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Abstract

Complex and p-adic Computations of Chow–Heegner Points

by

Michael William Daub

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Kenneth Ribet, Chair

In this work we delve into the theory of Chow–Heegner points, establishing some of their
basic properties and developing two methods for their explicit computation. Chapters 1 and
2 cover the background material necessary for the later chapters. Chapter 3 gives several
definitions of Chow–Heegner points and explores the specific setting of modular abelian
varieties. Chapter 4 develops an algorithm for computing Chow–Heegner points via complex
analytic methods, and Chapter 5 considers a corresponding algorithm in the p-adic setting.
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Introduction

Let E/K be an elliptic curve, where K is a number field. What is the structure of E(Q)?
The Mordell–Weil theorem says that E(Q) is a finitely generated abelian group, and thus
E(Q) ∼= Zr ⊕ T , where r ≥ 0 is the algebraic rank of E and T is a finite group. We would
like to relate r to other arithmetic information about E. Namely, for each prime p of OK ,
set q = |OK/p|. Writing ap = q + 1 −#E(OK/p), Hasse showed that |ap| ≤ 2

√
q. We can

form the L-function of E as the Euler product

L(E, s) =
∏
p-∆

(1− apq−s − q1−2s)−1
∏
p|∆

(1− apq−s)−1

where ∆ is the discriminant of E. Using Hasse’s estimate, it can be shown that L(E, s)
converges absolutely in the complex half-plane Re(s) > 3

2
. The Birch and Swinnerton-Dyer

conjecture (BSD) predicts that L(E, s) encodes information about r, more precisely:

Conjecture. L(E, s) has an analytic continuation to the entire complex plane, and

ords=1L(E, s) = r.

The most successful approaches to solve BSD emerged from the study of the modular
elliptic curves. Let Γ0(N) denote the congruence subgroup of SL2(Z) given by matrices
with lower-left entry divisible by N , and Sk(Γ0(N)) the space of holomorphic cusp forms for
Γ0(N). Let f ∈ S2(Γ0(N)) be a simultaneous eigenvector for the Hecke operators Tn, n ≥ 1.
To every such f , Shimura associated an abelian variety Af/Q, and the modular elliptic curves
are the elliptic curves that arise in this manner. The work of Wiles [Wil95], Taylor–Wiles
[TW95], and Breuil–Conrad–Diamond–Taylor [BCDT01] shows that all elliptic curves over
Q are modular, and thus when working over Q there is no loss of generality in studying
this class of curves. The analytic properties of modular forms can be used to establish the
analytic continuation of L(E, s) for modular elliptic curves predicted by BSD. Additionally,
the work of Gross–Zagier [GZ86] and Kolyvagin [Kol88] proves the conjecture for modular
elliptic curves E when ords=1L(E, s) ≤ 1.

In the case when ords=1L(E, s) > 1, very little is known and BSD is much more difficult.
So instead we set our sights on a more modest goal: if L(E, 1) = 0, how can we find a
nontorsion point P ∈ E(K)? The first successful approach to systematically producing
points of infinite order on elliptic curves came from the theory of Heegner points. Let H
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denote the complex upper-half plane and N the conductor of E. Then by modularity, there
exists a surjective morphism

πf : X0(N)→ E.

The images under πf of a special collection of points τ ∈ Γ0(N)\H = X0(N)(C) are defined
over a ray class field Hτ of an imaginary quadratic field K. Under suitable conditions on
N and K, L(EHτ , 1) = 0 and πf (τ) is nontorsion. Heegner points provided an instrumental
role in the work of Gross–Zagier and Kolyvagin, and in fact have a wealth of applications to
other areas of number theory such as the special values of p-adic L-functions. For more on
Heegner points, the interested reader may consult [DR] for an overview and the references
listed therein for a more detailed account.

Recent work of Bertollini, Darmon, Prasanna, Rotger, and Sols ([BDP13], [BDP12],
[DRS12], [DR12]) has developed a theory of Chow–Heegner points akin to Heegner points by
replacing special points on X0(N) with cycles on higher dimensional varieties. In particular,
[DRS12] and [DR12] study the Gross–Kudla–Schoen modified diagonal cycle ∆GKS, an alge-
braic cycle on the triple product X0(N)×X0(N)×X0(N). The cycle ∆GKS, first studied in
[GK92] and [GS95], gives rise to a collection of points in E(Q) via intersection with suitably
chosen cycles. Unfortunately, these points are always torsion points when ords=1L(E, s) > 1,
and so this does not yield to the computation of points in cases not covered by the theory of
Heegner points. However, current work in progress by Darmon and Rotger aims to replace
Q with an abelian extension of Q, including settings where nontorsion points have not been
found but are expected to exist.

The goal of this monograph is to formally define Chow–Heegner points, study the basic
properties of those coming from ∆GKS, and describe two methods for explicitly computing
them. The author hopes that these methods will be useful in more general settings, including
the aforementioned study of Chow–Heegner points over abelian extensions of Q, and other
analogous settings.
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Chapter 1

Intersection theory and cohomology

1.1 Algebraic cycles

In this section, we briefly recount some of the basics of intersection theory and the cycle
class map on algebraic cycles. For full details and proofs, the reader may consult [Ful98],
though our conventions and notation differ.

Algebraic cycles and Chow groups

Let K be a field. By a variety over K we shall mean an integral separated scheme V equipped
with a morphism of finite type V → Spec(K). If V and V ′ are varieties over K, then we
will write V × V ′ for the product over Spec(K). Let V be a variety over K of dimension d.
The following definition of algebraic cycle is taken from [DR] and differs slightly from that
in [Ful98].

Definition 1.1.1. An algebraic cycle of codimension c on V is a finite formal sum Z =∑
niVi, where ni ∈ Z and each Vi is a subvariety of VK̄ of codimension c.

If W is a subvariety of V and f ∈ K̄(W ), then div(f) =
∑

ordW ′(f)W ′ is a divisor on
V , where the sum is taken over all codimension–one subvarieties W ′ of W . This leads us to
the notion of rational equivalence.

Definition 1.1.2. Two divisors Z and Z ′ of codimension c are said to be rationally equiva-
lent, written Z ∼rat Z

′, if Z −Z ′ can be expressed as a finite sum
∑

i div(fi) for f ∈ K̄(Wi)
and Wi subvarieties of VK̄ of codimension c− 1.

The codimension–c Chow group with values in K is the group of codimension c algebraic
cycles Z such that Z ∼rat Z

σ for all σ ∈ GK modulo rational equivalence. We denote this
by CHc(V )(K) and we write [Z] for the equivalence class of a cycle Z. For any 0 ≤ c, c′ ≤ d,
there is an intersection product

CHc(V )(K)× CHc′(V )(K)→ CHc+c′(V )(K), (Z,Z ′) 7→ Z · Z ′. (1.1)



CHAPTER 1. INTERSECTION THEORY AND COHOMOLOGY 4

Let f : V → V ′ be a morphism defined over K, where V ′/K is a variety of dimension d′. If
f is flat, then the pullback map on cycles preserves rational equivalence, and hence induces
a map

f ∗ : CHc(V ′)(K)→ CHc(V )(K). (1.2)

If f is proper, then the pushforward map preserves rational equivalence, and induces a map

f∗ : CHc(V )(K)→ CHc′(V ′)(K), (1.3)

where c′ = d′ − d + c. Note the convention that if W is a closed subvariety of V and
dim f(W ) < dimW , then f∗([W ]) = 0. Finally, let Π ∈ CHd+c′−c(V × V ′)(K), and denote
by prV : V × V ′ → V and prV ′ : V × V ′ → V ′ the natural projection morphisms. Then
define a map

Π∗ : CHc(V )(K)→ CHc′(V ′)(K), [Z] 7→ prV ′∗(pr∗V (Z) · Π). (1.4)

1.2 Betti cohomology

In this section, we recall the basic properties of Betti cohomology that will be used later,
without proof. For more details, see [Hat02].

Singular homology and cohomology

Let X be a topological space. For any n ≥ 0, write ∆n for the standard n-simplex, and
Cn(X) for the free abelian group generated by all continuous maps

σn : ∆n → X.

Let ∆n−1
k denote the face of ∆n obtained by omitting the kth vertex, a face of ∆n. Define a

map ∂n : Cn(X)→ Cn−1(X) by the rule

∂n(σn) =
n∑
k=0

(−1)kσn|∆n−1
k
.

Write C•(X) for the chain complex

· · · → Cn+1(X)→ Cn(X)→ Cn−1(X)→ · · · → C0(X)→ 0,

and define the nth singular homology group (with coefficients in Z) Hn(X,Z) to be the nth
homology group of C•(X). If f : X → Y is a continuous map, then the map

f∗ : Cn(X)→ Cn(Y ), σn 7→ f ◦ σn

induces a group homomorphism f∗ : Hn(X,Z)→ Hn(Y,Z).
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Now for any ring R, set C•(X,R) = Hom(C•(X), R). Define the nth singular cohomology
group Hn(X,R) with coefficients in R to be the nth cohomology group of the chain complex
C•(X,R). As above, a continuous map f : X → Y induces an R-module homomorphism
f ∗ : Hn(Y,R)→ Hn(X,R). If A ⊂ X is a subspace, define the cohomology group Hn

A(X,R)
to be the nth cohomology group of the chain complex C•(X,R)/C•(X − A,R). It fits into
a long exact sequence of R-modules

· · · → Hn
A(X,R)→ Hn(X,R)→ Hn(X − A,R)→ Hn+1

A (X,R)→ · · · (1.5)

Theorem 1.2.1. (Universal coefficient theorem) The group Hn(X,R) fits into an exact
sequence

0→ Ext(Hn−1(X,Z), R)→ Hn(X,R)→ Hom(Hn(X,Z), R)→ 0.

In particular, if R = K is a field of characteristic 0 and Hn(X,Z) and Hn−1(X,Z) are
finitely generated, then

Hn(X,K) ' Hn(X,Z)⊗K.

Proof. See [Hat02], Theorem 3.2 for the first statement. For the second statement, note that
Ext(Hn−1(X,Z), K) = 0 since K is an injective Z-module, and thus when R = K the exact
sequence becomes

Hn(X,K)
∼−→ Hom(Hn(X,Z), K).

Since Hn−1(X,Z) is finitely generated, Ext(Hn−1(X,Z),Z) is a torsion Z-module, so letting
R = Z and tensoring with K yields

Hn(X,Z)⊗K ∼−→ Hom(Hn(X,Z),Z)⊗K.

Finally, the natural map Hom(Hn(X,Z),Z) ⊗ K → Hom(Hn(X,Z), K) is an isomorphism
since Hn(X,Z) is finitely generated.

Poincaré Duality

We briefly recall the statement of Poincaré duality for an oriented closed manifold M .

Theorem 1.2.2. (Poincaré duality) Let R be a ring, and suppose that M is an R-orientable
closed manifold of dimension n. Then there are natural isomorphisms

Hk(M,R)
∼−→ Hn−k(M,R)

for all k.

Proof. See Theorem 3.30 in [Hat02].
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Betti cohomology

Now suppose that V/C is a smooth variety. The set of its complex points V (C) can be
endowed with the structure of a complex manifold, denoted by V an. This allows us to define
the Betti cohomology of V as the singular cohomology of V an.

Definition 1.2.3. Let R be a ring. The kth Betti cohomology group with coefficients in R
Hk
B(V,R) of V is defined as

Hk
B(V,R) := Hk(V an, R).

Theorem 1.2.4. If X is a closed manifold, then its homology groups Hn(X,Z) are finitely
generated. In particular, if V is projective, then the Betti cohomology groups Hk

B(V,Z) are
finitely generated.

Proof. See [Hat02], §3.A.

1.3 De Rham cohomology and the Hodge filtration

In this section we state some basic facts about de Rham cohomology without proof. For
details, the interested reader may consult [Har75] or [dJ]. We only treat the case of smooth
varieties, although the references consider more general settings.

De Rham cohomology

Let K be a number field, and V/K a smooth variety of dimension n. Denote by Ω1
V/K

the sheaf of differential forms on V , a locally free sheaf of rank d. For each i ≥ 0, write
Ωi
V/K = ∧iΩ1

V/K . Then the canonical map d0 : OV → Ω1
V/K induces maps di : Ωi

V/K → Ωi+1
V/K .

Note that di is not a map of OV -modules, though it is a map of sheaves of K-vector spaces.
This gives us a complex

0→ OV
d0

→ Ω1
V/K

d1

→ · · · d
n−1

→ Ωn
V/K → 0.

denoted by Ω•V/K . The kth de Rham cohomology of V is given by the kth hypercohomology
group of this complex,

Hk
dR(V/K) = RkΓ(V,Ω•V/K).

We may calculate Hk
dR(V/K) as follows. Choose a finite open affine cover {Uj} and

denote by Cq(Ωp
V/K) the q-th term in the Čech resolution of Ωp with respect to {Uj}. Write

cpq : Cq(Ωp
V/K)→ Cq+1(Ωp

V/K) for the transition map, and dpq : Cq(Ωp
V/K)→ Cq(Ωp+1

V/K) for the

map induced by dp. Finally, let Tot•(C•(Ω•V/K)) be the total complex of the double complex

C•(Ω•V/K) with kth transition map
∑

p+q=k(d
p
q + (−1)pcpq). Then

Hk
dR(V/K) = Hk(Tot•(C•(Ω•V/K))).
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If W/K is a variety, then Hk
dR(V ×W/K) decomposes in accordance with the Künneth

formula
Hk

dR(V ×W/K) '
⊕
i+j=k

H i
dR(V/K)⊗Hj

dR(W/K). (1.6)

Let Z ⊂ V be a smooth closed subscheme of codimension c, and let ΓZ(V,F) denote the
group of sections of a sheaf F with support in Z. Then the long exact of hypercohomology
groups

· · · → RkΓZ(V,Ω•V/K)→ RkΓ(V,Ω•V/K)→ RkΓ(V−Z,Ω•V/K |V−Z)→ Rk+1ΓZ(V,Ω•V/K)→ · · ·

gives rise to a long exact sequence

· · · → Hk
Z(V/K)→ Hk

dR(V/K)→ Hk
dR(V − Z/K)→ Hk+1

Z (V/K)→ · · · (1.7)

where we write Hk
Z(V/K) := RkΓZ(V,Ω•V/K).

The Hodge filtration

There is a spectral sequence, called the Hodge to de Rham spectral sequence,

Ep,q
1 = Hq(V,Ωp

V/K)⇒ Hp+q
dR (V/K).

When V is proper, this spectral sequence degenerates at the E1 term. This can be proved
using analytic techniques, or by deducing it from a much more general result of Deligne and
Illusie [DI87]. In particular, this gives Hk

dR(V/K) a filtration

Hk
dR(V/K) = Fil0Hk

dR(V/K) ⊃ Fil1Hk
dR(V/K) ⊃ · · · ⊃ Filk+1Hk

dR(V/K) = 0 (1.8)

satisfying grjHk
dR(V/K) = Hk−j(V,Ωj

V/K). We can use this spectral sequence to compute

Hk
dR(Pn/K). By exercise 7.3 in [Har75], we have Hq(Pn,Ωp) = 0 if p 6= q and is 1–dimensional

if p = q. It follows that H2i+1
dR (Pn/K) = 0 and H2i

dR(Pn/K) is 1–dimensional for 0 ≤ i ≤ n,
with

FiljH2i
dR(Pn/K) =

{
H2i

dR(Pn/K), j ≤ i
0, j > i.

In particular, taking n = 1 we can define

Hk
dR(V/K)(−m) := Hk

dR(V/K)⊗H2
dR(P1/K)⊗m

with the conventionM−1 = Hom(M,K) for any filteredK-vector spaceM . SinceH2
dR(P1/K)

is 1–dimensional with nontrivial graded piece at j = 1, Hk
dR(V/K)(m) is simply Hk

dR(V/K) as
a K-vector space with its filtration shifted by m. Specifically, we have FiljHk

dR(V/K)(m) =
Filj+mHk

dR(V/K).
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Notice that in the Hodge to de Rham spectral sequence we have Ep,q
1 = 0 when p > d or

q > d. Thus, the only nonzero term on the diagonal p+ q = 2d is

Ed,d
1 = Hd(V,Ωd

V/K) ' H0(V,OV )∨ ' K,

with the middle isomorphism coming from Serre duality. So H2d
dR(V/K) is 1–dimensional,

with filtration given by

FiljH2d
dR(V/K) =

{
H2d

dR(V/K), j ≤ d
0, j > d.

It follows that H2d
dR(V/K)(d) ' K with the trivial filtration.

The Poincaré Pairing

Let V and W be varieties of dimensions d and d′, respectively. If f : V → W is a morphism,
then the pullback map f−1Ω•(W )→ Ω•(V ) induces

f ∗ : Hk
dR(W/K)→ Hk

dR(V/K).

Twisting by d and applying this in the case where W = V × V , f = ∆ is the diagonal, and
k = 2d yields a map

∆∗ : H2d
dR(X ×X/K)(d)→ H2d

dR(X/K)(d) ' F.

Decomposing the left-hand side into its Künneth factors using (1.6) results in an alternating
non-degenerate pairing for each 0 ≤ k ≤ 2d

〈 , 〉 : Hk
dR(V/K)×H2d−k

dR (V/K)(d)→ K

called the Poincaré pairing. This allows us to define a morphism

f∗ : Hk
dR(V/K)→ H

k−2(d−d′)
dR (W/K)(d− d′)

as the adjoint of f ∗. Specifically, f∗ is the composition

Hk
dR(V/K) ' H2d−k

dR (V/K)(d)∨
(f∗)∨−−−→ H2d−k

dR (W/K)(d)∨ ' H
k−2(d−d′)
dR (W/K)(d′ − d)

and satisfies the property
〈f ∗α, β〉V = 〈α, f∗β〉W (1.9)

for α ∈ H2d−k
dR (W/K) and β ∈ Hk

dR(V/K).
More generally, let Π ∈ CHc(V ×W/K) be an algebraic cycle of codimension c. Then Π

defines a map

Π∗ : Hk
dR(W/K)→ H

k−2(d′−c)
dR (V/K)(c− d′),



CHAPTER 1. INTERSECTION THEORY AND COHOMOLOGY 9

Π∗ : Hk
dR(V/K)→ H

k−2(d−c)
dR (W/K)(c− d).

To define Π∗ and Π∗, first consider the case where Π = [Z] is the class of a closed, irreducible
subvariety. Letting prV : Z → V and prW : Z → W denote the projection maps, we can set
Π∗ = prV ∗pr∗W and Π∗ = prW∗pr∗V . For general Π, we can write it as a sum of irreducible
subvarieties and extend the previous definition linearly. It is not hard to check that this
definition is independent of the representation of Π. Furthermore, by construction we have

〈Π∗α, β〉V = 〈α,Π∗β〉W

for α ∈ H2(d−d′+c)−k
dR (W/K) and β ∈ Hk

dR(V/K). When we take Π = Γf to be the graph of
a morphism f , we recover Π∗ = f ∗ and Π∗ = f∗.

Hodge theory and relation with Betti cohomology

Now suppose that V is a smooth variety over C, and let V an denote the corresponding
analytic space. Let Ω•V an denote the chain complex of regular analytic differentials on V an.
Then we define the analytic de Rham cohomlogy Hk

dR(V an) of V an as the hypercohomology
of this complex. There is a natural map

Hk
dR(V/C)→ Hk

dR(V an)

coming from the fact that an algebraic differential form gives rise to an analytic form. This
map is an isomorphism by the following theorem of Grothendieck.

Theorem 1.3.1. The canonical map Hk
dR(V/C)→ Hk

dR(V an) is an isomorphism.

Proof. See the corollary to Theorem 2 in [Gro66].

This theorem gives us a canonical splitting of the Hodge filtration of Hk
dR(V/C). Namely,

letHp,q(V an) denote the subspace ofHk
dR(V an) consisting of classes represented by a harmonic

form of type (p, q). The main theorem of Hodge theory asserts that if V is projective, then
every cohomology class in Hk

dR(V an) has a unique harmonic representative, and

Hk
dR(V an) =

⊕
p+q=k

Hp,q(V an).

Furthermore, it can be shown that

Hp,q(V an) ' Hq(V an,Ωp
V an),

that Hp,q(V an) = Hq,p(V an), and that

FiljHk
dR(V an) =

⊕
p+q=k,p≥j

Hp,q(V an).

For proofs of these statements, see Chapter 0, §§6-7 of [GH94].
Finally, via Grothendieck’s isomorphism, we relate the algebraic de Rham cohomology

Hk
dR(V/C) to the Betti cohomology Hk

B(V,C) of V .
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Theorem 1.3.2. (Analytic de Rham theorem) The natural map C → Ω•V an is a resolution
of the constant sheaf C, inducing an isomorphism

Hk(V an,C)
∼−→ Hk

dR(V an). (1.10)

Proof. See Chapter 0 of [GH94].

Corollary 1.3.3. There is a natural isomorphism Hk
B(V,C)→ Hk

dR(V/C).

A cohomology class ξ ∈ Hk
dR(V/C) is called a Hodge class if k = 2n is even and ξ ∈

Hk
B(V,Q)∩Hn,n(V an). Additionally, ξ is said to be integral if ξ is in the image of Hk

B(V,Z).

De Rham cohomology of curves

We end this section by specializing to the case where V = X is a smooth proper curve.
There is a simple description of H1

dR(X/K) that will be useful for computations later. Let
P1, P2 ∈ X(K) be closed points, and write U1 = X − P1 and U2 = X − P2. Then the Čech
double complex arising from the covering U1, U2 shows that

H1
dR(X) = Z1(X;U1, U2)/B1(X;U1, U2),

where

Z1(X;U1, U2) = {(ω1, ω2, F12) ∈ Ω1
X(U1)× Ω1

X(U2)×O(U1 ∩ U2) : (ω1 − ω2)|U1∩U2 = dF12}

B1(X;U1, U2) = {(df1, df2, (f1− f2)|U1∩U2) ∈ Ω1
X(U1)×Ω1

X(U2)×O(U1 ∩U2) : fi ∈ O(Ui)}.
We can simplify this description even more by introducing differentials of the second kind.
Let U ⊂ X be an open set. For any ω ∈ Ω1

X(U), we say that ω is of the second kind if
resD(ω) = 0 for all divisors D of X. Then we write Ω1

II(X) for the space of differentials of
the second kind defined on some open set U ⊂ X. Finally, let K(X) be the function field of
X. For any f ∈ K(X), we have df ∈ Ω1

II(X).

Proposition 1.3.4. There is an isomorphism

H1
dR(X/K) ' Ω1

II(X/K)

dK(X)

given by
(ω1, ω2, F12) 7→ [ω1],

where H1
dR(X/K) is identified with Z1(X;U1, U2)/B1(X;U1, U2). Furthermore, the Poincaré

pairing can be computed on differentials of the second kind via the formula

〈ω, η〉 = resP1(Fωη) = −resP1(ωFη). (1.11)

Remark 1.3.5. Proposition 1.3.4 also holds for H1
dR(Xan), with Ω1

II(X/K) replaced by the
space of analytic differentials of the second kind, and K(X) with the field of meromorphic
functions on Xan.
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Chapter 2

Abel–Jacobi maps

2.1 The cycle class map

In this section we define the cycle class maps clB : CHc(V )(C) → H2c
B (V,Z)(c) and cldR :

CHc(V )(K) → H2c
dR(V/K)(c), and establish some basic properties. For the remainder of

this section, write H2c(V )(c) for either H2c
B (V,Z)(c) or H2c

dR(V/K)(c) and omit the field of
definition for CHc(V ), which is implicitly K in the de Rham case and C in the Betti case.

Definition of clB and cldR

Let Z ∈ CHc(V ) be a smooth irreducible closed subvariety of V . Then either (1.5) or (1.7)
gives us a long exact sequence

· · · → H2c
Z (V )(c)→ H2c(V )(c)→ H2c(V − Z)(c)→ H2c+1

Z (V )(c)→ · · ·

of cohomology groups. We have a natural isomorphism (see See [Mil80], Theorem 16.1):

H2c
Z (V )(c) ' H0(Z).

Definition 2.1.1. The cycle class maps

clB : CHc(V )(C)→ H2c
B (V,Z)(c),

cldR : CHc(V )(K)→ H2c
dR(V/K)(c),

are given for irreducible closed subvarieties by sending [Z] to the image of 1 under the
composition

H0(Z) ' H2c
Z (V )(c)→ H2c(V )(c)

when specialized to Betti and de Rham cohomologies, respectively, and extended linearly for
a general cycle ∆.
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Properties of clB and cldR

We now establish a few basic properties that we will need later on. Suppose V and W are
varieties of dimensions d and d′. Recall that we have a Künneth decomposition

Hn(V ×W ) '
⊕
i+j=n

H i(V )×Hj(W ).

Write prk : Hn(V ×W ) → Hk(V ) ⊗ Hn−k(W ) for the projection map. Let A and B be
finitely generated abelian groups, or finite dimensional vector spaces over a field. Then the
natural map

A∨ ⊗B → Hom(A,B), φ⊗ b 7→ (a 7→ φ(a) · b)

is an isomorphism. Combining this with the Poincaré duality isomorphism

H2d−k(V )(d)∨ ' Hk(V )

yields an isomorphism

Hom(H2d−k(V )(d), H2c−k(W )(c− d))
∼−→ Hk(V )⊗H2c−k(W )(c).

Proposition 2.1.2. Let 0 ≤ k ≤ d+ d′.

(1) The following diagram commutes:

CHc(V ×W )
cl−−−→ H2c(V ×W )(c)yΠ 7→Π∗

yprk

Hom(H2d−k(V ), H2c−k(W )(c− d))
∼−−−→ Hk(V )⊗H2c−k(W )(c).

(2) For any Z ∈ CHc(V ) and Z ′ ∈ CHc′(W ), we have

cl(Z × Z ′) = cl(Z)⊗ cl(Z ′) ∈ H2c(V )(c)⊗H2c′(W )(c′) ⊂ H2(c+c′)(V ×W )(c+ c′).

Proof. The first statement is a straightforward computation using the cup product on coho-
mology; see page 1 of [dJ] for the definition of cup product and the ensuing discussion for
its properties. The second statement follows from the definition using the fact that the map

H0(Z)⊗H0(Z ′) = H0(Z × Z ′)→ H2(c+c′)(V ×W )(c+ c′)

is induced from the maps H0(Z)→ H2c(V )(c) and H0(Z ′)→ H2c′(W )(c′).

Proposition 2.1.3. Let f : V → W be a morphism.
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(1) The following diagrams commute:

CHc(V )
cl−−−→ H2c(V )(c)yf∗ yf∗

CHc−(d−d′)(W )
cl−−−→ H2c−2(d−d′)(W )(c+ d′ − d)

CHc(W )
cl−−−→ H2c(W )(c)yf∗ yf∗

CHc(V )
cl−−−→ H2c(V )(c)

when specialized to clB or cldR and the corresponding cohomology theory.

(2) The cycle class map is compatible with the de Rham isomorphism (1.10) in the sense
that the following diagram commutes:

CHc(V )(C)
clB−−−→ H2c

B (V,C)(c)∥∥∥ y
CHc(V )(C)

cldR−−−→ H2c
dR(V/C)(c)

Proof. The first part follows from the definition of cl and the fact that f induces maps f∗
and f ∗ between the long exact sequences (1.5) and (1.7). The second part is true for the
same reasons with the de Rham isomorphism replacing f∗ and f ∗.

Denote by CHc(V )0(K) the kernel of cldR, the group of cohomologically trivial cycles. By
the proposition, this kernel coincides with the kernel of clB when K = C. Furthermore, if
f : V → W is a morphism and Π ∈ CHd+c′−c(V ×W )(K), then the maps (1.2), (1.3), and
(1.4) induce

f ∗ : CHc(W )0(K)→ CHc(V )0(K),

f∗ : CHc(V )0(K)→ CHd′−d+c(W )0(K),

Π∗ : CHc(V )0(K)→ CHc′(W )0(K).

2.2 The complex Abel–Jacobi map

Mixed Hodge structures

In this section we define mixed Hodge structure and establish a few basic results we will
need to define the complex Abel–Jacobi map.
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Definition 2.2.1. Let k ∈ Z. A pure Hodge structure of weight k is a finitely generated
Z-module H equipped with a decreasing filtration on HC := H ⊗ C

HC ⊃ · · · ⊃ FilpHC ⊃ Filp+1HC ⊃ · · · , p ∈ Z

called the Hodge filtration satisfying the following two properties:

(1) Fil• is exhaustive and separated, meaning

FilpHC = HC for p� 0, FilpHC = 0 for p� 0.

(2) For all p ∈ Z,

HC = Filp(HC)⊕ Filk+1−p(HC).

The kth Betti cohomology group H = Hk
B(V,Z) of a smooth proper variety over C is the

example of primary interest of a pure Hodge structure of weight k. By Theorems 1.2.1 and
1.2.4, we have Hk

B(V,Z) ⊗ C ' Hk
B(V,C), and thus HC has a Hodge filtration coming from

Corollary 1.3.3 and the discussion following Theorem 1.3.1.
If H and H ′ are two pure Hodge structures of different weights, then there are no pure

Hodge structure extensions of H by H ′. Thus it is beneficial to enlarge the category of pure
Hodge structures to create a more robust theory.

Definition 2.2.2. A mixed Hodge structure is a triple (HZ,Fil•,W•), consisting of a finitely
generated Z-module H, equipped with

• the Hodge filtration, a decreasing exhaustive and separated filtration FilpHC on HC;

• the weight filtration, an increasing exhaustive and separated filtration WpHQ on HQ :=
H ⊗Q;

such that Fil• induces a pure Hodge structure of weight k on the kth graded piece Hk :=
WkHQ/Wk−1HQ of the weight filtration.

A morphism of mixed Hodge structures ρ : A → B is a homomorphism of Z-modules
inducing maps ρh : FilpAC → FilpBC and ρw : WpAQ → WpBQ for all p ∈ Z. A homomor-
phism is an isomorphism if ρ, ρh, and ρw are all isomorphisms. A short exact sequence of
mixed Hodge structures is a short exact sequence of Z-modules

0→ A→ C → B → 0

such that the induced sequences

0→ FilpAC → FilpCC → FilpBC → 0

0→ WpAQ → WpCQ → WpBQ → 0
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on Hodge and weight filtrations are short exact for all p ∈ Z. Write Ext1
mhs(B,A) for the set

of all such extensions C. We can also form the tensor product A⊗B by taking

Filp(AC ⊗BC) =
∑

p1+p2=p

Filp1(AC)⊗ Filp2(BC),

Wp(AC ⊗BC) =
∑

p1+p2=p

Wp1(AC)⊗Wp2(BC).

For any j ∈ Z, define a pure Hodge structure Z(j) of weight −2j by setting the underlying
Z-module to be Z, and

Fil−jZ(j)C = C, Fil−j+1Z(j)C = 0, W−jZ(j)Q = Q, W−j+1Z(j)Q = 0.

For any mixed Hodge structure H, write H(j) = H ⊗ Z(j). If H is pure of weight k, then
H(j) is also pure of weight k − 2j. The trivial Hodge structure Z(0) is simply written as Z.

Now let H be a pure Hodge structure of negative weight. Suppose we have a short exact
sequence

0→ H
i→ E

ρ→ Z→ 0, (2.1)

that is, E ∈ Ext1
mhs(Z, H). Since wt(H) < wt(Z) = 0, we must have

WjEQ =


0, j < wt(H),
i(HQ), wt(H) ≤ j < 0,
EQ, j ≥ 0.

(2.2)

Choose elements ηhodge
E and ηint

E of Fil0EC and E, respectively, such that

ρC(ηhodge
E ) = 1, ρ(ηint

E ) = 1.

Then the element ηE := ηhodge
E − ηint

E is in the kernel of ρC, and can be viewed as an element
of HC. Furthermore, ηhodge

E and ηint
E are well-defined modulo Fil0HC and H, respectively, and

thus the class of ηE in HC/(Fil0HC +H) does not depend on the choices of ηhodge
E and ηint

E .

Proposition 2.2.3. The assignment E 7→ ηE yields an isomorphism

Ext1
mhs(Z, H) ' HC

Fil0HC +H
.

Proof. The choice of ηint
E determines a splitting of the sequence (2.1), making M = H ⊕ Z

with ηint
E corresponding to (0, 1). The weight filtration is determined by (2.2), and so all

that remains is to determine the Hodge filtration on EC compatible with i and ρ. This is
determined uniquely by the choice of element ηhodge

E , via

FiljEC =

{
i(FiljHC), j > 0,

i(FiljHC) + Cηhodge
E , j ≤ 0.
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Two choices η and η′ for ηhodge
E induce the same filtration if and only if η − η′ ∈ Fil0H.

Additionally, two choices for ηint
E differ by an element η ∈ H, yielding an isomorphism of

extensions
H ⊕ Z ∼−→ H ⊕ Z, (h, n) 7→ (h+ η, n).

This proves the proposition.

Corollary 2.2.4. For any smooth proper variety V/C of dimension d, we have

Ext1
mhs(Z, H2c−1

B (V/C)(c)) ' Fild−c+1H2d−2c+1
dR (V/C)∨

H2d−2c+1(V an,Z)
.

Proof. Apply Proposition 2.2.3 to H = H2c−1
B (V/C)(c) along with the isomorphisms

H2c−1
B (V,Z)⊗ C ' H2c−1

B (V,C) ' H2c−1
dR (V/C)

from Theorems 1.2.1 and 1.2.4 and Corollary 1.3.3, and the isomorphism

H2c−1
B (V,Z) ' H2d−2c+1(V an,Z)

from Theorem 1.2.2. The Poincaré pairing induces a duality

H2c−1
dR (V/C)(c)×H2d−2c+1

dR (V/C)(d− c)→ C,

where Fil0H2c−1
dR (V/C)(c) and Fil2d−2c+1H2d−2c+1

dR (V/C)(d− c) = Fild−c+1H2d−2c+1
dR (V/C) are

exact annihilators of each other. Thus

H2c−1
dR (V/C)(c)

Fil0H2c−1
dR (V/C)(c)

' Fild−c+1H2d−2c+1
dR (V/C)∨.

This establishes the claim.

The complex Abel–Jacobi map

Let ∆ ∈ CHc(V )0(C), and denote by |∆| the support of ∆. From the long exact sequence
(1.5), we have a short exact sequence

0→ H2c−1
B (V,Z)(c)→ H2c−1

B (V − |∆|,Z)(c)→ H2c
|∆|(V,Z)(c)0 → 0,

where H2c
|∆|(V,Z)(c)0 is the kernel of the map H2c

|∆|(V,Z)(c)→ H2c
B (V,Z)(c). By the construc-

tion of clB in §2.1, clB(∆) is the image of a cohomology class from H2c
|∆|(V )(c), and since

∆ ∈ CHc(V )0(C) is cohomologically trivial, this class is an element of H2c
|∆|(V,Z)(c)0. This

allows us to form an element E∆ ∈ Ext1
mhs(Z, H2c−1

B (V,Z)(c)) by pulling back along clB in
the following diagram:

0 −−−→ H2c−1
B (V,Z)(c) −−−→ E∆ −−−→ Z −−−→ 0∥∥∥ y yclB

0 −−−→ H2c−1
B (V,Z)(c) −−−→ H2c−1

B (V − |∆|,Z)(c) −−−→ H2c
|∆|(V,Z)(c)0 −−−→ 0.
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Definition 2.2.5. The complex Abel–Jacobi map

AJC : CHc(V )0(C)→ Ext1
mhs(Z, H2c−1

B (V,Z)(c)) ' Fild−c+1H2d−2c+1
dR (V/C)∨

H2d−2c+1(V,Z)

is the map sending ∆ to the extension class E∆.

Suppose that W/C is a variety of dimension d′, and let Π ∈ CHd+c′−c(V ×W )(C) for
some 0 ≤ c′ ≤ d′. As in §1.1 and §1.3, Π induces maps

Π∗ : CHc(V )0(C)→ CHc′(W )0(C),

Π∗ : Fild
′−c′+1H2d′−2c′+1

dR (W/C)→ Fild−c+1H2d−2c+1
dR (V/C).

The next proposition establishes a property of AJC that will be useful later.

Proposition 2.2.6. Let ω ∈ Fild
′−c′+1H2d′−2c′+1

dR (W/C). Then

AJC(Π∗∆)(ω) = AJC(∆)(Π∗ω)

as elements of Fild
′−c′+1H2d′−2c′+1

dR (W/C)∨/H2d′−2c′+1(W,Z).

Proof. Unwinding Definition 2.2.5 and Corollary 2.2.4 shows that

AJC(Π∗∆)(ω) = 〈ηEΠ∗∆
, ω〉W (mod H2d′−2c′+1(W,Z)),

AJC(∆)(Π∗ω) = 〈ηE∆
,Π∗ω〉V (mod H2d−2c+1(V,Z)).

The adjoint of Π∗ is the map from §1.3

Π∗ : H2c−1
dR (V )(c)→ H2c′−1

dR (W )(c′),

and hence we can rewrite the second line as

AJC(∆)(Π∗ω) = 〈Π∗ηE∆
, ω〉W (mod H2d′−2c′+1(V,Z)).

Thus, it suffices to show that

Π∗ηE∆
= ηEΠ∗∆

(mod Fil0H2c′−1
dR (W/C)(c′) +H2c′−1(W,Z)(c′)).

This can be established from the definitions using a diagram chase, and is left to the reader.

Theorem 2.2.7. The complex Abel–Jacobi map is given by

AJC : CHc(V )0(C)→ Fild−c+1H2d−2c+1
dR (V/C)∨

H2d−2c+1(V,Z)
, ∆ 7→

∫
∂−1∆

,

where ∂−1∆ is a 2d−2c+1 real dimensional piecewise differentiable chain on the real manifold
V (C) with boundary ∆.

Proof. See §12.3.3 in [Voi07].

Remark. Originally the complex Abel–Jacobi map was defined as in Theorem 2.2.7, and then
later was it proved to be equivalent to Definition 2.2.5. The reason we are presenting in this
manner is to mirror our treatment of the p-adic Abel–Jacobi map in the next section, which
was first defined before a suitable p-adic integration theory existed in higher dimensions.
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2.3 The p-adic Abel–Jacobi map

Filtered Frobenius modules

Now we turn to filtered Frobenius modules, the p-adic counterpart of mixed Hodge structures.
They will be useful in defining the p-adic Abel–Jacobi map. Let p be a prime, F a finite
unramified extension of Qp of degree n, and V/F a variety extending to a smooth proper
model V over OF , the ring of integers of F . Denote by σ the Frobenius automorphism of
F/Qp, the unique element of Gal (F/Qp) lifting the p-power automorphism of the residue
field of OF .

Definition 2.3.1. A filtered Frobenius module over F is a finite-dimensional F -vector space
D equipped with

(1) A decreasing exhaustive and separated filtration

D ⊃ · · · ⊃ FilqD ⊃ Filq+1D ⊃ · · · , q ∈ Z

called the Hodge filtration.

(2) An invertible σ-linear operator
φ : D → D

called the Frobenius morphism.

We say that a filtered Frobenius module is pure of weight k if the eigenvalues of φn acting
on D are Weil numbers with complex absolute value pnk/2.

Note that this last definition makes sense, as σn = id on F and hence φn is F -linear. It
is a nontrivial fact that Hk

dR(V/F ) is a filtered Frobenius module of pure weight k, with the
Hodge filtration coming from (1.8) and the Frobenius morphism coming from Hk

crys(Ṽ /OF )
and the comparison isomorphism

Hk
crys(Ṽ /OF )⊗OF F ' Hk

dR(V/F ),

where Ṽ is the special fiber of V .
A morphism ρ : D1 → D2 of filtered Frobenius modules is a map of filtered vector spaces

such that ρ◦φ1 = φ2◦ρ, and ρ is an isomorphism if all the induced maps ρ : FilqD1 → FilqD2

are isomorphisms. A sequence

0→ D1 → D3 → D2 → 0

is exact if the induced sequences

0→ FilqD1 → FilqD3 → FilqD2 → 0



CHAPTER 2. ABEL–JACOBI MAPS 19

are all exact. The set of isomorphism classes of such D3 is denoted by Ext1
ffm(D2, D1). The

tensor product D1 ⊗D2 is defined by setting

φ(d1 ⊗ d2) = φ1(d1)⊗ φ2(d2),

Filq(D1 ⊗D2) =
∑

q1+q2=q

Filq1(D1)⊗ Filq2(D2).

For any j ∈ Z, define a filtered Frobenius module F (j) of pure weight −2j with underlying
vector space F by setting

φ(x) = p−jσ(x), Fil−jF (j) = F (j), Fil−j+1F (j) = 0.

For any filtered Frobenius module D, write D(j) for D ⊗ F (j). If D is of pure weight k,
then D(j) is pure of weight k − 2j. Finally, simply write F for the trivial filtered Frobenius
module F (0).

Let D be a filtered Frobenius module of pure negative weight. Suppose we have a short
exact sequence

0→ D
i→ E

ρ→ F → 0, (2.3)

that is, E ∈ Ext1
ffm(F,D). Since wt(D) < 0, restriction to the subspace on which φn acts as

the identity yields
Eφn=1 ∼−→ F. (2.4)

Choose elements ηhodge
E and ηfrob

E of Fil0E and Eφn=1, respectively, such that

ρ(ηhodge
E ) = 1, ρ(ηfrob

E ) = 1.

Then the element ηE := ηhodge
E − ηfrob

E is in the kernel of ρ, and can be viewed as an element
of D. Furthermore, ηhodge

E is well-defined modulo Fil0D and ηfrob
E is uniquely determined by

(2.4), and thus the class of ηE in D/(Fil0D) does not depend on the choice of ηhodge
E .

Proposition 2.3.2. The assignment E 7→ ηE yields an isomorphism

Ext1
ffm(F,D) ' D

Fil0D
.

Proof. The relation (2.4) gives a splitting of (2.3) as Frobenius modules. Thus, E ' D ⊕ F
with ηfrob

E corresponding to the element (0, 1), and φE(d, f) = (φD(d), σ(f)). This determines
all of the data for E as a filtered Frobenius module except for the Hodge filtration. The
choice of filtration compatible with i and ρ is uniquely determined from the choice of ηhodge

E

by setting

FiljE =

{
i(FiljD), j > 0,

i(FiljD) + Fηhodge
E , j ≤ 0.

Two different choices η and η′ for ηhodge
E yield the same filtration if and only if η−η′ ∈ Fil0D.

This proves the proposition.
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Corollary 2.3.3. For any smooth proper variety V/F of dimension d with good reduction,
we have

Ext1
ffm(F,H2c−1

dR (V/F )(c)) ' Fild−c+1H2d−2c+1
dR (V/F )∨.

Proof. The proof is similar to that of Corollary 2.2.4, only using Proposition 2.3.2 instead
of Proposition 2.2.3 and without the extra group of periods.

The p-adic Abel–Jacobi map

Let ∆ ∈ CHc(V )0(F ), and denote by |∆| the support of ∆. From the long exact sequence
(1.7), we have a short exact sequence

0→ H2c−1
dR (V/F )(c)→ H2c−1

dR (V − |∆|/F )(c)→ H2c
|∆|(V/F )(c)0 → 0,

where H2c
|∆|(V/F )(c)0 is the kernel of the map H2c

|∆|(V/F )(c) → H2c
B (V/F )(c). By the con-

struction of cldR in §2.1, cldR(∆) is the image of a cohomology class from H2c
|∆|(V/F )(c), and

since ∆ ∈ CHc(V )0(F ), this class is an element of H2c
|∆|(V/F )(c)0. This allows us to form an

element E∆ ∈ Ext1
ffm(F,H2c−1

dR (V/F )(c)) by pulling back along cldR in the following diagram:

0 −−−→ H2c−1
dR (V/F )(c) −−−→ E∆ −−−→ F −−−→ 0∥∥∥ y ycldR

0 −−−→ H2c−1
dR (V/F )(c) −−−→ H2c−1

dR (V − |∆|/F )(c) −−−→ H2c
|∆|(V/F )(c)0 −−−→ 0.

Definition 2.3.4. The p-adic Abel–Jacobi map

AJp : CHc(V )0(F )→ Ext1
ffm(F,H2c−1

dR (V/F )(c)) ' Fild−c+1H2d−2c+1
dR (V/F )∨

is the map sending ∆ to the extension class E∆.

Just as in the complex case, the p-adic Abel–Jacobi map satisfies nice functorial proper-
ties. If W/F is another variety of dimension d′, 0 ≤ c′ ≤ d′, and Π ∈ CHd+c′−c(V ×W )(F ),
then we have the following:

Proposition 2.3.5. Let ω ∈ Fild
′−c′+1H2d′−2c′+1

dR (W/F ). Then

AJp(Π∗∆)(ω) = AJp(∆)(Π∗ω)

as elements of Fild
′−c′+1H2d′−2c′+1

dR (W/F )∨.

Proof. The proof is identical to that of Proposition 2.2.6, only without the extra period
lattice.
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Theorem 2.3.6 ([Bes00], Theorem 1.2). The p-adic Abel–Jacobi map is given by

AJp : CHc(V )0(F )→ Fild−c+1H2d−2c+1
dR (V/F )∨, ∆ 7→

∫
∆

,

where
∫

∆
is Besser’s generalization of Coleman integration.

Proof. See Theorem 1.2 in [Bes00].

Remark. We will not need any of the details of Besser’s p-adic integration theory, other
than that it extends Coleman’s original theory [Col85]. In particular, when V is a curve, the
p-adic Abel–Jacobi map is given by Coleman integration:

AJp : CH1(V )0(F )→ Fil1H1
dR(V/F )∨, [P ]− [Q] 7→

∫ P

Q

.
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Chapter 3

Diagonal cycles and Chow–Heegner
points

3.1 Chow–Heegner points

In this section, we define the notion of a Chow–Heegner point on the Jacobian variety of
any smooth proper curve X/K. The general definition is very broad, which allows us to
encompass a large class of points. The downside is that very little can be said about the
basic properties of these points in this context. Thus we will specialize the construction to
the case where the Chow–Heegner points arise from modified diagonal cycles on the triple
product of the curve, then further specialize to the case where X = X0(N) is a modular
curve over Q.

General definition

By a curve over K, we shall mean a variety over K of dimension one. Let X/K be a curve
and V/K a variety of dimension d, both smooth and proper. For any 0 ≤ c ≤ d, given any
Π ∈ CHd+1−c(V ×X)(K), we have the map

Π∗ : CHc(V )0(K)→ CH1(X)0(K)

from the end of §2.1.

Definition 3.1.1. Let (V,Π,∆) be a triple where V and Π are as above and ∆ ∈ CHc(V )0(K).
The Chow–Heegner point on the Jacobian JX of X associated to (V,Π,∆) is given by
Π∗(∆) ∈ CH1(X)0(K) ' JX(K). The image of Π∗(∆) on quotients of JX are still referred
to as Chow–Heegner points.

Example 3.1.2. Let X0(N)/Q denote the modular curve and f ∈ S2(N,χ) be a newform.
Denote by Af the abelian variety associated to f , a quotient of J0(N). Choosing X =
V = X0(N), Π the diagonal cycle on X ×X, and ∆ = ([τ ] − [∞]) ∈ CH1(X0(N))0(HOτ ) a
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Heegner divisor defined over the ray class field HOτ of Oτ , we recover the classical Heegner
point Pτ ∈ Af (HOτ ) from the previous definition.

The modified diagonal cycle

We now specialize the construction in section 3.1 to the case where V = X3 and ∆ is the
diagonal on X3, suitably modified to make it cohomologically trivial. This cycle was first
studied in [GK92] and [GS95].

Fix a point o ∈ X(K) and let J ⊂ {1, 2, 3}. Write io : X → X for the constant morphism
with image o. Denote by iJ the morphism from X to X3 determined by idX for the factors
Xi with i ∈ J and by io for the factors with i 6∈ J . Finally, write XJ for the image of iJ . We
will write X123, X12, X1, . . . for X{1,2,3}, X{1,2}, X{1}, . . . to simplify notation.

Definition 3.1.3. The Gross-Kudla-Schoen modified diagonal cycle ∆GKS is the sum X123−
X12 −X13 −X23 +X1 +X2 +X3.

Each cycle appearing in the definition of ∆GKS has codimension 2. Also, since o ∈ X(K),
∆GKS is defined over K, and thus ∆GKS ∈ CH2(X3)(K). Actually, we have ∆GKS ∈
CH2(X3)0(K), as the next proposition shows.

Proposition 3.1.4. The cycle ∆GKS is cohomologically trivial.

Proof. Let pri : X3 → X denote the i-th projection map and pro : X3 → X the constant
map with image o. For each J ⊂ {1, 2, 3}, define a map pJ : X3 → X3 as the product of
the maps pri if i ∈ J and pro otherwise for i = 1, 2, 3. Define pe =

∑
J 6=∅(−1)|J |+1pJ,∗ as an

endomorphism of CH2(X3). Then pe(X123) = ∆GKS. Now, the Künneth formula (1.6) gives
us a decomposition

H4
dR(X3/K) =

⊕
n1+n2+n3=4

Hn1
dR(X/K)⊗Hn2

dR(X/K)⊗Hn3
dR(X/K).

As a map on H4
dR(X3/K), pJ,∗ acts as the identity on a direct summand if and only if∑

i∈J ni = 4 − 2(3 − |J |) = 2|J | − 2, and otherwise is the zero map. As n1 + n2 + n3 = 4,
this condition is equivalent to ni = 2 for all i 6∈ J , or J ⊃ {i | ni 6= 2}. An easy computation
shows that, for any such summand, ∑

J⊃{i|ni 6=2}

(−1)|J |+1 = 0.

Therefore, pe is the zero map on H4
dR(X3/K). By Proposition 2.1.3, pe commutes with the

cycle class map, and thus

cl(∆GKS) = cl(pe(X123)) = pecl(X123) = 0

since cl(X123) ∈ H4
dR(X3/K)(2).
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All that remains to define a Chow–Heegner point is to give a cycle Π ∈ CH2(X4)(K). For
any cycle T ∈ CH1(X2)(K), we can choose ΠT = T ×X34, where X34 is the diagonal in the
last two factors. The triple (X3,ΠT ,∆GKS) and choice of πA gives rise to a Chow–Heegner
point P (T, πA, o) ∈ JX(K), where o emphasizes the dependence of ∆GKS on the point o.

Remark 3.1.5. Rather than choosing T ∈ CH1(X2)(K), we may in the future use T ∈
CH1(X2)(K)⊗Q, and the resulting point lands in JX(K)⊗Q. Then there exists a positive
integer n ≥ 1 such that nT ∈ CH1(X2)(K), and so we define P (T, πA, o) = P (nT, πA, o) ⊗
1/n ∈ JX(K)⊗Q.

We end this section with an alternate definition of the point P (T, πA, o) without reference
to the cycle ∆GKS. Continuing the notation from earlier, for any subset J ⊂ {1, 2}, let iJ
denote the inclusion of X in X2 as defined before Definition 3.1.3 with respect to the base
point o. Set

T12 = i∗12(T ),

T1 = i∗1(T ),

T2 = i∗2(T ),

P (T, πA, o) = πA(T12 − T1 − T2 − deg(T12 − T1 − T2)o).

Proposition 3.1.6. The two definitions of P (T, πA, o) agree.

Proof. Set Π = ΠT . Straight from the definitions, one computes that

Π∗(X123) = T12,

Π∗(X12) = deg(T12)o,

Π∗(X13) = T1,

Π∗(X23) = T2,

Π∗(X1) = deg(T1)o,

Π∗(X2) = deg(T2)o,

Π∗(X3) = 0.

This proves the proposition.

Example 3.1.7. Let T be the divisor i1∗(X), the curve X embedded into the first factor
of X2. Then T12 = o, T1 = 0, and T2 = o, and hence P (T, πA, o) = 0. More generally, let
pri : X2 → X denote the i-th projection. Then P (T, πA, o) = 0 for any divisor

T ∈ pr∗1CH1(X) + pr∗2CH1(X).

Such divisors are called the horizontal and vertical divisors on X2.
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3.2 Chow–Heegner points on modular abelian

varieties

For the remainder of this chapter, we will restrict our attention to the construction from §3.1
in the case where X = X0(N) is the modular curve, A = Af is the abelian variety associated
to a weight 2 cuspidal eigenform f , and T is a correspondence in the g-isotypic component
CH1(X×X)(Q)[g]⊗Q for some weight 2 cuspidal normalized eigenform g not GQ-conjugate
to f .

Cusp forms and Hecke correspondences

For any positive integer N , let Γ0(N) denote the congruence subgroup of SL2(Z) defined
in the introduction, and write X0(N) for the associated modular curve over Q. Let T =
Z[. . . , Tn, . . .] denote the subalgebra of EndQ(S2(Γ0(N))) generated by the Hecke correspon-
dences on X0(N), and write T′ for the subalgebra generated by the Tn with gcd(n,N) = 1.
Additionally, write TQ = T ⊗ Q and T′Q = T′ ⊗ Q. Often we will write TZ and T′Z in place
of T and T′ for emphasis. The map Tn 7→ (an(h)) induces an isomorphism

T′Q '
⊕
h

Kh (3.1)

where h runs over all GQ-conjugacy classes of newforms h ∈ S2(Γ0(M)) for all M | N , and
Kh = Q(. . . , an(h), . . .). For any eigenform g, denote by eg idempotent of T′Q whose image
in the right-hand side of 3.1 is the element with a 1 in the Kg factor and a 0 everywhere else.

Let J0(N) be the Jacobian of X0(N), and write End0
Q(J0(N)) = EndQ(J0(N)) ⊗ Q. As

correspondences on X0(N) give rise to endomorphisms on J0(N), End0
Q(J0(N)) contains TQ,

and thus we can view eg as an element of End0
Q(J0(N)), where it remains an idempotent.

We will denote by End0
Q(J0(N))[g] the g-isotypic component eg · End0

Q(J0(N)). There is a
natural isomorphism

End0(J0(N)) ' (CH1(X0(N)2)⊗Q)/(pr∗1CH1(X0(N))⊗Q + pr∗2CH1(X0(N))⊗Q).

Define CH1(X0(N)×X0(N))(Q)[g]⊗Q to be the group of cycles mapping to End0
Q(J0(N))[g]

as above modulo vertical and horizontal divisors. For every T ∈ End0(J0(N))[g], we can
associate to it a cycle in CH1(X0(N) × X0(N))(Q)[g] ⊗ Q, also denoted T by abuse of
notation. When T = eg, we denote this cycle by Tg.

Finally, let f ∈ S2(Γ0(Nf )) be a newform of level Nf | N with abelian variety Af ,
arising as a quotient of J0(Nf ). We assume that f and g are not GQ-conjugate. Write
πf : J0(Nf ) → Af for the quotient map with connected kernel. For each d | N/Nf , there is
a degeneration map πd : X0(N)→ X0(Nf ) such that π∗df(q) = df(qd) on q-expansions. This
induces a map J0(N)→ J0(Nf ), which we will also denote πd by abuse of notation. Denote
by πdf the composition πfZπd : J0(N)→ Af .
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Definition 3.2.1. Let f and d be as above and T ∈ CH1(X0(N)×X0(N))[g]⊗Q for some
g 6= fσ for all σ ∈ GQ. Then the Chow–Heegner point associated to f and T is

PT,fd := P (T, πdf ,∞) ∈ Af (Q)⊗Q

where P (T, πdf ,∞) ∈ J0(N)(Q) ⊗ Q is the point defined in section 3.1 using πdf for the
quotient map and the cusp ∞ for the choice of base point o. When T = Tg or d = 1, we
write Pg,fd or PT,f , respectively.

Remark 3.2.2. By Example 3.1.7, the point associated to T is well defined modulo vertical
and horizontal divisors, justifying our definition of CH1(X0(N)×X0(N))(Q)[g]⊗Q.

Although it is unclear when PT,fd is nontrivial for a particular T and d, the following
theorem gives a criterion for when PT,fd is nonzero for some T ∈ CH1(X0(N)2)(Q)[g] and
d | N/Nf . Let L(g, g, f, s) denote Garrett’s triple product L-function; the interested reader
may consult [Gar87], most notably Theorem 1.3.

Theorem 3.2.3 ([DRS12], Corollary 1.4). Suppose Kf = Q, so Af is an elliptic curve.
Assume that the local signs εp(g, g, f) of the L-function L(g, g, f, s) are +1 at all primes
p | N . Then the module of points

P g,f := 〈PT,fd : T ∈ CH1(X0(N)2)[g]⊗Q, d | N/Nf〉 ⊂ Af (Q)⊗Q

is nonzero (or equivalently a multiple of some PT,fd ∈ Af (Q) is non-torsion) if and only if
the following conditions hold:

i. L(f, 1) = 0,

ii. L′(f, 1) 6= 0, and

iii. L(f ⊗ Sym2 gσ, 2) 6= 0 for all σ ∈ GQ.

Remark 3.2.4. When εp(g, g, f) = −1 for some p | N , computations suggest that P g,f = 0.
We will prove this in many cases in Theorem 3.3.8.

3.3 Zhang points

We end this chapter with one more definition of a collection of points on an abelian variety,
the Zhang points. We proceed to establish some basic properties of Zhang points, as well as
relate them to the points PT from §3.1.
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Definition of Zhang points

Let X/K be a curve, o ∈ X(K) a K-rational point, JX/K the jacobian of X, and φo : X →
JX the Albanese morphism determined by the point o. Suppose that A and B are abelian
variety quotients of JX satisfying HomK(B,A) = 0, and fix (possibly not surjective) maps
πA : JX → A and πB : JX → B. Finally, let L ∈ Pic(B)(K) be an invertible sheaf.

Definition 3.3.1. Set n = deg(φ∗π∗BL). The Zhang point associated to L and o is defined
to be the point

P (L, πA, πB, o) := πA((φ∗oπ
∗
BL)⊗OX([o])−n) ∈ A(K).

Here OX([o]) is the invertible sheaf on X associated to the divisor [o], and we identify
Pic0(X)(K) with JX(K).

Proposition 3.3.2. For any L ∈ Pic0(B), we have P (L, πA, πB, o) = 0.

Proof. From the definition, P (L, πA, πB, o) is the image of L under the composition

πA ◦ φ∗o ◦ π∗B : Pic0(B)→ Pic0(JX)→ Pic0(X) = JX → A.

This morphism gives an element of HomK(B∨, A) by identifying Pic0(B) with B∨. Since
B is a quotient of a Jacobian variety, it is isogenous to B∨, and hence HomK(B∨, A) =
HomK(B,A) = 0. The proposition follows.

Properties of Zhang points

Fix choices for πA and o. Let NS(B)(K) := Pic(B)(K)/Pic0(B)(K) denote the Néron-Severi
group of B. By Proposition 3.3.2, the association L 7→ PL,πA,πB ,o induces a homomorphism

NS(B)(K)→ A(K).

Recall from §3.1 the construction of the point P (T, πA, o) from a cycle T ∈ CH1(X×X)(K).
We now relate these two points. To any L ∈ Pic(B)(K) we associate ∧L ∈ Pic(B × B)(K)
by the formula

∧L = m∗(L)⊗ pr∗1(L)−1 ⊗ pr∗2(L)−1, (3.2)

where m : B × B → B is the group law, and pri : B × B → B is the i-th projection. Let
ψ, ρ : JX → B be two choices of quotient map, and set φψ = ψ ◦ φ and φρ = ρ ◦ φ. To the
triple (L, ψ, ρ), we associate a cycle

TL,ψ,ρ = (φψ × φρ)∗(∧L) ∈ Pic(X ×X)(K) = CH1(X ×X)(K). (3.3)

Proposition 3.3.3. For all L ∈ Pic(B), we have

P (TL,ψ,ρ, πA, o) = P (L, πA, ψ + ρ, o)− P (L, πA, ψ, o)− P (L, πA, ρ, o).

In particular, taking ρ = ψ yields

P (TL,ψ,ψ, πA, o) = 2P (L, πA, ψ, o).
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Proof. To simplify notation, write T for TL,ψ,ρ. Let i1, i2 denote the inclusions of X into the
first and second factors of X × X with respect to the base point o, and i12 the diagonal.
Proposition 3.1.6 shows that

P (T, πA, o) = πA(i∗12(T )− i∗1(T )− i∗2(T )− deg(i∗12(T )− i∗1(T )− i∗2(T ))o).

It is straightforward to show that

i∗12(T ) = φ∗ψ+ρL ⊗ φ∗ψL−1 ⊗ φ∗ρL−1

and that i∗1(T ) and i∗2(T ) are trivial using the definition of T in (3.3). This proves the first
part. For the second part, note that

P (L, πA, 2ψ, o) = P ([2]∗BL, πA, ψ, o)
where [2]B indicates multiplication by 2 on B. A consequence of the theorem of the cube is

[n]∗L = L
n2+n

2 ⊗ [−1]∗L
n2−n

2 ;

see [Mum08] Chapter 2, §6, Corollary 2. Additionally, L and [−1]∗L have the same image in
NS(B); see loc. cit. for details. Thus, [2]∗L = L4 in NS(B)(K) and so by Proposition 3.3.2,

P ([2]∗BL, πA, ψ, o) = 4P (L, πA, ψ, o).
Combining this with the first statement proves the proposition.

Now, we turn to the issue of dependence on base point o ∈ X(K). Let κ ∈ X(K) denote
another choice of base point (possibly equal to o), φo, φκ : X → JX the corresponding maps.

Proposition 3.3.4. Setting n = deg(φ∗κπ
∗
BL), we have

P (L, πA, πB, κ) = P (L, πA, πB, o)− n · πA(φo(κ)).

In particular, if πA(φo(κ)) is torsion, then P (L, πA, πB, o) is torsion if and only if
P (L, πA, πB, κ) is torsion.

Proof. Let to : JX → JX denote the translation-by-φκ(o) map, and to,B : B → B the
translation-by-πB(φκ(o)) map. Then, we have

φκ = to ◦ φo,
πB ◦ to = to,B ◦ πB.

Also, P (t∗o,BL, πA, πB, o) = P (L, πA, πB, o) by Proposition 3.3.2 since L and t∗o,BL have the
same image in NS(B)(K); see [Mum08]. Putting everything together yields

P (L, πA, πB, κ) = πA((φ∗κπ
∗
BL)⊗OX([κ])−n)

= πA((φ∗ot
∗
oπ
∗
BL)⊗OX([o])−n ⊗OX([o])n ⊗OX([κ])−n)

= πA((φ∗oπ
∗
Bt
∗
o,BL)⊗OX([o])−n) + πA(OX([o])n ⊗OX([κ])−n)

= P (t∗o,BL, πA, πB, o)− n · πA(φo(κ))

= P (L, πA, πB, o)− n · πA(φo(κ)).

This proves the proposition.
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Now suppose that Y/K is a curve and let α, β : Y → X be morphisms. Then α and
β induce homomorphisms α∗, β∗ : JY → JX and α∗, β∗ : JX → JY . Thus A and B are
quotients of JY via the morphisms πA,α := πA ◦α∗ and πB,β := πB ◦β∗. Furthermore, assume
that α∗β

∗(kerπA) ⊂ kerπA, so that α∗β
∗ induces an endomorphism

JX
α∗β∗−−−→ JXyπA yπA

A
θαβ−−−→ A.

Let τ ∈ β−1(o) and write φτ : Y → JY . Set n = deg(φ∗oπ
∗
BL) and m = deg(β), so that

deg(φ∗τπ
∗
B,βL) = mn.

Proposition 3.3.5. We have the relation

P (L, πA,α, πB,β, τ) = θαβ(P (L, πA, πB, o)) +
∑

κ∈β−1(o)

n · πA,α(φτ (κ)).

In particular, ∑
τ∈β−1(o)

P (L, πA,α, πB,β, τ) = m · θαβ(P (L, πA, πB, o)).

Proof. For the first part, we have

P (L, πA,α, πB,β, τ) = πA,α((φ∗τπ
∗
B,βL)⊗O([τ ])−mn)

= πA,α((φ∗τ (β∗)
∗π∗BL)⊗ β∗O([o])−n ⊗ β∗O([o])n ⊗O([τ ])−mn)

= πA,α((β∗φ∗oπ
∗
BL)⊗ β∗O([o])−n) + πA,α(β∗O([o])n ⊗O([τ ])−mn))

= πA(α∗β
∗((φ∗oπ

∗
BL)⊗O([o])−n)) + πA,α((

⊗
κ∈β−1(o)

O([κ])n)⊗O([τ ])−mn)

= θαβ(P (L, πA, πB, o)) +
∑

κ∈β−1(o)

n · πA,α(φτ (κ))

The second statement follows from the first by summing over all τ ∈ β−1(o) along with the
fact that ∑

τ,κ∈β−1(o)

φτ (κ) = 0.

This proves the proposition.

Corollary 3.3.6. Suppose πA,α(φτ (κ)) is torsion for all τ, κ ∈ β−1(o). Then if P (L, πA, πB, o)
is torsion, so is P (L, πA,α, πB,β, τ) for any τ ∈ β−1(o). Conversely, if in addition θαβ is an
isogeny, then P (L, πA,α, πB,β, τ) torsion for some τ ∈ β−1(o) implies P (L, πA, πB, o) is tor-
sion.

Proof. This follows from the first part of Proposition 3.3.5 using the fact that
θαβ(P (L, πA, πB, o)) is torsion if and only if P (L, πA, πB, o) is when θαβ is an isogeny.
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The vanishing of P (L, πA, πB, o)
We conclude this chapter with a proof that Zhang points are torsion under suitable condi-
tions, ultimately establishing Remark 3.2.4 in many cases. Let w : X → X be an automor-
phism such that w∗(ker(πA)) ⊂ ker(πA) and w∗(ker(πB)) ⊂ ker(πB), and write θw,A : A→ A
and θw,B : B → B for the induced morphisms. Furthermore, assume that θw,A = [−1]A and
θ∗w,B : NS(B)(K) → NS(B)(K) is the identity. Finally, write τ = w(o) and assume that
πA(φo(τ)) is torsion.

Lemma 3.3.7. Under the hypotheses of the previous paragraph, P (L, πA, πB, o) is torsion
for all L ∈ Pic(B)(K).

Proof. First notice that taking α = β in Proposition 3.3.5 yields

P (L, πA,α, πB,α, τ) = m · P (L, πA, πB, o) (3.4)

where m = deg(β), since in this case θαβ = [m]A and

α∗(φτ (κ)) = β∗(φτ (κ)) = φo(β(κ)) = φo(o) = 0.

Applying (3.4) when Y = X and α = β = w then gives

P (L, πA,w∗ , πB,w∗ , τ) = P (L, πA, πB, o) (3.5)

An examination of the definition of P (L, πA,w∗ , πB,w∗ , τ) shows that

P (L, πA,w∗ , πB,w∗ , τ) = θw,A(P (θ∗w,BL, πA, πB, τ)).

Under our assumptions on θw,A and θ∗w,B, we have

θw,A(P (θ∗w,BL, πA, πB, τ)) = −P (θ∗w,BL, πA, πB, τ) = −P (L, πA, πB, τ)

by Proposition 3.3.2. Combining this with (3.5) shows that

−P (L, πA, πB, τ) = P (L, πA, πB, o).

Finally, invoking Proposition 3.3.4 gives

−P (L, πA, πB, o) + n · πA(φo(κ)) = P (L, πA, πB, o),

or 2P (L, πA, πB, o) = n·πA(φo(κ)) is torsion by assumption. Hence P (L, πA, πB, o) is torsion,
proving the lemma.

Theorem 3.3.8. Suppose there exists a prime p exactly dividing Nf , Ng, and N such that
εp(g, g, f) = −1. Then PT,fd is torsion for all T ∈ CH1(X0(N)×X0(N))[g] and any d | N/Nf .
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Proof. First, note that the map⊕
d′,d′′|N/Ng

NS(Ag)(Q)⊗Q→ CH1(X0(N)×X0(N))(Q)[g]⊗Q, (L)d′,d′′ 7→ TL,πd′g ,πd′′g

with TL,πd′g ,πd
′′
g

defined in (3.3) is an isomorphism; see [Kan08] for instance. Hence, by

Proposition 3.3.3, we may replace PT,fd with the point P (L, πdf , ψ,∞) for L ∈ NS(Ag)(Q)⊗Q
and ψ a linear combination of πd

′
g for d′ | N/Ng. Let wp : X0(N) → X0(N) be the Atkin-

Lehner involution. The result will follow if we can apply Lemma 3.3.7 to X0(N) along with
wp, so we must establish three properties of wp:

(a) πdf (wp(∞)) is torsion.

(b) wp∗(ker(πdf )) ⊂ ker(πdf ) and wp∗(ker(ψ)) ⊂ ker(ψ).

(c) θwp,Af = [−1]Af and θ∗wp,Ag is the identity on NS(Ag)(Q).

By the Manin-Drinfeld Theorem [Man72], the difference of two cusps is torsion on J0(N), so
letting 0 denote the cusp [0 : 1], we have wp(∞) = 0 and φ∞(0) is torsion on J0(N), showing
(a). Since p || N , we have the relation

Up + wp = π∗1πp∗

where π1, πp : X0(N) → X0(N/p) are the degeneration maps, as can be seen by examining
the definitions. By assumption, f is p-new, so for any d | N/Nf , we have π∗1πp∗(fd) = 0.
Hence, we have

wp(fd) = −Up(fd) = −ap(f)fd,

the last equality holding since p - N/Nf . A similar statement holds for g since g is also p-new.
Statement (b) is equivalent to wp stabilizing πd∗f (H0(Af ,Ω

1
Af

)) and ψ∗(H0(Ag,Ω
1
Ag

)). The

former is spanned by {fσd }σ∈Aut(C), and the latter by {
∑

d′ cd′g
σ
d′}σ∈Aut(C) if ψ =

∑
d′ cd′π

d′
g .

So (b) follows from the fact that fd and gd′ are eigenvectors for wp as shown above.
If f , g, and h are eigenforms with p exactly dividing Nf , Ng, and Nh, then Gross–

Kudla [GK92] proved that εp(h, g, f) = −ap(h)ap(g)ap(h). Since ap(g) = ±1, the condition
εp(g, g, f) = −1 implies that ap(f) = 1. So wp(fd) = −ap(f)fd = −fd as above, and we have
the following commutative diagram:

J0(N)
wp∗−−−→ J0(N)yπdf yπdf

Af
[−1]Af−−−−→ Af

showing that θwp,Af = [−1]Af . We have a similar diagram for Ag, only with [±1]Ag on the
bottom row, depending on whether wp(gd′) = ±gd′ . In either case, θ∗wp,Ag : NS(Ag)→ NS(Ag)
is the identity, establishing (c). This proves the theorem.
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Remark 3.3.9. It is straightforward to remove the restriction that p || N for T of the form
TL,πd′g ,πd

′′
g

where ordp(d
′) = ordp(d

′′). Indeed, in this case, we have

P (T, πdf ,∞) = P (L, πdf , πd
′

g + πd
′′

g ,∞)− P (L, πdf , πd
′

g ,∞)− P (L, πdf , πd
′′

g ,∞)

by Proposition 3.3.3. Set a = ordp(d), b = ordp(d
′) = ordp(d

′′), and c = ordp(N), and write
πpa , πpb : X0(N) → X0(N/pc−1) for the degeneration maps. Then we can apply Corollary
3.3.6 with α = πpa and β = πpb to reduce to the case where p || N , which is covered by the
theorem.
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Chapter 4

Complex computations of
Chow–Heegner points

The material in this chapter is joint work with Henri Darmon, Sam Lichtenstein, and Victor
Rotger [DDLR11]. It is devoted to computing the points PT,fd when Af is an elliptic curve
via complex analytic means. Although the definition of PT,fd is purely algebraic, explicitly
computing all of the intersections would require knowing the algebraic equations defining the
modular curve X0(N) and the Hecke correspondences Tn for sufficiently many n. It is much
more convenient to work with the description of X0(N)(C)an as a quotient of the extended
complex upper-half plane H∗ by the group Γ0(N). To this end, we will use the complex
Abel–Jacobi map from §2.2 and employ the theory of iterated path integrals to obtain an
explicitly computable expression for PT,fd .

Recall that PT,fd = πdf (Π∗(∆GKS)). Let ωE be the invariant differential of the elliptic

curve E. Then πd∗f (ωE) = cEωf (d) , where cE is the Manin constant of E. Manin conjectured
that cE = 1; this holds in all the computations done in Appendix A, and we will assume this
throughout the rest of this monograph. By Proposition 2.2.6, we can write

AJC(PT,fd)(ωE) = AJC(∆GKS)(Π∗T (ωf (d)))

where the source of AJC is CH1(X)0(C) on the left-hand side and CH2(X3)0(C) on the right-
hand side. By Proposition 2.1.2(1), we can determine Π∗T (ωf (d)) by computing cldR(ΠT ), and
by Proposition 2.1.2(2), we have

cldR(ΠT ) = cldR(T ×X34) = cldR(T )⊗ cldR(X34).

Now, X34 is the diagonal embedded in X×X, so X∗34 induces the identity map on cohomology
groups, determining cldR(X34), again by Proposition 2.1.2(1). Unwinding the isomorphism

Hom(H1
dR(X), H3

dR(X3)(1)) ' H1
dR(X)⊗H3

dR(X3)(2)

shows that Π∗T (ωf (d)) = cldR(T )⊗ ωf (d) . Hence

AJC(PT,fd)(ωE) = AJC(∆GKS)(cldR(T )⊗ ωf (d)). (4.1)
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We will revisit computing cldR(T ) later. Otherwise, the only remaining unknown is comput-
ing AJC(∆GKS). Although we have defined the complex Abel–Jacobi map for X3, it is not
immediately clear how to do explicit computations from the definition. This can be accom-
plished using the theory of iterated path integrals, as will be explained in this section. The
main reference is [DRS12], though the exposition will follow more closely that in [DDLR11].

4.1 The complex Abel–Jacobi map via iterated

integrals

Iterated integrals

We now turn to recalling the definition and basic properties of iterated integrals; see [Che77],
[Hai], [Hai87] for more details.

Let X/Q denote a curve, and fix a point ∞ ∈ X(Q). Set Y = X − {∞}, and write
Xan and Y an for the Riemann surfaces corresponding to X(C) and Y (C). Choose a base
point o ∈ Y an and denote by Γ := π1(Y an; o) the fundamental group of Y an. We write
I ⊂ Z[Γ] for augmentation ideal of the integral group ring of Γ. Recall that H1(Xan,Z) =
H1(Y an,Z) ' Γab, as can be seen from the well-known presentation for the fundamental
group of a Riemann surface, and that this abelian group is naturally identified with I/I2.

Definition 4.1.1. The path space on Y an based at o, denoted P(Y an; o), is the set of
piecewise-smooth paths

γ : [0, 1] −→ Y an, with γ(0) = o.

Let π : Ỹ → Y an and π : X̃ → Xan denote the universal covering spaces corresponding
to the basepoint o equipped with the natural projection maps, both of which we refer to as
π by abuse of notation. The group Γ acts on Ỹ transitively and without fixed points, and
the map γ 7→ γ(1) identifies the quotient Ỹ /Γ with Y an.

Recall that a closed, C-valued smooth 1-form (resp. a meromorphic 1-form of the second
kind) η on Xan admits a smooth (resp. meromorphic) primitive Fη : X̃ → C, defined by the
rule

Fη(γ) :=

∫ 1

0

γ∗η.

Definition 4.1.2. The basic iterated integral attached to an ordered n-tuple (ω1, . . . , ωn) of
smooth 1-forms on Y an is the function P(Y ; o)→ C, denoted

∫
ω1 · ω2 · . . . · ωn, defined by

γ 7→
∫
γ

ω1 · ω2 · . . . · ωn :=

∫
∆n

(γ∗ω1)(t1)(γ∗ω2)(t2) · · · (γ∗ωn)(tn),

where ∆n is the simplex in [0, 1]n defined by 0 ≤ tn ≤ tn−1 ≤ · · · ≤ t1 ≤ 1. The integer n is
called the length of this basic iterated integral.



CHAPTER 4. COMPLEX COMPUTATIONS OF CHOW–HEEGNER POINTS 35

Example 4.1.3. When n = 2, the basic iterated integral attached to ω and η can be
computed by the formula ∫

γ

ω · η =

∫
γ

ωFη =

∫ 1

0

γ∗(ωFη).

In the expression in the middle, we abusively use the same notation ω for the differential
π∗ω on Ỹ . The 1-form ωFη is to be integrated along a lift of γ to Ỹ , which is unique once a
lift of o to Ỹ is specified.

Definition 4.1.4. An iterated integral is a linear combination of basic iterated integrals,
viewed as a function on P(Y ; o). Its length is defined to be the maximum of the lengths of
its constituent basic iterated integrals. It is said to be homotopy invariant if its value on any
path γ depends only on the homotopy class of γ.

A homotopy-invariant iterated integral defines a C-valued function on Γ, and by extend-
ing linearly induces a homomorphism of abelian groups Z[Γ]→ C. Observe that a homotopy
invariant iterated integral of length ≤ n vanishes on the (n+ 1)st power In+1 of the augmen-
tation ideal in Z[Γ], and hence gives rise to a well-defined element of Hom(I/In+1,C). The
natural map

{homotopy invariant iterated integrals of length ≤ n} −→ Hom(I/In+1,C) (4.2)

is an isomorphism; see Theorem 4.6 of [Hai87].
We will be interested in numerically evaluating certain homotopy invariant iterated in-

tegrals on Y an of length ≤ 2. Suppose ω and η are two differentials of the second kind on
X, regular on Y , representing cohomology classes ω, η ∈ H1

dR(X/C) in the manner of §1.3.
The basic iterated integral

∫
ω · η of length 2 is not generally homotopy invariant. But when

either ω or η is holomorphic on X — i.e., has no pole at ∞ — a suitable modification of∫
ω · η will be homotopy invariant, as we now explain.

Recall that a differential on a Riemann surface is said to have a logarithmic pole at a
point if its expansion in terms of a local parameter q at this point is of the form

∑∞
n=0 anq

n dq
q

.
When ω is holomorphic at ∞, we let αω,η be a meromorphic 1-form on X that is regular on
Y and is such that the induced differential ωFη − αω,η on X̃ has at worst a logarithmic pole
at (any point lying over) ∞. This condition is well posed because the principal part of ωFη
at x̃ ∈ X̃ depends only on the image x of x̃; see [DRS12, §2]. The form αω,η exists — and in
fact can even be taken to be algebraic and defined over Q — by Riemann–Roch. If ω is not
holomorphic at ∞ but η is, then we define αω,η := −αη,ω.

Lemma 4.1.5. Let ω and η be as above, and assume that either ω or η is holomorphic at
∞. Then the iterated integral Jω,η :=

∫
ω · η − αω,η is homotopy invariant.

Proof. The homotopy invariance of Jω,η follows from the fact that Jω,η(γ) =
∫
γ
ωFη − αω,η,

and the 1-form on X̃ in the integrand is holomorphic when restricted to Ỹ .

Remark 4.1.6. Note that if ω and η are both holomorphic at ∞, then we can take αω,η = 0.
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A formula for the complex Abel–Jacobi map

Now consider an integral Hodge class ξ ∈ H1(Xan,Z) ⊗ H1(Xan,Z). Since H1(Xan,Z) is
torsion free, we can identify it with a subspace of

H1(Xan,Z)⊗ C ' H1(Xan,C).

Using the isomorphisms from Theorem 1.3.2 and Proposition 1.3.4

H1(Xan,C) ' H1
dR(Xan) ' Ω1

II(X
an)/dK(Xan),

we can thus can represent any element of H1(Xan,Z) by a differential of the second kind
on X. As a consequence of Riemann–Roch, we may even assume that it is holomorphic on
Y . The Hodge condition implies that we can choose a basis {ωi} such that when we write
ξ =

∑
ci,jωi⊗ωj, then either ωi or ωj is holomorphic at ∞ whenever ci,j 6= 0; see the end of

§1.3. By the Lemma 4.1.5, the iterated integral Jξ =
∑
ci,jJωi,ωj is homotopy invariant.

Lemma 4.1.7. Suppose that ξ is an integral Hodge class on X ×X as above. Using (4.2),
identify Jξ with a homomorphism of abelian groups I/I3 → C. Then the restriction of Jξ to
I2/I3 is Z-valued and agrees with ξ viewed as an element of

H1(Xan,Z)⊗H1(Xan,Z) ' (H1(Xan,Z)⊗H1(Xan,Z))∨

= (I/I2 ⊗ I/I2)∨ = (I2/I3)∨.

(Here A∨ denotes Hom(A,Z), for any abelian group A.)

Proof. See the discussion at the beginning of §2 of [DRS12], and loc. cit., Lemma 1.1(2).

By Lemma 4.1.7, the map Jξ induces a homomorphism

Jξ : H1(Xan,Z) = I/I2 → C/Z.

The following observation, which is extended in Theorem 4.1.8 below to the entire Jaco-
bian of X, is key in our approach to calculating Chow–Heegner points. Fix any holomorphic
1-form ρ ∈ H1,0(XC) ⊂ H1(Xan,C) corresponding to an elliptic curve factor E of the Jaco-
bian of X, and denote by Λ the period lattice

Λ :=

{∫
γ

ρ, γ ∈ H1(Xan,Z)

}
⊂ C

attached to ρ. The class γρ ∈ H1(Xan,C) that is Poincaré dual to ρ actually belongs to
H1(Xan,Z) ⊗ Λ. Consequently Jξ(γρ) can be viewed as a well-defined element of C/Λ, and
hence of E(C).

Let T ∈ CH1(X2) and write cl(T ) =
∑
ci,jωi⊗ωj where either ωi or ωj is holomorphic at

∞ whenever ci,j 6= 0. The following theorem allows us to compute AJC(∆GKS)(cl(T )⊗ ρ).
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Theorem 4.1.8 ([DRS12], Corollary 3.6). Suppose that T annihilates ρ under the induced
map T∗ : H1

dR(Xan)→ H1
dR(Xan). Then

AJC(∆GKS)(cl(T )⊗ ρ) =
∑
i,j

ci,j

∫
γρ

(ωi · ωj − αωi,ωj) + deg(DT )

∫ ∞
o

ρ ∈ C,

where γρ ∈ H1(Xan,C) is Poincaré dual to ρ ∈ H1,0(Xan) ⊂ H1
dR(Xan) and

DT = T ∩X12 − T ∩X1 − T ∩X2.

4.2 A complex-analytic algorithm for computing

Chow–Heegner points

The goal of this section is to give an algorithm for explicitly computing the submodule

P TQ[g],f := {PT,f : T ∈ TQ[g]} = 〈Pg,f,n : n ≥ 1〉 ⊆ P g,f

of E(Q)⊗Q. Although the methods generalize to the full P g,f , the computation of P T[g],f is
simpler, and often sufficient for the purpose of finding a non-torsion point when one exists
by Theorem 3.2.3. The interested reader may consult [Kan08] and use Lemma 4.2.2 below
for more general T , and simply replace f by f (d) for d 6= 1 to compute P g,f in its entirety.

Remark 4.2.1. In order to compute all of P TQ[g],f (resp. P g,f ), it suffices to compute PTn,f
(resp. PT,fd) for a set of generators of TQ[g] (resp. a set of generators of End0(J0(N))[g] and
all d | N/Nf ). Then any other point in the module can be computed by simply writing it in
terms of the set of generators.

Throughout this section, we will fix an elliptic curve E, distinct newforms f and g
such that Ef = E of levels Nf and Ng, and a positive integer N divisible by Nf and Ng.
Additionally, we will write X for the modular curve X0(N). Let πf : J0(Nf )→ E denote the
corresponding modular parametrization of minimal degree, a morphism of abelian varieties
defined over Q. Then π∗f (ωE) = cωf , where ωE is the invariant differential of E suitably
normalized, c is the Manin constant, and ωf = 2πif(z)dz. We will assume throughout that
kerπf is connected and c = 1. In this case, the Néron lattice of E coincides with the period
lattice Λf of the differential ωf ∈ Ω1(X0(Nf )

an) corresponding to f .
The map πf can be computed on complex points explicitly, using the Abel–Jacobi iso-

morphism
AJC : J0(Nf )(C) ' Ω1(X0(Nf )

an)∨/H1(X0(Nf )
an,Z),

the Weierstrass uniformization W : C/Λf ' E(C), and the analytic parametrization

πan
f : Ω1(X0(Nf )

an)∨/H1(X0(Nf )
an,Z)→ C/Λf .
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The map πan
f sends the coset of a functional on Ω1(X0(Nf )

an) to the evaluation of that
functional at ωf . Thus for the Chow–Heegner point Pg,n ∈ J0(Nf )(C) we have

πf (Pg,n) = W (πan
f (AJC(Pg,n))) = W (AJC(Pg,n)(ωf )).

Writing cl(Tg,n) =
∑

i,j c
n
i,jωi ⊗ ωj, then combining the last equation with 4.1 and Theorem

4.1.8 yields

Pg,f,n = πf (Pg,n) = W

(∑
i,j

cni,j

∫
γf

(ωi · ωj − αωi,ωj)

)
, (4.3)

where γf := γωf is Poincaré dual to ωf . Note that we omitted the final term deg(DTg,n)
∫∞
o
ωf

from Theorem 4.1.8. For the purposes of computation, we will ignore this term; as the point
[∞] − [0] ∈ J0(N)(Q) is torsion as discussed in the proof of Theorem 3.3.8, this will not
affect Pg,f,n as an element of E(Q)⊗Q.

The following ingredients are needed to compute Pg,f,n using (4.3):

1. The Poincaré dual γf ∈ H1(X,C) of ωf ∈ H1
dR(Xan,C).

2. A basis B = {ω1, . . . , ω2t} for H1
dR(X/Q), t = g(X), consisting of a collection of rational

differentials of the second kind regular away from ∞.

3. The coefficients cni,j appearing in cl(Tg,n) with respect to the basis B.

4. Meromorphic differentials αωi,ωj on X, regular on Y , such that ωg,iFωg,j − αωg,i,ωg,j has
at worst a logarithmic pole at (any point lying over) ∞ for each pair (i, j) such that
cni,j 6= 0.

5. The evaluation of an iterated integral of the form
∫
γf

(ωg,i · ωg,j − αωg,i,ωg,j).

These data must be “known” in a sufficiently concrete form to evaluate the iterated integrals
occuring in (4.3). It is also desirable to know

6. the denominator dg,n of the projector Tg,n ∈ TQ, that is the smallest positive integer
such that dg,nTg,n ∈ TZ.

This last item will allow for the computation of a point in E(Q), as opposed to one in
E(Q)⊗Q (see Remark 3.1.5). The rest of this section is devoted to methods for computing
these six ingredients. These inputs are not independent of each other, and thus we will
address them in a different order than they are listed above for the sake of straightforward
exposition.
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Computing cl(εoTg,n)

First, we explain how to compute cl(εoTg,n), as this will reveal how to optimally choose our
basis of H1

dR(X/Q). For the sake of computational efficiency, we would like to minimize the
number of cni,j 6= 0, thus requiring the evaluation of fewer iterated integrals. Specifically, we
take advantage of the decomposition of H1

dR(X/Q) into isotypic subspaces via the action of
T′Q. The action of T′Q on S2(Γ0(N)) extends to all of H1

dR(X/Q) by viewing T′ as an algebra
of correspondences on X. Under this action, we have

H1
dR(X/Q) ' H1

dR(X/Q)[h1]⊕ · · · ⊕H1
dR(X/Q)[hn],

indexed by Galois conjugacy classes of newforms of all levels M dividing N . Suppose B =
{ωg,1, . . . , ωg,2k} is a collection of differentials of the second kind on X representing a basis for
H1

dR(X/Q)[g]. Write Tnωg,i =
∑

j a
n
ijωg,j, and denote by An and B the matrices (anij)1≤i,j≤2k

and (〈ωg,i, ωg,j〉)1≤i,j≤2k, respectively, where 〈 , 〉 denotes the Poincaré pairing. Then we have
the following:

Lemma 4.2.2. cl(εoTg,n) =
∑

i,j c
n
ijωg,i ⊗ ωg,j, where (cnij)1≤i,j≤2k = −B−1An.

Proof. We invoke Proposition 2.1.2(1). The projector εo acts on H2
dR(X×X) by annihilating

the H0
dR(X)⊗H2

dR(X) and H2
dR(X)⊗H0

dR(X) components of the Künneth decomposition,
so we have

cl(εoTg,n) ∈ H1
dR(X)⊗H1

dR(X).

Note from the definition that Tg,n acts on H1
dR(X)[h] as Tn if h = g and 0 otherwise, so

cl(εoTg,n) is equal to the image of Tn under the identification:

End(H1
dR(X)[g]) ' H1

dR(X)[g]∨ ⊗H1
dR(X)[g] ' H1

dR(X)[g]⊗H1
dR(X)[g].

The first map is the canonical isomorphism of finite dimensional vector spaces, and the
second is induced from the inverse of the identification H1

dR(X)[g] ' H1
dR(X)[g]∨ via the

map v 7→ (w 7→ 〈v, w〉). The remainder of the proof is a straightforward exercise in linear
algebra, and is left to the reader.

Therefore, rather than choosing a basis for the entire space H1
dR(X/Q), we can minimize

the number of nonzero cni,j by using a basis for the g-isotypic component. Furthermore, if we
choose ωg,1, . . . , ωg,k to lie in the subspace Ω1(X), then as this space is stable under Tn, the
upper right quadrant of the matrix An will be 0. This, in turn, will guarantee that whenever
cni,j 6= 0, either ωg,i or ωg,j will be regular at ∞, and thus cl(εoTg,n) will satisfy the condition
discussed before Theorem 4.1.8.

Remark 4.2.3. To further reduce the number of iterated integrals required to compute Pg,f,n
when n = 1, it is convenient to find a symplectic basis of H1

dR(X/Q)[g], that is a ba-
sis {ωg,1, . . . , ωg,k, ηg,1, . . . , ηg,k} satisfying 〈ωg,i, ηg,i〉 = 1, 〈ωg,i, ηg,j〉 = 0 for i 6= j, and
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〈ωg,i, ωg,j〉 = 〈ηg,i, ηg,j〉 = 0. Indeed, in this case the matrix B is just the standard symplectic
matrix, while A1 is the identity matrix. Thus, we have

Pg,f = W

(
k∑
i=1

∫
γf

(ωg,i · ηg,i − ηg,i · ωg,i − 2αωg,i,ηg,i)

)
.

Once a basis {ωg,1, . . . , ωg,2k} and the matrix B for this basis have been computed, then
assuming ωg,1, . . . , ωg,k ∈ Ω1(X) it is a matter of linear algebra to modify ωg,k+1, . . . , ωg,2k to
obtain a symplectic basis {ωg,1, . . . , ωg,k, ηg,1, . . . , ηg,k}.

In order to utilize Lemma 4.2.2, we must be able to compute such a basis B and the
accompanying matrices An and B. The next few sections will discuss methods for computing
B and the matrix An. The matrix B can be computed once B is known by appealing to
formula 1.11 in Proposition 1.3.4.

Calculating a symplectic basis for H1
dR(X/Q)[g]

The calculation of a basis for the de Rham cohomology can be carried out by first writ-
ing down a modular function u which is regular away from ∞. Such a function exists by
Riemann–Roch and a q-expansion for one such function can sometimes be computed explic-
itly using the Dedekind eta-function, as explained in the next section.

Using a modular symbol algorithm, one can compute q-expansions for a basis of S2(Γ0(N))
consisting of cusp forms with rational Fourier coefficients; cf. for example [Ste07]. Write
ω1, . . . , ωt for the corresponding holomorphic 1-forms on X, where for convenience we de-
note by t = dimC S2(Γ0(N)) the genus of X. Recall that the point ∞ ∈ X(Q) is called a
Weierstrass point if ord∞ωi ≥ t for some i.

Define ηi = uωi, which is a differential of the second kind by the residue theorem, and
let B = {ω1, ..., ωt, η1, ..., ηt} ⊂ H1

dR(X/Q) be the corresponding set of cohomology classes.
A simple application of Riemann–Roch shows the following.

Lemma 4.2.4. The set B is basis for H1
dR(X/Q) whenever ∞ is not a Weierstrass point on

X and u has a pole of order t+ 1 (i.e., the smallest possible) at ∞.

Proof. Since ∞ is not a Weierstrass point on X, we may assume that ord∞(ωi) = i − 1,
and thus ord∞(ηi) = i − t − 2. For any differential of the second kind ω′, we can find a
linear combination of η1, . . . , ηt and dh for an appropriate rational function h having the
same principal part as ω′. Thus the difference is holomorphic, and lies in the span of
{ω1, . . . , ωt}.

Remark 4.2.5. By a result of Ogg [Ogg78], the cusp ∞ is not a Weierstrass point when the
level N is prime, or more generally when N = pM for prime p and an integer M ≥ 1 such
that X0(M) has genus zero and p -M .

When ∞ is a Weierstrass point, there is a rational function with a single pole at ∞ of
order ≤ g(X). When u is taken to be such a function, then the set B will never be a basis.
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Indeed, since ∞ is a Weierstrass point, there exists a holomorphic differential form ω with
order of vanishing ≥ g(X) at ∞. Then uω is still holomorphic, and thus lies in the span of
{ω1, . . . , ωt}. But uω also is in the span of {η1, . . . , ηt} by definition of the ηi, giving rise to a
linear dependence relation. Hence, in order for B to be a basis, it is necessary for u to have a
pole at ∞ of order greater than the order of vanishing at ∞ of any holomorphic differential.

This lemma is not strictly necessary for the computation, but rather serves to guarantee
its success in certain cases. Even if the hypotheses of the lemma do not hold (for example,
if ∞ is not a Weierstrass point but u has a pole of order > t + 1), the set B may still be
a basis of H1

dR(X/Q), and almost always is at levels < 200. Moreover this can be checked
easily in any particular example by computing the matrix for the Poincaré pairing.

Given one basis B for H1
dR(X/Q), it is then a matter of linear algebra to produce a better

basis that is adapted to the action of the Hecke algebra. Note that the usual formula for
the action of the Hecke algebra T′ on holomorphic modular forms in terms of q-expansions
extends to weakly holomorphic modular forms, and preserves the subspace of differentials
regular on Y . In particular, one can compute the action of T′ on any 1-form representing
an element of H1

dR(X/Q). Using q-series for the elements of the basis B, we can thus write
down the matrix [Tp] ∈ Mat2t×2t(Q) that describes the action of Tp ∈ T′ with respect to B.

After identifying H1
dR(X/Q) ' Q2t via the basis B, by finding the eigenspaces of finitely

many such matrices one can write down Q-bases for each isotypic component of H1
dR(X/Q).

As is shown in [Ste07], the Hecke algebra T′ is generated as a Z-module by Ti for 1 ≤ i ≤
m
6
− m−1

N
, where m = [Γ(1) : Γ0(N)]. This gives an upper bound on the number of matrices

needed, although in practice considerably fewer are necessary. Using these it is simple linear
algebra to produce the desired basis ωg,1, . . . , ωg,2k for the isotypic component H1

dR(X/Q)[g].
With a small amount of extra work, we can even take this basis to be symplectic as discussed
in Remark 4.2.3.

Modular units and η-products

The preceding discussion raises the question of how to compute the q-expansion about∞ of
a rational function u used to write down an initial choice of basis B for H1

dR(X/Q).
Recall that a modular unit on X is a modular function u ∈ Q(X)× whose associated

divisor is supported on the cusps of X. Denote by U the multiplicative group of modular
units.

Definition 4.2.6. The eta group Uη is the subgroup of Q(X)× of rational functions of the
form

u(q) = λ
∏
d|N

η(qd)rd ,

where λ ∈ Q×, η(q) = q1/24
∏

n>0(1 − qn) is the classical eta function, and {rd}d|N is a
collection of integers satisfying the following conditions:

i.
∑

d|N rd = 0,
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ii.
∏

d|N d
rd ∈ Q× is a square,

iii. (nd) := AN · (rd) is a vector of integers divisible by 24, where AN is the σ(N)× σ(N)-

matrix whose entry indexed by (d, d′) is N ·(d,d′)2

dd′(d′,N/d′)
.

As in Chapter 2 of [Köh11], one can show that functions satisfying the above conditions
are modular functions on X; that is, Uη ⊂ U . In fact more is true:

Proposition 4.2.7. Uη ⊗Z Q = U ⊗Z Q.

Proof. The set {a
d

: d | N, a ∈ (Z/(d,N/d)Z)×} ⊂ P1(Q) is a complete set of representatives
of the cusps of X; see, for instance, [DS05] §3.8. The subspace Uη ⊗Z Q ⊂ U ⊗Z Q coincides
with U ′ ⊗Z Q, where U ′ ⊂ U consists of modular units that have the same valuation at
any two cusps a/d, a′/d with the same denominator; cf. [GR91, Prop. 2]. This implies
the proposition in light of the next lemma, since an element u ∈ U ⊂ Q(X) has the same
valuation at any two Galois-conjugate cusps.

Lemma 4.2.8. Let d|N . Then the cusp 1/d is rational if and only if (d,N/d) = 1. More
generally, the Galois orbit of the cusp 1/d is {a

d
: a ∈ (Z/(d,N/d)Z)×}.

Proof. We prove the first statement using the results of [Ste82, §1.3]. Namely, it is known that
the cusps of X are rational over Q(ζN), and the Galois action of Gal (Q(ζN))/Q) ' (Z/NZ)×

can be described explicitly as follows [Ste82, Thm. 1.3.1]: given b ∈ (Z/NZ)×, let τb be the
automorphism of Q(ζN) that sends ζN 7→ ζbN . If a ∈ Z is chosen so that ab ≡ 1 (mod N)
then τb sends the cusp 1

d
to 1

ad
. Hence the Galois orbit of 1

d
is

{ 1
ad

: a ∈ (Z/NZ)×},

and it can be shown by an elementary argument that this set of cusps is equal to the image
of

{a
d
| a ∈ (Z/(d,N/d)Z)×}

in Γ0(N)\P1(Q).

By the Riemann–Roch theorem, there exist nonconstant rational functions on X that
are regular away from ∞. The proposition implies that an integer power of such a function
belongs to the subgroup Uη ⊂ U , which yields the following.

Corollary 4.2.9. There exists an eta product u ∈ Uη that is regular away from ∞.

It is thus possible to compute the rational function u required in the compation of a basis
for H1

dR(X) as an eta product.
A practical approach to finding the vector (rd)d|N giving rise to the u we seek is to apply

a linear programming algorithm: one minimizes the pole order −nN of u at ∞ subject to
the criteria of Newman–Ligozat in Definition 4.2.6 and the condition that the orders nd of u
at other cusps are non-negative.
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Evaluating iterated integrals

Let J =
∫
ω ·η−αω,η be a homotopy-invariant iterated integral of length ≤ 2 on Y , expressed

in terms of differentials of the second kind on X, regular on Y . We wish to compute J(γ),
where γ ∈ H1(Y an,C) = H1(Xan,C) = H1(Xan,Z) ⊗ C. Note that H1(Xan,Z) is the
abelianization of the quotient π1(Xan, o) = Γ̄0(N) of Γ0(N) by the smallest normal subgroup
containing the elliptic and parabolic elements.

To evaluate J(γ) for γ ∈ H1(Y an,C), we may simply represent γ as a C-linear combina-
tion of elements of H1(Y an,Z), reducing the problem to evaluating J(γ) for γ ∈ H1(Y an,Z).
Choose the basepoint o away from the set S of elliptic points and cusps on Y an and lift γ arbi-
trarily to a path γ̃ ∈ π1(Y an\S, o). For each elliptic point x ∈ S, let ex = |StabΓ0(N)(x)/{±1}|
denote the index of x (which is either 2 or 3) and let γx be a sufficiently small counterclock-
wise loop around x. Writing H for the normal subgroup of π1(Y an \ S, o) generated by
{γexx , x ∈ S}, there is a natural isomorphism Γ0(N) ' π1(Y an − S; o)/H.

We may regard then γ̃ as an element of Γ0(N); this causes no ambiguity because H lies
in the kernel of the natural projection H1(Y an − S,Z) → H1(Y an,Z). The path γ̃ can then
also be viewed as a path in H from τ0 to γ̃τ0, where τ0 ∈ H∗ is a lift of o.

Lemma 4.2.10. Suppose γ is Poincaré-dual to ρ. As an element of C/Λρ, we have

J(γ) =

∫ γ̃τ0

τ0

ωFη − αω,η

where we identify 1-forms on X with their pullbacks to H∗ = H ∪ {∞}. Moreover, Fη has
Laurent expansion about ∞ ∈ H∗ given by formally integrating the Laurent expansion of η
about the cusp ∞ ∈ X.

Proof. This follows from the preceding discussion, using the definition of iterated integrals
and the homotopy invariance of J .

Here we have chosen τ0 to be a lift of the basepoint o, which we originally chose to be the
cusp at 0. However, for computational purposes it will be convenient to choose a different
basepoint for evaluating the integral

∫
γ
ω · η − αω,η. The following lemma allows us to do

exactly that.

Lemma 4.2.11. Suppose the Poincaré dual ργ ∈ H1
dR(Xan,C) of γ satisfies 〈ργ, ω〉 =

〈ργ, η〉 = 0. Then
∫
γ
(ω · η − αω,η) is independent of choice of basepoint o ∈ Y an.

Proof. Choose any loop γ̃ representing the homology class γ. Changing the basepoint from
o to o′ amounts to conjugating γ̃ by a path β from o to o′. This does not affect the value of
the integral of the meromorphic 1-form αω,η. Additionally, by [Hai, Exer. 8], for any 1-forms
ω, η, loop γ̃, and path β, we have∫

βγ̃β−1

ω · η =

∫
γ̃

ω · η +
∣∣∣ ∫γ̃ ω ∫

γ̃ η∫
β ω

∫
β η

∣∣∣ . (4.4)
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But we have
∫
γ̃
ω = 〈ργ, ω〉 = 0, and similarly for

∫
γ̃
η. Thus the determinant is 0, and∫

βγ̃β−1

ω · η =

∫
γ̃

ω · η.

Note that the extra conditions of the lemma are satisfied in our situation. Indeed, as
cl(εoTg,n) can be written in terms of differentials ωg,1, . . . , ωg,2k ∈ H1

dR(X/Q)[g], and γf is
Poincaré dual to ωf , we have 〈ωf , ωg,i〉 = 0 for all 1 ≤ i ≤ 2k.

Now that we are free to choose any τ0 ∈ H, we will optimize this choice for computational
efficiency. As we are computing all rational differentials of the second kind on Xan in terms
of their q-expansions about the cusp ∞, we are able to write

ωFη − αω,η =
∑

anq
ndq

q
,

with q = e2πiτ . By the fundamental theorem of calculus and Lemma 4.2.10, we have∫
γ

(ω · η − αω,η) =
∑ an

n
(e2πiγ̃τ0 − e2πiτ0).

Thus, the integral will converge fastest when the imaginary parts of γ̃τ0 and τ0 are as large as
possible. As Im(τ0)→∞, we have Im(γ̃τ0)→ 0, so we must choose a value that maximizes
the quantity min{Im(τ0), Im(γ̃τ0)}. If we write

γ̃ =

[
a b
c d

]
,

it is a fun exercise to check that the best compromise is taking τ0 = −d
c

+ 1
|c|i, which also

yields Im(γ̃τ0) = 1/|c|.
Another issue we need to address is that since γ ∈ H1(Y an,C), it may not be representable

by a single element of Γ0(N). If this is the case, we must deal with the possibility that the
optimal base points for the constituent parts of γ may not coincide. Even though Lemma
4.2.11 shows that

∫
γ
(ω · η − αω,η) is independent of base point, if we write

γ =
∑

βjγj

for a set of generators {γj} of H1(Y an,Z), then the individual integrals
∫
γj

(ω · η − αω,η) will

not be independent of base point in general. Thus we cannot simply choose the optimal base
point for each integral.

To rectify this, let

Iτ0(λ; γ̃) :=

∫ γ̃τ0

τ0

λ
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for any differential of the second kind λ on X̃ and γ̃ ∈ Γ0(N). For any other choice of
base point τj (in particular, we may choose τj to be optimal with respect to γ̃j), we have
Iτ0(αω,η; γ̃j) = Iτj(αω,η; γ̃j) since αω,η is defined not only on X̃ but also on X. To deal with
Iτ0(ωFη; γ̃j), we appeal to the following lemma.

Lemma 4.2.12. Let ω, η, τ0, τj, and γ̃j be as above. Then

Iτ0(ωFη; γ̃j) = Iτj(ωFη; γ̃j)− Iτ0(η; γ̃j)

∫ τj

τ0

ω.

Proof. Since λ = ωFη is a holomorphic 1-form on H, its integral along a closed contour
vanishes. Thus

Iτ0(λ; γ̃j) = Iτj(λ; γ̃j) +

∫ τj

τ0

λ−
∫ γ̃jτj

γ̃jτ0

λ.

To evaluate the second term on the right-hand side, we observe that ω comes from a 1-
form on X, so it is Γ0(N)-invariant; it thus pulls back to itself along the fractional linear
transformation defined by γ̃j. On the other hand,

Iτ (η; γ̃j) =

∫ γ̃jτ

τ

η = Fη(γ̃jτ)− Fη(τ), for all τ ∈ H.

Hence (γ̃j)
∗Fη = Fη + Iτ (η; γ̃j). So (γ̃j)

∗λ = λ+ Iτ (η; γ̃j)ω, and we find∫ γ̃jτj

γ̃jτ0

λ =

∫ τj

τ0

(γ̃j)
∗λ =

∫ τj

τ0

λ+

∫ τj

τ0

Iτ (η; γ̃j)ω.

Finally, note that Iτ (η; γ̃j) is independent of τ , so we can set τ = τ0 and pull it out of the
integral, which yields the lemma.

Observe that every term on the formula from Lemma 4.2.12 can be computed using the
fundamental theorem of calculus, evaluating power series only at the points τ0 and τj. In
particular, each γ̃j will have |c| ≥ N , so taking τ0 = i/N , each such evaluation converges
at least as fast as an evaluation at τj since Im(τj) = 1/|c| ≤ 1/N , so this formula for the
integral is “optimally efficient”.

Remark 4.2.13. We warn the reader that possibly Iτ0(ωFη; γ̃j) 6=
∫
γ̃j
ω · η (regarding γ̃j as

an element of π1(Y an; o)). Indeed, the iterated integral attached to ω · η need not even be
homotopy invariant, so

∫
γ̃j
ω · η is not even well-defined! In particular, one cannot relate

Iτ0(ωFη; γ̃j) to Iτj(ωFη; γ̃j) using the change-of-basepoint formula (4.4) for iterated integrals.

Computing the Poincaré dual γf of ωf

To evaluate the integrals in Lemma 4.2.12, we need to express γf as a C-linear combination
of a basis for H1(Xan,Z), which can be represented by elements of Γ0(N). As always, we
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wish to choose elements of Γ0(N) that optimize the efficiency of the algorithm. Recall that
our optimal base point for

γ̃ =

[
a b
c d

]
is τ0 = −d

c
+ 1
|c|i and we want to minimize Im(τ0) = 1/|c|. Thus, when we write

γf =
∑

βjγj,

we should like to choose a basis {γj} with representatives γ̃j ∈ Γ0(N) with lower-left entries
as small as possible. By a brute-force search it is straightforward to find such elements γ̃j
giving rise to a basis in practice. For N < 200, one often only needs to consider matrices
with c = N or c = 2N . Once a set of representatives {γ̃j} has been found, all that remains
is calculating the βj.

For any m ∈ H1(Xan,C), write ηm for its Poincaré dual. Conversely, for any differential
η of the second kind on X, let mη ∈ H1(Xan,C) denote the Poincaré dual of its cohomology
class. We normalize the Poincaré duality isomorphism so that it is characterized by the
property

〈ηm, η〉 =

∫
m

η. (4.5)

The vector space H1(Xan,C) is also equipped an intersection product, which is related to
the Poincaré pairing by the formula

m ·mη =
1

2πi
〈ηm, η〉. (4.6)

The homology of X also admits a natural action of the Hecke algebra, compatible with
the action on cohomology via Poincaré duality. For any m ∈ H1(Xan,C), write mf ∈
H1(Xan,C)[f ] for the projection of m onto the f -isotypic component of homology. Similarly,
for η ∈ H1

dR(X/Q) write ηf for its projection onto the f -isotypic component. We can assume
that via the method described above we have computed a symplectic basis

S = {ωf,1, . . . , ωf,`, ηf,1, . . . ηf,`}

for H1
dR(X/Q)[f ].

Lemma 4.2.14. Fix γ̃1, γ̃2 ∈ Γ0(N) and let m1, m2 ∈ H1(Xan,Z) denote the corresponding
homology classes on X. Then we have

mf
1 ·m

f
2 =

1

2πi

∑̀
i=1

I(ωf,i;m1)I(ηf,i;m2)− I(ωf,i;m2)I(ηf,i;m1).
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Proof. Let ηk = ηmk and write ηfk =
∑
c

(k)
i ωf,i +

∑
d

(k)
i ηf,i. Then we compute

mf
1 ·m

f
2 =

1

2πi
〈ηf1 , η

f
2 〉

=
∑
i

1

2πi
(c

(1)
i d

(2)
i − c

(2)
i d

(1)
i )

=
1

2πi

∑
i

(I(ωf,i;m1)I(ηf,i,m2)− I(ηf,i;m1)I(ωf,i;m2)).

This proves the lemma.

Using (4.5), (4.6), and Lemma 4.2.14, we can compute the Poincaré dual γf of ωf .
Let m1, . . . ,m2` be modular symbols giving rise to a basis of H1(Xan,Z)[f ], which can be
computed using a modular symbols algorithm (cf. [Ste07]). In particular, if f is new, then
` = 1. Write M for the matrix (mi · mj)1≤i,j≤2`, which can be computed using Lemma
4.2.14, and let v be the column vector (mi · mωf )

2`
i=1, which can be computed using (4.6)

in conjunction with (4.5). Then the vector M−1v gives the coefficients expressing mωf as a
linear combination of m1, . . . ,m2`. Then, using a change-of-basis matrix between m1, . . . ,m2`

and {γj}, these coefficients can then be converted into the βj’s.

Computing the matrix An

The last ingredient we need to apply Lemma 4.2.2 is the matrix An giving the action of Tn
on the basis B. In section 4.2, we gave a method for computing An using the action of Tn on
q-expansions. However, this only works if gcd(n,N) = 1, so we must resort to other methods
in general. We exploit the fact that the action of Tn on H1(Xan,C)[g] is readily computable
using modular symbols; see [Ste07] for details. Recall that we have a Hecke-equivariant
duality

H1
dR(Xan,C)[g]×H1(Xan,C)[g]→ C

given by the integration pairing 〈ω, α〉 =
∫
α
ω; here the Hecke-equivariance means that

〈Tnω, α〉 = 〈ω, Tnα〉. Using modular symbols and the techniques of [Ste07] one can compute
the matrix Cn of Tn acting on H1(Xan,C)[g] on the left, with respect to a basis m1, . . . ,m2k.
Write D = (〈ωi,mj〉)2k

i,j=1, which can be computed efficiently via the method explained in §4.2

(using an appropriate basis {mj} derived from the generators γ
(j)
0 for H1(Xan,Z) discussed

above). Then it is straightforward linear algebra to show that An = DCnD
−1.

Computing the adjustments
∫
γf
α

Write the homology class γf Poincaré dual to ωf as

γf =
∑

βjγj
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for βj ∈ C and homology classes γj whose lifts to Γ0(N) are the γ̃j found in §4.2. Let ω
and η be differentials of the second kind, at least one of which is regular at ∞. Using the
methods described so far, we are already able to compute

zω,η :=
∑
j

βj

∫ γ̃jτ0

τ0

ωFη.

We stress that the value of zω,η depends on τ0 and the choices we made in representing γf .
It is simply one part of the iterated integral Jω,η(γf ) =

∫
γf
ω · η−αω,η, which is independent

of these choices. In this section, we describe a method for computing

Jω,η(γf )− zω,η = −
∑
j

βj

∫ γ̃jτ0

τ0

αω,η. (4.7)

This amounts to computing the q-expansion of αω,η.
Recall that the defining property of αω,η is that its principal part at∞ agrees with that of

ωFη on X̃, modulo dq/q, and thus their difference has at worst logarithmic poles. However,
note that since

∫
γf
λ = 0 for exact 1-forms λ, we may replace αω,η by any cohomologous

1-form. The cohomology class of αω,η is determined by the data 〈λi, αω,η〉, where λ1, . . . , λ2t

(for t the genus of X) form a basis of H1
dR(X/Q), so it suffices to compute these values of

the Poincaré pairing.
We choose λ1, . . . , λt to be holomorphic. In this case, we compute

〈λi, αω,η〉 = res∞(Fλi · αω,η) = res∞̃(Fλi · Fη · ω),

where the second equality holds because res∞(Fλi · αω,η) depends only on

pp∞(αω,η) mod
dq

q
= pp∞̃(ωFη).

Lemma 4.2.15. Let λ1, . . . , λt ∈ H0(X,Ω1
X/Q) be a basis of regular 1-forms on X. Then

α ∈ H1
dR(X/Q) lies in the subspace H0(X,Ω1

X/Q) if and only if 〈λi, α〉 = 0 for all 1 ≤ i ≤ t.

Proof. The subspace H0(X,Ω1
X/Q) ⊆ H1

dR(X) is isotropic for the Poincaré pairing because
the pairing can be computed using residues. For dimension reasons, it is maximal isotropic,
and the lemma follows.

By the lemma, if 〈λi, α〉 = 〈λi, α′〉 for i = 1, . . . , t, then α − α′ is cohomologous to a
regular 1-form. Since αω,η is only well defined modulo H0(X,Ω1

X/Q), it follows that we can

choose 〈λi, αω,η〉 for i = t + 1, . . . , 2t arbitrarily. For convenience, we choose 〈λi, αω,η〉 = 0
for i = t+ 1, . . . , 2t. Define the matrix B = (〈λi, λj〉)2t

i,j=1 and the vector

w = (〈λi, αω,η〉)2t
i=1 = (res∞̃(Fλ1Fηω), · · · , res∞̃(FλtFηω), 0, . . . , 0).

It then follows by elementary linear algebra that the vector B−1w yields the coefficients of
an expression for αω,η as a linear combination of λ1, . . . , λ2t. Then, using the fundamental

theorem of calculus, we can compute
∫ γ̃jτ0
τ0

λi for each i, allowing us to compute (4.7).
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Computing the denominator dg,n

The final ingredient to be computed is the denominator dg,n, or the smallest positive integer
such that dg,nTg,n ∈ TZ. This can be accomplished by computing a Z-basis for the (Z-finite
free) Hecke algebra TZ as a subring of M2t(Q), where t is the genus of X0(N), by identifying
TZ with an algebra of endomorphisms of the (2t)-dimensional Q-vector space of cuspidal
modular symbols of weight 2 and level N . As TZ is generated as an abelian group by Ti
for 1 ≤ i ≤ m

6
− m−1

N
(see [Ste07], Theorem 9.23), where m = [Γ(1) : Γ0(N)], this is a

finite computation. Once TZ has been computed it is a simple matter to find the matrix
representation of Tg,n and compute the smallest dg,n such that dg,nTg,n ∈ TZ.

4.3 Examples of the algorithm

In this section we work through some examples of the algorithm from §4.2.

The elliptic curve 37a1

Take N = 37 in the setup of our algorithm. In this setting, the space of regular differentials
on X = X0(37) is spanned by ωf and ωg, which are associated to elliptic curves over Q
(labeled 37a1 and 37b1 in Cremona’s database) of ranks 1 and 0, respectively. The elliptic
curve 37a1 has minimal Weierstrass equation given by

y2 + y = x3 − x,

and its Mordell-Weil group is generated by the point (0 : 0 : 1).
By computing the periods attached to ωf and ωg, it can be checked that the classes of

the matrices

γ̃1 =

(
2 −1
37 −18

)
, γ̃2 =

(
3 −1
37 −12

)
, γ̃3 =

(
5 2
37 15

)
, γ̃4 =

(
14 3
37 8

)
generate the rational homology of X. These are a “nice” basis for the homology in the sense
of the first paragraph of §4.2; that is, the lower left entries are all exactly 37. Using this
basis, the integral

∫ γiτ
τ

λ can be evaluated efficiently for any meromorphic differential 1-form
λ on X0(37) or its universal cover regular away form ∞, by the method of §4.2.

To obtain differentials of the second kind representing classes in the de Rham cohomology,
we consider the elements of the form

η1 = u · ωf , η2 = u · ωg, u = η(q)2η(q37)−2 = q−3

∞∏
n=1

(1− qn)2(1− q37n)−2,

where η(q) is the Dedekind eta function. The modular function u is an example of an eta
product with its only pole at ∞, as considered in §4.2. It is not hard to check directly by
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calculating the Poincaré pairing on all pairs of elements that the classes of ωf , ωg, η1 and η2

generate the de Rham cohomology of X; alternatively one could apply Lemma 4.2.4.
After computing the matrix M of the Hecke operator T2 acting on H1

dR(X0(37)) with
respect to the basis ωf , ωg, η1, η2, and then determining the eigenspaces of M , one finds that

ηf =
1

4
(−37ωg + 4η1 − 8η2),

ηg =
1

4
(37ωf − 6η1 + 10η2)

are in the f and g isotypic components of the de Rham cohomology respectively. In addition
these linear combinations of 1-forms have been chosen so that {ωf , ηf} and {ωg, ηg} form
symplectic bases for the components with respect to the Poincaré pairing.

When one computes the Poincaré dual γf of ωf as in §4.2, one finds (with our normal-
ization):

γf =
1

2πi
(A ([γ̃2]− [γ̃3] + [γ̃4])−B (−[γ̃1] + 2[γ̃2])) .

Here
A ≈ (2.4513893 . . .)i, B ≈ 2.9934586 . . .

are certain linear combinations of the periods of ωf against a basis of H1(X)[f ]; see §4.2 for
a more exact description.

The method of §4.2 can be used to compute αωg ,ηg . However, in this case, it is easy
to find αωg ,ηg by inspection. Working with principal parts, one finds that pp∞(ωgFηg) ≡
pp∞(1

4
(η1 − η2)) mod dq

q
. Thus we may take αωg ,ηg = 1

4
(η1 − η2). Integrating this over γf

yields
∫
γf
αωg ,ηg = −0.4999999 . . ., likely the rational number −1

2
.

Since g is a rational newform, then by Remark 4.2.1, we can find all the points Pg,f,n by
only computing Pg,f . According to Remark 4.2.3, this amounts to computing the complex
number zg,f :=

∫
γf

(ωg · ηg− ηg ·ωg− 2αωg ,ηg). The method in §4.2, coupled with the previous

paragraph, yields
zg,f = −0.4093610 . . .+ (1.2256946 . . .)i.

Let W be the Weierstrass uniformization of E. Then the point W (zg,f ) ∈ E(C) does not
necessarily lie in E(Q). This is because Tg is a rational combination of cycles, and so W (zg,f )
is a Q-linear combination of points in E(Q). Thus, the image of W (zg,f ) in E(C)⊗Q lies in
the subspace E(Q)⊗Q. So in order to write Pg,f as an element of this space, we must compute
the “denominator” of Tg. As in §4.2, one can compute using the first few Fourier coefficients
of f and g that the idempotent e = (0, 1) ∈ Q×Q ' TQ does not belong to TZ ⊂ TQ but 2e
does. Here, the isomorphism associates Tn⊗1 ∈ TQ to (an(f), an(g)) ∈ Q×Q. By definition,
Tg corresponds to e as an element of the Hecke algebra, so it has denominator 2. Thus, we
can write Pg,f = W (2zg,f )⊗ 1

2
∈ E(Q)⊗Q. One finds that W (2zg,f ) agrees with the global

point (1357
841

: 28888
24389

: 1) to within 13 digits of accuracy using 350 Fourier coefficients, so we
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expect that

Pg,f =

(
1357

841
:

28888

24389
: 1

)
⊗ 1

2
= 12(0 : 0 : 1)⊗ 1

2
= 6(0 : 0 : 1) ∈ E(Q)⊗Q.

The elliptic curve 43a1

Let N = 43 and let E be the elliptic curve labeled 43a1 in Cremona’s database, with minimal
Weierstrass equation given by

y2 + y = x3 + x2.

The modular curve X = X0(43) has genus 3. There are two isotypic components of H1
dR(X),

one of dimension 2 corresponding to the modular form f that parametrized E, and another
of dimension 4 corresponding to a newform g with Fourier coefficients in Q(

√
2), associated

to an abelian surface quotient of J0(43).
In this case, the eta-quotient u that is modular for Γ0(43) of weight 0, holomorphic away

from the cusp ∞, and with minimal pole order at ∞, must be of the form

u =

(
η(q)

η(q43)

)n
for some n. From Definition 4.2.6, we see that it must be

u =
η(q)4

η(q43)4
= q−7 − 4q−6 + 2q−5 + 8q−4 − 5q−3 − 4q−2 − 10q−1 + 8 + 9q + 14q3 +O(q4).

Computing the Poincaré pairing shows that for a basis of cuspforms with rational Fourier
coefficients, corresponding to holomorphic 1-forms ωf , ωg,1, ωg,2 on X, the collection

ωf , ωg,1, ωg,2, uωf , uωg,1, uωg,2

forms a basis for H1
dR(X/Q). By finding the matrices of a few Hecke operators with respect

to this basis, one can as in the case N = 37 produce symplectic bases

ωf , ηf , and ωg,1, ωg,2, ηg,1, ηg,2

for H1
dR(X/Q)[f ] and H1

dR(X/Q)[g] respectively.
We can compute the Poincaré dual γf and the iterated integrals∫

γf

(ωg,i · ωg,j − αωg,i,ωg,j),
∫
γf

(ωg,i · ηg,j − αωg,i,ηg,j),
∫
γf

(ηg,i · ωg,j − αηg,i,ωg,j)

in the same manner as in the case N = 37 with one exception. One simply cannot find
αωg,i,ηg,j by inspection. No linear combination of our chosen basis has the same principal
part as ωg,iFηg,j . However, some linear combination is cohomologous to such a form. The
techniques from §4.2 can be used to find one.
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Each Tg,n gives rise to an element of End(H1
dR(X)[g]) ⊗ Q. The collection of elements

arising from Tg,n, n ≥ 1 generate a subspace of dimension 2, generated by Tg,1 and Tg,2.
Thus, we can effectively compute Pg,f,n for all n simply by computing Pg,f and Pg,f,2. The
formula for Pg,f is the one given in Remark 4.2.3, so we have

zg,f =

∫
γf

(ωg,1 · ηg,1 − ηg,1 · ωg,1 − 2αωg,1,ηg,1 + ωg,2 · ηg,2 − ηg,2 · ωg,2 − 2αωg,2,ηg,2)

= −2.0768300 . . .+ (2.7263648 . . .)i

The Hecke algebra TQ can be identified with Q × Q(
√

2) via Tn ⊗ 1 7→ (an(f), an(g)).
Under this identification, Tg,1 corresponds to e1 = (0, 1), and an examination of the Fourier
coefficients of f and g shows that e1 does not lie in the image of TZ, but 2e1 does. So, we
have

Pg,f = W (2zg,f )⊗
1

2
=

(
11

49
: −363

343
: 1

)
⊗ 1

2
∈ E(Q)⊗Q.

Finding Pg,f,2 is a little more involved, as we must compute the matrix of T2 acting
on ωg,1, ωg,2, ηg,1, ηg,2. Two methods for doing this were discussed in §4.2 and §4.2, and
either shows that T2ωg,1 = 2ωg,2, T2ωg,2 = ωg,1, T2ηg,1 = − 97997

132319
ωg,2 + ηg,2 and T2ηg,2 =

97997
132319

ωg,1 + 2ηg,1. So the matrix A2 is given by
0 2 0 0
1 0 0 0
0 − 97997

132319
0 1

97997
132319

0 2 0

 .

Combining this with Lemma 4.2.2 and remembering that αωg,i,ωg,j = 0 by Remark 4.1.6, we
find that

zg,f,2 = − 97997

132319

∫
γf

(ωg,1 · ωg,2 − ωg,2 · ωg,1) +

∫
γf

(ωg,1 · ηg,2 − ηg,2 · ωg,1 − 2αωg,1,ηg,2)

+ 2

∫
γf

(ωg,2 · ηg,1 − ηg,1 · ωg,2 − 2αωg,2,ηg,1)

= 2.4055874 . . .− (1.0710898 . . .)i.

The cycle Tg,2 corresponds to the element e2 = (0,
√

2) in Q×Q(
√

2), which belongs to TZ by
inspection of the Fourier coefficients of f and g. By evaluating the Weierstrass uniformisation
on zg,f,s we find:

Pg,f,2 = W (zg,f,2)⊗ 1 = (−1 : 0 : 1)⊗ 1 ∈ E(Q)⊗Q.
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Chapter 5

p-adic computations of Chow–Heegner
points

The aim of this section is to perform the same computations done in Chapter 4 p-adically.
This is achieved by replacing the complex Abel–Jacobi map with its p-adic counterpart, the
p-adic Abel–Jacobi map. We will then appeal to a result of Darmon and Rotger to obtain
a formula for AJp on X3. The iterated integrals from Chapter 4 will be replaced by the
ordinary projection of a certain p-adic modular form associated to f and g. See §5.2 below
or [DR12] for more details.

5.1 Overconvergent and p-adic modular forms

We briefly describe the aspects of theory of overconvergent and p-adic modular forms that
we will need later. For a more complete treatment, see [Kat73] or [Gou88].

Overconvergent and p-adic modular forms of weight two

Fix N ≥ 4 and a prime p ≥ 5 not dividing N . Let X1(N) denote the scheme over
Spec(Z[1/N ]) classifying elliptic curves with an N -torsion point. For the remainder of this
section, fix the notation

X := X1(N)×Z[1/N ] Spec(Zp),

X := X ×Zp Spec(Qp),

X̃ := X ×Zp Spec(Fp).

Let P̃1, . . . , P̃s ∈ X̃(Fp2) denote the supersingular points of X̃. They are precisely the
zeros of the Hasse invariant, a mod p modular form of weight p − 1. We choose lifts
P1, . . . , Ps ∈ X (Zp2) as the zeros of Ep−1, the weight p− 1 Eisenstein series lifting the Hasse
invariant to characteristic 0. This choice is customary rather than necessary, as the exact
choice of lifts is not important.
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Since X is proper, we have a canonical reduction map

red : X(Cp)→ X̃(F̄p).

Then the ordinary locus of X(Cp) is given by A := red−1(X̃(F̄p) − {P̃1, . . . , P̃s}). For each
0 < ε < 1, define a wide open neighborhood of A by

Wε := A ∪ {x ∈ X(Cp) | ordp(Ep−1(x)) < ε}.

Here ordp(Ep−1(x)) = ordp(Ep−1(Ax, ωx)), where Ax is the elliptic curve corresponding to
x and ωx ∈ Ω1(Ax/Cp) extends to a regular differential in Ω1(Ax/OCp) if Ax has good
reduction, or corresponds to the canonical differential if Ax is the Tate curve. Since any two
choices of ωx differ by an element of O×Cp , it is clear that ordp(Ep−1(x)) is independent of
this choice.

Definition 5.1.1. Let F be a subfield of Cp. We define the space of p-adic modular

forms M
(p)
2 (Γ1(N), F ) of weight 2 with coefficients in F to be the space of rigid differen-

tials Ω1(A/F )(log cusps) with logarithmic poles at the cusps defined over F . The space of
overconvergent modular forms Moc

2 (Γ1(N), F, ε) with coefficients in F and radius ε is given

by Ω1(Wε, F )(log cusps). The p-adic and overconvergent cusp forms S
(p)
2 (Γ1(N), F ) and

Soc
2 (Γ1(N), F, ε) are the subspaces of forms regular at the cusps.

Restriction defines a natural inclusion Soc
2 (Γ1(N), F, ε) ⊂ S

(p)
2 (Γ1(N), F ), and we say a

p-adic modular form is overconvergent if it lies in the subspace

Soc
2 (Γ1(N), F ) :=

⋃
ε>0

Soc
2 (Γ1(N), F, ε).

Let Γ := Γ1(N)∩Γ0(p), and write X (Γ) for the scheme over Spec(Z[1/Np]) parametrizing
elliptic curves with an N -torsion point and a p-isogeny. Write X ′ := X (Γ)×Z[1/Np] Qp. Then
Katz showed that the map X ′ → X forgetting the p-isogeny has a canonical section defined
over Wε whenever ε < p

p+1
. This section gives rise to an inclusion

S2(Γ, F ) ⊂ Soc
2 (Γ1(N), F, ε)

of classical modular forms of weight 2 with coefficients in F into the space of ε-overconvergent
forms. In particular, let χ be a primitive Dirichlet character of conductor dividing N and
g ∈ S2(N,χ) be an eigenform such that ap(g) is a p-adic unit; such a form is called ordinary.
Let α and β denote the roots of the polynomial

X2 − ap(g)X + χ(p)p

ordered so that ordp α = 0. Then the p-stabilizations

gα(z) := g(z)− βg(pz),

gβ(z) := g(z)− αg(pz)

are classical modular forms for Γ, and thus can be considered as overconvergent modular
forms.
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De Rham cohomology and the U operator

Write Y = X −{P1, . . . , Ps}, and let Y denote the generic fiber of Y . Since Y is affine, then
H1

dR(Y/F ) = Ω1(Y/F )/dOY/F . Define

H1
rig(Wε/F ) =

Ω1(Wε/F )

OWε/F

.

Restriction of differential forms yields a map compε : H1
dR(Y/F ) → H1

rig(Wε/F ). For each

P̃1, . . . , P̃s, let Vj be the annulus

Vj = {x ∈ red−1(P̃j) | ordp(Ep−1(x)) < ε}.

Then, in addition to the standard residue map resPj : Ω1(Y/F )→ F (−1), there is an annular
residue map

resVj : Ω1(Wε/F )→ F (−1);

see [Col89], Lemma 2.1. Here F (−1) refers to the filtered Frobenius module as defined in
§2.3. Using isomorphism 1.3.4, we have an exact sequence

0 −−−→ H1
dR(X/F ) −−−→ H1

dR(Y/F )
⊕jresPj−−−−→ F (−1)s

∑
−−−→ F (−1) −−−→ 0

Proposition 5.1.2. The map compε is an isomorphism, inducing a commutative diagram

H1
dR(Y/F )

⊕jresPj−−−−→ F (−1)s
∑
−−−→ F (−1) −−−→ 0ycompε

∥∥∥ ∥∥∥
H1

rig(Wε/F )
⊕jresVj−−−−→ F (−1)s

∑
−−−→ F (−1) −−−→ 0

allowing us to identify H1
dR(X/F ) with subspace of classes in H1

rig(Wε/F ) with vanishing
annular residues.

Proof. See Theorem 4.2 of [Col89].

We denote by Soc
2 (Γ1(N), F )0 the subspace of Soc

2 (Γ1(N), F ) of forms f whose associated
differential ωf has vanishing annular residues. Thus, for any f ∈ Soc

2 (Γ1(N), F )0, we obtain
a cohomology class [ωf ] ∈ H1

dR(X/F ) by the previous proposition.
Suppose ε < p

p+1
. Then Katz showed in [Kat73] that for every x ∈ Wε, the corresponding

elliptic curve Ax admits a canonical subgroup Zx of order p, even if Ax is supersingular at
p. This allows us to define a canonical lift of the Frobenius morphism Φ : Wε/p → Wε by
setting Φ(x) := Ax/Zx, the elliptic curve Ax/Zx with the N -torsion point coming from Ax.
The induced map Φ : Ω1(Wε/F )→ Ω1(Wε/p/F ) defines a map on H1

dR(Y/F ) via the diagram

H1
dR(Y/F )

Φ−−−→ H1
dR(Y/F )ycompε

ycompε/p

H1
rig(Wε/F )

Φ−−−→ H1
dR(Wε/p/F )
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Since Φ is compatible with annular residues, i.e. resVjΦ(ω) = Φ(resVjω), then Φ leaves the
subspace H1

dR(X/F ) invariant. On this space, the Poincaré pairing can be described in terms
of annular residues. We have the formula

〈ρ1, ρ2〉 =
∑
j

resVj(F
(j)
ω1
· ω2), (5.1)

where ω1, ω2 ∈ Ω1(Wε/F ) are representatives for ρ1, ρ2 and F
(j)
ω1 is a local primitive for ω1

on Vj. Furthermore,
〈Φ(ω1),Φ(ω2)〉 = Φ〈ω1, ω2〉 = p〈ω1, ω2〉. (5.2)

Let H1
dR(X/F )ur denote the unit-root subspace of H1

dR(X/F ) spanned by vectors on which Φ
acts via multiplication by a p-adic unit. More generally, let H1

dR(X/F )Φ,t denote the slope-
t subspace spanned by vectors on which Φ acts via multiplication by a scalar with p-adic
valuation t. Then the last equality shows that the Poincaré pairing descends to a perfect
pairing

〈 , 〉 : H1
dR(X/F )ur ×H1

dR(X/F )Φ,1 → F (−1). (5.3)

The spaces of p-adic and overconvergent modular forms are equipped with actions of two
operators, denoted Up and Vp, whose effect on q-expansions is given by

(Upf)(q) =
∞∑
n=1

anp(f)qn, (Vpf)(q) =
∞∑
n=1

an(f)qnp.

These operators satisfy the relations

(UpVpf)(q) = f(q), (VpUpf)(q) =
∞∑
n=1

anp(f)qnp,

so that
f [p](q) := (1− VpUp)f(q) =

∑
p-n

an(f)qn,

the p-depletion of f , is also a p-adic modular form. This notion will be useful later when
describing a formula for the p-adic Abel–Jacobi map.

As seen above, Up and Vp are not quite inverses of each other. However, they are inverses
on H1

dR(X/F ). The form f [p] has a rigid analytic primitive,

F [p](q) =
∑
p-n

an(f)

n
qn,

an overconvergent modular form of weight 0, and hence an element of OWε/F for suitable
ε > 0. Hence, (1−VpUp)f(q) = 0 in H1

dR(X/F ), showing that Up and Vp are inverses of each
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other. In terms of the Frobenius operator Φ, we have Φ(ωf ) = pωVpf , where ωf ∈ Ω1(Wε/F )
is the associated differential form. Therefore we have the relation

Φ = pVp = pU−1
p (5.4)

on cohomology.
Denote by Soc

2 (Γ1(N), F )ord the ordinary subspace of Soc
2 (Γ1(N), F ), that is, the space

spanned by vectors on which Up acts via multiplication by a p-adic unit. The operator

eord := lim
n
Un!
p

is Hida’s projection to the ordinary subspace. Sometimes we will write f ord for eordf . From
5.4, we can conclude that if f ∈ Soc

2 (Γ1(N), F )ord
0 , then ωf ∈ H1

dR(X/F )Φ,1. Hence, we have
the following proposition.

Proposition 5.1.3. For any η ∈ H1
dR(X/F )ur and f ∈ Soc

2 (Γ1(N), F )0, we have

〈η, ωf〉 = 〈η, ωford〉,

and Poincaré duality induces a non-degenerate pairing

〈 , 〉 : H1
dR(X/F )ur × Soc

2 (Γ1(N), F )ord
0 → K.

Proof. This follows from 5.3, 5.4, and the previous discussion.

To simplify notation, for any f ∈ Soc
2 (Γ1(N), F )ord

0 , we will write 〈η, ωf〉 and 〈η, f〉
interchangeably henceforth.

Katz expansions

In this section, we provide an alternate description of p-adic modular forms that is more
amenable to explicit computation. Let Mk(N,χ,Zp) be the space of classical modular forms
of level N , character χ, and coefficients in Zp. For each i ≥ 0, multiplication by Ep−1 gives
rise to an injective map

Ep−1 : Mk+i(p−1)(N,χ,Zp)→Mk+(i+1)(p−1)(N,χ,Zp).

Set W0(N,χ,Zp) = Mk(N,χ,Zp), and for all i ≥ 0 choose submodules Wi(N,χ,Zp) of
Mk+i(p−1)(N,χ,Zp) such that

Mk+i(p−1)(N,χ,Zp) = Ep−1 ·Mk+(i−1)(p−1)(N,χ,Zp)⊕Wi(N,χ,Zp).

Such a choice is not canonical. For any finite extension F of Qp, let B denote the ring
of integers of F , and write Wi(N,χ,B) := Wi(N,χ,Zp) ⊗Zp B. For any r ∈ B, the ring
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Mk(N,χ,B, r) of r-overconvergent modular forms of weight k is the space of all “Katz
expansions”

f =
∑
i≥0

ri
bi

Ei
p−1

, bi ∈Wi(N,χ,B), lim
i→∞

bi = 0,

where limi→∞ bi = 0 means in the sense of the p-adic topology. We define Mk(N,χ, F, r) :=
Mk(N,χ,B, r) ⊗B F . Note that the primary role of the element r ∈ B is to determine the
radius p−ordpr of the annulus of overconvergence. Thus it is simpler to adopt the convention
used in [Lau12] of defining for any α ∈ Q the space of α-overconvergent forms Mk(N,χ,Zp, α)
to be Katz expansions of the form

f =
∑
i≥0

pbαic
bi

Ei
p−1

, bi ∈Wi(N,χ,Zp), lim
i→∞

bi = 0.

5.2 A p-adic formula for Chow–Heegner points

In this section we derive a formula for the points Pg,f,n that will be useful for the computations
in the next section. Let Nf and Ng denote the levels of f and g, respectively, and let N be
a positive integer divisible by Nf and Ng. Let p ≥ 5 be a prime not dividing N . Denote by
Kg the coefficient field of g, and let Ψ denote the set of embeddings σ : Kg → Q̄p. For each
σ ∈ Ψ and any h ∈ S2(Γ0(N), Kg), denote by hσ ∈ S2(Γ0(N), Q̄p) the image of h under σ.
Fix a subfield F ⊂ Q̄p containing the images of all σ ∈ Ψ. Finally, we assume that f and g
are ordinary at p, that is ap(f

σ) and ap(g
σ) are p-adic units for all σ ∈ Ψ.

A basis for H1
dR(X0(N)/F )[g]

Write Nrel = N/Ng. For any d | Nrel, there exists a modular form of level N with q-expansion

gd(q) = d · g(qd) ∈ S2(Γ0(N), Kg).

For any σ ∈ Ψ, the form gσd is an eigenvector for all Hecke operators T` such that ` - d with
eigenvalue a`(g

σ). The set {gσd}d|Nrel,σ∈Ψ forms a basis for S2(Γ0(N), F )[g], and thus {ωgσd }d,σ
forms a basis for H0(X0(N)F ,Ω

1
X)[g]. For simplicity, we will write ωσd for the remainder of

the section.
Since g is ordinary, restriction of the exact sequence

0→ H0(X0(N)F ,Ω
1
X)[g]→ H1

dR(X0(N)/F )[g]→ H1(X0(N)F ,OX)[g]→ 0

to the unit-root subspace yields an isomorphism

H1
dR(X0(N)/F )[g]ur ' H1(X0(N)F ,OX)[g].

This can be seen directly from (5.4) and the definitions of ordinary and the unit-root sub-
space. Thus, any class η ∈ H1(X0(N)F ,OX)[g] has a unique lifting to H1

dR(X0(N)/F )[g]ur,
denoted by ηur.
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Now consider the anti-holomorphic form

ηa-h
gd

:= ωgd · 〈ωgd , ωgd〉−1 ∈ H0(X0(N)C,Ω1
X)[g] ⊂ H1

dR(X0(N)/C)[g].

This form is actually defined over Kg (Corollary 2.3, [DR12]), and thus for any σ ∈ Ψ we
obtain a form ηa-h

gσd
∈ H1

dR(X/F )[g]. Its image ηgσd ∈ H1(XF ,OX)[g] has a unique lifting

ηur
gσd
∈ H1

dR(X/F )[g]ur. We shall write ησd for this last element henceforth.

Proposition 5.2.1. The set {ωσd , ησd}d|Nrel,σ∈Ψ forms a basis for H1
dR(X/F )[g].

Proof. The forms ηa-h
gσd

for σ ∈ Aut(C) are a basis for the anti-holomorphic subspace of

H1
dR(X0(N)/C)[g], and thus the classes ηgσd form a basis for H1(X0(N)Kp ,OX)[g] since the

holomorphic and anit-holomorphic subspaces intersect trivially. Thus, the ησd give a ba-
sis for H1

dR(X0(N)/F )[g]ur. Finally, since g is ordinary, the subspaces H0(X0(N)F ,Ω
1
X)[g]

and H1
dR(X0(N)/F )[g]ur intersect trivially and generate the entire space, so the proposition

follows.

Proposition 5.2.2. Let d1, d2 | Nrel and σ1, σ2 ∈ Ψ. Write d = d1d2/ gcd(d1, d2)2. Then we
have

〈ωσ1
d1
, ωσ2

d2
〉 = 0, (5.5)

〈ησ1
d1
, ησ2
d2
〉 = 0, (5.6)

〈ωσ1
d1
, ησ2
d2
〉 =

{
ad(gσ1 )

[Γ0(Ng):Γ0(dNg)]
, σ1 = σ2

0, σ1 6= σ2

. (5.7)

Proof. The first two statements follow from the fact that H0(XF ,Ω
1
X) and H1

dR(X/F )ur

are isotropic with respect to the Poincaré pairing, as can be deduced from (5.1) and (5.2).
Similarly, the third statement when σ1 6= σ2 follows from the fact that Hecke operators Tn
are self-adjoint when gcd(n,N) = 1 and ωσ1

d1
and ησ2

d2
have distinct eigenvalues for some such

n when σ1 6= σ2.
All that remains is the σ1 = σ2 case, which we will write simply as σ. Let ωσg and ησg

denote the classes in H0(X0(Ng)F ,Ω
1
X) and H1

dR(X0(Ng)/F )ur corresponding to the newform
gσ. By construction, we have 〈ωσg , ησg 〉 = 1. We will compute 〈ωσd1

, ησd2
〉 using this relation

and property (1.9) of the Poincaré pairing.
For any divisor t | Nrel, let πt : X0(N)→ X0(Ng) denote the morphism of modular curves

corresponding to “quotient by level t structure”. Then ωσd1
= π∗d1

ωσg . From the definition
above, we also have

ηa-h
gd2

= ωgd2 · 〈ωgd2 , ωgd2 〉
−1

= π∗d2
ωg · 〈π∗d2

ωg, π
∗
d2
ωg〉−1

= π∗d2
(ωg) · [Γ0(Ng) : Γ0(N)]−1 · 〈ωg, ωg〉−1

= [Γ0(Ng) : Γ0(N)]−1 · π∗d2
ηa-h
g .
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The third equality comes from (1.9) via

〈π∗d2
ωg, π

∗
d2
ωg〉 = 〈πd2∗π

∗
d2
ωg, ωg〉 = deg(πd2)〈ωg, ωg〉.

From this relation, it follows that ησd2
= [Γ0(Ng) : Γ0(N)]−1 · π∗d2

ησg . Again from (1.9), we
have

〈ωσd1
, ησd2
〉 = [Γ0(Ng) : Γ0(N)]−1〈π∗d1

ωσg , π
∗
d2
ησg 〉 = [Γ0(Ng) : Γ0(N)]−1〈πd2∗π

∗
d1
ωσg , η

σ
g 〉,

so it suffices to determine the effect of πd2∗π
∗
d1

on ωσg . Let m = gcd(d1, d2), d = d1d2/m
2

and write di = mni. Then we can factor πdi = πniπm, where πm : X0(N) → X0(dNg) and
πni : X0(dNg)→ X0(Ng). Thus, we have

πd2∗π
∗
d1
ωσg = (πn2∗πm∗)(π

∗
mπ
∗
n1
ωσg )

= πn2∗(πm∗π
∗
m(π∗n1

ωσg ))

= [Γ0(dNg) : Γ0(N)] · πn2∗π
∗
n1
ωσg

For any prime power `k such that ` - Ng, the Hecke operator T`k is given by the corre-
spondence π1∗π

∗
`k

= π`k∗π
∗
1, where π1, π`k : X0(`kNg) → X0(Ng). If ` | Ng, then the Hecke

operator T`k is still given by π`k∗π
∗
1, but T`k is no longer self-adjoint. However, g is a new-

form, and T`k is self-adjoint when restricted to the new subspace, so we can identify T`k
with both π`k∗π

∗
1 and π1∗π

∗
`k

in this case. Observe that πn2∗π
∗
n1

is the composition of the
correspondences

π
`
k1
1 ∗
π∗1 = T

`
k1
1
,

π1∗π
∗
`
k2
2

= T
`
k2
2
,

where `i runs over all primes dividing ni and `kii is the largest power of `i dividing ni. Since
d = n1n2, this composition is simply Td, and thus πn2∗π

∗
n1
ωσg = Tdω

σ
g = ad(g

σ)ωσg . So

πd2∗π
∗
d1
ωg = [Γ0(dNg) : Γ0(N)]ad(g)ωσg ,

and therefore

〈ωσd1
, ησd2
〉 = [Γ0(Ng) : Γ0(N)]−1〈πd2∗π

∗
d1
ωσg , η

σ
g 〉

=
[Γ0(dNg) : Γ0(N)]

[Γ0(Ng) : Γ0(N)]
ad(g

σ)〈ωσg , ησg 〉

=
ad(g

σ)

[Γ0(Ng) : Γ0(dNg)]
.
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An explicit formula for the p-adic Abel–Jacobi map

Let αp(g
σ) and βp(g

σ) be the roots in F of the polynomial

x2 − ap(gσ)x+ p = 0,

chosen such that ordp(αp(g
σ)) = 0 and ordp(βp(g

σ)) = 1, which is possible since g is ordinary.
Define αp(f) and βp(f) analogously, noting that they are independent of σ since f has rational
q-expansion. Following the notation of [DR12], write

E1(gσ) =1− βp(gσ)2p−2,

E(gσ, gσ, f) =(1− βp(gσ)αp(g
σ)αp(f)p−2)× (1− βp(gσ)βp(g

σ)αp(f)p−2)

× (1− βp(gσ)αp(g
σ)βp(f)p−2)× (1− βp(gσ)βp(g

σ)βp(f)p−2)

=(1− ap(f)p−1 + p−1)× (1− βp(gσ)2ap(f)p−2 + βp(g
σ)4p−3).

Recall the rigid analytic primitive G
σ,[p]
d of the p-depletion g

σ,[p]
d of gd and the ordinary

projector eord as defined in §5.1. The following theorem of Darmon and Rotger will be
essential in determining a precise formula for Pg,f,n.

Theorem 5.2.3 ([DR12], Theorem 3.8). Let ησd1
, ωσd2

, ωf , E1(gσ), and E(gσ, gσ, f) be as
above. Then

AJp(∆GKS)(ησd1
⊗ ωσd2

⊗ ωf ) =
E1(gσ)

E(gσ, gσ, f)
〈ησd1

, eord(G
σ,[p]
d2
× f)〉.

Proof. See [DR12].

The formula for Pg,f,n

We define the p-adic logarithm of E to be the map

logE : E(F )→ F, P 7→
∫ P

O

ωE,

where
∫ P
O
ωE is the Coleman integral of the invariant differential ωE, suitably normalized

in a formal neighborhood of O. Writing red : E(Cp) → E(F̄p) for the reduction map, if
red(P ) = Õ, where Õ ∈ E(F̄p) is the identity, then this definition agrees with the formal
group logarithm of E. Thus, logE(P ) is explicitly computable for any P ∈ E(F ) as

logE(P ) =
1

m
logE(Pm),

where m = #E(k) with k the residue field ofOF . Extend logE to a map logE : E(F )⊗Q→ F
by the rule logE(P ⊗ r

s
) = r

s
logE(P ).
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Combining Proposition 5.2.2 with Lemma 4.2.2, we can obtain a formula for cl(ε0Tg,n),
and subsequently a formula for Pg,f,n using Theorem 5.2.3. In the notation of Lemma 4.2.2,
the matrices An and B are of the form[

Cn 0
0 Cn

]
,

[
0 D
−D 0

]
,

where Cn is the matrix for the action of Tn on {ωσd}d|Nrel,σ∈Ψ and

D = (〈ωσdi , η
σ
dj
〉)di,dj |Nrel,σ∈Ψ.

For the first matrix, this is because Tn stabilizes the subspace spanned by the ησd and the
action is the same as that on the ωd. The second matrix is due to Proposition 5.2.2 and the
skew-symmetry of the Poincaré pairing. For each di | Nrel and σ ∈ Ψ, write

eord(G
σ,[p]
di
× f) =

∑
dj |Nrel,σ∈Ψ

γσdi,djg
σ,(p)
dj

+ · · ·

where g
σ,(p)
dj

is the ordinary p-stabilization of gσdj . Finally, continuing the notation of [DR12],
set

E0(gσ) = 1− βp(gσ)2p−1.

Theorem 5.2.4. In the notation above, we have

logE(Pg,f,n) =
∑
σ∈Ψ

2E0(gσ)E1(gσ)

E(gσ, gσ, f)

∑
di,dj |Nrel

mσ
ijγ

σ
di,dj

,

where M = (mσ
ij)i,j,σ is the matrix

M = D−1CnD.

In particular, if gcd(n,Nrel) = 1, then Cn commutes with D, and thus

logE(Pg,f,n) =
∑
σ∈Ψ

2E0(gσ)E1(gσ)

E(gσ, gσ, f)

∑
d|Nrel

an(gσ)γσd,d,

Proof. From Theorem 2.3.6 and Proposition 2.3.5, we have

logE(Pg,f,n) =

∫ Pg,f,n

O

ωE

= AJp(Pg,f,n)(ωE)

= AJp(∆GKS)(cl(εoTg,n)⊗ ωf ).
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Note the slight abuse of notation: technically, Pg,f,n is an element of CH1(E)0(Q)⊗Q, but in
the first two expressions we are identifying it with an element of E(Q)⊗Q via its canonical
isomorphism with CH1(E)0(Q)⊗Q.

By Lemma 4.2.2, cl(ε0Tg,n) is given by the matrix −B−1A, or

−
[

0 D
−D 0

]−1 [
Cn 0
0 Cn

]
=

[
0 D−1

−D−1 0

] [
Cn 0
0 Cn

]
=

[
0 D−1Cn

−D−1Cn 0

]
.

Write D−1Cn = (xσij)i,j,σ. Then,

cl(εoTg,n) =
∑

di,dj |Nrel,σ∈Ψ

xσij(ω
σ
di
⊗ ησdj − η

σ
dj
⊗ ωσdi).

This yields

logE(Pg,f,n) =
∑

di,dj |Nrel,σ∈Ψ

xσijAJp(∆GKS)(ωσdi ⊗ η
σ
dj
⊗ ωf − ησdj ⊗ ω

σ
di
⊗ ωf ).

The cycle ∆GKS is stable under the involution i : X0(N)3 → X0(N)3 interchanging the first
two factors, and thus using Proposition 2.3.5, we can rewrite the last expression as∑

di,dj |Nrel,σ∈Ψ

xσij(AJp(∆GKS)(ωσdi ⊗ η
σ
dj
⊗ ωf )− AJp(∆GKS)(ησdj ⊗ ω

σ
di
⊗ ωf ))

=
∑

di,dj |Nrel,σ∈Ψ

xσij(AJp(∆GKS)(i∗(−ησdj ⊗ ω
σ
di
⊗ ωf ))− AJp(∆GKS)(ησdj ⊗ ω

σ
di
⊗ ωf ))

=
∑

di,dj |Nrel,σ∈Ψ

xσij(−AJp(∆GKS)(ησdj ⊗ ω
σ
di
⊗ ωf )− AJp(∆GKS)(ησdj ⊗ ω

σ
di
⊗ ωf ))

=− 2
∑

di,dj |Nrel,σ∈Ψ

xσijAJp(∆GKS)(ησdj ⊗ ω
σ
di
⊗ ωf ).

By Theorem 5.2.3, this becomes

logE(Pg,f,n) = −
∑
σ∈Ψ

2E1(gσ)

E(gσ, gσ, f)

∑
di,dj |Nrel

xσij〈ησdj , eord(G
σ,[p]
di
× f)〉

= −
∑
σ∈Ψ

2E1(gσ)

E(gσ, gσ, f)

∑
di,dj |Nrel

xσij
∑
dk|Nrel

γσdi,dk〈η
σ
dj
, g

σ,(p)
dk
〉.

Now g
σ,(p)
dk

= gσdk −
1

αp(gσ)
gσpdk is ordinary, so eordg

σ,(p)
dk

= g
σ,(p)
dk

. Similarly, gσdk −
1

βp(gσ)
gσpdk has

Up-eigenvalue βp(g
σ) of slope 1, so its ordinary projection is 0. From these relations, we can

establish

eordg
σ
dk

=
αp(g

σ)

αp(gσ)− βp(gσ)
g
σ,(p)
dk

=
1

1− βp(gσ)2p−1
g
σ,(p)
dk

=
1

E0(gσ)
g
σ,(p)
dk

.
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Additionally, by Propositions 5.1.3 and 5.2.2 and the skew-symmetry of the Poincaré pairing,
we have

〈ησdj , eordg
σ
dk
〉 = 〈ησdj , ω

σ
dk
〉 = −〈ωσdk , η

σ
dj
〉 = −〈ωσdj , η

σ
dk
〉.

Putting it all together, we find that

logE(Pg,f,n) = −
∑
σ∈Ψ

2E1(gσ)E0(gσ)

E(gσ, gσ, f)

∑
di,dj |Nrel

xσij
∑
dk|Nrel

γσdi,dk〈η
σ
dj
, eordg

σ
dk
〉

=
∑
σ∈Ψ

2E1(gσ)E0(gσ)

E(gσ, gσ, f)

∑
di,dk|Nrel

γσdi,dk

∑
dj |Nrel

xσij〈ωσdj , η
σ
dk
〉

=
∑
σ∈Ψ

2E1(gσ)E0(gσ)

E(gσ, gσ, f)

∑
di,dk|Nrel

mσ
ikγ

σ
di,dk

.

This proves the first assertion. For the second, note that when gcd(n,Nrel) = 1 the classes
ωσdi and ησdj are eigenforms for Tn with eigenvalue an(gσ). Let r denote the number of divisors

of Nrel. Then the matrix Cn diagonal formed by |Ψ| blocks of r × r scalar matrices with
entries an(gσ) for σ ∈ Ψ. The matrix D is also composed of r× r blocks along the diagonal,
with 0 everywhere else. This is because 〈ωσ1

di
, ησ2
dj
〉 = 0 when σ1 6= σ2 by Proposition 5.2.2.

From these descriptions, it is obvious that Cn and D commute, and so the second assertion
follows from the first.

5.3 A p-adic algorithm for computing Chow–Heegner

points

With Theorem 5.2.4 in hand, we can now devise an algorithm for computing Pg,f,n. The
quantities E1(gσ), E0(gσ), and E(gσ, gσ, f) appearing in the formula from the theorem can all
be computed from the q-expansions of g and f and the embeddings Ψ. If gcd(n,Nrel) = 1,
then the only other ingredients are an(gσ) and γσd,d for d | Nrel. The former can be computed
from the q-expansion of g and the embeddings Ψ, and the latter using the ordinary projection
algorithm of Lauder [Lau12]. Even if gcd(n,Nrel) > 1, we can still compute the coefficients
mσ
ij from the matrices Cn and D. The matrix Cn is established from the action of the Hecke

operator Tn on the forms gd for d | Nrel, and D is given by Proposition 5.2.2.
In the next few subsections, we lay out the details for carrying out the computations

of these various ingredients. It is convenient, though not indispensable, to assume that p
is unramified in Kg. For the sake of computational efficiency, we will always choose the
smallest p satisfying these hypotheses for the computations in the tables that can be found
in Appendix A. As in Chapter 4.2, we only need to compute the points Pg,f,n for Hecke
operators Tn forming a basis for TQ[g]. As p - N , we can always find a set of generators
consisting of Tn with p - n, so we will assume this henceforth.
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Computing the embeddings Ψ

The first step is computing the coefficient field Kg, a subfield F of Q̄p containing the images
of all embeddings Ψ, and then finding the embeddings themselves. The first item, the field
Kg along with a defining polynomial h(x), can be found easily using the modular forms
package in MAGMA. Then we proceed by factoring h(x) mod p. If p is unramified in Kg,
then we can take as F the unramified extension Qpd of degree d over Qp, where d is the
least common multiple of the degrees of all factors of h(x) mod p. Otherwise, we must
take a ramified extension of Qpd . While this poses no problems computationally, it is an
uncommon occurrence in practice, and it is often easier to simply choose another prime p
that is unramified in Kg.

Once the field F has been determined, it is a simple application of Hensel’s lemma to
find the roots of h(x) in OF mod pm for any desired precision m. These roots then determine
[Kg : Q] embeddings of Kg into F : since Kg ' Q[x]/(h(x)), we can write any β ∈ Kg as∑deg(h)−1

i=0 aix
i, with ai ∈ Q. Then, if α is a root of h(x) in Qpd , set

σα(β) =

deg(h)−1∑
i=0

aiα
i.

Then Ψ = {σα | α ∈ Qpd , h(α) = 0}. In this way we can represent Ψ as a list of approxima-
tions of roots of h(x) in F .

Computing eord(G
σ,[p]
di
× f)

Now we set our sights on computing the quantities γσdi,dj . The first step is to compute

eord(G
σ,[p]
di
× f). We use an algorithm of Lauder to this end, which we briefly describe in

this subsection. For more details, the interested reader may consult [Lau12]. The notation
in this section is chosen to be consistent with that of loc. cit., and any inconsistencies with
other sections should be disregarded.

Let H ∈ Mk(N,χ, F,
1
p+1

) be an overconvergent modular form of weight k, coefficient

field K, and convergence radius 1
p+1

. For any integer m ≥ 1, the algorithm computes the
image

eordH ∈ OF [[q]]/(pm, qs(m,p)),

where s(m, p) is an explicit function of m and p to be explained later. The most obvious
method for computing eordH is to iterate the Up operator sufficiently many times; this, how-
ever, is very expensive computationally, requiring psm Fourier coefficients of H to compute
the s-fold iterate of Up. The more efficient approach used by Lauder is to compute (approx-
imations of) a basis of Mk(N,χ, F,

1
p+1

), the matrix for Up with respect to this basis, and
then iterate this matrix on H sufficiently many times. All computations must be accurate
enough to guarantee that the output for eordH is correct mod (pm, qs(m,p)).

The first step is to compute Katz expansions. Set k0 := k. Let n = bp+1
p−1

(m+1)c, and for
each i = 0, . . . , n, compute di, the dimension of the space of classical modular forms of level
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N , character χ, and weight k0 + i(p − 1). Set m0 := d0 and mi := di − di−1 for i ≥ 1, and
` := m0 + · · · + mn = dn. To guarantee the output is correct mod pm, we will be working
mod pm

′
, where m′ = m + d n

p+1
e. Also compute the Sturm bound `′ ≥ ` for the space of

classical modular forms of level N , character χ, and weight k0 + n(p− 1).
As in §5.1, choose submodules Wi(N,χ,Zp) of the spaces Sk0+i(p−1)(N,χ,Zp). Compute

the q-expansions of the Eisenstein series Ep−1 and a basis bi,1, . . . , bi,mi of Wi(N,χ,Zp) in
Z[[q]]/(pm

′
, qp`

′
). Then compute the Katz basis elements

ei,s := pb
i

p+1
cE−ip−1bi,s.

The next step is to compute the matrix of the Up operator. First, compute the q-expansions
of the elements ti,s := Up(ei,s) in Z[[q]]/(pm

′
, q`
′
). Then, let T be the `× `′ matrix with the

`′ coefficients of the ` elements ti,s as entries, and E the `× `′ matrix with the `′ coefficients
of the ` elements ei,s as entries. Using linear algebra over Z/(pm′), compute the matrix A′

such that T = A′E. This is the matrix for the Up operator with respect to the chosen basis
of Katz expansions, and by reducing mod pm we obtain the matrix A that we require.

Now, we are ready to compute eordH. The first step is to find the q-expansion for
H ∈ OF [[q]]/(pm

′
, qp`

′
), and then Up(H) ∈ OF [[q]]/(pm

′
, q`
′
) to improve overconvergence.

This last step ensures that Up(H) ∈ Mk(N,χ, F,
p
p+1

) so that the coefficients in the infinite

vector representing Up(H) with respect to our Katz basis decay p-adically. This allows us
to iterate the matrix A on the first ` coefficients, as the rest vanish mod pm. Now find
coefficients αi,s ∈ OF/(pm) such that Up(H) ≡

∑
i,s αi,sei,s mod (pm, q`

′
). Notice the loss of

precision of m′ −m in this step, which is why we have been using m′ up until now.
Now we wish to iterate the matrix A on the vector α = (αi,s) to obtain the ordinary

projection. We must choose a power of A that will kill all subspaces of positive slope and
fix the ordinary subspace mod pm. Thus, we compute the integer f such that all unit roots
of the reverse characteristic polynomial of A lie in an extension of Qp with residue field of
degree f over Fp. Then, Ar, where r := (pf − 1)pm, will be sufficient. Since we have already
applied Up once, we compute Ar−1 using fast exponentiation, and then set γ := αAr−1.
Finally,

eordH =
∑
i,s

γi,sei,s ∈ OF [[q]]/(pm, qs(m,p)),

where s(m, p) = p`′.

Computing the coefficients γσdi,dj

Once we know eord(G
σ,[p]
di
× f), it remains to determine γσdi,dj , where

eord(G
σ,[p]
di
× f) =

∑
dj |Nrel,σ∈Ψ

γσdi,djg
σ,(p)
dj

+ · · · .
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We will do this by computing eσdj , that is the functional on Moc
2 (N,χ, F )ord sending g

σ,(p)
dj

to 1 and all other eigenforms to 0. First, we must compute a basis of Moc
2 (N,χ, F )ord. By

Theorem 6.1 of [Col96], all such forms are classical, and thus we may compute a basis via
classical methods. However, as Np gets large this can be computationally intensive, whereas
with a little extra work Lauder’s method for computing eord also produces the desired basis.
Namely, if we compute B := Ar = Ar−1A, then B is the ordinary projector on our Katz
basis. Hence, if we let (Bi,s) be the nonzero rows in the echelon form of B, then the elements∑

i,sBi,sei,s form a basis of Moc
2 (N,χ, F )ord.

Note that eσdj is determined by the properties

eσdj(g
σ,(p)
dj

) = 1, eσdj(Tnh) = an(gσdj)e
σ
dj

(h)

for all Tn with p - n and h ∈ Moc
2 (N,χ, F )ord. As we can compute the action of Tn on

q-expansions, this gives us a procedure for determining edj . Set dord := dimMoc
2 (N,χ, F )ord

and let h1, . . . , hdord
be the basis elements found using Lauder’s algorithm. Then there exist

indices m1, . . . ,mdord
such that we can represent any h ∈ Moc

2 (N,χ, F )ord as the vector
(ami(h)) of its Fourier coefficients. Then create a matrix Q and a vector v as follows:

• The first row of Q is (ami(g
σ,(p)
dj

)) and the first entry of v is 1.

• Add rows to Q of the form (ami(Tnhj)−ami(g
σ,(p)
dj

)ami(hk)) for Hecke operators Tn and
h1, . . . , hdord

so long as the rank of Q increases. Stop when Q has dord rows.

• The remaining entries of v are all 0.

Then, writing (qi) = Q−1v, we have eσdj(h) =
∑

i qiami(h). Finally, from eσdj , we can compute

γσdi,dj = eσdj(eord(G
σ,[p]
di
× f)).

Computing the coefficients mσ
ij

The final ingredient in the formula for Pg,f,n is determining the entries mσ
ij of the matrix

M from Theorem 5.2.4. If gcd(n,Nrel) = 1, then M = Cn and mσ
ij = an(gσ) if i = j,

and is 0 otherwise, leading to the formula at the end of the theorem. So we may assume
gcd(n,Nrel) > 1. Recall that M is given by

M = D−1CnD,

where Cn encodes the action of Tn on the basis {ωσd}d|Nrel,σ∈Ψ and

D = (〈ωσidi , η
σj
dj
〉)di,dj |Nrel,σi,σj∈Ψ.

The matrix D is given explicitly by Proposition 5.2.2, so it suffices to compute Cn, or simply
Tng

σ
d . If n =

∏
`kii , then Tn =

∏
T
`
ki
i

. If ` - Nrel, then T`kg
σ
d = a`k(g

σ)gσd , so we only need to

consider ` | Nrel. Since Nrel | N , then ` | N , and for such ` we have T`k = T k` , and so we only
need to determine the action for T`. The next lemma gives us this action.
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Lemma 5.3.1. For any ` | Nrel,

T`g
σ
d =


a`(g

σ)gσd − gσ`d, ` - d, ` - Ng,
a`(g

σ)gσd , ` - d, ` | Ng,
`gσd/`, ` | d.

Proof. Before we begin the proof, we gather a few facts that we will need. Recall that gσd =
π∗dg

σ, where πd : X0(N) → X0(Ng) is the degeneracy map. Let π1, π` : X0(N) → X0(N/`)
be the degeneracy maps, and w` : X0(N)→ X0(N) be the morphism given by “quotient by
the `-primary subgroup”. Then, we have

T` + w∗` = π∗1π`∗ (5.8)

if `2 - N and
T` = π∗1π`∗ (5.9)

if `2 | N . Let π′d, π
′
d/` : X0(N/`) → X0(Ng) be the degeneracy maps, with the second one

only defined if ` | d. Then, we can write πd = π′dπ1 if ` - d and πd = π′d/`π` otherwise. There
are two cases:
Case 1: ` | d. If ` - Ng, then `2 - N = NrelNg, and so π`w` = π1. Then we have

w∗`g
σ
d = w∗`π

∗
dg

σ = w∗`π
∗
`π
′∗
d/`g

σ = π∗1π
′∗
d/`g

σ = π∗d/`g
σ = gσd/`.

We compute π∗1π`∗g
σ
d as

π∗1π`∗g
σ
d = π∗1π`∗π

∗
dg

σ = π∗1π`∗π
∗
`π
′∗
d/`g

σ = deg(π`)π
∗
1π
∗
d/`g

σ = deg(π`)g
σ
d/`.

We have deg(π`) = `+ 1 if `2 - N and deg(π`) = ` if `2 | N . So by equations (5.8) and (5.9),
we have

T`g
σ
d = `gd/`.

Case 2: ` - d. Let `k || Nrel, where k ≥ 1 is a positive integer. We will prove this case by
induction on k. First suppose that k = 1. Much like case 1, if ` - Ng, then π1w` = π`. So

w∗`g
σ
d = w∗`π

∗
dg

σ = w∗`π
∗
1π
′∗
d g

σ = π∗`π
′∗
d g

σ = π∗`dg
σ = gσ`d.

Now π′∗d g
σ is an eigenform for the Hecke operator T` = π`∗π

∗
1 with eigenvalue a`(g

σ), so

π∗1π`∗g
σ
d = π∗1π`∗π

∗
dg

σ = π∗1π`∗π
∗
1π
′∗
d g

σ = π∗1(a`(g
σ)π′∗d g

σ) = a`(g
σ)π∗dg

σ = a`(g
σ)gσd .

Again by equations (5.8) and (5.9), we have

T`g
σ
d =

{
a`(g

σ)gd − gσ`d, ` - Ng

a`(g
σ)gσd , ` | Ng

.
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This proves it when k = 1. For general k > 1, let g′σd = π′∗d g
σ be the form on X0(N/`). By

the inductive hypothesis, we have

T`g
′σ
d =

{
a`(g

σ)g′σd − g′σ`d, ` - Ng

a`(g
σ)g′σd , ` | Ng

.

Recalling that T` = π`∗π
∗
1, if ` - Ng we have

π∗1π`∗g
σ
d = π∗1π`∗π

∗
dg

σ = π∗1π`∗π
∗
1π
′∗
d g

σ = π∗1π`∗π
∗
1g
′σ
d = π∗1(a`(g

σ)g′σd − g′σ`d)
= a`(g

σ)gσd − gσ`d,

whereas if ` | Ng, then

π∗1π`∗g
σ
d = π∗1π`∗π

∗
dg

σ = π∗1π`∗π
∗
1π
′∗
d g

σ = π∗1π`∗π
∗
1g
′σ
d = π∗1(a`(g

σ)g′σd ) = a`(g
σ)gσd .

Since k > 1, then p2 | N , and thus by formula (5.9) we have T` = π∗1π`∗. This proves the
lemma.

Extracting Pg,f,n

At this point, we have methods for computing all of the ingredients in Theorem 5.2.4 neces-
sary to find logEf (Pg,f,n), so the final step is to compute Pg,f,n itself. The simplest way to do
this is to first find a generator P ∈ E(Q) modulo torsion and then compute logEf (P ) and
compare it to logEf (Pg,f,n). However, we cannot directly compute logEf (P ), since P is not in
the residue disk of the identity O ∈ Ef (Cp). Instead, we set Ap := #Ef (Fp) = p+ 1− ap(f)
and compute logEf (ApP ), as ApP is in the proper residue disk. This is a straightforward
computation, as explained in Chapter IV of [Sil09]. Then, logEf (Apdg,nPg,f,n) is an integral
multiple of logEf (ApP ), and thus we can determine Pg,f,n as an element of E(Q) ⊗ Q by
multiplying logEf (Pg,f,n) by Apdg,n and comparing it with logEf (ApP ).

Precision of the algorithm

In this final section, we analyze the accuracy of the algorithm. For the step supplied by
Lauder, we will not go into details as this is discussed in [Lau12]. Hence, we will assume

that the output of his computation is eord(G
σ,[p]
di
× f) and a basis of Moc

2 (N,χ, F )ord mod pm.
The main obstacle is the loss of precision incurred by computing Q−1. In order to quantify

this, let us introduce two types of precision when computing with Zp and Qp. For any a ∈ Zp,
the absolute precision of a is the largest r such that a is known mod pr. This notion does
not exist for elements of Qp, so instead for a ∈ Qp write a = pordpa

∑
n≥0 anp

n. Then the
relative precision of a is the largest r such that a0, . . . , ar−1 are known.

We will now use these concepts to determine an upper bound on the loss of precision.
Let m0 = ordp det(Q), which we know with absolute precision m along with the entries of
Q. If m0 = 0, then Q−1 has entries in Zp of absolute precision m. However, if m0 > 0 then
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Q−1 will have entries in Qp. Consider an entry aij of Q−1. We know that detQ has relative
precision m−m0, so if ordpaij ≤ m0, then we also know aij with relative precision m−m0.
On the other hand, if ordpaij > m0, then we only know aij with relative precision m−ordpaij
(setting ordpaij = m if aij is 0 mod pm). We do know, however, aij with absolute precision
m−m0.

Now, as the vector (qi) is simply the first column of Q−1, the same is true for (qi). Thus,
when we compute egσα(h) =

∑
i qiami(h), the worst possible case is if ordpqi = −m0, qi

has relative precision m −m0, and ordpami(h) = 0. In this case, the largest coefficient we
would know is that of pm−2m0−1. For every other possibility, we are guaranteed to know the
coefficient of pm−2m0−1, so we know egσα(h) with absolute precision m− 2m0, yielding a loss
of 2m0. Thus, if we wish to compute λgσ ,f with absolute precision m1, we may need to run
Lauder’s algorithm with m = m1 +2m0. This creates two additional problems: the necessity
of computing m0 beforehand, and the longer computing time from increasing the precision
of Lauder’s algorithm. The author has discovered that, at least when Np is relatively small,
it is more efficient to simply compute a basis for Moc

2 (N,χ, F )ord rationally by finding a basis
of the space of classical forms, and avoiding the loss of precision entirely.

Finally, the quantity

ordp

(
−2Apdg,n

E0(gσ)E1(gσ)

E(gσ, gσ, f)

)
will result in a further gain or loss of absolute precision depending on whether it is positive
or negative. However, this can be computed at the start of the algorithm, and all subsequent
computations can take this extra change into account.
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Appendix A

Tables of Chow-Heegner points

We present two tables of Chow-Heegner points computed using the algorithms presented in
Chapters 4 and 5. Both tables compute a basis for the module of points P TQ[g],f , where

• f ranges over newforms with level Nf < 100, and Ef rank 1,

• g ranges over newforms with Ng | Nf ,

• N = Nf .

As one would hope, the two algorithms agree in all cases considered. The algorithm from
Chapter 4 is performed using Sage, while the algorithm from Chapter 5 is carried out using
MAGMA, as these are the most efficient programs for each. In both tables, the curve Ef is
listed by its label in the Cremona database of elliptic curves, P is a generator of Ef (Q)
modulo torsion, n is the positive integer appearing in the definition of the cycle Tg,n, dg,n
is a positive integer such that dg,nTg,n ∈ T, and Pg,f,n ∈ Ef (Q) ⊗ Q is the point defined in
Chapter 3.

Table A.1 uses the algorithm from Chapter 4 and lists g by its index in the Sage routine
ModularSymbols(N).cuspidal subspace(). The complex number zg,f,n is the output of
the algorithm and should be considered as an element of C/Λf . Using a slightly different
coding of the same algorithm might have the result of modifying zg,f,n by an element of Λf .
The point Pg,f,n can be extracted from zg,f,n by taking the complex elliptic exponential of
dg,nzg,n,f .

Table A.2 uses the algorithm from Chapter 5 and lists g by its level Ng and its index in the
Newforms(CuspForms(Ng)) routine in MAGMA. The prime p is the smallest prime such that f
and g are ordinary at p and p is unramified inKg, and we write Ap for #Ef (Fp) = p+1−ap(f).
Finally, the p-adic number logEf (Apdg,nPg,f,n) is the output of the algorithm, logEf (Pg,f,n),
multiplied by Apdg,n, from which Pg,f,n can be extracted by comparison with logEf (ApP ).
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Table A.1: Chow-Heegner points computed complex analytically on curves of rank 1 and
conductor < 100

Ef P g (Ng) n dg,n zg,f,n Pg,f,n

37a1 (0,−1) 1 (37) 1 2 −(0.4093 . . .) + (1.2256 . . .)i −6P
43a1 (0,−1) 1 (43) 1 2 −(2.0768 . . .) + (2.7263 . . .)i 4P

2 1 −(2.4055 . . .) + (0.0000 . . .)i 2P
53a1 (0,−1) 1 (53) 1 2 −(1.2782 . . .) + (7.7029 . . .)i −2P

2 2 −(2.7691 . . .)− (1.5405 . . .)i −8P
3 2 (0.2126 . . .) + (7.7029 . . .)i 4P

57a1 (2, 1) 1 (57) 1 12 (0.0407 . . .) + (4.3961 . . .)i 4
3
P

2 (57) 1 3 −(0.1630 . . .) + (3.5169 . . .)i −16
3
P

3 (19) 1 2 −(0.8167 . . .) + (8.1529 . . .)i −4P
3 2 (0.5721 . . .)− (7.6733 . . .)i −4P

58a1 (0,−1) 1 (58) 1 4 (4.2294 . . .) + (2.2236 . . .)i 4P
2 (29) 1 2 (43.7247 . . .) + (8.8944 . . .)i 0

2 2 −(10.8009 . . .)− (4.4472 . . .)i 4P
3 2 (21.9926 . . .) + (8.8944 . . .)i 4P
4 2 −(10.8009 . . .)− (1.1118 . . .)i 4P

61a1 (1,−1) 1 (61) 1 2 (2.2974 . . .) + (4.4874 . . .)i −2P
2 2 (3.0715 . . .) + (2.4930 . . .)i 4P
3 1 −(1.5382 . . .) + (0.9972 . . .)i −4P

65a1 (−1, 1) 1 (65) 1 2 (4.2861 . . .) + (5.0850 . . .)i P
2 2 −(5.1338 . . .)− (6.3563 . . .)i 3P

2 (65) 1 2 (4.2861 . . .) + (5.0850 . . .)i P
2 2 (0.7469 . . .)− (1.2712 . . .)i P

77a1 (2, 3) 1 (77) 1 20 (0.0563 . . .) + (0.9796 . . .)i 12
5
P

2 (77) 1 6 (0.1020 . . .) + (1.2559 . . .)i −4
3
P

3 (11) 1 6 −(0.1020 . . .) + (1.7583 . . .)i 4
3
P

7 6 (1.2777 . . .)− (2.5119 . . .)i 44
3
P

4 (77) 1 10 −(0.4563 . . .) + (1.6578 . . .)i −12
5
P

2 2 (1.9059 . . .)− (0.7535 . . .)i −4P
79a1 (0, 0) 1 (79) 1 2 −(7.0579 . . .) + (8.0526 . . .)i −4P

2 2 (1.8682 . . .)− (2.0131 . . .)i −4P
3 2 −(1.1071 . . .) + (0.0000 . . .)i −4P
4 2 −(2.9754 . . .) + (4.0263 . . .)i 0
5 2 −(11.9016 . . .) + (14.0920 . . .)i 0
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Ef P g (Ng) n dg,n zg,f,n Pg,f,n

82a1 (0, 0) 1 (82) 1 4 −(10.3779 . . .) + (8.9281 . . .)i 0
3 2 (1.8759 . . .) + (0.0000 . . .)i 2P

2 (41) 1 2 −(29.2580 . . .) + (26.7844 . . .)i 2P
2 2 (5.1889 . . .)− (6.6961 . . .)i 0
3 2 (1.8759 . . .)− (0.0000 . . .)i 2P
4 2 (2.5944 . . .)− (6.6961 . . .)i 0
5 2 (19.3188 . . .)− (17.8562 . . .)i 4P
6 2 (30.4153 . . .)− (24.5524 . . .)i 2P

83a1 (0, 0) 1 (83) 1 2 −(5.9053 . . .) + (8.8072 . . .)i 0
2 2 (1.6527 . . .) + (0.9785 . . .)i 2P
3 2 (0.7745 . . .)− (0.9785 . . .)i 4P
4 2 −(10.8979 . . .) + (8.8072 . . .)i −4P
5 1 −(3.3054 . . .) + (5.8714 . . .)i −4P
7 2 −(4.2180 . . .) + (6.8500 . . .)i 0

88a1 (2,−2) 1 (88) 1 16 (0.0000 . . .)− (3.7247 . . .)i 0
3 16 (0.0000 . . .)− (2.0692 . . .)i 0

2 (44) 1 8 (0.0000 . . .)− (4.1385 . . .)i 0
2 2 (1.8916 . . .)− (1.6554 . . .)i 8P

3 (11) 1 2 (0.0000 . . .)− (6.6216 . . .)i 0
2 2 −(2.3608 . . .) + (0.0000 . . .)i 8P
4 1 −(0.4692 . . .) + (1.6554 . . .)i 16P
8 1 (3.7833 . . .)− (9.9325 . . .)i 16P

89a1 (0,−1) 1 (89) 1 5 −(0.1632 . . .) + (1.6095 . . .)i 8
5
P

2 (89) 1 10 −(6.2875 . . .) + (10.4620 . . .)i 2
5
P

2 10 (0.2451 . . .)− (1.0347 . . .)i 22
5
P

3 10 (4.4909 . . .)− (6.0932 . . .)i −16
5
P

4 10 −(15.9229 . . .) + (24.0282 . . .)i −2
5
P

6 10 (3.6747 . . .)− (9.5423 . . .)i 24
5
P

91a1 (0, 0) 1 (91) 1 4 −(2.9787 . . .) + (3.3385 . . .)i 2P
2 (91) 1 4 −(6.8760 . . .) + (6.6770 . . .)i 2P

2 2 (1.0301 . . .) + (1.6692 . . .)i −2P
3 (91) 1 4 −(9.8547 . . .) + (10.0156 . . .)i 4P

2 2 −(2.9787 . . .) + (3.3385 . . .)i 2P
3 2 (6.6527 . . .)− (6.6770 . . .)i 6P
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Ef P g (Ng) n dg,n zg,f,n Pg,f,n

91b1 (−1, 3) 0 (91) 1 4 −(1.0065 . . .) + (3.6260 . . .)i 0
2 (91) 1 4 −(2.0131 . . .) + (5.8016 . . .)i 0

2 2 (0.0000 . . .)− (0.0000 . . .)i 0
3 (91) 1 4 −(6.0394 . . .) + (10.1528 . . .)i 0

2 2 −(1.0065 . . .) + (3.6260 . . .)i 0
3 2 (5.0329 . . .)− (7.9772 . . .)i 0

92b1 (1, 1) 1 (92) 1 2 −(0.0000 . . .) + (0.0000 . . .)i 0
2 (46) 1 15 (0.0000 . . .)− (0.0000 . . .)i 0

2 5 −(0.9414 . . .) + (1.3179 . . .)i 0
3 (23) 1 20 (0.0000 . . .) + (0.0000 . . .)i 0

2 5 (0.9414 . . .)− (3.5145 . . .)i 0
3 4 (0.0000 . . .) + (0.0000 . . .)i 0
4 5 (3.7656 . . .) + (1.3179 . . .)i 0
6 1 −(4.7070 . . .)− (4.3931 . . .)i 0
8 5 (0.9414 . . .) + (3.0752 . . .)i 0

99a1 (2, 0) 1 (99) 1 12 (0.1687 . . .)− (5.1198 . . .)i −2
3
P

2 (99) 1 12 −(0.0000 . . .)− (5.5137 . . .)i 0
3 (99) 1 6 −(0.1687 . . .)− (4.3322 . . .)i 2

3
P

4 (33) 1 12 −(0.1687 . . .)− (9.8459 . . .)i 2
3
P

3 3 (0.8244 . . .) + (1.5753 . . .)i 8
3
P

5 (11) 1 6 (0.1687 . . .)− (15.3596 . . .)i −2
3
P

3 3 −(2.4553 . . .)− (1.5753 . . .)i −2
3
P

9 3 −(0.0179 . . .) + (29.9316 . . .)i −22
3
P
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Table A.2: Chow-Heegner points computed p-adically on curves of rank 1 and conductor
< 100

Ef P g p Ap n dg,n logEf (Apdg,nPg,f,n) Pg,f,n

37a1 (0, 0) 37(2) 7 9 1 2 5 · 7 + 5 · 72 + 4 · 73 +O(76) 6P
43a1 (0, 0) 43(2) 5 10 1 2 5+52+53+2·54+4·55+O(56) −4P

2 1
4 · 5 + 2 · 52 + 53 + 4 · 54 +

4 · 55 +O(56)
−2P

53a1 (0, 0) 53(2) 7 12 1 2
6 · 7 + 2 · 72 + 3 · 73 + 5 · 74 +

75 +O(76)
2P

2 2 3 · 7 + 4 · 72 + 6 · 73 +O(76) 8P
3 2 2 ·7+72 +3 ·74 +3 ·75 +O(76) −4P

57a1 (2,−2) 57(2) 5 9 1 3 2 ·5+53 +3 ·54 +2 ·55 +O(56) 16
3
P

57(3) 5 9 1 12
3 · 5 + 4 · 52 + 3 · 53 + 54 +

2 · 55 +O(56)
−4

3
P

19(1) 5 9 1 2 5 + 3 · 53 + 54 + 55 +O(56) 4P
3 2 5 + 3 · 53 + 54 + 55 +O(56) 4P

58a1 (0, 1) 58(2) 5 9 1 4
4 · 5 + 2 · 52 + 3 · 53 + 54 +

3 · 55 +O(56)
−4P

29(1) 5 9 1 2 O(56) 0
2 2 2·5+1·52+4·53+4·55+O(56) −4P
3 2 2·5+1·52+4·53+4·55+O(56) −4P
6 2 3 · 5 + 3 · 52 + 4 · 54 +O(56) 4P

61a1 (1,−1) 61(2) 5 9 1 2 2 · 52 + 3 · 54 +O(56) −2P
2 2 52 + 4 · 53 + 3 · 54 + 3 · 55O(56) 4P
3 1 2 · 52 + 3 · 54 +O(56) −4P

65a1 (−1, 1) 65(2) 7 12 1 2 3 · 72 + 6 · 75 +O(76) P
2 2 3 · 7 + 4 · 72 + 6 · 73 +O(76) 3P

65(3) 7 12 1 2 3 · 72 + 6 · 75 +O(76) P
2 2 3 · 72 + 6 · 75 +O(76) P

77a1 (2, 3) 77(2) 5 7 1 6 3 · 5 + 3 · 52 + 3 · 55 +O(56) −4
3
P

77(3) 5 7 1 20 2 ·5+3 ·52 +4 ·54 +55 +O(56) 12
5
P

77(4) 13 18 1 10
2 · 13 + 11 · 132 + 7 · 133 +

5 · 134 +O(135)
−12

5
P

2 2
5 · 13 + 12 · 132 + 6 · 133 +

10 · 134 +O(135)
−4P

11(1) 5 7 1 6
2 · 5 + 52 + 4 · 53 + 4 · 54 +

55 +O(56)
4
3
P

7 6 2 ·5+2 ·53 +3 ·54 +55 +O(55) 44
3
P
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Ef P g p Ap n dg,n logEf (Apdg,nPg,f,n) Pg,f,n

79a1 (0, 0) 79(2) 5 9 1 2 5+4 ·53 +3 ·54 +2 ·55 +O(56) −4P
2 2 5+4 ·53 +3 ·54 +2 ·55 +O(56) −4P
3 2 5+4 ·53 +3 ·54 +2 ·55 +O(56) −4P
4 2 O(56) 0
5 2 O(56) 0

82a1 (−1, 1) 82(2) 5 8 1 4 O(56) 0
3 2 2 · 5 + 3 · 52 + 3 · 55 +O(56) −2P

41(1) 5 8 1 2 2 · 5 + 3 · 52 + 3 · 55 +O(56) −2P
2 2 O(56) 0
3 2 2 · 5 + 3 · 52 + 3 · 55 +O(56) −2P
5 2 4 · 5 + 52 + 53 + 55 +O(56) −4P
6 2 2 · 5 + 3 · 52 + 3 · 55 +O(56) −2P

10 2
5 + 3 · 52 + 3 · 53 + 4 · 54 +

3 · 55 +O(56)
4P

83a1 (0, 0) 83(2) 7 11 1 2 O(76) 0
2 2 4·72+5·73+6·74+3·75+O(76) 2P
3 2 72 + 4 · 73 + 6 · 74 +O(76) 4P
4 2 6 · 72 + 2 · 73 + 6 · 75 +O(76) −4P
5 1 3 · 72 + 73 + 3 · 75 +O(76) −4P
7 2 O(76) 0

88a1 (2,−2) 88(2) 5 9 1 16 O(56) 0
2 16 O(56) 0

44(1) 5 9 1 8 O(56) 0

2 2
2 · 5 + 52 + 2 · 53 + 2 · 54 +

2 · 55 +O(56)
8P

11(1) 5 9 1 2 O(56) 0

2 2
2 · 5 + 52 + 2 · 53 + 2 · 54 +

2 · 55 +O(56)
8P

4 1
2 · 5 + 52 + 2 · 53 + 2 · 54 +

2 · 55 +O(56)
16P

8 1
2 · 5 + 52 + 2 · 53 + 2 · 54 +

2 · 55 +O(56)
16P
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Ef P g p Ap n dg,n logEf (Apdg,nPg,f,n) Pg,f,n

89a1 (0, 0) 89(2) 5 7 1 5 5 + 52 + 55 +O(56) −8
5
P

89(3) 11 14 1 10
4 · 112 + 9 · 113 + 4 · 114 +

3 · 115 +O(116)
−2

5
P

2 10 4·113+9·114+4·115+O(116) −22
5
P

3 10
112 + 2 · 113 + 5 · 114 +

5 · 115 +O(116)
16
5
P

4 10
7 · 112 + 113 + 6 · 114 +

7 · 115 +O(116)
2
5
P

6 10
4 · 112 + 2 · 113 + 3 · 114 +

8 · 115 +O(116)
−24

5
P

91a1 (0, 0) 91(2) 5 9 1 4 3 ·5+3 ·52 +53 +4 ·54 +O(56) 2P
91(3) 5 9 1 4 3 ·5+3 ·52 +53 +4 ·54 +O(56) 2P

2 2 5 + 3 · 52 + 53 + 2 · 55 +O(56) −2P

91(4) 5 9 1 4
5 + 2 · 52 + 3 · 53 + 3 · 54 +

55 +O(56)
4P

2 2
4 · 5 + 52 + 3 · 53 + 4 · 54 +

2 · 55 +O(56)
2P

3 2 4 · 5 + 3 · 54 + 2 · 55 +O(56) 6P
91b1 (−1, 3) 91(1) 5 9 1 4 O(56) 0

91(3) 5 9 1 4 O(56) 0
2 2 O(56) 0

91(4) 5 9 1 4 O(56) 0
2 2 O(56) 0
3 2 O(56) 0

92b1 (1,−1) 92(1) 7 12 1 2 O(76) 0
46(1) 7 12 1 2 O(76) 0

2 2 O(76) 0
23(1) 7 12 1 20 O(76) 0

2 5 O(76) 0
3 4 O(76) 0
4 5 O(76) 0
6 1 O(76) 0
12 1 O(76) 0
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Ef P g p Ap n dg,n logEf (Apdg,nPg,f,n) Pg,f,n

99a1 (0, 0) 99(2) 5 10 1 12 O(56) 0
99(3) 5 10 1 12 5 + 52 + 4 · 54 + 3 · 55 +O(56) 2

3
P

99(4) 5 10 1 6 2·5+4·52+4·53+2·54+O(56) −2
3
P

33(1) 5 10 1 12 4 ·5+3 ·52 +4 ·53 +55 +O(56) −2
3
P

3 3 4 ·5+3 ·52 +4 ·53 +55 +O(56) −8
3
P

11(1) 5 10 1 6 3 · 5 + 2 · 54 + 4 · 55 +O(56) 2
3
P

3 3
4 · 5 + 2 · 52 + 2 · 53 + 3 · 54 +

4 · 55 +O(56)
2
3
P

9 3 4 ·5+3 ·53 +3 ·54 +55 +O(56) 22
3
P




