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ABSTRACT OF THE DISSERTATION

A Floer-theoretic interpretation of the polynomial representation of the double affine
Hecke algebra

by

Eilon Reisin-Tzur
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023
Professor Ko Honda, Chair

We construct an isomorphism between the wrapped higher-dimensional Heegaard Floer
homology of κ-tuples of cotangent fibers and κ-tuples of conormal bundles of homotopically
nontrivial simple closed curves in T ∗Σwith a certain braid skein group, where Σ is a closed
oriented surface of genus > 0 and κ is a positive integer. Moreover, we show this produces
a (right) module over the surface Hecke algebra associated to Σ. This module structure
is shown to be equivalent to the polynomial representation of DAHA in the case where
Σ = T 2 and the cotangent fibers and conormal bundles of curves are both parallel copies.
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CHAPTER 1

Introduction

Symplectic geometry is a branch of differential geometry and differential topology which
has its origins in the Hamiltonian formulation of classical mechanics, tracing all the way
back to the early 1800s. It remained a somewhat small subfield of geometry until the 1980s
when Mikhael Gromov introduced the pseudoholomorphic curves approach in [Gro85].
Shortly after, Andreas Floer built on Gromov’s work in [Flo88] to define Lagrangian Floer
homology and prove a special case of Arnold’s conjecture concerning intersections between
Hamiltonian isotopic Lagrangian submanifolds. This gave birth to modern symplectic
geometry, which has since grown to an integral part of modern geometry. Since Floer’s
original theory, there have been numerous variations. To name a couple, Ozsváth and
Szabó introduced Heegaard Floer homology for closed oriented 3-manifolds in [OS04] and
Fukaya, Oh, Ohta, and Ono in [FOO09a] and [FOO09b] defined Lagrangian intersection
theory for a broader class of Lagrangians than those considered in Floer’s original paper.
As modern physics progresses alongside modern geometry, the Fukaya category coming
from Lagrangian intersection theory keeps modern symplectic geometry closely entangled
with string theory of modern physics.

More recently, higher-dimensional Heegaard Floer homology (HDHF) was developed
by Colin, Honda, and Tian in [CHT20] to analyze symplectic fillability questions in higher-
dimensional contact topology. As its name suggests, it is very closely related to Heegaard
Floer homology. HDHF also generalizes many of the ideas in [FOO09a] and [FOO09b] to
the case of κ-tuples of Lagrangians. It models the Fukaya category of the Hilbert scheme
of points on a Liouville domain and has been used to produce an invariant of links in S3.

This dissertation explores the applications and connections of HDHF to the fields
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of algebra and representation theory. In [HTYar], Honda, Tian, and Yuan constructed
isomorphisms between the wrapped HDHF of cotangent fibers of cotangent bundles of
closed oriented surfaces Σ with positive genus to Hecke algebras (Hκ(Σ)) associated with
Σ. In particular, they showed that the wrapped HDHF of cotangent fibers of T ∗T 2 is
isomorphic to the double affine Hecke algebra (DAHA) Ḧκ introduced by Cherednik in
[Che95] for his proof of Macdonald’s conjectures. Using results by Morton and Samuelson
in [MS21], Honda, Tian, and Yuan were able to provide a symplectic geometry (Floer-
theoretic) interpretation of DAHA and various other Hecke algebras.

The goal of this dissertation is to build on [HTYar] to provide a symplectic geometry
interpretation of the polynomial representation of DAHA, closely related to Cherednik’s
basic representation.

Let κ be a positive integer and fix κ distinct points q1, . . . , qκ ∈ Σ. Given the isomor-
phism between the wrapped HDHF CW (⊔κ

i=1T
∗
qi
Σ)c of cotangent fibers of T ∗Σ with an

additional parameter c and the surface Hecke algebra tensor product Hκ(Σ)⊗ Z[[ℏ]], there
exists a functor from the HDHF Fukaya category (with parameter c) to the category of
(right) ℏ-deformed Hκ(Σ)-modules which sends mutually disjoint Lagrangians L1, . . . , Lκ

to Hom(⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1Li). This dissertation aims to shed more light on this functor by
giving it a more explicit topological interpretation.

Abbondandolo, Portaluri, and Schwarz proved in [APS08] that Floer homology with
conormal boundary conditions is isomorphic to the singular homology of the natural path
space associated to the boundary conditions. In the case of cotangent fibers, Abouzaid
improved this to an A∞-equivalence on the chain level in [Abo12].

We discuss the generalization of these results to HDHF. More precisely, we define
the wrapped HDHF cochain complex between κ-tuples of mutually disjoint conormal
bundles. Restricting to the manifold T ∗Σ and conormal bundles ⊔κ

i=1T
∗
qi
Σ,⊔κ

i=1N
∗αi, where

α1, . . . , ακ is a mutually disjoint collection of homotopically nontrivial simple closed curves
in Σ, we find that the wrapped HDHF is concentrated in degree zero.

Our generalization of the path space in [APS08] is the path space of the unordered
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configuration space UConfκ(Σ) of κ points on Σ satisfying boundary conditions to ensure
the paths go between our conormal bundles.

Following [Abo12] and [HTYar], we define an evaluation map

E : CW (⊔κ
i=1ϕ

1
HV

(T ∗
qi
Σ),⊔κ

i=1N
∗αi) −→ C0(Ω(UConfκ(Σ), q,α))⊗ Z[[ℏ]],

where q = {q1, . . . , qκ} ∈ UConfκ(Σ), α = α1 × · · · × ακ, and Ω(UConfκ(Σ), q,α) is the
space of paths in UConfκ(Σ) starting at q and ending inα. Here we are viewing an element
(x1, . . . , xκ) ∈ α as an unordered tuple; this is possible since the α1, . . . , ακ are mutually
disjoint.

Taking homotopy classes of paths in C0(Ω(UConfκ(Σ), q,α)) and quotienting by the
HOMFLY skein relation produces a map

F : CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi) −→ BSkκ(Σ, q,α),

where BSkκ(Σ, q,α) is a variant of the braid skein algebra introduced by Morton and
Samuelson in [MS21]. Informally, BSkκ(Σ, q,α) consists of homotopy classes of braids
which start at {q1, . . . , qκ} and end in α1 × · · · × ακ, modulo the HOMFLY skein relation.
Morton and Samuelson also define the braid skein algebra on a punctured surface, leading
to our variant BSkκ(Σ, q,α, ∗), defined in Section 5.3. The puncture ∗ ∈ Σ gives rise to a
marked point relation which in turn is interpreted as a c-deformed homotopy relation on
our braids. Adding this marked point into our formulation, we get a map

F : CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c −→ BSkκ(Σ, q,α, ∗).

The first main result of this dissertation is Theorem 1.1, proved in Section 5.5 :

Theorem 1.1. F is an isomorphism.

With this in mind, we show that the action coming from HDHF of CW (⊔κ
i=1T

∗
qi
Σ)c on

CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c agrees with the action of the braid skein algebra BSkκ(Σ, q, ∗)
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on BSkκ(Σ, q,α, ∗).

Lemma 1.2. Let α1, . . . , ακ be parallel copies of the meridian on T 2. Then

BSkκ(T
2, q,α, ∗) ≃ (Z[a±1

1 , . . . , a±1
κ ]⊗ Z[Sκ])⊗ Z[c±1]⊗ Z[[ℏ]].

For the configuration of points qi and curves αi as in Lemma 1.2, we introduce an extra
homological variable d which keeps track of sliding the ends of the braids past each other
on the αi; see Definition 7.2. The next main result is obtained after setting d = s and relating
(Z[a±1

1 , . . . , a±1
κ ] ⊗ Z[Sκ]) ⊗ Z[c±1] ⊗ Z[[ℏ]] ⊗ Z[d±1] to Z[s±1, c±1][X1, . . . , Xκ] by averaging

over the permutation components:

Theorem 1.3. The action of CW (⊔κ
i=1T

∗
qi
T 2)c on CW (⊔κ

i=1T
∗
qi
T 2,⊔κ

i=1N
∗αi)c,d agrees with the

polynomial representation of Ḧκ on Z[s±1, c±1][X1, . . . , Xκ] after setting d = s and averaging the

permutation components of CW (⊔κ
i=1T

∗
qi
T 2,⊔κ

i=1N
∗αi)c,d.

1.1 Organization

Chapter 2: We give the necessary symplectic geometry background and a brief review of
HDHF.

Chapter 3: We review wrapped Floer homology of conormal bundles in Section 3.1 before
generalizing to wrapped HDHF in Section 3.2. In Section 3.3, we introduce a model
computation as an example of wrapped HDHF.

Chapter 4: In Section 4.1, we recall some facts about Legendre transforms and perturbed
geodesics to set the scene for connecting Floer theory to Morse theory in Section 4.2. We
generalize the results of Section 4.2 to wrapped HDHF in Section 4.3.

Chapter 5: In Section 5.1, we define the braid skein algebra of a surface. In Section 5.2, we
review the connection between the wrapped HDHF of cotangent fibers on surfaces and the
braid skein algebras from [HTYar]. In Section 5.3, we update our initial evaluation map
from Section 4.3 to include the parameter c. In Sections 5.4 and 5.5, we prove Theorem 1.1.
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Chapter 6: We outline the action of the braid skein algebra BSkκ(Σ, q, ∗) on BSkκ(Σ, q,α, ∗)

in Section 6.1. Section 6.2 describes the geometric action on the wrapped HDHF side. In
Section 6.3, we relate the two actions to show the equivalence of DAHA-modules.

Chapter 7: In Section 7.1 we review the DAHA and its polynomial representation. In Section
7.2, we specialize to the surface T 2 and curves α of a particular configuration. We then
prove Lemma 1.2 and Theorem 1.3.
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CHAPTER 2

Background

This chapter briefly introduces the necessary background on symplectic geometry and
reviews the general facts of HDHF. More details on symplectic geometry can be found in
[MS17] and we refer the reader to [CHT20] for more details regarding HDHF.

2.1 Symplectic Geometry

The main objects of interest in symplectic geometry are symplectic manifolds.

Definition. A symplectic manifold (X2n, ω) consists of a smooth 2n-dimensional manifold
X and a choice of a closed nondegenerate 2-form ω on X . The form ω is called a symplectic

form. (X,ω) is called exact if there exists a 1-form θ on X such that dθ = ω.

The data of an exact symplectic manifold can also be given by (X, θ), where θ is the
primitive 1-form of the symplectic form.

Definition. A Liouville form on a symplectic manifold (X,ω) is a 1-form θ such that ω = dθ.
The vector field Yθ such that iYθ

ω = θ is the Liouville vector field of θ.

Remark. By the nondegeneracy of ω, the Liouville vector field Yθ exists and is unique.

Definition. A Liouville domain is a compact symplectic manifold (X,ω, Yθ) with boundary,
together with a globally defined Liouville vector field Yθ which points transversally out of
the boundary.
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Remark. Alternatively, a Liouville domain can be described by (X, θ), where θ is the Liouville
form. We use this description in the following definition.

Definition. The completion (X̂, θ̂) of a Liouville domain (X, θ) is obtained by gluing the
end ([0,∞) × ∂X, eσθ|∂X) to (X, θ) along ∂X . Here σ denotes the [0,∞)-coordinate on
[0,∞)× ∂X .

Although a symplectic manifold will be the setting for much of this dissertation, the
objects we will be dealing with are Lagrangian submanifolds.

Definition. A Lagrangian submanifold L is an n-dimensional submanifold of (X2n, ω) such
that ω|L = 0. We call L an exact Lagrangian submanifold if ω = dθ and θ|L = df for some
function f ∈ C∞(L,R).

The natural next step is to consider maps on symplectic manifolds. We describe some
which have favorable properties with respect to Lagrangian submanifolds.

Definition. A symplectomorphism from (X1, ω1) to (X2, ω2) is a diffeomorphism ϕ : X1 → X2

preserving the symplectic form, i.e. such that ϕ∗ω2 = ω1.

The image of a Lagrangian submanifold under a symplectomorphism is again a La-
grangian submanifold.

There is an important subgroup of the symplectomorphisms from a symplectic manifold
(X,ω) to itself: Hamiltonian diffeomorphisms.

Definition. Let H : (X,ω) → R be a smooth function, referred to as a Hamiltonian function.
The unique vector field XH satisfying iXH

ω = −dH is called the Hamiltonian vector field of
H .

Remark. We use the convention iXH
ω = −dH for the Hamiltonian vector field. Some

references use iXH
ω = dH .
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Given aHamiltonian vector fieldXH , we let ϕt
H : (X,ω) → (X,ω) be the diffeomorphism

given by the time-t flow along XH . It is a simple application of Cartan’s magic formula to
show that ϕt

H is a symplectomorphism.

Definition. A Hamiltonian diffeomorphism is a symplectomorphism induced by the flow of
a Hamiltonian vector field.

2.2 Higher-dimensional Heegaard Floer homology

Definition. Let (X,α) be a 2n-dimensional completed Liouville domain and let ω = dα

be the exact symplectic form on X . The objects of the A∞-category Fκ(X) are κ-tuples
of disjoint exact Lagrangians. The morphisms HomFκ(X)(L0, L1) = CF (L0, L1) between
two such objects Li = Li1 ⊔ · · · ⊔ Liκ, i = 0, 1, with mutually transverse components is the
free abelian group generated by κ-tuples of intersections where each component is used
exactly once. That is, the generators are y = {y1, . . . , yκ}where yj ∈ L0j ∩ L1σ(j) for some
permutation σ of {1, . . . , κ}. The coefficient ring is Z[[ℏ]] and the A∞-operations µm will be
defined by (2.2).

Similarly to the cylindrical reformulation of Heegaard Floer homology by Lipschitz
[Lip06], we introduce an extra direction to keep track of points in the symmetric product
of X . Let D be the unit disk in C and Dm = D − {p0, . . . , pm} be the disk withm boundary
punctures arranged counterclockwise. Let ∂iDm be the boundary component from pi to
pi+1, with ∂mDm going from pm to p0. We choose representatives of the moduli space of
Dm modulo automorphisms and label these representatives Dm, for lack of a better name.
The A∞-base direction Dm is shown in Figure 2.1.

Consider the manifold X̃ = (Dm ×X,ωm + ω), where ωm is an area form on Dm which
restricts to dsi ∧ dti on each strip-like end ei near pi. We take s0 → −∞ as we approach the
negative end p0 and si → +∞ for the other punctures refered to as the positive ends. Given
m + 1 objects L0, . . . , Lm, we let L̃i = ∂iDm × Li. We denote by πX : Dm × X → X the
projection onto X and by πDm : Dm ×X → Dm the symplectic fibration of the base.

8



p0

p1

p2pm−1

pm

∂0Dm

∂1Dm∂m−1Dm

∂mDm

Figure 2.1: The A∞ base

There is a smooth assignment Dm 7→ JDm of almost complex structures JDm that are
close to a split almost complex structure jm × JX and which project holomorphically onto
Dm. For more details, the reader is referred to [CHT20] or [HTYar].

Remark. We call an assignment of almost complex structures sufficiently generic if all of the
moduli spaces under consideration are transversely cut out.

LetM(y1, . . . ,ym,y0) be the moduli space of maps

u : (Ḟ , j) −→ (Dm ×X, JDm),

where (F, j) is a compact Riemann surface with boundary, p0, . . . ,pm are disjoint κ-tuples
of boundary punctures of F , and Ḟ = F \ ∪ipi, such that u satisfies:



du ◦ j = JDm ◦ du;

each component of ∂Ḟ is mapped to a unique L̃ij;

πX ◦ u approaches yi as si → +∞ for i = 1, . . . ,m;

πx ◦ u tends to y0 as s0 → −∞;

πDm ◦ u is a κ-fold branched cover of Dm.

(2.1)

Letting the boundary punctures p0, . . . ,pm vary, the A∞ composition map

µm : CF (Lm−1, Lm)⊗ · · · ⊗ CF (L0, L1) −→ CF (L0, Lm)

9



is then defined as

µm(y1, . . . ,ym) =
∑

y0,χ≤κ

#Mind=0,χ(y1, . . . ,ym,y0) · ℏκ−χ · y0, (2.2)

where χ is the Euler characteristic of Ḟ and # is the signed count of the moduli space.

Theorem 2.1. The Fredholm index ofMχ(y1, . . . ,ym,y0) with a varying complex structure on

Dm is

ind(u) = (n− 2)χ+ µ+ 2κ−mκn+m− 2,

where µ is the Maslov index of u. We refer the reader to [CHT20] for details on a similar formula.

Remark. In the case where 2c1(TX) = 0 and the Maslov classes of the involved Lagrangians
vanish, we have that |ℏ| = 2− n.
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CHAPTER 3

Wrapped HDHF and conormal boundary conditions

We review wrapped Floer theory from the perspective of conormal boundary conditions
before generalizing to wrapped HDHF. We conclude the chapter with an example of
wrapped HDHF which will serve as a model for the content in Chapter 7.

3.1 Wrapped Floer theory of conormal bundles

We give a quick summary of wrapped Floer homology of conormal bundles; more details
can be found in [APS08].

LetM be a closed manifold and T ∗M be its cotangent bundle. Denoting the elements
of T ∗M as pairs (q, p) ∈ M × T ∗

q M , let ω = dp ∧ dq be the the standard symplectic form on
T ∗M . Furthermore, let η be the Liouville vector field satisfying Lηω = ω. Given a time-
dependent Hamiltonian H : [0, 1]× T ∗M → R, let XH be the unique vector field such that
−dH(Y ) = ω(XH , Y ) for any vector field Y on T ∗M . We look for solutions x : [0, 1] → T ∗M

of the non-local boundary value Hamiltonian equation

x′(t) = XH(t, x(t)), x(0) ∈ L0, x(1) ∈ L1, (3.1)

where L0 and L1 are Lagrangian submanifolds of T ∗M , not of M .

With this in mind, we consider smooth Hamiltonians H on [0, 1]× T ∗M such that:

(H0) every solution x of the non-local boundary value Hamiltonian problem is nondegen-
erate
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(H1) there exist h0 > 0 and h1 ≥ 0 such that

DH(t, q, p)[η]−H(t, q, p) ≥ h0|p|2 − h1,

for every (t, q, p) ∈ [0, 1]× T ∗M

(H2) there exists an h2 ≥ 0 such that

|∇qH(t, q, p)| ≤ h2(1 + |p|2), |∇pH(t, q, p) ≤ h2(1 + |p|)|,

for every (t, q, p) ∈ [0, 1]× T ∗M , where ∇q and ∇p denote the horizontal and vertical
components of the gradient, respectively.

Condition (H0) holds for a generic choice of H in the space that we are considering.
Conditions (H1) and (H2) ensure that H grows quadratically on the fibers of T ∗M and is
radially convex for large |p|.

We reframe our non-local boundary value Hamiltonian problem (3.1) as is done in
[APS08].

Let Q be a submanifold of M × M which is either compact or has cylindrical ends,
meaning it is the union of a compact submanifold and submanifolds of the formK× [0,∞),
where K is a Legendrian. Let N∗Q denote the conormal bundle of Q, i.e. the set of covectors
(q, p) in T ∗(M ×M) such that p ∈ T ∗

q (M ×M) vanishes identically on TqQ. The conormal
bundle N∗Q is a Lagrangian submanifold of T ∗(M ×M) and so is a natural candidate for
investigation.

Remark. Given two Lagrangians L0 and L1 in T ∗M , it is not necessarily true that L0 × L1

is the conormal bundle of some submanifold Q ⊂ M ×M . On the other hand, not every
N∗Q can be written as L0 × L1 for Lagrangians L0, L1 ∈ T ∗M . Therefore, the problem we
are tackling neither contains nor is contained in the original formulation above. For the
purposes of this dissertation, we will be interested in Lagrangians Li of T ∗M which are
conormal bundles of submanifolds Qi in M . Under these conditions, this new formulation
is equivalent to the first one sinceN∗(Q1×Q2) = L1×L2. Specifically, we will be interested

12



in the case where M is a closed oriented surface of positive genus and Q = {pt} × {pt} or
Q = {pt} × α for a homotopically nontrivial simple closed curve α.

Let H be a time-dependent Hamiltonian on T ∗M satisfying (H0), (H1), and (H2) and
consider the set of solutions, PQ(H), to the Hamiltonian equation with conormal boundary

conditions.

That is, PQ(H) is the set of x : [0, 1] → T ∗M satisfying

x′(t) = XH(t, x(t)),

subject to the boundary conditions

(x(0), Cx(1)) ∈ N∗Q,

where C is the anti-symplectic involution T ∗M → T ∗M , (q, p) 7→ (q,−p). Note that if
Q = Q1 × Q2 ∈ M × M , then PQ(H) is the set of trajectories from Q1 to Q2 along our
Hamiltonian vector field XH .

Let θ be the Liouville one-form on T ∗M and consider the Hamiltonian action functional
given by

AH(x) :=

∫
x∗(θ −Hdt).

The first variation of AH(x) on the space of free paths is

dAH(x)[ξ] =

∫ 1

0

ω(ξ, x′(t)−XH(t, x))dt+ θ(x(1))[ξ(1)]− θ(x(0))[ξ(0)],

where ξ is a section of x∗(TT ∗M). Since θ vanishes on the conormal bundle of every
submanifold ofM , the extremal curves of AH(x) are precisely the elements of PQ(H). This
is the reason we set this up with conormal bundles.

The conditions (H0), (H1), and (H2) that we imposed on our Hamiltonian H imply
that the set of solutions x ∈ PQ(H) such that AH(x) ≤ A is finite.

Given a smoothly time-dependent ω-compatible almost complex structure J on T ∗M ,

13



we consider the Floer equation

∂su+ J(t, u)(∂tu−XH(t, u)) = 0, (3.2)

where u : R× [0, 1] → T ∗M .

Let x−, x+ ∈ PQ(H) and denote by M(x−, x+) the set of all solutions of the Floer
equation (3.2) with the non-local boundary condition such that

lim
s→±∞

u(s, t) = x±(t), ∀t ∈ [0, 1].

Then one can show that we have an energy identity

E(u) := AH(x
−)− AH(x

+). (3.3)

Furthermore, M(x−, x+) is empty whenever AH(x
−) ≤ AH(x

+) and x− ̸= x+ and it
consists of only the element u(s, t) = x(t) when x− = x+ = x.

By perturbing the almost complex structure J , we can giveM(x−, x+) a smooth structure
and its dimension is the difference of Maslov indices,

dimM(x−, x+) = µQ(x−)− µQ(x+).

It follows that when µQ(x−)−µQ(x+) = 1, we get an oriented one-dimensional manifold.
Moreover, we have a free R-action given by translation of the s variable and so we arrive
at a compact zero-dimensional manifold M(x−, x+)/R. Let ϵ([u]) ∈ {−1, 1} be +1 if the
R-action is orientation-preserving on the component ofM(x−, x+) containing u, and −1

otherwise. Define
nF (x

−, x+) :=
∑

[u]∈M(x−,x+)/R

ϵ([u]),

and denote by FQ
k (H) the free Abelian group generated by the elements x ∈ PQ(H)with
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Maslov index k. The boundary morphism

∂k : F
Q
k (H) −→ FQ

k−1(H)

is defined by
∂kx

− :=
∑

x+∈PQ(H),µQ(x+)=k−1

nF (x
−, x+)x+.

Since the set of elements with an upper bound on the action is finite, the above sum is
finite. It can be shown that ∂k−1 ◦ ∂k = 0, and so {FQ

∗ (H), ∂∗} is a complex of free Abelian
groups, called the Floer complex of (T ∗M,Q,H, J). The Floer homology is then defined as
usual from the complex.

As usual, different choices of the Hamiltonian H produce chain homotopy equivalent
complexes (provided the Hamiltonians are close enough).

3.2 Wrapped HDHF

We offer a different but equivalent formulation of the wrapped Floer homology defined in
the previous subsection and extend it to wrapped HDHF.

Let (M, g) be a compact Riemmanian manifold of dimension n with the induced norm
| · | on T ∗M . Choose a time-dependent Hamiltonian HV : [0, 1]× T ∗M → R:

HV (t, q, p) =
1

2
|p|2 + V (t, q),

where q ∈ M, p ∈ T ∗
q M and V is a perturbation term with small W 1,2-norm. This Hamilto-

nian satisfies the conditions mentioned in the previous subsection.
Taking the standard symplectic form ω = dq ∧ dp on T ∗M , let XHV

be the Hamiltonian
vector field and ϕt

HV
be the time-t flow of XHV

.

Let L0, L1 be Lagrangian submanifolds of T ∗M with cylindrical ends. The time-1 flow,
ϕ1
HV

(L0), is again a Lagrangian submanifold of T ∗M with cylindrical ends. We define
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the wrapped Floer chain complex CW (L0, L1) of L0 and L1 to be the Floer chain complex
CF (ϕ1

HV
(L0), L1) of ϕ1

HV
(L0) and L1.

Proposition 3.1. Let Q = Q1 × Q2 ∈ M × M be a product of submanifolds whose conormal

bundles have cylindrical ends. Then given a Hamiltonian HV satisfying conditions as before,

CW (N∗Q1, N
∗Q2) = FQ(HV ).

Proof. In both cases, the generators are time-1 Hamiltonian chords from N∗Q1 to N∗Q2.
Moreover, the differentials for both count the same 0-dimensional moduli space of pseudo-
holomorphic curves between generators.

We now generalize the definition of wrapped Floer theory to wrapped HDHF.

Consider disjoint κ-tuples of Lagrangians Li = ⊔κ
i=jLij for i = 1, 2. We can ensure that

the Hamiltonian chords between all of the Lagrangians involved are non-degenerate by
choosing g and V generically.

Definition. The wrapped higher dimensional Heegaard Floer chain complex is given by

CW (L1, L2) := CF (⊔κ
i=1ϕ

1
HV

(L1i),⊔κ
i=1L2i).

In the case of L1 = L2, we let CW (L1) := CW (L1, L1) = CF (⊔κ
i=1ϕ

1
HV

(L1i),⊔κ
i=1L1i).

The A∞-operation
µm : CW (L1)⊗ · · · ⊗ CW (L1) −→ CW (L1)

does not immediately follow from the A∞-operations in the non-wrapped HDHF. Writing
the Lagrangians out carefully, we see that the map is actually

µm : CF (⊔iϕ
1
HV

(L1i),⊔iL1i)⊗· · ·⊗CF (⊔iϕ
m
HV

(L1i),⊔iϕ
m−1
HV

(L1i)) → CF (⊔iϕ
m
HV

(L1i),⊔iL1i),

where i = 1, · · · , κ. The subtlety is that while CF (⊔κ
i=1ϕ

l
HV

(L1i),⊔κ
i=1ϕ

l−1(L1i)) is naturally
isomorphic toCF (⊔κ

i=1ϕ
1
HV

(L1i),⊔κ
i=1L1i) for all l ∈ Z, it is not the case for the chain complex
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CF (⊔κ
i=1ϕ

m
HV

(L1i),⊔κ
i=1L1i). Luckily, this is resolved by a rescaling argument outlined in

[HTYar], following [Abo10].

Taking this one step further, given κ-tuples of Lagrangians L1 and L2 with cylindrical
ends, we can give CW (L1, L2) the structure of a (right) A∞-module over CW (L1). Using a
similar rescaling argument for d ≥ 2we can define the A∞-maps

µd : CW (L1, L2)⊗ CW (L1)⊗ · · · ⊗ CW (L1) −→ CW (L1, L2),

giving us a (right) A∞-module structure.

3.3 Wrapped HDHF example

We perform a model calculation with κ = 2. IdentifyM = T 2 with S1 × S1 = R/Z× R/Z.
Fix points q1 = (1

6
, 1
6
), q2 = (2

6
, 2
6
) and curves α1 = {4

6
} × S1 and α2 = {5

6
} × S1. Let

L1 = ⊔2
i=1T

∗
qi
T 2 and L2 = ⊔2

i=1N
∗αi. Note that N∗αi = αi × (R× {0}) ⊂ T ∗T 2.

The perturbation term V (t, q) can be chosen arbitrarily small and we will disregard
it for the sake of this model computation. Then taking HV (t, q, p) =

1
2
|p|2, we have that

XH = −p1∂q1 − p2∂q2 and the flow is given by ϕt
H(q1, q2, p1, p2) = (q1 − p1t, q2 − p2t, p1, p2),

where (qi, pi) are viewed as coordinates on T ∗S1. Since the cotangent fibers are based at
( i
6
, i
6
), the time-1 flow is given by ϕ1

H(
i
6
, i
6
, p1, p2) = ( i

6
− p1,

i
6
− p2, p1, p2).

We are interested in intersections of ϕ1
H(T

∗
qi
T 2) with N∗αj , so we want solutions to

( i
6
− p1,

i
6
− p2, p1, p2) = (1

2
+ j

6
, a, p, 0) for some a ∈ R/Z, p ∈ R. Then p2 must be 0. (Note

that with a perturbation term, this is no longer necessarily true since there will be some
flow in the fiber direction, but p2 would be very small.) Continuing with this example,
we see that i

6
− p1 =

1
2
+ j

6
, and so p1 = −1

2
+ i−j

6
. Given one such p1, we see that adding

or subtracting 1 from p1 gives another intersection. Let π : T ∗T 2 → T 2, (q, p) 7→ q, be the
projection onto the zero section. Then adding (subtracting) 1 along the fiber direction p1

simply wraps clockwise (counterclockwise) once more around the S1 × { i
6
} direction on

the torus before intersecting αj . The wrapping, along with some Hamiltonian chords, is
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shown in Figure 3.1 for κ = 1.

Figure 3.1: The case where κ=1. Here we view T ∗T 2 as two copies of T ∗S1. The curve in
red is T ∗

q T
2, ϕ1

HV
(T ∗

q T
2) is in blue, and N∗α is in green. The arrows in orange represent

Hamiltonian chords going from T ∗
q T

2 to N∗α.

Claim 3.2. The generators of CF (⊔2
i=1ϕ

1
HV

(T ∗
qi
T 2),⊔2

i=1N
∗αi) are elements of the form (an1

1 an2
2 , σ)

where σ ∈ S2 indicates intersections of ϕ1
HV

(T ∗
qi
T 2) and N∗ασ(i) for i = 1, 2 and the exponent of ai

indicates the number of times the intersection point, viewed as a Hamiltonian chord, wraps around

the (−1, 0)-direction when projected onto the zero section.

More generally we have the following:

For ni ∈ Z, let (an1
1 · · · anκ

κ , σ) denote intersections between ϕ1
HV

(T ∗
qi
T 2) and N∗ασ(i) for

i = 1, . . . , κwhose corresponding Hamiltonian chords wrap ni times around the torus in
the (−1, 0)-direction when projected onto the zero section.

Lemma 3.3. The generators of CF (⊔κ
i=1ϕ

1
HV

(T ∗
qi
T 2),⊔κ

i=1N
∗αi) for points qi and curves αi as in

the model case are given by

Z[(
∏κ

i=1 a
ni
i , σ) | σ ∈ Sκ, ni ∈ Z].

Proof. We choose coordinates (qi1, qi2, pi1, pi2) on T ∗
qi
T 2. Ignoring the perturbation term

V (t, q) for now, let pi1 > 0 be the smallest such number such that ϕ1
HV

(qi1, qi2, pi1, pi2) ∩
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N∗αj ̸= ∅. Following the calculation done in our model example, we see that every such
intersection occurs at ϕ1(qi1, qi2, pi1 + n, 0), for some n ∈ Z. Then we can describe the set of
intersections by the form in the lemma.

Adding the perturbation term has little effect on the Hamiltonian chords, and it can
be chosen small enough and such that ∂V

∂q
is small. It follows that each intersection will

occur at ϕ1(qi1, qi2, pi1 + n, pi2(n))where pi2(n)will be small for all n. While nmay not be
an integer, it will be very close to one. Alternatively, one could order all such n’s, giving a
bijection with Z.

Remark. One way to visualize the wrapping is to view the image of the cotangent fibers
projected onto T 2. If the α curves lie in only one component of S1 × S1, the Hamiltonian
chords look like geodesics from qi to αj in the other S1 component; see Figures 3.1 and 4.1.
This will be made more explicit in the next section.
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CHAPTER 4

Path space and wrapped HDHF

We restrict to the case κ = 1 and make use of an isomorphism of the wrapped Floer
homology with the singular homology of a certain path space. We will review the Morse
complex in this context in general before specializing to the surface Σ and Lagrangian
submanifolds of interest. For more details, the reader is encouraged to look at [AS10,
Sections 2, 3, and 4] .

4.1 Dual Lagrangian formulation and perturbed geodesics

We recall some facts about Legendre transforms and perturbed geodesics that will help
establish a dual Lagrangian formulation from which to do Morse theory.

LetH ∈ C∞([0, 1]× T ∗M) be a Hamiltonian satisfying the classical Tonelli assumptions.
The Fenchel transform defines a smooth, time-dependent Lagrangian on TM ,

L(t, q, v) := max
p∈T ∗

q M
(⟨p, v⟩)−H(t, q, p), (t, q, v) ∈ [0, 1]× TM.

We call this Lagrangian the Fenchel dual of our HamiltonianH . Similarly, given a Lagrangian
satisfying equivalent assumptions, we can dualize to get the Hamiltonian

H(t, q, p) = max
p∈TqM

(⟨p, v⟩)− L(t, q, v), (t, q, p) ∈ [0, 1]× T ∗M.

Moreover, we have a diffeomorphism known as the Legendre transform

L : [0, 1]× TM −→ [0, 1]× T ∗M, (t, q, v) 7→ (t, q,DvL(t, q, v)),
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such that L(t, q, v) = (t, q, p) if and only if L(t, q, v) = ⟨p, v⟩ −H(t, q, p).

We now specialize to the Lagrangian function LV : [0, 1]× TM → R given by

LV (t, q, v) =
1

2
|v|2 − V (t, q).

Its Fenchel dual Hamiltonian is then given by H(t, q, p) = 1
2
|p|2 + V (t, q), the same Hamil-

tonian we considered earlier when defining the Floer complex.

With these functions in mind, there is an equivalence between Hamiltonian orbits
x : [0, 1] → T ∗M solving x′(t) = XH(t, x(t)) and curves γ : [0, 1] → M which are ex-
tremals of the Lagrangian action functional AV (γ) =

∫ 1

0
LV (t, γ, γ̇)dt. More precisely, x is a

Hamiltonian orbit if and only if γ := πM ◦ x is an absolutely continuous extremal of AV .

We conclude this subsection with a further equivalence, recalling the definition of a
perturbed geodesic.

Definition. A V -perturbed geodesic γ is a map [0, 1] → M such that

∇γ̇ γ̇ = −∇V,

where∇V denotes the gradient of V with respect to the metric g.

The critical points ofAV are precisely the V -perturbed geodesics. Putting the two equiv-
alences together, we have that the Hamiltonian orbits are in bijection with the V -perturbed
geodesics. We can impose similar boundary conditions to the perturbed geodesics as
we do the Hamiltonian chords in the case of our wrapped Floer theory, giving us a map
L : PQ(H) → PQ(L), where PQ(H) are the Hamiltonian chords with the boundary con-
dition and PQ(L) are the V -perturbed geodesics satisfying the same boundary condition.
Moreover, condition (H0) placed on the Hamiltonian H will ensure that all critical points
will be non-degenerate.
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Definition. We call L the Legendre transform. If we let x ∈ PQ(H), then

L(x)(t) := πM ◦ x(t).

Figure 4.1 below shows the perturbed geodesics corresponding to the generator (a2, (12))
of our model calculation in Section 3.3.

Figure 4.1: Perturbed geodesics (in blue) representing the generator (a2, (12)).

4.2 Path space and wrapped Floer homology

Let Q ⊂ M ×M be a closed submanifold as before. Consider the path space

ΩQ(M) = {γ ∈ C0([0, 1],M)|(γ(0), γ(1)) ∈ Q}.

We restrict to a subset consisting of paths in the classW 1,2, and wish to do Morse theory
on this new path space, denoted Ω1,2

Q (M).

Given the same Hamiltonian HV , Hamiltonian vector field XHV
, and flow ϕt

HV
as in the

previous section, we define the function L : [0, 1]× TM → R satisfying second derivative
conditions:

(L1) There exists l1 > 0 such that ∇vvL(t, q, v) ≥ l1I
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(L2) There exists l2 > 0 such that

|∇qqL(t, q, v)| ≤ l2(1 + |v|2), |∇qvL(t, q, v)| ≤ l2(1 + |v|), |∇vvL(t, q, v)| ≤ l2,

ensuring that L grows quadratically in the tangent direction. These conditions are equiva-
lent to conditions (H1), (H2) imposed on our Hamiltonian, and will guarantee that HV ,
the Fenchel dual of LV , satisfies those. We can take

LV (t, q, v) =
1

2
|v|2 − V (t, q),

where t ∈ [0, 1], q ∈ M, and v ∈ TqM .

Considering the Morse function

AV (γ) =

∫ 1

0

LV (t, γ, γ̇)dt,

defined for γ ∈ Ω1,2
Q (M), we define the Morse complex generated by its critical points.

This is well defined and the Morse homology HM∗(AV ) is isomorphic to the singular
homology of Ω1,2

Q (M). Since the inclusion Ω1,2
Q (M) ↪→ ΩQ(M) is a homotopy equivalence,

the isomorphism extends to the singular homology of ΩQ(M).

Theorem 4.1 (Abbondandolo-Schwarz). There is an isomorphism between the wrapped Floer

homology HF ∗
Q(T

∗M) and the singular homology of the path space ΩQ(M).

For the rest of the dissertation, we specialize M to a closed oriented surface Σ of genus

> 0.

Let Q = {q} × α ∈ Σ× Σ, where q ∈ Σ is a point and α is a homotopically nontrivial
simple closed curve in Σ.

Lemma 4.2. H∗(ΩQ(Σ)) is supported in degree 0.

Proof. IfΣ is a torus, we can assume that g is the flatmetric, where all V -perturbed geodesics
with sufficiently small perturbation V are minimal and isolated. If the genus of Σ is greater
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than 1, then we can assume that g is the hyperbolic metric with constant curvature −1. It is
well known that on a hyperbolic surface, there is a unique V -perturbed geodesic in each
homotopy class of paths for V sufficiently small. Hence the Morse indices of all critical
points are 0.

Next let q1, . . . , qκ be κ distinct points on Σ and α1, . . . , ακ be κ mutually disjoint homo-
topically nontrivial simple closed curves on Σ. We use T ∗

qΣ to denote ⊔κ
i=1T

∗
qi
Σ and N∗α to

denote ⊔κ
i=1N

∗αi.

Corollary 4.3. HF ∗
Q(T

∗Σ) is supported in degree 0. In particular, the grading |y| = 0 for every

generator y ∈ CW (T ∗
qΣ, N

∗α).

Proof. Each yi ∈ ϕ1
HV

(T ∗
qi
Σ)∩N∗αj corresponds to a time-1 Hamiltonian chord from T ∗

qi
Σ to

N∗αj . Its Legendre transform gives a V -perturbed geodesic γ on Σ. The Conley-Zehnder
index of yi is equal to the Morse index of γ with respect to its Lagrangian action. Lemma
4.2 above implies that |yi| = 0 for all i, and so |y| = 0.

4.3 Unordered configuration space and wrapped HDHF

Let
UConfκ(Σ) = {{q1, . . . , qκ} | qi ∈ Σ, qi ̸= qj for i ̸= j}

be the configuration space of κ unordered (distinct) points on Σ.

We wish to generalize Theorem 4.1 to the case where κ > 1. Let q = {q1, . . . , qκ} ∈

UConfκ(Σ) and α = α1 × · · · × ακ, where we view α as a subset of UConfκ(Σ) by viewing
(x1, . . . , xκ) as an unordered tuple. The natural analog to consider on the path space side is
the path space on UConfκ(Σ), which we denote by

Ω(UConfκ(Σ), q,α) = {γ ∈ C0([0, 1],UConfκ(Σ)) | γ(0) = q, γ(1) ∈ α}.

We can identify each generator of CF (⊔κ
i=1ϕ

1
HV

(T ∗
qi
Σ),⊔κ

i=1N
∗αi) with a κ-tuple of V -
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perturbed geodesics from the qi to the ασ(i) using our duality established in Section 4.2.
This is an element of Ω(UConfκ(Σ), q,α).

To make this more precise, we construct an evaluation map

E : CF (⊔κ
i=1ϕ

1
HV

(T ∗
qi
Σ),⊔κ

i=1N
∗αi) −→ C0(Ω(UConfκ(Σ), q,α))⊗ Z[[ℏ]],

whereC0(Ω(UConfκ(Σ), q,α)) is the space of 0-chains of the path spaceΩ(UConfκ(Σ), q,α).

The map E counts pseudo-holomorphic curves between the conormal Lagrangians and
the zero section. Parametrizing the boundary of the curves along the zero section produces
a path in the unordered configuration space. We keep the parameter ℏ around to track the
Euler characteristic of the map, which will later relate to the HOMFLY skein relation on
braids.

Let T1 := D2 be ourA∞-base where ∂iT1 = ∂iD2; shown in Figure 4.2. Call the punctures
p1, p2 the inputs and p0 the output. Let T1 be the moduli space of T1 modulo automorphisms,
and choose representatives T1 of equivalence classes in a smooth manner. Let πT ∗Σ be
the projection T1 × T ∗Σ → T ∗Σ and choose a sufficiently generic consistent collection of
compatible almost complex structures such that they are close to a split almost complex
structure projecting holomorphically to T1, as in Section 2. We denote byH(q′,y, x) the
moduli space of maps

u : (Ḟ , j) −→ (T1 × T ∗Σ, JT1)

where (F, j) is a compact Riemann surface with boundary, p0, p1, p2 are disjoint tuples of
boundary punctures of F and Ḟ = F \ ∪ipi, satisfying:
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du ◦ j = JT1 ◦ du;

πT ∗Σ ◦ u(z) ∈ ϕ1
HV

(⊔κ
i=1T

∗
qi
Σ) if πT1 ◦ u(z) ⊂ ∂0T1;

each component of ∂Ḟ that projects to ∂0T1 maps to a distinct ϕ1
HV

(T ∗
qi
Σ);

πT ∗Σ ◦ u(z) ∈ ⊔κ
i=1N

∗αi if πT1 ◦ u(z) ⊂ ∂1T1;

each component of ∂Ḟ that projects to ∂1T1 maps to a distinct N∗αi;

πT ∗Σ ◦ u(z) ∈ Σ if πT1 ◦ u(z) ⊂ ∂2T1;

πT ∗Σ ◦ u tends to q′,y, x as s0, s1, s2 → +∞;

πT1 ◦ u is a κ-fold branched cover of a fixed T1 ∈ T1.

(4.1)

Figure 4.2: The A∞-base T1

In simpler terms, we look at the moduli space of holomorphic curves between the
Lagrangians involved and the zero section of T ∗Σ in the framework of HDHF with only
positive punctures.

Remark. While the intersections y and q′ are discrete, we have an S1-worth of choices for
each xi ∈ αi ∩Σ. To resolve this issue, we can either use the Morse-Bott (clean intersection)
formalism or perturb the zero section near the N∗αi. This results in two intersection points
x1, x2 ∈ N∗αi ∩ (Σ× {0}). If we are interested in index 0 curves in our moduli space then
only one of these intersections will have the right grading. This is shown in Figure 4.3 for
our model Σ = T 2, κ = 1 case by counting pseudo-holomorphic triangles bounded by the
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conormal Lagrangians and the perturbed zero section.

Figure 4.3: Perturbed zero section in one of the T ∗S1 directions. Only x2 ∈ N∗α ∩ ϕH′(T 2)
has the right Maslov index.

LetHχ(q′,y,x) be the subset of H(q′,y,x) such that χ(Ḟ ) = χ. Moreover, let

Hχ(q′,y,α) = ⊔x∈αHχ(q′,y,x).

Lemma 4.4. For fixed generic JT1 ,Hχ(q′,y,x) is of dimension 0 and consists of discrete regular

curves for all q′, y, and x such that x is a tuple of bottom generators for the Morse-Bott intersections

N∗αi ∩ (Σ× {0}).

Proof. By Corollary 3.5, we have |y| = 0. Computing the grading for intersections of
cotangent fibers with the zero section gives that |q′| = 0; see [HTYar]. Since the x are
bottom generators for our Morse-Bott intersection, it follows that |x| = 0 and so the virtual
dimension ofHχ(q′,y,x) is 0. The rest follows from standard transversality arguments.

Lemma 4.5. Given q′,y,α, the moduli spaceHχ(q′,y,α) consists of finitely many curves for each

Euler characteristic χ.

Proof. Each y determines a unique q′ and x ∈ α. The energy bound along with Gromov
compactness gives the result.
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Fix a parametrization of the arc ∂2T1 from p0 to p2 by τ : [0, 1] → ∂2T1. There exists
a sufficiently generic consistent collection of almost complex structures such that for all
u ∈ H(q′,y,α), (πΣ ◦ u) ◦ (πT1◦u)

−1 ◦ τ(t) consists of κ distinct points on Σ for each t ∈ [0, 1]

and hence gives a path in UConfκ(Σ):

γ(u) : [0, 1] −→ UConfκ(Σ),

t 7→ (πΣ ◦ u) ◦ (πT1◦u)
−1 ◦ τ(t).

Since γ(0) = q′ and γ(1) ∈ α, it follows that γ(u) ∈ Ω(UConfκ(Σ), q′,α).

Define the evaluation map

E : CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi) −→ C0(Ω(UConfκ(Σ), q′,α))⊗ Z[[ℏ]]

y 7→
∑

u∈H(q′,y,α)

(−1)♮(u) · ℏκ−χ(u) · γ(u),

where (−1)♮(u) is the sign assigned to u.

Since the perturbation term V has small W 1,2-norm, the Hamiltonian vector field XHV

has small normnear the zero sectionΣ and hence q′ is close to q. We choose non-intersecting
short paths γi on Σ from qi to q′i for i = 1, . . . , κ. Pre-concatenating with {γi} allows
us to identify Ω(UConfκ(Σ), q′,α) with Ω(UConfκ(Σ), q,α). We make this identification
whenever possible.

Next, we have a projection

P : C0(Ω(UConfκ(Σ), q,α))⊗Z[[ℏ]] → (H0(Ω(UConfκ(Σ), q,α))⊗Z[[ℏ]])/HOMFLY skein

given by first taking the homotopy class of the path γ(u) and then, viewing γ(u) as a braid,
quotienting by the HOMFLY skein relation (given in Definition 5.1).

Composing the evaluation map and the projection, we arrive at the map F = P ◦ E .

LetBSkκ(Σ, q,α) denote the freeZ[[ℏ]]-module generated by homotopy classes of braids
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γ ∈ Ω(UConfκ(Σ), q,α) modulo the HOMFLY skein relation. Then

F : CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi) −→ BSkκ(Σ, q,α)

is given by
y 7→

∑
u∈H(q′,y,α)

(−1)♮(u) · ℏκ−χ(u) · [γ(u)],

where [γ(u)] is viewed as an equivalence class of braids modulo the HOMFLY skein relation.
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CHAPTER 5

HDHF with conormal boundary conditions as a braid skein

algebra module

In this chapter we recall the equivalence between wrapped HDHF for cotangent fibers
and the braid skein algebra of a surface. The reader is encouraged to look at [HTYar] and
[MS21] for a more detailed exposition of this section’s content.

Let Σ be a closed oriented surface of genus > 0 and q1, . . . , qκ ∈ Σ be distinct points.

5.1 The braid skein algebra of a surface

Consider the braid group Bκ(Σ \ {∗}, q) of κ-braids in the punctured surface Σ \ {∗} based
at q = {q1, . . . , qκ}. One way to view this is to take the thickened surface Σ × I with a
fixed base string {∗} × I . In this case, the elements are made up of κ strings oriented
monotonically from Σ× {0} to Σ× {1}which do not intersect each other or the base string.
Two braids are equivalent if they are isotopic to each other, with the isotopy avoiding the
base string.

Definition. The braid skein algebra BSkκ(Σ, q, ∗) (or the surface Hecke algebra) of the surface Σ

is the free Z[s±1, c±1]-module generated by κ-braids in the punctured surface Σ \ {∗} based
at q, up to isotopy which does not intersect {∗} × [0, 1], subject to the local relations:

(1) the HOMFLY skein relation
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(2) the marked point relation

where the string in blue corresponds to the marked point strand {∗} × [0, 1].

Using the marked point relation, we define a slightly more useful c-deformed homotopy

relation.

Definition. The c-deformed braid groupBκ(Σ, q)c ofΣ based at q is generated byBκ(Σ\{∗}, q)

and a central element c, subject to the following c-deformed homotopy relation:

[γ2] = c2⟨H,∗⟩[γ1], (5.1)

where γ1, γ2 ∈ Ω(UConfκ(Σ \ {∗}), q), H is a homotopy between γ1 and γ2, ⟨H, ∗⟩ is the
algebraic intersection number for the homotopy H defined in [HTYar], and [γi] is the
homology class of the braid γi.

The quotient of Z[s±1][Bκ(Σ, q)c] by the HOMFLY skein relation gives the braid skein
algebra BSkκ(Σ, q, ∗).

5.2 Hecke algebra realization in HDHF

We briefly review the connection between the wrapped HDHF of contangent fibers on
surfaces and the surface Hecke algebras defined in [HTYar].

Definition. The wrapped HDHF chain complex of disjoint cotangent fibers with parameter c,
CW (⊔κ

i=1T
∗
qi
Σ)c, is given by CF (ϕ1

HV
(⊔κ

i=1T
∗
qi
Σ),⊔κ

i=1T
∗
qi
Σ)⊗ Z[c±1] as a Z-module and has

enhanced A∞-operations to include c-coefficients. Specifically,

µm(y1, . . . ,ym) =
∑

u∈Mind=0(y1,...,ym,y0)

(−1)♮(u) · c2⟨u,∗⟩ · ℏκ−χ(u) · y0.
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Given a map u ∈ M(y1, . . . ,ym,y0), ⟨u, ∗⟩ is the intersection number of πΣ(u) and ∗,
after some modifications to πΣ(u) to ensure this is well defined.

Proposition 5.1 (Honda-Tian-Yuan). The A∞-algebra CW (⊔κ
i=1T

∗
qi
Σ)c is supported in degree

zero, and hence is an ordinary algebra.

With this on hand, HTY go on to prove the following theorem connecting the wrapped
HDHF to the surface Hecke algebra Hκ(Σ, q).

Theorem 5.2 (Honda-Tian-Yuan). There is an isomorphism of algebras

F : CW (⊔κ
i=1T

∗
qi
Σ)c −→ Hκ(Σ, q)⊗ Z[[ℏ]],

where Hκ(Σ, q)⊗ Z[[ℏ]] is naturally isomorphic to the braid skein algebra BSkκ(Σ, q, ∗).

We run through an (informal) overview of the proof as the main ideas will be modified
and applied in the proof of Theorem 1.1 in Section 5.5.

The map F is an evaluation map similar to that in Section 4.3. It is constructed by
considering a moduli space of pseudo-holomorphic curves bounded by ϕ1

HV
(T ∗

qΣ), T
∗
qΣ,

and Σ. The authors then make use of the construction of the braid skein algebra coming
from the unordered configuration space to relate this to the surface Hecke algebra.

The next step is to show that F is indeed a homomorphism of algebras. This is done by
taking the moduli space of index 1 curves projecting to a 4-punctured disk with boundary
conditions given by ϕ2

HV
(T ∗

qΣ), ϕ
1
HV

(T ∗
qΣ), T

∗
qΣ, and Σ. An inspection of the boundary of

the compactification of this space concludes that F respects the algebra structure. More
specifically, the only breakings that occur are ones that correspond to F(µ2(y, y′)) or
F(y)F(y′).

The final step is to show that F|ℏ=0 is an isomorphism and then use the algebra homo-
morphism properties to prove it’s a bijection when ℏ is reintroduced.

We will repeat and modify much of the argument in our proof of Theorem 1.1.
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5.3 The parameter c

We enhance CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi) to include the parameter c. Let

CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c := CW (⊔κ

i=1T
∗
qi
Σ,⊔κ

i=1N
∗αi)⊗ Z[c±1].

Consider the updated evaluation map:

E : CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c −→ C0(Ω(UConfκ((Σ), q,α))⊗ Z[c±1]⊗ Z[[ℏ]]

given by
y 7→

∑
u∈H(q′,y,α)

(−1)♮(u) · c2⟨u,∗⟩ · ℏκ−χ(u) · γ(u),

where ⟨u, ∗⟩ := ⟨[πΣ(u)]
′, ∗⟩ is defined in [HTYar, Section 5] .

Definition. The braid skein group BSkκ(Σ, q,α, ∗) from q to α on Σ \ {∗} is the free Z[[ℏ]]-
module generated by c-deformed homotopy classes of paths in

Ω(UConfκ(Σ), q,α) = {γ ∈ C0([0, 1],UConfκ(Σ)) | γ(0) = q, γ(1) ∈ α = α1 × · · · × ακ}

modulo the HOMFLY skein relation.

Remark. Given a braid γ, its c-deformed homotopy class [γ]c is the set of braids equivalent
to it under the local relations given in Definition 5.1. Using these relations, every braid is
equivalent to a Z[ℏ, c±1]-combination of κ-tuples of perturbed geodesics. In the spirit of
[AS10], we can flow the braid γ by the Morse function defined in Section 6.2. Every time a
crossing switches from positive to negative, or vice versa, the flow will bifurcate according
to the HOMFLY skein relation. Similarly, crossing the strand over the puncture ∗ will pick
up factors of c. Continuing this flow, we arrive at a Z[ℏ, c±1]-combination of κ-tuples of
perturbed geodesics. Since the relations of our c-deformed homotopy classes are the same
as those during the Morse flow, the two equivalence classes will be the same.
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Composing E with the projection which takes the c-deformed homotopy class and
quotients out by the HOMFLY skein relation gives the map

F : CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c −→ BSkκ(Σ, q,α, ∗). (5.2)

5.4 The proof of Theorem 1.1, κ = 1 case

In this subsection we prove Theorem 1.1 for κ = 1. Let F0 denote the specialization Fℏ=0.

We start by briefly reviewing the chain map

Θ : CM∗(Ω
1,2(Σ, q, α),AV ) −→ CW (T ∗

q Σ, N
∗α)

constructed by Abbondandolo and Schwarz in [AS10, Theorem 3.3], where the domain
CM∗(Ω

1,2(Σ, q, α),AV ) is the Morse complex of the function AV defined by:

AV (γ) =

∫ 1

0

LV (t, γ, γ̇)dt,

for γ ∈ Ω1,2(Σ, q, α). Both complexes are concentrated at grading 0, so Θ is an isomorphism
from the group generated by index 0 critical points of AV to the wrapped Floer group
CW (T ∗

q Σ, N
∗α).

In what follows, we identify CM0(Ω
1,2(Σ, q, α),AV )with CM0(Ω(Σ, q, α),AV ).

Given y ∈ CM0(Ω(Σ, q, α),AV ), x ∈ CW (T ∗
q Σ, N

∗α), AS construct the space M(y, x) of
maps

u : (−∞, 0]× [0, 1] −→ T ∗Σ

solving the Floer equation (3.2) which converge to the Hamiltonian chord representing
x at −∞, satisfy boundary conditions T ∗

q Σ along (−∞, 0]× {0}, N∗α along (−∞, 0]× {1},
and such that the image of u({0} × [0, 1]) under the projection from T ∗Σ to Σ is a path on
Σ lying in the descending manifold of y with respect to the negative gradient flow of AV .
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Letting #M(y, x) be the count of such maps, we have

Θ(y) =
∑

#M(y, x)x.

Let
Θc : CM∗(Ω(Σ, q, α),AV )⊗ Z[c±1] −→ CW (T ∗

q Σ, N
∗α)c

be the Z[c±1]-linear extension of Θ.

We make an additional identification which allows us to apply results of [AS10].

Proposition 5.3. BSkκ=1(Σ, q, α, ∗) ≃ CM0(Ω(Σ, q, α),AV )⊗ Z[c±1]

Proof. Elements in BSkκ=1(Σ, q,α, ∗) are c-deformed homotopy classes of paths starting
at q and ending on α. Every such path is homotopic to a unique perturbed geodesic on Σ

with the same boundary conditions. Let γ1 be a path homotopic to a perturbed geodesic
γ2 and let n be the signed intersection number of this homotopy with the marked point ∗.
The map sending [γ1]c 7→ c2nγ2 is the desired isomorphism.

We prove the following proposition, recreating a proof similar to Abouzaid’s [Abo12]
in the case of cotangent fibers. Let F̃0 be the composition of F0 with the isomorphism
described in Proposition 5.3.

Proposition 5.4. Let κ = 1. The map

F̃0 : CW (T ∗
q Σ, N

∗α)c −→ CM0(Ω(Σ, q, α),AV )⊗ Z[c±1]

is an isomorphism of chain complexes. Moreover, F̃0 is an inverse to Θc.

Proof. Since Θ is an isomorphism of chain complexes, it suffices to show that the composi-
tion

CM0(Ω(Σ, q, α),AV )⊗ Z[c±1]
Θc−→ CW (T ∗

q Σ, N
∗α)c

F̃0−→ CM0(Ω(Σ, q, α),AV )⊗ Z[c±1]
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is homotopic to the identity map on CM0(Ω(Σ, q, α),AV )⊗ Z[c±1]. We show that it is not
just homotopic to the identity, but is in fact the identity map on the nose. It follows then
that F̃0 = Θ−1

c . Let y and z be critical points of the Lagrangian actionalAV which is Fenchel
dual to HV and let a be a positive real number.

Define C(y, z; a) to be the moduli space of maps

u : [0, a]× [0, 1] −→ T ∗Σ

which solve the Floer equation (3.2) with boundary conditions T ∗
q Σ along [0, a]× {0}, N∗α

along [0, a]×{1}, and such that u({0}×[0, 1]) is contained in the zero section and, considered
as a path on Σ, lies on the ascending manifold of z, while the image of u({a}× [0, 1]) under
the projection from T ∗Σ to Σ is a path on Σ lying on the descending manifold of y with
respect to the the negative gradient flow of AV . This is shown in the central part of Figure
5.1.

Write C(y, z) := ⊔a∈[0,∞)C(y, z; a) and let C(y, z) be its Gromov compactification.

When a = 0, any solution in C(y, z; a) is necessarily constant. Thus, the count of rigid
elements of C(y, z; 0) gives the identity map on CM0(Ω(Σ, q, α),AV )⊗ Z[c±1].

Letting a go to +∞, a family of maps ua defined on finite strips [0, a]× [0, 1] breaks into
two maps u−, u+ defined on semi-infinite strips, as shown in the bottom right part of the
figure below. This boundary component is precisely the composition F̃0 ◦Θ.

The remaining boundary strata occur at finite awhen the projection of u({a} × [0, 1]) to
Σ escapes to the ascending manifold of a critical point y′ which differs from y. Similarly,
the image of u({0} × [0, 1]) may converge to the descending manifold of a critical point
z′ ̸= z. Such boundary strata are in bijective correspondence with

T (y, y′)× C(y′, z) ∪ C(y, z′)× T (z′, z),

where T (y, y′) is the moduli space of gradient trajectories from y to y′.

For a general manifold this would give a chain homotopy. However, all critical points
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ofAV have grading 0 and so there are no gradient trajectories between critical points. Thus
there are no boundary strata of this form.

It follows then that, up to signs, id = F̃0 ◦Θ, where id is the identity map on

CM0(Ω(Σ, q, α),AV )⊗ Z[c±1].

Moreover, identifying x ∈ CW (T ∗
q Σ, N

∗α)c with a time-1 Hamiltonian chord, F̃0 maps x to
the homotopy class of its Legendre transform [L(x)].

(a) a = 0 boundary (b) a → ∞ boundary

Figure 5.1: C(y, z; a)with its boundary. The arrows represent downward gradient flows.

Composing F̃0 with the isomorphism

CM0(Ω(Σ, q, α),AV )⊗ Z[c±1] ↪→ BSk1(Σ, q, α, ∗)

given by viewing a geodesic as a path with the same boundary conditions proves that
F0,κ=1 is an isomorphism.

5.5 The proof of Theorem 1.1, general case

We first extend Proposition 5.4 to κ ≥ 1.

Lemma 5.5. Let κ ≥ 1. Then F0 is an isomorphism.
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Proof. Let κ ≥ 1 and ℏ = 0. BSkκ(Σ, q,α, ∗)c|ℏ=0 no longer keeps track of braid cross-
ings and thus is generated over Z[c±1] by elements of the form ⊗κ

i=1H0(Ω(Σ, qi, αρ(i)))c =

⊗κ
i=1BSk1(Σ, qi, αρ(i), ∗)c, where ρ ∈ Sκ. Each homotopy class of paths inH0(Ω(Σ, qi, αρ(i)))c

contains a unique V -perturbed geodesic from qi to αρ(i). Applying the Fenchel duality in
Section 4.1 gives us a bijection between V -perturbed geodesics and their dual Hamiltonian
chords. By Proposition 5.4, this bijection is given by F0,κ=1 after identifying generators of
CW (Σ, qi, αρ(i))with Hamiltonian chords from qi to αρ(i).

Since ℏ = 0, the only maps u contributing to F0 are such that χ(u) = κ. The domain
is then κ pseudoholomorphic disks, each of which is counted in the map F0,κ=1. Given a
generator

x = {x1ρ(1), . . . , xκρ(κ)} ∈ CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c,

where xiρ(i) ∈ CF (ϕ1
HV

(T ∗
qi
Σ), N∗αρ(i)),

F0(x) = ⊗κ
i=1F0,κ=1(xiρ(i)) = ⊗κ

i=1[L(xiρ(i))] ∈ ⊗κ
i=1BSk1(Σ, qi, αρ(i), ∗)c.

We construct an inverse

F−1
0 : BSkκ(Σ, q,α, ∗)c|ℏ=0 −→ CW (⊔κ

i=1T
∗
qi
Σ,⊔κ

i=1N
∗αi)c

given by
γ = {γ1ρ(1), . . . , γκρ(κ)} 7→ {F−1

0,κ=1(γ1ρ(1)), . . . ,F−1
0,κ=1(γκρ(κ))}.

Thus F0 is an isomorphism.

We use Lemma 5.5 and reintroduce ℏ. It suffices to show that F is a bijection. We repeat
the argument in [HTYar].

Proof of Theorem 1.1.

Injectivity of F : Suppose that there exists a ̸= 0 such that F(a) = 0. We can write a =
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∑
i≥0 ℏiai, where ai ∈ CW (⊔κ

i=1T
∗
qi
Σ,⊔κ

i=1N
∗αi)c|ℏ=0. Since the codomain BSkκ(Σ, q,α, ∗)

has no ℏ-torsion, it follows that a0 ̸= 0. Then setting ℏ = 0, we have F(a0) = F(a) = 0.
This implies that F0(a0) = 0, and thus a0 = 0, a contradiction. Therefore, F is injective.

Surjectivity of F : Let b ∈ BSkκ(Σ, q,α, ∗). By Lemma 5.5, there exists a0 such that
F(a0) ≡ b (mod ℏ). Let

b1 =
b−F(a0)

ℏ
|ℏ=0.

Then there exists an a1 such that F(a1) ≡ b1 (mod ℏ). Repeating this procedure, we get
F(

∑
i≥0 ℏiai) = b. Thus F is surjective.
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CHAPTER 6

Geometric realization of CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c as a

module over the braid skein algebra

6.1 Algebraic action

We describe the (right) braid skein-module structure on BSkκ(Σ, q,α, ∗). Specifically,
we give the action of the braid skein algebra BSkκ(Σ, q, ∗) on our proposed module
BSkκ(Σ, q,α, ∗).

Let [γ1] be an element of the braid skein algebra BSkκ(Σ, q, ∗) and [γ2] be an element
of BSkκ(Σ, q,α, ∗). Then [γ1] and [γ2] represent c-deformed homotopy classes of paths
in Ω(UConfκ((Σ \ {∗}), q) and Ω(UConfκ((Σ \ {∗}), q,α), respectively. Suppose γi is a
representative for [γi], where γi is an element ofΩ(UConfκ((Σ\∗))⊗Z[c±1]⊗Z[[ℏ]] satisfying
the appropriate boundary conditions for the configuration space.

Proposition 6.1. BSkκ(Σ, q, ∗) acts on BSkκ(Σ, q,α, ∗) by the map

ρ : BSkκ(Σ, q,α, ∗)⊗BSkκ(Σ, q, ∗) −→ BSkκ(Σ, q,α, ∗)

given by

ρ([γ2]c, [γ1]c) 7→ [γ1γ2]c.

Proof. This follows directly from the product defined on the braid skein algebra.

Notation: We will denote the product as a left multiplication to be more compatible with
the composition of braids. Specifically, given γ1 ∈ BSkκ(Σ, q, ∗), γ2 ∈ BSkκ(Σ, q,α, ∗), we
write γ1γ2 := ρ(γ2, γ1).
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6.2 Geometric action

Wemake use of the bijection between elements inwrappedHDHF and κ-tuples of perturbed
geodesics. Consider the Hamiltonian HV (t, q, p) = 1

2
|p|2 + V (t, q) and its Fenchel dual

LV (t, q, v) =
1
2
|v|2 − V (t, q). Then, as in Chapter 3, we consider the Morse function AV on

the path space Ω1,2(Σ, q, q′) defined by

AV (γ) =

∫ 1

0

LV (t, γ(t), γ̇(t))dt.

We generalize this to κ strands by considering the path spaces

Ωρ(Σ, q, q) :=
κ∏

i=1

Ω(Σ, qi, qρ(i)), Ω1,2
ρ (Σ, q, q) :=

κ∏
i=1

Ω1,2(Σ, qi, qρ(i)),

Ω1,2(Σ, q, q) :=
⊔
ρ∈Sκ

Ω1,2
ρ (Σ, q, q),

where ρ ∈ Sκ is a permutation. Then given γ ∈ Ω1,2
ρ (Σ, q, q), we define

AV (γ) =
∑
i

AV (γi).

For generic V , the action functional AV on Ω1,2
ρ (Σ, q, q) is a Morse function which

satisfies the Palais-Smale condition.

The critical points of AV are exactly the κ-tuples of perturbed geodesics which are in
bijection with the elements of our wrapped HDHF.

We define the path space Ω1,2(Σ, q,α) in a similar manner, the only difference being
the end points of the paths are confined to αi instead of q′i.

Let y ∈ CW (⊔κ
i=1T

∗
qi
Σ) and x ∈ CW (⊔κ

i=1T
∗
qi
Σ,⊔κ

i=1N
∗αi). We want to define the prod-

uct y · x. On one hand, this has already been done in the framework of HDHF ([CHT20]),
where a µ2 map gives us the product y · x = µ2(x,y) ∈ CW (⊔κ

i=1T
∗
qi
Σ,⊔κ

i=1N
∗αi). We aim

to give a more geometrically intuitive interpretation of the product using the bijection with
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perturbed geodesics, making it more compatible with the algebraic action given in Section
6.1.

We define a similar Morse function where the endpoint of the curve is allowed to move
along our curves α1, . . . , ακ. With this setup, the geometric action of CW (⊔κ

i=1T
∗
qi
Σ)c on

CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c is given by translating elements to V -perturbed geodesics viewed

as paths, concatenating the paths, then performing the Morse gradient flow discussed
above. The result is a V -perturbed geodesic from ⊔κ

i=1qi to ⊔κ
i=1αi, which is then identified

with an element of CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c.

When performing the Morse gradient flow after concatenation, we must consider
passings through the marked point as well as any crossings of the perturbed geodesics.
Similarly as before, to account for the marked point, we have the homotopy H from the
concatenated curves γ1γ2 to the resulting geodesic γ and we impose on this the deformed
homotopy relation [γ] = c2⟨H,∗⟩[γ1γ2]. We account for any crossings that occur on Σ during
our flow by applying the HOMFLY skein relation at all crossings. We can view each tuple
of perturbed geodesics as a braid in [0, 1] × Σ by mapping γ(t) 7→ (t, γ(t)). Then each
crossing will either be a positive crossing σi or a negative crossing σ−1

i , and our HOMFLY
skein relation is σi − σ−1

i = ℏe, where e is the resolution of the crossing. We call any time a
positive crossing changes to a negative crossing (or vice versa) a switching. In the Morse
theory view, this results in a bifurcated trajectory; one trajectory is a continuation of the
switching and the other is a resolution of the crossing with a factor of ℏ. As a braid, we
get a sum of the same braid with the crossing reversed and a resolved crossing with an
extra ℏ factor. Using this relation, we can resolve all of the crossings into Z[ℏ, c±1]-linear
combinations of braids which are tuples of V -perturbed geodesics.
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6.3 Equivalence of DAHA modules

Our main goal of this section is to show that the following diagram commutes:

CW (⊔iT
∗
qi
Σ,⊔iN

∗αi)c ⊗ CW (⊔iT
∗
qi
Σ)c BSkκ(Σ, q,α, ∗)⊗ (Hκ(Σ, q)⊗ Z[[ℏ]])

CW (⊔iT
∗
qi
Σ,⊔iN

∗αi)c BSkκ(Σ, q,α, ∗)

F1⊗F2

µ2 ρ

F1

(6.1)

We recall each map of the diagram:

The top maps
F1 : CW (⊔κ

i=1T
∗
qi
Σ,⊔κ

i=1N
∗αi)c −→ BSkκ(Σ, q,α, ∗)

and
F2 : CW (⊔κ

i=1T
∗
qi
Σ)c −→ Hκ(Σ, q)⊗ Z[[ℏ]]

are the isomorphisms defined in Sections 5.3 and 5.2, respectively.

The left map

µ2 : CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c ⊗ CW (⊔κ

i=1T
∗
qi
Σ)c −→ CW (⊔κ

i=1T
∗
qi
Σ,⊔κ

i=1N
∗αi)c

is the A∞-map defined by Equation (2.2) withm = 2. It is given by a count of holomorphic
maps which project onto a thrice-punctured disk satisfying the usual boundary conditions;
see [CHT20] for more details.

The right map

ρ : BSkκ(Σ, q,α, ∗)⊗ (Hκ(Σ, q)⊗ Z[[ℏ]]) −→ BSkκ(Σ, q,α, ∗)

is given in Section 6.1 after identifying Hκ(Σ, q)⊗ Z[[ℏ]]with BSkκ(Σ, q, ∗) .

The bottom map is again the evaluation map from Section 5.3.

Lemma 6.2. Diagram 5.1 commutes.
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Before we prove the lemma, we introduce a moduli space of holomorphic curves similar
to that of [HTYar, Section 6.2].

Let T2 := D3 be our A∞-base where ∂iT2 = ∂iD3. Call the punctures p1, p2, p3 the inputs
and p0 the output. Let T2 be the moduli space of T2 modulo automorphisms, and choose
representatives T2 of equivalence classes in a smooth manner. Let πT ∗Σ be the projection
T2×T ∗Σ → T ∗Σ and choose a sufficiently generic consistent collection of compatible almost
complex structures such that they are close to a split almost complex structure projecting
holomorphically to T2, as in Section 2. Perturb the 0-section near the αi and let x be the
tuple of intersections αi ∩ ϕH′(Σ) corresponding to the bottom generators, where ϕH′(Σ) is
the perturbed 0-section. We denote byH(q′′,y′,y,x) the moduli space of maps

u : (Ḟ , j) −→ (T2 × T ∗Σ, JT2),

where (F, j) is a compact Riemann surface with boundary, p0,p1,p2,p3 are disjoint tuples
of boundary punctures of F and Ḟ = F \ ∪i pi, satisfying:
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du ◦ j = JT2 ◦ du;

πT ∗Σ ◦ u(z) ∈ ϕ2
HV

(⊔κ
i=1T

∗
qi
Σ) if πT2 ◦ u(z) ⊂ ∂0T2;

πT ∗Σ ◦ u(z) ∈ ϕ1
HV

(⊔κ
i=1T

∗
qi
Σ) if πT2 ◦ u(z) ⊂ ∂1T2;

πT ∗Σ ◦ u(z) ∈ ⊔κ
i=1N

∗αi if πT2 ◦ u(z) ⊂ ∂2T2;

πT ∗Σ ◦ u(z) ∈ Σ× {0} ⊂ T ∗Σ if πT2 ◦ u(z) ⊂ ∂3T2;

each component of ∂Ḟ that projects to ∂0T2 maps to a distinct ϕ2
HV

(T ∗
qi
Σ);

each component of ∂Ḟ that projects to ∂1T2 maps to a distinct ϕ1
HV

(T ∗
qi
Σ);

each component of ∂Ḟ that projects to ∂2T2 maps to a distinct N∗αi;

πT ∗Σ ◦ u tends to y′, y, x as s1, s2, s3 → +∞;

πT ∗Σ ◦ u tends to q′′ as s0 → −∞;

πT1 ◦ u is a κ-fold branched cover of a fixed T2 ∈ T2.

In simpler terms, we look at the moduli space of holomorphic curves between the
Lagrangians involved and the zero section of T ∗Σ in the framework of HDHF.

Figure 6.1: The A∞-base T2 with boundary conditions

Lemma 6.3. There exists a sufficiently generic consistent collection of almost complex structures

such that the moduli space H(q′′,y′,y,x) is of dimension 1 and is transversely cut out for all
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x, y, y′ and q′′. Moreover, H(q′′,y′,y,x) admits a compactification H(q′′,y′,y,x) such that its

boundary ∂H(q′′,y′,y,x) is of dimension 0 and contains discrete broken or nodal curves.

Proof. This is identical to Lemma 6.4 in [HTYar].

As in Section 4.3, we define a map fromH(q′′,y′,y,x)× [0, 1] −→ (Σ)κ by

γ(u)(t) = (πT ∗Σ ◦ u) ◦ (πΣ ◦ u)−1 ◦ τ(t), (6.2)

where τ : [0, 1] → ∂3T2 parametrizes the boundary arc from p0 to p3. Let

H0(q
′′,y′,y,x) = {u ∈ H(q′′,y′,y,x) | γ(u)(t) ∈ UConfκ(Σ \ {∗}) for all t}.

As before, we define the evaluation map

G : H0(q
′′, y′, y, x) −→ BSkκ(Σ, q,α, ∗),

u 7→ (−1)♮(u) · c2⟨u,∗⟩ · ℏκ−χ(u) · [γ(u)].

Proof of Lemma 5.2. We analyze the boundary of the index 1 moduli spaceH(q′′,y′,y,x) by
considering the possible degenerations. Let Hχ

(q′′,y′,y,x) be the subset of H(q′′,y′,y,x)

consisting of maps with χ(u) = χ. For a generic u, u ∈ H0(q
′′,y′,y,x). However, for a

1-parameter family ut ∈ H(q′′,y′,y,x), γ(ut) may intersect the marked point ∗ at some
t ∈ (0, 1). However, since we are taking c-deformed homotopy classes, we are guaranteed
that G(u0) = G(u1). Hence we will not worry about intersections with ∗. All codimension-1
degenerations occur in the A∞-base direction, giving us a nice characterization of the
possible breakings. The three types of boundary degenerations are:

(1) ⊔
y′′,χ′+χ′′−κ=χ Mind=0,χ′

(y′, y, y′′)×Hind=0,χ′′
(q′′, y′′, x);

(2) ⊔
q′,χ′+χ′′−κ=χHind=0,χ′

(q′′, y′, q′)×Hind=0,χ′′
(q′, y, x);

(3) the set ∂nHind=1,χ
(q′′,y′,y,x)with a nodal degeneration along Σ.

The first type is shown on the left-hand side of Figure 6.2 and contributes F1(µ
2(y, y′)).
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The second type is shown on the right-hand side of Figure 6.2 and contributes ρ((F1 ⊗

F2)(y, y
′)).

In fact, all contributions to F1(µ
2(y, y′)) and ρ((F1 ⊗ F2)(y, y′)) come from such

degenerations.

The proof of Proposition 6.5 in [HTYar] shows that the total contribution of the third
type over all Euler characteristics χ is zero. Hence it follows that F1(µ

2(y, y′)) = ρ((F1 ⊗

F2)(y, y
′)) and so the diagram commutes.

Figure 6.2: T2 degenerations

We have thus shown that the map F1 : CW (⊔κ
i=1T

∗
qi
Σ,⊔κ

i=1N
∗αi)c −→ BSkκ(Σ, q,α, ∗)

realizes the wrapped HDHF of κ cotangent fibers and κ conormal bundles of simple closed
curves as a DAHA-module.
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CHAPTER 7

The enhanced polynomial representation

In this chapter, we specialize to Σ = T 2. We introduce the double affine Hecke algebra
(DAHA) along with its polynomial representation. After fixing a configuration of points
q1, . . . , qκ and curves α1, . . . , ακ in T 2, we define the enhanced polynomial representation
of DAHA on CW (⊔κ

i=1T
∗
qi
T 2,⊔κ

i=1N
∗αi)c and prove Theorem 1.3.

7.1 Double affine Hecke algebra and its polynomial representation

We briefly review the DAHA and its skein-theoretic realization using braids in the punc-
tured torus. For more details, refer to [MS21], where these results are proven and discussed
at length.

Viewing T 2 as a square I × I with opposite sides identified, we choose ∗ = (1
2
, 1
2
)

and let the κ points q1, . . . , qκ line up in increasing fashion along the lower part of the
diagonal from (0, 0) to ∗. We choose a convenient basis for the braids in Bκ(T

2 \ {∗}, q). Let
xi (respectively, yi) be the braid which consists of the point qi moving uniformly around
the (−1, 0) (respectively, (0, 1)) curve. Let σi for 1 ≤ i ≤ κ − 1 be the braid which locally
exchanges the strings from qi and qi+1 in a counterclockwise direction when looking down
onto T 2, as shown in Figure 7.1(B) below.

The key element in this geometric realization of DAHA is the next theorem due to
Morton and Samuelson.

Theorem 7.1 (Morton-Samuelson). The braid skein algebra BSkκ(T
2, q, ∗) is isomorphic to the

double affine Hecke algebra Ḧκ.
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(a) Braids xi and yi (b) Braid σi

Figure 7.1: Generators for the braid group on the punctured torus

We now fix the presentation for the skein algebra, and therefore the DAHA, that we
will be using.

Theorem 7.2. The double affine Hecke algebra Ḧκ can be presented by the braids σ1, . . . , σκ−1, x1, y1

with relations:

(1) σiσj = σjσi, |i− j| > 1,

(2) σiσi+1σi = σi+1σiσi+1,

(3) σix1 = x1σi, i > 1,

(4) σiy1 = y1σi, i > 1,

(5) x1σ1x1σ1 = σ1x1σ1x1,

(6) y1σ1y1σ1 = σ1y1σ1y1,

(7) x1σ1y1σ
−1
1 = σ1y1σ1x1,

(8) (σ1 − s)(σ1 + s−1) = 0,

(9) x−1
1 y1x1y

−1
1 = c2σ1σ2 · · · σκ−1σκ−1 · · · σ2σ1.

Remark. The relations stated above are slightly different than those in [MS21]. Specifically,
we replace x1 with x−1

1 since the generator xi in [MS21] corresponds to a loop based at q1
in the (1, 0) direction whereas our generator goes in the (−1, 0) direction. The relations
have been adjusted with this in mind.

Although Ḧκ can be generated by σ1, · · · , σκ−1, x1, and y1, it will be convenient to make
explicit the expression for the braids xi and yi. Using the relations σixiσi = xi+1 and
σiyiσi = yi+1, it follows that xi = σi−1 · · ·σ1x1σ1 · · ·σi−1 and yi = σi−1 · · ·σ1y1σ1 · · ·σi−1.
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The DAHA Ḧκ has a representation on Z[s±1, c±1][X±1
1 , · · · , X±1

κ ] called the polynomial

representation. Note that in this dissertation we are concerned with the polynomial repre-
sentation of the DAHA Ḧκ instead of the more common spherical DAHA; we will use the
presentation given in [Eno09].

Definition. The polynomial representation of Ḧκ on Z[s±1, c±1][X±1
1 , · · · , X±1

κ ] is defined by
the following:

xi 7→ Xi,

σi 7→ sτi +
s− s−1

XiX
−1
i+1 − 1

(τi − 1),

y1 7→ σ−1
1 · · ·σ−1

κ−1ω,

where τi permutes Xi and Xi+1 and for any f ∈ Z[s±1, c±1][X±1
1 , · · · , X±1

κ ],

(ωf)(X1, · · · , Xκ) = f(c2Xκ, X1, · · · , Xκ−1).

Denote the action above by

p : Ḧκ × Z[s±1, c±1][X±1
1 , · · · , X±1

κ ] −→ Z[s±1, c±1][X±1
1 , · · · , X±1

κ ].

Remark. Observe that in the definition of the DAHA, the variable s does not appear on its
own. The HOMFLY skein relation in the definition of the braid skein algebra uses s− s−1;
in the presentation of Theorem 7.2, expanding the relation (8) gives the term s− s−1.

For our purposes, we let ℏ = s− s−1 and change the coefficient ring from Z[s±1, c±1] to
Z[ℏ, c±1]when we are not dealing with the polynomial representation.
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7.2 The enhanced polynomial representation

In this section, we compute the DAHA-module BSkκ(T
2, q,α, ∗) for the configuration of

points q1, . . . , qκ as in Section 7.1 and simple closed curves α1, . . . , ακ similar to Section 3.3.

Viewing T 2 as I × I with opposite sides identified, let qi = ( i
2(κ+1)

, i
2(κ+1)

) and αi =

{1
2
+ i

2κ+2
} × I . Moreover, let ∗ = (1

2
, 1
2
). Choose a perturbation term V (t, q) such that

q′i = ϕ1
HV

(T ∗
qi
T 2) ∩ T 2 is to the left of qi when viewed on I × I and |qi − q′i| > |qj − q′j|

whenever i < j.

We introduce an additional parameter d which keeps track of the ends of the braids
sliding along the αi. Specifically, consider the projection

πα : α1 × · · · × ακ −→ T κ

of the αi to T κ = (S1)κ given by dropping the x coordinate for each αi. Let

∆ = {(x1, . . . , xκ) | xi = xj for some i ̸= j}

be the big diagonal in T κ. The parameter d counts signed intersections with∆ as the braids
are isotoped.

Definition. The d-deformed braid skein group BSkκ(T
2, q,α, ∗)d is the free Z[ℏ, c±1, d±1]-

module generated by elements of the braid skein group BSkκ(T
2, q,α, ∗) subject to the

ends-slide relation:

Let [γ]c,d be the equivalence class of the braid γ in BSkκ(T
2, q,α, ∗)d which keeps track

of the parameters c and d.

We now expand our wrapped HDHF group with parameter c to one with parameters c
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and d.

Definition. The wrapped HDHF group of ⊔κ
i=1T

∗
qi
T 2 and ⊔κ

i=1N
∗αi with parameters c and d is

CW (⊔κ
i=1T

∗
qi
T 2,⊔κ

i=1N
∗αi)c,d := CW (⊔κ

i=1T
∗
qi
T 2,⊔κ

i=1N
∗αi)c ⊗ Z[d±1].

A slight enhancement of Theorem 1.1 which keeps track of intersections with ∆ ⊂ T κ

viewed as a subset of T 2 × {1} gives:

Theorem 1.1’. CW (⊔κ
i=1T

∗
qi
T 2,⊔κ

i=1N
∗αi)c,d ≃ BSkκ(T

2, q,α, ∗)d

Under the configuration of points qi and curvesαi described at the start of this subsection,
we choose a specific presentation for BSkκ(T

2, q,α, ∗)d (and CW (⊔κ
i=1T

∗
qi
T 2,⊔κ

i=1N
∗αi)c,d).

Consider a κ-tuple of perturbed geodesics γ = {γ1, . . . , γκ} viewed as a braid in
BSkκ(T

2, q,α, ∗)d, where each γi is a perturbed geodesic from qi to ασ(i) for some per-
mutation σ ∈ Sκ. Let α = {1

2
} × S1 ∈ T 2 be a simple closed curve between the set of points

qi and curves αi. We define the signed intersection number ni = ⟨γi, α⟩ of each perturbed
geodesic with α. The sign of ni is set to be positive if γi is in the (−1, 0) direction and
negative if it is in the (1, 0) direction. This intersection number is similar to the process
described in the proof of Lemma 3.3.

The following is a slight enhancement of Lemma 1.2:

Lemma 1.2’. BSkκ(T
2, q,α, ∗)d ≃ (Z[a±1

1 , . . . , a±1
κ ]⊗ Z[Sκ])⊗ Z[c±1]⊗ Z[[ℏ]]⊗ Z[d±1].

We denote the module with this presentation by PRκ.

Proof. Every element inBSkκ(T
2, q,α, ∗)d can be identified with a Z[ℏ, c±1, d±1]-linear com-

bination of κ-tuples of perturbed geodesics viewed as a braid. This is done by homotoping
the strands to perturbed geodesics while keeping track of intersections within the strands,
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with the marked point, and with the big diagonal ∆ of T κ.

Let

f : BSkκ(T
2, q,α, ∗)d −→ (Z[a±1

1 , . . . , a±1
κ ]⊗ Z[Sκ])⊗ Z[c±1]⊗ Z[[ℏ]]⊗ Z[d±1]

be the Z[ℏ, c±1, d±1]-linear map which sends

γ = {γ1, . . . , γκ} 7→ (an1
1 · · · anκ

κ , σ),

where γ is a κ-tuple of perturbed geodesics and ni = ⟨γi, α⟩ is the signed intersection
number described above.

A generalization of the model computation in Section 3.3 shows us that f is surjective.
That is, we can construct a κ-tuple of perturbed geodesics with the right permutation and
intersections with α.

Let y ∈ BSkκ(T
2, q,α, ∗)d and suppose f(y) = 0. By an argument similar to the discus-

sion at the end of Section 6.2, we can identify y with a Z[[ℏ]][c±1, d±1]-linear combination of
distinct κ-tuples of perturbed geodesics γi:

y =
n∑

i=1

giγi,

where gi ∈ Z[[ℏ]][c±1, d±1]. Since f(y) = 0, it follows that ∑n
i=1 gif(γi) = 0. Since the

perturbed geodesics γi are distinct, they belong to different homotopy classes and so their
images under f are linearly independent. It follows that y = 0 and thus f is injective.

Consider an element (1, σ) ∈ PRκ. This element is represented by V -perturbed geod-
esics from each qi to ασ(i) which do not intersect each other or the curve α. Let σi ∈ Ḧκ,
viewed as a braid consisting of strands qi 7→ q′i+1, qi+1 7→ q′i and qj 7→ q′j for j ̸= i, i+1, where
by a 7→ bwemean "from a to b". Our choice of perturbation term V (t, q) guarantees that the
strand from qi crosses over the strand from qi+1 when projected down from T 2× [0, 1] → T 2.

Lemma 7.3. In the situation above, if σ(i) < σ(i+ 1), then the concatenation of the braid σi and
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the geodesics representing (1, σ) can be isotoped to geodesics d−1(1, σiσ). (In the expression σiσ, σi

is viewed as an element of Sκ under the projection Bκ(T
2, q) → Sκ.)

On the other hand, if σ(i) > σ(i+ 1), then the concatenation of the braid σi and the geodesics

representing (1, σ) is equivalent to a linear combination of geodesics ℏ(1, σ) + d(1, σiσ).

Proof. Suppose σ(i) < σ(i+ 1). (See the left-hand side of Figure 7.2.) Slide the end of the
strand going to ασ(i+1) along ασ(i+1) past the strand going to ασ(i). Due to the arrangement
of the αj , this creates a crossing in which the sliding strand crosses over the other, picking
up a factor of d−1. The result is a braid which has a positive crossing at the bottom (by this
we mean at a lower t-coordinate where the braid is in T 2 × [0, 1] with coordinates (q, t))
due to the σi and a negative crossing at the top. Thus we can isotope the two strands apart,
arriving at the set of geodesics representing d−1(1, σiσ).

Suppose on the other hand that σ(i) > σ(i+ 1). (See the right-hand side of Figure 7.2.)
Resolve the σi braid as σ−1

i + ℏ to get two braids: σ−1
i · (1, σ) + ℏ(1, σ). For the σ−1

i · (1, σ)

braid, slide the strand along ασ(i). This creates a positive crossing and picks up a factor
of d. With this positive crossing, we can isotope the strands apart to get a braid d(1, σiσ).
Therefore, ρ((1, σ), σi) = ℏ(1, σ) + d(1, σiσ).

Figure 7.2: The compositions σ2(1, (12)) and σ2(1, (123)). On the left, we have the case
where σ(i) < σ(i+ 1) and sliding the ends of the strands creates a crossing of the dotted
purple arcs which allows us to separate the strands. On the right, we have the case where
σ(i) > σ(i+ 1) and we see that the strands are linked after sliding the ends of the strands
across each other.
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Notation: Recall that CW (⊔κ
i=1T

∗
qi
T 2,⊔κ

i=1N
∗αi)c is a right DAHA-module. It follows that

there is a right Ḧκ action on PRκ. It is often convenient to identify elements of PRκ with
κ-tuples of paths which are elements of BSkκ(T

2, q,α, ∗). Since composition of paths is
written as a left multiplication, we choose to adopt the notation for a left module. Let h ∈ Ḧκ

and x ∈ PRκ, then we denote ρ(x, h) = h · x, where ρ is as in Section 6.1. After identifying
h1, h2 ∈ Ḧκ with braids γ1, γ2 we have that ρ(x, ρ̃(h2, h1)) = (γ1γ2) · x = γ1 · (γ2 · x), a left
module structure, where ρ̃ : BSkκ(T

2, q, q, ∗) ⊗ BSkκ(T
2, q, q, ∗) −→ BSkκ(T

2, q, q, ∗) is
the product on the braid skein algebra.

Corollary 7.4. Let σi ∈ Ḧκ and (1, σ) ∈ PRκ. Then, setting d = s,

σi · ((1, σ) + (1, σiσ)) = s((1, σ) + (1, σiσ)).

Proof. Suppose σ(i) < σ(i + 1). Then σi · (1, σ) = s−1(1, σiσ) by Lemma 7.3. On the
other hand, (σiσ)(i) > (σiσ)(i+ 1), so σi · (1, σiσ) = ℏ(1, σiσ) + s(1, σ). Adding the terms,
expanding ℏ = s− s−1, and canceling the s−1(1, σiσ) gives the result.

The case σ(i) > σ(i+ 1) follows immediately by letting σ = σiσ.

Definition. Let (a, σ) = (an1
1 · · · anκ

κ , σ) ∈ Z[a±1
1 , . . . , a±1

κ ] × Sκ be an element of PRκ. The
enhanced polynomial representation of the DAHA Ḧκ (with presentation given in Theorem
7.2) on PRκ is as follows:

(1) xi · (a, σ) = (ai · a, σ),

(2) σi · (1, σ) =


d−1(1, σiσ) if σ(i) < σ(i+ 1)

d(1, σiσ) + ℏ(1, σ) if σ(i) > σ(i+ 1)

,

(3) y1 · (a, σ) = c2n1τ−1
κ · (aτκ , τκσ),

where τκ = σκ−1 · · ·σ1 and aτκ = an1
κ an2

1 · · · anκ
κ−1.

(2) in Definition 7.2 only defines the action of σi on an element (1, σ), but we can extend
this to an action on (a, σ) by using the action of xi along with the relations of Ḧκ. Since
σixi = xi+1σ

−1
i and σi − σ−1

i = ℏ, it follows that σixi = xi+1(σi − ℏ) = xi+1σi − ℏxi+1.
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Similarly, σixi+1 = xiσi+ℏxi+1. If j ̸= i, i+1, then σixj = xjσi. Thus we are able to express
any product of σi and xj as an expression where all the xj are in front of the σi.

Since (a, σ) = (xn1
1 · · ·xnκ

κ ) · (1, σ), it follows that σi · (a, σ) = (σi · xn1
1 · · ·xnκ

κ ) · (1, σ).

Claim 7.5. We can express σi · xn1
1 · · ·xnκ

κ as

f(x1, · · · , xκ)σi + g(x1, · · · , xκ),

where f, g ∈ Z[ℏ, x±1
1 , · · · , x±1

κ ].

Proof. This follows from repeated applications of the relations discussed above.

The action of σi on a general element (a, σ) then follows from the claim above and
Definition 7.2.

Similarly, we can compute yi · (a, σ) by using the relation yi = σi−1yi−1σi−1 repeatedly
to reduce to an expression of transpositions and y1.

Proposition 7.6. The action defined above is the one given by

ρd : BSkκ(T
2, q, q, ∗)⊗BSkκ(T

2, q,α, ∗)d −→ BSkκ(T
2, q,α, ∗)d,

where ρd([γ1]c, [γ2]c,d) = [γ1γ2]c,d.

Proof. It suffices to verify (1), (2), and (3) in Definition 7.2.

(1) is immediate from the definitions.

(2) follows from Lemma 7.3.

(3) is easiest seen on the universal cover of T 2; see Figure 7.3 below. We slide the
endpoint of the strand going from q1 to ασ(i) in y1 ·(a, σ) down along ασ(i). We can homotope
the strand until it looks like the right side of Figure 7.3 without creating any crossings
with other strands or the marked point. Thus the two braids are the same element in
BSkκ(T

2, q,α, ∗)d. Next, we can pull the strand down across the marked point, picking
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up a factor of c2 for each marked point we cross in this direction. The resulting braid is
equivalent to c2n1(τκ)

−1 · (aτκ , τκσ). This gives (3).

Figure 7.3: The action of y1 on (a1, (13)).

Example 7.7. Suppose κ = 2. We compute (σ1 · y1) · (a21a−1
2 , σ1). First of all,

y1 · (a21a−1
2 , σ1) = c4σ−1

1 (a−1
1 a22, e).

Then σ1 · c4σ−1
1 (a−1

1 a22, e) = c4(a−1
1 a22, e).

In order to identify our enhanced polynomial representation with the standard poly-
nomial representation from Definition 7.1, we must first find a way to eliminate the Sκ

factor of PRκ. The standard polynomial representation acts on Z[s±1, c±1][X±1
1 , · · · , X±1

κ ],
whereas the generators of PRκ have permutations σ ∈ Sκ associated to them.

We identify ai with Xi and substitute ℏ = s− s−1 to revert back to the ring Z[s±1, c±1].
We take an average of the permutations which defines a Z[s±1, c±1]-linear map:

S : Z[s±1, c±1][X±1
1 , · · · , X±1

κ ] −→ PRκ

Xn1
1 · · ·Xnκ

κ 7→
∑
σ∈Sκ

(an1
1 · · · anκ

κ , σ).
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Remark. The αi are distinct and this is captured by our permutation term σ in a generator
(a, σ). The permutation-averaging can be thought of as getting rid of this distinctness,
resulting in a permutation-free polynomial determined by a.

The following theorem is a more precise version of Theorem 1.3.

Theorem 7.8. After setting d = s, the standard polynomial representation agrees with the enhanced

polynomial representation composed with the permutation-averaging map S.

More precisely, given an element h ∈ Ḧκ and an element f ∈ Z[s±1, c±1][X±1
1 , · · · , X±1

κ ],

S(p(h, f)) = ρd(h, S(f)),

where p(h, f) is the action of the standard polynomial representation and ρd(h, S(f)) is the action

of the enhanced polynomial representation.

Proof. It suffices to show that the equality holds for the generators as in Definition 7.2:

(1) Let xi ∈ Ḧκ and f(X1, · · · , Xκ) ∈ Z[s±1, c±1][X±1
1 , · · · , X±1

κ ]. Then

S(p(xi, f)) = S(Xif) =
∑
σ∈Sκ

(aif(a1, . . . , aκ), σ)

= ρd
(
xi,

∑
σ∈Sκ

(f(a1, . . . , aκ), σ)
)
= ρd(xi, S(f)).

(2) Let σi ∈ Ḧκ and consider 1 ∈ Z[s±1, c±1][X±1
1 , · · · , X±1

κ ].

LetAκ be the alternating group on κ elements, i.e. the subgroup of Sκ consisting of even
permutations. For a transposition σi and permutation σ ∈ Sκ, either σ ∈ Aκ or σiσ ∈ Aκ, so

∑
σ∈Sκ

(1, σ) =
∑
ρ∈Aκ

((1, ρ) + (1, σiρ)).
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Then, using Corollary 7.4,

S(p(σi, 1)) = S(s) =
∑
σ∈Sκ

s(1, σ) =
∑
ρ∈Aκ

s((1, ρ) + (1, σiρ))

=
∑
ρ∈Aκ

ρd
(
σi, (1, ρ) + (1, σiρ)

)
= ρd

(
σi,

∑
σ∈Sκ

(1, σ)
)

= ρd(σi, S(1)).

(3) Let y1 ∈ Ḧκ and f(X1, · · · , Xκ) = Xn1
1 · · ·Xnκ

κ ∈ Z[s±1, c±1][X±1
1 , · · · , X±1

κ ].

Then ω(Xn1
1 · · ·Xnκ

κ ) = c2n1Xn1
κ Xn2

1 · · ·Xnκ
κ−1.

Taking advantage of the first two parts of the proof, we see that

S(p(y1, f)) = S(τ−1
κ ω(f)) = S(τ−1

κ c2n1Xn1
κ Xn2

1 · · ·Xnκ
κ−1)

= c2n1τ−1
κ S(Xn1

κ Xn2
1 · · ·Xnκ

κ−1) = c2n1τ−1
κ

∑
σ∈Sκ

(an1
κ an2

1 · · · anκ
κ−1, σ)

= c2n1τ−1
κ

∑
σ∈Sκ

(an1
κ an2

1 · · · anκ
κ−1, τκσ) = y1 ·

∑
σ∈Sκ

(f(a1, . . . , aκ), σ)

= ρd(y1, S(f)).

Theorem 7.8 can be restated as the following corollary:

Corollary 7.9. LetW ⊂ PRκ be the submodule generated over Z[s±1, c±1] by elements of the form∑
σ∈Sκ

(a, σ). Then the enhanced polynomial representation has a subrepresentation over W which

is isomorphic to the polynomial representation of the double affine Hecke algebra.
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