,

P0D
∗(π, ρ0,m, θ) = P0

h1

σ2(ρ0, π)
(π − Pρ0π)(π0 − π)(m0 −m),

where we used notation Pρ0h = Eρ0(h(Z,W ) | W ) for the conditional expecta-
tion operator over Z, given W . This is thus second order in (m−m0)(π−π0).
In particular, it equals zero if m = m0 or π = π0. We can thus also state the
following double robustness result: if m = m0, then P0D

∗(π, d,m0, θ) = 0 if
d = ρ0 or if π = π0.

Efficient influence curve of target parameter when
assuming a parametric form for effect of treatment as
function of covariates

We now assume m0 = mα0 for some model {mα : α}, which implies the
semiparametric regression model E0(Y | Z,W ) = Π0(Z,W )mβ0(W ) + θ0(W ).
Let fβ(Z,W ) = Π0(Z,W )mβ(W ). Let mα(W ) = α>W ∗, where W ∗ is k-
dimensional vector of functions of W . Note that α is d-dimensional and
d
dα
mα(W ) = W ∗.

Efficient influence curve in model in which Π0 is known.

First, we consider the statistical model M(π0) ⊂ M in which Π0(Z,W ) =
E0(A | Z,W ) is known. Define the k-dimensional vector

h(Π0)(Z,W ) = d/α0mα0(Z,W ) = Π0(Z,W )d/dα0mα0(W ) = Π0(Z,W )W ∗.

By previous results on the semiparametric regression model, a gradient for the
k-dimensional parameter α(P ) at P = P0 ∈M(π0) is given by

D∗α,Π0
(P0) = C(π0)−1(h(Π0)(Z,W )−E(h(Π0)(Z,W ) | W ))(Y−fα0(Z,W )−θ0(W )),

where C(π0) is a k × k matrix defined as

C(π0) = E0{d/dα0fα0(Z,W )− E0(d/dα0fα0(Z,W ) | W )}2

= E0{(W ∗W ∗>{Π0(Z,W )− E0(Π0(Z,W ) | W}2}.

Let C(π0)−1 be the inverse of C(π0).
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This gradient equals the canonical gradient of α0 in this model M(π0),
if E0((Y − E0(Y | Π0,W ))2 | Z,W ) is only a function of W . For example,
this would hold if E(U2

Y | Z,W ) = E0(U2
Y | W ). This might be a reasonable

assumption for an instrumental variable Z. For the sake of presentation, we
work with this gradient due to its relative simplicity. and the fact that it still
equals the actual canonical gradient under this assumption.

We have that ψ0 = φ(α0, PW,0) for a mapping

φ(α0.PW,0) = arg min
β
E0

∑
a

h(a, V )a2 (mα0(W )−mβ(V ))2 ,

defined by working model {mβ : β}. Let dφ(α0, PW,0)(hα, hW ) = d
dα0
φ(α0, PW,0)(hα)+

d
dPW,0

φ(α0, PW,0)(hW ) be the directional derivative in direction (hβ, hW ). The

gradient of Ψ :M(Π0)→ Rd is given byD∗α,Π0
(P0) = d

dα0
φ(α0, PW,0)D∗α,Π0

(P0)+
d

dPW,0
φ(α0, PW,0)ICW , where ICW (O) = (I(W = w)−PW,0(w) : w) is the influ-

ence curve of the empirical distribution of W . We note that β0 = φ(α0, PW,0)
solves the following d× 1 equation

U(β0, α0, PW,0) ≡ E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )(mα0(W )−mβ0(V )) = 0.

By the implicit function theorem, the directional derivative of β0 = φ(α0, PW,0)
is given by

dφ(α0, PW,0)(hα, hW ) = −
{

d
dβ0
U(β0, α0, PW,0)

}−1{
d
dα0
U(β0, α0, PW,0)(hα) + d

dPW,0
U(β0, α0, PW,0)(hW )

}
.

We need to apply this directional derivative to (hα, hW ) = (D∗α,Π0
(P0), ICW ).

Recall we assumed that mβ is linear in β. We have

c0 ≡ −
d

dβ0

U(β0, α0, PW,0) = E0

∑
a

h(a, V )a2

{
d

dβ0

mβ0(V )

}2

,

which is a d× d matrix. Note that if mβ(V ) =
∑

j βjVj, then this reduces to

c0 = E0

∑
a

h(a, V )a2~V ~V >,

where ~V = (V1, . . . , Vd). We have

d

dPW,0
U(β0, α0, PW,0)(hW ) =

∑
w

hW (w)
∑
a

h(a, v)a2 d

dβ0

mβ0(v)(mα0(w)−mβ0(v)).
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Thus, the latter expression applied to ICW (O) yields the contribution c−1
0 D∗W (P0),

where

D∗W (P0) ≡
∑
a

h(a, V )a2 d

dβ0

mβ0(V )(mα0(W )−mβ0(V )).

In addition,

d

dα0

U(β0, α0, PW,0) = E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )
d

dα0

mα0(W ).

We conclude that

dφ(α0, PW,0)(hα, hW ) =

D∗W (P0) + c−1
0

{
E0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) d

dα0
mα0(W )D∗α,Π0

(P0)
}
.

We conclude that the canonical gradient of Ψ :M(Π0)→ Rd is given by

D∗ψ,Π0
(P0) = D∗W (P0)(O)

+c−1
0

{
E0

∑
a

h(a, V )a2 d

dβ0

mβ0(V )
d

dα0

mα0(W )

}
D∗α,Π0

(P0)(O)

= D∗W (P0)(O) +

c−1
0

{
E0h1(V )~V ~W ∗>

}
C(π0)−1(h(Π0)(Z,W )− E(h(Π0)(Z,W ) | W ))×

(Y − fα0(Z,W )− θ0(W )).

We state this result in the following lemma and also state a robustness result
for this efficient influence curve.

Lemma 5 Let h1(V ) =
∑

a h(a, V )a2~V .The efficient influence curve of Ψ :
M(Π0)→ Rd is given by

D∗ψ,Π0
(P0) = c−1

0 h1(V ) d
dβ0
mβ0(V )(mα0(W )−mβ0(V ))

+c−1
0

{
E0h1(V )~V ~W ∗>

}
C(π0)−1(h(Π0)(Z,W )− E(h(Π0)(Z,W ) | W ))×

(Y − fα0(Z,W )− θ0(W )).

We have that

P0D
∗
ψ,Π0

(d,mα0 , θ) = 0, if either d = ρ0 or θ = θ0.
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Efficient influence curve in model in which Π0 is unknown

We will now derive the efficient influence curve in model M in which Π0 is
unknown, which is obtained by adding a correction term Dπ(P0) to the above
derived D∗ψ,Π0

(P0). The correction term Dπ(P0) that needs to be added to
D∗ψ,Π0

is the influence curve of P0{D∗ψ,Π0
(πn)−D∗ψ,Π0

(π0)}, where D∗ψ,Π0
(π) =

D∗ψ,Π0
(β0, θ0, α0, ρ0, π) is the efficient influence curve in model M(π0), as de-

rived above with π0 replaced by π, and πn is the nonparametric NPMLE of
π0. Let h1(V ) ≡

∑
a h(a, v)a2 d

dβ0
mβ0(v). Let π(ε) = π + εη. We plug in for η

the influence curve of the NPMLE Πn(z, w), which is given by

η(z, w) =
I(Z = z,W = w)

P0(z, w)
(A− Π(Z,W )).

We have

Dπ(P0) =
d

dε
P0D

∗
ψ(π(ε))

∣∣∣∣
ε=0

= −
{
P0c

−1
0 h1(V )~VW ∗>

}
C(π0)−1P0

{
W ∗W ∗>(π0 − E(π0 | W ))η(Z,W )

}
.

This yields as correction term:

Dπ(P0)(O) = −(A− Π0(Z,W )){
P0c

−1
0 h1(V )~VW ∗>

}
C(π0)−1

{
W ∗W ∗>(π0(Z,W )− E(π0 | W ))

}
.

This proves the following lemma.

Lemma 6 The efficient influence curve of Ψ :M→ Rd is given by

D∗(P0) = D∗W (P0)

+c−1
0

{
E0h1(V )~V ~W ∗>

}
C(π0)−1W ∗(Π0 − E(Π0(Z,W ) | W ))(Y − fα0(Z,W )− θ0(W ))

−
{
P0c

−1
0 h1(V )~VW ∗>

}
C(π0)−1

{
W ∗W ∗>(π0(Z,W )− E(π0 | W ))

}
(A− Π0(Z,W ))

≡ D∗W (P0) + CY (ρ0, π0)(Z,W )(Y − π0(Z,W )mα0(W )− θ0(W ))
−CA(ρ0, π0,m0)(A− π0(Z,W ))

≡ D∗W (P0) +D∗Y (P0)−D∗A(P0),

where

CY (ρ0, π0)(Z,W ) = c−1
0

{
E0

∑
a h(a, V )a2~V ~W ∗>

}
×

C(π0)−1(h(Π0)(Z,W )− E(h(Π0)(Z,W ) | W ))

CA(ρ0, π0,m0)(Z,W ) =
{
P0c

−1
0 h1(V )~VW ∗>

}
C(π0)−1

{
W ∗W ∗>(π0(Z,W )− E(π0 | W ))

}
.
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Double robustness of efficient influence curve: We already showed
P0D

∗(π0, d, α0, θ) = 0 if d = ρ0 or θ = θ0. We also have that P0D
∗(π, ρ0, α0, θ) =

0 for all θ and π.
The TMLE is analogue to the TMLE presented for the nonparametric

model for m0(W ).
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Chapter 4

Optimal dynamic
intent-to-treat.

4.1 Model and problem.

We consider the problem of estimation and inference under optimal dynamic
treatment, in the context of an instrumental-variables model. As before, we
have iid data (W,Z,A, Y ) ∼ M, where M is a semiparametric model. Z
is assumed to be a valid instrument for identifying the effect of treatment A
on outcome Y , when one has to account for unmeasured confounding. V ⊆
W is an arbitrary fixed subset of the baseline covariates. In this chapter,
the unknown optimal dynamic “treatment” rule d(V ) actually refers to an
intervention on the instrument Z. Thus from here on, we refer to d(V ) as the
optimal dynamic assignment to treatment, or optimal dynamic intent-to-treat.
The optimal mean counterfactual outcome is attained by setting Z = d(V ). In
applications, instrument Z is often a randomized encouragement mechanism,
or randomized assignment to treatment which may or may not be followed.
In other cases, Z is not perfectly randomized but nevertheless promotes or
discourages individuals in receiving treatment.

There are no restrictions on the type of data. However, the case of cate-
gorical or continuous Z requires special attention and is dealt with in section
4.3. Further, we let cT (Z,W ) be a cost function that gives the total cost
associated with assigning an individual with covariates W to a particular Z
value. We can think of cT (Z,W ) as the sum of cZ(Z,W ), a cost incurred
directly from setting Z, and EA|W,ZcA(A,W ), an average cost incurred from
the actual treatment A. For instance, for the get-out-the-vote campaign, a
binary instrument denotes whether an individual receives a phone call, and
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binary treatment A represents whether the individual actually received the
intervention of speaking to a campaigner. Then cZ(Z = 1,W ) is the cost of
making a phone call, and cA(A,W ) is the generally higher cost of speaking to
a callee. In this work, we assume a known function cT (Z,W ). 1 We have cost
constraint EcZ(Z,W ) ≤ K, for a fixed cost K.

Notation. We further assume wlog that intent-to-treat Z = 0 has lower
cost for all V : EW |V cT (0,W ) ≤ EW |V cT (1,W ). 2 Let K0 , EW cT (0,W ) be

the total cost of not assigning any individuals to intent-to-treat, and KT,0 ,
EW cT (1,W ) be the total cost of assigning everyone, and we assume a nontrivial
constraint K ≤ KT,0. We have PW , PrV |W , ρ(W ) , Pr(Z = 1|W ), µ(W,Z) ,
E(Y |W,Z) defined as before. We also define µb(V ) , EW |V

[
µ(Z = 1,W ) −

µ(Z = 0,W )
]
, which gives the mean difference in outcome between setting Z =

1 and Z = 0 given V . Similarly, cb(V ) , EW |V
[
cT (Z = 1,W )−cT (Z = 0,W )

]
.

Causal model. We assume Z is exogenous, given W . Assume our usual
causal model, with data generated as W = fW (UW ), Z = fZ(W,UZ), A =
fA(W,Z,UA), Y = fY (W,Z,UY ). Then we have:

Assumption 2 (Randomization of Z.) We assume that UZ ⊥ UY |W .

This implies E(Y (Z)|W ) = E(Y |W,Z).

In this model, instrument Z functions exactly as a usual unconfounded
treatment variable A. We can view our problem of estimating the mean coun-
terfactual outcome under optimal dynamic intent-to-treat, intervening on in-
strument Z, as the problem of estimating a mean counterfactual outcome
under optimal dynamic treatment. The latter problem is very similar to one
tackled by (Luedtke and van der Laan 2016a); however, we allow for a non-unit
cost function, making this problem a generalization of that one. We present
this general result on optimal dynamic treatments in the context of instrumen-
tal variables here in keeping with our main theme on IV-based models, and also
to emphasize that non-compliance to treatments and unmeasured confounding

1It is straightforward to extend this model to incorporate uncertainty in E(A|W,Z) for
calculating cT (Z,W ), and thus estimating cT (W,Z) from the data, given fixed functions
cZ , cA. There is a correction term that gets added to the D∗c component of the efficient
influence curve.

2We are only making this assumption for the sake of easing notation. We can forgo this
assumption by introducing notation, i.e. Z = l(V ) is the lower cost intent-to-treat value for
a stratum defined by covariates V .
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are very real possibilities in typical treatment-effect data. Variable A is un-
necessary for estimation in our model and is ignored in the rest of this chapter.

Causal parameter of interest.

Ψ(P0) , Maxd EP0Y (Z = d(V ))s.t. EP0 [cT (Z = d(V ),W )] ≤ K

Statistical model. We assume the statistical model M consisting of all
distributions P of O = (W,Z, Y ). PW and µ(W,Z) are unspecified, and the
distribution for the instrument Pr(Z|W ) = ρ(W ) may or may not be specified
(Z is often a fully randomized group assignment).

Statistical target parameter. We have the following statistical target
parameter:

Ψ0 = EP0µ0(W,Z = d0(V )) (4.1)

where d0 is the optimal intent-to-treat rule:
d0 = argmaxd EP0µ0(W,Z = d(V )) s.t. EP0 [cT (Z = d(V ),W )] ≤ K

4.2 Assumptions for identifiability and

pathwise differentiability of Ψ0.

We use notation d0 = dP0 , τ0 = τP0 , etc.

A1) Randomization of Z, as given in section 4.1: E(Y (Z)|W ) = E(Y |W,Z).

These next three assumptions are needed to ensure pathwise differentiabil-
ity and prove the form of the canonical gradient (theorem 2).

A2) Positivity assumption: 0 < ρ0(W ) < 1.

A3) There is a neighborhood of η0 where S0(x) is Lipschitz continuous,
and a neighborhood of S0(η0) = K−K0 where S−1

0 (y) is Lipschitz continuous.
We have |η1−η2| < ε⇒ |S0(η1)−S0(η2)| < cyε for η1, η2 in a δx-neighborhood
of η0; and |y1 − y2| < ε ⇒ |S−1

0 (y1) − S−1
0 (y2)| < cxε, for y1, y2 in a δy-

neighborhood of K −K0, for some constants cx, cy.
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A4) Pr0(T0(V ) = τ) = 0 for all τ in a neighborhood of τ0.

Note that A3) implies that S−1
0 (K −K0) exists. Note also that A3) actu-

ally implies Pr0(T0(V ) = η) = 0 for η in a neighborhood of η0, and thus A3)
implies A4) when η0 > 0 and τ0 = η0. This is discussed in the paper where we
need to use this fact.

Need for A4) (Guarantee of non-exceptional law).
If A4) does not hold and there is positive probability of individuals being at
the threshold for being treated or not under the optimal rule, then the solution
d(V ) is not unique, and Ψ0 is no longer pathwise differentiable. Further, the
problem of finding an optimal deterministic solution in this case is the NP-hard
knapsack problem, although it is considered to among the easier problems in
this class. Thus, we restrict attention to so-called non-exceptional laws where
A4) holds. It is easy to see that in this case, the optimal d(V ) over the broader
set of non-deterministic decision rules is a deterministic rule. (Luedtke and van
der Laan 2016b) derive an online martingale estimator for the optimal coun-
terfactual outcome in case of an exceptional law and show root-n confidence
intervals. As they describe, one expects A4) to be a reasonable assumption in
practice under an arbitrary constraint K0 < K < KT,0 that allows for only a
strict subset of the population to be treated. In contrast, in the unconstrained
version of the problem of estimating mean optimal outcome under dynamic
treatment, the corresponding version of this assumption is that there is zero
probability of individuals having exactly zero treatment effect. That seems to
be a more problematic assumption.

4.3 Closed-form solution for optimal rule d0

in the case of binary treatment.

Recall that wlog we think of Z = 0 as the ‘baseline’ intent-to-treat (ITT) value

having lower cost. We define a scoring function T (V ) = µb(V )
cb(V )

for ordering

subgroups (given by V ) based on the effect of Z per unit cost. In the optimal
intent-to-treat policy, all groups with the highest T (V ) values deterministically
have Z set to 1, up to cost K and assuming µb ≥ 0. We write TP (V ) to make
explicit the dependence on PW , µ(Z,W ) from distribution P .

Define a function SP : [−∞,+∞]→ R as

SP (x) = EV [I(TP (V ) ≥ x)(cb(V )]
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In other words, SP (x) gives the expected (additional above-baseline) cost of
setting Z = 1 for all subgroups having TP (V ) ≥ x. We use S0(·) to denote SP0

from here on. Let
KP = EP cT (Z = 0,W ) be the cost of treating everyone with the baseline
Z = 0. Also define KT,P = EP cT (1,W ) to be the total cost of treating
everyone with Z = 1.

Define cutoff ηP as
ηP = S−1(K −KP )

The assumptions guarantee that S−1(K −KP ) exists and ηP is well-defined.
η is set so that there is a total cost K of treating everyone having T (V ) ≥ η
with Z = 1. Further let:

τP = max{ηP , 0}

Thus, τ gives the cutoff for the scoring function T (V ), so the optimal rule is

dP (V ) = 1 iff TP (V ) ≥ τP

Lemma 7 Assume A2)-A4). Then the optimal decision rule d0 for parameter
Ψ0 as defined in equation 4.1 is the deterministic solution
d0(V ) = 1 iff T0(V ) ≥ τ0, with T0, τ0 as defined above.

The proof is given in section 4.8.
Below, we describe modifications to the optimal solution for d0 when Z is

continuous or categorical.

Continuous intent-to-treat Z.

Z can be continuous if we have a linear cost function. Suppose Z ∈ [zmin, zmax].
W can do a linear transformation to Z̃ ∈ [0, 1]. Then the problem is to pick an
optimal d(V ) = Z̃ ∈ [0, 1] for every V where Z̃ = 0 represents no treatment,
and positive values the magnitude of treatment. We make the simplifying
assumption that cZ(·) has the linear form cT (Z̃,W ) = Z̃ · cZ(W ). The form
and proof of the closed-form solution parallel that given above for the case
of binary Z, with d(V ) = 1 for all V such that the expected marginal effect
of assignment to Z̃ = 1 per marginal cost is above some cutoff. Thus, all
groups are either treated at the maximum level Z = zmax, or not treated with
Z = zmin. This is again assuming there is no issue with exceptional laws and
assumption A4) holds.
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The scoring function for ordering subgroups is T (V ) = EW |V
µ(W,Z̃=1)−µ(W,Z̃=0)

cZ(W )
.

We have function SP (x) = EV [I(TP (V ) ≥ x)EW |V cZ(W )]. From here on, func-
tion threshold η, threshold τ , and decision rule d(V ) are defined exactly as for
the case of a binary Z. The proof of optimality is also the same.

Categorical intent-to-treat Z.

Returning to the example of the get-out-the-vote campaign, some of the cam-
paigns described have categorical intent-to-treat variables Z [cite]. For in-
stance, a potential voter can receive a phone call, receive a text message, or
be left untreated. Our model allows for discrete choices of Z. Suppose we
have |Z| intent-to-treat values Z = {z0, ..., z|Z|−1}. z0 represents the base-
line assignment. The setting of categorical intent-to-treat with cost functions
has a significantly more complicated solution than the binary or continuous
cases given above. However, when we consider the special case of uniform
cost, where the budget constraint only restricts d(V ) so that fraction p of the
population receive an ITT setting of Z = 1, we again have a similar simple
closed-form solution as before.

Categorical intent-to-treat with uniform cost.
Let z′(V ) denote argmax1..|Z|EW |V µ(z′,W ), in other words, the optimal

choice of Z for V in the unconstrained case. It is easy to see that when
a fixed fraction of the population can be treated with any Z 6= z0, then
in the optimal solution has d(V ) = z′(V ) or d(V ) = z0 (a subgroup is ei-
ther not treated, or treated with its optimal treatment). Now we choose
all subgroups with the highest mean outcomes EW |V µ(z′,W ) to treat. Let
S : x −→ PrV (EW |V µ(z′(V ),W ) ≥ x) be a survival function. Then define

η = S−1(p)

τ = max{η, 0}
and decision rule

d(V ) = 1 iff EW |V µ(z′(V ),W ) ≥ τ

The proof is essentially the same as for the above cases of binary or continuous
treatment.

Categorical intent-to-treat with cost function c(z,W ).
The solution can be understood easily as an iterative procedure. We briefly

describe it informally first. Start by setting all d(V ) to the lowest cost Z as-
signment given V , thus minimizing EW |V c(z,W ). Then pick a subgroup V and
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treatment Z ′ such that the marginal gain in expected outcome per marginal
gain in cost is maximized, when setting d(V ) = Z ′. For that subgroup, set
d(V ) = Z ′, replacing the previous assignment to the lowest cost treatment.
Continue to pick a subgroup V and treatment Z ′ such that the marginal gain
per marginal cost is maximized, when switching d(V ) to Z ′. Here the marginal
gain and cost are calculated with respect to the current treatment Z = d(V )
for each subgroup. We proceed with this procedure until reaching our allocated
budget, successively switching to Z assignments having higher cost and higher
outcome than before, chosen in order of decreasing marginal gain per marginal
cost. Standard optimization theory guarantees that this procedure is optimal
for maximizing a mean outcome under a single positive budget constraint.

Formally, we first define a baseline (lowest cost) Z-value for each subgroup
as Z.0(V ) = argminj∈(0..|Z|−1)EW |V cT (zj,W ). Next, we define a series of order-
ing functions Z.i(V ), i ∈ [1, |Z|−1]. Z.i(V ) represents the choice of treatment

in Z = {z0, ..., z|Z|−1} having the ith highest marginal gain per marginal cost,
for stratum defined by V . This function can be defined inductively as:

Z.i(V ) = argmaxk∈0..|Z|−1

{
EW |V (µ(zk,W )− µ(zZ.(i−1)(V ),W ))

EW |V (c(zk,W )− c(zZ.(i−1)(V ),W ))
,

s.t. k 6= Z.j(V ) for j < i, EW |V [µ(zk,W )− µ(zZ.(i−1)(V ),W )] > 0

}
If the set in the rhs above is empty, then define Z.i(V ) = Z.(i−1)(V ). Now de-
fine a scoring function for each subgroup based on its marginal gain in outcome
per marginal cost. The optimal ordering of treatments Z.i(V ) defined above
establishes what treatment the marginal values are calculated with respect to.

T (i, V ) = EW |V
µ(zZ.i(V ),W )− µ(zZ.(i−1)(V ),W )

c(zZ.i(V ),W )− c(zZ.(i−1)(V ),W )

The optimal rule is to treat each subgroup with the treatment associated
with the largest cost and gain, such that the marginal cost and gain of that
treatment is above some threshold τ . Define such a rule as q(τ, V ) = max{i :
T (i, V ) ≥ τ}. The threshold is chosen so we have K expected cost of this
procedure:

Set τ s.t. EVEW |V cT (zZ.i(V ),W ) = K, for i(V ) = q(τ, V )

Note that increasing the threshold τ above monotonically decreases the indices
q(τ, V ) and thus decreases the cost, so we can solve the equation above. Finally,
the optimal rule is given by:

d(V ) = zZ.i(V ), for i(V ) = q(τ, V )
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4.4 Canonical gradient for Ψ0.

For O ∈ O = (W,Z,A, Y ), and deterministic assignment-to-treatment rule d̃,
define

D1(d̃, P )(O) ,
I(Z = d̃(V ))

ρP (W )
(Y − µP (Z,W )) (4.2)

D2(d̃, P )(O) , µP (d̃(V ),W )− EPµP (d̃(V ),W ) (4.3)

Then D∗
d̃
(P )(O) = D1(d̃, P )(O) + D2(d̃, P )(O) is the efficient influence curve

of Ψd̃(P ).
When d is a fixed stochastic rule, it follows from the linearity of the path-

wise derivative mapping that the efficient influence curve of Ψd(P ) is given by
D∗d(P )(O) = EU [D1(d, P )(O)+D2(d, P )(O)]. LetD3(d, τ, P ) = −τ(EUcT (d(V ),W )−
K).

Define
D∗(d, τ, P )(O) , D∗d(P )(O) +D3(d, τ, P )

Let D0 , D∗(d0, τ0, P0).

Theorem 2 Assume A1)-A4) above. Then Ψ is pathwise differentiable at P0

with canonical gradient D0 = D∗(d0, τ0, P0).

This is proved in section 4.8.

4.5 TMLE.

The relevant components for estimating Ψ(Q) = EWµ(Z = d(V ),W ) are
Q = (PW , µ(Z,W )). Decision rule d is also part of Ψ, but it is a function
of PW , µ(Z,W ). The nuisance parameter is g = ρ(W ). As usual, convert
Y to the unit interval via a linear transformation Y → Ỹ , so that Ỹ = 0
corresponds to Ymin and Ỹ = 1 to Ymax. We assume Y ∈ [0, 1] from here.

1. Use the empirical distribution PW,n to estimate PW . Make initial esti-
mates of µn(Z,W ) and gn = ρn(W ) using any strategy desired. Data-
adaptive learning using Super Learner is recommended.

2. The empirical estimate PW,n gives an estimate of PrV,n(V ) = EW,nI(FV (W ) =
V ), Kn = EW,nc(0,W ), KT,n = EW,nc(1,W ), and cb,n(V ) = EW,n|V (cT (1,W )−
cT (0,W )).
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3. Estimate µb,0 as µb,n(V ) = EW,n|V (µn(1,W )− µn(0,W )).

4. Estimate T0(V ) as Tn(V ) =
µb,n(V )

cb,n(V )
.

5. Estimate S0(x) using Sn(x) = EV,n[I(Tn(V ) ≥ x)(cb(V )].

6. Estimate η0 as ηn using ηn = S−1
n (K −Kn)

and τn = max{0, ηn}.

7. Estimate the decision rule as dn(V ) = 1 iff Tn(V ) ≥ τn.

8. Now fluctuate the initial estimate of µn(Z,W ) as follows: For Z ∈ [0, 1],

define covariate H(Z,W ) , I(dn(V )=Z)
gn(W )

. Run a logistic regression using:

Outcome: (Yi : i = 1, . . . , n)
Offset: (logitµn(Zi,Wi), i = 1, . . . , n)

Covariate: (H(Zi,Wi) : i = 1, . . . , n)

Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1[µn(ε)(Zi,Wi) log Yi+(1−µn(ε)(Zi,Wi)) log(1−Yi)]

and µn(ε)(Z,W ) = logit−1(logitµn(Z,W ) + εH(Z,W )).

9. Set the final estimate of µ(Z,W ) to µ∗n(Z,W ) = µn(εn)(Z,W ).

10. Finally, form final estimate of Ψ0 = Ψd0(P0) using the plug-in estimator

Ψ∗ = Ψdn(P ∗n) =
1

n

n∑
i=1

µ∗n(Z = dn(Vi),Wi)

We have used the notation Ψd(P ) refers to mean outcome under decision
rule d(V ).

• Showing that PnD
∗(dn, τn, P

∗
n) = 0.

Using the log likelihood loss function L(Qn(ε|gn), gn, (O1, ..., On)) ,
Pn
[
µn(ε) log Y + (1− µn(ε)) log(1− Y )

]
and logistic fluctuation µn(ε) as

specified above, we have
d
dε
L(Qn(ε|gn), gn, (O1, ..., On))|ε=0 = PnHn(Y − µn).

Thus, at µ∗n = µn(εn), we have d
dε
L(Qn(ε|gn), gn, (O1, ..., On))|ε=0 = 0, so

PnD1(dn, P
∗
n) = 0 for the first term of the canonical gradient.

It is easy to see that PnD2(dn, P
∗
n) = 0 when we are using the empirical

distribution PW,n. We have
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PnD3(dn, τn, P
∗
n) = 0 for the third term of the canonical gradient as well,

because EV,nEW,n|V cT (d(V ),W ) = K, unless τn = 0. (This is described
in the proof of optimality of the closed-form solution in section 4.8.)

4.6 Theoretical results: efficiency, double

robustness, and inference for Ψ0.

Conditions for efficiency of Ψ0.

These six conditions are needed to prove asymptotic efficiency (theorem 3).
As discussed in section 4.6, when all relevant components and nuisance param-
eters (PW,n, ρn, µn) are consistent, then C3) and C4) hold, while C6) holds
by construction of the TMLE estimator.

C1) ρ0(W ) satisfies the strong positivity assumption: Pr0(δ < ρ0(W ) <
1− δ) = 1 for some δ > 0.

C2) The estimate ρn(W ) satisfies the strong positivity assumption, for a
fixed δ > 0 with probability approaching 1, so we have Pr0(δ < ρn(W ) <
1− δ)→ 1.

Define second-order terms as follows:

R1(d, P ) , EP0

[(
1− PrP0(Z = d|W )

PrP (Z = d|W )

)
µP (Z = d,W )− µ0(Z = d,W )

]
R2(d, τ, P ) , EP0

[
(d− d0)(µb,0(V )− τ0cb,0(V ))

]
Let R0(d, τ, P ) = R1(d, P ) +R2(d, τ, P ).

C3) R0(dn, τ0, P
∗
n) = oP0(n

− 1
2 ).

C4) P0[(D∗(dn, τ0, P
∗
n)−D0)2] = oP0(1).

C5) D∗(dn, τ0, P
∗
n) belongs to a P0-Donsker class with probability ap-

proaching 1.

C6) 1
n

∑n
i=1D

∗(dn, τ0, P
∗
n)(Oi) = oP0(n

− 1
2 ).



CHAPTER 4. OPTIMAL DYNAMIC INTENT-TO-TREAT. 58

Sufficient conditions for lemma 15.

E1) GC-like property for cb(V ), µb,n(V ):
supV |(EW,n|V − EW,0|V )cb,T (W )| = supV (|cb,n(V )− cb,0(V )|) = oP0(1)

E2) supV |EW,0|V µb,n(W )− EW,0|V µb,0(W )| = oP0(1)
This is needed for the proof that dn(V ) = d0(V ) with probability approaching
1.

E3) Sn(x), defined as x→ EV,n[I(Tn(V ) ≥ x)cb,n(V )] is a GC-class.

E4) Convergence of ρn, µn to ρ0, µ0, respectively, in L2(P0) norm at a
O(n−1/2) rate in each case. This is needed in several places.

When all relevant components and nuisance parameters are consistent, as
is the case when theorem 3 below holds and our estimator is efficient, we also
expect conditions E1)-E4) to hold.

Theoretical properties of Ψ∗n.

Theorem 3 (Ψ∗ is asymptotically linear and efficient.) Assume assumptions
A1)-A4), and conditions C1)-C6). Then Ψ∗ = Ψ(P ∗n) = Ψdn(P ∗n) as defined
by the TMLE procedure is a RAL estimator of Ψ(P0) with influence curve D0,
so

Ψ(P ∗n)−Ψ(P0) =
1

n

n∑
i=1

D0(Oi) + oP0(n
− 1

2 ).

Further, Ψ∗ is efficient among all RAL estimators of Ψ(P0).

Inference. Let σ2
0 = V arP0D0. By theorem 3 and the central limit theo-

rem,
√
n(Ψ(P ∗n)−Ψ(P0)) converges in distribution to a N(0, σ2

0) distribution.
Let σ2

n = 1
n

∑n
i=1 D

∗(dn, τn, P
∗
n)(Oi)

2 be an estimate of σ2
0.

Lemma 8 Under the assumptions C1), C2), and conditions E1)-E4), we have
σn −→P0 σ0. Thus, an asymptotically valid 2-sided 1 − α confidence interval
is given by

Ψ∗ ± z1−α
2

σn√
n

where z1−α
2

denotes the (1− α
2
)-quantile of a N(0, 1) r.v.
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Double robustness of Ψ∗n.

Theorem 3 demonstrates consistency and efficiency when all relevant compo-
nents and nuisance parameters are consistently estimated. Another important
issue is under what cases of partial misspecification we still get a consistent
estimate of Ψ0, albeit an inefficient one. The set of relevant components and
nuisance parameters is PW , ρ(W ) = Pr(Z = 1|W ), and µ(W,Z) = E(Y |W,Z).
The empirical distribution PW,n always converges to PW,0. Our TMLE-based
estimate Ψ∗ is a consistent estimate of Ψ0 under misspecification of ρn(W ) in
the initial estimates, but not under misspecification of µn(W,Z). However, it
turns out there is still an important double robustness property. If we con-
sider Ψ∗ = Ψdn(P ∗n) as an estimate of Ψdn(P0), where the optimal decision rule
dn(V ) is estimated from the data, then we have that Ψ∗ is double robust to
misspecification of ρn or µn in the initial estimates.

Lemma 9 (Ψ∗ is a double robust estimator of Ψdn(P0).) Assume assumptions
A1)-A4) and conditions C1)-C2). Also assume the following version of C4):
V ar0(D1(dn, P

∗
n) +D2(dn, P

∗
n)) <∞.

Then Ψ∗ = Ψ(dn, P
∗
n) is a consistent estimator of Ψdn(P0) when either µn is

specified correctly, or ρn is specified correctly.

To prove this lemma, note from section 4.4 and equation 4.2 that the
canonical gradient for parameter Ψdn(P0), in our semiparametric model using
estimated decision rule dn, equals D1(dn, P ) +D2(dn, P ). We have remainder
term R1(dn, P ) as defined in the assumptions:
Ψdn(P ∗n)−Ψdn(P0) = −P0

[
D∗1(dn, P

∗
n) +D∗2(dn, P

∗
n)
]

+R1(dn, P
∗
n).

TMLE solves the efficient influence curve equation over the D∗1, D
∗
2 terms of

D∗. R1 is a second-order term in ρ, µ with R1(dn, P
∗
n) ∈ OP0(n

− 1
2
) when either

ρ or µ is specified consistently, while the (Pn − P0)[D1 + D2] term converges
to zero under the finite variance assumption.

Discussion of conditions for theorem 3.

Condition C3. This is satisfied if both R1(d, P ) and R2(d,KT ) are in

oP0(n
− 1

2 ). R1(d, P ) takes the form of a typical double robust term that is

small (generally OP0(n
− 1

2 )) when either ρn(W ) or µn is estimated well, and

second-order oP0(n
− 1

2 )) when both ρn(W ) and µn are estimated well. The
Cauchy-Schwarz inequality gives an upper bound for this term as the product
of the L2(P0) rates of convergence of these two components. If the conditional
distribution of the instrument ρ(W ) is known, then ρn(W ) = ρ0(W ) and this
component becomes 0.
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Ensuring that R2(dn, τ0, P
∗
n) = oP0(n

− 1
2 )) requires more work. The results

below are similar to (Audibert and Tsybakov 2007) and (Luedtke and van der
Laan 2016a). We make the following margin assumption for some α > 0:

Pr0(0 < |T0(V )− τ0| ≤ t) . ctα for all t > 0 (4.4)

where . denotes less than or equal up to a multiplicative constant. If we
have a Lipschitz continuity condition for S0(x) (like that given locally in A3) )
holding not just in an interval around τ0 but for all x, then we can take α = 1.

Theorem 4 If (4.4) holds for some α > 0, then

(i) |R2(dn, τ0, P
∗
n)| . ‖(Tn(V )− τn)− (T0(V )− τ0)‖(3α+2)/(2(1+α))

2,P0

(ii) |R2(dn, τ0, P
∗
n)| . ‖(Tn(V )− τn)− (T0(V )− τ0)‖1+α

∞,P0

Taking α = 1, this theorem implies that R2(dn, τ0, P
∗
n) = oP0(n

− 1
2 )) if either

‖(Tn(V )−τn)−(T0(V )−τ0)‖2,P0 is oP0(n
− 4

10 ) or ‖(Tn(V )−τn)−(T0(V )−τ0)‖∞,P0

is oP0(n
− 1

4 ).
Condition C4). This is implied by the L2(P0) consistency of µb,n and

ρn and convergence of dn(V ) to d0(V ) with probability approaching 1. (The
latter is discussed below.)

Condition C5). This condition places restrictions on how data adaptive
the estimators of µb,n(W ) and ρn(W ) can be. Section 2.10 of (van der Vaart
and Wellner 1996) gives conditions under which the estimates of µb,0 and ρ0

belonging to Donsker classes (and using the empirical estimate for Prn(W ))
implies that D∗(dn, τ0, P

∗
n) belongs to a Donsker class.

Condition C6). In the TMLE section of this paper, we showed that
the empirical mean of the first two terms of the efficient influence curve is
0: PnD1(dn, P

∗
n) = 0, PnD2(dn, P

∗
n) = 0. We also showed for the third term

that PnD3(dn, τn, P
∗
n) = 0. It is easy to see that since τn →P0 τ0, we have

PnD3(dn, τ0, P
∗
n)→P0 o(1).

Discussion of conditions for lemma 15.

To see that σn converges to σ0, note that D∗(d, τ, P )(Oi) depends on the
following components: {PW , ρP (W ), µP (Z,W ), dP , τP}. The following is suffi-
cient for convergence of D∗(dn, τn, P

∗
n)2 to D2

0:

– convergence of τn to τ0 (proved below)

– convergence of Prn(W ) to PW,0 (guaranteed by the fact that we use
empirical distribution PW,n for Prn(W ))
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– convergence of ρP , µP to ρ0, µ0, respectively, in L2(P0) norm (condition
E4) ).

– dn(V ) = d0(V ) with probability approaching 1. This is equivalent to
Tn(V ) ≥ τn ⇐⇒ T0(V ) ≥ τ0 w.p. approaching 1. The convergence of
τn to τ0, the uniform convergence of Tn(V ) to T0(V ), and A4) guarantee
this. The proof that τn → τ0 is given below, and contains the proof of
uniform convergence of Tn(V ) to T0(V ) .

4.7 Simulations

Setup.

We use two main data-generating functions:

Dataset 1 (categorical Y ).

Data is generated according to:

UAY ∼ Bernoulli(1/2)

W1 ∼ Uniform(−1, 1)

W2 ∼ Bernoulli(1/2)

Z ∼ Bernoulli(α)

A ∼ Bernoulli(W1 + 10 · Z + 2 · UAY − 10)

Y ∼ Bernoulli((1− A) ∗ (plogis(W2− 2− UA,Y )) + (A) ∗ (plogis(W1 + 4))

UA,Y is the confounding term. For the simulations where V ⊂ W , we take
V = (1(W1 ≥ 0) + −1(W1 < 0),W2). Finally, we have cT (Z = 1,W ) = 1,
cT (Z = 0,W ) = 0 for all W here.

Dataset 2 (continuous Y .)
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We use 3-dimensional W and distribution

UAY ∼ Normal(0, 1)

W ∼ Normal(µβ,Σ)

Z ∼ Bernoulli(0.1)

A ∼ −2 ·W1 +W22 + 4 ·W3 · Z + UAY

Y ∼ 0.5 ·W1 ·W2−W3 + 3 · A ·W2 + UAY

When V ⊂ W , we use either V equals W1 rounded to the nearest 0.2, or
alternately, V is W3 rounded to the nearest 0.2. We also have cT (0,W ) = 0
for all W , and cT (1,W ) = 1 + b ·W1. Parameters µβ, Σ, and b vary.

Forming initial estimates.
We use the empirical distribution PW,n for the distribution of W . For

learning µn, we use Super Learner, with the following libraries of learners (the
names of learners are as specified in the SuperLearner package):

For continuous Y : glm, step, randomForest, nnet, svm, polymars, rpart,
ridge, glmnet, gam, bayesglm, loess, mean.

For categorical Y : glm, step, svm, step.interaction, glm.interaction, nnet.4,
gam, randomForest, knn, mean, glmnet, rpart.

Further, we included different parameterizations of some of the learners
given above: for nnet, size=2, 3, 4, or 5. For randomForest, ntree=100, 300,
500 1000. For knn, k=10, 30, 50, 100, 200, 300.

Finally, for learning ρn, we use a correctly specified logistic regression, re-
gressing Z on W (except for simulation (C) as described below).

Estimators used.
We report results on three estimators throughout this section. One is the

TMLE estimator described in section 4.5. We also implemented cross-validated
TMLE (CV-TMLE) (see (Zheng and van der Laan 2011)). CV-TMLE uses
N-fold cross-validation in choosing the optimal ε to minimize loss in the fluc-
tuation step. The relevant components and nuisance parameters are fit on
a training set, in each of the N-fold splits of the data, while ε is calculated
on the hold-out set. This procedure sometimes enhances performance over
standard TMLE by avoiding possible overfitting of ε to the initial estimates.
Finally, our third estimator is the initial substitution estimator. This estimator
evaluates the mean outcome using the same initial estimates of relevant com-
ponents and the nuisance parameter as TMLE. It gives the plug-in estimate
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Ψ∗(PW.n, µn). We use machine learning to semi-parametrically learn the com-
ponents in nearly every case in these simulations. Thus, the initial substitution
estimator gives a comparison of TMLE to a straightforward semiparametric,
machine learning-based approach that doesn’t come with the guarantees of
TMLE.

1000 repetitions are done of each simulation by default.

Simulation (A): using a large library of learning algorithms.
Tables 6.10 and 6.11 show the behavior of our estimators when machine

learning is used to consistently estimate µn. 6.10 deals with categorical Y .
In this case, all three estimators achieve very low bias, with or without the
TMLE fluctuation step. The σ2

n column gives VarnD
∗(dn, τn, P

∗
n), the esti-

mated variance of the efficient influence curve. This is a consistent estimate
of the variance of the TMLE-based estimators, in this case where efficiency
holds. We see that all estimators have very low variance that converges to
σ2
n by n = 1000. Although the initial substitution estimator is not guaran-

teed to be efficient, it displayed similar variance to TMLE, probably because
the initial estimates were so accurate that the TMLE fluctuation was minis-
cule. Coverage of 95% confidence intervals is also displayed, with intervals
calculated as Ψ∗n ± 1.96 σn√

n
, as in lemma 15. The coverage is given in paren-

theses for the initial substitution estimator, as σ2
n is not necessarily the right

variance. The TMLE estimators show better coverage, even though in this
example, the width of the confidence intervals was accurate for all estimators
for n ≥ 1000. This may be due to the asymptotic linearity property of the
TMLE-based estimators, ensuring that they follow a normal distribution as n
becomes large.

Y is continuous in table 6.11. The TMLE estimators convincingly outper-
form the initial substitution estimator in both bias and variance here. While
all estimators are consistent, only the TMLE estimators are guaranteed to be
efficient, and we see a significant improvement in variance, as well as effective
bias reduction. The estimated asymptotic variance σ2

n approximates the vari-
ance seen in the TMLE estimators fairly well for n ≥ 1000. The coverage of
confidence intervals for TMLE seems to converge to 95% more slowly than for
the previous case of categorical Y .

Simulation (B): V = W or V ⊂ W , cost constraint is more or less
constraining.

We check the behavior of our estimators across various characteristics of
the ODT optimization problem: when we allow V to be a strict subset of
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covariates W , vs when V = W ; and under different sized budgets for assigning
individuals to intent-to-treat (table 6.12). µ and ρ are estimated consistently
here. We see that the TMLE-based estimators typically have an order of
magnitude lower bias, and lower variance than the initial substitution estima-
tor. In every single case, they manifest quite low bias on the order of one by
n = 1000. This simulation also demonstrates the significant gain in mean out-
come achieved when the decision rule d(V ) is allowed to depend on V = W ,
vs only a subset V ⊂ W .

Simulation (C): double robustness under partial misspecification.
We verify the consistency of Ψ∗n under two cases of partial misspecifica-

tion: when µn is misspecified, and when ρn is misspecified. In each case, the
other nuisance parameter and relevant components are estimated consistently
using data-adaptive learning. As described in section 4.6, Ψ∗n = Ψ∗dn is a dou-
ble robust estimator of Ψdn(Ψ0), but not necessarily of Ψ0. Hence in every
repetition of sampling a dataset and forming estimates, the target parame-
ter Ψdn(Ψ0) was recalculated using the current estimate of optimal rule dn.
For calculating confidence intervals for Ψdn(Ψ0), the width was estimated us-

ing σn =
√(

VarnD
∗
dn

(P ∗n)
)
, where D∗dn(P0) is the efficient influence curve of

Ψdn(P0) as defined in section 4.4.
In table 6.13, the initial estimate for µn is grossly misspecified as µn =

mean(Y ). This creates a discrepancy of 15-20 points between Ψdn(P0) and Ψ0.
The initial substitution estimator retains a bias of around -20 in estimating
Ψdn(P0), while TMLE demonstrates practically zero bias by n = 1000. TMLE
is not efficient in this setting of partial misspecification. It has significantly
larger variance than the initial substitution estimator for smaller sample sizes,
but the variances are similar by n = 4000. σn was 201.2, 97.8, and 31.9, for
n = 250, 1000, 4000, respectively. It provides a conservative (over)-estimate
of variance for confidence intervals, as described in section 3.3 (ch. 3). We
see that TMLE’s coverage converges to just above 95%. On the other hand,
coverage is very low for the initial substitution estimator due to its bias. This
is despite the fact that the intervals are too wide in this case.

We also confirmed the robustness of Ψ∗n to misspecification of ρ, when µ is
consistently specified. In this case, Ψdn(P0) = Ψ0, and both the TMLE and
initial substitution estimators are consistent. TMLE is once again not guaran-
teed to be efficient. TMLE and the initial substitution estimator were found
to perform very similarly in both bias and variance across different sample
sizes. For instance, at n = 1000, we have bias of −7.23, variance of 43.78 for
TMLE, and −7.13, 52.69 for the initial substitution estimator.
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Simulation (D): quality of the estimate of dn vs the true mean
outcome attained under rule dn.

We study how more accurate estimation of the decision rule dn can lead to a
higher objective obtained. The objective maximized here is the mean outcome
under rule dn, where dn must satisfy a cost constraint. We use the known true
distributions for PW,0 and µ0 in calculating the value of mean outcome under
dn as Ψdn(P0) = EP0µ0(W,Z = dn(V )). The highest the true mean outcome
can be under a decision rule that satisfies EP0cT (W,Z = d(V )) ≤ K is Ψ0

using optimal rule d = d0. Therefore, the discrepancy between Ψdn(P0) and
Ψ0 gives a measure of how inaccurate estimation of the decision rule diminishes
the objective.

We compare Ψdn(P0) when estimating µn using the usual large library
of learners; when using a smaller library of learners consisting of (mean,
loess, nnet.size=3, nnet.size=4, nnet.size=5); and finally when we set µn =
mean(Y ). dn is estimated as usual (note that it is the same between the initial
substitution, and TMLE-based estimates). Table 6.14 confirms the impor-
tance of forming a good fit with the data for achieving a high mean outcome.
For K = .2 when roughly 20% of the population could be assigned Z = 1, the
mean outcome was only a few points below the true optimal mean outcome
Ψd0 when using the full library of learners (158.9 vs 162.8). However, it was
about 15 points lower when using a much smaller library of learners. In fact,
even when using machine learning with several nonparametric methods in the
case of the smaller library, the objective Ψdn(P0) attained wasn’t far from that
attained with the most uninformative µn = mean(Y ). Very similar results
hold for the less constrained case of K = .8.

Simulation (E): histograms for Ψ∗n, Ψ0
n.

Figures 4.1 and 4.2 give histograms for the TMLE estimate Ψ∗n and initial
substitution estimator Ψ0

n. A large library of learners is used to consistently
estimate µn. We see that not only is there significant bias for Ψ0

n at n = 1000,
but the histogram looks far less like a normal curve than that for Ψ∗n. The
fluctuation step of TMLE appears very successful in normalizing the histogram
despite the complex data-adaptive learning involved.
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Figure 4.1: (Histogram of TMLE estimates Ψ∗n. Y is continuous, µn and ρn
are consistently specified using machine learning, and n = 1000. The red line
depicts Ψ0.
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Figure 4.2: Histogram of initial estimates Ψ0
n. Y is continuous, µn and ρn

are consistently specified using machine learning, and n = 1000. The red line
depicts Ψ0.
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4.8 Proofs.

Proof of optimal closed-form solution d0.

We allow the possibility of a nondeterministic optimal treatment rule. In the
EP×U expressions below, U refers to possible randomization over d(V ). First,
note that we can rewrite the objective as
EP×U [Y (Z = d(V ))− Y (Z = 0)] +EPY (Z = 0) and can similarly rewrite the
cost. Thus our parameter is equivalent to

Maxd EP×U [Y (Z = d(V ))− Y (Z = 0)]

s.t. EP×U [cT (Z = d(V ),W )− cT (Z = 0,W )] ≤ K −K

Secondly, note that the optimal decision rule in the unconstrained case would
be to set d(V ) = 1 if
EP [Y (Z = 1)− Y (Z = 0)|V ] > 0, and d(V ) = 0 otherwise. Thus, we treat all
subgroups with probability 1 where the average treatment effect is positive,
and no other subgroups. This is true because Maxd(X) EXf(d(X), X) has the
solution d(X) = argmaxdf(d,X). Now if the closed-form solution is d(V ) = 1
for all V , that means there is money in the budget to treat everyone. Also,
since T (V ) ≥ τ ≥ 0 for all V , we have
EP [Y (Z = 1)− Y (Z = 0)|V ] = EW |V µ(Z = 1,W )− µ(Z = 0,W ) > 0
for all V . Thus, treatment is beneficial for all subgroups, so clearly the closed-
form solution is optimal. In another scenario, the cutoff for T (V ) for treated
groups is τ = 0, and not all groups are treated. In this case, all subgroups
where the average treatment effect (ATE) EW |V µ(Z = 1,W )− µ(Z = 0,W ) ≥
0 are treated, so again, the closed-form solution is optimal.

The only scenario where there is more work to do is when the cutoff for
T (V ) for treated groups is τ = η > 0, and there isn’t enough money in the
budget to treat all subgroups having positive ATE. (Note that η is the mini-
mum threshold for T (V ) so that treating groups with T (V ) ≥ η remains in the
budget.) Let d(V ) refer to the decision rule given by the closed-form solution,
achieving objective EP×U [Y (Z = d(V )) − Y (Z = 0)] = C. In this case, the
budget constraint must be tight: Note that assumption A3) guarantees that
S(η′) > S(η) = K −K for 0 < η′ < η, which means there is some set V with
positive support and 0 < T (V ) < η and d(V ) = 0 for V ∈ V . Then it would be
feasible within the budget and increase the objective if V where treated with
nonzero probability. Thus, EP×U [cT (Z = d(V ),W )−cT (Z = 0,W )] = K−K.

Suppose now that d(V ) is not the optimal decision rule; then there is
another rule d′(V ), such that EP×U [Y (Z = d′(V ))− Y (Z = 0)] > C. We can
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assume that the constraint is tight for d′, otherwise we can pick another d′ with
objective at least C and average cost K−K. Let V ∈ V denote the subgroups
such that T (V ) > τ ; thus d(V ) = 1 for V ∈ V , d(V ) = 0 for V /∈ V . We must
have d′(V ) > 0 for some V /∈ V ; otherwise d′ would not have higher objective
than d. Since the cost of assigning subgroups to non-baseline treatments is
the same for d and d′, we must have that the additional cost K̃ of assigning
V /∈ V with d′ must equal the savings in cost over V ∈ V . Thus,

K̃ = EV ∈VEW |V×U [cT (Z = 1,W )− cT (Z = d′(V ),W )] =

EV ∈VEW |V (1− d′(V ))[cT (Z = 1,W )− cT (Z = 0,W )] =

EV /∈VEW |V×U [cT (Z = d′(V ),W )− cT (Z = 0,W )] =

EV /∈VEW |V d
′(V )[cT (Z = 1,W )− cT (Z = 0,W )]

Then

0 < EP×U [Y (Z = d′(V ))− Y (Z = 0)]− EP×U [Y (Z = d(V ))− Y (Z = 0)]

= EVEW |V×U [µ(Z = d′(V ),W )− µ(Z = 0,W )]−
EVEW |V×U [µ(Z = d(V ),W )− µ(Z = 0,W )]

= EV ∈VEW |V×U [µ(Z = d′(V ),W )− µ(Z = 1,W )] +

EV /∈VEW |V×U [µ(Z = d′(V ),W )− µ(Z = 0,W )]

= EV ∈VEW |V (−(1− d′(V )))[µ(Z = 1,W )− µ(Z = 0,W )] +

EV /∈VEW |V d
′(V )[µ(Z = 1,W )− µ(Z = 0,W )]

≤ EV ∈V(−(1− d′(V )))EW |V [cT (Z = 1,W )− cT (Z = 0,W )] · η +

EV /∈Vd
′(V )EW |V [cT (Z = 1,W )− cT (Z = 0,W )] · η

= −K̃ · η + K̃ · η = 0

Thus, we have a contradiction, so the given closed-form solution of d(V ) is
optimal.

Derivation of canonical gradient.

Much of this is adapted from (Luedtke and van der Laan 2016a).
The pathwise derivative of Ψ(Q) is defined as d

dε
Ψ(Q(ε))|ε=0 along paths

{Pε : ε} ⊂ M. Here Q represents relevant components PW , µ(A,W ), and the
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paths are chosen so that

dPW,ε = (1 + εHW (W ))dPW ,

where EHW (W ) = 0 and CW , sup
W
|HW (W )| <∞;

dµε(Z,W ) = (1 + εHY (Y |Z,W ))dµ(Z,W ),

where EHY (Y |Z,W ) = 0 and C1 , sup
W,Z,Y

|HY (Y |Z,W )| <∞;

Note that we can assume upper and lower bounds for the cost 0 < CL <
cb,0(V ) < CU ; if a treatment has no additional cost over the baseline treat-
ment for some subgroups, we can treat those subgroups and solve the decision
problem over the remaining subgroups having a cost-benefit tradeoff.

• Proof that D1(d, P )(O) + D2(d, P )(O) is the efficient influence curve of
Ψd(P ) for fixed deterministic rule d.

This is the same derivation as for the canonical gradient of the mean causal
effect in a model without an instrumental variable or dynamic treatment, see
for example (van der Laan and Rubin 2006).

• Extending D0 to an unknown optimal rule d(V ).

Assumption A4) implies that the optimal rule d(V ) is almost surely deter-
ministic. Let d(V ) represent the deterministic rule given by the closed-form
solution.

We have that
Ψd =

∫
µ(d(V ),W )dW =

∫
W
d(V )(µ(1,W )− µ(0,W ))dW + EWµ(0,W )

=
∫
W
d(V )µb(V )dW + EWµ(0,W ). Thus,

Ψ(Pε)−Ψ(P0) =

∫
W

(EUdε(V )− d0(V ))µb,εdPW,ε

+

∫
W

d0(V )(µb,εdPW,ε − µb,0dPW,0)

+EPεµε(0,W )− EP0µ0(0,W )

=

∫
W

(EUdε(V )− d0(V ))(µb,ε − τ0(cb,ε(V )) )dPW,ε

(4.5)

+τ0

∫
V

(EUdε(V )− d0(V ))(cb,ε(V ))dPW,ε (4.6)

+Ψd0(Pε)−Ψd0(P0). (4.7)



CHAPTER 4. OPTIMAL DYNAMIC INTENT-TO-TREAT. 70

In the derivations below, note that we often leave the distribution over
V = FV (W ) implicit and specify PW , which induces a distribution PV .

• Showing that Sε(η)− S0(η) = O(ε) for η in a δx-neighborhood of η0

(δx as given in assumption A3) ).

Recall that TP (V ) =
µb,P (V )

cb,P (V )
and SP (x) = EV [I(TP (V ) ≥ x)cb,P (V )].

First note that |Kε −K0| =
∫
W
cT (0,W )dPW,ε − dPW,0

≤ ε
∫
W
cT (0,W )HW (W )dPW,0 ≤ ε · CW supW cT (0,W ), so |Kε −K0| ≤ C2 for

some constant C2.
Next, note that µb,ε(W )−µb,0(W ) = (1 + εHY (Y |Z = 1,W ))µ0(Z = 1,W )

−(1 + εHY (Y |Z = 0,W ))µ0(Z = 0,W )− µ0(Z = 1,W ) + µ0(Z = 0,W )
= ε · (HY (Y |Z = 1,W )µ0(Z = 1,W )−HY (Y |Z = 0,W )µ0(Z = 0,W ))
≤ ε · C3, for a constant C3, assuming a bounded treatment effect. Defining
FV (W ) = V to represent the V -value corresponding to W , we have

|µb,ε(V )− µb,0(V )|

≤
∣∣∣ ∫

W

µb,ε(W )I(FV (W ) = V )dPW,ε −
∫
W

µb,0(W )I(FV (W ) = V )dPW,ε

∣∣∣
+
∣∣∣ ∫

W

µb,0(W )I(FV (W ) = V )dPW,ε −
∫
W

µb,0(W )I(FV (W ) = V )dPW,0

∣∣∣
≤ ε · C3 + ε

∫
W
µb,0(W )I(FV (W ) = V )HW (W )dPW,0 ≤ ε · C4 for constant C4.

It is also straightforward to see that |cb,ε(V )− cb,0(V )| ≤ C5 · ε for constant C5.
Thus, we have

|Tε(V )− T0(V )| =
∣∣∣µb,ε(V )

cb,ε(V )
− µb,0(V )

cb,ε(V )
+
µb,0(V )

cb,ε(V )
− µb,0(V )

cb,0(V )

∣∣∣
≤ ε · C6 +

∣∣∣ µb,0(V )

cb,0(V ) + εC7cb,0(V )
− µb,0(V )

cb,0(V )

∣∣∣
≤ ε · C6 +

∣∣∣µb,0(V )

cb,0(V )
· ( 1

1 + εC7

− 1)
∣∣∣

≤ ε · C8, where the last line is from the Taylor expansion 1
1+ε

= 1 − ε + o(ε),
and the fact that µb,0 is upper bounded, cb,0 upper and lower bounded.

Finally, we have
|Sε(η)− S0(η)|



CHAPTER 4. OPTIMAL DYNAMIC INTENT-TO-TREAT. 71

=
∣∣∣ ∫

W

[
I(Tε(V ) ≥ η)cb,ε(V )

]
dPW,ε −

∫
W

[
I(T0(V ) ≥ η)cb,0(V )

]
dPW,0

∣∣∣
≤
∣∣∣ ∫

W

[
I(Tε(V ) ≥ η)cb,ε(V )

]
dPW,ε −

∫
W

[
I(Tε(V ) ≥ η)cb,ε(V )

]
dPW,0

∣∣∣
+
∣∣∣ ∫

W

[
I(Tε(V ) ≥ η)cb,ε(V )

]
dPW,0 −

∫
W

[
I(Tε(V ) ≥ η)cb,0(V )

]
dPW,0

∣∣∣
+
∣∣∣ ∫

W

[
I(Tε(V ) ≥ η)cb,0(V )

]
dPW,0 −

∫
W

[
I(T0(V ) ≥ η)cb,0(V )

]
dPW,0

∣∣∣. (4.8)

We have that
∫
W

[
I(T0(V ) ≥ η+εC8)cb,0(V )

]
dPW,0 ≤

∫
W

[
I(Tε(V ) ≥ η)cb,0(V )

]
dPW,0 ≤∫

W

[
I(T0(V ) ≥ η − εC8)cb,0(V )

]
dPW,0 =⇒

S0(η + εC8) ≤
∫
W

[
I(Tε(V ) ≥ η)cb,0(V )

]
dPW,0 ≤ S0(η − εC8), so line (4.8)

becomes K −K0 + 2 · C8cyε− (K −K0) by assumption A3).
Finally, we get |Sε(η)− S0(η)| ≤ εCW (CL + ε) + εC5 + 2 · C8cyε = CSε for

constant CS.

• Showing that τ(ε)− τ0 = O(ε).

Recall constants cx, cy, δx, δy used in assumption A3). Set c1 , CS · cx.
Pick ε small enough so that: ε(c1 · cy + C2) < δy; cx(C2 + CS)ε < δx. Let
yε = K −Kε and y0 = K −K0 = S0(η0).

The derivation above that |Sε(η) − S0(η)| ≤ CSε gives us |yε − y0| ≤ C2ε.
Set η′ = S−1

0 (yε), and note by assumption A3) that |η′ − η0| ≤ cxC2ε. Define
η1 , η′−c1ε and η2 , η′+c1ε. Note that η1, η2 are in a δx-neighborhood of η0.
Thus we have S0(η1) ≤ yε + c1cyε, S0(η2) ≥ yε − c1cyε. So S0(η1), S0(η2) are
in a δy-neighborhood of y0, so by assumption A3) |η1 − η′| ≥ c1ε ⇒ S0(η1) ≥
yε + c1/cxε = yε +CSε, and similarly, we have S0(η2) ≤ yε− c1/cxε = yε−CSε.
Using |Sε(η)−S0(η)| ≤ CSε, we have Sε(η1) ≥ yε, similarly Sε(η2) ≤ yε. By the
monotonicity of Sε(x), S−1

ε (y), we have that η1 ≤ ηε ≤ η2 where Sε(ηε) = yε.
Finally, we have |ηε− η0| ≤ |η0− η′|+ |ηε− η′| ≤ cxC2ε+ c1ε = O(ε). Thus,

|τε − τ0| = max (0, O(ε)) = O(ε).

• Showing that line (5.21) in the expansion of Ψ(Pε)−Ψ(P0) is o(ε).

We know that

T0(V )− τ0 +O(ε) ≤ Tε(V )− τε ≤ T0(V )− τ0 +O(ε)
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By assumption A4), it follows that there exists some δ > 0 s.t. sup|ε|<δPr0(Tε(V ) =
τε) = 0. By the absolute continuity of PW,ε with respect to PW,0, sup|ε|<δPrPε(Tε(V ) =
τε) = 0. It follows that, for all small enough ε and almost all U , dε(U, V ) is
the deterministic decision rule dε(U, V ) = I(Tε(V ) > τε). Hence,∫

W

(EUdε(V )− d0(V ))(µb,ε − τ0cb,ε(V ))dPW,ε

=
∣∣∣ ∫

W

(I(
µb,ε
cb,ε

> τε)− I(
µb,0
cb,0

> τ0))(µb,ε − τ0cb,ε)dPW,ε

∣∣∣
≤
∫
W

|I(µb,ε > τεcb,ε)− I(µb,0 > τ0cb,0)|(|µb,0 − τ0cb,ε|+ C4|ε|)dPW,ε

≤
∫
W

I(|µb,0 − τ0cb,0| ≤ |µb,0 − τ0cb,0 − µb,ε + τεcb,ε|)

×(|µb,0 − τ0cb,0|+ |τ0|C5ε+ C5|ε|)dPW,ε

=

∫
W

[
I(0 < |µb,0 − τ0cb,ε| ≤ |µb,0 − µb,ε + τ0(cb,ε − cb,0) + (τε − τ0)cb,ε|)

×(|µb,0 − τ0cb,0|+ C̃|ε|)
]
dPW,ε

≤ O(ε)

∫
W

I(0 < |µb,0 − τ0cb,0| ≤ O(ε))dPW,ε

≤ O(ε)(1 + CW |ε|)Pr0(0 < |µb,0 − τ0cb,0| ≤ O(ε))

Above C̃ is a new constant. We use constants and bounds from the proof
that Sε(η)− S0(η) = O(ε), the fact that cb,0 is upper and lower bounded, and
that T0(V ) and consequently τ0 are upper bounded. The last line is o(ε) be-
cause Pr(0 < X ≤ ε)→ 0 as ε→ 0 for any random variable X. Dividing by ε
and taking the limit as ε→ 0 yields zero.

• D0 is as given in theorem 2, case 1: τ0 = 0.

The first line of Ψ(Pε) − Ψ(P0) is oP (ε) according to the previous derivation,
and second line is 0 in this case, so D0 as given in theorem 2.

• D0 is as given in theorem 2, case 2: τ0 > 0.

The second line of Ψ(Pε)−Ψ(P0) expands to

τ0

[ ∫
W

EUdε(V )cb,ε(V )dPW,ε −
∫
W

d0(V )cb,0(V )dPW,0

]
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−τ0

[ ∫
W

d0(V )cb,ε(V )dPW,ε −
∫
W

d0(V )cb,0(V )dPW,0

]
We have ηε > 0 since ηε − η0 = O(ε).
In the proof of the optimal closed-form solution, we observed that in this

case of η0 > 0, we have
∫
W
dP (V )cb,P (V )dPW = K − KP for any distribu-

tion P . Thus, the first line is −Kε + K0 = −
∫
W
cT (0,W )dPW,ε − dPW,0 =

−ε
∫
W
cT (0,W )HW (W )dPW,0, where HW (W ) is a score function. Dividing by

ε and taking the limit, the contribution to the canonical gradient is from the
first line is −τ0 · (cT (0,W )−K0).

Noting that
∫
W
d0(V )cb,ε(V )dPW,ε =

∫
W
d0(V )[cε(1,W ) − cε(0,W )]dPW,ε,

we get for the second line −τ0

∫
W
d0(V )[cT (1,W ) − cT (0,W )]εHW (W )dPW,0

for score function HW (W ), so dividing by ε and taking the limit, and noting
that

∫
W
d0(V )cb,0(V )dPW,0 = K−K0, we get the contribution to the canonical

gradient is −τ0(d0(V )(cT (1,W )− cT (0,W ))− (K −K0)). We add the contri-
bution from the first line to get the term −τP (EUcT (d(V ),W )−K) of D0 as
given in theorem 2.

Proof of theorem 3 (asymptotic linearity and efficiency).

Lemma 10 (Expression for higher-order remainder terms.) Let P0, P be dis-
tributions which satisfy the positivity conditions C1), C2), and for which Y is
bounded in probability. We have that
Ψd(P )−Ψ(P0) = −P0[D∗(d, τ0, P )] +R0(d, τ0, P ).

• Proof of lemma 10.

Ψd(P )−Ψ(P0) + P0[D∗(d, τ0, P )]

= Ψd(P )−Ψd(P0) +
2∑
j=1

P0[Dj(d, P )]

+Ψd(P0)−Ψd0(P0)− τ0EP0 [cT (d(V ),W )−K]

Standard calculations show that the first term on the right equals R1(d, P ).
The second term equals EP0 [(d − d0)µb,0 − τ0[cT (d(V ),W ) − cT (d0(V ),W )]],
noting that EP0(cT (d0(V ),W )) = K. Since cT (d(V ),W ) = d(V )cb,0(V ) +
cT (Z = 0,W ), we get that the second term on the right equals R2(d, τ0, P ).

• Proof of Theorem 3.
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Ψ(P ∗n)−Ψ(P0)

= −P0D
∗(d, τ0, P ) +R0(d, τ0, P )

= (Pn − P0)D∗(d, τ0, P ) +R0(d, τ0, P ) + oP0(n
− 1

2 )

= (Pn − P0)D0 + (Pn − P0)[D∗(d, τ0, P )−D0] +R0(d, τ0, P ) + oP0(n
− 1

2 )

The first line is from lemma 10, and the second line is from C6). The middle

term on the last line is oP0(n
− 1

2 ) from C1), C2), C4), and C5), and R0(d, P,KT )

is oP0(n
− 1

2 ) from C3). This proves the claim about asymptotic linearity. Stan-
dard semiparametric theory gives the result about regularity and efficiency,
see for instance (Bickel et al 1993).

Proof of theorem 4.

Define Bn to be the function v → Tn(V )− τn, and B0 to be v → T0(V )− τ0.
We omit the dependence of Bn, B0 on V . For any t > 0, we have

R2(dn, τ0, P
∗
n) ≤ P0[|(dn − d0)B0 · cb,0|]
≤ CU · P0[I(dn 6= d0)|B0|]
= CU · P0[I(dn 6= d0)|B0|I(0 < |B0| ≤ t)]

+CU · P0[I(dn 6= d0)|B0|I(|B0| > t)]

≤ CU · P0[|Bn −B0|I(0 < |B0| ≤ t)]

+CU · P0[|Bn −B0|I(|Bn −B0| > t)]

≤ CU
[
‖Bn −B0‖2,P0Pr0(0 < |B0| ≤ t)1/2 +√
‖Bn −B0‖2

2,P0
P0I(|Bn −B0| > t)

]
≤ CU

[
‖Bn −B0‖2,P0C

1/2
0 tα/2 +

√
‖Bn −B0‖2

2,P0

P0|Bn −B0|
t

]
≤ CU

[
‖Bn −B0‖2,P0C

1/2
0 tα/2 +

‖Bn −B0‖3/2
2,P0

t1/2
]

where CU is an upper bound on the cost function cb,0, and C0 in the penultimate
line is the constant implied by equation 4.4. The third from last line is from
the Cauchy-Schwarz inequality and the next to last line is from the Markov
inequality. The first part of theorem 4 follows by plugging t = ‖Bn−B0‖1/(1+α)

2,P0

into the upper bound above.
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We also have that

|R2(dn, τ0, P
∗
n)| ≤ P0[I(dn 6= d0)|B0|CU ]

≤ CU · P0[I(0 < |B0| ≤ |Bn −B0|)|B0|]
≤ CU · P0[I(0 < |B0| ≤ ‖Bn −B0‖∞,P0)|B0|]
≤ CU‖Bn −B0‖∞,P0PrP0(0 < |B0| ≤ ‖Bn −B0‖∞,P0)

By equation 4.4, and plugging in t = ‖Bn−B0‖∞,P0 , it follows thatR2(dn, τ0, P
∗
n) .

‖Bn −B0‖1+α
∞,P0

.

Proof that τn → τ0 for lemma 15.

We show ηn → η0, and then the consistency of τn follows by the continuous
mapping theorem.

• supV |Tn(V )− T0(V )| = oP0(1) when KT,0 > K.

(It would suffice to show E0|Tn(V ) − T0(V )| = oP0(1) for this part of
the proof, and hence τn → τ0. However, we need that Tn(V ) → T0(V )
uniformly over V in order to have that dn(V ) = d0(V ) with probability
approaching 1, so we prove the stronger result.)

Note that PW,n|V denotes the empirical distribution PW,n given V . Assume
conditions E1)-E4) given in section 4.6 hold.

Invoking E1) and E2), we have

sup
V
|Tn(V )− T0(V )| = sup

V

∣∣∣µb,n(V )

cb,n(V )
− µb,0(V )

cb,0(V )

∣∣∣
= sup

V

∣∣∣PW,n|V µb,n
PW,n|V cb,n

−
PW,0|V µb,0
PW,0|V cb,n

∣∣∣
−→P0 sup

V

|PW,n|V µb,n − PW,0|V µb,0)|
|PW,0|V cb,n|

≤ sup
V

|PW,n|V µb,n − PW,0|V µb,n|
|PW,0|V cb,n|

+ sup
V

|PW,0|V µb,n − EPW,0|V µb,0|
|PW,0|V cb,n|

≤ 1

CL
sup
V
|PW,n|V µb,n − PW,0|V µb,n|+

1

CL
sup
V
|PW,0|V µb,n − PW,0|V µb,0|

−→P0 o(1).
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In getting to the next to last line, we used the lower bound on cost cb(W ) ≥ CL.

• Next we show that Sn(η) −→ S0(η).

Let η be in the neighborhood of η0 so that assumptions A3), A4) hold.∣∣Sn(η)− S0(η)
∣∣

=
∣∣Pn[I(Tn ≥ η)cb,n]− P0[I(T0 ≥ η)cb,0]

∣∣
≤
∣∣P0[I(Tn ≥ η)cb,n − I(T0 ≥ η)cb,0]

∣∣+
∣∣(Pn − P0)[I(Tn ≥ η)cb,n]

∣∣
≤
∣∣P0[I(Tn ≥ η)cb,n − I(T0 ≥ η)cb,0]

∣∣+ oP0(1)

The last line is because Sn(η) = EV,n[I(Tn(V ) ≥ η)cb,n(V )] is a GC-class by
condition E3).

Note that assumption A3) guarantees that, for η in a neighborhood of η0,
P0(T0 = η) = 0: otherwise, given the non-zero cost of treating any subgroup,
we would have strictly larger cost of treating groups with T0(V ) < η than the
cost of treating groups with T0(V ) > η, so S(x) would have infinite slope at η.
Let Zn(η, V ) , (I(Tn(V ) ≥ η)− I(T0(V ) ≥ η))2. Then we have for all q > 0:∣∣P0[I(Tn ≥ η)cb,n − I(T0 ≥ η)cb,0]

∣∣
≤ P0

∣∣[I(Tn ≥ η)cb,0 − I(T0 ≥ η)cb,0]
∣∣+ P0

∣∣I(Tn ≥ η)(cb,0 − cb,n)
∣∣

≤ CUP0Zn(η, ·) + oP0(1)

= CU
[
P0Zn(η, ·)I(|T0 − η)| > q) + P0Zn(η, ·)I(|T0 − η| ≤ q)

]
+ oP0(1)

= CU
[
P0Zn(η, ·)I(|Tn − T0| > q) + P0Zn(η, ·)I(0 < |T0 − η| ≤ q)

]
+ oP0(1)

≤ CU
[
P0(|Tn − T0| > q) + P0(0 < |T0 − η| ≤ q)

]
+ oP0(1)

≤ CU
[E0|Tn(V )− T0(V )|

q
+ P0(0 < |T0 − η| ≤ q)

]
+ oP0(1)

The third line follows from the upper bound CU on cb0(V ), and on the
assumption about supV |cb,n(V ) − cb,0(V )|. The fifth line is from the guaran-
tee that P0(T0(V ) = η) = 0, described above. Finally, the last line is from
Markov’s inequality.

Since the above derivation holds for any q > 0, and we proved that
E0|Tn(V ) − T0(V )| = oP0(1), we can construct a sequence qn −→ 0 such that
E0|Tn(V )−T0(V )|

qn
−→P0 0, and P0(0 < x ≤ qn) = 0 as qn −→ 0 for any r.v. x.

Finally, we have |Sn(η)− S0(η)| = oP0(1).
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• ηn −→ η0.

Fix ε > 0 small enough so that η0 + /− ε is a neighborhood for the purposes
of A3). Note that Kn = EW,ncT (Z = 0,W ) converges to K0 = PW,0cT (Z =
0,W ). Thus, there is some N1 s.t. for n ≥ N1, |(K −Kn)− (K −K0)| ≤ ε

2cx
,

where cx is the constant from assumption A3) (Lipschitz continuity of S−1
0 ).

Let η′ = S−1
0 (K − Kn). We have |η0 − η′| ≤ ε

2
by A3). Let ηl = η′ − ε

2
,

ηr = η′+ ε
2
. Then S0(ηl) > K−Kn, S0(ηr) < K−Kn. For n bigger than some

N2, Sn(ηl) > K −Kn, Sn(ηr) < K −Kn. Thus, ηl ≤ ηn = S−1
n (K −Kn) ≤ ηr

by the monotonicity of the S(x) function. So |ηn−η0| ≤ |ηn−η′|+ |η′−η0| ≤ ε.

Finally, we get τn −→ τ0.
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Chapter 5

Optimal dynamic treatments.

5.1 The model.

We now turn our attention to the problem of estimating the mean counterfac-
tual outcome under an optimal dynamic treatment regime, when an instrumen-
tal variable is needed to make consistent estimates of treatment effect. This
allows us to answer questions like: what would be the mean outcome under
an optimal treatment regime, if we could truly achieve compliance with treat-
ment? In the case of the get-out-the-vote campaign, an interesting question
is how effective would the optimal assignment of phone calls be in mobilizing
voters, if people could actually be assigned to participate in the phone call.
Once again, we have iid data (W,Z,A, Y ) ∼M, whereM is a semiparametric
model, and Z an instrument for identifying the effect of treatment A on out-
come Y , when one has to account for unmeasured confounding. V ⊆ W is an
arbitrary fixed subset of the baseline covariates. In this chapter, the unknown
optimal dynamic treatment rule d(V ) gives the intervention A = d(V ) to make
on treatment variable A such that the optimal value of mean counterfactual
outcome Y is attained.

We restrict our attention to a binary instrument. If Z is continuous or
categorical, we can still use it for an instrumental variables model if it has
two values Z = z1, Z = z2 such that those two values induce variation in
A as per assumption 3, part 3. Treatment A can be binary, categorical, or
continuous. The solutions sketched out in sections 4.3 for the case of a con-
tinuous treatment and linear cost function, or for a categorical treatment, are
equally relevant here. We assume outcome Y is binary or continuous. Let
cA(A,W ) denote the cost function giving the cost of treating an individual
having covariates Z with treatment A. When A is continuous, we assume
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the treatment variable represents the magnitude of treatment in [Amin, Amax],
and we make the simplifying assumption that we have a linear cost function
cA(A,W ) = cA(W )A. To make our notation consistent, we assume continuous
treatment values are converted to span the unit interval. Finally, we have a
cost constraint EcA(A,W ) ≤ K, for a fixed cost K.

Notation. We again assume wlog that treatment A = 0 is the baseline
treatment with lower cost for all V : EW |V cA(0,W ) ≤ EW |V cA(1,W ). 1 Let

K0 , EW cA(0,W ) be the cost of not assigning any individuals to treatment,
and KT,0 , EW cA(1,W ) be the total cost of assigning everyone, and we as-
sume a nontrivial constraint K ≤ KT,0. We have PW , PrV |W , ρ(W ) ,
Pr(Z = 1|W ),Π(W,Z) , E(A|W,Z), µ(W,Z) , E(Y |W,Z) defined as be-
fore, and notation cb(V ) , EW |V

[
cT (Z = 1,W )− cT (Z = 0,W )

]
. We also use

notation m(V ) , EW |V
[
m(Z = 1,W )−m(Z = 0,W )

]
, where m is the causal

effect function defined in the causal assumptions.

Causal model. We assume the same causal model as chapter 3. These
assumptions guarantee that E(Y (A = a)) equals EWm(W )a+ θ(W ) for iden-
tifiable functions m, θ.

Recall our structural equation notation,
W = fW (UW ), Z = fZ(W,UZ), A = fA(W,Z,UA), Y = fY (W,Z,A, UY ) where
U = (UW , UZ , UA, UY ) ∼ PU,0 is an exogenous random variable, and fW , fZ ,
fA, fY may be unspecified or partially specified (for instance, we might know
that the instrument is randomized). UY is possibly confounded with UA.

Assumption 3 Assumptions ensuring that Z is a valid instrument:

1. Exclusion restriction. Z only affects outcome Y through its effect on
treatment A. Thus, fY (W,Z,A, UY ) = fY (W,A,UY ).

2. Exogeneity of the instrument. E(UY |W,Z) = 0 for any W,Z.

3. Z induces variation in A. Var0[E0(A|Z,W )|W ] > 0 for all W .

Structural equation for outcome Y :

4. Y = Am(W ) + θ(W ) + UY for continuous Y , and
Pr(Y = 1|W,A, ŨY ) = Am(W ) + θ(W ) + ŨY for binary Y ,

1Again we can forgo this assumption by introducing notation, i.e. A = l(V ) is the lower
cost treatment value for a stratum defined by covariates V .
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where UY = (ŨY , U
′
Y ) for an exogenous r.v. U ′Y

2 , and m, θ are unspec-
ified functions.

Assumptions 2 and 4 yield that, whether Y is binary or continuous,

E(Y |W,Z) = m0(W )Π0(W,Z) + θ0(W )

We have a saturated model for fY (W,Z,UY ) when A is binary. It should
also be noted that we don’t require the instrument to be randomized with
respect to treatment (UZ ⊥⊥ UA| W is not necessary).

Causal parameter of interest.

Ψ(P0) , Maxd E0Y (A = d(V )) s.t. E0[cA(A = d(V ),W )] ≤ K (5.1)

Identifiability. m(W ) is identified as
[
(µ(W,Z = 1) − µ(W,Z =

0))/(Π(W,Z = 1)−Π(W,Z = 0))
]
. θ(W ) is identified as

[
µ(W,Z)−Π(W,Z) ·

m(W )
]
. Lemma 1 (ch. 3) states this as a formal identifiability result.

Statistical model. The above stated causal model implies the statisti-
cal model M consisting of all distributions P of O = (W,Z,A, Y ) satisfying
EP (Y |W,Z) = mP (W ) ·ΠP (W,Z) + θP (W ). Here mP and θP are unspecified
functions and ΠP (W,Z) = EP (A|W,Z) such that V arP (ΠP (Z,W )|W ) > 0 for
all W . Note that the regression equation EP (Y |W,Z) = mP (W ) ·ΠP (W,Z) +
θP (W ) is always satisfied for some choice of m(W ), θ(W ) when Z is binary.
The distribution for the instrument ρ(W ) may or may not be known, and we
generally think of all other components PW ,Π,m, θ as unspecified.

Statistical target parameter.

Lemma 11 The causal parameter given in 5.1 is identified by the statistical
target parameter:

Ψ0 = EPW,0m0(W )d0(V ) + θ0(W ) (5.2)

2The U ′Y term is an exogenous r.v. whose purpose is for sampling binary Y . Let
U ′Y be a Unif[-.5,.5] r.v. (we set it to have 0 mean to conform to assumption 2.) Then

Y = 1((U ′Y + .5) < f̃Y (W,Z,A, ŨY ))
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Note that optimal decision rule d0 is a function of m0, PW,0. For Ψ0 we also use
the notation Ψ(PW,0,m0, θ0), or alternately Ψ(PW,0,Π(W,Z), µ(W,Z)), using
the above identifiability results.

This lemma follows from our causal assumptions:
Ψ(P0) = EY (A = d0(V )) = EWEUY |WEY (A = d0(V )|W,UY )
The right hand side becomes EWEUW |Y (m(W )d0(V ) + θ(W ) + UY ) for a con-

tinuous Y , and EWEUW |Y (m(W )d0(V ) + θ(W ) + ŨY ) for a binary Y .

5.2 Assumptions for identifiability and

pathwise differentiability.

We use notation d0 = dP0 , τ0 = τP0 , etc.

A1) The four causal assumptions denoted Assumption 3 above are satis-
fied. (Z is a valid instrument for identifying the causal effect of A on Y , and
a marginal structural model guarantees identifiability.)

A2) Positivity assumption: 0 < ρ0(W ) < 1.

A3) There is a neighborhood of η0 where S0(x) is Lipschitz continuous,
and a neighborhood of S0(η0) = K−K0 where S−1

0 (y) is Lipschitz continuous.
We have |η1−η2| < ε⇒ |S0(η1)−S0(η2)| < cyε for η1, η2 in a δx-neighborhood
of η0; and |y1 − y2| < ε ⇒ |S−1

0 (y1) − S−1
0 (y2)| < cxε, for y1, y2 in a δy-

neighborhood of K −K0, for some constants cx, cy.

A4) Pr0(T0(V ) = τ) = 0 for all τ in a neighborhood of τ0.

Note that A3) implies that S−1
0 (K −K0) exists.

Condition A4) ensures a non-exceptional law, so that Ψ0 is pathwise dif-
ferentiable. The optimal rule d(V ) over the class of non-deterministic rules is
a deterministic rule in this case (Luedtke and van der Laan, 2016a).
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5.3 Closed-form solution of optimal rule for

the case of binary treatment.

The closed-form solution is the same as in chapter 4, with the two main modi-
fications that: 1) replace intervention variable Z with A, and 2) replace µb(W )
with m(W ). These latter quantities represent the effect on Y of applying the
intervention vs the baseline treatment (at Z or A).

Again let d(V ) = 0 denote the baseline treatment having lower cost given

V . Define a scoring function T (V ) = m(V )
cb(V )

for ordering subgroups (given by

V ) based on the effect of treatment per unit cost. In the optimal treatment
rule, all groups with the highest T (V ) are assigned deterministically, which
under our assumptions has cost exactly K and there is a unique solution. We
write TP (V ) to make explicit the dependence on PW ,m(W ) from distribution
P .

Again we have a function SP (x) = EPV [I(TP (V ) ≥ x)(cb,P (V )] which gives
the expected (additional above-baseline) cost of treating all subgroups having
TP (V ) ≥ x. Cutoff η and τ for TV are defined as before, as is the optimal
decision rule d(V ):

ηP = S−1
P (K −KP )

τP = max{ηP , 0}

dP (V ) = 1 iff TP (V ) ≥ τP

Lemma 12 Assume A2)-A4). Then the optimal decision rule d0 for parame-
ter Ψ0 as defined in 5.2 is the deterministic solution
d0(V ) = 1 iff T0(V ) ≥ τ0, with T0, τ0 as defined above.

The proof that this is the unique optimal solution is the same as in chapter
4. The extensions given in section 4.3 to a continuous intent-to-treat variable
Z under a linear cost function, and to a categorical Z, apply here as well.

5.4 Efficient influence curve D∗(Ψ0).

Lemma 13 Let

J0(Z,W ) =
I(Z = 1)

ρ0(W )
+

( I(Z=1)
ρ0(W )

− I(Z=0)
1−ρ0(W )

)(
d(V )− Π0(W,Z = 1)

)
Π0(W,Z = 1)− Π0(W,Z = 0)
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The efficient influence curve D∗(Ψ0) is

D∗(Ψ0) = −τ0EP0 [cT (d(V ),W )−K] (5.3)

+m0(W )d(V ) + θ0(W )−Ψ0 (5.4)

−J0(Z,W )m0(W )
[
A− Π0(W,Z)

]
(5.5)

(5.6)

+J0(Z,W )
[
Y − (m0(W )Π0(W,Z)− θ0(W ))

]
(5.7)

We also write D∗(d0, τ0, P0). For convenience, denote lines (1)-(4) of D∗ above
as D∗c , D

∗
W , D

∗
A, and D∗Y , respectively.

The derivation for this is given in section 5.8.

Checking that D∗ is in tangent space TP0
.

We need to check that D∗(Ψ0) is in the tangent space TP,0 of the semipara-
metric statistical model given in 5.1. We denote the subspaces as TP,0 =
TY + TA + TZ + TW , where TY is the tangent space of the Pr(Y |W,Z,A) com-
ponent in our model M, and so forth for TA, TZ , TW . Note that components
D∗W , D∗c are mean-zero functions of W , so D∗W +D∗c is clearly in TW given our
nonparametric model for Pr(W ).

Further note that for binary Z, any function h(Z,W ) can be written as
h1(W )Z + h2(W ), so we can write J0(Z,W ) in this form.

Y is continuous.
We need to verify that there are score functions sP spanning D∗Y + D∗A

at model P with respect to paths {Pε} s.t. P, {Pε} ⊆ M, using statistical
model M as given in 5.1. Let Pr(W ), ρ(W ) = Pr(Z|W ), Π(Z,W ), m(W ),
and θ(W ) be arbitrary functions. The first D∗W component is clearly in the
tangent space of Pr0(W ). Let Pr(Y |W,Z,A) = pnorm(r(W,A, Y )), where
we have residual r(W,A, Y ) = Y − m(W )A − θ(W ). Thus, Y is normally
distributed, with no confounding term in the semiparametric regression model.
Finally, let Prε(Y |W,Z,A) = pnorm(rε(W,Z,A, Y )), where rε(W,Z,A, Y ) =
Y −m(W )A− θ(W )− ε(Π(W,Z)h1(W ) + h2(W )). Note that Prε(Y |W,Z,A)
stays in our model, because we have Y = (m(W ) + εh1(W ))A + (θ(W ) +
εh2(W )) + ε(Π(Z,W )− A)h1(W ), where the last term is mean 0 given W,Z.
Then we have sP = (h1(W )Z + h2(W ))(Y −m(W )A− θ(W )), so (D∗Y +D∗A)
is in the tangent space of P (Y |W,Z,A).

Y is binary.
Fix arbitrary Pr(W ), Pr(Z|W ), Π(W,Z), m(W ), and θ(W ). We first define

a fluctuation Pε on E(A|W,Z) = Π(W,Z). If A is binary, we have
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Pr(A = 1|W,Z) = Π(Z,W ), and use fluctuation
Πε(W,Z) = Π(W,Z) + εΠ(W,Z)(1−Π(W,Z))(h1(W )Z + h2(W ))m(W ). If A
is continuous, we use the model A = Π(W,Z) + rA(W,Z), where rA(W,Z) is a
N(0, 1) residual term, and we use fluctuation A = Π(W,Z)+εm(W )(h1(W )Z+
h2(W )) + rA(W,Z) for residual term rA(W,Z) ∼ N(0, 1). In either case, it
is straightforward to check that the score with respect to Pε is (h1(W )Z +
h2(W ))m(W )(A− Π(W,Z)).

We now define another fluctuation Pε on Pr(Y |W,A,Z). We use model
Pr(Y |W,Z,A) = m(W )A + θ(W ) + m(W )(Π(W,Z)− A) = m(W )Π(W,Z) +
θ(W ) , µ(W,Z). Note that Pr(Y |W,Z,A) ⊆M. Set Pε so that Pr(Y |W,Z,A) =
mε(W )A + θε(W ) + UY = mε(W )Π(W,Z) + θε(W ). We have that µ(W,Z) is
fluctuated by ε(µ(W,Z)(1 − µ(W,Z))(h1(W )Z + h2(W ))) , εµ′(W,Z). Note
that since Z is binary, µ′(W,Z) can be written as µ′(W,Z) = l1(W )Z+ l2(W ).
Since Π(W,Z = 1) 6= Π(W,Z = 0) for any W and Z is binary, simple algebra
shows we can write µ′(W,Z) as m′(W )Π(W,Z)+θ′(W ) for some m′, θ′. Thus,
we have Prε(Y |W,Z,A) = (m(W )+εm′(W ))Π(Z,W )+(θ(W )+εθ′(W )), and so
clearly Pε ⊆M. It follows that sP = (h1(W )Z+h2(W ))(Y −m(W )Π(W,Z)−
θ(W )).

Note that if µ(Z,W ) equals 0 or 1 above, then there is a potential issue
with the fluctuation moving outside permissible bounds [0, 1]. However, in this
case D∗ vanishes as the (Y −µ(Z,W )) term is 0, and the fluctuation µ′(Z,W )
has value 0. Similar comments apply to binary A, Π(W,Z) = 0 or 1.

Finally, it follows that D∗Y +D∗A is in tangent space TY + TA.

5.5 Remainder term.

We calculate the remainder term R(P, P0) , Ψ(P )−Ψ(P0) + P0(D∗(P )) and
verify that it is second-order. J(Z,W ) is the coefficient as defined above. We
have

R0(P, P0) = (5.8)

Ψd(P )−Ψ(P0) + P0[D∗(d, τ0, P )] (5.9)

= Ψd(P )−Ψd(P0) + P0D
∗
W (d, P ) + P0D

∗
A(d, P ) + P0D

∗
Y (d, P ) (5.10)

+Ψd(P0)−Ψd0(P0)− τ0EP0 [cT (d(V ),W )−K] (5.11)

We can write R0(P, P0) = Rd(P, P0) + Rc(P, P0), where Rd, Rc are lines 5.10
and 5.11, respectively. Rd is the remainder term when estimating Ψ treating
the estimated decision rule as correct, while Rc is the remainder term arising
from the estimation of d.
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We have

R(P, P0) = Rd(P, P0) + P0

[
(d− d0)(m0(V )− τ0cb,0(V ))

]
(5.12)

with

Rd(P, P0) = (5.13)

P0

[
ρ0 − ρ
ρ

(
(m0 −m)Π0(W, 1) + (θ0 − θ)

)(
1 +

d− Π(W, 1)

Π(W, 1)− Π(W, 0)

)]

+P0

[
ρ− ρ0

1− ρ

(
(m0 −m)Π0(W, 0) + (θ0 − θ)

)( −(d− Π(W, 1))

Π(W, 1)− Π(W, 0)

)]

+P0

[
(m0 −m)

(
(Π0(W, 1)− Π(W, 1))− (Π0(W, 0)− Π(W, 0))

)
×
( d− Π(W, 1)

Π(W, 1)− Π(W, 0)

)]
+P0

(
(m0 −m)(Π0(W, 1)− Π(W, 1))

)
We can alternatively write R(P, P0) as a function of the estimated distri-

bution R0(d, τ0, P ).

Lemma 14 (Expression for higher-order remainder terms.) Let P0, P be
distributions which satisfy the positivity assumptions C1), C2), and for which
Y is bounded in probability. Then

Ψ(P )−Ψ(P0) = −P0[D∗(d, τ0, P )] +R0(d, τ0, P )

with R0(d, τ0, P ) as given in equations 5.12, 5.13.

5.6 TMLE-based estimators.

We propose two different TMLE-based estimators for Ψ0. The first estimator is
analogous to the iterative estimator and the second to the non-iterative logistic
estimator given in chapter 3. The important advantage of the iterative one is
that it involves a standard, numerically well-behaved and easily understood,
likelihood maximization operation at each step. The second estimator, on
the other hand, has the advantages that 1) there is a one-step solution with
no need to reach convergence iteratively, and 2) the estimate µ respects the
bounds of Y found in the data.



CHAPTER 5. OPTIMAL DYNAMIC TREATMENTS. 86

Iterative estimator.

The relevant components for estimating Ψ(Q) = EW [m(W )d(V ) + θ(W )] are
Q = (PW ,m, θ). The nuisance parameters are g = (ρ,Π). d(V ) and τ can be
thought of as functions of PW ,m here. Let
h1(W ) , 1

ρ(W )(Π(W,1)−Π(W,0))
+ d(V )−Π(W,1)

(Π(W,1)−Π(W,0))2
1

ρ(W )(1−ρ(W ))
. Also, let

h2(W ) , 1
ρ

[
1− Π(W,1)

Π(W,1)−Π(W,0)
+ d−Π(W,1)

Π(W,1)−Π(W,0)
(1− Π(W,1)

Π(W,1)−Π(W,0)
1

1−ρ)
]
.

Then we have that D∗Y = (h1Π + h2)(Y −mΠ− θ).
If A is not binary, convert A to the unit interval via a linear transformation

A → Ã so that Ã = 0 corresponds to Amin and Ã = 1 to Amax. We assume
A ∈ [0, 1] from here.

1. Use the empirical distribution PW,n to estimate PW . Make initial esti-
mates of Q = {mn(W ), θn(W )} and gn = {ρn(W ),Πn(W,Z)} using any
strategy desired. Data-adaptive learning using Super Learner is recom-
mended.

2. The empirical estimate PW,n gives an estimate of PrV,n(V ) = EW,nI(FV (W ) =
V ), Kn = EW,nc(0,W ), KT,n = EW,nc(1,W ), and cb,n(V ) = EW,n|V (cT (1,W )−
cT (0,W )).

3. Estimate mn(V ) as EW,n|Vm(W ).

4. Estimate T0(V ) as Tn(V ) = mn(V )
cb,n(V )

.

5. Estimate S0(x) using Sn(x) = EV,n[I(Tn(V ) ≥ x)(cb,n(V ))].

6. Estimate η0 as using ηn = S−1
n (K −Kn)

and τn = max{0, ηn}.

7. Estimate the decision rule as dn(V ) = 1 iff Tn(V ) ≥ τn.

—————————————————————————————-
ITERATE STEPS 8)-9) UNTIL CONVERGENCE:

8. Fluctuate the initial estimate ofmn(W ), θn(W ) as follows: Using µn(W,Z) =
mn(W )Πn(W,Z) + θn(W ), run an OLS regression:

Outcome: (Yi : i = 1, . . . , n)
Offset: (µn(Wi, Zi), i = 1, . . . , n)

Covariate: (h1(Wi)Π(Wi, Zi) + h2(Wi) : i = 1, . . . , n)
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Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1(Yi − µn(ε)(Wi, Zi))

2 and
µn(ε)(W,Z) = µn(W,Z) + ε(h1(W )Π(W,Z) + h2(W )).

Note that µn(ε) = (mn + εh1)Π + (θn + εh2) stays in the semiparametric
regression model.

Update mn to mn(ε), θn to θn(ε).

9. Now fluctuate the initial estimate of Πn(Z,W ) as follows: Use covariate
J(Z,W ) as defined in lemma 13. Run a logistic regression using:

Outcome: (Ai : i = 1, . . . , n)
Offset: (logitΠn(Wi, Zi), i = 1, . . . , n)

Covariate: (K(Wi, Zi)m(Wi) : i = 1, . . . , n)

Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1[Πn(ε)(Wi, Zi) logAi+(1−Πn(ε)(Wi, Zi)) log(1−Ai)]

and Πn(ε)(W,Z) = logit−1(logitΠn(Z,W ) + εK(W,Z)m(W )).
Update Πn to Πn(ε). Also update h1(W ), h2(W ) to reflect the new Πn.
——————————————————————————————–

10. Finally, form final estimate of Ψ0 = Ψd0(P0) using the plug-in estimator

Ψ∗ = Ψdn(P ∗n) =
1

n

n∑
i=1

m∗n(Wi) · dn(Vi) + θ∗n(Wi)

• Showing that PnD(dn, τ0, P
∗
n) = 0.

The usual calculations (given in 3.2) show that for the linear fluctuation
m(ε), θn(ε) with quadratic loss function,
d
dε
L(Qn(ε|gn), gn, (O1, ..., On))|ε=0 = Jn(Z,W )(Y−µn), so we have PnD

∗
Y =

0 upon convergence. Similarly, for the logistic fluctuation Πn(ε) with lo-
gistic loss function, we have d

dε
L(Qn(ε|gn), gn, (O1, ..., On))|ε=0 =

Jn(Z,W )mn(A − Πn), and PnD
∗
A = 0 upon convergence. As usual

PnD
∗
W = 0 when using the empirical distribution PW,n. Lastly, we have

PnDc(dn, τ0, P
∗
n) = 0 for the third term of the canonical gradient as well,

because EV,nEW,n|V cT (dn(V ),W ) = K, unless τ0 = 0. (This is described
in the proof of optimality of the closed-form solution.)
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Non-iterative, logistic estimator.

As in chapter 3, several variants of a non-iterative TMLE-based estimator are
possible. We present here one based on a logistic fluctuation and logistic loss
function, as this enables us to match the observed bounds of Y . (Gruber and
van der Laan 2010) have shown performance gains of this feature when the
data is sparse. This estimator essentially parallels the logistic estimator given
in chapter 3, so we present it briefly. We fluctuate mn(W ) → mn(ε)(W ) so
that the efficient influence curve equation is directly solved:
PnD

∗(Q∗n = {m0
n(ε), θn, PW,n}, gn = {ρn,Πn}) = 0.

Assume Y has been converted via a linear transformation Y → Ỹ , so that
0 corresponds to the minimum value and 1 to the maximum. We use notation
Ỹ , m̃, θ̃ to reflect the change of scale. Knowing that EY (A = 1|W )−EY (A =
0|W ) = m0(W ), we can think of m̃0 as being in [−1, 1]. We bound m̃0

n to be
in [−1, 1]. We use fluctuation

m̃0
n(ε)(W ) = 2× logistic(logit(

m̃0
n(W ) + 1

2
) + ε)− 1 (5.14)

This corresponds to the mapping f(ε) = logistic(logit(f) + ε) where f is m̃0
n

scaled to be in [0, 1].
Thus, we get that D∗(Q∗, gn) = 0 reduces to

1

n

n∑
i=1

[
Jn(W,Z)(Ỹ − A · m̃0

n(ε)(W )− θ̃n(W ))
]

= 0 (5.15)

Since E0(Ỹ − A · m̃0(W ) − θ̃0(W )|W,Z) = 0, the equation above has a
solution ε for any reasonable estimates (Q0

n, gn). We can use bisection as a
computationally simple method to find ε. Once one solves for ε and finds
m̃∗n = m̃0

n(ε), one converts back to the original scale for outcome Y , by setting
m∗n = m̃∗n · (max(Y ) − min(Y )). Then the parameter of interest is evaluated
by finding Ψ(dn, P

∗
n).

5.7 Theoretical results: efficiency, double

robustness, and valid inference for Ψ∗n.

Conditions for efficiency.

These six conditions are needed to prove asymptotic efficiency (theorem 5).
When all relevant components and nuisance parameters are consistently spec-
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ified, C3) and C4) hold, while C6) holds by construction of the TMLE esti-
mator.

C1) ρ0(W ) satisfies the strong positivity assumption: Pr0(δ < ρ0(W ) <
1− δ) = 1 for some δ > 0.

C2) The estimate ρn(W ) satisfies the strong positivity assumption, for a
fixed δ > 0 with probability approaching 1, so we have Pr0(δ < ρn(W ) <
1− δ)→ 1.

Remainder terms R0(d, τ, P ) are defined in section 5.5.

C3) R0(dn, τ0, P
∗
n) = oP0(n

− 1
2 ).

C4) P0[(D(dn, τ0, P
∗
n)−D0)2] = oP0(1).

C5) D(dn, τ0, P
∗
n) belongs to a P0-Donsker class with probability approach-

ing 1.

C6) 1
n

∑n
i=1D(dn, τ0, P

∗
n)(Oi) = oP0(n

− 1
2 ).

Sufficient conditions for lemma 15.

The following four conditions are sufficient for lemma 15. When all relevant
components and nuisance parameters converge at a O(n−

1
2 ) rate, asymptotic

efficiency as given in theorem 5 holds, and we expect all these conditions below
to also hold, giving lemma 15.

E1) GC-like property for cb(V ), mn(V ): supV |(EW,n|V −EW,0|V )mn(W )| =
oP0(1), similarly for cb(V ).

E2) supV |EW,0|V µb,n(W )− EW,0|V µb,0(W )| = oP0(1)
(This is needed for the proof that dn(V ) = d0(V ) with probability approaching
1.)

E3) Sn(x), defined as x→ EV,n[I(Tn(V ) ≥ x)cb,n(V )] is a GC-class.
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E4) Convergence of ρn, Πn, mn, θn to ρ0, Π0, m0, θ0, respectively, in L2(P0)
norm at a O(n−1/2) rate (this is needed in several places).

Theoretical properties of Ψ∗n.

Theorem 5 (Ψ∗ is asymptotically linear and efficient.) Assume assumptions
A1)-A4) and conditions C1)-C6). Then Ψ∗ = Ψ(P ∗n) = Ψdn(P ∗n) as defined
by the TMLE procedure is a RAL estimator of Ψ(P0) with influence curve
D∗(Ψ0), so

Ψ(P ∗n)−Ψ(P0) =
1

n

n∑
i=1

D∗(Ψ0)(Oi) + oP0(n
− 1

2 ).

Further, Ψ∗ is efficient among all RAL estimators of Ψ(P0).

Inference. Let σ2
0 = V arP0D

∗(Ψ0). By theorem 5 and the central limit
theorem,

√
n(Ψ(P ∗n)−Ψ(P0)) converges in distribution to a N(0, σ2

0) distribu-
tion. Let σ2

n = 1
n

∑n
i=1D

∗(dn, τn, P
∗
n)(Oi)

2 be an estimate of σ2
0.

Lemma 15 Under the conditions C1)-C2), and E1)-E4) we have σn −→P0 σ0.
Thus, an asymptotically valid 2-sided 1− α confidence interval is given by

Ψ∗ ± z1−α
2

σn√
n

where z1−α
2

denotes the (1− α
2
)-quantile of a N(0, 1) r.v.

Proofs.
The proof of theorem 5, and the proof that τn → τ0 as needed for lemma

15, are essentially the same as the corresponding proofs in chapter 4 section
4.8, with µb replaced by m.

Double robustness of Ψ∗n.

We have a double robustness result for Ψ0. As in chapter 4, Ψ∗ is not a
double robust estimator of Ψ0: component m(W ) must always be consistently
specified as a necessary condition for consistency of Ψ∗. However, if we consider
Ψ∗ = Ψdn(P ∗n) as an estimate of Ψdn(P0), where the optimal decision rule dn(V )
is estimated from the data, then we have that Ψ∗ is double robust:
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Lemma 16 (Ψ∗ is a double robust estimator of Ψdn(P0).) Assume A1)-A4)
and C1)-C2). Also assume V ar0(Dd(dn, P

∗
n)) <∞.

Then Ψ∗ = Ψ(dn, P
∗
n) is a consistent estimator of Ψdn(P0) when either:

• mn and θn are consistent

• ρn and Πn are consistent

• mn and ρn are consistent

Above Dd refers to DY + DA + DW , the portions of the efficient influ-
ence curve that are orthogonal to variation in decision rule d. This lemma is
straightforward to prove. First, observe that
Ψdn(P ∗n)−Ψdn(P0) = −P0

[
D∗d(dn, P

∗
n)
]

+Rd(dn, P
∗
n).

By our TMLE procedure for Ψ∗, PnDd(dn, P
∗
n) = 0, so the rhs becomes

(Pn − P0)D∗d + Rd, for a second-order remainder term as given in section 5.5,

which is OP0(n
− 1

2 ) when either of the consistency conditions hold.

Discussion of conditions for theorem 5.

Condition C3. This is satisfied when both Rd(dn, P
∗
n) and Rc(dn, τ0, P

∗
n) are

oP0(n
− 1

2 ). As given in section 5.5, Rd is a double robust term that is second

order when all components are estimated well. The proof that Rc = oP0(n
− 1

2 )
is the same as in 4.6.

Condition C4-C6. Similar comments to those given in section 4.6 apply
here.

Discussion of conditions for lemma 15.

To see that σn converges to σ0, note that D(d, τ, P )(Oi) depends on the follow-
ing components: {PW , KT,P , ρP ,ΠP ,mP , θP , dP , τP}. The following is sufficient
for convergence of D∗(dn, τn, P

∗
n)2 to D∗0:

– convergence of τn to τ0 (proof is the same as in chapter 4)

– convergence of PW,n to PW,0 and convergence of KT,n to KT,0 (guaranteed
by the fact that we use empirical distribution PW,n for Prn(W ))

– convergence of ρP , ΠP , mP , and θP to ρ0, Π0, m0, θ0 respectively, in
L2(P0) norm (assumption E4) ).
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– dn(V ) = d0(V ) with probability approaching 1. This is equivalent to
Tn(V ) ≥ τn ⇐⇒ T0(V ) ≥ τ0 w.p. approaching 1. The convergence of
τn to τ0, the uniform convergence of Tn(V ) to T0(V ), and A4) guarantee
this. The uniform convergence of Tn(V ) to T0(V ) is proved in the proof
that τn → τ0.

Testing for unmeasured confounding.

An instrumental variable-based estimator gives a consistent estimate of the
treatment effect, even when unmeasured confounding exists. However, it is
typically of much larger variance than a “direct” estimate of causal effect
that is based on the assumption of no confounding and attempts to identify
the counterfactual value of Y (A) using E(Y |A,W ). If in fact there is no
unmeasured confounding, the two approaches will converge to the same correct
estimate of causal effect, and one can use the typically more precise direct
estimate. On the other hand, if there is confounding, the two estimates do not
converge, and we can use this difference of estimates as a statistic to test for
confounding. In some applications, detecting unmeasured confounding might
be a very useful end in itself. Such a test for unmeasured confounding is
standard in the econometrics literature, by the name of Hausman-Wu test,
although it is usually described using parametric models. We briefly describe
a test in the semiparametric, TMLE framework.

When there is no unmeasured confounding, one can bypass the use of an
instrumental variable to estimate the mean outcome under optimal dynamic
treatment. In this case, the counterfactual outcome under treatment A is equal
to the conditional mean given A: EY (A = a) = EWE(Y |W,A = a). Thus, we
can write the parameter of interest Ψ as

Ψ = EWEY (A = d(V )) =

EW
[
(E(Y |A = 1,W )− E(Y |A = 0,W )) · d(V ) + E(Y |A = 0,W )

]
A TMLE-based estimator can be derived that is quite similar to that given
in chapter 4, but replacing variable Z with A: one forms initial estimates
of EPn(Y |A,W ) and Prn(A|W ), estimates dn(V ) from those, and performs a
single-step fluctuation. This estimator has similar properties to the instrumen-
tal variable-based estimator presented here (double robust estimator of Ψdn ,
efficient under consistent specification), but can estimate Ψ0 with significantly
lower variance in case there is no unmeasured confounding.

Let ΨIV denote the TMLE instrumental variable-based estimator described
for causal effect Ψ0, and ΨNC the TMLE estimator for Ψ0 that assumes no con-
founding. Let P ∗n,IC , P

∗
n,NC denote the final estimates of the data generating
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distributions, in calculating ΨIV , ΨNC , respectively. DIV and DNC denote the
respective efficient influence curves. If we have that all relevant components
and nuisance parameters for ΨIV are consistently specified, and DIV (P ∗n,IV ) be-
longs to a Donsker class, then the final estimate ΨIV is asymptotically linear,
with asymptotic variance V ar(DIV (P ∗n,IC)). We have the analogous statement
for ΨNC . Then ΨIV −ΨNC is asymptotically linear with asymptotic variance
V ar

[
DIV (P ∗n,IV )−DNC(P ∗n,NC)

]
. This gives the following theorem.

Theorem 6 (Test for unmeasured confounding.) Let ΨIV , ΨNC be as defined
above. Assume DIV (P ∗n,IV ), DNC(P ∗n,NC) belong to P0-Donsker classes with
probability approaching 1, and that all relevant components and nuisance pa-
rameters of DIV , DNC are consistently specified. Define a test statistic

T̂ =
√
n(ΨIV −ΨNC)/

√
V arn(DIV (P ∗n,IV )−DNC(P ∗n,NC))

Then under the null hypothesis of no unmeasured confounding, we have that
T̂ converges to a N(0, 1) random variable.

5.8 Proofs

Derivation for efficient influence curve D∗(Ψ0)

We first derive the efficient influence curve D∗d,Π, that assumes optimal decision
rule d is fixed and Π is known. Next we extend the derivation to the case
where Π is estimated non-parametrically and obtain D∗d. Finally, we derive
the correction term D∗c that needs to be added to account for the need to
estimate d.

D∗d,Π when Π(W,Z), treatment rule d(V ) are known.

We derive the efficient influence curve for ΨΠ,d = ΨΠ,d(PW,0, µ0) in model
M given above, where we assume Π = E(A|W,Z) is known and rule d(V ) is
fixed. To ease notation, we do not always state the dependence on Π(W,Z) and
d(V ) in the notation from here on. For Ψ(Q) = Ψ(PW , µ), we have relevant
components PW , µ, and the canonical gradient is the pathwise derivative of
Ψ(Q), in the tangent space of model M. This is defined as d

dε
Ψ(Q(ε))|ε=0
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along paths {Pε : ε} ⊆ M. The paths are represented here as

dPW,ε = (1 + εHW (W ))dPW ,

where EHW (W ) = 0 and CW , sup
W
|HW (W )| <∞;

dµε(Z,W ) = (1 + εHY (Y |Z,W ))dµ(Z,W ),

where EHY (Y |Z,W ) = 0 and C1 , sup
W,Z,Y

|HY (Y |Z,W )| <∞;

Let Ψm , EPWm(W )d(V ) and Ψθ , EPW θ(W ). By linearity of the opera-
tion of taking a pathwise derivative, we have that D∗(Ψ) = D∗(Ψm)+D∗(Ψθ),
where D∗(Ψm), D∗(Ψθ) are the efficient influence curves of the respective pa-
rameters in model M.

We have

Ψm =

∫
Y,A,W

Y

( I(Z=1)
ρ(W )

− I(Z=0)
1−ρ(W )

Π(W,Z = 1)− Π(W,Z = 0)

)
d(V ) dPY |Z,WdPZ|WdPW

Then proceeding with the delta method, we have that

Ψm(Pε)−Ψm(P0) =∫
Y,A,W

Y

( I(Z=1)
ρ0(W )

− I(Z=0)
1−ρ0(W )

Π(W,Z = 1)− Π(W,Z = 0)

)
d(V ) dPY,ε|Z,WdPZ,0|WdPW,ε

−
∫
Y,A,W

Y

( I(Z=1)
ρ0(W )

− I(Z=0)
1−ρ0(W )

Π(W,Z = 1)− Π(W,Z = 0)

)
d(V ) dPY,0|Z,WdPZ,0|WdPW,0

= ε

∫
Y,A,W

Y

( I(Z=1)
ρ0(W )

− I(Z=0)
1−ρ0(W )

Π(W,Z = 1)− Π(W,Z = 0)

)
d(V )HY (Y |Z,W ) dPY,0|Z,WdPZ,0|WdPW,0

+ε

∫
Y,A,W

Y

( I(Z=1)
ρ0(W )

− I(Z=0)
1−ρ0(W )

Π(W,Z = 1)− Π(W,Z = 0)

)
d(V )HW (W ) dPY,0|Z,WdPZ,0|WdPW,0 +O(ε2)

In the final line, the first term implies that Y (
I(Z=1)
ρ0(W )

− I(Z=0)
1−ρ0(W )

Π(W,Z=1)−Π(W,Z=0)
)d(V ) is the

contribution to the gradient of Ψm from fluctuation µε(W,Z). The second
term reduces to
ε
∫
W

(µ0(Z = 1,W )−µ0(Z = 0,W ))/(Π(Z = 1,W )−Π(Z = 0,W ))d(V )HW (W )dPW,0
so it follows that m0(W )d(V ) is the contribution to the gradient from fluctu-
ation PW,ε. Finally, setting the mean to zero, we have the efficient influence
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curve

D∗(Ψm) = d(V )
( I(Z=1)

ρ0(W )
− I(Z=0)

1−ρ0(W )

Π(W,Z = 1)− Π(W,Z = 0)

)
(Y − µ0(W,Z))

+m0(W )d(V )− EW (m0(W )d(V ))

Using the identifiability of θ(W ) as E(Y |W,Z = 1)− Π(W,Z = 1)m(W ),
we have that

Ψθ =

∫
Y,A,W

Y

(
I(Z = 1)

ρ(W )
−

(
I(Z=1)
ρ(W )

− I(Z=0)
1−ρ(W )

)
Π(W,Z = 1)

Π(W,Z = 1)− Π(W,Z = 0)

)
dPY |Z,WdPZ|WdPW

Proceeding as in the derivation for Ψm, we get

D∗(Ψθ) =
(I(Z = 1)

ρ0(W )
−

( I(Z=1)
ρ0(W )

− I(Z=0)
1−ρ0(W )

)
Π(W,Z = 1)

Π(W,Z = 1)− Π(W,Z = 0)

)
(Y − µ0(W,Z))

+θ0(W )− EW (θ0(W ))

Combining, we get

D∗d,Π(Ψ0) = J0(W,Z)(Y − µ0(W,Z))

+m0(W )d(V ) + θ0(W )−Ψ0 (5.16)

D∗d when optimal treatment rule d(V ) is known, but Π is estimated
non-parametrically.

Allowing non-parametric Πε, we assume

dΠε(Z,W ) = (1 + εHA(A|Z,W ))dΠ(Z,W ),

where EHA(A|Z,W ) = 0 and C2 , sup
W,Z,A

|HA(A|Z,W )| <∞;

We need to adjust D∗d,Π above for the usual setting where Π(W,Z) is not
known but is estimated from the data through a NPMLE. Let D∗d,Π(Π′) denote
the efficient influence curve D∗d,Π(Ψ0) in modelM(Π0) as given above, but with
Π replaced with Π′, so D∗d,Π(Π′) = D∗d,Π(PW , ρ,Π

′, µ). Let Πn denote the non-
parametric NPMLE estimate (ie empirical distribution) for E(A|W,Z). The
correction term DC(P0) to add to D∗d,Π is the influence curve of
P0(D∗d,Π0

(Πn)−D∗d,Π0
(Π0), which is the influence curve of P0D

∗
d,Π0

(Πn).
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Let Π(ε) = Π0 + εη. When using the NPMLE for Πn, we have that η =
d
dε

Π(P0 + ε(O − P0)). Plugging in the influence curve of a NPMLE, we have

η(z, w) =
I(Z = z,W = w)

Pr(z, w)
(A− Π0(Z,W ))

Then we have

DC(P0) =
d

dε
P0D

∗
d,Π0

(Πε)|ε=0

= P0

[
J(w, z)(y − µ0(w, z))

]
+P0

[(I(z = 1)

ρ0(w)
+

( I(z=1)
ρ0(w)

− I(z=0)
1−ρ0(w)

)(
d(v)− Π0(w, 1)

)
Π0(w, 1)− Π(w, 0)

)
(−m0(w))η

]

using shorthand Π0(w, 1) = Π0(w, z = 1) and J(w, z) as the appropriate
function of w, z. The P0[J(w, z)(y − µ0(w, z))] term becomes 0. Plugging in
for η(z, w) and taking the expectation over Pr0(w, z), we get

DC(P0) =

[(I(Z = 1)

ρ0(W )
+

( I(Z=1)
ρ0(W )

− I(Z=0)
1−ρ0(W )

)(
d(V )− Π0(W, 1)

)
Π0(W, 1)− Π0(W, 0)

)
(5.17)

×(−m0(W ))(A− Π0(Z,W ))

]
(5.18)

(5.19)

Finally we get that the −m(W )Π(Z,W ) component in the canonical gra-
dient D∗d changes to −m(W )A.

D∗d(Ψ0) = m0(W )d(V ) + θ0(W )−Ψ0 (5.20)

+J0(W,Z)(Y − (m0(W )A− θ0(W )))

Proof that D∗c is the right correction term.

Above we derived the efficient influence curve D∗d(Ψ0) when the optimal deci-
sion rule d was assumed known. To extend D∗d(Ψ0) to unknown optimal rule
d0(V ), we first note that assumption A4) implies that the optimal rule is almost
surely deterministic. Let dP (V ) denote the optimal deterministic rule given
by the closed form solution, given the distribution assumed, which depends
on the {PW , K,m} components of distribution P . Let d0(P ) denote the true
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optimal dynamic treatment, corresponding to the closed form solution under
the true data generating distribution P0. Then we have that the correction
term that needs to be added to D∗d is D∗c = −τ0EP0 [cT (d(V ),W )−K].

Note that PW induces a distribution over V = FV (W ). We have that
Ψd =

∫
W
d(V )m(W ) + θ(W )dW . Thus,

Ψ(Pε)−Ψ(P0) =

∫
W

(EUdε(V )− d0(V ))mεdPW,ε

+

∫
W

d0(V )(mεdPW,ε −m0dPW,0)

+EPεθε(W )− EP0θ0(W )

=

∫
W

(EUdε(V )− d0(V ))(mε − τ0(cb,ε(V )) )dPW,ε

(5.21)

+τ0

∫
V

(EUdε(V )− d0(V ))(cb,ε(V ))dPW,ε (5.22)

+Ψd0(Pε)−Ψd0(P0). (5.23)

From here on, we have essentially the same derivation as in 4.8 that
D∗c as given is the correction term that needs to be added to D∗ to com-
pensate for the variation resulting from estimating d. What needs to be
changed is that m replaces µb and θ replaces µ(Z = 0,W ) throughout. The
one additional detail that needs to be added to that proof is to show that
mε(W ) − m0(W ) = ε · C3 for some constant C3. This is needed for the
proof that Sε(η) − S0(η) = O(ε) for η in a δx-neighborhood of η0 . We have

|mε(W )−m0(W )| = | µε(W,1)−µε(W,0)
Πε(W,1)−Πε(W,0)

− µ0(W,1)−µ0(W,0)
Π0(W,1)−Π0(W,0)

| =
| µε(W,1)−µε(W,0)
Πε(W,1)−Πε(W,0)

− µ0(W,1)−µ0(W,0)
Πε(W,1)−Πε(W,0)

(1 + ε(HA(W, 1)−HA(W, 0))|
≤ | (µ0(W,1)−µ0(W,0))ε(HY (W,1)−HY (W,0))−(µ0(W,1)−µ0(W,0))ε(HA(W,1)−HY (W,0))+O(ε2)

Πε(W,1)−Πε(W,0)
| ≤ C3ε

for some constant C3, noting that we can assume Π(1,W ) − Π(0,W ) is
bounded away from 0, because Z is a valid instrument that induces variation
in A, as guaranteed by our causal model. We note that we know HA, HY , and
µ are all bounded.

Derivation for remainder term

We give a sketch of how lemma 14 is derived.
Note that Ψd(P ) = P (md+ θ) and ΨdP0 = P0(m0d+ θ0). For components
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D∗Y (d, P ), D∗A(d, P ) we have:

P0

[
D∗Y (d, P ) +D∗A(d, P )

]
= E0

[
(E0(Y |W,A,Z)−m(W )A− θ(W ))J(Z,W )

]
= P0

[
((m0 −m)Π0 + (θ0 − θ))K

]

= P0

[
ρ0

ρ

(
(m0 −m)Π0(W, 1) + (θ0 − θ)

)(
1 +

d− Π(W, 1)

Π(W, 1)− Π(W, 0)

)]

+

[
1− ρ0

1− ρ

(
(m0 −m)Π0(W, 0) + (θ0 − θ)

)( −(d− Π(W, 1))

Π(W, 1)− Π(W, 0)

)]

= P0

[(
(m0 −m)Π0(W, 1) + (θ0 − θ)

)(
1 +

d− Π(W, 1)

Π(W, 1)− Π(W, 0)

)]
+
[(

(m0 −m)Π0(W, 0) + (θ0 − θ)
)( −(d− Π(W, 1))

Π(W, 1)− Π(W, 0)

)]
+ 2nd order terms

= P0

(
(m0 −m)(Π0(W, 1)− Π0(W, 0))

)( d− Π(W, 1)

Π(W, 1)− Π(W, 0)

)
+P0

(
(m0 −m)Π0(W, 1) + (θ0 − θ)

)
+ 2nd order terms

= P0

(
(m0 −m)(d− Π(W, 1))

)
+ P0

(
(m0 −m)Π0(W, 1) + (θ0 − θ)

)
+ 2nd order terms

= P0

(
(m0 −m)d+ (θ0 − θ)

)
+ 2nd order terms

where the fourth equality is from expanding ρ0
ρ

into 1− ρ0−ρ
ρ

, likewise 1−ρ0
1−ρ .

The final two equalities follow from expanding Π0 into Π + (Π0 − Π).
We also have that P0D

∗
W (d, P ) = P0(md+ θ)− P (md+ θ).

Combining, we get

Rd(P, P0) =

Ψd(P )−Ψd(P0) + P0(D∗d)(P )

= P0

(
(m−m0)d+ (θ − θ0) + (m0 −m)d+ (θ0 − θ)

)
+ 2nd order terms

= 2nd order terms

For the sake of brevity, we didn’t write out the second-order terms accu-
mulating in the derivations above, but it is straightforward to do so and obtain
Rd(d, P ) as given in 5.10.

To get Rc(d, P ), first note that line 5.11 reduces to EP0 [(d − d0)m0 −
τ0[cT (d(V ),W ) − cT (d0(V ),W )]]. Note that EP0(cT (d0(V ),W )) = K (this
is justified in section 4.8). Since cT (d(V ),W ) = d(V )cb,0(V ) + cT (Z = 0,W ),
we get that line 5.11 equals P0[(d− d0)(m0(V )− τ0cb,0(V ))].
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Table 6.1: Performance of estimators in estimating a scalar causal effect,
nonlinear design 1. The initial estimator for E(Y |Z,W ) is either consis-
tently specified or misspecified, and all other nuisance parameters are consis-
tenly specified. Sample size is 1000, and 10,000 repetitions were made. The
true effect is 33.23.

CONSISTENTLY SPECIFIED

Estimator Bias Var MSE

New methods
Iterative .0016 .6103 .6103
Linear fluctuation .0015 .6189 .6189
Logistic fluctuation .0015 .6189 .6189

Non-parametric
Estimating equations −.0016 .7834 .7834
Initial substitution estimator .0038 .6990 .6990
Confounded 20.97 0.000 439.7
Two-stage least squares −.3904 52.74 52.89

E(Y |W,Z) IS MISSPECIFIED

Estimator Bias Var MSE

New methods
Iterative .3157 117.7 117.8
Linear fluctuation .6214 78.27 78.65
Logistic fluctuation .8193 82.99 83.66

Non-parametric
Estimating equations −.2088 35.14 35.18
Initial substitution estimator −.3941 54.07 54.22
Confounded 20.97 0.000 439.7
Two-stage least squares −.3904 52.74 52.89
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Table 6.3: Performance of estimators in estimating a scalar causal effect,
nonlinear design 2, where E(Y |W,Z) follows sharp cutoffs. The initial
estimator for E(Y |Z,W ) is either consistently specified or misspecified, and
all other nuisance parameters are consistenly specified. Sample size is 1000,
and 10,000 repetitions were made. The true effect is 1.00.

CONSISTENTLY SPECIFIED

Estimator Bias Var MSE

New methods
Iterative −.0853 .2226 .2299
Linear fluctuation −.0827 .2198 .2266
Logistic fluctuation .0307 .1645 .1654

Non-parametric
Estimating equations −.0643 .1508 .1549
Initial substitution estimator .0202 .1196 .1200
Confounded .5735 .0170 .3459
Two-stage least squares .0926 .2792 .2878

E(Y |W,Z) IS MISSPECIFIED

Estimator Bias Var MSE

New methods
Iterative −.0703 .4498 .4547
Linear fluctuation −.0414 .4561 .4578
Logistic fluctuation .0487 .3396 .3420

Non-parametric
Estimating equations −.0636 .4492 .4532
Initial substitution estimator .0865 .3870 .3945
Confounded .5735 .0170 .3459
Two-stage least squares .0926 .2792 .2878
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Table 6.6: Estimates of effect of mother’s education on infant’s health, where
the latter is given by the log-odds ratio of a binary outcome. Significant effects
are marked with (∗) and highly significant effects with (∗∗).

Mother’s education
Low Neonatal Postneonatal

birthweight mortality mortality
TMLE, linear fluctuation

Mean effect -.266 (.163)* -1.04 (.193)** -.358 (.255)
First stage CV-R2 .814 .805 .798

Second stage CV-R2 .539 .561 .453
Change in outcome -.041% -.387 -.222

Percent change in outcome -7.07% -16.7% -6.54%
Two-stage least squares

Mean effect -.212 (.175) -.265 (.124)* -.529 (.229)*
First stage CV-R2 .778 .747 .760

Second stage CV-R2 .426 .531 .376
Change in outcome -.027% -.078 -.255

Percent change in outcome -4.58% -3.42% -7.14%
F-test for weak IV 15.5 12.1 13.7
Hausman-Wu test 1.64 .738 .684

OLS
Mean effect -.177 (.009) -.381 (.011) -.434 (.010)

R2 .428 .538 .424
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Table 6.7: Estimates of effect of father’s education on infant’s health, where
the latter is given by the log-odds ratio of a binary outcome. Significant effects
are marked with (∗) and highly significant effects with (∗∗).

Father’s education
Low Neonatal Postneonatal

birthweight mortality mortality
TMLE, linear fluctuation

Mean effect -.126 (.179) -.632 (.105)** -.569 (.242)**
First stage CV-R2 .801 .784 .751

Second stage CV-R2 .616 .622 .626
Change in outcome -.001 -.342 -.166

Percent change in outcome -1.54% -5.99% -4.75%
Two-stage least squares

Mean effect -.298 (.160)* -.480 (.182)** -.602 (.254)**
First stage CV-R2 .749 .752 .716

Second stage CV-R2 .318 .378 .395
Change in outcome -.001 -.161 -.178

Percent change in outcome -2.03% -2.70% -5.29%
F-test for weak IV 11.1 9.22 9.69
Hausman-Wu test .892 .186 .432

OLS
Mean effect -.223 (.006) -.345 (.010) -.419 (.011)

R2 .345 .400 .415
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Table 6.8: Additive treatment effect modifiers for the effect of mother’s ed-
ucation on infant’s health. Significant effects are marked with (∗) and highly
significant effects with (∗∗). The standardized effect modifiers refer to (treat-
ment effect modifier ÷ SE).

Low birthweight Postneonatal mortality

Y OB1982: -1.24 (.472)** Y OB1980 +1.22 (.430)**
Strongest additive Y OB1985: -.608 (.162)** Y OB1982 -.916 (.317)**

treatment effect modifiers Y OB1988: -.506 (.167)** Y OB1989 -.886 (.227)**
Y OB1989: -.497 (.168)** Y OB1998 +.795 (.233)**
Y OB1987: -.494 (.166)** Y OB1999 +.667 (.342)
Y OB1998: +.494 (.188)** Y OB1987 -.664 (.202)**

Summary statistics
Q1 Q2 Mean Q3 Q1 Q2 Mean Q3
-.237 -.072 -.148 -.010 -.358 -.104 -.111 .047

Summary statisics, Q1 Q2 Mean Q3 Q1 Q2 Mean Q3
standardized effect modifiers -1.78 -.511 -.833 -.056 -1.75 -.721 -.628 .372
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Table 6.9: Additive treatment effect modifiers for the effect of father’s edu-
cation on infant’s health. Significant effects are marked with (∗) and highly
significant effects with (∗∗). The standardized effect modifiers refer to (treat-
ment effect modifier ÷ SE).

Low birthweight Postneonatal mortality

Y OB1980: -3.98 (8.93) Y OB1979 -5.103 (.297)**
Strongest additive Y OB1979: +3.54 (1.73)* Y OB1978 -3.27 (1.14)**

treatment effect modifiers Y OB1978: -2.39 (.962)* Y OB1981 -1.34 (.241)**
Y OB1981: -1.43 (.437)** COH1968: -1.29 (.427)**
Y OB1985: -1.13 (.239)** COH1967: -1.26 (.429)**
Y OB1982: -.880 (.385)* Y OB1983: -1.11 (.778)

Summary statistics
Q1 Q2 Mean Q3 Q1 Q2 Mean Q3
-.792 -.351 -.504 -.307 -.931 -.419 -.636 -.055

Summary statisics Q1 Q2 Mean Q3 Q1 Q2 Mean Q3
standardized effect modifiers -3.16 -.634 -1.59 -.276 -2.17 -1.39 -1.19 -.198
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Table 6.10: (Simulation A.) Consistent estimation using machine learning,
categorical Y . Ψ0 = 0.3456.

N=250

Estimator Ψ∗ Bias Var σ2
n Cover.

TMLE .3545 .0089 .0071 .0010 88.3

CV-TMLE .3541 .0085 .0017 .0010 90.6

Init. Substit. .3427 -.0029 .0067 .0010 (87.9)

N=1000

Estimator Ψ∗ Bias Var σ2
n Cover.

TMLE .3485 .0029 .0003 .0003 93.3

CV-TMLE .3497 .0041 .0002 .0003 96.8

Init. Substit. .3344 -.0112 .0003 .0003 (88.3)

N=4000

Estimator Ψ∗ Bias Var σ2
n Cover.

TMLE .3467 .0011 .0001 .0001 95.0

CV-TMLE .3498 .0002 .0001 .0001 94.7

Init. Substit. .3429 -.0027 .0001 .0001 (93.3)
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Table 6.11: (Simulation A.) Consistent estimation using machine learning,
continuous Y . Ψ0 = 288.8.

N=250

Estimator Ψ∗ Bias Var σ2
n Cover.

TMLE 277.8 -11.05 221.0 247.5 81.7

CV-TMLE 283.8 -5.03 506.3 265.1 83.2

Init. Substit. 260.5 -28.34 548.9 303.6 (64.3)

N=1000

Estimator Ψ∗ Bias Var σ2
n Cover.

TMLE 285.1 -3.72 39.20 37.91 86.8

CV-TMLE 285.9 -2.86 36.89 35.65 88.9

Init. Substit. 275.6 -13.29 120.75 41.141 (50.3)

N=4000

Estimator Ψ∗ Bias Var σ2
n Cover.

TMLE 286.8 -2.16 7.68 8.18 91.7

CV-TMLE 287.5 -1.26 8.51 9.19 93.1

Init. Substit. 281.4 -7.44 24.69 8.36 (38.3)
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Table 6.12: (Simulation B.) Varying parameters of the optimization problem.
Ψ0 = 162.6 when V = W , K = .2; Ψ0 = 141.3 when V ⊂ W , K = .2;
Ψ0 = 288.9 when V = W , K = .8; and Ψ0 = 201.9 when V ⊂ W , K = .8.
Sample size is n = 1000.

CONTINUOUS Y

Estimator Ψ∗ Bias Var

V = W, K = .2
TMLE 161.0 -1.64 25.17
CV-TMLE 162.2 -.48 33.28
Init. Substit. 153.2 -9.48 20.99

V ⊂ W, K = .2
TMLE 139.5 -1.79 4.21
CV-TMLE 138.6 -2.74 7.64
Init. Substit. 135.6 -5.65 9.38

V = W, K = .8
TMLE 287.6 -1.42 14.34
CV-TMLE 288.9 -.06 19.5
Init. Substit. 278.5 -10.52 17.78

V ⊂ W, K = .8
TMLE 200.2 -1.86 43.2
CV-TMLE 200.9 -1.07 40.7
Init. Substit. 192.6 -9.34 72.2
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Table 6.13: (Simulation C.) Robustness to partial misspecification, µ is mis-
specified. Ψ0 = 163.0.

N=250

Estimator Ψ∗
(
Ψ∗ −Ψdn(P0)

) (
Ψ∗ −Ψ0

)
Var Cover.

TMLE 137.8 -10.71 -25.19 555.4 74.2
Init. Substit. 123.4 -25.09 -39.57 153.5 (84.8)

N=1000

Estimator Ψ∗
(
Ψ∗ −Ψdn(P0)

) (
Ψ∗ −Ψ0

)
Var Cover.

TMLE 144.5 -0.19 -18.54 145.0 92.5
Init. Substit. 124.3 -21.40 -38.75 52.86 (70.7)

N=4000

Estimator Ψ∗
(
Ψ∗ −Ψdn(P0)

) (
Ψ∗ −Ψ0

)
Var Cover.

TMLE 143.9 -0.03 -19.13 24.08 96.1
Init. Substit. 123.8 -20.01 -39.17 22.48 (40.6)

Table 6.14: (Simulation D.) True mean outcome Ψdn(P0), under rule dn.
Ψ0 = 162.8 when K = .2, and Ψ0 = 289.1 when K = .8. Sample size is
n = 1000.

K=.2 K=.8

Learning µn Ψdn(P0) Var Ψdn(P0) Var
Large library 158.9 8.14 286.4 9.32
Small library 148.3 49.45 267.9 16.28

No fitting 142.2 12.83 264.1 10.30
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