
UC Berkeley
UC Berkeley Previously Published Works

Title
Sustainable investing and the cross-section of returns and maximum drawdown

Permalink
https://escholarship.org/uc/item/98f9410b

Authors
Goldberg, Lisa R
Mouti, Saad

Publication Date
2022-11-01

DOI
10.1016/j.jfds.2022.11.002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/98f9410b
https://escholarship.org
http://www.cdlib.org/


1 23

Mathematics and Financial
Economics
 
ISSN 1862-9679
 
Math Finan Econ
DOI 10.1007/s11579-016-0181-9

Drawdown: from practice to theory and
back again

Lisa R. Goldberg & Ola Mahmoud



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Math Finan Econ
DOI 10.1007/s11579-016-0181-9

Drawdown: from practice to theory and back again

Lisa R. Goldberg1 · Ola Mahmoud2,3

Received: 17 May 2016 / Accepted: 21 September 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Maximum drawdown, the largest cumulative loss from peak to trough, is one of
the most widely used indicators of risk in the fund management industry, but one of the least
developed in the context of measures of risk. We formalize drawdown risk as Conditional
Expected Drawdown (CED), which is the tail mean of maximum drawdown distributions.
We show that CED is a degree one positive homogenous risk measure, so that it can be
linearly attributed to factors; and convex, so that it can be used in quantitative optimization.
We empirically explore the differences in risk attributions based on CED, Expected Shortfall
(ES) and volatility. An important feature of CED is its sensitivity to serial correlation. In an
empirical study that fits AR(1) models to US Equity and US Bonds, we find substantially
higher correlation between the autoregressive parameter and CED than with ES or with
volatility.

Keywords Drawdown · Conditional expected drawdown · Deviation measure ·
Risk attribution · Serial correlation
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Fig. 1 Simulation of a portfolio’s net asset value over a finite path. A large drawdown may force liquidiation
at the bottom of the market, and the proceeding market recovery is never experienced

1 Introduction

A levered investor is liable to get caught in a liquidity trap: unable to secure funding after
an abrupt market decline, he may be forced to sell valuable positions under unfavorable
market conditions. This experience was commonplace during the 2007–2009 financial crisis
and it has refocused the attention of both levered and unlevered investors on an important
liquidity trap trigger, a drawdown, which is the maximum decline in portfolio value over a
fixed horizon (see Fig. 1).

In the event of a large drawdown, common risk diagnostics, such as volatility, Value-at-
Risk, andExpected Shortfall, at the end of the intended investment horizon are less significant.
Indeed, within the universe of hedge funds and commodity trading advisors (CTAs), one of
the most widely quoted measures of risk is maximum drawdown. The notion of drawdown
has been extensively studied in the literature of applied probability theory, which we review
in Sect. 1.1. However, a generally accepted mathematical methodology for forming expec-
tations about future potential maximum drawdowns does not seem to exist in the investment
management industry. Drawdown in the context of risk and deviation measures has failed to
attract the same kind of applied research devoted to other more conventional risk measures.

Our purpose is to formulate a (i) mathematically sound and (ii) practically useful measure
of drawdown risk. Our formalization of drawdown risk is achieved by modeling continuous-
time cumulative returns within a time horizon T ∈ (0,∞) as a stochastic process X
representing return paths, to which a certain real-valued functional, theConditional Expected
Drawdown, is applied. Mathematically, the process X is transformed to the random vari-
able μ(X), representing the maximum drawdown within a finite path. At confidence level
α ∈ [0, 1], the Conditional Expected Drawdown CEDα is then defined to be the expected
maximum drawdown given that some maximum drawdown threshold DTα , the α-quantile
of the maximum drawdown distribution, is breached:

CEDα(X) = E (μ(X) | μ(X) > DTα) .

In the context of quantitative risk measures, CED is a deviation measure in the sense of
[35,36]. In particular, this implies that CED is convexwith respect to portfolioweights, which
means that it promotes diversification and can be used in an optimizer. It is also homogenous
of degree one, so that it supports linear risk attribution under Euler’s homogenous function
theorem.
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By focusing on themaximum of all drawdowns within a path of fixed length T , we address
a highly relevant risk management concern affecting fund managers on a daily basis, who
ask themselves: what is the expected maximum possible cumulative drop in net asset value
within the investment horizon T ? If this loss exceeds a certain threshold, the investor may
be forced to liquidate. For a given investment horizon T , Conditional Expected Drawdown
indicates this expected cumulative loss in excess of a threshold, and it can be measured for
various confidence levels.

Because Conditional Expected Drawdown is defined as the tail mean of a distribution of
maximum drawdowns, it is a downside risk metric perfectly analogous to Expected Shortfall,
which is the tail mean of a return distribution. Hence, much of the theory and practice of
Expected Shortfall carries over to Conditional Expected Drawdown.

We will show, however, that drawdown is inherently path dependent and accounts for
serial correlation, whereas Expected Shortfall does not account for consecutive losses.

1.1 Literature review

The notion of drawdown has been extensively studied in the literature of applied probability
theory and in research addressing active portfolio management, which we review next. How-
ever, a generally accepted mathematical methodology for forming expectations about future
potential maximum drawdowns does not seem to exist in either the investment management
industry or the academic literature. Drawdown in the context of risk and deviation measures
has hence failed to attract the same kind of applied research devoted to other more conven-
tional risk measures. Our work hence complements the existing literature as it develops a
mathematically sound and practically useful measure of drawdown risk.

The analytical assessment of drawdownmagnitudes has been broadly studied in the litera-
ture of applied probability theory. To our knowledge, the earliest mathematical analysis of the
maximum drawdown of a Brownian motion appeared in [40], and it was shortly afterwards
generalized to time-homogenous diffusion processes by Lehoczky [24]. Douady et al. [14]
and Magdon-Ismail et al. [26] derive an infinite series expansion for a standard Brownian
motion and a Brownian motion with a drift, respectively. The discussion of drawdown mag-
nitude was extended to studying the frequency rate of drawdown for a Brownian motion in
[23]. Drawdowns of spectrally negative Lévy processes were analyzed in [29]. The notion of
drawup, which measures the maximum cumulative gain relative to a running minimum, has
also been investigated probabilistically, particularly in terms of its relationship to drawdown;
see for example [20,31,44].

Reduction of drawdown in active portfolio management has received considerable atten-
tion inmathematical finance research.Grossman andZhou [19] considered an asset allocation
problem subject to drawdown constraints; Cvitanic andKaratzas [12] extended the same opti-
mization problem to the multi-variate framework; Chekhlov et al. [8,9] developed a linear
programming algorithm for a sample optimization of portfolio expected return subject to
constraints on drawdown, which, in [22], was numerically compared to shortfall optimzation
with applications to hedge funds in mind; Carr et al. [7] introduced a new European style
drawdown insurance contract and derivative-based drawdown hedging strategies; and most
recently [11,37,45] and [43] studied drawdown optimization and drawdown insurance under
various stochastic modeling assumptions. Zabarankin et al. [41] reformulated the necessary
optimality conditions for a portfolio optimization problem with drawdown in the form of
the Capital Asset Pricing Model (CAPM), which is used to derive a notion of drawdown
beta. More measures of sensitivity to drawdown risk were introduced in terms of a class of
drawdown Greeks in [30].
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In the context of quantitative riskmeasurement, Chekhlov et al. [8,9] develop a quantitative
measure of drawdown risk called Conditional Drawdown at Risk (CDaR). Like CED, CDaR
is a deviationmeasure [35,36]. Unlike CED, however, CDaR focuses on all drawdowns rather
than maximum drawdowns.

2 Measuring drawdown risk

We use the general setup of [10] for the mathematical formalism of continuous-time path
dependent risk.Continuous-time cumulative returns, or equivalently net asset value processes,
are represented by essentially bounded càdlàg processes (in the given probability measure)
that are adapted to the filtration of a filtered probability space. More formally, for a time
horizon T ∈ (0,∞), let (�,F, {Ft }t∈[0,T ],P) be a filtered probability space satisfying
the usual assumptions, that is the probability space (�,F,P) is complete, (Ft ) is right-
continuous, andF0 contains all null-sets ofF . For p ∈ [1,∞], (Ft )-adapted càdlàg processes
lie in the Banach space

Rp = {
X : [0, T ] × � → R | X (Ft )-adapted càdlàg process , ‖X‖Rp

}
,

which comes equipped with the norm

‖X‖Rp := ‖X∗‖p

where X∗ = supt∈[0,T ] |Xt |.
All equalities and inequalities between processes are understood throughout in the almost

sure sense with respect to the probability measure P. For example, for processes X and Y ,
X ≤ Y means that for P-almost all ω ∈ �, Xt (ω) ≤ Yt (ω) for all t .

Definition 2.1 (Continuous-time path-dependent risk measure) A continuous-time path-
dependent risk measure is a real-valued function ρ : R∞ → R.

In practice, where one works in a discrete universe, this continuous-time setup is dis-
cretized by choosing the frequency of observations over the return horizon T . This adds a
crucial parameter to the analysis, as higher frequency observations tend to yield larger draw-
downs. Consider the May 2011 flash crash. When working at a daily frequency, one never
sees the flash crash drawdown, no matter how long the investment horizon.1

2.1 Maximum drawdown

Definition 2.2 (Drawdown process) For a horizon T ∈ (0,∞), the drawdown process
D(X) := {D(X)

t }t∈[0,T ] corresponding to a stochastic process X ∈ R∞ is defined by

D(X)
t = M (X)

t − Xt ,

where

M (X)
t = sup

u∈[0,t]
Xu

is the running maximum of X up to time t .

1 See [25] for an analysis of the flash crash.
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In practice, the use of the maximum drawdown as an indicator of risk is particularly
popular in the universe of hedge funds and commodity trading advisors, where maximum
drawdown adjusted performance measures, such as the Calmar ratio, the Sterling ratio and
the Burke ratio, are frequently used.

Definition 2.3 (Maximumdrawdown)Within a fixed time horizon T ∈ (0,∞), themaximum
drawdown of the stochastic process X ∈ R∞ is the maximum drop from peak to trough of
X in [0, T ], and hence the largest amongst all drawdowns D(X)

t :

μ(X) = sup
t∈[0,T ]

{D(X)
t }.

Equivalently, maximum drawdown can be defined as the random variable obtained through
the following transformation of the underlying stochastic process X :

μ(X) = sup
t∈[0,T ]

sup
s∈[t,T ]

{Xs − Xt } .

Even though, in a given horizon, only a single maximum drawdown is realized along any
given path, it is beneficial to consider the distribution fromwhich the maximum drawdown is
taken. By looking at the maximum drawdown distribution, one can form reasonable expec-
tations about the size and frequency of maximum drawdowns for a given portfolio over a
given investment horizon.

Figure 2 shows (A) the empirical maximum drawdown distribution (for paths of length
125 business days) of the daily S&P 500 time series over the period 1950 to 2013, and (B)
the simulated distribution for an idealized Gaussian random variable. Both distributions are
asymmetric, which implies that very large drawdowns occur less frequently than smaller
ones. Using Monte Carlo simlations, Burghardt et al. [6] show that maximum drawdown
distributions are highly sensitive to the length of the track record2 (increases in the length
of the track record shift the entire distribution to the right), mean return (for larger mean
returns, the distribution is less skewed to the right, since large means tend to produce smaller
maximum drawdowns, volatility of returns (higher volatility increases the likelihood of large
drawdowns), and data frequency (a drawdown based on lower frequency data would ignore
the flash crash).

The tail of themaximumdrawdown distribution, fromwhich the likelihood of a drawdown
of a given magnitude can be distilled, is of particular interest in practice. Our drawdown risk
metric, defined next, is a tail mean of the maximum drawdown distribution.

2.2 Conditional expected drawdown

Our proposed drawdown risk metric, the Conditional Expected Drawdown (Definition 2.4),
measures the average of worst case maximum drawdowns exceeding a quantile of the max-
imum drawdown distribution. Hence, it is analogous to the return-based Expected Shortfall
(ES). Both ES and CED are given by the tail mean of an underlying distribution, namely that
of the losses and maximum drawdowns, respectively.

Analogous to the return-based Value-at-Risk (VaR), we define, for confidence level α ∈
[0, 1], the maximum drawdown threshold DTα to be a quantile of the maximum drawdown
distribution:

DTα (μ(X)) = inf {m | P (μ(X) > m) ≤ 1 − α}
2 The track record is understood as the length of the history of an investment fund since its inception.
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Fig. 2 a Empirical distribution of the realized 6-month maximum drawdowns for the daily S&P 500 over the
period 1 January 1950 to 31December 2013, together with the 90%quantile (the drawdown threshold DT) and
tail-mean (CED) of the distribution. bDistribution of 6-month maximum drawdowns for an idealized standard
normally distributed random variable, together with the 90% quantile and tail-mean of the distribution

It is thus the smallest maximum drawdown m for which the probability that the maximum
drawdown μ(X) exceeds m is at most (1− α). For example, the 95% maximum drawdown
is both a worst case for drawdown in an ordinary period and a best case among extreme
scenarios. It separates the 5% worst maximum drawdowns from the rest.

Definition 2.4 (Conditional ExpectedDrawdown) At confidence levelα ∈ [0, 1], theCondi-
tional Expected Drawdown CEDα : R∞ → R is the function mapping μ(X) to the expected
maximum drawdown given that the maximum drawdown threshold at α is breached. More
formally,

CEDα (X) = 1

1 − α

∫ 1

α

DTu (μ(X)) du.

If the distribution of μ(X) is continuous, then CEDα is equivalent to the tail conditional
expectation:

CEDα (X) = E (μ(X) | μ(X) > DTα (μ(X))) .

In other words, CED is the tail mean [2] over the maximum drawdown distribution, where
for confidence level α ∈ (0, 1), and assuming E[μ(X)] < ∞, the α-tail mean of μ(X) is
given by:

TMα(μ(X)) = 1

1 − α

∫ 1

α

DTu(μ(X))du .

3 Properties of conditional expected drawdown

We derive theoretical properties of Conditional Expected Drawdown, most notably convexity
and positive homogeneity, and prove that it is a generalized deviation measure, as developed
by [35,36]. Broadly speaking, deviation measures obey axioms taken from the properties of
measures such as standard deviation and semideviation. We generalize these axioms to our
path-dependent universe.

Definition 3.1 (Generalized path-dependent deviation measure) A generalized path-
dependent deviation measure is a path-dependent risk measure δ: R∞ → R satisfying the
following axioms:
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(D0) Normalization: for all constant deterministic C ∈ R∞, δ(C) = 0.
(D1) Positivity: for all X ∈ R∞, δ(X) ≥ 0.
(D2) Shift invariance: for all X ∈ R∞ and all constant deterministic C ∈ R∞, δ(X +C) =

δ(X).
(D3) Convexity: for all X, Y ∈ R∞ and λ ∈ [0, 1], δ(λ+(1−λ)Y ) ≤ λδ(X)+(1−λ)δ(Y ).
(D4) Positive degree-one homogeneity: for all X ∈ R∞ and λ > 0, δ(λX) = λδ(X).

Any portfolio of zero value and, more generally, of constant deterministic value is
not exposed to drawdown risk, and so for all constant deterministic C ∈ R∞, we have
CEDα(C) = 0, and hence axiom (D0) is satisfied. Moreover, CED satisfies (D1) because
maximum drawdown is by definition non-negative. The following Lemma proves the shift
invariance property (D2), which essentially states that by (deterministically) shifting the path
of the portfolio value up or down, the drawdown within that path remains unchanged.

Lemma 3.2 For all X ∈ R∞ and all constant almost surely C ∈ R∞, CEDα(X + C) =
CEDα(X) (for all α ∈ (0, 1)).

Proof The drawdown process DX corresponding to X is shift invariant, since for t ∈ [0, T ],
M (X+C)

t = sup
u∈[0,t]

(X + C)u = sup
u∈[0,t]

(X)u + C = M (X)
t + C .

It follows that D(X+C) = M (X+C) − X − C = M (X) + C − X − C = M (X) − X = D(X).
Therefore,

μ(X + C) = sup
t∈[0,T ]

{
D(X+C)
t

}
= sup

t∈[0,T ]

{
D(X)
t

}
= μ(X) .

Hence, CEDα(X + C) = CEDα(X). 	

We next focus on the properties of convexity (D3) and positive homogeneity (D4) of

generalized deviation measures.

3.1 Convexity of CED

According to [15–17], the essence of diversification is encapsulated in the convexity axiom.
Suppose we have two processes X and Y representing cumuative returns to two portfolios.
Rather than investing fully in one of the two portfolios, an investor could diversify by allo-
cating a fraction λ ∈ [0, 1] of his capital to, say, X , and the remainder 1 − λ to Y . Under a
convex risk measure, this diversification cannot increase risk.

Proposition 3.3 (Convexity of CED) Conditional Expected Drawdown is convex with
respect to portfolio weights: for all X, Y ∈ R∞, λ ∈ [0, 1], and confidence level α ∈ (0, 1),
CEDα(λ + (1 − λ)Y ) ≤ λCEDα(X) + (1 − λ)CEDα(Y ).

Proof For λ ∈ [0, 1], we have M (λX+(1−λ)Y ) ≤ λM (X) + (1 − λ)M (Y ) by properties of the
supremum, and therefore

D(λX+(1−λ)Y ) = M (λX+(1−λ)Y ) − λX − (1 + λ)Y

≤ λM (X) + (1 − λ)M (Y ) − λX − (1 + λ)Y

= λD(X) + (1 − λ)D(Y )

Assuming that the distributions of μ(X) and μ(Y ) are continuous, and because μ(X) is
defined as the supremum within the drawdown path D, we have μ(λX + (1 − λ)Y ) ≤
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λμ(X)+ (1−λ)μ(Y ). Finally, since the tail mean functional TM is subadditive and positive
homogenous independent of the underlying distribution (see [1,2]), and also monotoni-
cally non-decreasing, its composite with μ is also convex, and so CEDα(λ + (1 − λ)Y ) ≤
λCEDα(X) + (1 − λ)CEDα(Y ). 	

Remark 3.4 (Drawdown risk optimization) Convexity of CED implies that one can, in theory,
allocate assets to trade offCEDrisk against portfolio return.There are three crucial ingredients
for carrying out any optimization in practice. Convexity of the objective function to be
minimized ensures that the minimum, if it exists, is a global one. The second ingredient is the
feasibility and efficiency of the optimization algorithm.3 Seminal work of Uryasev [33,34],
who developed an efficient linear programming (LP) algorithm for minimizing the tail mean
of a distribution of returns, and of Chekhlov [8,9], who incorporated drawdown into the
LP formulation, can in theory be used to minimize the tail mean of a maximum drawdown
distribution. The third ingredient, which allows us to move beyond theory, is an empirically
sound estimate of risk. Further empirical exploration of the properties of CED and the study
of its impact on quantitative portfolio construction, are necessary and beyond the scope of
this article.

3.2 Positive homogeneity of CED

Degree-one positive homogenous risk measures are characterized by Euler’s homogenous
function theorem, and hence play a prominent role in portfolio risk analysis. More precisely,
for a portfolio P = ∑

i wi Xi in R∞, a risk measure ρ: R∞ → R is postive homogenous
of degree one if and only if

∑
i wi (∂ρ(P)) /(∂wi ) = ρ(P).4 The risk ρ(P) of the portfolio

P = ∑
i wi Xi can therefore be linearly attributed along its factors Xi .

Proposition 3.5 (Positive homogeneity ofCED)ConditionalExpectedDrawdown is degree-
one positive homogenous with respect to portfolio weights: for all X ∈ R∞, λ > 0 and
confidence level α ∈ (0, 1), CEDα(λX) = λCEDα(X).

Proof For λ > 0, we have for t ∈ [0, T ], M (λX)
t = supu∈[0,t](λX)u = λ supu∈[0,t](X)u =

λM (X)
t , and therefore D(λX) = λM (X)−λX = λD(X). Becauseμ(X) is defined as the supre-

mumwithin the drawdown path D, we haveμ(λX) = λμ(X). Finally, positive homogeneity
of the tail mean functional yields the result. 	


4 Drawdown risk attribution

With the theoretical framework of drawdown risk measurement in place, the next step is
to understand how Conditional Expected Drawdown can be integrated in the investment
process. We show how to systematically analyze the sources of drawdown risk within a
portfolio and how these sources interact. In practice, investors may be interested in attributing
risk to individual securities, asset classes, sectors, industries, currencies, or style factors of a
particular risk model. In what follows, we assume a generic such risk factor model.

3 Another crucial ingredient is having a reliable risk model feeding the optimizer with realistic and useful
scenarios. This being beyond the scope of the present article, we have focused on the two main theoretical
requirements in the present article. We refer the reader to [42], where the theory of risk estimation and error
sensitivity in the context of portfolio optimization is discussed.
4 This formula and the topic of risk attribution is discussed in more detail in Sect. 4.
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Fix an investment period and let Fi denote the return of factor i over this period (1 ≤ i ≤ n).
Then the portfolio return over the period is given by the sum

P =
n∑

i=1

wi Fi ,

wherewi is the portfolio exposure to factor i and the summand representing idiosyncratic risk
is not included for simplicity. Because portfolio risk is not a weighted sum of source risks,
there is no direct analog to this decomposition for risk measures. However, there is a parallel
in terms of marginal risk contributions (MRC), which are interpreted as a position’s percent
contribution to overall portfolio risk. They provide amathematically and economically sound
way of decomposing risk into additive subcomponents.

For a risk measure ρ, the marginal contribution to risk of a factor is the approximate
change in overall portfolio risk when increasing the factor exposure by a small amount, while
keeping all other exposures fixed.5 Formally, marginal risk contributions can be defined for
any differentiable risk measure ρ.

Definition 4.1 For a factor Fi in the portfolio P = ∑
i wi Fi , its marginal risk contribution

MRCi is the derivative of the underlying risk measure ρ along its exposure wi :

MRCρ
i (P) = ∂ρ(P)

∂wi
.

If ρ is homogenous of degree one, the overall portfolio risk can be decomposed using Euler’s
homogoneous function theorem as follows:

∑

i

wiMRCρ
i (P) =

∑

i

RCρ
i (P) = ρ(P),

where RCρ
i (P) = wiMRCρ

i (P) is the i-th total risk contribution to ρ. Finally, fractional risk
contributions

FRCρ
i (P) = RCρ

i (P)

ρ(P)

denote the fractional contribution of the i-th factor to portfolio risk.

Risk contributions implicitly define a notion of correlation that is general enough to be
defined for any risk measure. The generalized risk-based correlation Corrρi for a generic risk
measure ρ : M → R between the portfolio and the i th asset Xi is defined by:

Corrρi = MRCρ
i (P)

ρ(Xi)
.

Generalized correlations are monotonically decreasing in position weight. Factoring out the
i th marginal risk ρ(Xi ) from the i th risk contribution RCi (P), we obtain the generalized
form of the “X-Sigma-Rho” decomposition of [28]:

RCρ
i (P) = wiρ(Xi )

MRCρ
i (P)

ρ(Xi )
= wiρ(Xi )Corr

ρ
i .

We refer the reader [18] for a more detailed development of generalized correlations.

5 Risk contributions have become part of the standard toolkit for risk management, and they are used for risk
budgeting and capital allocation. We refer the reader to [13,21,38], and [32] for more details.
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4.1 Drawdown risk contributions

Menchero and Poduri [28] and Goldberg et al. [18] developed a standard toolkit for analyzing
portfolio risk using a framework centered around marginal risk contributions. By integrating
drawdown risk into this framework, investors can estimate how a trade would impact the
overall drawdown risk of the portfolio. Because Conditional Expected Drawdown is positive
homogenous, the individual factor contributions to drawdown risk add up to the overall
drawdown risk within a path P ∈ R∞ of returns to a portfolio with values at time t ≤ T
given by Pt = ∑

i wi Fi,t 6:

CEDα(P) =
∑

i

wiMRCCEDα

i (P), α ∈ [0, 1]. (4.1)

Recall that a marginal risk contribution is a partial derivative, and so practitioners can
implement Formula 4.1 using numerical differentiation. However, this tends to introduce
noise. We next show that an individual marginal contribution to drawdown risk can be
expressed as an integral, and this reduces noise, since integration is a smoothing opera-
tor.7 Indeed, the individual marginal contribution MRCCEDα

i of the i-th factor to overall
portfolio drawdown risk CEDα(P) is given by the expected drop of the i-th factor in the
interval [s∗, t∗] ⊂ [0, T ] where the overall portfolio maximum drawdown μ(P) occurs,
given that the maximum drawdown of the overall portfolio exceeds the drawdown threshold.
This definition is analogous to the marginal contribution to shortfall, and we formalize it
next.

Proposition 4.2 Marginal contributions to drawdown risk are given by:

MRCCEDα

i (P) = E
[(
Fi,t∗ − Fi,s∗

) | μ(P) > DTα(P)
]
, (4.2)

where CEDα(P) is the overall portfolio CED, μ(P) is the maximum drawown random
variable, DTα(P) is the portfolio maximum drawdown threshold at α, and s∗ < t∗ ≤ T are
random times such that:

μ(P) = Pt∗ − Ps∗ ,

and we assume that the maximum drawdown of P = ∑
i wi Fi is strictly positive.

Proof Weuse the results of Tasche [39], Goldberg et al. [18] andMcNeil et al. [27], who show
that the i-th marginal contribution to Expected Shortfall ESα at confidence level α ∈ (0, 1)
of a random variable L = ∑

i wi Yi representing portfolio loss is given by

MRCESα

i (L) = E [Yi | L > Varα(L)] , (4.3)

where Varα(L) denotes the Value-at-Risk of L at α, that is the α-quantile of the loss distrib-
ution L .

We derive an analog to Formula 4.3. Assuming that the maximum drawdown of P =∑
i wi Fi is strictly positive, let

μ(P) = Pt∗ − Ps∗

6 The process corresponding to the i-th factor is written Fi , and its instance at time t ∈ [0, T ] is denoted by
Fi,t .
7 This is analogous to marginal contributions to Expected Shortfall, which can also be expressed as integrals;
see [38,39] where it is shown that for quantile based risk measures (such as VaR and ES, but also spectral
measures), an Euler attribution can be expressed as an intuitive expectation.
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for some s∗ < t∗ ≤ T . Then the i-th marginal contributionMRCCEDα

i (P) to overall portfolio
drawdown risk CEDα(P) is given by

MRCCEDα

i (P) = ∂

∂wi
(TMα (μ(P)))

= ∂

∂wi
E [μ(P) | μ(P) > DTα(P)]

= ∂

∂wi
E [(Pt∗ − Ps∗) | μ(P) > DTα(P)]

= ∂

∂wi
E

[(
n∑

i=1

wi Fi,t∗ −
n∑

i=1

wi Fi,s∗

)

| μ(P) > DTα(P)

]

= ∂

∂wi
E

[
n∑

i=1

wi
(
Fi,t∗ − Fi,s∗

) | μ(P) > DTα(P)

]

= ∂

∂wi

(
n∑

i=1

wiE
[(
Fi,t∗ − Fi,s∗

) | μ(P) > DTα(P)
]
)

(4.4)

Using the fact that the partial derivative with respect to a quantile is zero, as discussed by
Bertsimas et al. [5], Formula 4.4 simplifies to:

MRCCEDα

i (P) = E
[(
Fi,t∗ − Fi,s∗

) | μ(P) > DTα(P)
]
.

Finally, note that the variables s∗ and t∗ are stochastic. This means that in a Monte Carlo
simulation of a discretized version of this problem, theywill take on a different value scenario
by scenario. 	


5 Empirical analysis of drawdown risk

We analyze historical values of Conditional Expected Drawdown based on daily data for
two asset classes: US Equity and US Government Bonds. The US Government Bond Index
we use8 includes fixed income securities issued by the US Treasury (excluding inflation-
protected bonds) and US government agencies and instrumentalities, as well as corporate or
dollar-denominated foreign debt guaranteed by the US government, with maturities greater
than 10 years. These include government agencies such as the Federal National Mortgage
Association (Fannie Mae) and the Federal Home LoanMortgage Corporation (Freddie Mac)
without an explicit guarantee. In comparison to US Treasury Bond Indices, US Government
Bond Indices were highly volatile and correlated with US Equities during the financial crisis
of 2008. The effect of this will be seen in our empirical analysis.9 Summary risk statistics
for the two asset classes and three fixed-mix portfolios are shown in Table 1.

5.1 Time-varying drawdown risk concentrations

Using the definition of marginal contributions to Conditional Expected Drawdown
(derived in Proposition 4.2), we look at the time varying contributions to CED. Figure 3

8 See Appendix A for details on the data and their source.
9 We thank Robert Anderson for pointing out the important distinction between US Government Bond and
US Treasury Bond Indices.
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Table 1 Summary statistics for daily US Equity and US Bond Indices and three fixed-mix portfolios over the
period 1 January 1982 to 31 December 2013.

Volatility (%) ES0.9(%) CED0.9
(6M-paths)
(%)

CED0.9
(1Y-paths)
(%)

CED0.9
(5Y-
paths)(%)

US Equity 18.35 2.19 47 51 57

US Bonds 5.43 0.49 29 32 35

50/50 9.53 1.30 31 32 35

60/40 11.12 1.35 33 35 38

70/30 12.92 1.40 36 40 44

Expected shortfall and conditional expected drawdown are calculated at the 90% confidence level. Three
drawdown risk metrics are calculated by considering the maximum drawdown within return paths of different
fixed lengths (6 months, 1 year and 5 years)

Fig. 3 Daily 6-month rolling Fractional Risk Contributions (FRC) along the 90% Conditional Expected
Drawdown (CED) of US Equity and US Bonds to the balanced 60/40 portfolio. Also displayed is the daily
VIX series over the period 1982 – 2013, with the right-hand axis indicating its level

displays the daily 6-month rolling fractional contributions to drawdown risk CED0.9 (at the
90% threshold of the 6-month maximum drawdown distribution) of the two asset classes
(US Equity and US Bonds) in the balanced 60/40 allocation.10 Between 1982 and 2008, and
between 2012 and 2013, the contributions of US Equity to overall drawdown risk fluctu-
ated between 80 and 100%. Note that this period includes two of the three turbulent market
regimes that occurred during this 30-year window, namely the 1987 stock market crash and
the burst of the internet bubble in the early millennium. During the credit crisis of 2008, how-
ever, we see, unexpectedly, that bonds contributed almost as much as equities to portfolio
drawdown risk.

Our analysis shows little connection between market turbulence and drawdown risk con-
centration in the 60/40 fixed mix of US Equity and US Bonds. Notably, the most equitable
attribution of drawdown risk occurred during the 2008 financial crisis. This can be explained
by the inclusion of bonds issued by Fannie Mae and Freddie Mac in the US Government

10 See Appendix B for details on the risk estimation and portfolio construction methodologies used. Note also
that similar effects can be seen in other fixed-mix portfolios, such as the equal-weighted 50/50 portfolio and
the 70/30 allocation. In the following empirical analyses, we will be focusing exclusively on the traditional
60/40 allocation.
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Fig. 4 Decomposition of the individual contributions to drawdown risk RCCED
i (P) = wiCED(Xi )Corr

CED
i

for the 60/40 allocation to US Equity and US Bonds over the period 1982–2013. The top two panels show
the daily 6-month rolling standalone 90% Conditional Expected Drawdown (CED) of the two asset classes,
while the bottom two panels show the daily 6-month rolling generalized correlations of the individual assets
along CED

Bond Index. In calm regimes, these Agency Bonds tended to be correlated with US Treasury
bonds, but during the financial crisis, Agency Bonds were more correlated with US Equity.
For comparison, we provide the same analysis when the underlying Bond Index used is the
US Treasury Bond Index (see Figs. 9 and 10 in Appendix B). In this case, as one would
expect, the least equitable attribution of drawdown risk occurred during turbulent market
periods.

To understand the sources of the risk contributions, particularly during the credit crisis
of 2008 where the concentrations of US Equity and US Government Bonds approached
parity, we carry out the “X-Sigma-Rho” decomposition of [28]. Recall from Sect. 4 that risk
contribution is proportional to the product of standalone risk and generalized correlation. In
the case of Conditional Expected Drawdown, this means that:

RCCED
i (P) = wiCED(Xi )Corr

CED
i .

Because we are working with a fixed-mix portfolio, the exposures wi are constant: 0.6
and 0.4 for US Equity and US Bonds, respectively. This means that the time-varying risk
contributions of Fig. 3 depend on the time-varying drawdowns (CED(Xi )) and correlations
(CorrCEDi ). Figure 4 displays these for each of the two assets in our 60/40 portfolio. Observe
that during the 2008 financial crisis, both the drawdown risk contribution of US Bonds and
its generalized correlation were elevated relative to the subsequent period. On the other hand,
the generalized correlation of US Equity during the 2008 crisis decreased. The combination
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Fig. 5 Fractional Risk Contributions (FRC) of US Equity measured along three different risk measures
(volatility, 90% Expected Shortfall and 90% Conditional Expected Drawdown) for the following two-asset
portfolios consisting of US Equity and US Bonds over the period 1982–2013: Volatility Parity, ES Parity and
CED Parity. Each parity portfolio is constructed to have equal risk contributions along its eponymous risk
measure

of these effects may have driven the changes in the drawdown contributions of US Bonds
and US Equity during the 2008 crisis.11

In Sect. 5.2, we give a statistical analysis that supports the economic explanation of the
increased CED values for US Government Bonds. In practice, investors can efficiently con-
trol such regime-dependent fluctuations in drawdown risk concentrations since Conditional
Expected Drawdown is a convex risk measure; that is both the return path and the drawdown
path are convex with respect to asset weights. Hence, they are convex functions of factors that
are linear combinations of asset weights. This implies that reducing the portfolio exposure
to an asset or factor in a linear factor model decreases its marginal contribution to overall
portfolio drawdown.

It is possible for a portfolio to have equal risk contributions with respect to one measure
while harboring a substantial concentration with respect to another.12 Figure 5 illustrates
such a case. Four portfolios are constructed to be maximally diversified along the follow-
ing risk measures: volatility, Expected Shortfall, and Conditional Expected Drawdown. The
underlying asset classes are US Equity and US Government Bonds as before from 1982 to
2013.13 We refer to these as being in parity with respect to the underlying risk measure.
The confidence level for both ES and CED is fixed at 90%. Figure 5 shows fractional risk
contribution of the equity component to each of three risk measures in three types of risk
parity portfolios. Concentrations in terms of drawdown risk, in particular, are revealed. For
instance, even though the ES Parity portfolio, which has equal contributions to Expected
Shortfall, is constructed to minimize downside risk concentrations, it turns out to have 75%
of its drawdown risk concentrated in US Equity.

11 For comparison, we include in Fig. 11 of Appendix C the risk decomposition along expected shortfall.
12 Risk parity portfolios, which are constructed to equalize risk contributions, have been popular investment
vehicles in the wake of the 2008 financial crisis (see [3,4]). This is in spite of the fact that there may be no
theoretical basis for the construction.
13 See Appendix B for details on the data, risk estimation, and portfolio construction methodologies used.
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Fig. 6 Volatility, 90% expected shortfall (ES), and 90% Conditional Expected Drawdown (CED) of a Monte
Carlo simulated AR(1) model (with 10,000 data points) for varying values of the autoregressive parameter κ

5.2 Drawdown risk and serial correlation

One advantage of looking at maximum drawdown distributions rather than return distribu-
tions, and thusConditional ExpectedDrawdown rather thanExpected Shortfall, lies in the fact
that drawdown is inherently path dependent. In other words, drawdown measures the degree
to which losses are sustained, as small but persistent cumulative losses may still lead to large
drops in portfolio net asset value, and hence may force liquidation. On the other hand, volatil-
ity and Expected Shortfall fail to distinguish between intermittent and consecutive losses.We
show that, to a greater degree than these two risk measures, Conditional Expected Drawdown
captures temporal dependence. Moreover, the effect of serial correlation on drawdown risk
can be seen in the drawdown risk contributions.

An increase in serial correlation increases drawdown risk.To see how temporal depen-
dence affects risk measures, we use Monte Carlo simulation to generate an autoregressive
AR(1) model:

rt = κrt−1 + εt ,

with varying values for the autoregressive parameter κ (while ε is Gaussian with variance
0.01), and calculate volatility, Expected Shortfall, and Conditional Expected Drawdown of
each simulated autoregressive time series. Figure 6displays the results.All three riskmeasures
were affected by the increase in the value of the autoregressive parameter, but the increase
is steepest by far for CED. We next use maximum likelihood to fit the AR(1) model to the
daily time series of US Equity and US Government Bonds on a 6-month rolling basis to
obtain time series of estimated κ values for each asset. The correlations of the time series
of κ with the time series of 6-month rolling volatility, Expected Shortfall, and Conditional
Expected Drawdown are shown in Table 2. The correlations are substantially higher for US
Equity across all three risk measures. Note that for both asset classes, the correlation with the
autoregressive parameter is highest for CED. Figure 7 contains the scatter plots of estimated
κ parameters for US Equity and US Bonds against their CED.

An increase in serial correlation increases drawdown risk concentrations. We now
show how temporal dependence is manifest in the drawdown risk contributions. Figure 8a
shows the fractional risk contributions over the entire period 1982–2013 of US Equity to the
balanced 60/40 portfolio for three riskmeasures, volatility, ES, and CED, based on daily data.
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Table 2 For the daily time series of each of US Equity and US Government Bonds, correlations of estimates
of the autoregressive parameter κ in an AR(1) model with the values of the three risk measures (volatility, 90%
Expected Shortfall and 90% Conditional Expected Drawdown) estimated over the entire period (1982–2013)

Volatility ES0.9 CED0.9

US Equity 0.47 0.52 0.75

US Bonds 0.32 0.39 0.69

Fig. 7 For each of US Equity and US Government Bonds, scatter plots of the daily time series of 6-month
rolling estimates of the autoregressive parameter κ with the 6-month rolling estimates of 90% Conditional
Expected Drawdown

The fractional contributions of US Equity to volatility and ES were large (over 90%) and
close in magnitude. For CED, however, the concentration was less pronounced, which means
that the contribution of USBonds to drawdown risk exceeded its contribution to volatility and
shortfall risk. A candidate explanation is temporal dependence: while bonds systematically
have lower volatility and shortfall risk than do equities, they do occasionally suffer from
extended periods of consecutive losses.

To test this hypothesis,we simulate the returns rE and rB to twoassets E and B representing
equities and bonds, respectively, with an autoregressive AR(1) model:

rE,t = κErE,t−1 + εE,t ,

and

rB,t = κBrB,t−1 + εB,t ,

and we construct a simulated 60/40 fixed-mix portfolio. The AR(1) model parameters are
obtained by calibrating to daily time series of US Equity and US Bonds. The estimated
autoregressive parameters are κE = 0.43 and κB = 0.35. We assume the ε variable is
Gaussian, with volatility of 18.4% for asset E (based on the volatility of US Equity) and 5.5%
for asset B, (based on the volatility of US Bonds). From the simulated data, we fit AR(1)
models and their fractional contributions to volatility, ES and CED. When using only the
residuals, we obtain statistically equal risk contributions since the innovations are Gaussian.
However, without removing the autoregressive component, contributions to CED once again
differ from contributions to volatility and ES. Figure 8b displays the corresponding fractional
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Fig. 8 a Fractional contributions over the entire period 1982–2013 of the US Equity asset to volatility, 90%
Expected Shortfall and 90% Conditional Expected Drawdown in the 60/40 portfolio, based on daily data. b
Fractional contributions of the simulated high-volatility AR(1) asset to volatility, 90% Expected Shortfall and
90% Conditional Expected Drawdown in the 60/40 portfolio

contributions of the more volatile asset class, E , to the three risk measures. Note that the two
panels in Fig. 8 are visually indistinguishable even though one is based on historical data,
whereas the other is simulated.

6 Drawdown: from practice to theory and back again

Financial practitioners rely on maximum drawdown as an indicator of investment risk. How-
ever, due to its inherent path dependency, maximum drawdown has tended to fall outside of
probabilistic treatments of investment risk, which focus on return and loss distributions at
fixed horizons. As a result, maximum drawdown has been excluded from standard portfolio
analysis toolkits that attribute risk to factors or asset classes, and that use risk forecasts as
counterweights to expected return in portfolio construction routines.

In this article, we develop a new probabilistic measure of drawdown risk, Conditional
Expected Drawdown (CED), which is the tail-mean of a drawdown distribution at a fixed
horizon. SinceCED is perfectly analogous to the familiar return-based riskmeasure, Expected
Shortfall (ES), CED is easy for practitioners to interpret and it enjoys desirable theoretical
properties of tail-means such as positive degree-one homogeneity and convexity. Thus, the
development of a consistent theory for drawdown facilitates an extension of its current prac-
tical applications.

The path dependency of Conditional ExpectedDrawdownmakes it more sensitive to serial
correlation than Expected Shortfall or volatility.We demonstrate this using a simulatedAR(1)
model. All else equal, CED increases much more rapidly as a function of the autoregressive
parameter κ than do Expected Shortfall or volatility. In an empirical study, we find relatively
high correlations between serial correlation and estimated CED (.75 for USEquity, .69 for US
Bonds) compared to Expected Shortfall (.52 for US Equity, .39 for US Bonds) and volatility
(.47 for US Equity, .32 for US Bonds).

Since it is positive degree-one homogenous, CED (like ES and volatility) can be decom-
posed into a sum of risk contributions, and the relative sensitivity of CED to serial correlation
is manifest in risk concentrations. In an empirical study of a balanced 60/40 portfolio of US
Equity and US Bonds over the period 1982–2013, US Equity accounted for roughly 75%
of CED, but more than 90% of ES and volatility. A plausible explanation is the relatively
high level of serial correlation in US Bonds. We support this hypothesis with another simu-
lation: we replicate the empirically observed concentrations of CED, ES and volatility using
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a simulated 60/40 balanced portfolio based on AR(1) models calibrate to US Equity and US
Bonds over the study period.

Since CED is convex, it can serve as a counterweight to expected return in a quantitative
optimization. Exploiting the parallels between Expected Shortfall as a tail-mean of a return
distribution and Conditional Expected Drawdown as a tail-mean of a drawdown distribution,
one can in theory use the linear programming algorithm developed by [33,34].

This article lays the foundation needed to incorporate Conditional Expected Drawdown
in the investment process. Further empirical exploration of the properties of CED, research
into the incremental information it adds beyond what is in return-based risk measures, and
the study of its impact on quantitative portfolio construction, are the next steps.

Appendix A: Data and estimation methodologies

A.1 Data

The data were obtained from the Global Financial Data database. We took the daily time
series for the S&P 500 Index and the USA 10-year Government Bond Total Return Index.

A.2 Portfolio construction

Rather than provide thorough realistic empirical analyses of portfolio risk and return, our
goal behind the simulated portfolios is to illustrate this article’s theoretical development in
relation to drawdown risk. For simplicity, we therefore do not account for transaction costs or
market frictions in all hypothetical portfolios constructed throughout this study. Moreover,
we assume that all portfolios are fully invested and long only.

Fixed-mix portfolios. In the fixed-mix portfolios, rebalancing to the fixed weights is
done on a monthly basis. When comparing to other popular rebalancing schemes (quarterly,
bi-annually and yearly), similar results were obtained.

Risk parity portfolios. In risk parity strategies, assets are weighted so their ex post
risk contributions are equal. As mentioned in Sect. 5, parity portfolios are not restricted to
volatility only, but can be constructed along other risk measures, such as Expected Shortfall
and Conditional Expected Drawdown. Asset weights in the strategies depend on estimates
of the underlying risk measures (see Sect. A.3), which are calculated using a 3-year rolling
window of trailing returns. Varying the estimation methodology by changing the length of
the rolling window or the weighting scheme applied to the returns within this window did
not alter our results substantially. Similar to the fixed-mix portfolios, risk parity portfolios
are rebalanced monthly, with other rebelancing schemes yielding similar results.

A.3 Risk estimation

Volatility. Portfolio volatility is calculated as the annualized standard deviation of the daily
time series over the entire period under consideration. To obtain the volatility risk contri-
butions for a n-asset portfolio P = ∑

i wi Xi , note that the i-th total contribution RCσ
i to

portfolio volatility

σ(P) =
∑

i

w2
i σ

2
i +

∑

i

∑

j �=i

wiw jσi, j
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is
RCσ

i = w2
i σ

2
i +

∑

j �=i

wiw jσi, j ,

whereσ 2
i is the variance of Xi andσi, j is the covariance of Xi and X j . Then, the i-th fractional

contribution to volatility is given by

FRCσ
i (P) = w2

i σ
2
i + ∑

j �=i wiw jσi, j

σ(P)
.

Expected shortfall.For confidence levelα ∈ (0, 1), an estimate for the Expected Shortfall
of a portfolio is calculated by ordering the daily return time series over the whole period
according to the magnitude of the returns, then averaging over the worst (1 − α) percent
outcomes, more specifically:

ÊSα = 1

K

K∑

i=1

r(i),

where T is the length of the daily time series, K = T (1 − α)�, and r(i) is the i-th return
of the magnitude-ordered time series. To obtain the contributions to shortfall risk, recall that
under a continuity assumption, the Expected Shortfall of an asset X ∈ M can be expressed
as ESα(X) = E (X | X ≥ VaRα(X)), or the expected loss in the event that its Value-at-Risk
at α is exceeded.14 As usual, let P = ∑

i wi Xi be the portfolio in consideration. Assuming
differentiability of the riskmeasure VaR, themarginal contribution of Xi to portfolio shortfall
ESα(P) is given by

MRCESα

i (P) = ∂ESα(P)

∂wi
= E(Xi | P ≥ VaRα(P)) .

An estimate for the i-th marginal contribution to shortfall risk is then obtained by averaging
over all the returns of asset Xi that coincide with portfolio returns exceeding the portfolio’s
Value-at-Risk at threshold α.

Conditional expecteddrawdown.Thefirst step in calculating an estimate forConditional
Expected Drawdown is to obtain the empirical maximum drawdown distribution. From the
historical time series of returns, we generate return paths of fixed length n using a one-day
rolling window. This means that consecutive paths overlap. The advantage is that for a return
time series of length T , we obtain a maximum drawdown series of length T − n, which
for large T and small n is fairly large, too. From these T − n return paths we calculate
the maximum drawdown as defined in Sect. 2. An estimate for the Conditional Expected
Drawdown at confidence level α ∈ (0, 1) is then calculated as the average of the largest
(1 − α) percent maximum drawdowns. To obtain an estimate for the i-th contribution to
drawdown risk CED, we take the average over all the drawdowns of the i-th asset in the
path [t j∗, tk∗] that coincide with the overall portfolio’s maximum drawdowns that exceed the
portfolio’s drawdown threshold DTα at confidence level α (Recall that j∗ < k∗ ≤ n are such
that µ(PTn ) = Ptk∗ − Pt j∗ .)

Appendix B: Drawdown risk decomposition along a balanced portfolio of
US Equity and US treasury bonds

See Figs. 9 and 10.

14 See for example [27].
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Fig. 9 Daily 6-month rolling fractional risk contributions (FRC) along 90% conditional expected drawdown
(CED) of US Equity and US Treasury Bonds to the balanced 60/40 portfolio over the period 1982–2013. Also
displayed is the daily VIX series over the same period, with the right-hand axis indicating its level

Fig. 10 Decomposition of drawdown risk contributions RCCED
i (P) = wiCED(Xi )Corr

CED
i for the 60/40

allocation to US Equity and US Treasury Bonds over the period 1982–2013. The top two panels show the
daily 6-month rolling standalone 90% Conditional Expected Drawdown (CED) of the two assets, while the
bottom two panels show the 6-month rolling generalized correlations of the individual assets along CED

123

Author's personal copy



Math Finan Econ

Appendix C: Risk decomposition along expected shortfall

See Fig. 11.

Fig. 11 Decomposition of contributions RCES
i (P) = wiES(Xi )Corr

ES
i to 90% expected shortfall (ES) for

the 60/40 allocation to (A) US Equity and US Government Bonds, and (B) US Equity and US Treasury Bonds
over the time period 1982–2013
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