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Abstract: Frequently, neural network training involving biological images suffers from a lack of
data, resulting in inefficient network learning. This issue stems from limitations in terms of time,
resources, and difficulty in cellular experimentation and data collection. For example, when per-
forming experimental analysis, it may be necessary for the researcher to use most of their data for
testing, as opposed to model training. Therefore, the goal of this paper is to perform dataset augmen-
tation using generative adversarial networks (GAN) to increase the classification accuracy of deep
convolutional neural networks (CNN) trained on induced pluripotent stem cell microscopy images.
The main challenges are: 1. modeling complex data using GAN and 2. training neural networks
on augmented datasets that contain generated data. To address these challenges, a temporally con-
strained, hierarchical classification scheme that exploits domain knowledge is employed for model
learning. First, image patches of cell colonies from gray-scale microscopy images are generated using
GAN, and then these images are added to the real dataset and used to address class imbalances at
multiple stages of training. Overall, a 2% increase in both true positive rate and F1-score is observed
using this method as compared to a straightforward, imbalanced classification network, with some
greater improvements on a classwise basis. This work demonstrates that synergistic model design
involving domain knowledge is key for biological image analysis and improves model learning in
high-throughput scenarios.

Keywords: dataset augmentation; deep learning; developmental toxicology; generative adversarial
networks; stem cell biology

1. Introduction

Stem cells are unspecialized cells that are used as a model for early-stage growth.
They recapitulate biological characteristics of embryonic development, most importantly
pluripotency, or the lack of specified cellular purpose [1]. Deviations from this pluripotent
state are an indication of differentiation, or phenotypic lineage commitment, and have
implications on the health and developmental status of cells and cellular colonies [2].

The normal growth and downstream differentiation cycles of pluripotent stem cells are
highly coordinated and delicate processes. Much work has been performed to delineate and
manipulate these molecular changes in vitro in order to better understand the mechanisms
by which they occur [3–5]. For example, adult cells have been turned back into stem cells
in vitro (induced pluripotent stem cells, iPSC’s), and normal stem cell differentiation has
been modeled using Markovian stochastic methods [6–8].

These and other studies have determined that stem cells transition from the pluripotent
state to the differentiated state via an intermediate progenitor and that many unobservable
substates exist within these larger, observable phenotypes. These phenotypes present
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themselves with distinct morphological structure and can be observed via light microscopy
as cellular colonies with unique gray-level texture patterns. Depending on the duration
of in vitro differentiation, varying proportions of cellular colonies at given stages are
observable at different points in time.

For example, in the beginning of the process, there are more of the early-stage cell
class, while in the middle all three stages can be observed, and there may be some of the
late-stage, and more of the intermediate stage. Toward the end of this cycle, given a high
yield, there should be more of the fully differentiated stage than the earlier two classes.
Figure 1 displays the nature of the multiclass cell colonies with contiguous cell boundaries
that result in the four morphological classes used in this paper (debris, dense, differentiated,
and spread) as described in Table 1. The spatiotemporal way data are collected over the
course of this process provides snapshots of each of these stages. The normal differentiation
process is subject to both internal cues and external factors, and the balance of these signals
can influence cellular fate. Stem cells are particularly susceptible to external perturbations,
and early molecular changes such as DNA mutations can have long-term effects on cellular
and organismal health.

Figure 1. Image examples for four morphological classes observable in a single cell colony (debris:
green; dense: red; spread: blue; differentiated: yellow). Throughout the differentiation process,
various proportions of each class can be found in cell colonies with contiguous cell boundaries.
Classification of these multiclass images can be performed using image patches.

1.1. Developmental Toxicology

Developmental toxicology is the study of the effects of environmental factors on pre-
natal growth and development [9]. In vitro studies aimed at observing the developmental
effects of exposure to tobacco chemicals on stem cells have been influential in the formation
of United States Food and Drug Administration (FDA) policies for harm reduction and
public health. However, the pace of stem cell research is often limited by the tedious and
time-consuming process of image data analysis. In addition, the desired scale of experi-
ments involving the testing of multiple chemical compounds at various concentrations,
across multiple cell types, in a high-throughput manner, results in data that are often im-
possible to analyze by hand. Recently, computational analysis using video bioinformatics
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has become an invaluable tool for researchers toward reducing human error and increasing
analytical throughput.

Table 1. Morphological class descriptions and corresponding biological implications.

Class Morphological Description Implication

Debris Individual cells or aggregates cells showing cir-
cular morphology with high intensity white
‘halo’ marking distinct boundaries

Distressed, dead (apoptotic/necrotic) cells that
float on top of colony indicating negative re-
sponse to experimental conditions

Dense Homogeneous aggregates of small cells with in-
discernible cell boundaries, no clear nucleus

Induced pluripotent stem cell colonies that main-
tain undifferentiated status under current condi-
tions

Spread Homogeneous aggregates of large cells with dis-
cernible cell boundaries, clear nuclei, large pro-
trusions

Down stream lineage intermediates or progeni-
tor cells

Differentiated Individual cells or spaced out aggregates of cells
with distinct, dark cell bodies, high-intensity white
boundaries, and dark axon like protrusions.

Differentiated neurons or neuronlike down-
stream lineages

1.2. Video Bioinformatics and Machine Learning

According to Bhanu et al. [10], video bioinformatics (VBI) is “the automated process-
ing, analysis, understanding, data mining, visualization, query-based retrieval/storage
of biological spatiotemporal events/data and knowledge extracted from videos obtained
with spatial resolution varying from nanometer to meter of scale and temporal resolu-
tion varying from seconds to days and months." Many aspects of experimentation can
be quantified by observing cellular behavior in images and videos in a noninvasive man-
ner (i.e., without killing or otherwise perturbing live cells). Light microscopy is often
used to observe dynamic colony behavior by collecting time-lapse images during experi-
mentation. Data collection is sometimes automated using an incubator–microscope unit
such as the Nikon Biostation CT to accumulate temporal image data [11]. These units are
programmed to collect whole-dish images, or perform single colony tracking at desired
time intervals, for extended periods of time, helping to standardize data collection in a
high-throughput manner.

A bottleneck arises in the analysis of resulting image data, normally processed by
hand over the course of many weeks, or with the aid of open source software such as
ImageJ and CLQuant [12,13]. These rudimentary programs require users to sift through
their dataset, image by image, selecting, outlining/tracing, and visualizing images or
creating image processing pipelines designed to generalize across the dataset. These
algorithms are useful tools for segmenting and measuring objects in an image but require
substantial expertise and user input, which comes with the possibility of increased error
due to nonstandardized bias.

In the past decade, many advances have been made to remove user error and bias
by automating the image analysis process. The utility of VBI programs has expanded
to include quantification and classification of results. In general, these image processing
programs are concerned with leveraging unique characteristics (i.e., features) of images, at
both the pixel and image level, to accomplish a desired task, such as classification. Some
examples of features include global static information such as colony size, shape, and
morphology, as well as temporal information including motility, growth rate, and observed
behavioral status (e.g., differentiation or death) [14]; local features include information
found within patterns, such as texture, contrast, intensity, and color. Programs that exploit
these features are useful to researchers for removing sources of human error by combining,
standardizing, and automating the feature extraction and quantification/classification
processes. For example, Guan et al. use a Gaussian mixture model to segment stem cells
from image background in static microscopy images [15].
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Many of these programs also employ machine learning algorithms such as clustering,
decision trees, or support vector machines to improve classification. One such program,
called StemcellQC, analyzes time-lapse microscopy videos using predetermined, hand-
crafted morphological features of stem cell colonies. This program takes input from the user
via a graphical user interface (GUI) in terms of setup and desired output, and automatically
analyzes and plots outputs for the user to view [14]. Global features such as colony area,
aspect ratio, and motility are combined with local features, including gray level intensity,
to classify individual colonies by health status (healthy, unhealthy, dying) using standard
machine learning algorithms to determine the effects of toxic chemicals on cellular behavior.

Another program, Pluri-IQ uses a supervised random forest classifier to distinguish
between cell colonies at different stages of growth from pluripotent to differentiated in
dense, fluorescent microscopy images [16]. While these software improve the efficiency of
analysis through standardization, they still require user interaction, rely on the researcher
to predetermine features based on prior knowledge of colony behavior, or exploit some
previously observed pattern. More recently, deep learning has revolutionized image
analysis by automating both the feature extraction and classification processes to remove
sources of human error and bias. The following section discusses deep learning approaches
for biological image analysis.

1.3. Deep Learning Approaches

Deep learning (DL) programs help to overcome the drawbacks of data analysis by
combining feature extraction and classification into a single model. DL models do this by
determining mathematical features of images that can be used to categorize input data.
These features consider all aspects of an input image and are iteratively refined with respect
to a desired output using a gradient descent optimization algorithm. Moreover, deep
learning extends these algorithms to image processing and analysis via deep convolutional
neural networks (CNN). The term deep comes from the layered architecture of the CNN;
neural network comes from the weighted connections between a pair of layers, and a
bioinspired gated activation operation, the rectified linear unit (ReLU) is like the all-or-
nothing activation response of neurons to an input signal [17]:

f node =
n

∑
i=1

(wixi) + b (1)

ReLUy =

{
y = 0 y ≤ 0
y = y y > 0

(2)

These algorithms sequentially multiply input images by the layered weights as shown
in Equation (1). At each node, the output is f node, xi is the input value from the previous
layer, wi is the weight value of the layer, and b is an additional bias term. Positive valued
outputs are fed forward to the next layer through a piecewise ReLU activation function
(Equation (2)), where y is the feature map from the previous layer. The output of these
operations at the end of the network is a unique numerical signature that is used to
determine the class of the image.

During training, predictions of the network are used to update the parameters (weights)
of the model with respect to a given ground-truth. While DL was initially employed to
classify extremely large, real world datasets such as ImageNet [18], it has been used recently
to improve the accuracy and efficiency of analysis for biomedical applications including
microscopy [19–22], high-throughput methods [23], MRI [24], histopathology [25], and
stem cell microscopy imaging [26]. For example, in our previous work, the patch-based
classification of multilabel colony images was addressed in [27]. However, the aforemen-
tioned caveat of dataset size, as well as the large size (224 × 224) of image patches used in
this work were noted as drawbacks to this method.

The high-parameter nature of these networks requires training them with extremely
large datasets to avoid overfitting, which is the case where the model learns to classify the
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training images perfectly, instead of learning features that generalize well across the testing
dataset. There is commonly a positive correlation between dataset size and network accu-
racy, because the more sample images the network sees during training, the more precisely
it models the data and, consequently, the more information it uses to make decisions during
testing. Unfortunately, the nature of biological experimentation frequently limits the size of
the dataset, based on time, resources, and general difficulty in performing experiments.

Therefore, there is a need to increase the size of biological datasets by supplementing
images with similar and visually relevant data, without having to perform new experi-
ments to collect more images. Generative adversarial networks (GAN) provide a unique
opportunity to generate new images that are representative of the real data. This paper is
aimed at performing data augmentation by supplementing a minimal biological dataset
via image generation using GAN [28]. GAN are a subset of DL networks that combine two
opposing networks that take a noise vector as input and produce an image based on the
features that they learn from the real dataset. More information on these complex networks
is provided below.

1.4. Generative Adversarial Learning

GANs are DL models that combine two networks, a generator (G) and a discriminator
(D), that play a min-max learning game to model input data (Equation (3)). G takes as input
a vector, z, of numbers sampled from a Gaussian distribution, and performs upsampling
convolutions to produce and n×n size image, G(z). D alternately takes as input either real
or generated images and performs downconvolutions to produce a realness score that is
used to determine if the image is real or fake. The goal of G is to generate images that fool
D into thinking that they are real (i.e., minimize the probability that G comes from the fake
distribution, pz), and the goal of D is to maximize the log-likelihood probability that a given
image comes from the real distribution pdata(x), where E is the expected value operation:

min
G

max
D

V(D, G) = E x∼pdata(x) [log D(x)] + E z∼pz(z)[log(1− D(G(z)))] (3)

GANs learn a representation of input features in an unsupervised manner, which
can then be used for additional downstream learning tasks such as feature extraction and
classification [29]. Convolutional GANs were originally designed to generate images from
extremely large, open-source datasets, such as natural images (Imagenet [17], CIFAR [30]),
faces, and numbers (Mnist, [31]). More recently, this work has been expanded into unique
datasets including those from medicine and biological experimentation. Efforts to address
the challenges of modeling a unique cellular microscopy dataset using GAN, and the use
of generated data for dataset augmentation, are the subject of this work. Related works
involving GAN are presented in the following section.

2. Related Works

Recently, GANs have been used for biological image generation tasks involving cellular
microscopy and medical image datasets [32,33]. For the purposes of this paper, cellular
microscopy images are considered distinct from medical images (e.g., X-ray, CT, MRI) in
that they deal with objects on a micrometer scale and are usually obtained from cellular
experimentation involving microscopy. Factors including scale and cellular morphology
increase the visual complexity of data and, in turn, that of modeling/analysis. There are
many ways to implement GANs for learning applications using cellular image data with
the goal of gathering useful features in an unsupervised manner. Some examples of cellular
microscopy applications of GAN are given below.

One indirect method of using GAN features is through transfer learning, in which the
information learned from GAN, in the form of network parameters, are leveraged by sepa-
rate models to improve network performance when using few labeled data. For example,
Majurski et al. [34] use features from GAN trained on fluorescent stem cell microscopy
images to perform cellular segmentation with a U-net style pixelwise classification network.
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Wang et al. [35] use GAN discriminator features to fine-tune a classifier on minimal labeled
dataset for detection of rosette formation in early stage C. elegans embryos. While transfer
learning using GAN can indirectly inform downstream model learning, GAN can also be
used to directly produce image outputs for observation of the learned representation.

An example of this is the task of image-to-image translation, in which the original style
or modality of an image is transformed to another of desired nature. Rivenson et al. [36]
used a VAE-GAN style network, in which an encoder–decoder–discriminator network is
used to translate images acquired using a noninvasive phase contrast microscopy, into col-
orized histology images. This digital staining technique is used to circumvent the difficult
process of histology staining, in favor of noninvasive microscopy techniques. Lee et al. [37]
perform 3D fluorescent microscopy deconvolution using a specialized CycleGAN frame-
work. This network performs image-to-image style transfer using multiple GANs to learn
a mapping between unpaired images of different styles, such that there is no need for a
direct ground-truth comparison during training. They use this framework to sharpen noisy
images for improved segmentation in 3D volumes of rat kidney sections. Bailo et al. [38]
generate images of red blood cell smears to perform dataset augmentation for segmentation
and detection tasks. They train a sophisticated image generator (pix2pix) to perform image-
to-image translation from segmentation masks of real images and subsequently generate
new images from synthesized segmentation masks. These works utilize GAN to change
images from one style or modality to another but do not directly employ GAN for image
generation from a latent space.

More straight forward implementations of GAN involve the use of networks to directly
generate images from a learned feature representation using only a latent variable as input.
Goldsborough et al. [39] generate single cell fluorescent images in three color channels
using various GAN models and perform image interpolation before using GAN features for
transfer learning, observing increased classifier performance. Pandhe et al. [40] combine a
GAN image representation with autoregressive motion synthesis to accurately recapitulate
neutrophil behavior and observe patterns of organelle function. Theagarajan et al. [41]
generate single cell images of human embryonic stem cells across five health-related classes
using multiple networks. They use an ensemble of GAN networks to generate thousands
of stem cell images for dataset augmentation and find increases in evaluation metrics for
the number of added images. Osokin et al. [42] use a “separable generator” to generate
two color channels of a multichannel fluorescent images. In all these cases, the generated
images are of whole cells, where the entire cell body is within the field of view. Images like
these are generally less difficult to model than the more detailed, varied, and fine-grained
texture patterns observed in the image patches generated in this work, because the model
can learn the relationship between the background and foreground.

The work of Devan et. al. [43] provides another example of a GAN implementation for
limited biological dataset augmentation. The authors of this work use GAN to increase the
size of a transmission electron microscope image dataset. They perform automatic detection
of cytoplasmic capsids using region-based CNN (R-CNN) [44] with an augmented dataset
and show an improvement of their results against the standard dataset configuration.
This method employs SinGAN [45] to generate alternative versions of real images using a
pyramidal GAN network. Unlike this work, the proposed method seeks to use GAN to
generate completely new image patches to be added to the dataset, instead of different
versions of real images. Furthermore, the proposed method also takes class relationships
and dataset imbalances caused by experimentation into account.

Similarly, Dimitrakopoulos et. al. [46] perform GAN-based dataset augmentation for
open-source medical image datasets. They propose a GAN model, Ising-ResGAN, that
uses Markov random field constraints to perform image smoothing. They use generated
images to improve the results of a U-net segmentation task for various publicly available
datasets. They generate images with a large field of view (256 × 256) and do not include
domain specific knowledge, where as the proposed method generates subcolony image
patches and incorporates a learning scheme based on stem cell differentiation.
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Contributions of this Paper

While the above related work represents useful applications of GAN to biological
datasets, none of them addresses the issue of temporally constrained differentiation. The
previously mentioned works involve the modeling of static images with varying levels of
image complexity in terms of cellular structure and colony density, texture, and overall
variation across datasets. These works do not impose biological constraints or exploit
domain knowledge. In this paper, a mathematical model of stem cell differentiation,
involving Markov chain stochastic processes, is used to inform model training.

The focus of the proposed approach is on the generation of small image patches
containing fine grained texture features and high variation, across four classes (dense,
spread, differentiated, and debris) using GAN. This paper expands significantly on previous
work in [47] by testing multiple model configurations/architectures and introducing a
new GAN training/quality control scheme that utilizes image entropy distributions for
improved training. These aspects of the proposed model make it novel in comparison to
the previous work. The contributions of this paper are as follows:

1. Models complex, varied, and highly textured image patches using GAN
2. Incorporates domain knowledge in the form of temporal constraints on model learning

as well as bioinspired algorithm design
3. Introduces an image-entropy-based metric for model training, image postprocessing,

and quality control
4. Explores dataset augmentation as a viable means for improving network performance

for tasks involving patch-based classification

The data used in this work present unique challenges in terms of image generation and
classification. Specifics of the proposed method to address these challenges are discussed
in the following section.

3. Materials and Methods
3.1. Technical Approach

Figure 2 describes the overall approach for colony detection and image preprocessing
used in this work. The preprocessing step is performed to reduce the amount of flat
background in images, which contains no class-relevant information. The large size images
from this dataset are too computationally expensive to be processed as whole images, and
relevant colony areas make up only a portion of the original stitched microscope image. Cell
colonies are detected using a morphological segmentation algorithm (sequential operations:
3 × 3 Gaussian blur, entropy filtering (disk filter, size 3), morphological opening (disk filter
size 3), binarization via Otsu thresholding, hole filling, small object removal <2000 pixels).
Detected colonies are cropped out to amass a dataset of colony image ROIs. After this,
random patches of cropped images are used to train separate GAN models for each class.

The proposed method employs GAN to model four separate data classes (dense,
spread, debris, differentiated; see Table 1). These classes are determined by the morpholog-
ical appearance of cell colonies in static images and correspond to cellular phenotypes, or
specific cell types, based on prior biological knowledge. The use of multiple GAN networks
(one for each class) in this work has several advantages including: 1. negating the effects
of class imbalances; 2. improved training because of modeling a unimodal distribution
of class features; 3. allowing for the specific tailoring of each GAN for a single class (i.e.,
number of training epochs for convergence); 4. feature disentanglement via extraction of
classwise information, which includes the entropy loss calculated during training.
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Figure 2. Data preprocessing and classification schematic. The binary map of colony locations is used
to segment colonies from the original image, which are then sorted by hand during ground-truth
generation (left). Patches from the resulting dataset are used to train the GAN. Generated images
are added to balance the dataset for the temporal CNN classification scheme (right), during which
images are sorted into their individual classes through multiple hierarchical stages.

3.2. GAN Architectures

In this work, several generative adversarial network (GAN) architectures and loss
functions are tested to determine the most advantageous configuration for the specific task
and dataset. Given that GAN training is notoriously unstable, a deep convolutional GAN
(dcGAN) [29] architecture is adopted as a base model (Table 2). The GAN generator, G,
takes as input a 100-dimensional Gaussian noise vector and outputs a 64 × 64 grayscale
image. That image is then fed alternately with real images to the discriminator, D. D then
outputs an adversarial (real/fake) score for the image, which is the binary cross-entropy
criterion, where L is the loss value, x is the network output with respect to the input c, and
the score is computed across all samples, j Equation (4):

L(x, c) = −x(c) + log(∑
j

exj) (4)

LdcGANGen = LAdversarialPz
(5)

LdcGANDis = LAdversarialPz
+ LAdversarialPdata

(6)

The standard loss function for the generator is the adversarial loss with respect to
the generated data distribution, Pz, (Equation (5)). The aggregate loss function for the
discriminator is the average of the adversarial losses for both the generated, Pz, and real
image samples, Pdata, (Equation (6)). GAN training uses the Adam optimization algorithm
along with the parameters provided in Table 3. These learning values are determined
empirically using network optimization and allow for stable, efficient training of the GAN.

Several other GAN models and loss functions are compared to this baseline to de-
termine the effect of GAN configuration on generated image quality. These architectures
include the Wasserstein GAN (wGAN) [48], Auxiliary GAN (auxGAN) [49], and Metropolis-
Hastings GAN (mhGAN) [50]. Each of these networks use the dcGAN as a framework on
which to build specific training/learning techniques and loss functions. Brief overviews of
each configuration are outlined below.
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Table 2. GAN Network Architecture: The input to the GAN generator (a) is a latent vector of length
100 multiplied which is processed through multiple convolutional (C2d) and upsampling (Up) layers.
The output of the generator is a hyperbolic tangent (Tanh). The output of the discriminator (b) goes
to a fully connected (FC) layer followed by a sigmoid function (Sig).

Generator Discriminator

Module Size Maps Module Size Maps

Linear 1× 100/16 1/512 C2d 64/32 1/64
Up 16/36 512/512 C2d 32/16 64/128
C2d 36/36 512/512 C2d 16/8 128/256
Up 36/64 512/512 C2d 8/4 256/512
C2d 64/64 512/256 FC 8192 512
C2d 64/64 256/1 Sig(·) 1/1 -/-

Tanh(·) 64/64 1/1

Table 3. GAN training hyperparameters were empirically determined to optimize network
training efficiency.

Training Hyperparameters

Parameter Value

Learning Rate-Adam 0.002
β1—Adam 0.5
β2—Adam 0.999

Max feature maps—Discriminator 512
Max feature maps—Generator 512

3.2.1. Wasserstein GAN

The Wasserstein GAN (wGAN) is a network configuration that tries to solve the
problem of “vanishing gradients” in normal GAN applications that lead to the phenomenon
of mode collapse in image generation. Mode collapse is when the generator fails to model
all the variability in the input dataset and instead learns to output images that contain
only a small subset of input features. This is often due to the discriminator learning a
good mapping between real and fake images, which prevents the generator from training
efficiently. wGAN attempts to control the weights of the discriminator by restricting, or
“clipping”, the highest and lowest weights within the discriminator feature maps to allow
the generator to learn a more sufficient mapping of the dataset distribution during training.

3.2.2. Auxiliary GAN

The auxiliary GAN is a dcGAN network that uses image labels as a condition for
network training. The image labels are provided to the generator network as a latent
embedding, which gives the network prior information about image class. The generated
images are then passed to the discriminator, which outputs both an adversarial score, as
well as an auxiliary classification score in the form of cross-entropy loss criterion (softmax
function + negative log-likelihood). The loss function for this network then becomes the
aggregate of the adversarial and auxiliary losses for both the generator and discriminator,
as shown below in Equations (7) and (8):

LauxGANGen = LAdversarialPz
+ LAuxiliaryPz

(7)

LauxGANDis = LAdversarialPz
+ LAdversarialPdata

+ LAuxiliaryPz
+ LAuxiliaryPdata

(8)

The advantages of the auxGAN configuration are that it allows multiple image classes
to be produced by the same generator. However, the network has the more difficult task of
modeling a multimodal distribution, which could affect individual classwise image quality.
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3.2.3. Metropolis-Hastings GAN

The Metropolis-Hastings generative adversarial network (mhGAN) is a dcGAN im-
plementation that uses Markov chain Monte Carlo sampling to try to improve image
generation. mhGAN attempts to find a more accurate image representation for the genera-
tor using the discriminator to guide image selection via the Metropolis-Hastings algorithm.
Equation (9) illustrates how the model is able to learn the relationship between the data
distributions, pD(x) and pG(x) using the output of the discriminator, D(x). The discrimi-
nator is provided multiple real and generated samples and is tasked with determining the
most relevant real images with which to train the generator, based on its decision function:

pD(x)
pG(x)

=
D(x)

1− D(x)
(9)

An auxiliary implementation of the mhGAN is also trained here to test the ability
of the Metropolis-Hastings algorithm to model the multimodal distribution. All GAN
networks are trained to convergence using the Adam optimizer, and training is monitored
via loss function and generated image appearance. A table of network hyperparameters for
training is provided in Table 3, where all values were empirically determined for optimiza-
tion. Networks are trained using NVIDIA GeForce GTX 1080ti GPU’s and programmed
using the Pytorch deep learning library [51]. This model also utilizes the advice of GAN
Hacks for design and implementation (https://github.com/soumith/ganhacks, accessed
on 30 October 2021). The effectiveness of the various GAN methods in generating realistic
images is assessed using multiple standard image quality metrics, as well as a novel metric
introduced in the following section.

3.3. Assessing Generated Image Quality

In this work, several standardized methods of assessing generated image quality are
used to compare all these implementations. Quality metrics such as inception score [52] and
Frécet inception distance [53] are used, as well as a novel image entropy-based technique
that is introduced in this paper, and described in the following section.

Image Entropy Distribution

The image generation scheme proposed in this work results in image patches that
contain various proportions of foreground/background area where foreground textures
are representative of subcolony cellular morphology. The random nature of image patch
sampling allows for the network to learn both colony body and boundary areas, which are
equally important to the overall classification task when trying to encompass the whole
colony area. One method of measuring the accuracy of the generated image distribution
is by using image entropy. For this, image entropy is calculated as the Shannon entropy
(Equation (10)) of the individual generated image patches:

H = −∑ Phist ∗ log 2Phist (10)

During GAN training, image entropy is calculated for mini batches of real and fake
images, and the normalized image entropy probability distributions are used to find an
image entropy loss parameter, LH. Comparison of distributions is performed using the
mean squared error (MSE, Equation (11)), evaluated over n samples using the squared
difference between measurements Y and Ŷ and then added to the aggregate loss function
of the discriminator:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (11)

Trained GANs are used to generate image patches which are added to the real dataset
at various percentages and subsequently used to train various CNN models to perform
image classification across the four classes. The effect of this added value is observed by

https://github.com/soumith/ganhacks
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plotting the image entropy values of 50,000 random real and generated image patches
(Figure 3). The percent overlap between the graphs is calculated by summing the smallest
overlapping values across all the bins and dividing by the total number of calculated values.
Both the generated and real images have entropy values within the range of 3–8, but the
generated images tend to be skewed toward the upper range of this distribution. Higher
image entropy is an indication of higher variability in the images and can be interpreted as
images with more visual information.

Figure 3. Image entropy distribution histograms for GAN configurations. These graphs provide
a quantitative measure of the overall generated image distribution in relation to the real image
distribution and are used during GAN training to improve network learning. Values in parentheses
indicate the percent overlap of the two graphs shown in the figure.

Table 4 shows the average classwise image entropy histogram overlap percentages for
five trials of entropy histogram calculations. One trial consists of generating histograms
using 50,000 random real and generated image patches each. Random image generation
causes variation within these calculations, and is indicative of variability of generated im-
ages. These values measure the ability of the generator to model relevant class information
and can also be used to inform model learning.

It can reasonably be assumed that the greater the overlap between the real and gener-
ated image entropy distributions, the more accurately the generator is able to model the
real image patches. These graphs also allow for the visualization of the image distributions
in terms of the entropy values and are useful in determining the variability of features that
are modeled by the generator. From Table 4, the classes with the lowest overlap values
are the differentiated and spread classes. For the differentiated class, this may be due
to the relatively small number of images available to the generator for modeling, or the
difficulty in modeling features of the specific class. For the spread class, it may be due to
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the generator learning the high-entropy features of this relatively large class, whereas the
real image distribution displays a wider entropy curve.

In addition to calculating a training loss value, this entropy metric is also useful as a
measure of the accuracy of the generated image distribution. These values can be correlated
to the performance of the downstream data augmentation tasks as well as to the effect of
changing the loss function of the discriminator using this entropy criterion as discussed
in Section 4 of this paper. The data generated by GAN are then used to augment the real
datasets for training classification CNNs with temporally constrained configurations, as
described below.

Table 4. Overlap percentage for image entropy histograms across five trials, for which the entropy val-
ues of 50,000 random real and generated image patches each are plotted and the overlap is calculated.
Variation in values is caused by randomly generated image patches that contain variability within the
image. These values can be used to determine how well the generator has been able to model image
features and can be correlated with the performance of downstream dataset augmentation tasks.

Image Class Overlap Percentage—Mean (std.)

Debris 0.6182 (0.0026)
Dense 0.7066 (0.0033)

Diff 0.3936 (0.0018)
Spread 0.3999 (0.0011)

3.4. CNN Training Configurations

The main objective of this paper is to improve CNN performance for data limited
settings involving biological images. To achieve this goal, the approach used is to augment
the real dataset using GAN generated images as described above. However, this task is not
as straightforward as it seems. There are many ways in which generated data augmentation
can be effective for network training. Two common biological dataset issues are addressed
here, namely data imbalances, and limited datasets.

Temporal Classification

The dataset configurations employing generated image augmentation are used in
conjunction with temporally constrained, hierarchical classification CNNs. Temporal
constraints are imposed according to the in vitro differentiation process as modeled by
Stumpf, et al. [7]. During this procession, which has been shown to recapitulate in
vivo differentiation, cells undergo downstream lineage changes that can be separated
into three major categories: embryoniclike stem cells (ESC), intermediate progenitors,
and differentiated neurons. Similarly, there are three classes of viable cell colonies that
compose the dataset used in this work: dense (ESC), spread (progenitors), and differentiated
(neuronlike formations).

Additionally, there are colonies of nonviable cells that are known as debris, that
represent dead or unhealthy cells and exist independently as well as within viable colonies.
These areas are important because they characterize the adverse effects of toxic exposure
and provide insight about the health status of cell colonies. Therefore, the hierarchical
CNN classification system is set up as a series of two-class networks that combine the
various class stages of growth and differentiation as described above. Figure 4 provides
a visual reference for data imbalances, as well as the number of images provided for the
train:test split. The number of added images in various configurations is shown in relation
to the largest class. For example, in the first stage, when dense, spread, and differentiated
are combined against debris, the difference between the total number of images in each
class is made up by adding generated debris images to the real debris training dataset. At
every stage, the smaller, single class is balanced against the larger aggregate class using
generated images, creating proportional image classes, in order to counteract the problem
of data imbalances.
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Figure 4. Bar graph of data breakdown including values for training/testing (blue/yellow) split.
Generated images (red) are added to the dataset to make up for class imbalances during CNN training.

The temporal constraints imposed in this method focus on the overall morphological
class relationships within the dataset. This contrasts with using dynamic cellular changes
between video frames directly in model training. Instead, the temporal relationships
between image classes are exploited to improve the efficiency of network learning for
classification of individual images based on cellular morphology. The details of this
method are described below.

First, debris cell colonies are separated from the other three classes, which are grouped
together into a single class and sent to the next stage of classification. In the second
stage, differentiated cells are separated from a grouped class of dense and spread cells.
Finally, in the third stage, dense and spread cells are separated into their individual
classes. Performing classification in this manner allows for the exploitation of the natural
relationship between classes, as well as allows for more fine control of dataset augmentation
using generated images based on class imbalance and dataset proportions.

In the final stage of classification, the power of generated features for dataset aug-
mentation is explored by testing the saturation point for the dense vs. spread classes.
Thousands of generated images are added to both the dense and spread classes and a plot
of network performance vs. augmentation level is created for visual reference. Empirically,
it is shown here that this combination of hierarchical classification and dataset balancing
using generated image augmentation outperforms a four-class CNN configuration using
various standard dataset balancing methods, and that there is a positive correlation between
the level of generated image augmentation and the classification accuracy of the network,
up to a saturation point.

All models are trained for 200 epochs (training slows down at this mark), using cross-
entropy loss criterion, and stochastic gradient descent optimizer (LR: 0.005, momentum: 0.8,
weight decay: 0.0001, batch size: 64), where the learning rate is reduced by half, halfway
through training. All configurations are trained with fivefold cross validation, using an
80:20, train:test split. Figure 5 displays the classification accuracy and loss parameters
observed over the course of training and is used to check for network overfitting and
training efficiency. The following section provides specific details about the dataset used in
this work, as well as the results of CNN training using augmented datasets from GAN.
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Figure 5. Graphs of network accuracy (left) and cross-entropy loss (right) for training and validation
datasets. A small respective bump/dip in accuracy/loss is observed at 100 epochs, where the learning
rate parameter is reduced. Training levels out before the 200 epochs, indicating that the network has
finished learning.

4. Results and Discussion
4.1. Data

Data for this study come from experiments performed by Dr. Barbara Davis in the
laboratory of Dr. Prue Talbot. They are aimed at determining the effects of nicotine
exposure on diseased, induced pluripotent stem cells (iPSC) expressing the Huntington’s
disease (HD) phenotype. HD is a progressive neurodegenerative disorder that affects motor
neurons in the adult brain [54,55]. Nicotine has been shown to have a neuroprotective
effect on neurodegenerative diseases such as Parkinson’s disease [56]. The theory of this
work is that nicotine may have a similar affect in HD nueronal growth and development.

To test this hypothesis, HD iPSC’s are exposed to nicotine at varying concentrations
(control, 10−4 M, 10−5 M) in vitro over the course of a 48-h culture period. Large-size
(2908 × 2908) images of cellular culture dishes are collected at 10×magnification using the
Nikon Biostation CT, an an automated incubator–microscope unit. Collected images contain
thousands of colony areas at various stages of the developmental process and require
preprocessing and manual annotation to be used to train the deep learning networks. These
images are preprocessed in accordance with the approach described in Section 3.1. The
resulting image dataset is then manually annotated for ground-truth as described in the
following section.

4.2. Ground-Truth Validation

A breakdown of number of images has been shown in Table 5. Images were sorted
based on predetermined, visually distinct features presented in each class that correspond
to phenotypic differences. Morphological classes were determined by the experts who
collected the data to best reflect the phenotypic characteristics of distinct cell colonies.
Ground-truth data was obtained via manual annotation by an expert researcher (A.W.) for
the entire dataset. These annotations were validated by two additional researchers (G.P.,
R.T.) on a random subset of image data to provide consensus and check for variability and
subjectivity. The original sorting was confirmed by training a neural network on each of
the three annotated data subsets and determining which sorting provided the best testing
results on a classwise basis. The rationale for the patch-based sampling approach used for
this work is presented in the next section.
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Table 5. Data breakdown for four morphological classes. Class imbalances observed here are a factor
of the natural growth and differentiation cycle of the cells.

Class # Samples

Debris 3587
Dense 3934

Diff 656
Spread 10,506
Total 18,683

4.3. Patch-Based Sampling

There are two main reasons why a patch-based sampling approach is used in this
work. The first reason is that image classes in this dataset are based on morphological
phenotype. These morphologies are determined by their subcolony level texture patterns,
and image patches provide a local view of these morphologies. The contiguous nature
of colony morphology means that multiple classes can appear in a single colony image;
the use of image patches provides the most reliable means of limiting class overlap when
performing patch-based classification.

The second reason is that GAN training is a data-intensive process, with the counter-
productive goal of increasing dataset size. Therefore, a patch-based sampling method is
implemented for the following reasons:

• to increase the apparent training dataset size
• to accommodate efficient network architectures (it is widely recognized that GANs are

effective when images are relatively small (≤64 × 64) but are prone to mode collapse
with high-resolution images)

• to standardize input size, as image crops vary in dimension
• to model low-level features (i.e., fine-grained textures), which show high variation

across image patches for a given class
• to increase general variability via patch sampling, which generally improves training
• to aid in the analytical goal of classifying contiguous, multilabel cell colonies in a

patchwise manner using only cellular morphology

To this end, the GAN model is used to generate 64×64 patches of colony images. Image
quality is measured using various standardized qualitative and quantitative measurements
as described in the following section.

4.4. Assessment of Generated Image Quality

There are several methods by which generated image quality is measured in this work,
including visual appearance, quantitative scores, and efficacy in application for the desired
task. Figure 6 displays real and generated image patches across the four morphological
classes in the dataset for the various GAN configurations.

Visual assessment of these samples reveals that the generator has been able to capture
both the general structure and fine-grained morphological features of the cell colonies,
and that these features are distinguishable for the individual cellular phenotypes. Some
configurations, such as dcGAN, show greater image variation and visual quality than
others, such as auxGAN, especially for the differentiated class. Images generated with the
multiclass generator used in auxGAN shows signs of feature entanglement, where image
features from one class are present in another. This is because the generator has difficulty
separating these features using a single model. Other methods, such as wGAN, fail to
generate any realistic images, such as for the differentiated class, where only noisy black
images can be seen.

While the generator may be able to convince the trained human eye of its ability to
produce realistic images, that does not necessarily mean that it will be able to provide useful



Sensors 2022, 22, 206 16 of 26

information to the learning task. For this, feature-based quality measures are required to
determine the level of relative image realness with respect to the real dataset.

Figure 6. Image patch samples for real and generated images. A comparison of classwise image
features displays generally realistic image features indicative of morphological class. However, visual
appearance of images provides only a qualitative measure of image quality, where quantitative
metrics are necessary to determine image realness.

4.4.1. Inception Score

Inception score is a quantitative measurement of generated image quality with respect
to image-classification-based probability distributions [52,57]. This method combines
measurements of generated image realness and variability based on the output predictions
of a pretrained inception network. The output is an entropy-based score using the Kullback–
Leibler divergence (DKL, Equation (12)) between the classwise generated image distribution,
P, and the overall generated distribution Q, where x is the discrete probability and X is the
probability space. In this work, inception score is used to monitor network training, and
determine the iteration at which GAN training is optimized. The network representative
of this inception score is chosen as the generative model for dataset augmentation. The
inception score has a range based on the number of classes in the dataset, for example, from
0 to 1 for binary classification:

DKL(P||Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
(12)
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4.4.2. Frécet Inception Distance

The Frécet inception (FID) is another image quality metric that seeks to overcome some
of the shortfalls of the inception score by directly comparing generated image distributions
to corresponding real image distributions [53]. FID score is calculated using the mean and
variance of the output feature maps of the inception network given real and generated
image inputs. This method provides a calculation of the image quality with respect to the
real images, and is sensitive to noise, blur, and occlusions.

In this work, FID score is used to evaluate the realness of generated image datasets on
a classwise basis. Together, the inception score and FID create a comprehensive view of
generated image quality and can be used to determine the efficacy of different generator
configurations. Observations of image quality made using these metrics are provided in
the following section.

4.5. GAN Training Visualization

During GAN training, the inception and FID scores for generated image patches is
tracked and generated images are gathered at various time points for visual reference
(see Figure 7). Many aspects of network learning can be inferred from the observation
of these visual references over time. At the start of training (Epoch 1), the generator
begins to distinguish between foreground and background, displaying only gray level
splotches of indistinguishable colony areas. Images begin to show more features resembling
realistic colony patches around the 50-epoch mark, displaying more distinct, lower contrast
splotches that also include the high-intensity bright areas indicative of the halos observed
in the experimental dataset. These high-level morphological details are seen across the
entire dataset and indicate that the network learns high-level features first.

Figure 7. Normalized generator inception score (red) and FID (blue) per training epoch with ex-
ample images at various intervals for the spread class. Graphs include accompanying trend line.
Training epoch numbers are marked by a white ’E’ in the bottom of each image. Agreement between
inception score and FID can be seen in terms of their relative minimum and maximum values versus
training epoch.

The progression of displayed features indicates that training is stable, but the network
has not yet captured the fine-grained texture and gray-level variation that is indicative
of the morphological class. These features become more distinct by Epoch 100 as cell
boundaries can be seen, and contrast intensifies. Inception score reaches a precipice at the
136-epoch mark (similarly the FID score reaches a valley), and although the GAN continues
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to produce realistic looking images, it can be noted that the inception score and FID do not
improve as training continues past that point.

This plot is useful as a deterministic way of choosing the most realistic generator.
Realistic colony features such as clear boundaries between cells, and bright white halos
rounded and single cell objects can be seen in the final generated images. Training is
considered finished after the GAN loss values have reached equilibrium (Figure 8); however,
the training epoch at which the most realistic images are generated is determined using the
inception score. The number of epochs required to reach equilibrium is subject to the size
of the dataset on a classwise bases, as well as other variations between image data classes.
The epoch values at which the inception score for each class is optimal is shown in Table 6,
along with their corresponding inception scores at that point. Once the generator is trained
for each class, images are generated by simply providing random noise vectors to each of
the generator and saving image outputs. In the following section, the ability of different
GAN networks to produce realistic images is explored using the defined quality metrics.

Table 6. Epoch values and corresponding inception scores at which the GAN generator is determined
to be optimally trained, based on the plot of inception score vs. training epoch. Each GAN is trained
on an individual class, and, therefore, requires a different level of training based on the number of
images in each class, as well as complexity of features and other variables. The optimal GAN is used
to generate images for each class to be used for dataset augmentation.

Image Class Optimal Generator Epoch Inception Score

Debris 116 2.60
Dense 444 2.32

Diff 225 2.38
Spread 136 2.57

Figure 8. Generator and discriminator loss values for the dense class. As training progresses, the
GAN reaches an equilibrium which is when training is considered finished. Using individual GAN
models for each image class allows the GAN to be trained for different amounts of time based on the
image class.

4.6. GAN Network Comparisons

In this work, multiple GAN configurations are compared to determine the most
effective method of image generation, in terms of image realness and variability. The
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FID (Frécet inception distance) score is used as a quantitative measure of these traits, in
a classwise manner, as shown in Table 7, where a lower FID score is better. The different
GAN configurations have various potential uses in terms of generative feature learning.
For instance, the wGAN configuration is known for preventing mode collapse, whereas
the mhGAN is designed to select the most relevant images from the input dataset in terms
of the discriminator’s decision output, and for this reason it may be better at modeling
multimodal distributions.

Figure 9 displays these values graphically and shows that the dcGAN+MSE configuration
produces the best (lowest) FID score for all classes. The reason for this is that using the entropy
loss as a regularizer during GAN training provides additional information to the network
about the real image distribution. Subsequently, this allows for the generation of more relevant
images in terms of image appearance and variation, as measured by the FID score.

Table 7. Frécet inception distance (FID) scores for each GAN configuration by image class. An x
indicates where the GAN was not trained to generate the specific image class.

Config./Class/FID Debris Dense Diff. Spread Average

dcGAN 27.73 36.32 72.77 18.51 38.83
dcGAN + MSE 19.5 29.5 70.7 13.67 33.34

wGAN 33.85 81.45 393.94 24.05 133.32
auxGAN 31.62 155.13 117.92 69.86 93.63
mhGAN 125.22 35.03 90.63 23.05 68.48

aux-mhGAN (Dense, Diff, Spread) x 84.93 88.7 41.53 71.72
aux-mhGAN (Dense, Spread) x x 83.37 29.55 57.54

aux-mhGAN (Diff, Spread) x 74.0 x 41.05 56.46
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Figure 9. Bar graph of network configuration vs. FID score by image class. The dcGAN+MSE
configuration consistently displays the best performance in terms of this metric.

Other configurations, such as wGAN, are not appropriate for this dataset because the
trained dcGAN model is not subject to mode collapse, as evident by the variation present
in the generated images. For the differentiated class, wGAN is unable to generate relevant
images, and produces only image artifacts, hence the relatively high FID score for this class.
The reason for this is that wGAN reduces the apparent image variation of this already small
class by restricting the feature weights. The mhGAN configurations do not produce higher
quality images, in terms of FID score, and takes far longer to train than a standard dcGAN
(on the scale of days). mhGAN reduces both the overall number of image samples available
to the generator, resulting in lower quality images with less variation. Auxiliary conditional
GAN applications (auxGAN, aux-mhGAN) are not as effective at producing the individual
image classes using a single model as are individual GAN’s trained on a single class. This
is because they are susceptible to feature entanglement, which is the inevitable sharing of
input features based on the latent representation of the input data distribution [58].

The ultimate test of the efficacy of the proposed method is to perform generated image
augmentation on CNN networks. For this, the dcGAN+MSE generator configuration is
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used to generate images in line with the temporal classification method as described in
Section 3.4. The following section discusses the results of the classification networks trained
using the generated dataset augmentation scheme.

4.7. Classification Metrics

Classification results for this study are measured using the true positive rate (TPR,
Equation (13)) and F1-scores (Equation (14)). TRP, also known as recall, is a measure of
the sensitivity of the classifier, where TP is the number of correctly classified positive
instances, and FN is the number of incorrectly classified negative instances. F1 is the
harmonic mean of precision, which is the TP over the sum of TP and false positives (FP), to
recall, and considers the false positives and false negatives equally in its calculation. These
metrics provide information about the classifier’s ability to accurately separate positive
and negative instances and are used to compare CNN training configurations, as presented
in the following section:

TPR =
TP

TP + FN
(13)

F1 =
TP

TP + 1
2 (FP + FN)

(14)

4.8. Dataset Balancing Using Generated Image Augmentation

To test the efficacy of generated image augmentation as a dataset balancing tech-
nique, several standard methods of balancing are compared to the generated augmentation
method. These techniques include the use of a weighted cross-entropy loss function and an
image sampling technique called imbalanced dataset sampler from Ming Yang (repository
has over 1400 stars on Github) [59].

Table 8 demonstrates that the generator-balanced dataset configuration outperforms
both traditional sampling techniques. This is because sampling and weight balancing
inherently detract from the learning ability of one class in favor of another, whereas
supplementing the dataset with generated images not only leaves the higher data class
intact but also adds useful features to the smaller data classes in the process. Furthermore,
these classification scores are improved when balancing data classes in coordination with
the temporal classification scheme proposed in this paper.

Exploiting the temporal relationships between image classes increases the average
true positive rate of classification is by approximately 2% in the “temporally balanced"
training configuration over the “unbalanced" configuration. This increase corresponds to
approximately 200 images out of a 10,000-image dataset. In a high-throughput scenario,
where millions of images can be collected over the course of a single experiment, this 2%
increase can have a substantial effect on the outcome of experimental findings. These
hierarchical results are detailed below.

Table 8. Classwise true positive rate for four-class CNN with and without dataset balancing. Several
variations of balancing are used here, the most effective of which is supplementation using generated
images in line with the temporal training configuration proposed in this paper. The p-value indicated
by the ∗ is calculated using Student’s t-test.

Configuration/Class/TPR (Std.) Debris Dense Diff. Spread Average

Unbalanced 0.9141 (0.0144) 0.8093 (0.0211) 0.8807 (0.0342) 0.9144 (0.0093) ∗ 0.8789
Sampler Balanced 0.8570 (0.0184) 0.9300 (0.0189) 0.9274 (0.0219) 0.8410 (0.0073) 0.8888
Weight Balanced 0.9030 (0.0312) 0.8065 (0.0249) 0.8439 (0.0715) 0.9300 (0.0290) 0.8708

Generator Balanced 0.9105 (0.0206) 0.7940 (0.0116) 0.8999 (0.0247) 0.9172 (0.0124) 0.8804
Temporally Balanced 0.9277 (0.0148) 0.8157 (0.0142) 0.8856 (0.0289) 0.9646 (0.0040) ∗ 0.8984

∗: p-value = 3.9 × 10−6.



Sensors 2022, 22, 206 21 of 26

4.9. Effect of the Temporal Classification Scheme

The efficacy of using the temporal relationships between image classes to inform
network training is explored via a hierarchical CNN classification scheme. Tables 9–11
detail the classification metrics in relation to the three stages of temporal classification.
First, images are separated into viable (dense/spread/diff.) vs. unviable (debris) classes,
which serves to remove colony areas containing dead cells. Areas of debris can be observed
within larger colonies of viable cells; however, removing these areas during the first
stage of classification negates the possibility of these misclassifications happening in the
downstream stages.

Table 9. Hierarchical tier 1: true positive rate for temporal combination of viable cell classes vs. debris
cells. This stage acts as a filtration step to remove unviable and unhealthy colony areas.

Configuration/Class/TPR (std.) Debris Dense/Diff./Spread Average

Unbalanced 0.9145 (0.0097) 0.9570 (0.0058) 0.9357
Generator Balanced 0.9277 (0.0148) 0.9545 (0.0053) 0.9411

Table 10. Hierarchical tier 2: true positive rate for separation of dense/spread classes from differenti-
ated. This tier serves to remove the mature cell colonies from the early and intermediate stage classes.
The dense/spread classes have the highest level of misclassification, due to their relative proximity in
terms of the downstream differentiation process, and subsequent similarity in texture features.

Configuration/Class/TPR (std.) Diff. Dense/Spread Average

Unbalanced 0.8792 (0.0255) 0.9941 (0.0007) 0.9367
Generator Balanced 0.8856 (0.0289) 0.9935 (0.0007) 0.9396

Table 11. Hierarchical tier 3: true positive rate for classification of dense vs. spread. The balancing of
the dense class, using generated images, in relation to the Spread class shows slight improvement
over the unbalanced configuration, and marked improvement over the four-class configuration.

Configuration/Class/TPR (std.) Dense Spread Average

Unbalanced 0.8187 (0.0140) 0.9624 (0.0035) 0.8906
Generator Balanced 0.8157 (0.0142) 0.9646 (0.0040) 0.8902

It can be seen in Table 9 that the balanced configuration for this first stage improves the
true positive rate for the debris class by 1.32% over the unbalanced temporal configuration
and 1.36% over the unbalanced four-class configuration (Table 8). The second stage of clas-
sification sends the three viable classes to be separated into differentiated vs. dense/spread.
This stage is useful in distinguishing between the late-stage adult cells represented by the
diff. class, and the early/intermediate stages (dense/spread, respectively). The dense and
spread classes are the most closely related in terms of developmental stage; therefore, they
have the most similar morphological features, and are misclassified most often given the
four-class classification scheme.

The second stage of temporal classification, Table 10, shows an increase in the true
positive rate of classification for the differentiated class over the unbalanced temporal
configuration by 0.64%. This value represents a smaller increase in comparison to the other
classes, which may be due to the relatively low amount of image data for the differentiated
class that is available for training GAN and for classification. When looking at the entropy
histograms in Figure 3 and overlap values in Table 4, it can be seen that the differentiated
class has the lowest overall overlap, which may contribute to the lower improvement
in performance.

Additionally, this stage filters out 99% of the dense and spread images, which lends
merit to the hypothesis that these classes are most closely related. This stage seeks to use
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the temporal relationships between early and middle stage colonies and the differentiated
colonies as a marker for the classification boundary of these images. Finally, the dense and
spread images are sent to the final stage of classification, where they are separated into
their individual classes.

The final stage of temporal classification, Table 11, displays an increase in classification
rate for the Spread (∼5%) over the unbalanced, four-class configuration, as shown in Table 8.
This improvement is shown to be statistically significant (p-value = 3.9 × 10−6) using
Student’s t-test. This improvement is also noteworthy given the difficulty of separating
these two similar classes.

Table 12 displays the F1-score classification results for the unbalanced configuration
and the generator-balanced temporal configuration. This metric shows improvements for
the dense, differentiated, and spread classes in the balanced configuration, with an average
improvement of approximately 1%, and statistically significant increases in the dense
(∼2%) and spread (∼3%) classes, using Student’s t-test. These results further illustrate the
predictive power of generator augmented, temporally constrained CNN configurations in
relation to straightforward classification networks.

Up to this stage of classification, no generated images have been added to the Spread
class. As an additional test of the efficacy of generated features, the saturation point of
generated image augmentation (i.e., the point at which the accuracy no longer increases
with increasing number of generated images) is empirically determined using the dense
and spread image classes.

Table 12. F1-score for unbalanced and generator-balanced temporal training configurations show an
overall improvement for the balanced configuration on average, as well as statistically significant
increases in the dense and spread classes. The p-value indicated by the * is calculated using Student’s
t-test.

Configuration/Class/F1 (std.) Debris Dense Diff. Spread Average

Unbalanced 0.8732 (0.0059) 0.8430 (0.0082) * 0.8580 (0.0164) 0.9119 (0.0036) ** 0.8715
Generator-Balanced 0.8599 (0.0099) 0.8599 (0.0050) * 0.8714 (0.0009) 0.9433 (0.0030) ** 0.8836

*: p-value = 4.32 × 10−3; **: p-value = 3.88 × 10−7.

4.10. Saturation Point of Generated Image Augmentation

In addition to the problem of imbalanced datasets, dataset limitations represent an-
other problem in the field biological image classification. These limitations are due to the
difficult nature of biological experimentation, in terms of time, money, and experimental
yield. Often, image datasets are relatively small in terms of the amount of data needed
to efficiently train a neural network. Therefore, generated image augmentation could be
a viable means of increasing the apparent dataset size and available features for deep
learning applications.

To test this theory, generated images are added to the dense and spread classes to
train a two-class CNN until the classification accuracy no longer improves with increasing
number of generated images. This point represents the saturation point of the network,
where the generated images are no longer providing more useful features to the model.
This test also serves as a method of determining the effectiveness and practicality of dataset
augmentation using generated image features because it directly compares the number of
added images to the improvement in performance.

Figure 10 details the results of these experiments. The graphs of generated image
augmentation show a positive linear relationship for both the dense and spread classes
(in terms of TPR and Classification Acc.) until about the 10,000 image mark, where im-
provement falls. This could be indicative of the network overfitting on generated images
and failing to learn the features of real images. While these improvements are small in
comparison to those of the dataset balancing experiments, they confirm that limited dataset
supplementation is a viable avenue for generated image augmentation.
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Figure 10. Graphs of classification metric (left: true postitive rate, right: classification accuracy)
vs. number of added generated images for the dense and spread classes. These graphs are used to
determine the saturation point of a CNN, which is where the generated images no longer provide
useful features to the model.

5. Conclusions

The temporally constrained, generative dataset augmentation scheme employed in
this paper represents an improvement in the performance of deep learning algorithms for
classification tasks involving limited and imbalanced biological image datasets. Known
GAN methods are compared to generate images, and then image–class relationships are
employed to design a temporal classifier. The method shows classification improvements
for all image classes, as measured by true positive rate and F1-score, without sacrificing
the performance of any class. Moreover, this work highlights the importance of exploiting
domain knowledge in similar tasks, which, in this case, comes in the form of the temporal
relationships between image classes. While deep learning has become the gold standard in
terms of image feature representation and learning, it is not a substitute for prior biological
knowledge. To this end, one item of future work will involve the expansion of this work to
include video data to incorporate cellular dynamics. Overall, the combination of domain
knowledge with deep learning is paramount for the effective modeling of biological image
features, and it allows for the synergistic design of deep-learning-based algorithms, and
experimental data collection.
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