
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Robust Classification and Regression

Permalink
https://escholarship.org/uc/item/99b2s59x

Author
Li, Hanbo

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/99b2s59x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Robust Classification and Regression

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Hanbo Li

Committee in charge:

Professor Jelena Bradic, Chair
Professor Ery Arias-Castro
Professor Sanjoy Dasgupta
Professor Yoav Freund
Professor Rayan Saab

2018

Copyright

Hanbo Li, 2018

All rights reserved.

The dissertation of Hanbo Li is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2018

iii

DEDICATION

To my family. To the past five years.

iv

EPIGRAPH

A very great deal more truth can become known than can be proven.

—Richard Feynman

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Boosting in the Presence of Outliers: Adaptive Classification with Non-
convex Loss Functions . 1
1.1 Introduction . 1

1.1.1 Literature Review . 3
1.2 Methodology of the ArchBoost . 6
1.3 Robust non-convex loss functions 11
1.4 Theoretical Considerations . 14

1.4.1 Numerical convergence . 14
1.4.2 Robustness . 16

1.5 Numerical Experiments . 21
1.5.1 Gaussian - Student Mixture 21
1.5.2 Comparison with Non-convex Gradient Boost 23
1.5.3 Consistency . 24
1.5.4 The Long/Servedio problem 24
1.5.5 Outlier detection . 25
1.5.6 Real data application . 26

1.6 Proof of Theorems . 29
1.6.1 Proof of Theorem 1 . 29
1.6.2 Proof of Theorem 3 . 32

1.7 Acknowledgement . 33

vi

Chapter 2 Forest-type Regression with General Losses and Robust Forest 34
2.1 Introduction . 34

2.1.1 Random forest . 36
2.1.2 Adaptive nearest neighbors 37

2.2 General framework for forest-type regression 38
2.2.1 Squared error and random forest 38
2.2.2 Extension to general loss 39
2.2.3 Quantile loss and quantile random forest 40

2.3 Robust forest . 41
2.3.1 Huber loss . 41
2.3.2 Tukey’s biweight . 44

2.4 Truncated squared loss and nearest neighbors 45
2.4.1 Truncated squared error 45
2.4.2 Random Forest Nearest Neighbors 46

2.5 Experiments . 47
2.5.1 One dimensional toy example 48
2.5.2 Multivariate example . 48
2.5.3 Nearest neighbors . 50
2.5.4 Real data . 50
2.5.5 Conclusion and discussion 51

2.6 Proof of Lemma 5 . 51
2.7 Acknowledgement . 52

Chapter 3 Forest-type Quantile Regression for Random Censored Data 57
3.1 Introduction . 57

3.1.1 Random forest weights . 61
3.1.2 Forest-type regression framework 62

3.2 Methodology . 63
3.2.1 Motivation . 63
3.2.2 Full model . 65
3.2.3 Estimation of survival function G(q|x) 66

3.3 Theory . 68
3.3.1 Time complexity . 68
3.3.2 Consistency . 69

3.4 Simulation Study . 73
3.4.1 Toy example . 74
3.4.2 One-dimensional AFT model 75
3.4.3 Comparison of different conditional survival estimators . . . 77
3.4.4 One-dimensional sine function model 79
3.4.5 Multi-dimensional AFT model results 83
3.4.6 Multi-dimensional complex manifold 84
3.4.7 Node size . 85

3.5 Real Data . 87

vii

3.5.1 Prediction Intervals . 89
3.6 Acknowledgement . 91

Chapter 4 Estimation and Inference for High-dimensional Left-censored Quantiles . 93
4.1 Introduction . 93

4.1.1 Contributions . 93
4.1.2 Related Work . 94
4.1.3 Content . 95

4.2 Methodology . 95
4.2.1 Model Description . 95
4.2.2 Initial Estimator . 96
4.2.3 Bias Correction . 98
4.2.4 Inverse Hessian Estimator: Nodewise Lasso 101

4.3 Theoretical Considerations . 103
4.3.1 Distribution and Density Estimators 103
4.3.2 Consistency of Initial Estimator 104
4.3.3 Asymptotic Normality of One-step Penalized Estimator . . . 107

4.4 Numerical Experiments and Application 109
4.4.1 Further Details of Algorithm 6 and 7 109
4.4.2 Simulation Data . 111
4.4.3 Real Data . 119

4.5 Lemmas . 121
4.6 Proofs of Lemmas . 124
4.7 Proofs of Theorems . 140
4.8 Acknowledgement . 147

Bibliography . 148

viii

LIST OF FIGURES

Figure 1.1: AdaBoost, LogitBoost, ArchBoost loss functions and the corresponding
normalized weight updating rules. 7

Figure 1.2: γ-robust losses, φγ and the corresponding normalized weight updating rules. 13
Figure 1.3: Comparison of average test errors of ARB-γ, AdaBoost and LogitBoost. . . 22
Figure 1.4: Comparisons with Non-convex Gradient Boost and Consistency 23
Figure 1.5: Comparison of ARB-γ on Long/Servedio problem with different ε 25

Figure 2.1: In the first row, we compare squared error loss 1
2x2 and pseudo-Huber loss

with different δ. In the second row, we plot the scaling factor (2.12) of Huber
loss. 53

Figure 2.2: We plot the scaling factor (2.13) of Tukey’s biweight. Compared to Huber
scaling factor (see (2.12)), it has a hard threshold at δ. 54

Figure 2.3: One dimensional comparison of random forest, quantile random forest, Huber
forest and Tukey forest. All forests are ensemble of 500 regression trees and
the maximum number of points in terminal nodes is 20. 55

Figure 2.4: The performance of k-RFNN against the number of nearest neighbors. . . . 56

Figure 3.1: Sample loss plots when τ = 0.5. In the first row, we have sample sizes 100
and 500. In the second row, we have sample sizes 1000 and 5000. The black
curve is U1(q), the red curve is U2(q), the black (red) dotted vertical line is
the root of U1(q) (U2(q)), and the blue vertical line is q = τ. 75

Figure 3.2: One-dimensional AFT model results. In (a), black points stand for observa-
tion that are not censored; red points are observations that are censored, and
the green points are the counterpart of the red points, that is, they are the
latent values of those red points if they were not censored. 78

Figure 3.3: AFT 1D box plots. 79
Figure 3.4: Comparison of different conditional survival estimators for the one-dimensional

AFT model. The censoring variable C∼ Exp(λ = 0.08), and the average cen-
soring rate is around 20%. From left-most column to right-most column, we
plot the conditional survival estimators for four test points, x = 0.4,0.8,1.2,1.6. 80

Figure 3.5: Comparison of different conditional survival estimators for the one-dimensional
AFT model. The censoring variable C∼ Exp(λ = 0.20), and the average cen-
soring rate is around 50%. From left-most column to right-most column, we
plot the conditional survival estimators for four test points, x = 0.4,0.8,1.2,1.6. 81

Figure 3.6: One-dimensional Sine model. In (a), black points stand for observation that
are not censored; red points are observations that are censored, and the green
points are the counterpart of the red points, that is, they are the latent values
of those red points if they were not censored. 82

Figure 3.7: Sine 1D box plots. 83
Figure 3.8: AFT multi-dimensional results. 84
Figure 3.9: Quantile losses of Sine model with different node sizes. 86

ix

Figure 3.10: Quantile losses of 1D AFT model with different node sizes. 86
Figure 3.11: Quantile losses of multi-dimensional AFT model with different node sizes. 87
Figure 3.12: Quantile losses of multi-dimensional complex model with different node sizes. 87
Figure 3.13: Quantile losses on real data. 89
Figure 3.14: Quantile losses of different node sizes on real data. 90
Figure 3.15: Prediction intervals of Sine. 91
Figure 3.16: Confidence intervals with different node sizes on real data. 91

Figure 4.1: τ = 0.4 comparative boxplots of the average interval length (with true F0 and
true f0). 112

Figure 4.2: τ = 0.7 comparative boxplots of the average interval length (with true F0 and
true f0). 113

Figure 4.3: τ = 0.4 comparative boxplots of the average interval length (with estimated
F̂n and true f̂n). 116

Figure 4.4: τ = 0.7 comparative boxplots of the average interval length (with estimated
F̂n and true f̂n). 117

Figure 4.5: Power curve of signal (left) and noise (right) variables under normal errors. 118
Figure 4.6: Power curve of signal (left) and noise (right) variables under Student’s t4 errors.118

x

LIST OF TABLES

Table 1.1: The list of commonly used loss functions and its corresponding F∗ 6
Table 1.2: The list of commonly used loss functions and their weak hypotheses h 11
Table 1.3: Long/Servedio problem . 25
Table 1.4: Outliers detection. The x-axis stands for the index of the training points rang-

ing from 1 to 2000, and the y-axis stands for the times a point is misclassified,
ranging from 0 to 800. 26

Table 1.5: Comparison of the average test errors and sample deviation (over 100 repeti-
tions and using five-fold cross-validation) of four algorithms on the Wisconsin
breast cancer dataset. 27

Table 1.6: Comparison of the average test errors and sample deviation (over 100 repeti-
tions and using five-fold cross-validation) of four algorithms on the GSE20194
gene dataset. 28

Table 1.7: Comparison of the average test errors and sample deviation (over 100 repeti-
tions) of four algorithms on the Sensorless drive diagnosis dataset. 28

Table 2.1: Comparison of random forest (RF), quantile random forest (QRF), Huber
forest (Huber) and Tukey forest (Tukey) on one dimensional example. . . . 48

Table 2.2: Comparison of the four methods in the setting (1). The average MSE is
reported in first row, and average MAD in second row. 49

Table 2.3: Comparison of the four methods in the setting (2). 49
Table 2.4: Comparison of the four methods on two UCI repository datasets: (1) concrete

compressive strength (CCS) [Yeh98]; (2) airfoil self-noise (Airfoil); and one
OpenIntro dataset: Ames residential home sales (Ames). 50

Table 2.5: Test on real data sets with extra noise. 51

Table 4.1: τ = 0.4 Coverage Probability for High-dimensional Left-censored Quantile
Regression (HLQR) with True F0 and True f0 111

Table 4.2: τ = 0.7 Coverage Probability for High-dimensional Left-censored Quantile
Regression (HLQR) with True F0 and True f0 114

Table 4.3: τ = 0.4 Coverage Probability for High-dimensional Left-censored Quantile
Regression (HLQR) with Estimated F̂n and Estimated f̂n 115

Table 4.4: τ = 0.7 Coverage Probability for High-dimensional Left-censored Quantile
Regression (HLQR) with Estimated F̂n and Estimated f̂n 115

Table 4.5: Gene expressions selected by High-dimensional Left-censored Quantile Re-
gression (HLQR) with 10% censoring in comparison with the ones selected
by L1 norm QR model in [LZ08] (L1QR) with no censoring 120

xi

ACKNOWLEDGEMENTS

I would like to first express my special appreciation and thanks to my advisor Professor

Jelena Bradic, who has been a tremendous mentor for me. I would like to thank you for

encouraging me to explore all kinds of ideas, and for helping me grow as a researcher with

curiosity and independent thinking. Your advice on both research as well as on my career have

been invaluable.

I would like to thank Professor Ery Arias-Castro, Professor Sanjoy Dasgupta, Professor

Yoav Freund, and Professor Rayan Saab for serving as my committee members and offering

meaningful discussions. I would like to thank Professor Ruth Williams for her solid and detailed

instruction on probability theory. I would like to thank Professor Ian Abramson, Professor

Ery Arias-Castro, Professor Jelena Bradic, Professor Dimitris Politis, and Professor Lily Xu

for bringing me into the beautiful world of data and statistics. I would also like to thank

Professor Sanjoy Dasgupta and Professor Lawrence Saul for their excellent teaching and intuitive

explanation on fundamental machine learning concepts. I really enjoyed attending your lectures.

To the Mathematics Department, I appreciate all the resources and support provided.

Thanks to Wilson Cheung, Holly Proudfoot, Scott Rollans, and Debbie Shon for all your patience

and assistance. I thank my fellow office-mates, Jiaqi Guo, Jingwen Liang and Andrew Ying,

for the stimulating discussions, the interesting conversations, and the delicious foods. Also I

thank all my friends and fellow graduate students in the department, Yaqing Wang, Shaunak

Das, Ching-Wei Ho, Marquis Hou, Fred Li, Yuchao Liu, Ran Pan, Liyu Qin, Dun Qiu, Kuang

Thamrongpairoj, and Selene Xu, for all the funs.

My sincere thanks also go to Andrew Martin, David Fagnan and Imri Sofer at Zillow, and

Vikas Bhardwaj and Manisha Srivastava at Amazon, who provided me an opportunity to join

their teams as intern, and helped me gain industry experience.

I really enjoyed my last five years at San Diego, which is and will always be the second

hometown in my heart. I am thankful to all the hot sake, whiskey and beer I consumed, to the

xii

treadmills in Costa Verde and Mesa Apartments, and to my hot tub, which could always relieve

my stress.

Finally, I must express my very profound gratitude to my parents, my grandmother, and to

my partner for providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This accomplishment

would not have been possible without them. Thank you.

Chapter 1, in full, is a reprint of the material as it appears in Journal of the American

Statistical Association. Li, Hanbo; Bradic, Jelena. Boosting in the presence of outliers: adaptive

classification with nonconvex loss functions, JASA, 1-15, 2018. The dissertation/thesis author

was the primary investigator and author of this paper.

Chapter 2, in full, is a version of the material as it appears in International Conference on

Machine Learning. Li, Hanbo; Martin, Andrew. Forest-type regression with general losses and

robust forest, ICML, 2017. The dissertation/thesis author was the primary investigator and author

of this paper.

Chapter 3, in full, is currently being prepared for submission for publication of the

material. Li, Hanbo; Bradic, Jelena. Forest-type quantile regression for randomly censored data.

The dissertation/thesis author is the primary investigator and author of this material.

Chapter 4, in full, is currently being prepared for submission for publication of the

material. Bradic, Jelena; Guo, Jiaqi; Li, Hanbo. High-dimensional covariate effects on left-

censored quantile event times. The dissertation/thesis author is one of the principal investigators

and author of this material.

xiii

VITA

2013 B. S. in Mathematics with Honours, First Class, the Chinese University of
Hong Kong, Hong Kong

2013-2018 Graduate Teaching Assistant, University of California, San Diego

2015 C. Phil. in Mathematics, University of California, San Diego

2018 Ph. D. in Mathematics, University of California, San Diego

PUBLICATIONS

Li, Hanbo, and Andrew Martin, “Forest-type regression with general losses and robust forest”,
International Conference on Machine Learning, 2017.

Li, Hanbo, and Jelena Bradic, “Boosting in the presence of outliers: adaptive classification with
nonconvex loss functions”, Journal of the American Statistical Association, 1-15, 2018.

Bradic, Jelena, Jiaqi Guo, and Hanbo Li, “High-dimensional covariate effects on left-censored
quantile event times”, Manuscript in Preparation, 2018.

Li, Hanbo, and Jelena Bradic, “Forest-type quantile regression for randomly censored data”,
Manuscript in Preparation, 2018.

xiv

ABSTRACT OF THE DISSERTATION

Robust Classification and Regression

by

Hanbo Li

Doctor of Philosophy in Mathematics

University of California San Diego, 2018

Professor Jelena Bradic, Chair

Recent advances in technologies for cheaper and faster data acquisition and storage have

led to an explosive growth of data complexity in a variety of scientific areas. As a result, noise

accumulation, experimental variation, and data inhomogeneity have become substantial. However,

many classical classification and regression methods in such settings are known to pose many

statistical challenges and hence call for new methods and theories.

This thesis is devoted to robust classification and regression algorithms with theoretical

guarantee on important statistical properties. In Chapter 1, we present a classification framework

– ArchBoost, which applies to a wide range of loss functions including nonconvex losses and is

specifically designed to be robust and efficient whenever the labels are recorded with an error

xv

or whenever the data are contaminated with outliers. In Chapter 2, we introduce a forest-type

framework for regression problems, and prove that many state-of-the-art forest algorithms belong

to this framework. We then propose robust forest-type regression methods by applying our

proposed framework to robust loss functions. In Chapter 3, we design a novel estimating equation

motivated by the framework in Chapter 2 to solve quantile regression problem on random censored

data. In Chapter 4, we focus on high-dimensional left-censored quantile regression and study

its inference problem. We modify the quantile loss to accommodate the left-censored nature of

the problem, by extending the idea of redistribution of mass. For the inference part, asymptotic

properties are carefully investigated. All the methods in aforementioned chapters are tested

through extensive numerical experiments on both simulated and real data sets.

xvi

Chapter 1

Boosting in the Presence of Outliers:

Adaptive Classification with Non-convex

Loss Functions

1.1 Introduction

Recent advances in technologies for cheaper and faster data acquisition and storage

have led to an explosive growth of data complexity in a variety of scientific areas such as high-

throughput genomics, biomedical imaging, high-energy physics, astronomy and economics.

As a result, noise accumulation, experimental variation and data inhomogeneity have become

substantial. However, classification in such settings is known to pose many statistical challenges

and hence calls for new methods and theories.

ArchBoost contributes to the literature of binary classification algorithms and boosting

algorithms in particular. It applies to a wide range of loss functions including non-convex losses

and is specifically designed to be robust and efficient whenever the labels are recorded with an

error or whenever the data is contaminated with outliers. ArchBoost tilts or arches down the loss

1

function to adapt to the unknown and unobserved noise in the data by exploring non-convexity

efficiently.

To design the new framework we will amend the drawbacks of the AdaBoost algorithm

[FS97] in the contaminated data setting. AdaBoost algorithm is based on an iterative scheme,

in which at each stage data is reweighed, and a new weak classifier is found by minimizing

the exponential loss. A final estimate of the classification boundary is found by summing up

weak classifiers throughout all iterations. AdaBoost’s sensitivity to outliers comes from the

unbounded weight assignment on the misclassified observations. As outliers are more likely

to be misclassified, they are very likely to be assigned large weights and will be repeatedly

refitted in the following iterations. This refitting will deteriorate seriously the generalization

performance, as the algorithm “learns” incorrect data distribution. To achieve robustness, the

algorithm should be able to abandon observations that are on the extreme, incorrect side of the

classification boundary. Here, we theoretically and computationally investigate the applicability

of non-convex loss functions for this purpose. We illustrate that the best weight updating rule

is to assign a weight of −φ
′
(yiF(xi)) to each data point (xi,yi) with F(xi) denoting the current

estimate of the classification boundary. This assignment is only efficient if the loss function φ

is a non-convex loss function. We develop a tilting argument for the non-convex losses. It is

shown that, if we use a non-convex loss, sufficiently tilted, i.e. −φ
′
(v) is small for all v� 0, then

the outliers are eliminated successively. Hence, a constant “trimming” – typically used in robust

statistics – is not sufficient for outlier removal in classification setting. In tilting or “arching”

the loss function, we are effectively preserving as much fidelity to the data as possible, while

redistributing emphasis to different observations. We propose a new ArchBoost framework that

implements the above tilting method and adjusts for optimality by a new search of the optimal

weak hypothesis. Instead of relying only on gradient descent rules (like LogitBoost [FHT00] or

GradientBoost [Fri01]), ArchBoost chooses the optimal weak hypothesis that is most orthogonal

to the previous weak hypothesis, therefore improving the most the accuracy of the next iteration.

2

We propose a sufficient set of conditions needed for a loss function to allow for good

properties of the ArchBoost. We show that not every non-convex function satisfies such conditions;

an example is the sigmoid loss. However, we propose a family of loss functions, γ-loss, that

balances both the benefits of non-convexity and the empirical risk interpretation of boosting.

Lastly, the proposed family of ARB-γ algorithms is widely applicable to a wide variety of

problems related to non-Gaussian observations and data that are mis-labeled (maliciously or

otherwise). We address its robustness and statistical efficiency with details. Although it is

straightforward to provide such analysis for parametric linear models, computations for the

nonparametric and classification boundaries are far more challenging. We provide novel influence

function [Ham74] and finite sample breakdown point theory [Ham68] that fill in the gap in the

existing literature on robustness of the boosting algorithms.

1.1.1 Literature Review

There have been considerable efforts focused on designing methods that adapt to the error

in the data: outliers and/or mislabeling of the observations. In the existing work, algorithms of

[GD04] achieve provable guarantees [NDRT13, KTEM07] when contamination model [SBH13]

is known or when multiple noisy copies of the data are available [CSS02], good generalization

errors in the test set are by no means guaranteed. This problem is compounded when the

contamination model is unknown, where outliers need to be detected automatically. Despite

progress on outlier-removing algorithms, significant practical challenges (due to exceedingly

restrictive conditions imposed therein) remain. Hence, a classification method that doesn’t rely

on the specified model of the corruption in the observations is still unavailable.

As boosting algorithms utilize observed data distribution over iterations, they may provide

a robust alternative to the existing classification methods. Among the boosting algorithms, the

most famous one is AdaBoost [FS97] that averages simple estimators (classifiers) from reweighed

data over a sequence of iterations. It is the first adaptive boosting algorithm because the update at

3

each iteration is a direct function of the classification error of the previous step. AdaBoost then

attracted much attention from statistics community, and has proven to be simple and effective

[ZY05]. [Bre96, Bre99] shows that AdaBoost is a gradient descent method in function space and

[FHT00] views AdaBoost as a gradient-based incremental search for an additive model using

the exponential loss function. By observing that the exponential criterion is equivalent to the

binomial log-likelihood criterion to the second order, [FHT00] also proposed the LogitBoost

algorithm. All these algorithms depend on standard convex optimization techniques like the

Newton method. The descent method viewpoint then extends the usage of boosting to the context

other than classification. For example, [Fri01] developed gradient boosting method for regression

using squared error loss, and [MBBF99a] generalizes the boosting idea to wider families of loss

functions.

Nevertheless, in the presence of the label noise and/or outliers, the existing methods face

significant challenges [DW00]. AdaBoost is known to be very sensitive to noise [FS96, DW00,

MO97] because of the exponential criterion it uses. The weights on repeatedly misclassified

data increase exponentially fast which leads AdaBoost to overfit the noises. Algorithms like

LogitBoost, MadaBoost [DW00], Log-lossBoost [CSS02] are able to better tolerate noise than

AdaBoost because they use loss functions that give much slower weights growth rate than ex.

However, they are still not insensitive to outliers or provably robust. In fact, any boosting

algorithm with convex loss is highly susceptible to a random label noise as pointed out by [LS10].

Boost by majority (BBM) [Fre95] follows a very different mechanism and can give up on

repeatedly misclassified observations because it has a pre-assigned number of boosting iterations.

Hence, the weights updating rule of BBM is non-convex. However, the non-adaptiveness of BBM

prevents its practical usage because the uniform bound 1/2− γ (γ > 0) on the errors of weak

learners are hard to achieve. BrownBoost [Fre01] combines the non-convexity of BBM and the

adaptiveness of AdaBoost, and RobustBoost [Fre09] is developed based on BrownBoost and

further adapts to the idea of margin maximization which is believed to be the reason for the good

4

generalization performance of AdaBoost [FSA99, ROM01, Ser03]. However, BrownBoost hin-

ders upon an extra tuning parameter, target error ε, and RobustBoost depends on both target error ε

and maximum margin θ. These tuning parameters make both algorithms highly inconsistent with

respect to minor changes in the population parameter settings. Furthermore, both BrownBoost and

RobustBoost do not fit in the mainstream boosting algorithms that analytically minimize a convex

loss function. They solve two differential equations for two unknowns at each iteration, and the

loss function (which they call potential function) changes after every iteration and converges to

the 0-1 loss. Although stable in simulations, the statistical properties and robustness are unknown.

Therefore, a natural question is: how do we formally develop an adaptive, mainstream and robust

boosting algorithm that has a non-convex loss function and has provable robustness properties?

In this paper, we address this question and propose a fully automatic estimator, ArchBoost, with

no tuning parameters, that has provable robustness guarantees. Since ArchBoost does not require

the knowledge of the erroneous labels, or the knowledge of the errors themselves, one can probe

the utilities of the algorithm in the extremely wide scope of heterogeneous problems.

ArchBoost keeps the initial motivation of the boost by majority method in that the algo-

rithms gives up on repeatedly misclassified observations. However, unlike BBM or RobutBoost it

does so without requiring any pre-tuning of the error or maximum margin. ArchBoost adaptively

learns which data to give up on without a-priori intervention. Additionally, ArchBoost keeps

the reweighing flavor of the AdaBoost or GradientBoost algorithms but it differs in the way it

minimizes the empirical risk function as it allows for non-convex losses. While GradientBoost

uses least-squares and Newton criterions for finding the optimal classifier, ArchBoost utilizes

the hardness condition to define an estimating equations and solves the equations directly (not

approximately). Because of that, ArchBoost doesn’t reduce to the existing methods when the loss

function of choice is a recognized convex loss; for example, ArchBoost does not reduce to the

L2Boost when the loss is the least squares loss.

5

1.2 Methodology of the ArchBoost

Let X denote a p-dimensional domain, Y denote the class label set {−1,1}, {(Xi,Yi)}n
i=1⊂

X ×Y be i.i.d. data points (p≤ n), φ be a differentiable loss function, and F be a class of func-

tions from Rp to R. For any distribution P on X ×Y , we wish to find F ∈ F that minimizes

EP[1{Y F(X)< 0}]. With the classification-calibration condition [BJM06] on φ, this problem is

equivalent to finding F∗ ∈ F that minimizes the φ-risk Rφ(F) = EP[φ(Y F(X))]. We summarize

F∗(x) = argminF∈F Φ(F(x)), x ∈ X where Φ(F(x)) := E[φ(Y F(X))|X = x] in Table 1.1.

Table 1.1: The list of commonly used loss functions and its corresponding F∗

Classification Method Population parameters

Loss function φ(v) Optimal Minimizer F∗(x)

Logistic log(1+ e−v) (logP(y = 1|x)− logP(y =−1|x))
Exponential e−v 1

2 (logP(y = 1|x)− logP(y =−1|x))
Least Squares (v−1)2 P(y = 1|x)−P(y =−1|x)
Modified Least Squares [(1− v)+]2 P(y = 1|x)−P(y =−1|x)

AdaBoost [FS97] minimizes the empirical φ-risk R̂φ,n(F) = 1
n ∑

n
i=1 φ(YiF(Xi)) with the

exponential loss, φ(v) = e−v, in a stagewise manner. It approximates the unknown Bayes classifier

with a combination of weak classifiers, ht , obtained by employing a weak learner at each iteration

t. It is critical to observe that minimization of the exponential loss by itself is not sufficient to

guarantee low generalization error of the AdaBoost [Sch13]. Its excellent performance is based

on the premise that at each iteration of the algorithm, the method is forced to infer something

new about the observations. This amounts to reweighing the observations by a weight vector w,

so that the misclassified points gain more weight in the next iteration. However, in the presence

of outliers, such methodology will iteratively attempt to refit the outliers to one of the classes

and hence effectively pull the decision boundary away from the ground truth. Unfortunately,

all convex loss functions will inevitably keep upweighting the persistently misclassified points,

and as pointed out by [LS10], they all lead to non-robust boosting methods. Therefore, new

boosting principles need to be designed that allow the loss to be non-convex. ArchBoost method,

6

that we propose below, is such a framework which, equipped with non-convex losses, leads to

adaptive and robust algorithms that have provable guarantees. By exploring the non-convexity,

ArchBoost is gradually dropping out the persistent observations from the refitting procedure

at each new iteration of the algorithm. In this way, if the observations are consistently being

misfit, they are suspected of being outliers and are steadily assigned less importance in the

risk minimization procedure. Thus, ArchBoost tilts (i.e. arches) the weight distribution to the

non-outlying observations. As an example of a weight updating rule that is effective at arching,

we consider the loss function and the weight function, respectively, as

φ(v) = 4/(1+ ev)2, w(v) = ev/(1+ ev)3 (1.1)

with v = yF(x). To further illustrate this idea, we present graphically (1.1) in Figure 1.1, together

with the losses and weight distributions of AdaBoost and LogitBoost.

Figure 1.1: AdaBoost, LogitBoost, ArchBoost loss functions and the corresponding normalized
weight updating rules.

The novel boosting framework ArchBoost is presented in Algorithm 1. It iteratively builds

an additive model FT (x) = ∑
T
t=1 αtht(x) where ht belongs to some space of weak classifiers

denoted by H (e.g. decision trees). Different from Gradient boost and AdaBoost, ArchBoost

finds the optimal weak learner ht , the step size αt , and the weight updating vector wt by exploring

7

Algorithm 1 ArchBoost (φ)

Given training sample:(x1,y1), . . . ,(xn,yn) initialize the weights w0(xi,yi) = 1/n
for t = 1, . . . ,T do

3: (a) Normalize the weight by assigning wt = wt/∑i wt(xi,yi)
(b) Fit the classifier to obtain a class probability estimate Pwt (Y = 1|x) ∈ [0,1]
using current weights wt on the training data.

6: (c) Set ht(x) to be the solution of estimating equation (1.6).
(d) Find αt by solving the empirical counterpart of (1.7).
(e) Set Ft(x) = Ft−1(x)+αtht(x).

9: (f) Update the weights wt =−φ
′
(yFt(x)).

end for
Output the classifier: sign(FT (x)) .

the Hardness Condition defined as

Ewt+1 [Y ht(X)|X = x] = 0, (1.2)

where Ew[g(X ,Y)|X = x] := E[w(X ,Y)g(X ,Y)|X = x]/ E[w(X ,Y)|X = x]. This condition means

that, from iteration t to t +1, the weights on X are updated from wt to wt+1 such that ht(X) is

orthogonal to Y with respect to the inner product defined on the reweighed data. Thus, the weak

hypothesis ht behaves like a random guess on the reweighed data, and hence, the ht+1 will be a

good supplement to ht .

Provided that F includes all measurable functions, we observe that F∗(x) can be defined

by the first order optimality condition E[Y φ
′
(Y F∗(X))|X = x] = 0, where φ′ is defined as the

first order derivative d
dvφ(v). In classification problems, the parameter v of loss function φ is

v = Y F(X) – that is, the margin of a classifier F applied to a data point (X ,Y). Rewriting the

expectation in terms of the class probabilities, we obtain the following representation of the first

order optimality conditions

φ
′
(−F∗(x))

φ
′
(F∗(x))

=
P(Y = 1|X = x)
P(Y =−1|X = x)

. (1.3)

8

We aim to mimic equation above in each of the iteration steps of the proposed framework. In

more details, at iteration t, with the current estimate Ft−1(x) = h1(x)+ . . .+ht−1(x) at hand, we

wish to find a new weak hypothesis ht ∈H , such that Ft(x) = Ft−1(x)+ht(x) with ht(x) solving

the following equation

φ
′
(−Ft−1(x)−ht(x))

φ
′
(Ft−1(x)+ht(x))

=
P(Y = 1|x)
P(Y =−1|x)

. (1.4)

Next, we aim to explore (1.4) and build an estimating equation to find the optimal ht . The method

of estimating equations is a way of specifying how the optimal ht should be estimated. This

can be thought of as a generalization of many classical methods including the framework of

M-estimation. Estimating equation (1.4) involves an unknown quantity P(Y = 1|x). One may

substitute P with Pwt , but this coarse estimation could be very biased, especially when the data

has outliers. Therefore, we propose to estimate the right hand side of (1.4) by introducing a bias

correction function Ct−1(x) that depends on both the current estimate Ft−1 and x, and is such that

P(Y = 1|x)
P(Y =−1|x)

= Ct−1(x)
Pwt (Y = 1|x)
Pwt (Y =−1|x)

. (1.5)

Here the conditional probability Pwt (Y = 1|x) := Ewt [1[Y=1] |X = x]. Now, we observe that

P(Y = 1|x) and Pwt (Y = 1|x) satisfies

φ
′
(Ft−1(x))

φ
′
(−Ft−1(x))

P(Y = 1|x)
P(Y =−1|x)

=
E[1[Y=1]φ

′
(Y Ft−1(X))|x]

E[1[Y=−1]φ
′
(Y Ft−1(X))|x]

=
Pwt (Y = 1|x)
Pwt (Y =−1|x)

.

Hence, with the bias correction function defined as Ct−1(x) = φ
′
(−Ft−1(x))/φ

′
(Ft−1(x)), equa-

tions (1.5) and (1.4) lead to

φ
′
(−Ft−1(x)−ht(x))

φ
′
(Ft−1(x)+ht(x))

=
φ
′
(−Ft−1(x))

φ
′
(Ft−1(x))

Pwt (Y = 1|x)
Pwt (Y =−1|x)

. (1.6)

9

Therefore, the estimating equation principle of ArchBoost selects the optimal ht as a solution

to the estimating equation (1.6). For the loss function (1.1), for example Ct−1(x) = eFt−1(x).

Additionally, note that Pw can always be estimated as long as we use a weak learner that is

capable to give class probabilities. One example is decision tree in which case in each terminal

region R j, one can estimate Pwt (Y = 1|x) by ∑xi∈R j,yi=1 w(xi,yi)/∑xi∈R j w(xi,yi).

Observe that we can explicitly solve equation (1.6) for many commonly used loss func-

tions. For the robust loss (1.1) in Figure 1.1, (1.6) becomes

eFt−1(x)+ht(x) = eFt−1(x) Pwt (Y = 1|x)
Pwt (Y =−1|x)

,

leading to ht = logPw(Y = 1|x)− logPw(Y =−1|x). The results for existing losses are summa-

rized in Table 1.2. Observe that for different choices of the weight vector wt , the resulting ht

changes. The Hardness Condition works as the guideline of updating the weights wt . To ensure

that αtht indeed decreases the φ-risk we consider an additional line search step

αt = argmin
α∈R

E
[

φ

(
Y Ft−1(X)+Y αht(X)

)]
. (1.7)

We observe that for

wt+1(X ,Y) :=−φ
′
(Y Ft(X)), (1.8)

the αt , (1.7), satisfies Ewt+1[Y αtht(X)] ∝ E
[
−φ

′
(Y Ft−1(X)+Y αtht(X)) ·Y αtht(X)

]
= 0. For the

robust loss (1.1), w(v) = ev/(1+ ev)3 is proportional to −φ
′
(v) = 8ev(1+ ev)−3 up to a constant.

Therefore, by updating weights according to (1.8), the Hardness Condition (1.2) is satisfied.

Lastly, we emphasize that throughout the above derivation, we did not put any convexity

restriction on the loss function. The only assumption we made is that Φ(F(x)) has only one

critical point that is the global minimum, a condition satisfied by many non-convex functions, e.g.

10

Table 1.2: The list of commonly used loss functions and their weak hypotheses h

Classification Method Population parameters

Loss function
φ(v)

Optimal weak
hypotheses h(x)

Logistic log(1+ e−v) logPw(Y = 1|x)− logPw(Y =−1|x)
Exponential e−v 1

2 (logPw(Y = 1|x)− logPw(Y =−1|x))
Least Squares (v−1)2 C(1−F(x))(1+F(x))/(CF(x)+1)
Modified Least Squares [(1− v)+]2 C(1−F(x))(1+F(x))/(CF(x)+1)
* C = Pw(Y = 1|x)−Pw(Y =−1|x)

invex functions of [BIM86]. In this way, the ArchBoost algorithm can be applied to a broad family

of non-convex loss functions (see Section 1.3). Moreover, note that the weak hypotheses of the

least squares loss and modified least squares loss (Table 1.2) depend on the current estimate F(x)

and the weighted conditional probability Pwt (Y = 1|x), which is different from that of Gradient

boosting [Fri01]. Observe that the Gradient boosting effectively fits a least-squares method on

pseudo-responses (see Step 4 of Gradient boost that approximates equation (9) therein), and

hence the optimal weak learner is not chosen robustly. ArchBoost is an improvement as it designs

a fully robust algorithm. Moreover, Gradient boost doesn’t define the weights w and hence has

a very different viewpoint. Although it can be applied to non-convex losses using the simple

steepest descent, the solution is unstable and the corresponding algorithms using our non-convex

losses (Section 1.3) behave even worse than LogitBoost.

1.3 Robust non-convex loss functions

Not every non-convex function is a valid candidate for the developed ArchBoost method.

Any binary classification problem can be written as

min
v∈R

[
P(Y = 1|x)φ(v)+P(Y =−1|x)φ(−v)

]
, (1.9)

11

where v := Y F(x) is the margin. We assume that (4.31) has a unique optimal solution in R for

every x ∈ X . Note that this condition is not equivalent to the convexity of φ but rather to the local

convexity around the true parameter of interest.

Definition 1. A function φ is an ArchBoosting loss function if it is differentiable and (i) φ(v)≥ 0

for all v ∈ R and infv∈Rφ(v) = 0; (ii) for any 0 < α < 1, αφ(v)+ (1−α)φ(−v) has only one

critical point v∗ which is the global minimum; (iii) for any 0 ≤ α ≤ 1 and α 6= 1
2 , inf{αφ(v)+

(1−α)φ(−v) : v(2α−1)≤ 0}> inf{αφ(v)+(1−α)φ(−v) : v ∈ R}.

Conditions (i) and (iii) together imply that φ is an upper bound of the 0-1 loss up to a

constant scaling. Condition (iii) is called "classification calibration" [BJM06] and is satisfied as

long as φ is convex, differentiable and φ
′
(0)< 0. It is considered the weakest possible condition

for the resulting classifier to be Bayes-consistent. However, when considering non-convex losses,

the set of regularity conditions doesn’t exists in the current literature.

Lemma 1. All continuously differentiable convex functions φ : R→ R+ such that φ
′

is not a

constant satisfy Condition (ii). Moreover, all positive, continuously differentiable functions φ

such that φ
′
(v) 6= 0 for all v ∈ R, satisfy Condition (ii) as long as the function g : (0,∞)→ (0,1),

defined as g(v) := φ
′
(−v)/φ

′
(v) is strictly increasing and surjective.

By Lemma 1, the logistic, exponential, least square and modified least square losses are

all valid ArchBoosting losses. Differentiability of the loss is a non-crucial, technical condition

and the hinge loss can be shown to satisfy Conditions (i)-(iii). However, the sigmoid loss

φsig(v) = (1+ ev)−1 does not satisfy Condition (ii).

Observe that the right hand side of (1.4) does not depend on the loss function φ and

can take values in the positive real line R+. Hence, we can parameterize it with any strictly

increasing surjective function g : R→ R+ i.e. φ
′
(−v)/φ

′
(v) = g(v). The classical motivation

for reparametrization [NB04] – often called link functions – is that one uses a parametric

representation that has a natural scale matching the desired one. One such function satisfying

12

second part of Lemma 1 is g(v) = e(γ−1)v with constant γ > 1. This parametrization is not unique

but it admits a solution to the differential equation φ
′
(−v)/φ

′
(v) = e(γ−1)v. The solution (see

Supplement) is a family of non-convex losses, which we name γ-robust losses,

φγ(v) = 2γ(1+ ev)−γ, γ > 1. (1.10)

We plot the γ-robust losses and the corresponding normalized weight updating functions in Figure

1.2.

Figure 1.2: γ-robust losses, φγ and the corresponding normalized weight updating rules.

Parameter γ is not a tuning parameter, but rather an index of a family of non-convex losses

much like Huber and Tukey’s biweight losses. All φγ are bounded functions (≤ 2γ) and hence the

effects of the outliers are necessarily bounded. Moreover, the weight updating rules down-weights

the largely misclassified data points. When γ = 1, the weight updating curve is equivalent to the

sigmoid loss φ(v) = 1− tanh(λv) when λ = 1/2 [MBBF99a]. Moreover, for γ = 2, the loss φ2

is similar to the Savage loss φ(v) = (1+ e2v)−2 of [MSV09], in which they used the probability

elicitation technique. The following Lemma 2 allows us to use φγ together with the ArchBoost

method. The resulting family of robust boosting algorithms, named Adaptive Robust Boost-γ

(ARB-γ), are presented in Algorithm 2.

Lemma 2. For all γ > 1, φγ is an ArchBoosting loss function.

13

Algorithm 2 Adaptive Robust Boost (ARB)-γ

Given: (x1,y1), . . . ,(xn,yn), initialize the weight vector w0, e.g. w0(xi,yi) = 1/n
for t = 1, . . . ,T do

3: (a) Normalize the weight vector wt = wt/∑i wt(xi,yi)
(b) Compute the weak classifier to obtain a class probability estimate Pwt (Y = 1|x) ∈ [0,1],
using weights wt on the training data.
(c) Set ht(x) = log Pwt (Y=1|x)

Pwt (Y=−1|x) ∈ R̄.
6: (d) Find αt by solving empirical counterpart of (1.7).

(e) Set Ft(x) = Ft−1(x)+αtht(x)
(f) Set wt+1 = eyFt(x)(1+ eyFt(x))−γ−1

9: end for
Output the classifier: sign(FT (x))

1.4 Theoretical Considerations

Despite the substantial body of existing work on boosting classifiers (e.g. [BJM06, Bre04,

Fre95, FHT00, KP02, ZY05]), research on robust boosting has been limited to methodological

proposals with little supporting theory (e.g., [Lit91, KL93, Gen03, NL02, KS03, Ros05, LKB08,

BK13, MCX+16, MG16]).

1.4.1 Numerical convergence

In this section, we discuss the numerical convergence of the ArchBoost algorithm when-

ever the loss φ belongs to the class of ArchBoosting loss functions. The main difference from

the existing work (e.g. [KS03] and [ZY05]) is that they used the gradient descent rule in the

first paper or an approximate minimization in the second one, while we only use the hardness

condition to select the weak hypothesis h. Here, F T is a set of T -combinations of functions in

H , more precisely, F T =
{

F : F = ∑
T
t=1 αtht ,αt ∈ R,ht ∈H

}
. Then every f ∈ ∪∞

T=1F T can

be represented as ∑h∈H f αhh for an appropriate subset H f ⊂ H , and its l1-norm is defined as

∑h∈H f |α
(h)|, and its l2-norm as ∑h∈H f

√
|α(h)|2. Lastly, let { f̄t} be a sequence of reference

functions with empirical risk converging to R∗
φ,n = infF∈∪∞

T=1F T R̂φ,n(F).

14

Condition 1. (i) φ is Lipschitz differentiable; (ii) µ̂(ht ,wt) = (1/n)∑
n
i=1Yiht(Xi)wt(Xi,Yi)→ 0 as

t→ ∞; (iii) the step sizes αt satisfy

∞

∑
t=1

αt = ∞,
∞

∑
t=1

α
2
t < ∞,

∞

∑
t=1

αt+1ξt log t
tct

< ∞,

for some ξt = o(1), ξt ≥ 0; (iv) f̄t satisfies || f̄t −Ft ||1 = o(log t), || f̄t −Ft ||22 ≤
|| f̄t−Ft ||21

tct where

ct → 0 and tct → 1 as t→ ∞.

Theorem 1. Let φ be an ArchBoosting loss function and assume the weak learner is able to divide

the domain X into disjoint regions and give the class probability estimations (e.g. decision tree).

Let FT be the ArchBoost classifier, then R̂φ,n(FT) will converge in R as T →∞. In addition, under

Condition 1, R̂φ,n(FT)→ R∗
φ,n as T → ∞.

Unlike existing results, Theorem 1 does not require any additional algorithmic tuning

parameters (see Theorem 3.1 of [ZY05] and choices of εt , Λt). It is worth mentioning again that

the proof techniques in the existing literature do not extend to non-convex losses. We bridge the

gap by developing new analysis. Results in [BT07] (e.g., Theorem 6) hold under an assumption

of a positive lower bound on the Hessian of the empirical risk, which is strictly violated by any

non-convex loss. Furthermore, Theorem 1 allows the approximate minimization step (1.7) to be

inexact (by contrast, see Theorem 6 of [BT07]).

Remark 1. The reference sequence { f̄t} needs to be in a local neighborhood of Ft . For all f̄t

such that || f̄t ||1 = o(log(t)), the condition further reduces to || f̄t−Ft ||1 ≤ || f̄t−0||1, that is, the

distance between f̄t and Ft is smaller than the distance between f̄t and a random guess. This can

be achieved by shrinking the step sizes αt at a constant rate over every iteration. Moreover, the

effects of the second constraint regarding f̄t can be explained as a non-sparsity assumption on

the difference between Ft and f̄t , and is asymptotically negligible because tct → 1 when t→ ∞,

which leads to the trivial inequality between l1 and l2 norms.

15

Remark 2. The classical conditions that are guarding against infinitely small step sizes are now

supplemented with an additional constraint ∑
∞
t=1 t−ct αt+1ξt log t <∞. For example, if ξt =O(t−1),

then we can choose αt = O(t−b−ct) where b is any positive constant and ct can converge to 0 at

any speed. However, if ξt = O((log t)−1), we need ct → 0 slowly (e.g. O((log log t)−1)) and αt

can be chosen as O(t−1). The additional constraint on the step size choice acts as a penalty on

allowing non-convex loss functions [ZY05].

1.4.2 Robustness

In this section, we quantify and justify the robustness of ArchBoost Algorithm 1 through

the point of view of the influence function, as well as that of the finite sample breakdown point.

Influence function

The richest quantitative robustness measure is provided by the influence function [Ham74]

u→ IF(u;T,G) of T at G. It is defined as the first Gâteaux derivative of a functional T at a

distribution P, i.e., IF(z;T,P) = limε→0+[T ((1− ε)P+ ε∆z)−T (P)]/ε, where ∆z is the Dirac

distribution at the point z such that ∆z({z}) = 1. It gives the effect that an outlying observation

may have on an estimator. To simplify the analysis, we consider a subclass of binary classification

models, in which the true boundary F∗ is assumed to belong to a class of functions H. Here, H is

defined as a Reproducing Kernel Hilbert Space (RKHS) with a bounded kernel k and the induced

norm || · ||H . Observe that ArchBoost is consistent only if it is properly regularized (stopped after

a certain number of steps; see Theorem 5). Hence, to study its robustness properties we consider

a regularized criterion

fP,λ = argmin
f∈H

{
EP [φ(Y, f (X))]+λ|| f ||2H

}
.

16

The loss φ is a function of tuple (Y, f (X)) only for convenience of analysis. The feature map is

Ψ : X → H with Ψ(x) = k(x, ·).

Theorem 2. The influence function of fP,λ takes the form IF(z;T,P) = −S−1 ◦ J, where ◦ is

defined to mean S−1 acting on J and operators S : H → H and J ∈ H are defined as S =

EP

[
φ
′′
(Y, fP,λ(X))〈Ψ(X), ·〉Ψ(X)

]
+2λidH , J = φ

′
(zy, fP,λ(zx))Ψ(zx)−EP[φ

′
(Y, fP,λ(X))Ψ(X)],

where idH : H→ H is the identity mapping and z = (zx,zy) ∈ X ×Y is the contamination point.

In the above display, the derivative is defined as φ
′
(u,v) := ∂

∂vφ(u,v).

For a non-convex loss function φ, φ
′′

is not guaranteed to be nonnegative. However, we

show that it is sufficient to have the non-negativity of the expectation (locally around F∗) rather

than of the second derivative itself.

Lemma 3. For a binary classification problem, given any distribution P, whenever φ is a twice

continuous differentiable ArchBoosting loss function, then EP

[
φ
′′
(Y,F∗(X))q2(X)

]
≥ 0 for any

measurable function q : X →R. Furthermore, if P and X are such that P(Y = 1|X = x)∈ [δ,1−δ]

for some 0 < δ < 1
2 , and if pφ

′′
(1,v∗p)+(1− p)φ

′′
(−1,v∗p)> 0 at the global minimum v∗p for all

p ∈ [δ,1− δ], then there exists r > 0 such that EP

[
φ
′′
(Y,G(X))q2(X)

]
≥ 0 for all measurable

function G with ||G−F∗||∞ < r.

Conditions of the above lemma are satisfied for all γ-robust loss function. With γ = 2

and any x, EY [φ
′′
(Y,F∗(X))q2(X)|X = x] = 2p2

x(1− px)
2q2(x) ≥ 0 where px = P(Y = 1|X =

x). Thus, EPφ
′′
(Y,F∗(X))q2(X) ≥ 0. Furthermore, if px ∈ [δ,1− δ] for some δ ∈ (0, 1

2), then

pxφ
′′
(1,F∗(x))+(1− px)φ

′′
(−1,F∗(x)) = 2p2

x(1− px)
2 ≥ 2δ2(1−δ)2 > 0 for all px ∈ [δ,1−δ]1.

Theorem 3. For a binary classification problem, let φ : R→ [0,∞) be a twice continuously

differentiable ArchBoosting loss function and let H be a RKHS with bounded kernel k. Assume R

is a distribution on X ×Y such that for all x∈ X , R(Y = 1|X = x)∈ [δ,1−δ] for some 0 < δ < 1
2 ,

1Observe that the condition of px ∈ [δ,1−δ] for some δ ∈ (0, 1
2) restricts our setting to the “low-noise” setting

where the true probability of the class membership is bounded away from 0 or 1.

17

and pφ
′′
(1,v∗p)+ (1− p)φ

′′
(−1,v∗p) > 0 at the global minimum v∗p for all p ∈ [δ,1− δ]. Then

there exists r > 0 such that for all || fR,λ−F∗||∞ < r,

||IF(z; fR,λ,R)||H ≤
√

Cφ

λ
+

Mk|φ
′
(zy, fR,λ(zx))|

2λ
, (1.11)

where Mk is the upper bound of the kernel k and Cφ = φ(0,0).

Theorem 3 shows that the robustness mainly comes from the diminishing property of

|φ′|. In fact, for any non-convex ArchBoosting loss function, due to Assumption 2, we have

|φ′(zy, fR,λ(zx))| → 0 when |zy f (zx)| → ∞. If we plot ‖IF(z; fR,λ,R)‖H versus zy fR,λ(zx), then it

will decrease towards a constant far from the origin, much alike the redescending M-estimators.

Moreover, Theorem 3 implies that ‖IF(z; fR,λ,R)‖H is unbounded for the exponential loss

(AdaBoost), bounded but not diminishing for the logistic loss (LogitBoost) and diminishing for

the γ-robust losses (ArchBoost).

Breakdown point

Empirical robustness property defined as breakdown point in [DH83] has proved most

successful in the context of location, scale and regression problems (e.g. [Rou84, SR92, Tyl94],

etc.). This success has sparked many attempts to extend the concept to other situations (e.g.

[RW01, Gen03, DG05],etc.). However, very little work has been done in the classification context.

The breakdown point, as defined in [Ham68], is roughly the smallest amount of contamination

that may cause an estimator to take on arbitrarily large aberrant values. The breakdown points

of 1/n for the mean and 1/2 for the median do reflect their finite-sample behavior. However, an

alternative view is desired in the classification context as the magnitude of an estimator may not

relate to necessarily bad classification – that is, the size of the weak hypothesis is not crucially

related to the classification boundary. Instead, in the context of boosting, we look for the estimator

that keeps the gradient of the risk minimization in the oracle direction. The meaning of oracle

18

direction will be further explained in Remark 4. To that end, let Sn = {(X1,Y1), . . . ,(Xn,Yn)} be a

set of observed, contaminated samples among which Om:n = {(Xm+1,Ym+1), . . . ,(Xn,Yn)} being

a set of outliers. Let ht be the weak hypothesis and denote the vectors ht = (ht(X1), . . . ,ht(Xn)).

Let −gt = (−gt(X1), . . . ,−gt(Xn)) stands for the negative gradient of the empirical risk R̂φ,n on

Sn, whereas −go = (−gt(X1), . . . ,−gt(Xm),0, . . . ,0) is the embedding of the negative gradient of

the empirical risk on the sample without outliers Sn \Om:n into Rn.

Theorem 4. For every region R j, define η j := |p j − 1
2 |/min(p j,1− p j), where p j ∈ (0,1)

and p j 6= 1
2 . Then at iteration t, if any ArchBoost algorithm, conditional on the realizations

{(Xi,Yi) = (xi,yi)}n
i=1, satisfies that for all R j,

∑
i:xi∈Om:n∩R j

wt(xi,yi)≤ η j ∑
i:xi∈R j\Om:n

wt(xi,yi), (1.12)

then the gradient descent direction is preserved, that is, −〈go,ht〉 ≥ 0.

Conditions of the above theorem are very mild. Theorem 4 suggests that any ArchBoost

algorithm that satisfies the above conditions preserves the descending direction of the non-

contaminated empirical φ-risk, hence it minimizes the oracle risk while disregarding the outliers.

Remark 3. When p j =
1
2 – that is, the total weight on positive labels is the same as that of

the negative ones in region R j – the elements of h corresponding to the points in R j are 0 and

consequently have no influence on the sign of −〈go,h〉. Moreover, the case of p j = 0 or 1 is not

of the main interest as in this case, then informally we have 100% confidence about which label

the data in R j should contain. In this case, all the data in that region have the same labels and

hence it is reasonable to say there are no outliers. If we allow η j to be infinity, then p j = 0 or 1

correspond to the inequality ∑i∈O∩R j w(xi,yi)≤ ∞ and this is certainly true for any weight w.

Remark 4. Theorem 4 establishes that whenever (1.12) holds h will have a direction along which

the oracle empirical risk of the non-contaminated data decreases. Figure 1.2 clearly illustrates

19

that (1.12) is more likely to be satisfied for the ARB-γ than for the AdaBoost or the LogitBoost

algorithm. For example, if yi = −1 and P(Y = −1|X = xi) = 0.001, then for Real AdaBoost,

w(xi,yi)/wb ' 32, and for ARB-2, w(xi,yi)/wb ' 0.008 where wb is the weight for a data point

(xb,yb) such that F∗(xb) = 0. It can be seen that AdaBoost puts 4000 times more weight on this

outlier data than ARB-2, and hence violates (1.12).

Condition 2. Let the class of weak hypothesis H satisfy limT→∞ inf f∈F T Rφ(f) = R∗
φ

for a VC-

dimension dVC{H }< ∞. Moreover, the function φ is a decreasing ArchBoosting loss function

that is also bounded and Lipschitz.

For a rich class H , the first part of Condition 2 is true [BT07]. The class T of binary

trees with the number of terminal nodes larger or equal to d + 1, where d is the dimension of

X [Bre04] satisfies it. If a loss function φ satisfies the second part of this condition, then both

limv→∞ φ(v) and limv→−∞ φ(v) exist in R, and the first derivative converges to zero away from

the origin. This lessens the effect of gross outliers and in turn leads to good robust properties of

the resulting estimator.

Theorem 5. Let Lφ and Mφ be the Lipschitz constant and the maximum value of φ, respectively.

Let V = dVC(H), c = 24
∫ 1

0

√
log 8e

µ2 dµ. Then, under Condition 2, (a) for sequences Tn,ζn→ ∞

and δn→ 0 as n→ ∞, there exists a sequence En(ζn)→ 0 such that, with probability at least

1−δn,

sup
f∈F Tn

|R̂φ,n(f)−Rφ(f)| ≤ cζnLφ

√
(V +1)(Tn +1) log2(

2(Tn+1)
log2)

n
+Mφ

√
log 1

δn

2n
+En;

(b) sup f∈F Tn |R̂φ,n(f)−Rφ(f)| → 0 a.s. if Tn = n1−ε, ε ∈ (0,1); (c) with the same Tn, Rφ(f ∗n)→

R∗
φ

a.s. where f ∗n = argmin f∈F Tn Rφ,n(f).

Theorem 5 illustrates the uniform deviation between the φ-risk and the empirical φ-risk.

Note that we want Tn→ ∞ as n→ ∞ but not too fast (slower than O(n)). Moreover, from part

20

(b), there exists a sequence of samples {S∗n}∞
n=1 such that Rφ(f̃n)→ R∗

φ
as n→ ∞. Here f̃n is the

optimal classifier obtained by minimizing the empirical risk on S∗n. Given any sample Sn, the

misclassification error of any classifier f on Sn is L(f) = P(f (X) 6= Y |Sn). The Bayes risk is

then defined as L∗ = inf f∈M L(f) = EX [min(η(X),1−η(X))], where η(X) = P(Y = 1|X) and

M stands for the family of all measurable functions. Next we state the intermediary lemma that

connects the reference sequence f̃n to the ArchBoost estimator FTn .

Lemma 4. For the above reference sequence { f̃n}∞
n=1 and a non-negative sequences Tn = n1−ε,

ε∈ (0,1), and with the choice of αt as in Theorem 1, we have as n→∞, (a)
(
R̂φ,n(f̃n)−Rφ(f̃n)

)
+
→

0 a.s. and (b)
(
R̂φ,n(FTn)− R̂φ,n(f̃n)

)
+
→ 0 a.s.

Theorem 6. Assuming conditions of Theorem 5 hold. Then, with the stopping time Tn as in Theo-

rem 5 and the step size αt as in Theorem 1, the ArchBoost classifier FTn satisfies L(sign(FTn))→ L∗

a.s. as n→ ∞.

1.5 Numerical Experiments

In this section we provide an extensive simulation and real data analysis illustrating

superior performance of the ArchBoost framework and ARB-γ algorithms in particular.

1.5.1 Gaussian - Student Mixture

In this section, design X ∼N (0,Σp), and we define the elliptical boundary according to

the median of ‖X‖2
2, that is, Y = 1 if and only if XT Σ−1X ≥ median(X 2

p). In the first example,

p = 10 and Σ10 = I10 with n = 12000 and 2000 of them are used as a training sample [FHT01].

In the second and third example, we let [Σp]i j = (0.3)|i− j| be a Toeplitz matrix with p = 10

and p = 100 respectively. In the third example, n = 36000 with 6000 used for training. In all

experiments, we use 5 fold cross-validation and use decision tree as the weak learner with the

21

tree depth set to be 1 (decision tree stump) for p = 10 and tuned to be 3 when p = 100. For

RobustBoost, the maximum stopping times are set to be 1000 when p = 10, and 3000 when

p = 100. Additional noise in observations is generated from t-distribution with 4 degrees of

freedom and with correlation structure that parallels the one of X .

(a) p = 10, Σ = I10 (b) p = 10, Σ = Toeplitz

(c) p = 100, Σ = Toeplitz

Figure 1.3: Comparison of average test errors of ARB-γ, AdaBoost and LogitBoost.

Figure 1.3 implies several observations. First, the test errors of the ARB-γ algorithms are

all less than that of the Real AdaBoost or LogitBoost for correlated and uncorrelated feature space

and low and higher dimensional problems. Second, when the percentage of outliers is small, the

performances of ARB-2 is the best. When the noise level is higher, ARB-1.5 behaves the best.

Hence, if we were to "tune" γ for ARB-γ algorithms, for example, choose ARB-2 when noise

level is less than 25% and ARB-1.5 otherwise in Figure 1.3a, then ARB-γ is uniformly better

than both AdaBoost and LogitBoost. At last, the performances of ARB-γ is very similar to the

performance of AdaBoost or LogisticBoost when γ gets larger, allowing certain flexibility in the

22

hardness of the robustness belief. If one is more certain of the cleanliness of the data, larger γ

may provide a compromise between robustness and non-robustness. Therefore, in practice, we

recommend to choose γ to be 1.5 or 2. Choosing γ too large will depress the robustness of the

algorithm, and choosing γ too close to 1 will lead to unnecessary instability.

1.5.2 Comparison with Non-convex Gradient Boost

To illustrate that non-convexity is not the only feature that enables ArchBoost to have

great performance, we showcase that it behaves much better than the Gradient boost with a

1.5-robust loss function (4.34). It is worth pointing out that such Gradient boosting must be

implemented using steepest descent methods and that non-convexity of the loss leads to high

instability of estimates over iterations. We contrast the methods by generating samples from the

model as in Figure 1.3a.

(a) ARB-γ and Gradient Boost with γ-robust loss. (b) Consistency of ARB-γ

Figure 1.4: Comparisons with Non-convex Gradient Boost and Consistency

From Figure 1.4a we immediately observe that for every choice of γ the ARB-γ achieves

lower test error than the corresponding Gradient boost with γ-robust loss with the difference

being larger for larger number of outliers and larger γ. We observe that similarly as before

ARB-2 achieves smallest error (5%,9%) if the percentage of outliers is smaller than 20% whereas

ARB-1.5 achieves smallest error (9%,11%) if the percentage of outliers is larger than 20%. The

23

corresponding test errors for Gradient boost with 2 and 1.5-robust loss are much higher (ranging

from (11%,19%) to (21%,35%) respectively).

1.5.3 Consistency

In order to show consistency of the proposed ArchBoost algorithms, we generate i.i.d. data

from the model as in Figure 1.3a but now varying sample sizes exp(k)+20000, for k = 5,6, · · · ,13.

Then we use exp(k) data for training and the rest 20000 for testing. In Figure 1.4b, we can see

that the test error is indeed decreasing to 0 for various percentages of outliers. The higher the

number of outliers the larger the sample size n should be for the algorithm to converge. This is

not unexpected as the outliers are effectively eating up (shrinking) the sample size (the algorithm

is discarding them successively in each iteration).

1.5.4 The Long/Servedio problem

[LS10] constructed a challenging experiment with X ∈ R21 with binary features Xi ∈

{−1,+1} and label yi ∈ {−1,+1}. First, the label y is chosen to be −1 or +1 with equal

probability. Then for any given y, the features Xi are generated according to the following mixture

distribution:

• Large margin: With probability 1
4 , set Xi = y for all 1≤ i≤ 21.

• Pullers: With probability 1
4 , set Xi = y for 1≤ i≤ 11 and Xi =−y for 12≤ i≤ 21.

• Penalizers: With probability 1
2 , randomly choose 5 coordinates from the first 11 features

and 6 from the last 10 to be equal to y. The remaining features are set to −y.

We generate 800 samples and flip each label with probability ε ∈ [0,0.5). The data from

this distribution can be perfectly classified by sign(∑i Xi). The classifiers are trained using the

noisy data and tested on the original clean data [Fre09]. In total, 20 datasets are generated, and

24

on each of them, 10% of the labels were flipped. Stopping times of the algorithms are T ≤ 800.

The average test errors and sample deviations are reported in Table 1.3, from which we conclude

that the ARB-2 outperforms Real AdaBoost and LogitBoost, and is even better than RobustBoost

(target parameter θ = 0.15).

Table 1.3: Long/Servedio problem

data type Real AdaBoost LogitBoost RobustBoost
(θ = 0.15)

ARB-2

noise(ε = 0.1) 28.24%(1.53%) 26.61%(1.51%) 11.04%(0.67%) 9.82%(0.43%)

clean 25.07%(1.92%) 22.59%(1.74%) 0.21%(0.35%) 0.02%(0.04%)

Figure 1.5 shows the average test errors and the 95% confidence intervals of different

ARB-γ algorithms. The conclusion is that ARB-1.5 behaves uniformly better than all the other

algorithms. The breakdown point will get higher when γ→ 1+, implying that smaller γ leads to

better robustness properties.

Figure 1.5: Comparison of ARB-γ on Long/Servedio problem with different ε

1.5.5 Outlier detection

In this experiment, we generate 2000 data points as in Section 1.5.1, and add noise to the

first ε percentage. After 800 iterations, we record the times that each data point is misclassified,

and count how many of the points that are misclassified more than 600 times (denoted as T)

25

actually belong to the noisy set (denoted as To). The ratio To/T and the results are shown in

Table 1.4. When the percentage of outliers is less than 15%, for the ARB-2, more than 99% of

the points that have been misclassified for more than 600 times are indeed the outliers, but for

the Real AdaBoost, this number is only around 31%. Informally, for ARB-2, when ε≤ 15%, we

have more than 99% "confidence" to conclude that a data point, which is misclassified for more

than 600 times, is indeed an outlier.

Table 1.4: Outliers detection. The x-axis stands for the index of the training points ranging from
1 to 2000, and the y-axis stands for the times a point is misclassified, ranging from 0 to 800.

ε ARB-2 AdaBoost ε ARB-2 AdaBoost

0.05 0.1
To/T 100% 30.49% To/T 100% 32.22%

0.15 0.2
To/T 99.04% 37.38% To/T 85.48% 44.40%

1.5.6 Real data application

We consider the Wisconsin (diagnositc) breast cancer data 2 with ten real-valued features

computed for each cell nucleus 3 for 569 individuals, with 357 benign and 212 malignant cells.

The training set has 150 benign samples and 150 malignant samples, randomly obtained. The

maximum stopping time is set to to be 200. We use tree stump as the weak learner in all three

problems. Results are reported in Table 1.5 and in Figure 1 in the Supplement.

Observe that ARB-2 behaves the best on the original data set, and ARB-1.5 outperforms

others in the presence of noise. Compared to [SWW14] and their test error rate of 4%, our
2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
3radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, fractal dimen-

sion

26

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Table 1.5: Comparison of the average test errors and sample deviation (over 100 repetitions and
using five-fold cross-validation) of four algorithms on the Wisconsin breast cancer dataset.

Percentage of flipped labels Methods

ARB-2 ARB-1.5 Robust Boost

0% 3.47%(1.41%) 3.43%(1.34%) 4.71%(1.70%)
5% 4.80%(1.79%) 4.47%(1.75%) 4.82%(1.66%)
10% 5.85%(1.82%) 5.11%(1.79%) 5.44%(1.81%)
15% 6.67%(2.18%) 5.92%(2.22%) 6.53%(2.20%)

GradientBoost-1.5 LogitBoost Ada Boost

0% 5.44%(1.76%) 4.82%(1.85%) 4.06%(1.58%)
5% 6.29%(1.81%) 5.64%(1.97%) 5.43%(2.04%)
10% 7.34%(1.99%) 6.19%(1.81%) 6.33%(1.85%)
15% 8.11%(2.46%) 6.83%(2.28%) 7.07%(2.37%)

methods uniformly achieve smaller and comparable test error rates on the on the clean and

perturbed datasets.

Next we consider a dataset that is part of the ’MicroArray quality control II’ project with

accession number GSE20194 4. The dataset contains 278 newly diagnosed breast cancer patients,

aged from 26 to 79 years spanning all three major races and their mixtures. Estrogen-receptor

status helps guide treatment for breast cancer patients. Of 278 patients, 164 had positive estrogen-

receptor status (PERS) and 114 have negative estrogen-receptor status (NERS). Each sample

includes 22283 biomarker probe-sets. We choose 3000 probe-sets with the smallest p-values

in the two-sample t-test (e.g. [ZWWL16]). We randomly choose 50 samples with PERS and

50 samples with NERS for a training set. Then the labels of the training samples are randomly

flipped. The stopping time is set to be at most 100. Results are summarized in Table 1.6 and

in Figure 2 in Supplement. The best test errors of 15% and 9% were achieved in [DM13] and

[ZWWL16], respectively. However, our methods achieve errors comparable to those even when

the labels were randomly perturbed.

Lastly, we compare ARB-2, ARB-1.5, RobustBoost and Real AdaBoost on the sensorless

4http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20194

27

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20194

Table 1.6: Comparison of the average test errors and sample deviation (over 100 repetitions and
using five-fold cross-validation) of four algorithms on the GSE20194 gene dataset.

Percentage of flipped labels Methods

ARB-2 ARB-1.5 RobustBoost

0% 9.40%(1.89%) 9.31%(1.96%) 10.19%(2.05%)
5% 10.02%(2.64%) 9.88%(2.67%) 11.21%(2.89%)
10% 12.04%(4.92%) 11.97%(4.67%) 12.39%(4.11%)
15% 15.72%(6.91%) 15.70%(6.56%) 14.58%(5.93%)

GradientBoost-1.5 LogitBoost AdaBoost

0% 9.87%(1.91%) 9.54%(2.31%) 9.63%(2.22%)
5% 10.16%(2.40%) 10.21%(3.32%) 10.17%(3.07%)
10% 12.31%(3.35%) 12.14%(5.16%) 12.34%(5.07%)
15% 16.12%(5.94%) 16.32%(7.20%) 16.79%(7.07%)

drive diagnosis dataset 5. We have 58509 samples and each with 49 features and 11 different

classes; 14000 points are chosen and then from these, 2000 are used for training and 2000 for

validation. The stopping times are set ≤ 3000. The test errors on clean data are summarized in

Table 1.7 and Figure 3 in the Supplement. RobustBoost behaves worse and the best for 10% or

15% and 0% of the labels flipped, respectively. With higher levels of the noise, the test errors

of ARB-1.5 and RobustBoost are very close with ARB-1.5 not needing to fine tune any target

parameters.

Table 1.7: Comparison of the average test errors and sample deviation (over 100 repetitions) of
four algorithms on the Sensorless drive diagnosis dataset.

Percentage of flipped labels Methods

ARB-2 ARB-1.5 Robust Boost

0% 5.79%(0.50%) 5.21%(0.41%) 6.82%(0.42%)
5% 9.49%(0.69%) 8.06%(0.83%) 8.74%(0.67%)
10% 12.21%(0.79%) 10.80%(0.91%) 10.69%(0.85%)
15% 14.34%(1.01%) 12.85%(0.89%) 12.81%(1.10%)

GradientBoost-1.5 LogitBoost Ada Boost

0% 12.52%(1.45%) 6.18%(0.48%) 6.77%(0.50%)
5% 13.98%(1.30%) 10.30%(0.67%) 11.86%(0.79%)
10% 16.00%(1.41%) 12.10%(0.72%) 13.99%(0.80%)
15% 19.31%(1.61%) 14.97%(0.88%) 17.34%(0.89%)

5https://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis

28

https://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+Diagnosis

1.6 Proof of Theorems

1.6.1 Proof of Theorem 1

Proof of Theorem 1 (a). Firstly, we show that at each iteration t, as long as the empirical margin

µ̂(wt ,ht) is positive, the empirical risk decreases by adding the weak hypotheses ht to the current

estimate. Secondly, we show that the weak hypothesis returned by our ArchBoost algorithm

always has a positive empirical margin before convergence.

Step 1: On the sample Sn, denote Ft−1 = (Ft−1(x1), · · · ,Ft−1(xn)) . Denote the partial derivative

w.r.t. F(Xi) as gt(Xi) =
[

∂R̂φ,n(F)
∂F(Xi)

]
F(Xi)=Ft−1(Xi)

= 1
nYiφ

′
(YiFt−1(Xi)). Then the gradient of R̂φ,n at

Ft−1 is ∇R̂φ,n(Ft−1) =
1
ng for g = (gt(X1), . . . ,gt(Xn))

>. Recall that wt(Xi,Yi) =−φ
′
(YiFt−1(Xi))

for each i = 1, · · · ,n. Suppose that we choose a weak hypothesis ht with positive empirical

margin w.r.t. weights wt , that is, µ̂(ht ,wt) > 0, and denote ht = (ht(X1), · · · ,ht(Xn)). Then

〈−∇R̂φ,n(Ft−1),ht〉= 1
n ∑

n
i=1Yiht(Xi)wt(Xi,Yi) = µ̂(ht ,wt)> 0, where 〈·, ·〉 is the standard inner

product in Rn. Therefore, we have 〈−∇R̂φ,n(Ft−1),ht〉 > 0⇐⇒ µ̂(wt ,ht) > 0. Next, observe

that if 〈−∇R̂φ,n(Ft−1),ht〉 > 0, then ht is a descending direction of R̂φ,n(F) at Ft−1, therefore

R̂φ,n [Ft] = R̂φ,n [Ft−1 +αtht]< R̂φ,n [Ft−1]. Note that an appropriate step size αt can be found by

the line search αt = argminα R̂φ,n [Ft−1 +αht] . In summary, if at step t, we choose a base learner

ht such that µ̂(wt ,ht) > 0 and choose a suitable step size αt either by line search or set to be

appropriately small, then R̂φ,n(Ft)< R̂φ,n(Ft−1).

Step 2: In any region R j
t , ht ≡ γ

j
t . Then,

〈−gt ,ht〉 =
Jt

∑
j=1

∑
i∈R j

t

Yiwt(Xi,Yi)γ
j
t

=
Jt

∑
j=1

γ
j
t

(
Pwt (Y = 1|X ∈ R j

t)−Pwt (Y =−1|X ∈ R j
t)
)

∑
i∈R j

t

wt(Xi,Yi).

29

From (1.6), we have φ
′
(−Ft(x))

φ
′
(Ft(x))

=
Pwt (Y=1|x)
Pwt (Y=−1|x)

φ
′
(−Ft−1(x))

φ
′
(Ft−1(x))

. Observe that if Pwt (Y = 1|x)> Pwt (Y =

−1|x), then φ
′
(−Ft(x))

φ
′
(Ft(x))

> φ
′
(−Ft−1(x))

φ
′
(Ft−1(x))

. By second part of Lemma 1, Ft(x) > Ft−1(x), that is,

ht(x) > 0. Therefore, there exists a strictly increasing function θ with the only root at 1/2

such that γ
j
t = θ(Pwt (Y = 1|X ∈ R j

t)). Hence, 〈−gt ,ht〉= ∑
Jt
j=1 θ(Pwt (Y = 1|X ∈ R j

t))(2Pwt (Y =

1|X ∈ R j
t)−1)∑i∈R j

t
wt(Xi,Yi)≥0. The last inequality is because θ(Pwt (Y = 1|X ∈ R j

t)) always

has the same sign as 2Pwt (Y = 1|X ∈ R j
t)−1, and “=” holds if and only if Pwt (Y = 1|X ∈ R j

t) =
1
2

for all j = 1, · · · ,Jt .

Proof of Theorem 1 (b). Here, we develop ideas similar to the proof of Lemma 4.1 and

Lemma 4.2 in [ZY05]. There are two differences here in comparison to [ZY05]. First, the

loss is non-convex function and second, the optimal hypothesis is chosen differently. For

f ∈ ∪∞
T=1F T , let H f ⊂ H be the set that contains all weak hypotheses in f . For example,

f1 = ∑h∈H f αh
1h and f2 = ∑h∈H f αh

2h. Moreover, denote f̄t = ∑h∈Ht ωh
t h, Ft = ∑h∈Ht αh

t h. For

notation simplicity, we denote R = R̂φ,n since we have fixed a loss function φ and sample

size n. Let sh = sign(ωh
t − αh

t). By Taylor expansion, we have R(Ft + αt+1shh) ≤ R(Ft) +

αt+1sh〈∇R(Ft),h〉+
α2

t+1
2 supξ∈[0,1]R

′′
Ft ,h(ξαt+1sh), where RFt ,h(α) := R(Ft +αh). Since the Hes-

sian of R is bounded, there exists M > 0 s.t. supξ∈[0,1]R
′′
Ft ,h(ξαt+1sh) < M. Therefore, R(Ft +

αt+1shh)≤ R(Ft)+αt+1sh〈∇R(Ft),h〉+
α2

t+1
2 M. By Algorithm 1 that R(Ft+1) = R(Ft +αt+1ht+1).

Moreover, by (1.6), ht+1 is chosen as the argminh∈Ht
Ew [R(Ft +αt+1h)]. Hence, for any h ∈Ht ,

Ew [R(Ft +αt+1ht+1)] ≤ Ew [R(Ft +αt+1h)]. Moreover, for any bounded random variable Z,

|Ew[Z]−E[Z]| ≤ K for a positive constant K. Combining the above, we have R(Ft+1) ≤

R(Ft +αt+1shh)+2εt +2K, for εt = suph∈Ht

∣∣∣∣R(Ft +αt+1shh)−E
[
R(Ft +αt+1shh)

]∣∣∣∣. By the ar-

guments very much similar to Lemmas S1 and S2 of the Supplement, it easy to obtain εt = oP(1).

Since || f̄t−Ft ||1 = o(log t), and || f̄t−FT ||22 ≤
|| f̄t−Ft ||21

tct where ct ∈ (0,1) and ct → 0 as t→∞, we

30

have || f̄t−Ft ||21
tct = o(log t

tct || f̄t−Ft ||1). Hence,

|| f̄t−Ft ||22(R(Ft+1)−2εt−2K) = o

[
log t
tct ∑

h∈Ht

|αh
t −ω

h
t |R(Ft +αt+1shh)

]

= o

[
log t
tct ∑

h∈Ht

|αh
t −ω

h
t |

(
R(Ft)+αt+1sh〈∇R(Ft),h〉+

α2
t+1

2
M

)]

= o

[
log t
tct
|| f̄t−Ft ||1R(Ft)+

αt+1 log t
tct

〈∇R(Ft), f̄t−Ft〉+
Mα2

t+1 log t
2tct

|| f̄t−Ft ||1

]
(1.13)

Now we look at the situation when µ̂(hk,wk) = 0. From part (a), this happens if and only if

Pwk(Y = 1|X ∈ R j
k) =

1
2 , ∀ j, i.e., ∇R(Fk) ⊥ H . Since µ̂(ht ,wt)→ 0, ∇R(Ft) is perpendicular

to ∪∞
T=1F T , and 〈∇R(Ft)−∇R(f̄t), f̄t −Ft〉 → 0 since f̄t −Ft ∈ ∪∞

T=1F T . Since φ is Lipschitz

differentiable, there exists L > 0 s.t. R(Ft)− R(f̄t) ≤ 〈∇R(f̄t),Ft − f̄t〉+ L
2 || f̄t − Ft ||22. Then

〈∇R(f̄t), f̄t −Ft〉 ≤ R(f̄t)−R(Ft)+
L
2 || f̄t −Ft ||22. When t is large enough, there exists sequence

ε̃t → 0 s.t. 〈∇R(Ft), f̄t−Ft〉 ≤ R(f̄t)−R(Ft)+
L
2 || f̄t−Ft ||22 + ε̃t . Then, by (1.13),

|| f̄t−Ft ||22(R(Ft+1)−2εt−2K)

= o

[
log t
tct
|| f̄t−Ft ||1R(Ft)+

αt+1 log t
tct

〈∇R(Ft), f̄t−Ft〉+
α2

t+1 log t
2tct

|| f̄t−Ft ||1M

]

= o
[

log t
tct
|| f̄t−Ft ||1R(Ft)+

αt+1 log t
tct

(
R(f̄t)−R(Ft)

)
+ηt

]
, (1.14)

where ηt := αt+1 log t
tct

(L
2 || f̄t−Ft ||22 + ε̃t

)
+

α2
t+1 log t

2tct || f̄t −Ft ||1M. Then by dividing || f̄t −Ft ||22 on

both sides of (1.14), we get

R(Ft+1) = o
[

log t
tct

|| f̄t−Ft ||1
|| f̄t−Ft ||22

R(Ft)+
αt+1 log t

tct || f̄t−Ft ||22

(
R(f̄t)−R(Ft)

)
+ η̄t +2εt +2K

]
= o

[
log t

tct/2|| f̄t−Ft ||2
R(Ft)+

αt+1 log t
tct || f̄t−Ft ||22

(
R(f̄t)−R(Ft)

)
+ η̄t +2εt +2K

]
,

31

where η̄t := αt+1 log t
tct

(
L
2 +

ε̃t
|| f̄t−Ft ||22

)
+

α2
t+1 log t

2tct/2|| f̄t−Ft ||2
M. Therefore,

R(Ft+1)−R(f̄t) = o
[

log t
tct || f̄t−Ft ||2

R(Ft)+
αt+1 log t

tct || f̄t−Ft ||22

(
R(f̄t)−R(Ft)

)
+ η̄t +2εt +2K

]
≤ ξt log t

tct || f̄t−Ft ||2
R(Ft)+

αt+1ξt log t
tct || f̄t−Ft ||22

(
R(f̄t)−R(Ft)

)
+ξt η̄t +2ξtεt +2Kξt ,

for some sequence ξt → 0 as t→ ∞. Now, for ct → 0, and with αt satisfying conditions in (b),

and by Lemma 4.2 in [ZY05], we have R(Ft+1)−R(f̄t)→ 0 as t→ ∞.

1.6.2 Proof of Theorem 3

With IF(z;T,P) = gz ∈H, we can write the quantity 2λgz +EPφ
′′
(Y, fP,λ(X))gz(X)Ψ(X)

as EPφ
′
(Y, fP,λ(X))Ψ(X)−φ

′
(zy, fP,λ(zx))Ψ(zx). By taking inner product 〈·, ·〉H with gz itself,

we have

2λ||gz||2H +EPφ
′′
(Y, fP,λ(X))g2

z (X) = EPφ
′
(Y, fP,λ(X))gz(X)−φ

′
(zy, fP,λ(zx))gz(zx). (1.15)

Moreover, the Frechet derivative at fP,λ is a zero mapping, hence,

2λ〈 fP,λ,gz〉H +EPφ
′
(Y, fP,λ(X))gz(X) = 0. (1.16)

We also note that since fP,λ is the global minimum, then λ|| fP,λ||2H +Rφ(fP,λ) ≤ λ||0H ||2H +

Rφ(0H) =Cφ where Cφ = Rφ(0H) = φ(0,0) is a constant, that is,

λ|| fP,λ||2H ≤ λ|| fP,λ||2H +EPφ(Y, fP,λ(X))≤Cφ. (1.17)

32

Finally, we have

2λ||gz||2H ≤ 2λ||gz||2H +EPφ
′′
(Y, fP,λ(X))g2

z (X)

(i)
= EPφ

′
(Y, fP,λ(X))gz(X)−φ

′
(zy, fP,λ(zx))gz(zx)

(ii)
= −2λ〈 fP,λ,gz〉H−φ

′
(zy, fP,λ(zx))gz(zx)

(iii)
≤ 2λ‖ fP,λ‖H‖gz‖H−φ

′
(zy, fP,λ(zx)))gz(zx)

(iv)
≤ 2

√
λCφ‖gz‖H + |φ

′
(zy, fP,λ(zx))||gz(zx)|

= 2
√

λCφ‖gz‖H + |φ
′
(zy, fP,λ(zx))|〈gz,k(zx, ·)〉H

(v)
≤ 2

√
λCφ‖gz‖H + |φ

′
(zy, fP,λ(zx))|

√
〈gz,gz〉H

√
〈k(zx, ·),k(zx, ·)〉H

= 2
√

λCφ‖gz‖H + |φ
′
(zy, fP,λ(zx))|||gz||H |k(zx,zx)|.

where (i) is due to (1.15); (ii) due to (1.16); (iii) is due to the Cauchy-Schwartz inequality; (iv)

is due to (1.17); (v) is again due to the Cauchy-Schwartz inequality. Since k is a bounded kernel,

∃Mk > 0 such that |k(x1,x2)| ≤Mk for all x1,x2 ∈ X . Hence, |φ′(zy, fP,λ(zx))|||gz||H |k(zx,zx)| ≤

Mk|φ
′
(zy, fP,λ(zx))|||gz||H , which in turn leads to 2λ||gz||2H ≤ 2

√
λCφ‖gz‖H +Mk|φ

′
(zy, fP,λ)(zx)|‖gz‖H

and hence ||gz||H ≤
√

Cφ

λ
+

Mk|φ
′
(zy, fP,λ)(zx)|

2λ
.

1.7 Acknowledgement

Chapter 1, in full, is a reprint of the material as it appears in Journal of the American

Statistical Association. Li, Hanbo; Bradic, Jelena. Boosting in the presence of outliers: adaptive

classification with nonconvex loss functions, JASA, 1-15, 2018. The dissertation/thesis author

was the primary investigator and author of this paper.

33

Chapter 2

Forest-type Regression with General

Losses and Robust Forest

2.1 Introduction

Since its development by Breiman [Bre01], random forest has proven to be both accurate

and efficient for classification and regression problems. In regression setting, random forest will

predict the conditional mean of a response variable by averaging predictions of a large number

of regression trees. Later then, many other machine learning algorithms were developed upon

random forest. Among them, robust versions of random forest have also been proposed using

various methodologies. Besides the sampling idea [Bre01] which adds extra randomness, the other

variations are mainly based on two ideas: (1) use more robust criterion to construct regression

trees [GPS07, BB06, RL12]; (2) choose more robust aggregation method [Mei06, RL12, TPC06].

Meinshausen [Mei06] generalized random forest to predict quantiles by discovering that

besides calculating the weighted mean of the observed response variables, one could also get

information for the weighted distribution of observed response variables using the sets of local

weights generated by random forest. This method is strongly connected to the adaptive nearest

34

neighbors procedure [LJ06] which we will briefly review in section 2.1.2. Different from classical

k-NN methods that rely on pre-defined distance metrics, the dissimilarities generated by random

forest are data dependent and scale-invariant.

Another state-of-the-art algorithm AdaBoost [FS95, FS96] has been generalized to be

applicable to a large family of loss functions [Fri01, MBBF99b, LB16]. Recent development

of more flexible boosting algorithms such as xgboost [CG16] have become the go-to forest

estimators with tabular or matrix data. One way in which recent boosting algorithms have an

advantage over the random forest is the ability to customize the loss function used to reduce the

influence of outliers or optimize a metric more suited to the specific problem other than the mean

squared error.

In this chapter, we will propose a general framework for forest-type regression which

can also be applied to a broad family of loss functions. It is claimed in [Mei06] that quantile

random forest is another nonparametric approach which does not minimize an empirical loss.

However, we will show in fact both random forest and quantile random forest estimators can

be re-derived as regression methods using the squared error or quantile loss respectively in our

framework. Inspired by the adaptive nearest neighbor viewpoint, we explore how random forest

makes predictions using the local weights generated by ensemble of trees, and connect that with

locally weighted regression [FG96, TH87, Sta89, New94, Loa06, HL93]. The intuition is that

when predicting the target value (e.g. E[Y |X = x]) at point x, the observations closer to x should

receive larger weights. Different from predefining a kernel, random forest assigns the weights

data dependently and adaptively. After we illustrate the relation between random forest and local

regression, we will use random forest weights to design other regression algorithms. By plugging

robust loss functions like Huber loss and Tukey’s redescending loss, we get forest-type regression

methods that are more robust to outliers. Finally, motivated from the truncated squared error loss

example, we will show that decreasing the number of nearest neighbors in random forest will

also immediately improve its generalization performance.

35

The layout of this chapter is as follows. In Section 2.1.1 and 2.1.2 we review random

forest and adaptive nearest neighbors. Section 2.2 introduces the general framework of forest-

type regression. In Section 2.3 we plug in robust regression loss functions to get robust forest

algorithms. In Section 2.4 we motivate from the truncated squared error loss and investigate the

importance of choosing right number of nearest neighbors. Finally, we test our robust forests in

Section 2.5 and show that they are always superior to the traditional formulation in the presence

of outliers in both synthetic and real data set.

2.1.1 Random forest

Following the notation of Breiman [Bre01], let θ be the random parameter determining

how a tree is grown, and data (X ,Y) ∈ X ×Y . For each tree T (θ), let L be the total number of

leaves, and Rl denotes the rectangular subspace in X corresponding to the l-th leaf. Then for

every x ∈ X , there is exactly one leaf l such that x ∈ Rl . Denote this leaf by l(x,θ).

For each tree T (θ), the prediction of a new data point X = x is the average of data values

in leaf l(x,θ), that is, Ŷ (x,θ) = ∑
n
j=1 w(Xi,x,θ)Yi, where

w(Xi,x,θ) =
1{Xi∈Rl(x,θ)}

#{ j : X j ∈ Rl(x,θ)}
. (2.1)

Finally, the conditional mean E[Y |X = x] is approximated by the averaged prediction of m trees,

Ŷ (x) = m−1
∑

m
t=1 Ŷ (x,θt). After rearranging the terms, we can write the prediction of random

forest as

Ŷ (x) =
n

∑
i=1

w(Xi,x)Yi, (2.2)

36

where the averaged weight w(Xi,x) is defined as

w(Xi,x) =
1
m

m

∑
t=1

w(Xi,x,θt). (2.3)

From equation (2.2), the prediction of the conditional expectation E[Y |X = x] is the weighted aver-

age of the response values of all observations. Furthermore, it is easy to show that ∑
n
i=1 w(Xi,x) =

1.

2.1.2 Adaptive nearest neighbors

Lin and Jeon [LJ06] studies the connection between random forest and adaptive nearest

neighbor. They introduced the so-called potential nearest neighbors (PNN): A sample point xi is

called a k-PNN to a target point x if there exists a monotone distance metric under which xi is

among the k closest to x among all the sample points.

Therefore, any k-NN method can be viewed as choosing k points from the k-PNNs

according to some monotone metric. For example, under Euclidean metric, the classical k-NN

algorithm sorts the observations by their Euclidean distances to the target point and outputs the k

closest ones. This is equivalent to weighting the k-PNNs using inverse L2 distance.

More interestingly, they prove that those observations with positive weights (2.3) all

belong to the k-PNNs [LJ06]. Therefore, random forests is another weighted k-PNN method,

but it assigns weights to the observations different from any k-NN method under a pre-defined

monotonic distance metric. In fact, the random forest weights are adaptive to the data if the

splitting scheme is adaptive.

37

2.2 General framework for forest-type regression

In this section, we generalize the classical random forest to a general forest-type regression

(FTR) framework which is applicable to a broad family of loss functions. In Section 2.2.1, we

motivate the framework by connecting random forest predictor with locally weighted regression.

Then in Section 2.2.2, we formally propose the new forest-type regression framework. In Section

2.2.3, we rediscover the quantile random forest estimator by plugging the quantile loss function

into our framework.

2.2.1 Squared error and random forest

Classical random forest can be understood as an estimator of conditional mean E[Y |X].

As shown in (2.2), the estimator Ŷ (x) is weighted average of all response Yi’s. This special form

reminds us of the classical least squares regression, where the estimator is the sample mean. To

be more precise, we rewrite (2.2) as

n

∑
i=1

w(Xi,x)(Yi− Ŷ (x)) = 0. (2.4)

Equation (2.4) is the estimating equation (first order condition) of the locally weighted least

squares regression [RW94]:

Ŷ (x) = argmin
λ∈R

n

∑
i=1

w(Xi,x)(Yi−λ)2 (2.5)

In classical local regression, the weight w(Xi,x) serves as a local metric between the target

point x and observation Xi. Intuitively, observations closer to target x should be given more

weights when predicting the response at x. One common choice of such local metric is kernel

Kh(Xi,x) = K((Xi− x)/h). For example, the tricube kernel K(u) = (1− |u|3)3
1(|u| ≤ 1) will

ignore the impact of observations outside a window centered at x and increase the weight of an

38

observation when it is getting closer to x. The form of kernel-type local regression is as follows:

argmin
λ∈R

n

∑
i=1

Kh(Xi− x)(Yi−λ)2,

The random forest weight w(Xi,x) (2.3) defines a similar data dependent metric, which is con-

structed using the ensemble of regression trees. Using an adaptive splitting scheme, each tree

chooses the most informative predictors from those at its disposal. The averaging process then

assigns positive weights to these training responses, which are called voting points in [LJ06].

Hence via the random forest voting mechanism, those observations close to the target point get

assigned positive weights equivalent to a kernel functionality [FHT01].

2.2.2 Extension to general loss

Note that the formation (2.5) is just a special case when using squared error loss φ(a,b) =

(a−b)2. In more general form, we have the following local regression problem:

Ŷ (x) = argmin
s∈F

n

∑
i=1

w(Xi,x)φ(s(Xi),Yi) (2.6)

where w(Xi,x) is a local weight, F is a family of functions, and φ(·) is a general loss. For example,

when local weight is a kernel and F stands for polynomials of a certain degree, it reduces to local

polynomial regression [FG96]. Random forest falls into this framework with squared error loss, a

family of constant functions and local weights (2.3) constructed from ensemble of trees.

Algorithm 3 Forest-type regression

Step 1: Calculate local weights w(Xi,x) using ensemble or trees.
Step 2: Choose a loss φ(·, ·) and a family F of function. Then do the locally weighted
regression

Ŷ (x) = argmin
s∈F

n

∑
i=1

w(Xi,x)φ(Yi,s(Xi)).

39

In Algorithm 3, we summarize the forest-type regression as a general two-step method.

Note that here we only focus on local weights generated by random forest, which uses ensemble

of trees to recursively partition the covariate space X . However, there are many other data

dependent dissimilarity measures that can potentially be used, such as k-NN, mp-dissimilarity

[ATHW14], shared nearest neighbors [JP73], information-based similarity [Lin98], mass-based

dissimilarity [TZC+16], etc. And there are many other domain specific dissimilarity measures.

To avoid distraction, we will only use random forest weights throughout the rest of this paper.

2.2.3 Quantile loss and quantile random forest

Meinshausen [Mei06] proposed the quantile random forest which can extract the informa-

tion of different quantiles rather than just predicting the average. It has been shown that quantile

random forest is more robust than the classical random forest [Mei06, RL12]. In this section, we

show quantile random forest estimator is also a special case of Algorithm 3. It is well known

that the τ-th quantile of an (empirical) distribution is the constant that minimizes the (empirical)

risk using τ-th quantile loss function ρτ(z) = z(τ−1{z<0}) [Koe05]. Now let the loss function

in Algorithm 3 be the quantile loss ρτ(·), F be the family of constant functions, and w(Xi,x) be

random forest weights (2.3). Solving the optimization problem

Ŷτ(x) = argmin
λ∈R

n

∑
i=1

w(Xi,x)ρτ(Yi−λ),

we get the corresponding first order condition

n

∑
i=1

w(Xi,x)(τ−1{Yi− Ŷτ(x)< 0}) = 0.

40

Recall that ∑
n
i=1 w(Xi,x) = 1, hence, we have

n

∑
i=1

w(Xi,x)1{Yi < Ŷτ(x)}= τ. (2.7)

The estimator Ŷτ(x) in (2.7) is exactly the same estimator proposed in [Mei06]. In particular,

when τ = 0.5, the equation ∑
n
i=1 w(Xi,x)1{Yi < Ŷ0.5(x)}= 0.5 will give us the median estimator

Ŷ0.5(x). Therefore, we have rediscovered quantile random forest from a totally different point of

view as a local regression estimator with quantile loss function and random forest weights.

2.3 Robust forest

From the framework 3, quantile random forest is insensitive to outliers because of the more

robust loss function. In this section, we test our framework on other robust losses and proposed

fixed-point method to solve the estimating equation. In Section 2.3.1 we choose the famous

robust loss – (pseudo) Huber loss, and in Section 2.3.2, we further investigate a non-convex loss –

Tukey’s biweight.

2.3.1 Huber loss

The Huber loss [Hub64]

Hδ(y) =


1
2y2 for |y| ≤ δ,

δ(|y|− 1
2δ) elsewhere

is a well-known loss function used in robust regression. The penalty acts like squared error loss

when the error is within [−δ,δ] but becomes linear outside this range. In this way, it will penalize

the outliers more lightly but still preserves more efficiency than absolute deviation when data is

concentrated in the center and has light tails (e.g. Normal). By plugging Huber loss into the FTR

41

framework 3, we get a robust counterpart of random forest. The estimating equation is

n

∑
i=1

wi(x)sign(Ŷ (x)−Yi)min(Ŷ (x)−Yi,δ) = 0. (2.8)

Direct optimization of (2.8) with local weights is hard, hence instead we will investigate the

pseudo-Huber loss (see Figure 2.1),

Lδ(y) = δ
2

(√
1+
(y

δ

)2
−1

)

which is a smooth approximation of Huber loss [CBFAB97].

The estimating equation

n

∑
i=1

wpH
i (x)

(
ŶpH(x)−Yi

)
= 0. (2.9)

is very similar to that of square error loss if we define a new weight

wpH
i (x) =

wi(x)√
1+
(

ŶpH(x)−Yi
δ

)2
. (2.10)

Then the (pseudo) Huber estimator can be expressed as

ŶpH(x) =
∑

n
i=1 wpH

i (x)Yi

∑
n
i=1 wpH

i (x)
. (2.11)

Informally, the estimator (2.11) can be viewed as a weighted average of all the responses Yi’s.

From (2.10), we know the new weight for pseudo-Huber loss has an extra scaling factor

(√
1+(δ−1u)2

)−1

(2.12)

and hence will shrink more to zero whenever δ−1|ŶpH(x)−Yi| is large. The tuning parameter

42

δ acts like a control of the level of robustness. A smaller δ will lead to more shrinkage on the

weights of data that have responses far away from the estimator.

The estimating equation (2.9) can be solved by fix-point method which we propose in

Algorithm 4. For notation simplicity, we will use wi, j to denote w(Xi,x j), where Xi is the i-th

training point and x j is the j-th testing point. The convergence to the unique solution (if exists) is

guaranteed by Lemma 5.

Algorithm 4 pseudo-Huber loss (δ)

Input: Test points {x j}m
j=1, initial guess {Ŷ (0)(x j)}, local weights wi, j, training responses

{Yi}n
i=1, and error tolerance ε0.

while ε > ε0 do
(a) Update the weights

w(k)
i, j =

wi, j√
1+
(

Ŷ (k−1)(x j)−Yi
δ

)2

(b) Update the estimator

Ŷ (k)(x j) =
∑

n
i=1 w(k)

i, j Yi

∑
n
i=1 w(k)

i, j

(c) Calculate error

ε =
1
m

m

∑
j=1

(
Ŷ k(x j)− Ŷ (k−1)(x j)

)2

(d) k← k+1
end while
Output the pseudo-Huber estimator:

ŶpH(x j) = Ŷ (k)(x j)

Lemma 5. Define

Kδ(y) =

∑
n
i=1

wiYi√
1+
(

y−Yi
δ

)2

∑
n
i=1

wi√
1+
(

y−Yi
δ

)2

,

where ∑
n
i=1 wi = 1. Let K = maxi=1,··· ,n |Yi|. Then Algorithm 4 can be written as Ŷ (k)(x) =

43

Kδ(Ŷ (k−1)), and converges exponentially to a unique solution as long as δ > 2K.

From Lemma 5, we know it is important to standardize the responses Yi so that δ will be

of the same scale for different problems. In practice, we observe that one will not need to choose

δ that satisfies the worst-case condition δ > K in order for convergence, but making δ too small

does lead to slow convergence rate. For assigning the initial guess Ŷ (0), two simplest ways are to

either take the random forest estimator we got or a constant vector equaling to the sample mean.

Throughout the rest of this paper, we will choose the weights to be random forest weights (2.3).

2.3.2 Tukey’s biweight

Non-convex function has played an important role in the context of robust regression

[Hub11, HRRS11]. Unlike convex losses, the penalization on the errors can be bounded and

hence the contribution of outliers in the estimating equation will eventually vanish. Our forest

regression framework 3 also incorporates the non-convex losses which will show through the

Tukey’s biweight function Tδ(·) [Hub11], which is an example of redescending loss whose

derivative will vanish to zero as the input goes outside the interval [−δ,δ]. It is defined in the

following way:

d
dy

Tδ(y) =


y
(

1− y2

δ2

)2
for |y| ≤ δ,

0 elsewhere.

Similarly, by rearranging the estimating equation, we have

Ŷtukey(x) =
∑

n
i=1 wtukey(Xi,x)Yi

∑
n
i=1 wtukey(Xi,x)

where

wtukey(Xi,x) = w(Xi,x)max

{
1−
(

Ŷtukey−Yi

δ

)2

,0

}

44

with an extra scaling factor (see Figure 2.2)

max
{

1−
(u

δ

)2
,0
}
. (2.13)

In another word, the final estimator actually only depends on data with responses inside [−δ,δ],

and the importance of any data (Xi,Yi) will be shrinking to zero when |Ŷtukey(x)−Yi| gets closer

to the boundary value δ.

2.4 Truncated squared loss and nearest neighbors

In this section, we will further use the framework 3 to investigate truncated squared

error loss, and use this example to motivate the relation between random forest generalization

performance and the number of adaptive nearest neighbors.

2.4.1 Truncated squared error

For the truncated squared error loss

Sδ(y) =


1
2y2 for |y| ≤ δ,

1
2δ2 elsewhere

the corresponding estimating equation is

∑
|Ŷtrunc(x)−Yi|≤δ

w(Xi,x)(Ŷtrunc(x)−Yi) = 0.

If we define a new weight

wtrunc(Xi,x) = w(Xi,x)1{|Ŷtrunc(x)−Yi| ≤ δ}, (2.14)

45

then the estimator for truncated squared loss is

Ŷtrunc(x) =
∑

n
i=1 wtrunc(Xi,x)Yi

∑
n
i=1 wtrunc(Xi,x)

. (2.15)

The estimator (2.15) is like a trimmed version of the random forest estimator (2.2). We first sort

{Yi}n
i=1 and trim off the responses where |Ŷtrunc(x)−Yi|> δ. Therefore, for any truncation level

δ, the estimator Ŷtrunc(x) only depends on data satisfying |Ŷtrunc(x)−Yi| ≤ δ with the same local

random forest weights (2.1).

2.4.2 Random Forest Nearest Neighbors

In classical random forest, all the data with positive weights (2.3) are included when

calculating the final estimator Ŷ (x). However, from section 2.4.1, we know in order to achieve

robustness, some of the data should be dropped out of consideration. For example, using the

truncated squared error loss, we will only consider the data satisfying |Yi− Ŷtrunc(x)| ≤ δ. In

classical random forest, the criterion of tree split is to reduce the mean squared error, then in

most cases, data points inside one terminal node will tend to have more similar responses. So

informally larger |Ŷtrim(x)−Yi| will indicate smaller local weight w(Xi,x). Therefore, instead of

solving for (2.15), we investigate a related estimator

Ŷwt(x) =
∑w(Xi,x)≥ε w(Xi,x)Yi

∑w(Xi,x)≥ε w(Xi,x)
(2.16)

where ε > 0 is a constant in (0,1). Recall that in [LJ06], they show all the observations with

positive weights are considered voting points for random forest estimator. However, (2.16)

implies that we should drop observations with weights smaller than a threshold in order for the

robustness. More formally, let σ be a permutation such that w(Xσ(1),x)≥ ·· · ≥ w(Xσ(n0),x)> 0,

46

then (2.2) is equivalent to

Ŷ (x) =
n0

∑
i=1

w(Xσ(i),x)Yσ(i).

Then we can define the k random forest nearest neighbors (k-RFNN) of x to be {Xσ(1), · · · ,Xσ(k)},

k ≤ n0, and get predictor

Ŷk(x) =
k

∑
i=1

w̃(Xσ(i),x)Yσ(i), (2.17)

where w̃(Xσ(i),x) = w(Xσ(i),x)/∑
k
j=1 w(Xσ(i),x). In the numerical experiments (Section 2.5.3),

we will test the performance of the estimator (2.17) with different k, and show that by merely

choosing the right number of nearest neighbors, one can largely improve the performance of

classical random forest.

Shi and Horvath [SH06] proposed a similar ensemble tree based nearest neighbor method.

In their approach, if the observations Xi and X j lie in the same leaf, then the similarity between

them is increased by one. At the end, the similarities are normalized by dividing the total number

of trees in the forest. Therefore, their weights (similarities) w(Xi,x) will be m−1
∑

m
t=11{Xi∈Rl(x,θ)}

contrast to (2.3). So different from their approach, for random forest, the similarity between Xi

and X j will be increased by 1/#{p : Xp ∈ Rl(Xi,θ)} if they both lie in the same leaf l(Xi,θ). This

means the increment in the similarity also depends on the number of data points in the leaf.

2.5 Experiments

In this section, we plug in the quantile loss, Huber loss and Tukey’s biweight loss into the

general forest framework and compare these algorithms with random forest. Unless otherwise

stated, for both Huber and Tukey forest, the error tolerance is set to be 10−6, and every forest is

an ensemble of 1000 trees with maximum terminal node size 10. The robust parameter δ are set

47

to be 0.005 and 0.8 for Huber and Tukey forest, respectively.

2.5.1 One dimensional toy example

We generate 1000 training data points from a Uniform distribution on [−5,5] and another

1000 testing points from the same distribution. The true underlying model is Y = X2 + ε,

ε∼N (0,1). But on the training samples, we choose 20% of the data and add noise 2T2 to the

responses, where T2 follows t-distribution with degree of freedom 2.

Table 2.1: Comparison of random forest (RF), quantile random forest (QRF), Huber forest
(Huber) and Tukey forest (Tukey) on one dimensional example.

MEASURE RF QRF HUBER TUKEY

MSE 2.56 1.88 1.85 1.82
MAD 1.20 1.07 1.06 1.07
MAPE 0.16 0.13 0.12 0.12

In Figure 2.3, we plot the true squared curve and different forest predictions. It is clear

that Huber and Tukey forest achieve competitive robustness as quantile random forest, and can

almost recover the true underlying distribution, but random forest is largely impacted by the

outliers. We also repeat the experiments for 20 times, and report the average mean squared error

(MSE), mean absolute deviation (MAD) and median absolute percentage error (MAPE) in Table

2.1.

2.5.2 Multivariate example

We generate data from 10 dimensional Normal distribution, i.e. X ∼N10(~0,Σ). Then we

test out algorithms on following models.

1. Y = ∑
10
i=1 X2

i + ε and ε∼N (0,1), Σ = I.

2. Y = ∑
10
i=1 X2

i + ε and ε∼N (0,1), Σ = Toeplitz(ρ = 0.7).

48

Then for each model, we randomly choose η proportion of the training samples and add

noise 15T2 where T2 follows t-distribution with degree of freedom 2. The noise level η ∈

{0,0.05,0.1,0.15,0.2}. The results are summarized in Table 2.2 and 2.3. On the clean data,

random forest still play the best, however, Huber forest’s performance is also competitive and lose

less efficiency than QRF and Tukey forest. On the noisy data, all three robust methods outperform

random forest. Among them, Huber forest is most robust and stable.

Table 2.2: Comparison of the four methods in the setting (1). The average MSE is reported in
first row, and average MAD in second row.

MSE 0% 5% 10% 15% 20%
RF 8.19 12.14 20.32 22.61 25.23
QRF 9.80 11.63 13.30 13.83 14.71
HUBER 9.02 9.86 10.40 10.49 10.88
TUKEY 10.56 12.41 18.16 12.34 16.62
MAD 0% 5% 10% 15% 20%
RF 2.10 2.49 2.73 2.89 3.02
QRF 2.23 2.37 2.66 2.75 2.84
HUBER 2.20 2.28 2.36 2.38 2.43
TUKEY 2.37 2.45 2.54 2.52 2.66

Table 2.3: Comparison of the four methods in the setting (2).

MSE 0% 5% 10% 15% 20%
RF 9.21 13.00 13.69 14.92 17.78
QRF 11.47 12.07 12.21 12.29 13.16
HUBER 11.19 12.08 12.15 12.20 12.74
TUKEY 12.84 13.09 13.31 14.52 14.60
MAD 0% 5% 10% 15% 20%
RF 1.88 2.19 2.74 2.80 2.83
QRF 2.06 2.13 2.28 2.32 2.41
HUBER 2.04 2.15 2.17 2.17 2.22
TUKEY 2.26 2.34 2.39 2.35 2.41

49

2.5.3 Nearest neighbors

In this section, we check how the number of adaptive nearest neighbors k in (2.17) will

have impact on the performance of k-RFNN. We consider the same two models (1) and (2), and

keep both training sample size and testing sample size to be 1000. The relations between MSE,

MAD and the number of adaptive nearest neighbors are illustrated in Figure 2.4. Recall that

k-RFNN with all 1000 neighbors is equivalent to random forest. From the figures, we clearly

observe a kink at k = 15, which is much less than 1000.

2.5.4 Real data

We take two regression datasets from UCI machine learning repository [Lic13], and one

real estate dataset from OpenIntro. For each dataset, we randomly choose 2/3 observations for

training and the rest for testing. MSE and MAD are reported by averaging over 20 trials. The

results are presented in Table 2.4. To further test the robustness, we then repeat the experiment

but add extra T2 noise to 20% of the standardized training data response variables everytime. The

results are in Table 2.5. Robust forests outperform random forest in most of the cases except for

Ames data sets, on which quantile random forest behaves poorly.

Table 2.4: Comparison of the four methods on two UCI repository datasets: (1) concrete
compressive strength (CCS) [Yeh98]; (2) airfoil self-noise (Airfoil); and one OpenIntro dataset:
Ames residential home sales (Ames).

MSE RF QRF HUBER TUKEY

CCS 37.22 34.79 32.98 34.42
AIRFOIL 18.22 10.04 14.28 16.55
AMES(×108) 4.51 12.21 5.22 5.91
MAD RF QRF HUBER TUKEY

CCS 4.62 4.25 4.17 4.30
AIRFOIL 3.45 2.30 3.08 3.17
AMES(×104) 1.34 2.44 1.31 1.36

50

Table 2.5: Test on real data sets with extra noise.

MSE RF QRF HUBER TUKEY

CCS 68.51 39.21 39.05 40.27
AIRFOIL 18.22 10.04 14.28 16.55
AMES(×108) 5.77 18.20 5.28 5.39
MAD RF QRF HUBER TUKEY

CCS 5.46 4.53 4.57 4.80
AIRFOIL 3.45 2.30 3.08 3.17
AMES(×104) 1.64 3.23 1.47 1.55

2.5.5 Conclusion and discussion

The experimental results show that Huber forest, Tukey forest and quantile random forest

are all much more robust than random forest in the presence of outliers. However, without outliers,

Huber forest preserves more efficiency than the other two robust methods. We did not cross

validate the parameter δ for different noise levels, so one would expect even better performance

after carefully tuning the parameter.

Besides random forest weights, other data dependent similarities could also be used in

Algorithm 3. We could also design loss functions which optimizes a metric for specific problems.

The fixed-point method could be replaced by other more efficient algorithms. The framework

could be easily extended to classification problems. All these will be potential future work.

2.6 Proof of Lemma 5

Proof. Because Ŷ (k)(x) = Kδ(Ŷ (k−1)) which is a fixed-point method, we only need to show∣∣∣K ′
δ
(y)
∣∣∣ < 1 in order for the existence and uniqueness of the solution. Define the normalized

weight

w̃i =
wi√

1+
(

y−Yi
δ

)2

/ n

∑
i=1

wi√
1+
(

y−Yi
δ

)2
,

51

we have ∑
n
i=1 w̃i = 1, and

∣∣∣K ′
δ
(y)
∣∣∣

≤

∣∣∣∣∣ n

∑
i=1

w̃iYi

(
n

∑
j=1

(1(i = j)− w̃ j)
y−Yj

δ2 +(y−Yj)2

)∣∣∣∣∣
≤ 2

n

∑
i=1

w̃i |Yi| max
i=1,··· ,n

(
|y−Yi|

δ2 +(y−Yi)2

)
= 2

n

∑
i=1

w̃i |Yi|
1

mini=1,··· ,n
(

δ2

|y−Yi| + |y−Yi|
)

≤ max
i=1,··· ,n

|Yi|
1
δ
.

Therefore,
∣∣∣K ′

δ
(y)
∣∣∣< 1

2 if δ > 2maxi=1,··· ,n |Yi|= 2K.

2.7 Acknowledgement

Chapter 2, in full, is a version of the material as it appears in International Conference on

Machine Learning. Li, Hanbo; Martin, Andrew. Forest-type regression with general losses and

robust forest, ICML, 2017. The dissertation/thesis author was the primary investigator and author

of this paper.

52

Figure 2.1: In the first row, we compare squared error loss 1
2 x2 and pseudo-Huber loss with

different δ. In the second row, we plot the scaling factor (2.12) of Huber loss.

53

Figure 2.2: We plot the scaling factor (2.13) of Tukey’s biweight. Compared to Huber scaling
factor (see (2.12)), it has a hard threshold at δ.

54

Figure 2.3: One dimensional comparison of random forest, quantile random forest, Huber forest
and Tukey forest. All forests are ensemble of 500 regression trees and the maximum number of
points in terminal nodes is 20.

55

Figure 2.4: The performance of k-RFNN against the number of nearest neighbors.

56

Chapter 3

Forest-type Quantile Regression for

Random Censored Data

3.1 Introduction

Censored data exists in many different areas. In economics, policies such as minimum

wage and minimum transaction fee result in left-censored data, as quantities below the thresholds

will never be observed. In bio-medical research, people are interested at the time until the

occurrence of an event of interest, for example, death or occurrence of a disease. But because

the time span of the study is limited or the patient quits before experiencing an event of interest,

many observations will be right-censored. More formally, let T be a real-valued latent variable

and X be a (possibly high-dimensional) predictor variable. In censoring problem, we have

another censoring variable C which prevents us from observing all information about T . In

left-censored data, we only observe Yi = max(Ti,Ci), and in right-censored data, we only observe

Yi = min(Ti,Ci).

There have been many methods and theories dealing with censored data if we assume a

57

linear latent variable model

Ti = X>i β+ εi (3.1)

with εi assumed to be i.i.d. with distribution function F . Under this model, the τ-th conditional

quantile of T at x is QT |x(τ|x) = F−1(τ)+ x>β. By adding an extra dimension of one to x and

absorbing the intercept F−1(τ) to β, we can write the conditional quantile of T as

QT |x(τ|x) = x>β (3.2)

with the same notation x and β for simplicity. If all the censoring values Ci are also observed,

[Pow84, Pow86] showed that the τ-th conditional quantile Q(τ|x) can be consistently estimated

by

β̂ = argmin
b∈Rp

n

∑
i=1

ρτ(Yi−min{Ci,X>i b}) (3.3)

for right censoring problem. For left censoring, one can simply replace min with max in (3.4).

Here, ρτ(u) = u(τ−1(u< 0)) is the τ-th quantile loss, and Xi again contains an augmented dimen-

sion of one to absorb the term F−1(τ). There have been many research on how to approximately

optimize (3.3) and get coefficients β.

The previous situation, in which all censoring values Ci are observed, is referred to as fixed

censoring. Random censoring, in contrast, refers to situations in which we could only observe

censoring values for the censored observations. For instance, for right censoring, we can observe

the response Yi = min(Ti,Ci) and the censoring indicator δi = 1(Ti ≤Ci). The usual assumption

is Ci independent of Ti conditional on covariates. The Cox proportional hazard model is the

dominant strategy to solve the right-censoring regression problem. However, it is only applicable

to right-censored data and replies on the proportionality assumption which can sometimes be

inappropriate, necessitating stratification of the baseline hazard or some other weakening of the

proportional hazards condition [Koe08].

58

A more flexible approach for random censoring problem is to directly model conditional

quantiles of the response variable. This approach offers much more flexibility as it does not

assume a hazard function [Koe08]. To estimate the conditional quantiles, [Por03] proposed a

recursive method which estimates a sequence of linear conditional quantile functions recursively.

It can be treated as a generalization to regression of the Kaplan Meier estimator. Another closely

related quantile regression model proposed by [PH08] instead makes linkage to the Nelson-

Aalen estimator of the cumulative hazard function, upon which they developed a more complete

asymptotic theory.

However, the parametric methods always rely on the linearity assumption on the condi-

tional quantiles, that is,

Qlog(T)|x(τ|x) = x>β. (3.4)

Here, the log transformation is arbitrary but popular in survival analysis, and can be replaced

by any monotone function. This linearity assumption is too restrictive in many cases, especially

when data lie on a complex manifold. Therefore, non-parametric methods are necessary.

Without censoring, for the general form of model

Ti = f (Xi)+ui (3.5)

where f is a potentially complex non-parametric function and ui can be heteroscedastic, non-

parametric methods like random forest [Bre01] and quantile random forest [Mei06] have been

developed to efficiently estimate the conditional expectation and conditional quantiles of the

response variable. [LM17] shows that both random forest and quantile forest belong to a general

forest-type regression framework. However, all these forest algorithms cannot deal with data with

censored responses. [IKBL08] proposed random survival forest that is an ensemble of survival

trees to tackle the censoring problem. However, it is not directly estimating the conditional

quantiles but instead estimating the cumulative hazard. Moreover, growing a survival tree

59

requires estimation of survival function at every split. [HBD+05] calculates inverse probability

of censoring (IPC) weights on all observations, and then build a random forest in which each

regression tree is trained on resampled observations according to IPC weights. However, the

censored samples always get weights zero and will only contribute to the Kaplan-Meier estimation

of the conditional censoring survival function.

This work aims to build a non-parametric conditional quantile estimator for random

censored data that inherits the desirable empirical properties of regression forests, such as stability,

ease of use, and flexible adaptation to different functional forms, but can be used in the wide

range of censored quantile setting where the latent variable satisfies (3.5) but we can only observe

Yi = min(Ti,Ci) (Yi = max(Ti,Ci)) and the censoring indicator δi = 1(Ti ≤Ci) (δi = 1(Ti ≥Ci)).

We aim to showcase a solution that overcomes conceptual and methodological challenges.

We design our method as a type of adaptive and locally weighted estimators that first

use a simple random forest to calculate locally weights on observations for each test point,

and then solve a plug-in version of the specifically designed estimating equations using these

weights. In this way we view the random forest as generating weights for local solutions of

estimating equations. This locally weighting view of random forests was previously advocated by

[HLBRT04] in the context of survival analysis and by [Mei06] for quantile regression, as well as

in [ATW16] and [LM17] for general loss functions.

Additional challenges arise due to the random censoring nature of the observations. For

fixed censoring, one observes all the censoring values and hence can straightforwardly modify the

objective (3.3) to be used in the general framework [ATW16] and [LM17]. However, it is unclear

how to develop a non-parametric estimator that adapts to unknown censoring in the observations.

We approach this problem by carefully designing a new estimating equation which is easy to

solve and can consistently predict the conditional quantiles of the latent variable.

In this paper, we propose a novel non-parametric regression method for censored data.

Our method contains two steps. In the first step, we only need to build an usual random forest

60

on all the observations, including the censored observations, and get the random forest weight

function, which is discussed in Section 3.1.1. In the second step, we can predict any conditional

quantile of the latent variable T by solving an ingenious estimating equation, which is motivated

by [LM17] and is designed to correct the censoring effect. The forest-type regression framework

is reviewed in Section 3.1.2. Then the algorithm is described in details in Section 3.2. Then in

Section 3.3, we analyze the time complexity of our algorithm and prove the statistical consistency.

In Section 3.4 and 3.5, we compare our algorithm with other forest algorithms on simulated and

real censored data sets.

3.1.1 Random forest weights

At a high level, trees and forests can be thought of as local smoothing methods with

an adaptive neighborhood metric. Given a test point x, classical methods such as k-nearest

neighbors or kernel smoother seek an appropriate number of closest points to x according to

some pre-specified distance measure. In contrast, tree-based methods also seek to find training

examples that are close to x, but now closeness is defined with respect to a decision tree, and the

closest points to x are those that fall in the same leaf as it does. The advantage of forest based

approach is its more adaptive nature of capturing model heterogeneities and changes.

Let θ denote the random parameter determining how a tree is grown, and {(Xi,Yi) : i =

1, . . . ,n} ∈ X ×Y ⊂ Rp×R denote the training data. For each tree T (θ), let Rl denotes its l-th

terminal leaf. Since the space X is split into disjoint leaves by T (θ), we know for any x ∈ X ,

there is exactly one leaf containing x. We let the index of the leaf be l(x;θ) and we say x ∈ Rl(x;θ).

Then for any single tree T (θ), the prediction on any data point x ∈ X is Ŷ (x;θ) =

∑
n
i=1 w(Xi,x;θ)Yi where

w(Xi,x;θ) =
1{Xi∈Rl(x;θ)}

#{ j : X j ∈ Rl(x;θ)}
. (3.6)

61

Then by [Bre01] and [Mei06], a random forest containing m trees has prediction of E[Y |X = x] as

Ŷ (x) =
n

∑
i=1

w(Xi,x)Yi (3.7)

where

w(Xi,x) =
1
m

m

∑
t=1

w(Xi,x;θt). (3.8)

From now on, we call the weight w(Xi,x) in (3.8) random forest weight. One can easily show

that ∑
n
i=1 w(Xi,x) = 1.

3.1.2 Forest-type regression framework

[LM17] extended random forest to a weighted regression algorithm that can use any loss

function. It is shown that the way random forest combine the trees is equivalent to a weighted

least square regression problem

Ŷ (x) = argmin
λ∈R

n

∑
i=1

w(Xi,x)(Yi−λ)2 (3.9)

where w(Xi,x) is the random forest weight. Similarly, quantile random forest [Mei06] estimator

is equivalent to

Q̂(x;τ) = argmin
λ∈R

n

∑
i=1

w(Xi,x)ρτ(Yi−λ), (3.10)

where ρτ(u) = u(τ−1u<0) is the quantile loss function. And in fact, [LM17] proposed the general

forest-type regression framework

Ŷ (x) = argmin
s∈F

n

∑
i=1

w(Xi,x)φ(s(Xi),Yi). (3.11)

Here, w(Xi,x) is the random forest weight, φ(·) is a general loss function, and F is a family of

functions. For example, in original random forest, F is the family of constant functions, and

62

φ(u) = u2.

3.2 Methodology

The quantile random forest [Mei06] cannot be directly applied to censored data {(Xi,Yi)}

because the conditional quantile of Y is different than that of the latent variable T due to the

censoring. There is no explicitly defined quantile loss function for censored data, and hence the

forest framework in [LM17] cannot be directly used. However, in this section, we will propose a

new estimating equation which is closely related to the estimating equation of criterion (3.10),

but is designed to correct the censoring effect.

3.2.1 Motivation

In the case without censoring, plugging in the quantile loss function, we could estimate

the τ-th quantile of Ti at x, denoted as qτ,x, to be

argmin
q∈R

n

∑
i=1

w(Xi,x)ρτ(Ti−q). (3.12)

The estimating equation of (3.12) is

Un(q) =
n

∑
i=1

w(Xi,x)
{
(1− τ)−1(Ti > q)

}
= (1− τ)−

n

∑
i=1

w(Xi,x)1(Ti > q)≈ 0, (3.13)

where the second equality is true because ∑
n
i=1 w(Xi,x) = 1. For simplicity and better illustration

of the idea, we first assume the latent variable Ti has the same conditional probability in a

neighborhood Rx of x. Out of the n data points, assume {X1, · · · ,Xk} ⊂ Rx and w(Xi,x) = 1/k

63

when Xi ∈ Rx and 0 otherwise. Now the estimating equation becomes

Uk(q) =
1
k

k

∑
i=1

{
(1− τ)−1(Ti > q)

}
= (1− τ)− 1

k

k

∑
i=1

1(Ti > q). (3.14)

Now conditional on {x}∪{Xi}k
i=1,

E [Uk(q)] = (1− τ)−P(T > q|x)

which will be zero at q∗ where P(T > q∗|x) = 1− τ, that is, when q∗ = qτ,x

Now suppose we further have censoring variable Ci, which is independent of Ti conditional

on Xi, and we could only observe Yi = min{Ti,Ci} and δi = 1(Ti ≤Ci). In order to estimate qτ,x,

we cannot simply replace Ti with Yi in (3.14) as the τ-th quantile of Ti is no longer the τ-th quantile

of Yi because of the censoring. In fact,

P(Yi > qτ,x|x) = P(Ti > qτ,x|x)P(Ci > qτ,x|x) = (1− τ)G(qτ,x|x),

where G(u|x) is the survival function of Ci at x. In another word, the τ-th quantile of Ti is actually

the 1− (1− τ)G(qτ,x|x)-th quantile of Yi at x. Now define a new estimating equation that is

resemble of (3.14) as

So
k(q) =

1
k

k

∑
i=1

{
(1− τ)G(q|x)−1(Yi > q)

}
≈ 0. (3.15)

If we substitute G(q|x) with G(qτ,x|x), an intuitive explanation for (3.15) is that because the τ-th

quantile of Ti happens to be the 1− (1− τ)G(qτ,x|x)-th quantile of Yi at x, instead of estimating

the former which is not available because of the censoring, we turn to estimate the later one.

In another word, the conditional expectation, E[So
k(q)], will still be zero at the same root q∗ for

64

(3.14). The survival function G(·|x) can be estimated by the Kaplan-Meier estimator Ĝ(·|x) using

{Yi}k
i=1 and {δi}k

i=1, and we then have

Sk(q) =
1
k

k

∑
i=1

{
(1− τ)Ĝ(q|x)−1(Yi > q)

}
≈ 0. (3.16)

3.2.2 Full model

In the previous section, we made an assumption that P(T |X) = P(T |x) for all X ∈ Rx,

where Rx is a neighborhood of x. But in reality, this assumption is not always true, and that is why

w(Xi,x) plays an important rule in our final estimator, as it "corrects" the empirical probability of

each Ti at x.

For example, say we have n data points {(Xi,Ti)}n
i=1 and have two cases: (1) at all Xi’s we

have the same conditional probability of T , i.e. P(T |Xi) = P(T |X j) for all i, j; (2) T has different

conditional probabilities at different locations. In the setting (1), Xi’s become irrelevant and the

point mass on each Ti is 1/n. We share the mass uniformly to the n points Ti’s as they are equally

important. When n→ ∞, it is known that for any q,

1
n

n

∑
i=1

1(Ti ≤ q)→ P(T ≤ q|x). (3.17)

However, in the case (2), the convergence (3.17) is no longer valid. We cannot simply put a mass

1/n on each Ti because the probability of Ti showing up at Xi could be severely different than the

probability it shows up at x. An extreme example is when P(T |x) = Unif(x−1,x+1). Then if

|Xi−x|> 1, any Ti showing up at Xi should not even be counted when estimating P(T |x) because

P(Ti|x) = 0. In another word, we should give Ti mass 0 instead of 1/n.

Therefore, a measure of "similarity" between points Xi and x needs to come into play,

because we can no longer uniformly distribute the mass since some Ti’s are more important

than others for estimating P(T |x). For instance, if Xi = x+0.01 and X j = x+2 in the previous

65

example, then Ti should be assigned much more weight than Tj.

Now let w(Xi,x) denote the weight (mass) we assign to Ti when we are estimating P(T |x).

In the setting (1), we just have w(Xi,x) = 1/n uniformly. But in the setting (2), we should have

w(Xi,x)> w(X j,x) when Xi is more similar to x than X j in some sense. Therefore, the estimator

for P(T ≤ q|x) is then
n

∑
i=1

w(Xi,x)1(Ti ≤ q)

and it becomes clear that a proper weight w(Xi,x) needs to satisfy:

(1)
n

∑
i=1

w(Xi,x) = 1; (2)
n

∑
i=1

w(Xi,x)1(Ti ≤ q)
p→ P(T ≤ q|x) ∀q. (3.18)

However, any fixed kernel K(Xi,x), even seems like a good choice at first glance, is impossible

to satisfy the second condition in (3.18) for any distribution P(T |x). Fortunately, as shown in

[Mei06], the data-adaptive random forest weight w(Xi,x) introduced in Section 3.1 perfectly

satisfies both conditions in (3.18). And therefore going back to (3.13), we have,

Un(qτ,x) = (1− τ)−
n

∑
i=1

w(Xi,x)1(Ti > qτ,x)
p→ 0 (3.19)

when n→ ∞. Then following the same logic of how we get (3.16), a heuristic extension of (3.13)

to censoring case will be

Sn(q;τ) =
n

∑
i=1

w(Xi,x)
{
(1− τ)Ĝ(q|x)−1(Yi > q)

}
= (1− τ)Ĝ(q|x)−

n

∑
i=1

w(Xi,x)1(Yi > q). (3.20)

3.2.3 Estimation of survival function G(q|x)

In the simplified example in Section 3.2.1, we assume that Y has the same conditional

probability P(Y |X) in a neighborhood Rx of x, and hence, we can estimate G(q|x) by Kaplan-

66

Meier estimator [KM58] (assuming no tied events)

Ĝ(q|x) = ∏
i:X(i)∈Rx,Y(i)≤q

(
1− 1

k− i+1

)1−δ(i)

= ∏
i:Xi∈Rx,Yi≤q

(
1− 1

∑
n
j=11(Yj ≥ Yi)1(X j ∈ Rx)

)1−δi

(3.21)

where k = |Rx|. In the more complex case like in Section 3.2.2, many consistent estimators for

the conditional survival functions exists. For example, the nonparametric estimator proposed by

[Ber81]

G̃(q|x) = ∏
Yi≤q

{
1− Wi(x,an)

∑
n
j=11(Yj ≥ Yi)Wj(x,an)

}1−δi

(3.22)

is shown to be consistent [Ber81, Dab87, Dab89, GMCS94, Akr94, LD95, VKV96]. Here,

Wi(x,an) are the Nadaraya-Watson weights

Wi(x,an) =
K((x−Xi)/an)

∑
n
j=1 K((x−X j)/an)

,

K(·) is a known kernel and {an} is a bandwidth sequence tending to zero as n tends to infinity.

We can then simply use G̃(q|x) as Ĝ(q|x) in (3.20).

However, since we already have an adaptive version of kernel – the random forest weights

w(Xi,x), we will propose the following two estimators for G(q|x).

KM using nearest neighbors The first estimator is a resemble of (3.21). We first find the k

nearest neighbors of x according to the weights w(Xi,x). Denoting these points as a set Nx, then

we can simply use the Kaplan-Meier estimator on Nx

Ĝ(q|x) = ∏
i:Xi∈Nx,Yi≤q

(
1− 1

∑
n
j=11(Yj ≥ Yi)1(X j ∈ Nx)

)1−δi

. (3.23)

Here, the number of neighbors k will be a tuning parameter.

67

Beran estimator with random forest weights In the second proposal, we will replace the

Nadaraya-Watson weights in (3.22) with random forest weights and get

Ĝ(q|x) = ∏
Yi≤q

{
1− w(Xi,x)

∑
n
j=11(Yj ≥ Yi)w(X j,x)

}1−δi

. (3.24)

One could observe that (3.23) is a special case of (3.24) when the weight w(Xi,x) = 1/k for

Xi ∈ Rx and 0 otherwise.

Finally, we summarize our main algorithm in Algorithm 5. The details for choosing the

candidate set C is in Section 3.3.1. The choice to minimize the absolute value of Sn(q;τ) is

arbitrary. The goal is to find the approximate root of Sn(q;τ) = 0.

Algorithm 5 Forest-type CQR

1: test point x, training set {(Xi,Yi,δi)}n
i=1, quantile τ, node size k

2: Grow a normal regression forest on the training set with each leaf containing at least k
observations.

3: Compute random forest weights w(x,Xi) for all i as in (3.8).
4: Solve for q̂ such that q̂← argminq∈C |Sn(q;τ)|. C is a candidate set, Sn is (3.20), Ĝ(q|x) can

be estimated by (3.23) or (3.24).
5: return q∗. The τ-th quantile of latent variable T at x.

3.3 Theory

In this section, we will assume the random forest has terminal node size m, feature vector

Xi ∈ Rp, sample size is n, and k nearest neighbors are chosen in (3.23).

3.3.1 Time complexity

The step 4 in Algorithm 5 involves of finding the q∗ in a candidate set C that sets the

estimating equation Sn(q;τ) closest to zero. For any fixed τ, Sn(q;τ) is a step function in q with

jumps at Yi’s because the discontinuities only happen at Yi’s for Ĝ(q|x) (both (3.23) and (3.24))

68

and ∑
n
i=1 w(Xi,x)1(Yi > q). Therefore, the candidate set C ⊂ {Yi}n

i=1. And in fact, for any fixed

x, only Yi’s with the corresponding feature vector Xi ∈ Rx (3.23) or with w(Xi,x)> 0 (3.24) will

be jump points, and hence, C = {Yi : Xi ∈ Rx} for (3.23) or C = {Yi : w(Xi,x)> 0} for (3.24). We

have the following theorem. The proof is given in Appendix 3.6.

Theorem 7. For a fixed x, depending on whether G(q|X) is estimated by (3.23) or (3.24), the

time complexity for Algorithm 5 is O(n log(n)) or O(m log(n)p−1), respectively.

3.3.2 Consistency

In this section, we will show that for any fixed τ ∈ (0,1), Sn(q;τ) in (3.20) will converge

in probability to (1− τ)G(q|x)−P(Yi > q) uniformly for q.

Condition 3. The density of X is positive and bounded from above and below by positive constants

on the support X .

We note that Condition 3 is a very primitive condition on the distribution of the covariates.

It is satisfied for example for Gaussian distribution and more broadly for most symmetric,

continuous distributions with unbounded support. Case of bounded or discrete covariates is

beyond the scope of the current work.

Condition 4. The terminal node size m→∞ and m/n→ 0 as n→∞. Furthermore, for each tree

splitting, every child node contains at least γ proportion of the data in the parent node, for some

γ ∈ (0,0.5].

The two conditions in Condition 4 are also required in [Mei06] (see their Assumption 2

and 3). This condition states that the leaf node size of each tree should increase with the sample

size n, but at a slower rate. Intuitively, first, the trees that we are using need to be shallow (i.e.,

with large leaves) in order to estimate a more complex model reliably. Secondly, the sample

size in each leaf must be large enough to capture the local estimating equations more adequately.

69

Our experiments also justify the necessity of Condition 4, as the performance of our model will

deteriorate if we keep a small leaf node size but increase the sample size. We will talk about this

in detail in Section 3.4.7.

Condition 5. Denote F(y|x) = P(Y ≤ y|x). There exists a constant L such that F(y|x) is Lipschitz

continuous with parameter L, that is, for all x,x
′ ∈ X ,

sup
y
|F(y|x)−F(y|x

′
)| ≤ L‖x− x

′
‖1.

We note that Condition 5 appears in all existing work related to quantile regression and

inference thereafter.

Condition 6. The latent variable T and the censoring variable C are conditionally indepen-

dent, and the conditional distribution P(T ≤ q|x) and P(C ≤ q|x) are both positive and strictly

increasing in q for all x ∈ X .

Condition 7. For any x ∈ X , the estimator Ĝ(q|x) converges pointwisely to the true conditional

survival function G(q|x).

Condition 7 is satisfied, for example, by the Kaplan-Meier estimator (3.22) [Dab89].

Please take a look at Figure 3.4 and Figure 3.5 where we compare finite sample properties of the

newly introduced estimators (3.23) and (3.24). We observe that the new distributional estimators

are more adaptive and yet seemingly inherit consistency to that of the traditional KM estimator.

We proceed to showcase asymptotic properties of the proposed estimating equations. We

begin by illustrating a concentration of measure phenomenon for the introduced score equations.

Theorem 8. Define

S(q;τ) = (1− τ)G(q|x)−P(Y > q). (3.25)

70

Under Conditions 3 to 7, for any x ∈ X , r > 0, τ ∈ (0,1),

sup
q∈[−r,r]

|Sn(q;τ)−S(q;τ)|= op(1).

Proof. Conditional on X1, · · · ,Xn, the random variable Ui = F(Yi|Xi), i = 1, · · · ,n are i.i.d. uni-

form on [0,1]. By Condition 6, for a given Xi,

1(Yi ≤ q) = 1(Ui ≤ F(q|Xi)).

Then we can decompose

n

∑
i=1

w(Xi,x)1(Yi ≤ q)

=
n

∑
i=1

w(Xi,x)1(Ui ≤ F(q|Xi))

=
n

∑
i=1

w(Xi,x)1(Ui ≤ F(q|x))+
n

∑
i=1

w(Xi,x)
{
1(Ui ≤ F(q|Xi))−1(Ui ≤ F(q|x))

}
.

The difference between the empirical distribution function and the truth can then be bounded by

∣∣∣∣∣ n

∑
i=1

w(Xi,x)1(Yi ≤ q)−F(q|x)

∣∣∣∣∣
≤

∣∣∣∣∣ n

∑
i=1

w(Xi,x)1(Ui ≤ F(q|x))−F(q|x)

∣∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∣ n

∑
i=1

w(Xi,x)
{
1(Ui ≤ F(q|Xi))−1(Ui ≤ F(q|x))

}∣∣∣∣∣︸ ︷︷ ︸
(II)

.

For part (I), since Ui is uniform, we have

sup
q∈R

∣∣∣∣∣ n

∑
i=1

w(Xi,x)1(Ui ≤ F(q|x))−F(q|x)

∣∣∣∣∣= sup
z∈[0,1]

∣∣∣∣∣ n

∑
i=1

w(Xi,x)1(Ui ≤ z)− z

∣∣∣∣∣

71

Now since 0≤ w(Xi,x)≤ 1/m and ∑
n
i=1 w(Xi,x) = 1, we have

n

∑
i=1

w(Xi,x)2 ≤ max
i=1,··· ,n

w(Xi,x)≤
1
m
→ 0

as n→ ∞, by Condition 4. Hence, by Chebyshev inequality, for every z ∈ [0,1] and x ∈ X ,

∣∣∣∣∣ n

∑
i=1

w(Xi,x)1(Ui ≤ z)− z

∣∣∣∣∣= op(1).

Then by Bonferroni’s inequality,

sup
z∈[0,1]

∣∣∣∣∣ n

∑
i=1

w(Xi,x)1(Ui ≤ z)− z

∣∣∣∣∣= op(1).

The proof of part (II)

∣∣∣∣∣ n

∑
i=1

w(Xi,x)
{
1(Ui ≤ F(q|Xi))−1(Ui ≤ F(q|x))

}∣∣∣∣∣= op(1)

follows the same argument of Theorem 1 and Lemma 2 in [Mei06] by invoking Condition 4.

Finally, we notice that by Condition 7, supq∈[−r,r] |Ĝ(q|x)−G(q|x)| = o(1) because [−r,r] is

compact.

Next, we present our main result that illustrates an asymptotic consistency of the proposed

conditional quantile estimator.

Theorem 9. Under Conditions 3 to 7, for fixed τ ∈ (0,1) and x ∈ X , define q∗ to be the

root of S(q;τ) = 0, and r > 0 to be some constant so that q∗ ∈ [−r,r]. Also define qn to be

argminq∈[−r,r] |Sn(q;τ)|. Then P(T ≤ q∗|x) = τ, and qn
p→ q∗ as n→ ∞.

Proof. By [VDVW96], we only need to show for any τ ∈ (0,1), x ∈ X ,

1. supq∈[−r,r] |Sn(q;τ)−S(q;τ)|= op(1).

72

2. For any ε > 0, inf{|S(q;τ)| : |q−q∗| ≥ ε,q ∈ [−r,r]}> 0.

3. Sn(qn;τ) = op(1).

Part 1 has been proved by Theorem 8. For part 2, note that

S(q;τ) = (1− τ)G(q|x)−P(Y > q|x)

= (1− τ)G(q|x)−P(T > q|x)P(C > q|x)

= ((1− τ)−P(T > q|x))G(q|x)

= (P(T ≤ q|x)− τ)G(q|x).

The second equality is because of the conditionally independency between T and C. Fix an

ε > 0, and denote E = {|S(q;τ)| : |q− q∗| ≥ ε,q ∈ [−r,r]}. Since 0 < τ < 1, by Condition 6,

there exists some l > 0 such that G(q|x) ≥ l and |P(T ≤ q|x)− τ| ≥ l for q ∈ E. Now for part

3, by the definition of qn, we know |Sn(qn;τ)| = minq∈[−r,r] |Sn(q;τ)|. Also by definition of q∗,

0 = |S(q∗;τ)|= minq∈[−r,r] |S(q;τ)|. Then we get

|Sn(qn;τ)| = |Sn(qn;τ)|− |Sn(q∗;τ)|+ |Sn(q∗;τ)|− |S(q∗;τ)|

≤ |Sn(q∗;τ)−S(q∗;τ)|

≤ sup
q∈[−r,r]

|Sn(q;τ)−S(q;τ)|

= op(1)

where the first inequality is because of the definition of qn and the triangular inequality.

3.4 Simulation Study

In this section, we will compare our model, censored forest regression (crf) with general-

ized random forest (grf) [ATW16], quantile random forest (qrf) [Mei06] and random survival

73

forest (rsf) [HBD+05] on simulated data sets.

On the simulated data sets, we will apply qrf and grf to the censored data directly, and

get biased models which we denote by qrf and grf, respectively. We also apply qrf and grf to the

data with uncensored responses, and call the resulted models qrf-oracle and grf-oracle.

Throughout this section, we fix the number of trees for each forest to be 1000. The only

tuning parameter we have is the node size of each tree. All other parameters are kept as default.

3.4.1 Toy example

In this section, we generate latent variables Ti ∼ Unif(0,1), and censoring variables

Ci∼N (0.8,0.22). Then we have censored responses Yi =min(Ti,Ci). We compare the estimating

equation on the latent variables Ti

U1(q) = (1− τ)− 1
n

n

∑
i=1

1(Ti > q)

to the estimating equation of our proposed algorithm

U2(q) = (1− τ)Ĝ(q)− 1
n

n

∑
i=1

1(Yi > q),

where Ĝ(q) is the one-dimensional Kaplan-Meier estimator for the survival function of censoring

variable C. The results are shown in Figure 3.1.

There we present the two estimating equations as functions of q and illustrate that the

solutions to U1(q) = 0 and U2(q) = 0 are closer and closer together when the sample size

grows. The solution for U1(q) = 0 can be treated as an oracle solution where the oracle observes

"uncensored" (true) response variable. In Figure 3.1 we observe that the root of our method’s

estimating equation is very close to the oracle root and that we are therefore finding a good

approximation to the unknown parameter of interest.

74

Figure 3.1: Sample loss plots when τ = 0.5. In the first row, we have sample sizes 100 and 500.
In the second row, we have sample sizes 1000 and 5000. The black curve is U1(q), the red curve
is U2(q), the black (red) dotted vertical line is the root of U1(q) (U2(q)), and the blue vertical
line is q = τ.

3.4.2 One-dimensional AFT model

We simulate data from an one-dimensional AFT model

log(T) = X + ε

where X ∼ Unif(0,2) and ε∼N (0,0.32). Then the censoring variable C ∼ Exp(λ = 0.08), and

the observed response Y = min(T,C) and the censoring indicator δ = 1(T ≤C). The average

censoring rate is about 20%. The number of training data, validation data and test data are all 300.

All the forests consist of 1000 trees. The node size of each forest is determined by validation. We

plot out one set of training data and the corresponding quantile predictions for τ = 0.3,0.5,0.7

on a set of test data in Figure 3.2. We only show the results of crf, grf, and grf-oracle because

75

in one dimension, qrf ’s performance is visually indistinguishable from grf. There we observe a

consistency of our method as well as superior behavior to the competing method. Namely, the

generalized random forest that ignores the censoring component of the data, incurs large bias; due

to random censoring bias is larger for lower values of the quantiles. We observe that the proposed

crf follows closely the oracle estimator and is extremely close to the true quantile regardless of

the τ in the study.

Moreover, we proceed further and for a set of values τ∈ {0.1,0.3,0.5,0.7,0.9}, we repeat

the process 40 times, and for each time, we calculate the MSE and MAD between the estimated

quantiles and the true quantiles, and the τ-th quantile loss. To be more specific, let Ti be the

response in test set (all uncensored), Qτ
i be the true τ-th quantile, and Q̂τ

i be the estimated quantile,

then

LMSE =
1
n

n

∑
i=1

(Q̂τ
i −Qτ

i)
2,

LMAD =
1
n

n

∑
i=1
|Q̂τ

i −Qτ
i |,

Lquantile =
1
n

n

∑
i=1

ρτ(Ti− Q̂τ
i).

The reason we use Lquantile to measure the quality of quantile predictions is that, by [Mei06],

the τ-th quantile of T at x equals to argminq∈RE[ρτ(T − q)|X = x]. The results are illustrated

in Figure 3.3 where besides the abose three measures we compare the concordance index (C-

index) [HJCP+82], which is related to the area under the ROC curve [HZ05]. It estimates the

probability that, in a randomly selected pair of cases, the case that fails first had a worse predicted

outcome. In [IKBL08], they use the ensemble mortality as the predictive outcome for their

random survival forest, and the predicted survival time for random forest regression. For our

method crf and the other two methods, qrf and grf, we will use the τ-th conditional quantile as

the predicted outcome. Since the outcomes will be different for different τ, we report the results

for all τ ∈ {0.1,0.3,0.5,0.7,0.9}.

76

In Figure 3.3 we observe an oracle like behavior of the proposed crf method in terms all

four measures of the quality of estimation and/or prediction. Namely, we observe that MAD

and MSE and Quantile losses are extremely small whereas C-index is high and all are close to

the corresponding oracle estimators (colored purple and blue). Moreover, we observe that the

proposed crf method. although not primarily build for the hazard rates, is even better than survival

random forest: see for example discrepancies between red and brown boxplots in the last row of

Figure 3.3 where the larger the C-index is the better the method is.

3.4.3 Comparison of different conditional survival estimators

In this section, we will compare the two different conditional survival function estimators

(3.23) and (3.24). We generate training data and test data from the one-dimensional AFT model

defined in the previous section, but with two different censoring rate:

• C ∼ Exp(λ = 0.08), in this case, the censoring rate is about 20%.

• C ∼ Exp(λ = 0.20), in this case, the censoring rate is about 50%.

We then choose four test points {x1 = 0.4,x2 = 0.8,x3 = 1.2,x4 = 1.6}, and then plot out the

conditional survival function estimators Ĝ(q|xi) by the two different methods (3.23) and (3.24)

on these four points. The results are shown in Figure 3.4 and 3.5 for three different training

sample sizes n ∈ {300,2000,5000}. For the nearest neighbor estimator (3.23), we set the number

of neighbors to be n/10, which is also the node size we choose.

We can observe that when n increases, two curves become closer and are both good

approximations of the true survival curve. But the first method (3.23) does have an extra tuning

parameter k – the number of nearest neighbors, so in the experiments, we always choose to use

the second estimator (3.24), which is more adaptive and parameter free.

Note that the estimated survival function will degenerate at the tail of the distribution

when the test point x is small (take a look at the first two columns in Figure 3.4 and 3.5). This

77

(a) Training data (b) τ = 0.3

(c) τ = 0.5 (d) τ = 0.7

Figure 3.2: One-dimensional AFT model results. In (a), black points stand for observation that
are not censored; red points are observations that are censored, and the green points are the
counterpart of the red points, that is, they are the latent values of those red points if they were
not censored.

is a common phenomenon even for the regular KM estimator because there is no censored

observations beyond some time point. In the AFT model, the conditional distribution of the latent

variable depends on the location x. When x is small, the conditional mean of T is also small, and

we could not observe most of the censoring values where Ci > Ti, leading to degenerated survival

curves. However, if we continue increasing the sample size n, we should be able to recover the

entire curve even for smaller x. In fact, when we increase the censoring level from 20% (Figure

78

●

●

●

●

●

●

●

●

●

0.2

0.4

0.6

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.1

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(a) MAD: τ = 0.1

●

●

0.1

0.2

0.3

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.3

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(b) MAD: τ = 0.3

●

● ●

●

●

●

0.1

0.2

0.3

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.5

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(c) MAD: τ = 0.5

0.10

0.15

0.20

0.25

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.7

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(d) MAD: τ = 0.7

●

●

●

●

●

0.1

0.2

0.3

0.4

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.9

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(e) MAD: τ = 0.9

●

●

●

●

●

●●

●
●●●

0

1

2

3

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.1

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(f) MSE: τ = 0.1

●

●

●
●

●

0.0

0.5

1.0

1.5

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.3

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(g) MSE: τ = 0.3

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.5

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(h) MSE: τ = 0.5

●

●

●

●

●

0.2

0.4

0.6

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.7

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(i) MSE: τ = 0.7

●

●

●

●

●

0

1

2

3

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.9

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(j) MSE: τ = 0.9

●

● ●

●

●

0.16

0.20

0.24

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.1 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(k) Quantile loss:
τ = 0.1

●●

●

●

●

●

●

●

0.30

0.35

0.40

0.45

0.50

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(l) Quantile loss:
τ = 0.3

●

●

●

●

●

●

●

●

●

●

●

0.35

0.40

0.45

0.50

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(m) Quantile loss:
τ = 0.5

0.35

0.40

0.45

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(n) Quantile loss:
τ = 0.7

●

●

● ●

0.20

0.25

0.30

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.9 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(o) Quantile loss:
τ = 0.9

●

●

●

●

0.5

0.6

0.7

0.8

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.1

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(p) C-index: τ =
0.1

●
●

●

●

●

●●

●

●

●

0.76

0.80

0.84

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.3

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(q) C-index: τ =
0.3

●

●

0.800

0.825

0.850

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.5

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(r) C-index: τ =
0.5

●

●
●

●

●

0.82

0.84

0.86

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.7

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(s) C-index: τ =
0.7

●

●

●

0.775

0.800

0.825

0.850

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.9

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(t) C-index: τ =
0.9

Figure 3.3: AFT 1D box plots.

3.4) to 50% (Figure 3.5), we find that both estimators give better performance because we can

observe more censored values.

3.4.4 One-dimensional sine function model

Since our forest regression method crf is nonparametric and does not rely on any paramet-

ric assumption between response and explanatory variables, it can be used to estimate quantiles

79

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(a) sample size: 300

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(b) sample size: 300

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(c) sample size: 300

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(d) sample size: 300

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(e) sample size: 2000

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(f) sample size: 2000

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(g) sample size: 2000

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(h) sample size: 2000

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(i) sample size: 5000

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(j) sample size: 5000

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(k) sample size: 5000

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

q
S

ur
vi

va
l f

un
ct

io
n

va
lu

e

variable

G.true

G.beran

G.nnb

(l) sample size: 5000

Figure 3.4: Comparison of different conditional survival estimators for the one-dimensional
AFT model. The censoring variable C ∼ Exp(λ = 0.08), and the average censoring rate is
around 20%. From left-most column to right-most column, we plot the conditional survival
estimators for four test points, x = 0.4,0.8,1.2,1.6.

for any general model T = f (X)+ ε. In this section, we let f (x) = sin(x) and have the model

T = 2.5+ sin(X)+ ε

where X ∼ Unif(0,2π) and ε ∼ N (0,0.32). Then the censoring variable C ∼ 1 + sin(X) +

Exp(λ = 0.2), and the responses Y = min(T,C). All the settings are the same as in Section

3.4.2. We plot out the training data and the quantile predictions for τ = 0.3,0.5,0.7 in Figure 3.6.

80

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(a) sample size: 300

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(b) sample size: 300

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(c) sample size: 300

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(d) sample size: 300

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(e) sample size: 2000

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(f) sample size: 2000

0.25

0.50

0.75

1.00

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(g) sample size: 2000

0.25

0.50

0.75

1.00

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(h) sample size: 2000

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(i) sample size: 5000

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(j) sample size: 5000

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

q

S
ur

vi
va

l f
un

ct
io

n
va

lu
e

variable

G.true

G.beran

G.nnb

(k) sample size: 5000

0.25

0.50

0.75

1.00

0 2 4 6 8

q
S

ur
vi

va
l f

un
ct

io
n

va
lu

e

variable

G.true

G.beran

G.nnb

(l) sample size: 5000

Figure 3.5: Comparison of different conditional survival estimators for the one-dimensional
AFT model. The censoring variable C ∼ Exp(λ = 0.20), and the average censoring rate is
around 50%. From left-most column to right-most column, we plot the conditional survival
estimators for four test points, x = 0.4,0.8,1.2,1.6.

The censoring level is about 25%. We observe that for all τ ∈ {0.3,0.5,0.7}, crf can produce

comparable quantile predictions to grf-oracle. Especially when τ = 0.3, the quantile prediction

by gr f (blue dotted curve) severely deviates from the true quantile, while our method crf can

still predict the correct quantile and performs as good as grf-oracle. We want to emphasize that

grf-oracle uses the latent responses Ti while our method only uses the observed responses Yi and

censoring indicators δi. We then repeat the experiments for 40 times and report the box plots

in Figure 3.7. Again we can see that for all quantiles, our method crf behaves almost as good

81

as qrf-oracle and grf-oracle, and consistently better than qrf and grf. For example the order of

magnitude of our error is twice and sometimes more than two times smaller than that of quantile

or generalized random forest.

0 1 2 3 4 5 6

−
2

−
1

0
1

Xtrain

Y
tr

ai
n

(a) Training data

0 1 2 3 4 5 6
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

y

true quantile
cRF
gRF
gRF−oracle

(b) τ = 0.3

0 1 2 3 4 5 6

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

true quantile
cRF
gRF
gRF−oracle

(c) τ = 0.5

0 1 2 3 4 5 6

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

true quantile
cRF
gRF
gRF−oracle

(d) τ = 0.7

Figure 3.6: One-dimensional Sine model. In (a), black points stand for observation that are not
censored; red points are observations that are censored, and the green points are the counterpart
of the red points, that is, they are the latent values of those red points if they were not censored.

82

●

●

●
●●

●

0.1

0.2

0.3

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.1

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(a) MAD: τ = 0.1

●

0.04

0.08

0.12

0.16

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.3

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(b) MAD: τ = 0.3

●

●

●

●

●

●

●

●

●

●

●

●

0.04

0.06

0.08

0.10

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.5

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(c) MAD: τ = 0.5

●

●

●

0.04

0.06

0.08

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.7

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(d) MAD: τ = 0.7

0.04

0.05

0.06

0.07

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.9

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(e) MAD: τ = 0.9

●

●

●

●

●

●●

●
●●●

0

1

2

3

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.1

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(f) MSE: τ = 0.1

●

●
●●
●
●

0.00

0.05

0.10

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.3

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(g) MSE: τ = 0.3

●

●

●

●

●

●

●

●
●
●

0.02

0.04

0.06

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.5

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(h) MSE: τ = 0.5

●

●

●●

●

●

●
●

0.01

0.02

0.03

0.04

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.7

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(i) MSE: τ = 0.7

●

●

●

●

●

●

●

●

0.01

0.02

0.03

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.9

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(j) MSE: τ = 0.9

●

●0.05

0.06

0.07

0.08

0.09

0.10

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.1 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(k) Quantile loss:
τ = 0.1

0.10

0.12

0.14

0.16

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(l) Quantile loss:
τ = 0.3

●

●

●
●

● ●
● ● ●

● ●

●

●

●

●

●
● ●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
● ●

● ●
● ●

● ●
●

●

●
● ●

●

●

●

●

●

●
●

●

0.12

0.14

0.16

0.18

0.20

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(m) Quantile loss:
τ = 0.5

●

0.10

0.11

0.12

0.13

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(n) Quantile loss:
τ = 0.7

●

0.050

0.055

0.060

0.065

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.9 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(o) Qauntile loss:
τ = 0.9

●

●

●

0.80

0.82

0.84

0.86

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.1

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(p) C-index: τ =
0.1

●

●

●

●

0.82

0.84

0.86

0.88

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.3

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(q) C-index: τ =
0.3

●

●

●

●
●

●●

●

0.82

0.84

0.86

0.88

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.5

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(r) C-index: τ =
0.5

●

●

●

0.82

0.84

0.86

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.7

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(s) C-index: τ =
0.7

0.82

0.83

0.84

0.85

0.86

0.87

crf rsf qrf grf qrf_oraclegrf_oracle

Model

C
−

in
de

x,
 ta

u
=

 0
.9

Model

crf

rsf

qrf

grf

qrf_oracle

grf_oracle

(t) C-index: τ =
0.9

Figure 3.7: Sine 1D box plots.

3.4.5 Multi-dimensional AFT model results

In this section, we test our algorithm on a multi-dimensional AFT model

log(T) = X>β+ ε,

83

where β = (0.1,0.2,0.3,0.4,0.5), X·, j ∼ Unif(0,2), and ε∼N (0,0.32). The censoring variable

C ∼ Exp(λ = 0.05), and Y = min(T,C). The censoring level is about 22%. The number of

training data is 500 and the number of test points is 300. All the forests consist of 1000 trees.

The result is in Figure 3.8. Our model crf still outperforms qrf and grf significantly, and is

comparable to qrf-oracle and grf-oracle.

●

●●

0.4

0.6

0.8

1.0

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.1

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(a) MAD: τ = 0.1

●

0.3

0.4

0.5

0.6

0.7

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.3

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(b) MAD: τ = 0.3

●

● ●

●

0.3

0.4

0.5

0.6

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.5

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(c) MAD: τ = 0.5

●

●

●

●

●

0.4

0.5

0.6

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.7

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(d) MAD: τ = 0.7

●

0.5

0.6

0.7

0.8

0.9

crf qrf grf qrf_oracle grf_oracle

Model

M
A

D
, t

au
 =

 0
.9

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(e) MAD: τ = 0.9

●

●2

4

6

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.1

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(f) MSE: τ = 0.1

●

●

1

2

3

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.3

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(g) MSE: τ = 0.3

●

●

●

●

●

●

●

●

●
●

1

2

3

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.5

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(h) MSE: τ = 0.5

●

●

●

●

●

●

●

●●

1

2

3

4

5

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.7

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(i) MSE: τ = 0.7

●

●

2

4

6

8

crf qrf grf qrf_oracle grf_oracle

Model

M
S

E
, t

au
 =

 0
.9

Model

crf

qrf

grf

qrf_oracle

grf_oracle

(j) MSE: τ = 0.9

●

●

●

●

●

●
●

●

●

●

0.25

0.30

0.35

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.1 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(k) Quantile loss:
τ = 0.3

●

0.5

0.6

0.7

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(l) Quantile loss:
τ = 0.3

●

0.6

0.7

0.8

0.9

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(m) Quantile loss:
τ = 0.5

●

0.6

0.7

0.8

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(n) Quantile loss:
τ = 0.7

0.35

0.40

0.45

0.50

0.55

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.9 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(o) Qauntile loss:
τ = 0.9

Figure 3.8: AFT multi-dimensional results.

3.4.6 Multi-dimensional complex manifold

In this section, we construct a complex model

T = 5+
1
5
(
sin(X·,1)+ cos(X·,2)+X2

·,3 + exp(X·,4)+X·,5
)
+ ε,

84

where X·, j stands for j-th dimension ofX ∈R5, and ε∼N (0,0.32). Then we consider two kinds

of censoring variables:

• Censoring variable independent of X and T : C ∼ Exp(λ = 0.015).

• Censoring variable conditionally independent of T givenX: C ∼ 2+ sin(X1)+ cos(X2)+

0.5X2
3 +0.5exp(X4)+X5 +Exp(λ = 0.1).

3.4.7 Node size

In this section, we investigate the impact of node size on different methods. The data we

use will be generated from the one-dimensional and multi-dimensional AFT and Sine models as

defined in the previous sections. We increase the node size from 5 to 60 with step size of 5.

One-dimensional AFT and Sine models The result of sine model is summarized in

Figure 3.9. One can see that for both qrf and our model, crf, the quantile loss will first decrease

when node size increases. It attains minimum around node size of 30. However, for grf, its

quantile loss is almost monotonically increasing, and attains minimum at node size of 5. But both

qrf-oracle and grf-oracle can attain the best quantile loss of about 0.125. And one impressive

observation is that our model, crf, almost performs the same as qrf-oracle for all node sizes.

Similar conclusion can be made from the AFT result which is in Figure 3.10.

Multi-dimensional AFT model From Figure 3.11, we observe that qrf, qrf-oracle and

grf-oracle all give similar results. The performance of our model crf is only slightly worse than

qrf-oracle, but is even better than grf-oracle.

Multi-dimensional complex model The result is summarized in Figure 3.12. The

censoring level is about 25%. From the figure, we observe that the behavior of crf is still

only slightly worse than qrf-oracle. In this experiment, grf-oracle behaves the best. All of crf,

85

qrf-oracle and grf-oracle are significantly better than the biased models qrf and grf. When

τ = 0.7, grf behaves slightly better than qrf-oracle when node size is small. The reason is that the

conditional quantiles of Y and T are closer when τ is larger, and grf is more stable and smooth on

the data in this experiment. But we still observe that the performance of crf and qrf-oracle are

very close.

●

●

●
● ● ●

●

●

● ● ●

●

●

●

●
●

●

●
●

●

● ●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

● ●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

0.100

0.125

0.150

0.175

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(a) τ = 0.3

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

● ● ●

0.12

0.14

0.16

0.18

0.20

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(b) τ = 0.5

●

●

●
●

●

●
●

●
● ● ●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

● ●

●

●

●

●

● ●

●

0.12

0.14

0.16

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(c) τ = 0.7

Figure 3.9: Quantile losses of Sine model with different node sizes.

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

● ●
●

● ●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

●

0.30

0.35

0.40

0.45

0.50

0.55

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(a) τ = 0.3

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●
●●

●

●
● ●

●

●

●

●

●
●

●

0.40

0.45

0.50

0.55

0.60

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(b) τ = 0.5

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
●

● ●

●

● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ● ●

●

●

●

●

●

●

●
●

0.35

0.40

0.45

0.50

0.55

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(c) τ = 0.7

Figure 3.10: Quantile losses of 1D AFT model with different node sizes.

86

●

●

● ●

●

●

●
● ●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

● ●

● ● ●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

0.6

0.7

0.8

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(a) τ = 0.3

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

0.7

0.8

0.9

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(b) τ = 0.5

● ●
●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

● ●

●

●

●

● ● ●

● ● ●

●

● ●

●

●

●

● ●
●

●

●
●

●

● ●

●
●

●

● ●
●

● ●
●

●

● ●

● ●

●

0.6

0.7

0.8

0.9

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(c) τ = 0.7

Figure 3.11: Quantile losses of multi-dimensional AFT model with different node sizes.

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●
● ●

●

●
●

●
●

●

●

●

●
● ● ●

●

● ●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(a) τ = 0.3

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

● ● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●
● ●

●

●

1

2

3

4

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(b) τ = 0.5

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

1

2

3

20 40 60

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(c) τ = 0.7

Figure 3.12: Quantile losses of multi-dimensional complex model with different node sizes.

3.5 Real Data

In this section, we compare our censored forest (crf) with quantile random forest (qrf)

[Mei06] and generalized forest (grf) [ATW16] on real datasets. In order to evaluate the perfor-

mances unbiasedly, we manually add censoring to the data. In addition, we apply qrf and grf to

the data without censoring and we call the resulted models qrf-oracle and grf-oracle, respectively.

For all these methods, bagged versions of the training data are used for each of the 1000

trees. We use 5-fold cross validation to select the best node sizes for different methods. For all

the other parameters, we keep the default settings.

87

Datasets We use datasets BostonHousing, Ozone from the R packages mlbench and

alr3. For all the datasets, we sample censoring variables from Exponential distributions with

λ set so that the censoring level is roughly 20%. For BostonHousing dataset, we set λ = 0.01.

For Ozone, λ = 0.025. For Abalone dataset, we random sample 1000 observations and take the

log-transformation of the response variable rings. We then set λ = 0.10.

Evaluation For each dataset, we train our model on bootstrapped version of the data,

and test the performance on out-of-bag observations. This process is repeated for 40 times, and we

calculate the mean and standard deviation of the prediction errors. In our context, the prediction

error is measured by the τ-th quantile loss for τ-th quantile estimation. The results are illustrated

in Figure 3.13.

On all data sets, our proposed method behaves better than quantile forest and generalized

forest in terms of quantile losses. Especially when τ = 0.1, 0.3 or 0.5, the performance of our

method is significantly better than qrf and grf, and is even comparable to that of oracle qrf and

grf. It agrees with our observation in the one-dimensional example (Figure 3.2 and 3.3). While

estimating larger quantiles, the true τ-th quantile of Ti and Yi are close, and hence the performance

of all five models are similar. But when τ is small, the τ-th quantile of Ti and Yi are different

because of the censoring, and in this case, our model has superior advantage and find the true

quantiles of Ti almost as good as the oracle methods.

Nodesize For each dataset, we train different models using different nodesizes and

compare the performance. For each node size, we bootstrap the data and repeat the experiments

for 20 times, and we calculate the mean and standard deviation of the quantile predictions for

quantiles τ = 0.3, 0.5, and 0.7. The result is in Figure 3.14. We observe that our method, crf,

is uniformly better than qrf and grf, proving that crf is able to correct the bias introduced by

censoring. Moreover, the quantile loss of crf is always competitive to that of qrf-oracle and

grf-oracle, and is actually always better than grf-oracle, only slightly worse than qrf-oracle.

88

●

●

●

●

0.6

0.9

1.2

1.5

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.1 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(a) BostonHousing:
τ = 0.1

●

●

●

●

●

●

0.8

1.2

1.6

2.0

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(b) BostonHousing:
τ = 0.3

●

●

●
●

●

●
●

●
●

●●

1.2

1.6

2.0

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(c) BostonHousing:
τ = 0.5

●
●

1.0

1.2

1.4

1.6

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(d) BostonHousing:
τ = 0.7

●

●

●

0.5

0.6

0.7

0.8

0.9

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.9 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(e) BostonHousing:
τ = 0.9

●

●
●

0.025

0.050

0.075

0.100

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.1 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(f) Abalone: τ =
0.1

●

0.06

0.07

0.08

0.09

0.10

0.11

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(g) Abalone: τ =
0.3

●

●

●

●

●

●

0.07

0.08

0.09

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(h) Abalone: τ =
0.5

●

●

0.07

0.08

0.09

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(i) Abalone: τ =
0.7

●

●

●

●

0.035

0.040

0.045

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.9 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(j) Abalone: τ =
0.9

0.075

0.100

0.125

0.150

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.1 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(k) Ozone: τ = 0.1

●

●

●

●

0.125

0.150

0.175

0.200

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(l) Ozone: τ = 0.3

●

0.125

0.150

0.175

0.200

0.225

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(m) Ozone: τ= 0.5

●
●

●

●

●

●

●

0.150

0.175

0.200

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(n) Ozone: τ = 0.7

0.06

0.07

0.08

0.09

crf qrf grf qrf_oracle grf_oracle

Model

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.9 Model

crf

qrf

grf

qrf_oracle

grf_oracle

(o) Ozone: τ = 0.9

Figure 3.13: Quantile losses on real data.

3.5.1 Prediction Intervals

All the forest methods can be used to get 95% prediction intervals by predicting the 0.025

and 0.975 quantiles. Then for any location x ∈ X , a straightforward confidence interval will be

[Q(x;0.025),Q(x;0.975)]. The result is illustrated in Figure 3.16. For each data set, we bootstrap

the data and calculate the 0.025 and 0.975 quantile for the out of bag points. Then for each node

size, we repeat this process for 20 times and calculate the average coverage rate of the confidence

intervals.

We observe that in all of the cases, our method crf and qrf-oracle give the coverage closest

to 95%. As can be seen from Figure 3.14, both qrf and grf perform much worse on predicting

lower quantiles. They tend to under-estimate the lower quantiles and hence make the confidence

89

●

●

●

●

●
●

●

●

●

●
● ●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

1.00

1.25

1.50

1.75

10 20 30

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(a) BostonHousing: τ = 0.3

●

● ●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

1.00

1.25

1.50

1.75

2.00

2.25

10 20 30

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(b) BostonHousing: τ = 0.5

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

1.0

1.2

1.4

1.6

10 20 30

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(c) BostonHousing: τ = 0.7

● ● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

1.00

1.25

1.50

1.75

10 20 30 40

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(d) Ozone: τ = 0.3

● ●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

1.50

1.75

2.00

2.25

2.50

10 20 30 40

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(e) Ozone: τ = 0.5

●

●

● ●

●

●

●
●

●

●

●
●

● ●

●
●

●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

1.4

1.6

1.8

2.0

10 20 30 40

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(f) Ozone: τ = 0.7

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

● ●

●

●

● ●

● ●

●
●

●
●

●

●

0.08

0.10

0.12

25 50 75

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.3 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(g) Abalone: τ = 0.3

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

0.08

0.09

0.10

25 50 75

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.5 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(h) Abalone: τ = 0.5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

0.08

0.09

25 50 75

Nodesize

Q
ua

nt
ile

 lo
ss

, t
au

 =
 0

.7 variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(i) Abalone: τ = 0.7

Figure 3.14: Quantile losses of different node sizes on real data.

intervals much wider than the true ones.

90

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−1

0

1

0 2 4 6

x

y

(a) crf

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−1

0

1

0 2 4 6

x

y
(b) qrf-oracle

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2

−1

0

1

0 2 4 6

x

y

(c) grf-oracle

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2

−1

0

1

0 2 4 6

x

y

(d) qrf

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2

−1

0

1

0 2 4 6

x

y

(e) grf

Figure 3.15: Prediction intervals of Sine.

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

0.970

0.975

0.980

0.985

0.990

10 20 30

Nodesize

C
ov

er
ag

e

variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(a) BostonHousing

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

0.95

0.96

0.97

0.98

0.99

10 20 30 40

Nodesize

C
ov

er
ag

e

variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(b) Ozone

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.94

0.95

0.96

0.97

0.98

25 50 75

Nodesize

C
ov

er
ag

e

variable
●

●

●

●

●

crf

qrf

grf

qrf_oracle

grf_oracle

(c) Abalone

Figure 3.16: Confidence intervals with different node sizes on real data.

3.6 Acknowledgement

Chapter 3, in full, is currently being prepared for submission for publication of the

material. Li, Hanbo; Bradic, Jelena. Forest-type quantile regression for randomly censored data.

91

The dissertation/thesis author is the primary investigator and author of this material.

92

Chapter 4

Estimation and Inference for

High-dimensional Left-censored Quantiles

4.1 Introduction

In this chapter, we present a quantile regression framework for high-dimensional left-

censored linear models. Comparing to the forest-type regression framework in Chapter 3, the

method introduced below is tailored towards high-dimensional quantile regression and statistical

inference on left-censored data. A different approach, namely redistribution of mass, was adopted

in the initial estimation here. This creates new challenges in estimation and inference of the

problem. In return, the optimization problem can be transformed from a nonconvex optimization

involving left-censored data into a modified quantile regression, which then greatly relieves

computational burden.

4.1.1 Contributions

We develop methodology for the quantile estimation and inference under high-dimensional

and left-censoring settings. In details, the work provides a τ-quantile estimator and confidence

93

intervals for high-dimensional left-censored regression, for any τ ∈ (0,1), along with the theoreti-

cal guarantees. We modify a quantile regression estimation approach for right-censored data to

accommodate the left-censored nature of our problem, and further extend the recently developed

de-biasing techniques to derive an improved estimator suitable for high-dimensional inference.

4.1.2 Related Work

Quantile regression, as an robust alternative to ordinary linear regression, has received

great attention since its introduction in [KBJ78]. The concept has then been taken to settings with

heteroskedastic errors [KBJ82] and non-linear regression model [Obe82]. [Pow86] first studied

censored quantile regression, where the method was first applied under fixed left-censored data

setting, with known censoring levels. Despite of the difficulties present in the censored nature

of the data, Powell showed that the proposed natural estimator is consistent and asymptotically

normal. However, many works, including [KP96], [Fit97], [BH98] and [FW07], have discussed

computational burden due to the nonconvexity nature of the minimization objective function

involved in Powell’s estimator.

Meanwhile, progress has been made in application of survival analysis. Under right-

censored data settings, both [KG01] and [Por03] have studied quantile regression with random

right-censored data in details. Moreover, [Por03] proposed a recursively reweighted estimator of

the regression quantile process, which generalized the Kaplan-Meier estimating scheme. Based

on the redistribution of mass idea of [Efr67], the method in [Por03] recursively updates the weight

of censored cases. Similarly, motivated by the same idea, [WW12] proposed a method, such that

the weights of the censored observations are estimated in a single step. We extend the idea to

high-dimensional left-censored models.

94

4.1.3 Content

In Section 4.2, the methodology is presented with both procedures for deriving the initial

estimator and the de-biased estimator. In Section 4.3, we study the conditions and asymptotic

theory of the proposed method. Numerical simulations and a real data application are presented

in Section 4.4. Finally, lemmas and their proofs are provided in Section 4.5 and 4.6, and the

proofs of theorems are provided in Section 4.7.

4.2 Methodology

We start with the problem setup with model description. Then we lay out the methodology

in two parts. In the first subsection, we describe our proposal for initial estimator, and in the

second subsection we present the details of bias correction for the initial estimator.

4.2.1 Model Description

We consider the problem in the context of left-censored linear models. Let Ti be an

underlying response variable, which is uncensored. We also denote xi as our covariates vector of

length p. The underlying latent quantile regression model for some quantile τ ∈ (0,1) comes in

the form of

Ti = xiβ
o(τ)+ εi(τ), i = 1, . . . ,n, (4.1)

where εi(τ) is a random error, whose τ-th quantile conditional on xi we assume is at 0. Due to

left-censoring, however, we only observe the triplet (xi,Yi,Ci), where

Yi = max(Ti,Ci), and let δi = 1(Ti >Ci), (4.2)

95

and i = 1, . . . ,n. Together (4.1) and (4.2) specify a left-censored quantile regression model. As

Ci is observed, one can always reduce (4.2) to a constant-censored model, also known as Type-I

Tobit model, in which the censoring vector is a constant c across i. Our interest lies in obtaining

confidence intervals for the quantile coefficient βo(τ) for various τ, under high-dimensional

settings with p� n. Bearing the high-dimensionality in mind, we denote Sβo = { j|βo
j 6= 0} as

the active set of variables of the coefficients and denote its cardinality by sβo = |Sβo |.

4.2.2 Initial Estimator

In the case without censoring, quantile regression is carried out with the specific loss

function ρτ(z) = z(τ− 1{z < 0}), also known as the check function. In the censoring case,

however, directly fitting using the quantile loss results in a nonconvex optimization problem.

In addition, simply removing the censored observations results in loss of information and bias.

With such consideration, we borrow an algorithm from [WW12]. Specifically, we mimicked the

"locally weighted censored quantile regression" method, which is based on Efron’s redistribution

of mass idea. The method assigns different weights on censored data and non-censored data,

and avoids discarding all censored data, while maintaining partial information provided by the

non-censored ones.

The method redistributes the mass of each censored observation to some point far on

left, which is −∞ in the case of left censoring. Note that if xiβ(τ)>Ci for all xi, then the left

censoring at Ci has no impact on our estimate of τ-quantile. This observation comes from the

fact that the quantile regression estimator is only determined by the signs of residuals, in another

word, we only care about the order of the responses.

We now present the initial estimator β̂, with the justification of the weights following.

β̂ = argmin
β

1
n

n

∑
i=1

[
wi(F0)ρτ(Yi−xiβ)+(1−wi(F0))ρτ(Y−∞

i −xiβ)
]
+λn

p

∑
j=1
|β j|,

96

where wi(F0) is defined as following, F0 being the distribution of Ti,

wi(F0) =


1 if δi = 1 or F0(Ci|xi)< τ

1− τ

F0(Ci|xi)
if δi = 0 and F0(Ci|xi)> τ

.

Notice that the additional penalty term is added, in order to accommodate the high-dimensional

setting. To make sense out of the weights, we begin from the objective function of the underlying

model under quantile loss,

Un(β) =
1
n

n

∑
i=1

ρτ(Ti−xiβ).

Taking the derivative, we have the first order estimating equation

Dn(β) =−
1
n

n

∑
i=1
x>i (τ−1{Ti−xiβ < 0}) .

The subgradient condition Dn(β) = op(1) depends only on 1{Ti−xiβ < 0} for each xi. Now

fix any β, if an observation is uncensored, then Yi = Ti is observed, and so is 1{Ti−xiβ < 0}.

For censored observations (Yi = Ci > Ti), if xiβ > Ci, we immediately know Ti < xiβ. The

tricky case is when xiβ <Ci, we cannot determine the sign of Ti−xiβ. Hence, we look at the

expectation

E [1{Ti−xiβ > 0}|Ti <Ci] =
P(xiβ < Ti <Ci)

P(Ti <Ci)
,

where F0 is the distribution of Ti. When β = βo(τ),

E [1{Ti−xiβ
o(τ)> 0}|Ti <Ci] =

P(xiβ
o(τ)< Ti <Ci)

P(Ti <Ci)

=
F0(Ci|xi)− τ

F0(Ci|xi)
.

The observations above motivated us to assign weight wi(F0) = 1 to the first two scenarios,

97

when we have uncensored or F0(Ci|xi)< τ observations. Note that at the location xi, even when

a data point is censored, if we believe the quantile of interest is above the censoring level, we

still assign full weight to that data. Intuitively, we are only interested in estimating in quantile τ.

In terms of a specific data point, our only concern is whether it is above or below the quantile

line xiβ
o. For censored and ambiguous scenarios which we cannot determine the sign of

Ti−xiβ
o(τ), we assign weight wi(F0) = 1− τ

F0(Ci|xi)
. By assigning the complimentary weight to

any point below, such as (xi,−∞) or (xi,Y−∞

i), the quantile fit remains unaffected. Without loss

of generality, we assume fixed censoring level Ci = 0 for all i.

Finally, using a consistent plug in estimator F̂n for F0, we have the initial estimator as,

Step 0: Initial estimator

β̂ = argmin
β

1
n

n

∑
i=1

[
wi(F̂n)ρτ(Yi−xiβ) (4.3)

+(1−wi(F̂n))ρτ(Y−∞

i −xiβ)
]
+λn

p

∑
j=1
|β j|.

We delay the discussion of the estimator F̂n to Condition 8, where we will lay out the requirement

on such estimator.

4.2.3 Bias Correction

With our inference objective, the estimator given in (4.3) needs improvement. As we

show later, the initial estimator is consistent. However, as other penalized estimators, our initial

estimator is also a biased one. Following classical one-step estimation framework, typically an

one-step improvement of the following form is considered. With appropriate estimators plugged

in as proxies, we have

Step 1: Bias correction

β̃ = β̂− Θ̂Sn(β̂, F̂n), (4.4)

98

where the vector Sn is the score and the matrix Θ̂ is a proxy to the inverse Hessian matrixH−1.

H is defined as the subgradient of Sn.

We first define Sn, and then provide an explanation for the transition between Θ̂ and

H−1.

Sn(β,F) :=−1
n

n

∑
i=1
x>i
[
wi(F)ψτ(Yi−xiβ)+(1−wi(F))ψτ(Y−∞

i −xiβ)
]

with ψτ(z) = τ−1{z < 0} being the differential of ρτ(z). Note that Y−∞

i −xiβ < 0 due to our

choice of Y−∞

i =−∞. Therefore, we have ψτ(Y−∞

i −xiβ) = τ−1 for all i, and hence

Sn(β,F) = −1
n

n

∑
i=1
x>i [wi(F)ψτ(Yi−xiβ)+(1−wi(F))(τ−1)]

= −1
n

n

∑
i=1
x>i [wi(F)1{Yi−xiβ ≥ 0}− (1− τ)] . (4.5)

Notice that Sn(β̂, F̂n) depends on both the initial estimator β̂ and F̂n. This imposes an

additional challenge on the theory, which we address later in Lemma 7. As for (4.3) being a

consistent estimator, only consistency of the estimator F̂n is required. However, for inference

a slightly stronger convergence rate requirement on the error of the estimator F̂n needs to be

imposed, which is summarized in Condition 8.

As for the Hessian matrixH , we observe that the function ψτ is not everywhere differ-

entiable. Hence, we propose to consider another candidate for the subgradient of Sn. We first

compute the expectation of the score Sn(β,F), and then compute its gradient. Thus, for the

simplicity of notation, the following expectations are taken with respect to Ti given x.

99

Proposition 1. Assuming the true distribution F0, we have

E[Sn(β,F0)] = −1
n

n

∑
i=1
xi

(
τ−P(Yi < xiβ)− τ1{F0(0|xi)> τ}1{xiβ ≤ 0}

)

=


−1

n ∑
n
i=1xi (τ−P(Ti < xiβ)) if xiβ > 0

−1
n ∑

n
i=1xi (τ− τ1{F0(0|xi)> τ}) if xiβ ≤ 0

(4.6)

and hence the Hessian

H(β) =
∂

∂β
E[Sn(β,F0)] =

1
n

n

∑
i=1
x>i xi f0(xiβ|xi)1{xiβ > 0} (4.7)

where f0 is the density function of Ti.

Remark 5. Note that E[Dn(β)] = −n−1
∑

n
i=1xi

(
τ−P(Ti < xiβ)

)
. Comparing to (4.6), we

know when xiβ> 0, E[Sn(β,F0)] =E[Dn(β)], and hence when β=βo, E[Sn(βo,F0)] = 0 since

E[Dn(βo)] = 0. Furthermore, 1{F0(0|xi)> τ}= 1{xiβo ≤ 0}, if F0 is strictly increasing, and

hence E[Sn(βo,F0)] = 0 when xiβo ≤ 0 as well. In summary, at the truth βo, the expectation of

our score estimator E[Sn(βo,F0)] is indeed zero.

Note that the matrixH(β) is not invertible for general β when the number of parameters

p exceeds the number of observations n. In fact, with a little abuse of notation, we only assume

the existence ofH−1, which is layed out as Condition 14 later in the text (here, the expectation is

with respect to xi). In the following section, we describe the details in obtaining the proxy Θ̂ for

H−1.

100

4.2.4 Inverse Hessian Estimator: Nodewise Lasso

Our Inverse Hessian estimator is inspired by the nodewise lasso method proposed in

[VdGBRD14]. For notation simplicity, we first rewrite (4.7),

H(β) = n−1
n

∑
i=1
u>i ui = n−1x>βxβ,

where ui := xi1(xiβ > 0)
√

f0(xiβ|xi), xβ =Wβx, andWβ is defined as

Wβ = diag
(
1(xiβ > 0)

√
f0(xiβ|xi)

)n

i=1
. (4.8)

That is, xβ is a new design matrix with i-th row to be ui, which can also be treated as the product

of weighted matrixWβ and x. Note that for fixed data, (Wβ) j j only depends on β.

Then we carry out nodewise lasso using xβ. Note that as we use the initial estimator β̂ as

the plug in for xβ̂, we also use a consistent estimator f̂n in place for f0 in (4.8). The discussion of

the estimator f̂n is delayed later to Condition 9. We have the nodewise lasso scheme as following.

For each j = 1, · · · , p, define

γ̂ j := argmin
γ∈Rp−1

(
n−1||(xβ̂) j− (xβ̂)− jγ||22 +2λ j||γ||1

)
, (4.9)

where (xβ̂)− j is the design submatrix without the j-th column. Note that (4.9) can be solved

using standard lasso regression. We further denote the components of γ̂ j ∈ Rp−1 as {γ̂ j,k : k =

1, · · · , p,k 6= j}. Then define

Ĉ :=



1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p

...
...

−γ̂p,1 −γ̂p,2 · · · 1



101

and

D̂2 := diag
(
d̂2

1 , · · · , d̂2
p
)
,

where for j = 1, · · · , p,

d̂2
j := n−1||(Xβ̂) j− (xβ̂)− jγ̂ j||22 +λ j||γ̂ j||1. (4.10)

d̂2
j serves as an estimate to the noise level of the regression in (4.9). Finally, our proxy Θ̂ is

defined as,

Θ̂ := D̂−2Ĉ. (4.11)

In addition, we note that using the KKT conditions, we can show

||H(β̂)Θ̂>j − e j||∞ ≤ λ j/d̂2
j , (4.12)

and

(
H(β̂)Θ̂>

)
j j
= 1. (4.13)

Finally, we propose the novel High-dimensional Left-censored Quantile Regression in

Algorithm 6 and 7.

Algorithm 6 High-dimensional Left-censored Quantile Regression
1: Initial Estimation
2: Obtain an estimator F̂n
3: Plug in F̂n into (4.3) and obtain β̂
4: One-step Correction
5: Obtain estimator Θ̂, more details in Algorithm 7
6: Plug in initial estimator β̂ and F̂n for Sn(β̂, F̂n) as in (4.5)
7: Obtain the one-step improved estimator β̃ as in (4.4)

102

Algorithm 7 Inverse Hessian estimation Θ̂

1: Obtain an estimator f̂n
2: Plug in initial estimator β̂ and f̂n into (4.8)
3: for j = 1, . . . , p do
4: Obtain γ̂ j and d̂2

j as in (4.9) and (4.10) respectively
5: end for
6: Obtain Θ̂ as described in (4.11)

4.3 Theoretical Considerations

In what follows, we briefly discuss the preliminary theoretical results, along with the

conditions required. In the first subsection, we address the requirements for the distribution and

density estimators. Then we move on to conditions for acquiring consistency using the initial

estimator. We are inspired by the consistency result of the penalized censored least absolute

deviation estimator in [MvdG16]. Finally, we present the derivation of the normality result for the

improved one-step estimator, which follows from the sketch of [BG16]. Under the current context,

however, extra challenges surface as both score and inverse Hessian depends on distribution and

density estimator in addition to the parameter estimator β̂.

4.3.1 Distribution and Density Estimators

We impose the following condition on the choice of distribution estimator.

Condition 8 (Distribution estimator condition). The estimator F̂n(t|x) is a consistent estimator

of the conditional distribution of T , F0(t|x), for all x. More precisely, for any t ∈ R,

sup
x∈Rp

∣∣F̂n(t|x)−F0(t|x)
∣∣= Op (δF̂) ,

where δF̂
p→ 0 as n→ ∞.

Note that the condition essentially only requires F̂n to be a consistent estimator. We have

103

selected the classical Kaplan-Meier estimator for analysis later in the paper. Likewise, we also

impose a consistency condition on the density estimator f̂n as following.

Condition 9 (Density condition). 1. The conditional density function f0(y|x) is a Lipschitz

function in y with a uniform Lipschitz constant L for all x.

2. There exists M > m > 0 such that m≤ f0(y|x)≤M for all y and x.

3. The conditional density estimator f̂n(y|x) is a consistent estimator of f0(y|x). To be

precise,

∫ ∫ (
f̂n(y|x)− f0(y|x)

)2
dµ(x)dy = op (1) ,

where µ is a measure on the support of x.

4. limε→0+ P(|xβo|> ε) = 1.

The two conditions above are not restrictive in their nature, though distribution and density

estimation in high-dimensional settings remains an active research topic. Nevertheless, we refer

one to [HY05], [Efr07] and [IL15] for more discussions on the topic.

4.3.2 Consistency of Initial Estimator

In the section, we present the consistency analysis for the initial estimator. For notational

simplicity, throughout this section, x and xi are row vectors. Also, we denote ŵ = w(F̂) and w0 =

w(F0). We also define the linear function fβ(x) = xβ, the reweighted loss function ρ f (x,y,w) =

wρτ(y− fβ(x)) + (1−w)ρτ(y−∞− fβ(x)), the risk P ρ f = Eρ f (x,y,w0), the empirical risk

Pnρ f =
1
n ∑

n
i=1 ρ f (xi,yi,w0

i) at F0, and the empirical risk P̂nρ f =
1
n ∑

n
i=1 ρ f (xi,yi, ŵi) at F̂ . Then

we define f ∗ as a linear functional such that for all x,

f ∗(x) = argmin
a

E
[
w0

ρτ(y−a)+(1−w0)ρτ(y−∞−a)
∣∣x].

104

In order for f ∗ to be uniquely defined, we need the following censoring condition Con-

dition 10. To see the necessity of this condition, let βo be the true parameter. By the first order

property, E[w0ψτ(y−a)+(1−w0)(τ−1)|x] = 0. Hence, for all x,

E[w0
1(y > a)|x] = 1− τ. (4.14)

By the definition of weight w0, if F0(0|x) < τ, (4.14) means F0(a|x) = τ, and hence, f0(x) =

fβo(x). But if F0(0|x) > τ, then any a < 0 is a solution to (4.14). However, we require (4.14)

to hold for every x. So as long as not for all x, F0(0|x)> τ, then because of the linearity of f ∗,

there exists a unique solution.

Condition 10 (Censoring condition). Let µ be measure on X . There exists a set E ⊂ X such that

µ(E) > 0 and F0(0|x) < τ for all x ∈ E. Furthermore, at the censoring level 0, there exists a

constant 0 < M0 < τ such that F0(0|x)≥M0 for all x.

Some additional conditions also need to be imposed.

Condition 11 (Error condition). The conditional error distribution function ν0(t|x) is continu-

ously differentiable for all x, and the first derivative ν̇0(t|x) satisfies Lipschitz condition with

constant L uniformly for all x, and is bounded from above and below. Furthermore, ν̇0(0|x)> 0

and
∫

ε

0 (ε− t)dν0(t|x)> 0 for all ε > 0 and x.

The above condition is our only limitation on the error distribution. Even though we

require bounded first derivative for the error density, which excludes densities with unbounded

first moment, the condition still allows for a class of distributions much larger than the Gaussian.

Next, we have a condition on the design. First, we denote γ j := argminγE‖X j−X− jγ‖2
n, and

thenX− jγ j is the projection ofX j intoX− j under the inner product 〈Xi,X j〉= EX>i X j/n.

Condition 12 (Design matrix condition). The design matrix X satisfies ‖X‖∞ = maxi, j |Xi, j| =

O(1), that is, every column ‖X j‖∞ = O(1). If furthermore, the projectionX− jγ j is also bounded

for all j, i.e. ‖X− jγ j‖∞ = O(1), we sayX is strongly bounded.

105

A bounded condition on design matrix entries Xi j is not uncommon in high-dimensional

settings [VdGBRD14]. In fact, in many cases, ifX follows an unbounded distribution, one can

always approximate its distribution with a truncated one. The following is the same compatibility

condition introduced for linear models [BRT09], which is standard condition when applying lasso

estimators.

Condition 13 (Compatibility condition). There exists some φ0 > 0 and all β satisfying ||(β−

βo)Sc
βo ||1 ≤ 3||(β−βo)Sβo ||1 it holds that

||(β−βo)Sβo ||21 ≤
sβo

φ2
0
(β−βo)E[xTx](β−βo).

Denoting the excess risk as E(f) = P ρ f −P ρ f0 , and the sum of squares norm as || f ||2 =

E f 2(x), in the linear case, || fβ||2 = E f 2
β(x) = β

TE[xTx]β, we are now ready to present the

consistency result.

Theorem 10. Under Conditions 10 - 13 and define

λ(t) = 4KX

√
2log(2p)

n
+KX

√
32t
n

.

Then for λ≥ 4λ(t) with t = 2log(p) and some constant C, with probability at least 1−log2(8np2)/p2,

||β̂−βo||1 ≤
6Cλsβo

φ2
0

, (4.15)

(β̂−βo)TE[xTx](β̂−βo)≤
9C2λ2sβo

φ2
0

. (4.16)

106

In other words, with λ�
√

log p/n, we have ||β̂−βo||1 = Op

(
sβo

√
log(p)

n

)
and

n−1∥∥X(β̂−βo)
∥∥2

2 = Op

(
sβo

log(p)
n

)
.

Corollary 1. Under the assumption sβo = o
(√

n/ log(p)
)

, we have consistency for the initial

estimator β̂.

4.3.3 Asymptotic Normality of One-step Penalized Estimator

This section entails the delicate details of obtaining the asymptotic normality of the

improved one-step estimator, with imposed conditions as well as the preliminary lemmas. We

start the analysis with the following decomposition of (4.4),

√
n
(
β̃ j−βo

j
)

=
√

n
(
β̂ j−βo

j
)︸ ︷︷ ︸

I

−
√

n
(
Θ̂ jSn(β

o,F0)
)︸ ︷︷ ︸

N

(4.17)

−
√

n
[
Θ̂ j
(
Sn(β̂,F0)−ESn(β̂,F0)

)
− Θ̂ j (Sn(β

o,F0)−ESn(β
o,F0))

]︸ ︷︷ ︸
II

,

−
√

nΘ̂ j
(
Sn(β̂, F̂n)−Sn(β̂,F0)

)︸ ︷︷ ︸
III

−
√

n
(
Θ̂ j(ESn(β̂,F0)−ESn(β

o,F0)
)︸ ︷︷ ︸

∆

where Θ̂ j denotes the j-th row of Θ̂. With the help of this decomposition, our aim is to show that

part (N) converges to a Normal distribution, while the other terms converge to zero at a faster rate.

In order to characterize and bound each individual term, we have lemmas for results leading up to

Theorem 11 below. However, for the purpose of presentation, we defer the lemmas to Section 4.5.

Finally, we introduce the last condition we impose. One may also refer to this condition

as the restrictive eigenvalue assumption, which requires the population Hessian to be at least

invertible. We note that even in linear models without censoring, this is an indispensable condition.

Condition 14. The smallest eigenvalue Λmin of E
[
XT
βoXβo/n

]
is strictly positive and 1/Λmin =

107

O(1).

We are now ready to present the main result.

Theorem 11. Under Conditions 8 - 14, with λ�
√

log p/n and λ j �
√

log p/n, and define s j :=∥∥∥Θ0
j

∥∥∥
0
=
∣∣∣{k 6= j : Θ0

j,k 6= 0}
∣∣∣, assuming Ks2

βo log p/n∨ s1/2
βo s1/2

j (log p/n)1/4∨K‖Θ̂ j−Θ0
j‖1 =

o(1), where K =
√s j and in the strongly bounded case, K = 1. Let In =

(
β̃ j−an, β̃ j +an

)
an = zα

√
Θ̂ j ˆOmegaΘ̂>j /n, where

ˆOmega=
1
n

n

∑
i=1
x>i xi

(
φ̂i + ψ̂i

)2
,

ψ̂i :=−
[
wi(F̂n)1{Yi−xiβ̂ ≥ 0}− (1− τ)

]
and

φ̂i := τ1
(
xiβ̂ ≤ 0

)
1(Yi = 0)

1(F̂n > τ)

F̂2
n

n

∑
l=1
l 6=i

Bnl(xi)

(
1− 1(Yl = 0)

F̂n

)
.

The distribution estimator F̂n is chosen to be the classical Kaplan-Meier estimator,

F̂n(t|x) =
n

∏
j=1

(
1− 1

∑
n
k=11(Yk ≤ Yj)

)η j(t)

, (4.18)

where η j(t) = 1(Yj > t,δ j = 1). For j ∈ {1, . . . , p}, when n, p→ ∞, we have

P
(
βo

j ∈ In
)
= 1−2α.

Remark 6. The quantity s j quantifies the sparsity nature of the underlying precision matrix Θ0,

which we aim to estimate with Θ̂. This is a standard assumption in high dimensional inference.

Essentially, it restricts the column (Xβo) j to be dependent with only s j number of columns in

(Xβo)− j.

108

4.4 Numerical Experiments and Application

In this section, we present the application our proposed method in details, along with

simulation results under various settings and an application in real data study.

4.4.1 Further Details of Algorithm 6 and 7

We start with the definition of Y−∞. In practice, we have taken

Y−∞ :=−1000×‖Y‖∞ =−1000×max
i
|Yi|.

For the estimator of conditional distribution of Ti, as mentioned earlier, there are options specifi-

cally tailored for distribution estimation in high-dimensions, we provide here a possible estimator

F̂n for line 2 in Algorithm 6 based on the ideas of Kaplan-Meier estimator, which is defined as the

following.

F̂n(t|x) =
n

∏
j=1

(
1−

Bn j(x)

∑
n
k=11(Yk ≤ Yj)Bnk(x)

)η j(t)

, (4.19)

where η j(t) = 1(Y j > t,δ j = 1). Choosing Bnk(x) = 1/n results in the classical Kaplan-Meier

estimator. We also note that the Nadaraya-Watson’s type weights for Bnk(x) is also a common

choice, which is

Bnk(x) =
K
(
x−xk

hn

)
∑

n
i=1 K

(
x−xi

hn

) , (4.20)

where K is a density kernel function, and hn ∈ R+ is the bandwidth converging to zero as n→ ∞.

In the simulations, we have opted for the classical Kaplan-Meier estimator for simplicity. In

addition, we have the following density estimator for f̂n in line 1 in Algorithm 7. For a positive

109

bandwidth sequence ĥn,

f̂n = ĥ−1
n

n

∑
i=1

1(xiβ̂ > 0)1(0≤ Yi−xiβ̂ ≤ ĥn)

∑
n
i=11(xiβ̂ > 0)

. (4.21)

This estimator is inspired by the estimator for error density at 0 presented in [BG16], which

translates to an estimation for density of Ti at xiβ
o(τ). For the choice of ĥn, we also follow the

adaptive choice of the bandwidth sequence thereof. Let ui := yi− xiβ̂,

ĥn = c
{

sβ̂ log p/n
}−1/3

median
{

ui : ui >
√

log p/n, xiβ̂ > 0
}
,

for a constant c > 0. Here, sβ̂ denotes the size of the estimated set of the non-zero elements of

the initial estimator β̂, i.e., sβ̂ = ‖β̂‖0.

An additional note is also in place for line 3 of Algorithm 6. Regarding the computation

procedure to obtain the initial estimator, we note that this boils down to a weighted quantile regres-

sion problem and is readily solvable using linear programming techniques. The penalty parameter

λ in (4.3) is chosen by the minimum of K-fold cross validation statistic, argminλ ∑
K
k=1 CVk(λ),

and

CVk(λ) := n−1
k ∑

i∈Fk

[
wi(F̂n)ρτ(Yi−xiβ̂

k)+(1−wi(F̂n))ρτ(Y−∞

i −xiβ̂
k)
]
, (4.22)

where Fk denotes the k-th fold of the n observations, nk is the number of observations in Fk, and

β̂k is the parameter coefficients fitted on Fc
k observations. Likewise, the choice of λ j in line 4 of

Algorithm 7 is chosen in the same way, except in the cross validation statistic, the squared error

loss is used instead of the weighted quantile loss in (4.22).

110

Table 4.1: τ = 0.4 Coverage Probability for High-dimensional Left-censored Quantile Regres-
sion (HLQR) with True F0 and True f0

Distribution of the error term Simulation Setting for n = 200, p = 300

Toeplitz design
ρ = 0.3

Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0,95 0,97 0,95 0,93
Student’s 0,95 0,94 0,95 0,92
Beta 0,90 0,93 0,91 0,93
Weibull 0,94 0,97 0,98 0,94

4.4.2 Simulation Data

We are now ready to present the simulation results. The size of the model settings are

chosen to be of n= 200 for the number of observations, and p= 300 for the number of parameters.

In addition, the sparsity of the underlying true parameter βo, denoted as sβo earlier in the text, is

set to be 5. We have also selected four different distributions for the error of the model: standard

normal, Student’s t with 4 degrees of freedom, Beta distribution with parameters (2,3) and

Weibull distribution with parameters (1,1). The design matrixX is generated from a multivariate

Normal distribution N (µ,Σ), where µ is chosen to be the zero vector, and the covariance matrix

Σ is taken to be the identity matrix or the Toeplitz matrix such that Σi j = ρ|i− j| for ρ = 0.3. The

two quantiles of interest are chosen to be τ = 0.4 and τ = 0.7. In the case when τ-th quantile of

the error is not zero, we subtract off the τ-th quantile of the error distribution from the model.

The censoring level c is chosen such that the proportion of the censoring data is set at 10%. We

present simulation results for when the true F0 and f0 plugged in, and also when we use our

proposed rudimentary estimators F̂n and f̂n as described earlier in the section.

Table 4.1 and 4.2 summarize the average coverage probabilities of the constructed 95%

level confidence intervals for obtaining τ = 0.4 and 0.7 quantile regression estimators under

various settings. We report the signal and noise parameters separately, as the coverage of the

signal ones are known to be more difficult. In conjunction, we have also included box plots

111

●

●

●
●

●

●

●

●

●

0.2

0.4

0.6

normal student beta weibull

●●

●

●

●

●●

●

●

●

●

0.1

0.2

0.3

0.4

0.5

normal student beta weibull

●

●●

●

●

0.2

0.4

0.6

normal student beta weibull

●
●

●

●

●

●

●
●

0.1

0.2

0.3

0.4

0.5

normal student beta weibull

Figure 4.1: τ = 0.4 comparative boxplots of the average interval length (with true F0 and true
f0). Signal (left) and noise (right) variables, and Toeplitz design with ρ = 0.3 (top) and identity
design (bottom).

112

●

●●

●

0.1

0.2

0.3

0.4

0.5

0.6

normal student beta weibull

●

●

●●

●

●

0.1

0.2

0.3

0.4

0.5

normal student beta weibull

●

●

●

●

●
●

●

●

●
●●

●

●

0.2

0.4

0.6

normal student beta weibull

●

●

●

●●

●

0.2

0.4

0.6

normal student beta weibull

Figure 4.2: τ = 0.7 comparative boxplots of the average interval length (with true F0 and true
f0). Signal (left) and noise (right) variables, and Toeplitz design with ρ = 0.3 (top) and identity
design (bottom).

113

Table 4.2: τ = 0.7 Coverage Probability for High-dimensional Left-censored Quantile Regres-
sion (HLQR) with True F0 and True f0

Distribution of the error term Simulation Setting for n = 200, p = 300, τ = 0.7

Toeplitz design
ρ = 0.3

Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0,94 0,97 0,92 0,97
Student’s 0,91 0,94 0,91 0,95
Beta 0,96 0,99 0,89 0,95
Weibull 0,92 0,94 0,87 0,91

of interval widths under these settings (Figure 4.1 and 4.2). From the results of applying

our methodology with true F0 and true f0, it is observed that the coverage probabilities are

approximately the same and are close to the nominal values. In addition, we noticed that among

the four chosen error distributions, our method turns out to be most efficient, in terms of the

confidence interval width, when the error distribution is bounded. However, it is observed that our

method is sensitive to heavy-tailed distributions, such as the Student’s t distribution with degrees

of freedom being 4.

The results of plugging in estimators F̂n and f̂n are summarized in Table 4.3 and 4.4 for

the two quantile settings τ = 0.4 and 0.7. In terms of coverage probability, we observe similar

results as the ones with true F0 and f0, as the probabilities are approximately the same and are

close to the nominal values. We notice that the interval widths almost tripled for the cases of

error being standard normal and Student’s t distribution as seen in Figure 4.3 and 4.4. However,

this is not unexpected as we using estimators instead of the true underlying values. With better

tailored estimators to the scenario, we believe that the width of the intervals in the two cases can

be reduced.

In addition, we have also examined the power of our estimator. Maintaining similar

settings as in previous simulations, that is n = 200 and p = 300, whereas sβo is also set to be

5. We have our null hypothesis for the coefficients being 1 for the signals and 0 for the noises.

114

Table 4.3: τ = 0.4 Coverage Probability for High-dimensional Left-censored Quantile Regres-
sion (HLQR) with Estimated F̂n and Estimated f̂n

Distribution of the error term Simulation Setting for n = 200, p = 300

Toeplitz design
ρ = 0.3

Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0,95 0,97 0,97 0,94
Student’s 0,98 0,94 0,98 1,00
Beta 0,99 0,95 0,97 0,97
Weibull 0,99 0,92 0,96 0,95

Table 4.4: τ = 0.7 Coverage Probability for High-dimensional Left-censored Quantile Regres-
sion (HLQR) with Estimated F̂n and Estimated f̂n

Distribution of the error term Simulation Setting for n = 200, p = 300, τ = 0.7

Toeplitz design
ρ = 0.3

Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0,89 0,99 0,96 0,97
Student’s 0,93 0,93 1,00 0,96
Beta 0,96 0,97 0,91 0,96
Weibull 0,95 0,95 0,99 0,96

115

●

●

●

●

0.3

0.4

0.5

0.6

normal student beta weibull

●

●

●

●

●

●
●

●

0.3

0.4

0.5

0.6

normal student beta weibull

●

●

●

●

●

●

●

●

●

●

0.6

0.8

1.0

1.2

1.4

normal student beta weibull

●

●

●

●

●

●

●

●

0.6

0.8

1.0

1.2

1.4

normal student beta weibull

Figure 4.3: τ = 0.4 comparative boxplots of the average interval length (with estimated F̂n and
true f̂n). Signal (left) and noise (right) variables, and Toeplitz design with ρ = 0.3 (top) and
identity design (bottom).

116

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.50

0.75

1.00

1.25

normal student beta weibull

●

●

●

●

●

●

●

●

0.50

0.75

1.00

1.25

normal student beta weibull

●

●

●

●

●

●

● ●

●

0.50

0.75

1.00

1.25

1.50

normal student beta weibull

●

●

●

●

●

●

0.50

0.75

1.00

1.25

1.50

normal student beta weibull

Figure 4.4: τ = 0.7 comparative boxplots of the average interval length (with estimated F̂n and
true f̂n). Signal (left) and noise (right) variables, and Toeplitz design with ρ = 0.3 (top) and
identity design (bottom).

117

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●●

●●

●●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

deviation from the null hypothesis

po
w

er

settings
●

●

●

●

0.4 quantile with identity covariance

0.4 quantile with toeplitz covariance

0.7 quantile with identity covariance

0.7 quantile with toeplitz covariance

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●●
●
● ●●

●
●

●●●●

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

deviation from the null hypothesis

po
w

er

settings
●

●

●

●

0.4 quantile with identity covariance

0.4 quantile with toeplitz covariance

0.7 quantile with identity covariance

0.7 quantile with toeplitz covariance

Figure 4.5: Power curve of signal (left) and noise (right) variables under normal errors, H0 :
βo

j = c versus H1 : βo
j 6= c, where the true parameter βo

j = c+h. The deviation from the null
hypothesis h ranges from 0 to 1.

●

●

●
●

●

●

●
● ●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

deviation from the null hypothesis

po
w

er

settings
●

●

●

●

0.4 quantile with identity covariance

0.4 quantile with toeplitz covariance

0.7 quantile with identity covariance

0.7 quantile with toeplitz covariance

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●
●
●

●

●●
●
● ●●●

●

●●●●

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

deviation from the null hypothesis

po
w

er

settings
●

●

●

●

0.4 quantile with identity covariance

0.4 quantile with toeplitz covariance

0.7 quantile with identity covariance

0.7 quantile with toeplitz covariance

Figure 4.6: Power curve of signal (left) and noise (right) variables under normal errors, H0 :
βo

j = c versus H1 : βo
j 6= c, where the true parameter βo

j = c+h. The deviation from the null
hypothesis h ranges from 0 to 1.

118

We test H0 : β̃ j = β
o
j versus H1 : β̃ j = β

o
j +h. While keeping the significance level at 0.05, we

increase the deviation from the null hypothesis h gradually from 0.1 to 1. We observe that both

the signal and noise variables converges to power of 1 quickly for various settings, which testifies

the effectiveness of our estimator. The results are summarized in Figure 4.5 and 4.6 below.

4.4.3 Real Data

In this section, we apply our High-dimensional Left-censored Quantile Regression

(HLQR) to a microarray dataset of cardiomyopathy in transgenic mice, kindly provided by

Professor Mark Segal, who also studied the dataset in [SDC03]. To study human diseases such

as chamber dilation and left ventricular conduction delay, a transgenic mouse model of dilated

cardiomyopathy was used.

Specifically, [RDK+00] proposed to control a G protein-coupled receptor, designated as

Ro1, through an inducible expression system. Thirty mice are used for the study, and are divided

into four experimental groups. Six transgenic mice expressed Ro1 for two weeks, which did

not show symptoms of disease. Nine other transgenic mice expressed Ro1 for eight weeks, and

exhibited cardiomyopathy symptoms. The recovery group consists of seven transgenic mice,

whose expression of Ro1 was on for eight weeks and off for four weeks. Finally, the control

group is made up of non-transgenic mice expressed Ro1 for eight weeks.

The goal is to identify genes involved in the Ro1 expression changes, which may provide

new diagnostic markers for cardiomyopathy. To this end, Affymetrix Mu6500 arrays were used

for the study, and the response of interest is Ro1, whereas the predictors are 6,319 microarray

gene expressions. The dimensionality of the model is then 30 observations (n = 30) and 6,319

features (p = 6319). In order to verify the effectiveness of our High-dimensional Left-censored

Quantile Regression framework, we artificially created a 10% censoring on the response Ro1

value, and fitted the dataset for five quantiles, τ = 0.5,0.75, and 0.9. The regularization parameter

in the initial estimator is chosen using a five-fold cross validation procedure as described in (4.22).

119

Table 4.5: Gene expressions selected by High-dimensional Left-censored Quantile Regression
(HLQR) with 10% censoring in comparison with the ones selected by L1 norm QR model in
[LZ08] (L1QR) with no censoring

GeneBank τ = 0.5 τ = 0.75 τ = 0.9

HLQR L1QR HLQR L1QR HLQR L1QR

D31717 (97,68,97.92) X (97,65,97.96) X (97,61,97.91) X
U73744 (20,09,20.32) X (20,08,20.29) X (20,06,20.31) X
U25708 (46,61,46.82) X (46,60,46.83) X (46,60,46.90)
AA061310 (9,07,9.26) X (9,07,9.22) (9,05,9.29)
M30127 (−0,04,0.06) X (−0,03,0.05) X (−0,04,0.06) X
L38971 (20,36,20.54) X (20,35,20.54) (20,34,20.58)
Z32675 (25,07,25.28) X (25,03,25.15) (25,02,25.36)
W75373 (41,96,42.17) X (41,94,42.20) (41,94,42.16)
AA044561 (0,02,0.18) (−0,01,0.28) X (−0,05,0.33)
AA111168 (−0,12,0.22) (−0,10,0.17) (−0,13,0.21) X
M18194 (−0,04,0.10) (−0,12,0.15) (−0,04,0.09)

The gene expressions deemed to be significant by the confidence intervals are summarized in

Table 4.5. We also noticed that the same dataset has also been studied in both [LZ08]. Thereby,

we included real data results therein for comparison.

As one can see from Table 4.5, there are quite a few overlaps between the gene expres-

sions selected in [LZ08] and the ones selected by our High-dimensional Left-censored Quantile

Regression method, even with 10% of censoring introduced. In addition to merely identifying the

significant genes, our methodology is capable of providing a precise confidence interval for the

significant gene expressions. Moreover, we notice that the sets of selected genes by models across

various quantiles, i.e. τ = 0.5,0.75, and 0.9, using our HLQR are more consistent than the sets

reported for models with different quantiles from L1QR. In other words, our methodology tends

to agree on a common set of significant gene expressions across models with different quantile

levels.

The starkest contrast between the gene expressions reported can be seen in M30127

(Mouse MHC class I tum-transplantation antigen P35B gene), whose importance has been

noted consistently across quantiles in L1QR, whereas our HLQR procedure does not find the

expression significant. Instead, we do notice that our resulting confidence interval does suggest

120

the significance of another gene expression M20985 (Mouse MHC class I H2-Qa-Mb1 gene).

The confidence intervals for M20985 is as following (91.14,91.32) in τ = 0.5, (91.14,91.30) in

τ = 0.75, and (91.11,91.35) in τ = 0.9. Whereas as of date the M30127 expression’s role in the

cardiomyopathy development is yet to be determined, [PSA+10] has confirmed that M20985 is

part of a locus that confers susceptibility of viral-induced chronic myocarditis. In such case, our

methodology has correctly identified a substantial gene candidate for further study of the disease.

Last but not the least, we would like to emphasize on the necessity of considering censoring

data cases. In fact, it is difficult to accurately measure absolute expression levels and reliably

detect low abundance genes [DKES06]. Thus, we believe our method would be a great asset for

researchers analyzing datasets, which have observations with lower detection limit.

4.5 Lemmas

The following result gives a bound on the estimation error of our inverse Hessian estimator

Θ̂ j to the underlying population quantity Θ0
j .

Lemma 6. Under Conditions 8 - 14,

‖Θ̂β̂, j−Θβo, j‖1 = Op(λ js j)+Op(K
√

λsβos j)+Op(K(λsβos2
j/n)1/4)+Op(

√
s jδ f ,nK),

where δ f ,n := n−1
∑

n
i=1
(

f̂ (xiβ̂|xi)− f0(xiβ
o|xi)

)2
. For bounded case, K =

√s j, and K = 1 in

the strongly bounded case.

Remark 7. In particular, in the bounded case, if we choose λ�
√

log(p)/n, λ j �
√

log(p)/n,

s2
jsβo

√
log(p)/n = op(1), sβos4

j

√
log(p)/n3 = op(1) and s j

√
δ f ,n = op(1), then

‖Θ̂β̂, j−Θβo, j‖1 = op(1).

121

In the strongly bounded case, we only require λ�
√

log(p)/n, λ j �
√

log(p)/n,

s jsβo
√

log(p)/n = op(1)

and s jδ f ,n = op(1).

Finally, we begin presenting preliminary results for each term in the decomposition (4.17).

We start with term (III), which measures the error of the one-step improvement quantity using the

estimator F̂n.

Lemma 7. Under Condition 8 - 14, for F̂n chosen to be as in (4.18)

III =−1
n

n

∑
i=1

Θ̂ jx
>
i φi +Op

(
K
n
+K

(
logn

n

)3/4
)
,

where K =
√s j, and in the strongly bounded case, K = 1, and

φi := τ1(xiβ
o ≤ 0)1(Ti ≤ 0)

1(F0 > τ)

F2
0

n

∑
l=1
l 6=i

Bnl(xi)

(
1(Yl > 0,δl = 1)

F0(Yl|x)
−

∫
∞

max{0,Yl}

dF0(s|x)
F2

0 (s|x)

)
.

Furthermore,

1
n

n

∑
i=1

Θ̂ jx
>
i φi

d→N

(
0,

σ2
φ

n

)
,

where σ2
φ
= EΘ̂ jΩφΘ̂

>
j and Ωφ := ∑

n
i=1x

>
i xiφ

2
i /n.

Remark 8. Lemma 7 implies that an additional normality term results from using the classical

Kaplan-Meier estimator as a proxy for the true distribution F. Such a term can be understood as

the extra variability due to the missing information regarding underlying distribution.

In the following, we apply linearization on the term (∆) and then combine the term together

with (I), which then gives us the following Lemma. The rationale behind such arrangement is that

122

the term (∆) describes the difference in the one-step correction with expectation of score using

initial estimator β̂, whereas the term (I) is exactly the difference of β̂ and βo.

Lemma 8. Under Conditions 8 - 14, when
∥∥∥Θ̂β̂, j−Θβo, j

∥∥∥
1
= op(1),

|I−∆|= Op
(
Kλ jλsβo

)
+Op(Kλ

2s2
βo),

where K =
√s j, and in the strongly bounded case, K = 1.

For part (II), we have the following lemma, which aims to bound the difference of a

empirical process.

Lemma 9. Under Conditions 8 - 14,

|II|= Op

(√
λsβos j/n

)
.

Last but not the least, we show the normality of the term
√

nΘ̂Sn(β
o) for part (N).

The lemma shows that the leading term of the Bahadur decomposition (4.17) follows a normal

distribution.

Lemma 10. Assuming Conditions 8 - 14,

N =−1
n

n

∑
i=1

Θ̂ jx
>
i ψi

d→N

(
0,

σ2
ψ

n

)
,

where ψi =− [wi(F0)1{Yi−xiβ
o ≥ 0}− (1− τ)], and σ2

ψ = EΘ̂ jΩψΘ̂
>
j and

Ωψ :=
n

∑
i=1
x>i xiψ

2
i /n.

123

4.6 Proofs of Lemmas

Proof of Lemma 6. Let wβ be the diagonal of the weighted matrix wβ. Denote

xβo, j = xβo,− jγβo, j +ηβo, j, (4.23)

and

γ̂β̂, j = argmin
γ

‖xβ̂, j−xβ̂,− jγ‖
2
n +2λ j‖γ‖1,

where γβo, j = argminγE‖xβo, j−xβo,− jγ‖2
n. Define

η j := x j−x− jγβo, j, (4.24)

we can rewrite equation (4.23) as

wβox j =wβox− jγβo, j +wβoη j,

and similarly by (4.24), we also have

wβ̂x j =wβ̂x− jγβo, j +wβ̂η j. (4.25)

By the definition of γ̂β̂, j,

‖xβ̂, j−xβ̂,− jγ̂β̂, j‖
2
n +2λ j‖γ̂β̂, j‖1

≤ ‖xβ̂, j−xβ̂,− jγβo, j‖2
n +2λ j‖γβo, j‖1.

124

Replacing x̂β̂, j by (4.25) and rearranging terms, we get

‖xβ̂,− j(γ̂β̂, j− γβo, j)‖2
n +2λ j‖γ̂β̂, j‖1

≤ 2
n

(
w2
β̂

η j

)>
x− j(γ̂β̂, j− γβo, j)+2λ j‖γβo, j‖1

=
2
n

η
>
β0, jxβo,− j(γ̂β̂, j− γβo, j)+2λ j‖γβo, j‖1 +Rem,

where the remainder Rem = (2/n)
(
(w2

β̂
−w2

βo)η j

)>
x− j(γ̂β̂, j− γβo, j). Note that by Condition

12, ‖η j‖∞ ≤ ‖x j‖∞ + ‖x− jγβo, j‖∞ = Op(
√s j). In the strongly bounded case, we have the

projection ‖xβo,− jγβo, j‖∞ = Op(1), hence ‖η j‖∞ = Op(1). In the following, we write ‖η j‖∞ =

Op(K) where K =
√s j in general case, and K = 1 when data is strongly bounded.

We can bound the remainder term

|Rem| ≤ 2
n
‖(w2

β̂
−w2

βo)η j‖2‖x− j(γ̂β̂, j− γβo, j)‖2.

Therefore,

125

n−1‖(w2
β̂
−w2

βo)ηβ0, j‖2
2

≤ 1
n
‖ηβ0, j‖2

∞

n

∑
i=1

(
w2
β̂,i−w

2
βo,i

)2

=
1
n
‖ηβ0, j‖2

∞

n

∑
i=1

(
f̂ (xiβ̂|xi)1(xiβ̂ > 0)− f0(xiβ

o|xi)1(xiβ
o > 0)

)2

≤ 1
n
‖ηβ0, j‖2

∞

{
n

∑
i=1

(
f̂ (xiβ̂|xi)− f0(xiβ̂|xi)

)2
+

n

∑
i=1

(
f0(xiβ̂|xi)− f0(xiβ

o|xi)
)2
}

+
1
n
‖ηβo, j‖∞

n

∑
i=1

f0(xiβ
o|xi)

2 (
1(xiβ̂ > 0)−1(xiβ

o > 0)
)2

= δ f ,nOp(K2)+
1
n
‖x(β̂−βo)‖2

2Op(K2)+
1
n

n

∑
i=1

(
1(xiβ̂ > 0)−1(xiβ

o > 0)
)2

Op(K2)

= O(δ f ,nK2)+Op(λ
2sβoK2)+Op(K2)

1
n

n

∑
i=1

Bi(β̂)

where δ f ,n = n−1
∑

n
i=1
(

f̂ (xiβ̂|xi)− f0(xiβ
o|xi)

)2
and Bi(β) = (1(xiβ > 0)−1(xiβ

o > 0))2.

Observe that for any fixed β, Bi(β) is Bernoulli random variable. Let P = P(Bi = 1). Note that

max
i
|xiβ−xiβ

o|= ‖xβ−xβo‖∞ ≤ ‖x‖∞‖β−βo‖1 ≤ KX‖β−βo‖1,

and
1
n

n

∑
i=1

(xiβ−xiβ
o)2 = n−1‖x(β−βo)‖2

2.

Therefore, P ≤ P(|xiβ
o| ≤ KX‖β−βo‖1) = O(‖β−βo‖1) by the boundedness of density f0.

By Chernoff inequality,

∣∣∣∣∣1n n

∑
i=1

Bi(β)

∣∣∣∣∣= Op (P)+Op

(√
P (1−P)√

n

)
.

126

Hence, we have ∣∣∣∣∣1n n

∑
i=1

Bi(β̂)

∣∣∣∣∣= Op(λsβo)+Op

(√
λsβo
√

n

)
.

Therefore, for any δ > 0,

|Rem| = δ‖xβ̂,− j(γ̂β̂, j− γβo, j)‖2
n +O(δ f ,nK2)

+Op(λ
2sβoK2)+Op(K2λsβo)+Op(K2

√
λsβo/n).

By the standard arguments, choosing λ j �
√

log(p)/n, we get

‖xβ̂,− j(γ̂β̂, j− γβo, j)‖2
n = Op(λ

2
js j)+O(δ f ,nK2)+Op(λsβoK2)+Op(K2

√
λsβo/n)

and

‖γ̂β̂, j− γβo, j‖1 = Op(λ js j)+O(
√

δ f ,nK
√

s j)+Op(K
√

λsβos j)+Op(K(λsβos2
j/n)1/4).

Using (4.24) again, we get

d̂2
β̂, j−d2

βo, j = x
>
βo, j(xβo, j−xβo,− jγ̂β̂, j)/n−d2

βo, j︸ ︷︷ ︸
(i)

+x>j (w
2
β̂
−w2

βo)(x j−x− jγ̂β̂, j)/n︸ ︷︷ ︸
(ii)

.

By Theorem 2.4 in [VdGBRD14], we have (i) = Op(λ j
√s j). For the second part (ii), by

Condition 12,

(ii) = Op(K)
1
n

n

∑
i=1

∣∣ f̂ (xiβ̂|xi)1(xiβ̂ > 0)− f0(xiβ
o|xi)1(xiβ

o > 0)
∣∣

= Op(
√

δ f ,nK)+Op(λ
√

sβoK)+Op(K(λsβo/n)1/4).

127

Therefore,

∣∣∣d̂2
β̂, j−d2

βo, j

∣∣∣= Op(λ j
√

s j)+Op(
√

δ f ,nK)+Op(λ
√

sβoK)+Op(K(λsβo/n)1/4).

Combining all previous results,

‖Θ̂β̂, j−Θβo, j‖1

≤ ‖γ̂β̂, j− γβo, j‖1/d̂2
β̂, j +‖γβo, j‖1

(
1/d̂2

β̂, j−1/d2
βo, j

)
= Op(λ js j)+Op(K

√
λsβos j)+Op(K(λsβos2

j/n)1/4)+Op(
√

s jδ f ,nK).

Proof of Lemma 7. We begin with expanding on the following difference,

Θ̂ j
(
Sn(β̂, F̂n)−Sn(β̂,F0)

)
= Θ̂ j

∂Sn(β̂,F)
∂F

∣∣∣
F=F0

(
F̂n−F0

)
+ 1

2
∂2Sn(β̂,F)

∂F2

∣∣∣
F=F̃

(
F̂n−F0

)2
,(4.26)

for some F̃ between F̂n and F0. We then work on rewriting the terms in the summation of Sn (β,F).

128

Let Sn (β,F) := n−1
∑

n
i=1Si (β,F),

Si (β,F) =−x>i [wi(F)1(Yi−xiβ ≥ 0)+ τ−1]

=−x>i
[
1(Ti ≤ 0)

(
τ−1+ τ

F 1(xiβ ≤ 0)1(F > τ)
)

+1(Ti > 0)(τ−1+1(Ti ≥ xiβ))]

=−x>i
[
1(xiβ ≤ 0)

(
1(Ti ≤ 0)(τ−1)+1(Ti ≤ 0) τ

F 1(F > τ)+ τ1(Ti > 0)
)

+1(xiβ > 0)(1(Ti ≤ 0)(τ−1)+1(Ti > 0)(τ−1)+1(Ti ≥ xiβ))]

=−x>i
[
1(xiβ ≤ 0)

(
τ−1(Ti ≤ 0)+1(Ti ≤ 0) τ

F 1(F > τ)
)

+1(xiβ > 0)(τ−1+1(Ti ≥ xiβ))]

=−x>i
[
τ−1(xiβ ≤ 0,Ti ≤ 0)+1(xiβ ≤ 0,Ti ≤ 0) τ

F 1(F > τ)

−1(xiβ > 0)+1(Ti ≥ xiβ,xiβ > 0)] .

We derive the first derivative of Sn with respect to F at F0,

∂Sn(β̂,F)

∂F

∣∣∣∣∣
F=F0

= limε→0−1
n ∑

n
i=1x

>
i τ1

(
xiβ̂ ≤ 0,Ti ≤ 0

)
× 1

ε(F−F0)

(
1(F0+ε(F−F0)>τ)

F0+ε(F−F0)
− 1(F0>τ)

F0

)
=−1

n ∑
n
i=1x

>
i τ1

(
xiβ̂ ≤ 0,Ti ≤ 0

)
× limε→0

1
ε(F−F0)

(
1(F0+ε(F−F0)>τ)

F0+ε(F−F0)
− 1(F0>τ)

F0+ε(F−F0)

+ 1(F0>τ)
F0+ε(F−F0)

− 1(F0>τ)
F0

)
= 1

n ∑
n
i=1x

>
i τ1

(
xiβ̂ ≤ 0

)
1(Ti ≤ 0) 1(F0>τ)

F2
0

,

129

where the details of taking the limit is as the following.

limε→0
1

ε(F−F0)

(
1(F0+ε(F−F0)>τ)

F0+ε(F−F0)
− 1(F0>τ)

F0+ε(F−F0)
+ 1(F0>τ)

F0+ε(F−F0)
− 1(F0>τ)

F0

)
= limε→0

1
ε(F−F0)

(
1(F0+ε(F−F0)>τ)−1(F0>τ)

F0+ε(F−F0)
− ε(F−F0)

F0(F0+ε(F−F0))
1(F0 > τ)

)
=−1(F0>τ)

F2
0

,

since F0 is bounded away from τ. Likewise, we have the second derivative of Sn with respect to

F at F̃ as

∂2Sn(β̂,F)

∂F2

∣∣∣∣∣
F=F̃

=−2
n

n

∑
i=1
x>i τ1

(
xiβ̂ ≤ 0

)
1(Ti ≤ 0)

1(F̃ > τ)

F̃3 ,

as for F close to F0, F̃ is also bounded away from τ.

Plugging the derivatives into (4.26), we have

Θ̂ j
(
Sn(β̂, F̂n)−Sn(β̂,F0)

)
=

1
n

n

∑
i=1

Θ̂ jx
>
i τ1

(
xiβ̂ ≤ 0

)
1(Ti ≤ 0)

1(F0 > τ)

F2
0

(
F̂n−F0

)
︸ ︷︷ ︸

(i)

− 1
n

n

∑
i=1

Θ̂ jx
>
i τ1

(
xiβ̂ ≤ 0

)
1(Ti ≤ 0)

1(F̃ > τ)

F̃3

(
F̂n−F0

)2

︸ ︷︷ ︸
(ii)

.

Following the framework of Theorem 1 of [LS86] and Theorem 2.3 of [GMCS94] that for the

classical Kaplan-Meier estimator F̂n as defined in (4.18), we have the following linearization.

F̂n(0|x)−F0(0|x) = 1
n ∑

n
l=1 ζ(Yl,δl,x)+Op

((
logn

n

)3/4
)
= Op

(
1√
n +
(

logn
n

)3/4
)

for some Θi between (x−xi)/hn and (x−xl)/hn, where

ζ(Yl,δl,x) =
1(Yl > 0,δl = 1|x)

F0(Yl|x)
−

∫
∞

max{0,Yl}

dF0(s|x)
F2

0 (s|x)
.

130

In fact, for i 6= l, 1(Ti ≤ 0)ζ(Yl,δl,x) are independent random variables with mean zero and

finite variances for any given x.

Replacing the term
(
F̂n−F0

)
with its linearization, and separating the terms of i = l from

i 6= l, for term (i), we have

(i) = 1
n2 ∑

n
i=1 ∑

n
l=1
l 6=i

Θ̂ jx
>
i τ1(xiβ

o ≤ 0)1(Ti ≤ 0) 1(F0>τ)

F2
0

Bnl(xi)ζ(Yl,δl,xi)

+ 1
n2 ∑

n
i=1 ∑

n
l=1
l 6=i

Θ̂ jx
>
i τ
(
1
(
xiβ̂ ≤ 0

)
−1(xiβ

o ≤ 0)
)

(4.27)

×1(Ti ≤ 0) 1(F0>τ)

F2
0

Bnl(xi)ζ(Yl,δl,xi)

+ 1
n2 ∑

n
i=1 Θ̂ jx

>
i τ1

(
xiβ̂ ≤ 0

)
1(Ti ≤ 0) 1(F0>τ)

F2
0

Bni(xi)ζ(Yi,δi,xi)

+
(

1
n ∑

n
i=1 Θ̂ jx

>
i τ1

(
xiβ̂ ≤ 0

)
1(Ti ≤ 0) 1(F0>τ)

F2
0

)
·Op

((
logn

n

)3/4
)

= 1
n2 ∑

n
i=1 ∑

n
l=1
l 6=i

Θ̂ jx
>
i τ1(xiβ

o ≤ 0)1(Ti ≤ 0) 1(F0>τ)

F2
0

Bnl(xi)ζ(Yl,δl,xi) (4.28)

+Op

(
Kλsβo

n

)
+Op

(
K

n3/2

)
+Op

(
K
(

logn
n

)3/4
)
, (4.29)

where K =
√s j, and in the strongly bounded case, K = 1. The order in (4.29) results from the

condition that ‖Θ̂β̂, j−Θβo, j‖1 = op(1), and similar arguments as in Lemma 6. For the other

term (ii), we can bound it as following,

(ii) =
(

1
n ∑

n
i=1 Θ̂ jx

>
i τ1

(
xiβ̂ ≤ 0

)
1(Ti ≤ 0) 1(F̃>τ)

F̃3

)
·Op

(
1
n +
(

logn
n

)3/2
+ log3/4 n

n4/5

)
= Op

(
K
n +K

(
logn

n

)3/2
)
.

For convenience in notations, define random variables φi as following,

φi := τ1(xiβ
o ≤ 0)1(Ti ≤ 0)

1(F0 > τ)

F2
0

n

∑
l=1
l 6=i

Bnl(xi)ζ(Yl,δl,xi).

Then {Θ̂ jx
>
i φi}n

i=1 are i.i.d. mean zero random variables with finite variance. Thus, by the central

131

limit theorem, (4.28) d→N
(
0,σ2

1/n
)
, where σ2

1 = EΘ̂ jΩ1Θ̂
>
j , and Ω1 := ∑

n
i=1x

>
i xiφ

2
i /n.

Lemma 11 (Preliminary Result for Lemma 8). By the construction of inverse matrix Θ0 and Θ̂,

we have 1/d̂2
j = O(1).

Proof of Lemma 11. First, we note that Θ0
j, j = 1/d2

j , which is a result of the KKT condition

following similar arguments as in 2.3.1 of [BG16]. Second, following the proof of lemma 5.3 in

[VdGBRD14], we can show d̂2
j = d2

j +op(1). Then the results follows from Condition 14.

Proof of Lemma 8. We will suppress F0 in the argument of Sn for the proof, and start by first

examining part of ∆. Denote H() = [∂ESn(β)/∂β]β=,

ESn(β̂)−ESn(β
o) = H()

(
β̂−βo)

= H(β̂)
(
β̂−βo)+ (H()−H(β̂)

)(
β̂−βo).

Thus, we can rewrite ∆ as

∆ = Θ̂ jH(β̂)
(
β̂−βo)+ Θ̂ j

(
H()−H(β̂)

)(
β̂−βo).

Subtracting (∆) from (I), we have

I−∆ = β̂ j−βo
j − Θ̂ jH(β̂)

(
β̂−βo)− Θ̂ j

(
H()−H(β̂)

)(
β̂−βo)

=
(
eT

j − Θ̂ jH(β̂)
)(
β̂−βo)︸ ︷︷ ︸

(i)

+Θ̂ j
(
H(β̂)−H()

)(
β̂−βo)︸ ︷︷ ︸

(ii)

Using the KKT condition described in (4.12), we could work out a bound for (i). In more

132

detail,

∣∣(eT
j − Θ̂ jH(β̂)

)(
β̂−βo)∣∣ ≤ ||

(
eT

j − Θ̂ jH(β̂)
)
||∞||β̂−βo||1

≤
λ j

d̂2
j
||β̂−βo||1

= Op(λ jλsβo)

where the last inequality is due to the consistency result of Theorem 10 and the fact that 1/d̂2
j is

bounded, which is shown in Lemma 11. Now for part (ii),

∣∣Θ̂ j
(
H()−H(β̂)

)(
β̂−βo)∣∣

≤

∣∣∣∣∣1n n

∑
i=1

Θ̂ jx
T
i ·xi

(
1(xi > 0) f0(xi|xi)−1(xiβ̂ > 0) f0(xiβ̂|xi)

)(
β̂−βo)∣∣∣∣∣

≤

∣∣∣∣∣Ln n

∑
i=1

Θ̂ jx
T
i
(
xi(β̂−βo)

)2
∣∣∣∣∣+M

∣∣∣∣∣1n n

∑
i=1

Θ̂ jx
>
i xi(β̂−βo)

(
1(xi > 0)−1(xiβ̂ > 0)

)∣∣∣∣∣
≤ L‖xΘ̂>j ‖∞‖x(β̂−βo)‖2/n+MKX‖xΘ̂>j ‖∞‖β̂−βo‖1

1
n

n

∑
i=1

∣∣1(xi > 0)−1(xiβ̂ > 0)
∣∣

= Op(Kλ
2sβo)+Op(Kλsβo)

1
n

n

∑
i=1

Bi.

When ‖Θ̂ j−Θ0
j‖1 = op(1), the term ‖xΘ̂>j ‖∞ is Op(K), where K =

√s j in the bounded case, and

K = 1 in the strongly bounded case. By similar argument in Lemma 6, n−1
∑

n
i=1 Bi = Op(λsβo).

Putting parts of (i) and (ii) together, we have

|I−∆|= Op
(
λ jλsβo

)
+Op(Kλ

2s2
βo).

133

Proof of Lemma 9. Suppressing the argument F0 for simplicity of notation, define

Ξ(β) = Θ j [Sn(β)−Sn(β
o)]−Θ j [ESn(β)−ESn(β

o)]

= Θ j [Sn(β)−Sn(β
o)]︸ ︷︷ ︸

x̄in

−EΘ j [Sn(β)−Sn(β
o)] ,

where the expectation is with respect to response variables Ti and Θ is any p by p matrix with

‖Θ j‖= O(
√s j) (s j is still the j-th row cardinality of Θo. So in another word, Θ is any matrix

with the same row cardinality as Θo). Then the term (II) is just Ξ(β̂) with Θ= Θ̂. Note that

x̄in =

√s j

n

n

∑
i=1

s−1/2
j Θ jx

T
i wi [1(Yi ≥ xiβ

o)−1(Yi ≥ xiβ)]︸ ︷︷ ︸
ξ̃i

.

Now for any i, without loss of generality, assume xiβ > xiβ
o ≥ 0. Then ξi = ξ̃i/Θ jx

T
i wi is a

Bernoulli random variable

ξi =


1, if xiβ

o ≤ Yi < xiβ

0, elsewhere

and P(ξi = 1) = F0(xiβ|xi)−F0(xiβ
o|xi) = f0(xi|xi)xi(β−βo) for some xiβ

o < xi < xiβ.

Therefore, Var(ξi)≤ P(ξi = 1) = Op(‖β−βo‖1) by Condition 9 and 12, and so is the variance

of ξ̃i because ‖s−1/2
j Θ j(β)x

T
i wi‖

∞
is bounded. Furthermore, it is easy to see that ξ̃i is a stochas-

tically bounded random variable, say |ξ̃i| ≤ a almost surely. Then Var(ξ̃i)/a = Op(‖β−βo‖1)

and this holds true for all β. Invoking Bennett’s inequality and the fact ‖β̂−βo‖1 = Op(sβoλ),

we have Ξ(β̂) = Op(
√

λsβos j/n), and hence Lemma 9.

134

Proof of Lemma 10. We start by rewriting part of term (N), we note that

Sn(β
o,F0) = −1

n

n

∑
i=1
x>i [wi(F0)1{Yi−xiβ

o ≥ 0}− (1− τ)]

=
1
n

n

∑
i=1
x>i ψi

where ψi =− [wi(F0)1{Yi−xiβ
o ≥ 0}− (1− τ)]. It is easy to show that, for each i,

E [ψi|xi] =−
(
τ−P(Yi < xiβ

o)− τ(1(xiβ
o ≤ 0))2)= 0.

Furthermore, |ψi| ≤ 1. Then we can apply Lindeberg central limit theorem to random variable

{Θ̂ jx
>
i ψi}n

i=1. We have

Θ̂ jSn(β
o,F0) =

1
n

n

∑
i=1

Θ̂ jx
>
i ψi

d→N

(
0,

σ2
ψ

n

)
,

where σ2
2 = EΘ̂ j

[
n−1

∑
n
i=1x

>
i xiψ

2
i
]
Θ̂>j = EΘ̂ jΩψΘ̂

>
j and Ωψ := ∑

n
i=1x

>
i xiψ

2
i /n.

Proof of Lemma 12. Assume fβ(x) = a > 0. Let the distribution function of error at x be

135

ν0(t|x) = P(ε≤ t|x).

P ρ f |x = E[wρτ(y−a)+(1−w)ρτ(y−∞−a)|x]

=
∫

∞

a

[
w(t)ρτ(t−a)+(1−w(t))ρτ(y−∞−a)

]
dF0(t|x)

+
∫ a

0

[
w(t)ρτ(t−a)+(1−w(t))ρτ(y−∞−a)

]
dF0(t|x)

+
∫ 0

−∞

[
w(t)ρτ(t−a)+(1−w(t))ρτ(y−∞−a)

]
dF0(t|x)

=
∫

∞

a
τ(t−a)dF0(t|x)+

∫ a

0
(τ−1)(t−a)dF0(t|x)

+
∫ 0

−∞

[
(1− τ

F0(0|x)
)(τ−1)(t−a)+

τ

F0(0|x)
(τ−1)(y−∞−a)

]
dF0(t|x)

= τ

∫
∞

0
tdF0−

∫ a

0
tdF0 +(τF0(0|x)− τ−F0(0|x))a+aF0(a|x)

+
∫ 0

−∞

[
(1− τ

F0(0|x)
)(τ−1)(t−a)+

τ

F0(0|x)
(τ−1)(y−∞−a)

]
dF0(t|x).

P ρ f0|x = E[wρτ(y−xβo)+(1−w)ρτ(y−∞−xβo)|x]

= τ

∫
∞

0
tdF0−

∫ xβo

0
tdF0 +(τF0(0|x)− τ−F0(0|x))xβo +xβoF0(xβ

o|x)

+
∫ 0

−∞

[
(1− τ

F0(0|x)
)(τ−1)(t−xβo)+

τ

F0(0|x)
(τ−1)(y−∞−xβo)

]
dF0(t|x).

136

P ρ f |x−P ρ f0|x =−
∫ a
xβo tdF0 +(τF0(0|x)− τ−F0(0|x))(a−xβo)+aF0(a|x)− τxβo

+
∫ 0
−∞

[
(1− τ

F0(0|x))(τ−1)(xβo−a)

+ τ

F0(0|x)(τ−1)(xβo−a)
]

dF0(t|x)

=−
∫ a
xβo tdF0 +(τF0(0|x)− τ−F0(0|x))(a−xβo)+aF0(a|x)− τxβo

+(xβo−a)(τ−1)
∫ 0
−∞

[
(1− τ

F0(0|x))+
τ

F0(0|x)

]
dF0(t|x)

=−
∫ a
xβo tdF0 +(τF0(0|x)− τ−F0(0|x))(a−xβo)+aF0(a|x)− τxβo

+(xβo−a)(τ−1)F0(0|x)

=−
∫ a−xβo

0 (t +xβo)dν0(t|x)

+(τν0(−xβo|x)− τ−ν0(−xβo|x))(a−xβo)

+aν0(a−xβo|x)− τxβo +(xβo−a)(τ−1)ν0(−xβo|x)

=−
∫ a−xβo

0 tdν0(t|x)+(a−xβo)(ν0(a−xβo|x)− τ). (4.30)

137

Let z := a−xβo, then:

(4.30) = −
∫ z

0
tdν0(t|x)+ z(ν0(z|x)− τ)

= −
∫ z

0
tdν0(t|x)+

∫ z

0
zdν0(t|x)

=
∫ z

0
(z− t)dν0(t|x)

=
∫ z

0
(z− t)ν̇0(t|x)dt

=
∫ z

0
(z− t)ν̇0(0|x)dt +

∫ z

0
(z− t)(ν̇0(t|x)− ν̇0(0|x))dt

≥
∫ z

0
(z− t)ν̇0(0|x)dt−

∫ |z|
0

(|z|− t)|ν̇0(t|x)− ν̇0(0|x)|dt

≥(i)
∫ z

0
(z− t)ν̇0(0|x)dt−L

∫ |z|
0

(|z|− t)tdt

=
1
2

ν̇(0|x)z2− 1
6

L|z|3. (4.31)

In (i), we use the Lipschitz condition of the density function of error. Because of (4.31)

and Condition 11, we can then use the Lemma in Stadler (2010) to conclude that there exists

C1 > 0 s.t. E(fβ)≥C2
1 || fβ− f0||2.

Proof of Lemma 13.

|γβ(y,x)| = |wρτ(y−xβ)+(1−w)ρτ(y−∞−xβ)−wρτ(y−xβo)− (1−w)ρτ(y−∞−xβo)|

= |wρτ(y−xβ)−wρτ(y−xβo)+(1−w)ρτ(y−∞−xβ)− (1−w)ρτ(y−∞−xβo)|

= |w(ρτ(y−xβ)−ρτ(y−xβo))+(1−w)(τ−1)x(βo−β)|

≤(i) w|max(τ,1− τ)x(β−βo)|+(1−w)|(τ−1)x(βo−β)|

= {wmax(τ,1− τ)+(1−w)(1− τ)}|x(β−βo)|

≤max(τ,1− τ)|x(β−βo)|

≤max(τ,1− τ)||x||∞||β−βo||1

≤(ii) max(τ,1− τ)KX ||β−βo||1.

138

for all x, y, β in the range. The inequality (i) is from triangle inequality and property of loss

function ρτ, and (ii) is because of Condition 12. Therefore, we have

|γβ(yi,xi)−Eγβ(yi,xi)| ≤ 2max(τ,1− τ)||β−βo||1KX .

Denote ci,β := 2max(τ,1− τ)||β−βo||1KX , it is easy to show that

sup
||β−βo||1≤M

n

∑
i=1

c2
i,β ≤

(
4max(τ,1− τ)2M2K2

X
)

n≤ 4M2K2
X n.

By the concentration theorem (Massart, 2000), we have

P(ZM ≥ EZM + t)≤ exp
(
− nt2

32M2K2
X

)
.

Therefore,

P

(
ZM ≥ EZM +MKX

√
32t
n

)
≤ e−t .

By the contraction inequality (Lemma 14.20 in Buhlmann and van de Geer (2011)), we have

EZM ≤ 4MKX

√
2log(2p)

n
.

Consequently, for all t > 0 and M > 0,

P

(
ZM ≥ 4MKX

√
2log(2p)

n
+MKX

√
32t
n

)
≤ e−t .

Let

λ(t) = 4KX

√
2log(2p)

n
+KX

√
32t
n

, (4.32)

139

we have

P(ZM ≥Mλ(t))≤ e−t .

4.7 Proofs of Theorems

Proof of Theroem 10.

Lemma 12. Assuming Conditions 10 and 13, there exists some constant C1 such that

E(fβ)≥C2
1 || fβ− f0||2.

Lemma 13 (Concentration inequality). Define

γβ(y,x) := ρ fβ(y,x,w)−ρ fβo (y,x,w),

ZM := sup
||β−βo||1≤M

∣∣∣∣∣1n n

∑
i=1

γβ(yi,xi)−Eγβ(yi,xi)

∣∣∣∣∣ ,
λ(t) := 4KX

√
2log(2p)

n
+KX

√
32t
n

.

Then we have

P(ZM ≥Mλ(t))≤ e−t .

The following argument follows Muller and van der Geer (2014). We start with bounding

140

the excess risk for fβ̂,

E(fβ̂) = P ρ fβ̂ −P ρ f0

= −(Pn−P)(ρ fβ̂ −ρ f0) (4.33)

+P̂n(ρ fβ̂)+λ‖β̂‖1−
(

P̂n(ρ f0)+λ||βo||1
)

(4.34)

+λ||βo||1−λ||β̂||1 (4.35)

+Pn(ρ fβ̂)− P̂n(ρ fβ̂)+Pn(ρ f0)− P̂n(ρ f0). (4.36)

The plan is that, for equation (4.33), the empirical process part, we bound the term using

concentration inequality. While equation (4.34) is negative by the definition of β̂, equation (4.35)

can be bounded using triangular inequality. Finally, for equation (4.36), it is negligible because

||w0− ŵ||∞ = op(1), which is shown in the proof of Lemma 7.

We then bound (4.33), (4.34), (4.35) separately. For (4.35), it is easy to show:

λ||βo||1−λ||β̂||1 ≤ λ ∑
j∈S(βo)

|β̂ j−β
o
j |−λ ∑

j∈Sc(βo)

|β̂ j|.

For (4.33), we have

−(Pn−P)(ρ fβ̂ −ρ f0) =−(Pn−P)γβ̂,

and

ZM = sup
||β−βo||1≤M

|(Pn−P)γβ|.

Now define

Zδ
M := sup

||β−βo||1≤M

|(Pn−P)γβ|
||β−βo||1∨δ

.

141

We have

P(Zδ
M > 2λ(t)) = P

(
sup

||β−βo||1≤M

|(Pn−P)γβ|
||β−βo||1∨δ

> 2λ(t)

)

≤
d− log2 δ−1e

∑
j=b− log2 Mc

P

(
sup

2− j−1≤||β−βo||1≤2− j

|(Pn−P)γβ|
||β−βo||1∨δ

> 2λ(t)

)

+P

(
sup

||β−βo||1≤δ

|(Pn−P)γβ|
||β−βo||1∨δ

> 2λ(t)

)

≤
d− log2 δ−1e

∑
j=b− log2 Mc

P

(
sup

2− j−1≤||β−βo||1≤2− j

|(Pn−P)γβ|
2− j−1 > 2λ(t)

)

+P

(
sup

||β−βo||1≤δ

|(Pn−P)γβ|
δ

> 2λ(t)

)

=
d− log2 δ−1e

∑
j=b− log2 Mc

P

(
sup

2− j−1≤||β−βo||1≤2− j
|(Pn−P)γβ|> 2− j

λ(t)

)

+P

(
sup

||β−βo||1≤δ

|(Pn−P)γβ|> 2δλ(t)

)

≤
d− log2 δ−1e

∑
j=b− log2 Mc

P
(
Z2− j > 2− j

λ(t)
)
+ e−t

≤
d− log2 δ−1e

∑
j=b− log2 Mc

e−t + e−t

= (d− log2 δ−1e−b− log2 Mc+2)e−t

= (dlog2 Me−blog2 δ+1c+2)e−t

≤ (dlog2 Me−dlog2 δe+2)e−t

≤ log2

(
8M
δ

)
e−t .

Therefore, for any β with ||β−βo||1 ≤M, we have

|(Pn−P)γβ| ≤ 2λ(t)(||β−βo||1∨δ)

142

with probability at least 1− log2
(8M

δ

)
e−t .

It is easy to show that ||β̂−βo||1� n. Then let δ = p−2, t = 2log(p) we have

|(Pn−P)γβ̂| ≤ 2λ(t)
(
||β̂−βo||1∨ p−2)

with probability at least 1− log2
(
8np2)/p2.

If ||β̂−βo||1 ≤ p−2, trivially we have consistency.

If ||β̂−βo||1 > p−2, then because (4.34) is always non-positive by the definition of β̂,

we have

E(fβ̂) ≤−(Pn−P)(ρ fβ̂ −ρ f0)+λ||βo||1−λ||β̂||1

≤ 2λ(t)||β̂−βo||1 +λ||βo||1−λ||β̂||1

= 2λ(t)
(

∑ j∈S(βo) |β̂ j−βo
j |+∑ j∈Sc(βo) |β̂ j|

)
+λ

(
∑ j∈S(βo) |βo

j |−∑ j∈S(βo) |β̂ j|−∑ j∈Sc(βo) |β̂ j|
)

≤ 2λ(t)
(

∑ j∈S(βo) |β̂ j−βo
j |+∑ j∈Sc(βo) |β̂ j|

)
+λ

(
∑ j∈S(βo) |β̂ j−βo

j |−∑ j∈Sc(βo) |β̂ j|
)

= (2λ(t)+λ)∑ j∈S(βo) |β̂ j−βo
j |+(2λ(t)−λ)∑ j∈Sc(βo) |β̂ j|. (4.37)

Since E(fβ̂)≥ 0 and λ≥ 4λ(t), from (4.37), we know

||β̂Sc
o ||1 ≤

λ+2λ(t)
λ−2λ(t)

||(β̂−βo)So||1 ≤ 3||(β̂−βo)So||1 (4.38)

which allows us to use the compatibility and censoring conditions. And again by (4.37) and

λ≥ 4λ(t), we have

E(fβ̂)≤ (2λ(t)+λ) ∑
j∈S(βo)

|β̂ j−β
o
j |. (4.39)

By Lemma 12, equation (4.39), the censoring condition and the compatibility condition,

143

we have

(2λ(t)+λ)||(β̂−βo)So||1 ≥ C2
1 || fβ̂− f0||22

= C2
1(β̂−βo)TE[xTx](β̂−βo)

≥(i) C2
1

φ2
0

sβo
||(β̂−βo)So||21 (4.40)

where (i) is from the compatibility condition.

By (4.40),

||(β̂−βo)So||1 ≤
sβo(2λ(t)+λ)

C2
1φ2

0
. (4.41)

Equation (4.38) implies that ||β̂−βo||1 ≤ 4||(β̂−βo)So ||1, and hence by (4.41),

||β̂−βo||1 ≤
4sβo(2λ(t)+λ)

C2
1φ2

0

≤
6λsβo

C2
1φ2

0
. (4.42)

With C = 1/C2
1 , we have Theorem 10. Furthermore, by (4.40), we have

(β̂−βo)TE[xTx](β̂−βo)≤ 3λC
2
||β̂−βo||1. (4.43)

Proof of Theorem 11. Following results from Lemmas 7 - 10, when
∥∥∥Θ̂β̂, j−Θβo, j

∥∥∥
1
= op(1),

144

the representation (4.17) can be simplified as

√
n
(
β̃ j−βo

j
)

=
√

n
(1

n ∑
n
i=1 Θ̂ jx

>
i ψi +

1
n ∑

n
i=1 Θ̂ jx

>
i φi
)

+Op

(
Kλ jλsβo

√
n+Kλ2s2

βo
√

n+
√

λsβos j +
K√

n +K log3/4 n√
n

)
=
√

n
(1

n ∑
n
i=1 Θ̂ jx

>
i (ψi +φi)

)
+op(1).

The last line follows from assuming both λ and λ j are of order O(
√

log p/n), and Ks2
βo log p/n∨

s1/2
βo s1/2

j (log p/n)1/4 = o(1). Then we have that

√
n
(
β̃ j−βo

j
) d→N

(
0,σ2

j
)
,

where σ2
j = EΘ̂ jΩΘ̂>j and Ω := ∑

n
i=1x

>
i xi(ψi +φi)

2/n.

The only missing part of the proof is the bound on the estimation error for σ̂2
j := Θ̂Ω̂Θ̂>

from EΘ̂ jΩΘ̂>j , where Ω̂ = ∑
n
i=1x

>
i xi

(
ψ̂i + φ̂i

)2
/n. We start with rewriting the estimation

error,

∣∣σ̂2
j −σ

2
j
∣∣ =

∣∣∣Θ̂ jΩ̂Θ̂>j −Θ0
jΩ̂Θ0,>

j

∣∣∣︸ ︷︷ ︸
T1

+
∣∣∣Θ0

jΩ̂Θ0,>
j −Θ0

jΩΘ0,>
j

∣∣∣︸ ︷︷ ︸
T2

+
∣∣∣Θ0

jΩΘ0,>
j −Θ0

jEΩΘ0,>
j

∣∣∣︸ ︷︷ ︸
T3

+
∣∣∣E(Θ0

jΩΘ0,>
j − Θ̂ jΩΘ̂>j

)∣∣∣︸ ︷︷ ︸
T4

For the term T1, we can further decompose it as

T1 ≤
∣∣∣(Θ0

j − Θ̂ j)ΩΘ0,>
j

∣∣∣+ ∣∣∣Θ̂ jΩ(Θ0,>
j − Θ̂>j)

∣∣∣
≤ 2

∣∣∣Θ0
jΩ(Θ0

j − Θ̂ j)
>
∣∣∣+ ∣∣∣(Θ0

j − Θ̂ j)Ω(Θ0
j − Θ̂ j)

>
∣∣∣

≤ 2‖Θ0
jΩ‖∞‖Θ̂ j−Θ0

j‖1 +‖Ω‖∞‖Θ̂ j−Θ0
j‖2

1.

145

Because
∣∣∣Θ0

jx
>
i

∣∣∣ = O(K) and ‖xi‖∞ = O(1), we know ‖Θ0
jΩ‖∞ = O(K) and ‖Ω‖∞ = O(1).

Therefore, T1 = op(1) if K‖Θ̂ j−Θ0
j‖1 = op(1). We note that term T4 can be bounded similarly.

For the term T2 +T3, denote ξ̂i = ψ̂i + φ̂i, then

T2 +T3 =

∣∣∣∣∣Θ0
j

(
1
n

n

∑
i=1
x>i xi

(
ξ̂

2
i −ξ

2
i

))
Θ0,>

j

∣∣∣∣∣︸ ︷︷ ︸
T2

+

∣∣∣∣∣Θ0
j

(
1
n

n

∑
i=1

(
x>i xiξ

2
i −Ex>i xiξ

2
i

))
Θ0,>

j

∣∣∣∣∣︸ ︷︷ ︸
T3

.

For term T3, since ‖x‖∞ = O(1) and |ξi| ≤ 1, by Hoeffding’s inequality, we have

1
n

n

∑
i=1

(
Θ0

jx
>
i xiΘ

0,>
j ξ

2
i −EΘ0

jx
>
i xiΘ

0,>
j ξ

2
i

)
= Op

(
K2
√

n

)
.

Next, note that for T2∣∣∣∣∣1n n

∑
i=1

ξ̂
2
i −ξ

2
i

∣∣∣∣∣ =
∣∣∣1

n ∑
n
i=1

(
ξ̂i +ξi)(ξ̂i−ξi

)∣∣∣
=
∣∣1

n ∑
n
i=1
(
ψ̂i + φ̂i +ψi +φi

)(
ψ̂i + φ̂i−ψi−φi

)∣∣
≤ 4

(∣∣1
n ∑

n
i=1 (ψ̂i−ψi)

∣∣+ ∣∣1
n ∑

n
i=1
(
φ̂i−φi

)∣∣) .
For the first difference, we have

∣∣∣∣∣1n n

∑
i=1

(ψ̂i−ψi)

∣∣∣∣∣ =
∣∣1

n ∑
n
i=1
(
wi(F̂n)1(Yi−xiβ̂ ≥ 0)−wi(F0)1(Yi−xiβ

o ≥ 0)
)∣∣

≤
∣∣1

n ∑
n
i=1
(
wi(F̂n)−wi(F0)

)∣∣+ ∣∣1
n ∑

n
i=1
(
1(Yi−xiβ̂ ≥ 0)−1(Yi−xiβ

o ≥ 0)
)∣∣

= Op(1/
√

n)+Op(λsβo),

146

following results in Lemma 7. In addition,

∣∣φ̂i−φi
∣∣ ≤ τ

∣∣∣∣1
n ∑

n
l=1
l 6=i

1(F̂n>τ)
F̂2

n

(
1− 1(Yl=0)

F̂n

)
− 1

n ∑
n
l=1
l 6=i

1(F0>τ)

F2
0

(
1− 1(Yl=0)

F0

)∣∣∣∣
= τ

n

∣∣∣∣∑n
l=1
l 6=i

(
1(F̂n>τ)

F̂2
n
− 1(F0>τ)

F2
0

)
+∑

n
l=1
l 6=i

(
1(F0>τ)1(Yl=0)

F3
0

− 1(F̂n>τ)1(Yl=0)
F̂3

n

)∣∣∣∣
= Op (1/

√
n) ,

which then gives that
[

1
n ∑

n
i=1x

>
i xi(ξ̂

2
i −ξ2

i)
]

j,k
= Op(1/

√
n+λsβo). Then we conclude that

T3 = Op(K2/
√

n+K2λsβo).

Finally, when Ks2
βo log p/n∨ s1/2

βo s1/2
j (log p/n)1/4∨K‖Θ̂ j−Θ0

j‖1∨K2/
√

n∨K2λsβo =

o(1), we have that σ̂ j = σ j +o(1), which then completes the proof.

4.8 Acknowledgement

Chapter 4, in full, is currently being prepared for submission for publication of the

material. Li, Hanbo; Guo, Jiaqi; Bradic, Jelena. High-dimensional covariate effects on left-

censored quantile event times. The dissertation/thesis author is one of the principal investigators

and author of this material.

147

Bibliography

[Akr94] Michael G Akritas. Nearest neighbor estimation of a bivariate distribution under
random censoring. The Annals of Statistics, pages 1299–1327, 1994.

[ATHW14] Sunil Aryal, Kai Ming Ting, Gholamreza Haffari, and Takashi Washio. mp-
dissimilarity: A data dependent dissimilarity measure. In Data Mining (ICDM),
2014 IEEE International Conference on, pages 707–712. IEEE, 2014.

[ATW16] Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests.
arXiv preprint arXiv:1610.01271, 2016.

[BB06] MAJ John R Brence and Donald E Brown. Improving the robust random forest
regression algorithm. Systems and Information Engineering Technical Papers,
Department of Systems and Information Engineering, University of Virginia, 2006.

[Ber81] Rudolf Beran. Nonparametric regression with randomly censored survival data.
Technical report, Technical Report, Univ. California, Berkeley, 1981.

[BG16] Jelena Bradic and Jiaqi Guo. Robust confidence intervals in high-dimensional
left-censored regression. arXiv preprint arXiv:1609.07165, 2016.

[BH98] Moshe Buchinsky and Jinyong Hahn. An alternative estimator for the censored
quantile regression model. Econometrica, pages 653–671, 1998.

[BIM86] A Ben-Israel and B Mond. What is invexity? The ANZIAM Journal, 28(1):1–9,
1986.

[BJM06] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification,
and risk bounds. Journal of the American Statistical Association, 101(473):138–
156, 2006.

[BK13] Jakramate Bootkrajang and Ata Kabán. Boosting in the presence of label noise.
arXiv preprint arXiv:1309.6818, 2013.

[Bre96] Leo Breiman. Arcing classifiers. Annals of Statistics, 26, 1996.

148

[Bre99] Leo Breiman. Prediction games and arcing algorithms. Neural computation,
11(7):1493–1517, 1999.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[Bre04] Leo Breiman. Population theory for boosting ensembles. The Annals of Statistics,
32(1):1–11, 2004.

[BRT09] Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis
of lasso and dantzig selector. The Annals of Statistics, pages 1705–1732, 2009.

[BT07] Peter L Bartlett and Mikhail Traskin. Adaboost is consistent. Journal of Machine
Learning Research, 8(Oct):2347–2368, 2007.

[CBFAB97] Pierre Charbonnier, Laure Blanc-Féraud, Gilles Aubert, and Michel Barlaud.
Deterministic edge-preserving regularization in computed imaging. IEEE Trans-
actions on image processing, 6(2):298–311, 1997.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 785–794. ACM, 2016.

[CSS02] Michael Collins, Robert E Schapire, and Yoram Singer. Logistic regression,
adaboost and bregman distances. Machine Learning, 48(1-3):253–285, 2002.

[Dab87] Dorota M Dabrowska. Non-parametric regression with censored survival time
data. Scandinavian Journal of Statistics, pages 181–197, 1987.

[Dab89] Dorota M Dabrowska. Uniform consistency of the kernel conditional kaplan-meier
estimate. The Annals of Statistics, pages 1157–1167, 1989.

[DG05] P Laurie Davies and Ursula Gather. Breakdown and groups. The Annals of
Statistics, 33(3):977–1035, 2005.

[DH83] David L Donoho and Peter J Huber. The notion of breakdown point. A festschrift
for Erich L. Lehmann, 157184, 1983.

[DKES06] Sorin Draghici, Purvesh Khatri, Aron C Eklund, and Zoltan Szallasi. Reliability
and reproducibility issues in dna microarray measurements. TRENDS in Genetics,
22(2):101–109, 2006.

[DM13] Amit G Deshwar and Quaid Morris. Plida: cross-platform gene expression
normalization using perturbed topic models. Bioinformatics, 30(7):956–961,
2013.

[DW00] Carlos Domingo and Osamu Watanabe. Madaboost: A modification of adaboost.
In COLT, pages 180–189, 2000.

149

[Efr67] Bradley Efron. The two sample problem with censored data. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and probability, volume 4,
pages 831–853, 1967.

[Efr07] Sam Efromovich. Conditional density estimation in a regression setting. The
Annals of Statistics, pages 2504–2535, 2007.

[FG96] Jianqing Fan and Irene Gijbels. Local polynomial modelling and its applications:
monographs on statistics and applied probability 66, volume 66. CRC Press,
1996.

[FHT00] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-
sion: a statistical view of boosting (with discussion and a rejoinder by the authors).
The annals of statistics, 28(2):337–407, 2000.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, NY, USA:, 2001.

[Fit97] Bernd Fitzenberger. Computational aspects of censored quantile regression.
Lecture Notes-Monograph Series, pages 171–186, 1997.

[Fre95] Yoav Freund. Boosting a weak learning algorithm by majority. Information and
computation, 121(2):256–285, 1995.

[Fre01] Yoav Freund. An adaptive version of the boost by majority algorithm. Machine
learning, 43(3):293–318, 2001.

[Fre09] Yoav Freund. A more robust boosting algorithm. arXiv preprint arXiv:0905.2138,
2009.

[Fri01] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[FS95] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computational
learning theory, pages 23–37. Springer, 1995.

[FS96] Yoav Freund and Robert E Schapire. Experiments with a new boosting algorithm.
In Icml, volume 96, pages 148–156. Citeseer, 1996.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of computer and system
sciences, 55(1):119–139, 1997.

[FSA99] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting.
Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

150

[FW07] Bernd Fitzenberger and Peter Winker. Improving the computation of censored
quantile regressions. Computational Statistics & Data Analysis, 52(1):88–108,
2007.

[GD04] Peter D Grünwald and A Philip Dawid. Game theory, maximum entropy, mini-
mum discrepancy and robust bayesian decision theory. the Annals of Statistics,
32(4):1367–1433, 2004.

[Gen03] Claudio Gentile. The robustness of the p-norm algorithms. Machine Learning,
53(3):265–299, 2003.

[GMCS94] W Gonzalez-Manteiga and C Cadarso-Suarez. Asymptotic properties of a gen-
eralized kaplan-meier estimator with some applications. Communications in
Statistics-Theory and Methods, 4(1):65–78, 1994.

[GPS07] Giuliano Galimberti, Marilena Pillati, and Gabriele Soffritti. Robust regression
trees based on m-estimators. Statistica, 67(2):173–190, 2007.

[Ham68] Frank R Hampel. Contribution to the theory of robust estimation. Ph. D. Thesis,
University of California, Berkeley, 1968.

[Ham74] Frank R Hampel. The influence curve and its role in robust estimation. Journal of
the american statistical association, 69(346):383–393, 1974.

[HBD+05] Torsten Hothorn, Peter Bühlmann, Sandrine Dudoit, Annette Molinaro, and
Mark J Van Der Laan. Survival ensembles. Biostatistics, 7(3):355–373, 2005.

[HJCP+82] Frank E Harrell Jr, Robert M Califf, David B Pryor, Kerry L Lee, and Robert A
Rosati. Evaluating the yield of medical tests. Jama, 247(18):2543–2546, 1982.

[HL93] Trevor Hastie and Clive Loader. Local regression: Automatic kernel carpentry.
Statistical Science, pages 120–129, 1993.

[HLBRT04] Torsten Hothorn, Berthold Lausen, Axel Benner, and Martin Radespiel-Tröger.
Bagging survival trees. Statistics in medicine, 23(1):77–91, 2004.

[HRRS11] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel.
Robust statistics: the approach based on influence functions, volume 114. John
Wiley & Sons, 2011.

[Hub64] Peter J Huber. Robust estimation of a location parameter. The annals of mathe-
matical statistics, 35(1):73–101, 1964.

[Hub11] Peter J Huber. Robust statistics. Springer, 2011.

[HY05] Peter Hall and Qiwei Yao. Approximating conditional distribution functions using
dimension reduction. Annals of statistics, pages 1404–1421, 2005.

151

[HZ05] Patrick J Heagerty and Yingye Zheng. Survival model predictive accuracy and
roc curves. Biometrics, 61(1):92–105, 2005.

[IKBL08] Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and Michael S Lauer.
Random survival forests. The annals of applied statistics, pages 841–860, 2008.

[IL15] Rafael Izbicki and Ann B Lee. Nonparametric conditional density estimation in a
high-dimensional regression setting. Journal of Computational and Graphical
Statistics, (just-accepted), 2015.

[JP73] Raymond Austin Jarvis and Edward A Patrick. Clustering using a similarity
measure based on shared near neighbors. IEEE Transactions on computers,
100(11):1025–1034, 1973.

[KBJ78] Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica:
journal of the Econometric Society, pages 33–50, 1978.

[KBJ82] Roger Koenker and Gilbert Bassett Jr. Robust tests for heteroscedasticity based on
regression quantiles. Econometrica: Journal of the Econometric Society, pages
43–61, 1982.

[KG01] Roger Koenker and Olga Geling. Reappraising medfly longevity: a quantile
regression survival analysis. Journal of the American Statistical Association,
96(454):458–468, 2001.

[KL93] Michael Kearns and Ming Li. Learning in the presence of malicious errors. SIAM
Journal on Computing, 22(4):807–837, 1993.

[KM58] Edward L Kaplan and Paul Meier. Nonparametric estimation from incomplete
observations. Journal of the American statistical association, 53(282):457–481,
1958.

[Koe05] Roger Koenker. Quantile regression. Number 38. Cambridge university press,
2005.

[Koe08] Roger Koenker. Censored quantile regression redux. Journal of Statistical
Software, 27(6):1–25, 2008.

[KP96] Roger Koenker and Beum J Park. An interior point algorithm for nonlinear
quantile regression. Journal of Econometrics, 71(1):265–283, 1996.

[KP02] Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and
bounding the generalization error of combined classifiers. The Annals of Statistics,
30(1):1–50, 2002.

[KS03] Adam Kalai and Rocco A Servedio. Boosting in the presence of noise. In
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 195–205. ACM, 2003.

152

[KTEM07] Takafumi Kanamori, Takashi Takenouchi, Shinto Eguchi, and Noboru Murata.
Robust loss functions for boosting. Neural computation, 19(8):2183–2244, 2007.

[LB16] Alexander Hanbo Li and Jelena Bradic. Boosting in the presence of outliers:
adaptive classification with non-convex loss functions. Journal of the American
Statistical Association, (just-accepted), 2016.

[LD95] Gang Li and Hani Doss. An approach to nonparametric regression for life history
data using local linear fitting. The Annals of Statistics, pages 787–823, 1995.

[Lic13] M. Lichman. UCI machine learning repository, 2013.

[Lin98] Dekang Lin. An information-theoretic definition of similarity. In ICML, vol-
ume 98, pages 296–304. Citeseer, 1998.

[Lit91] Nicholas Littlestone. Redundant noisy attributes, attribute errors, and linear-
threshold learning using winnow. In Proceedings of the fourth annual workshop
on Computational learning theory, pages 147–156. Morgan Kaufmann Publishers
Inc., 1991.

[LJ06] Yi Lin and Yongho Jeon. Random forests and adaptive nearest neighbors. Journal
of the American Statistical Association, 101(474):578–590, 2006.

[LKB08] Roman Werner Lutz, Markus Kalisch, and Peter Bühlmann. Robustified l2
boosting. Computational Statistics & Data Analysis, 52(7):3331–3341, 2008.

[LM17] Alexander Hanbo Li and Andrew Martin. Forest-type regression with general
losses and robust forest. In International Conference on Machine Learning, pages
2091–2100, 2017.

[Loa06] Clive Loader. Local regression and likelihood. Springer Science & Business
Media, 2006.

[LS86] Shaw-Hwa Lo and Kesar Singh. The product-limit estimator and the boot-
strap: some asymptotic representations. Probability Theory and Related Fields,
71(3):455–465, 1986.

[LS10] Philip M Long and Rocco A Servedio. Random classification noise defeats all
convex potential boosters. Machine learning, 78(3):287–304, 2010.

[LZ08] Youjuan Li and Ji Zhu. L 1-norm quantile regression. Journal of Computational
and Graphical Statistics, 17(1):163–185, 2008.

[MBBF99a] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus Frean. Functional
gradient techniques for combining hypotheses. Advances in Neural Information
Processing Systems, pages 221–246, 1999.

153

[MBBF99b] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. Boosting
algorithms as gradient descent. In NIPS, pages 512–518, 1999.

[MCX+16] Qiguang Miao, Ying Cao, Ge Xia, Maoguo Gong, Jiachen Liu, and Jianfeng Song.
Rboost: label noise-robust boosting algorithm based on a nonconvex loss function
and the numerically stable base learners. IEEE transactions on neural networks
and learning systems, 27(11):2216–2228, 2016.

[Mei06] Nicolai Meinshausen. Quantile regression forests. Journal of Machine Learning
Research, 7(Jun):983–999, 2006.

[MG16] Waldyn Martinez and J Brian Gray. Noise peeling methods to improve boosting
algorithms. Computational Statistics & Data Analysis, 93:483–497, 2016.

[MO97] Richard Maclin and David Opitz. An empirical evaluation of bagging and boosting.
AAAI/IAAI, 1997:546–551, 1997.

[MSV09] Hamed Masnadi-Shirazi and Nuno Vasconcelos. On the design of loss functions
for classification: theory, robustness to outliers, and savageboost. In Advances in
neural information processing systems, pages 1049–1056, 2009.

[MvdG16] Patric Müller and Sara van de Geer. Censored linear model in high dimensions.
Test, 25(1):75–92, 2016.

[NB04] John Ashworth Nelder and R Jacob Baker. Generalized linear models. Encyclope-
dia of statistical sciences, 4, 2004.

[NDRT13] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari.
Learning with noisy labels. In Advances in neural information processing systems,
pages 1196–1204, 2013.

[New94] Whitney K Newey. Kernel estimation of partial means and a general variance
estimator. Econometric Theory, 10(02):1–21, 1994.

[NL02] Richard Nock and Patrice Lefaucheur. A robust boosting algorithm. In European
Conference on Machine Learning, pages 319–331. Springer, 2002.

[Obe82] Walter Oberhofer. The consistency of nonlinear regression minimizing the l1-
norm. The Annals of Statistics, pages 316–319, 1982.

[PH08] Limin Peng and Yijian Huang. Survival analysis with quantile regression models.
Journal of the American Statistical Association, 103(482):637–649, 2008.

[Por03] Stephen Portnoy. Censored regression quantiles. Journal of the American Statisti-
cal Association, 98(464):1001–1012, 2003.

[Pow84] James L Powell. Least absolute deviations estimation for the censored regression
model. Journal of Econometrics, 25(3):303–325, 1984.

154

[Pow86] James L Powell. Censored regression quantiles. Journal of econometrics,
32(1):143–155, 1986.

[PSA+10] Maya C Poffenberger, Iryna Shanina, Connie Aw, Nahida El Wharry, Nadine
Straka, Dianne Fang, Annie E Baskin-Hill, Sabrina H Spiezio, Joseph H Nadeau,
and Marc S Horwitz. Novel nonmajor histocompatibility complex–linked loci
from mouse chromosome 17 confer susceptibility to viral-mediated chronic au-
toimmune myocarditisclinical perspective. Circulation: Cardiovascular Genetics,
3(5):399–408, 2010.

[RDK+00] Charles H Redfern, Michael Y Degtyarev, Andrew T Kwa, Nathan Salomonis,
Nathalie Cotte, Tania Nanevicz, Nick Fidelman, Kavin Desai, Karen Vranizan, and
Elena K Lee. Conditional expression of a gi-coupled receptor causes ventricular
conduction delay and a lethal cardiomyopathy. Proceedings of the National
Academy of Sciences, 97(9):4826–4831, 2000.

[RL12] Marie-Hélène Roy and Denis Larocque. Robustness of random forests for regres-
sion. Journal of Nonparametric Statistics, 24(4):993–1006, 2012.

[ROM01] Gunnar Rätsch, Takashi Onoda, and K-R Müller. Soft margins for adaboost.
Machine learning, 42(3):287–320, 2001.

[Ros05] Saharon Rosset. Robust boosting and its relation to bagging. In Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge discovery in
data mining, pages 249–255. ACM, 2005.

[Rou84] Peter J Rousseeuw. Least median of squares regression. Journal of the American
statistical association, 79(388):871–880, 1984.

[RW94] David Ruppert and Matthew P Wand. Multivariate locally weighted least squares
regression. The annals of statistics, pages 1346–1370, 1994.

[RW01] AF Ruckstuhl and AH Welsh. Robust fitting of the binomial model. The Annals
of Statistics, 29(4):1117–1136, 2001.

[SBH13] Clayton Scott, Gilles Blanchard, and Gregory Handy. Classification with asymmet-
ric label noise: Consistency and maximal denoising. In Conference On Learning
Theory, pages 489–511, 2013.

[Sch13] Robert E Schapire. Explaining adaboost. In Empirical inference, pages 37–52.
Springer, 2013.

[SDC03] Mark R Segal, Kam D Dahlquist, and Bruce R Conklin. Regression approaches
for microarray data analysis. Journal of Computational Biology, 10(6):961–980,
2003.

155

[Ser03] Rocco A Servedio. Smooth boosting and learning with malicious noise. Journal
of Machine Learning Research, 4(Sep):633–648, 2003.

[SH06] Tao Shi and Steve Horvath. Unsupervised learning with random forest predictors.
Journal of Computational and Graphical Statistics, 15(1):118–138, 2006.

[SR92] Arnold J Stromberg and David Ruppert. Breakdown in nonlinear regression.
Journal of the American Statistical Association, 87(420):991–997, 1992.

[Sta89] Joan G Staniswalis. The kernel estimate of a regression function in likelihood-
based models. Journal of the American Statistical Association, 84(405):276–283,
1989.

[SWW14] LA Stefanski, Yichao Wu, and Kyle White. Variable selection in nonparametric
classification via measurement error model selection likelihoods. Journal of the
American Statistical Association, 109(506):574–589, 2014.

[TH87] Robert Tibshirani and Trevor Hastie. Local likelihood estimation. Journal of the
American Statistical Association, 82(398):559–567, 1987.

[TPC06] Alexey Tsymbal, Mykola Pechenizkiy, and Pádraig Cunningham. Dynamic
integration with random forests. In European conference on machine learning,
pages 801–808. Springer, 2006.

[Tyl94] David E Tyler. Finite sample breakdown points of projection based multivariate
location and scatter statistics. The Annals of Statistics, pages 1024–1044, 1994.

[TZC+16] Kai Ming Ting, Ye Zhu, Mark Carman, Yue Zhu, and Zhi-Hua Zhou. Overcoming
key weaknesses of distance-based neighbourhood methods using a data dependent
dissimilarity measure. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1205–1214. ACM,
2016.

[VdGBRD14] Sara Van de Geer, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. On
asymptotically optimal confidence regions and tests for high-dimensional models.
The Annals of Statistics, 42(3):1166–1202, 2014.

[VDVW96] Aad W Van Der Vaart and Jon A Wellner. Weak convergence. In Weak convergence
and empirical processes, pages 16–28. Springer, 1996.

[VKV96] Ingrid Van Keilegom and Noël Veraverbeke. Uniform strong convergence results
for the conditional kaplan-meier estimator and its quantiles. Communications in
Statistics–Theory and Methods, 25(10):2251–2265, 1996.

[WW12] Huixia Judy Wang and Lan Wang. Locally weighted censored quantile regression.
Journal of the American Statistical Association, 2012.

156

[Yeh98] I-C Yeh. Modeling of strength of high-performance concrete using artificial neural
networks. Cement and Concrete research, 28(12):1797–1808, 1998.

[ZWWL16] Xiang Zhang, Yichao Wu, Lan Wang, and Runze Li. Variable selection for support
vector machines in moderately high dimensions. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 78(1):53–76, 2016.

[ZY05] Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consis-
tency. The Annals of Statistics, 33(4):1538–1579, 2005.

157

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Boosting in the Presence of Outliers: Adaptive Classification with Non-convex Loss Functions
	Introduction
	Literature Review

	Methodology of the ArchBoost
	 Robust non-convex loss functions
	Theoretical Considerations
	Numerical convergence
	Robustness

	Numerical Experiments
	Gaussian - Student Mixture
	Comparison with Non-convex Gradient Boost
	Consistency
	The Long/Servedio problem
	Outlier detection
	Real data application

	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 3

	Acknowledgement

	Forest-type Regression with General Losses and Robust Forest
	Introduction
	Random forest
	Adaptive nearest neighbors

	General framework for forest-type regression
	Squared error and random forest
	Extension to general loss
	Quantile loss and quantile random forest

	Robust forest
	Huber loss
	Tukey's biweight

	Truncated squared loss and nearest neighbors
	Truncated squared error
	Random Forest Nearest Neighbors

	Experiments
	One dimensional toy example
	Multivariate example
	Nearest neighbors
	Real data
	Conclusion and discussion

	Proof of Lemma 5
	Acknowledgement

	Forest-type Quantile Regression for Random Censored Data
	Introduction
	Random forest weights
	Forest-type regression framework

	Methodology
	Motivation
	Full model
	Estimation of survival function G(q|x)

	Theory
	Time complexity
	Consistency

	Simulation Study
	Toy example
	One-dimensional AFT model
	Comparison of different conditional survival estimators
	One-dimensional sine function model
	Multi-dimensional AFT model results
	Multi-dimensional complex manifold
	Node size

	Real Data
	Prediction Intervals

	Acknowledgement

	Estimation and Inference for High-dimensional Left-censored Quantiles
	Introduction
	Contributions
	Related Work
	Content

	Methodology
	Model Description
	Initial Estimator
	Bias Correction
	Inverse Hessian Estimator: Nodewise Lasso

	Theoretical Considerations
	Distribution and Density Estimators
	Consistency of Initial Estimator
	Asymptotic Normality of One-step Penalized Estimator

	Numerical Experiments and Application
	Further Details of Algorithm 6 and 7
	Simulation Data
	Real Data

	Lemmas
	Proofs of Lemmas
	Proofs of Theorems
	Acknowledgement

	Bibliography

