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ARTICLE

Taxonomic signatures of cause-specific mortality
risk in human gut microbiome
Aaro Salosensaari 1,2,3,12, Ville Laitinen 2,12, Aki S. Havulinna 4,5, Guillaume Meric 6,7,

Susan Cheng 8,9, Markus Perola4, Liisa Valsta4, Georg Alfthan4, Michael Inouye6,7, Jeramie D. Watrous10,

Tao Long10, Rodolfo A. Salido11, Karenina Sanders11, Caitriona Brennan11, Gregory C. Humphrey11,

Jon G. Sanders 11, Mohit Jain10, Pekka Jousilahti4, Veikko Salomaa 4, Rob Knight 11, Leo Lahti 2,12✉ &

Teemu Niiranen1,4,12✉

The collection of fecal material and developments in sequencing technologies have enabled

standardised and non-invasive gut microbiome profiling. Microbiome composition from

several large cohorts have been cross-sectionally linked to various lifestyle factors and dis-

eases. In spite of these advances, prospective associations between microbiome composition

and health have remained uncharacterised due to the lack of sufficiently large and repre-

sentative population cohorts with comprehensive follow-up data. Here, we analyse the long-

term association between gut microbiome variation and mortality in a well-phenotyped and

representative population cohort from Finland (n= 7211). We report robust taxonomic and

functional microbiome signatures related to the Enterobacteriaceae family that are associated

with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional

studies, and help to establish the basis for examining long-term associations between human

gut microbiome composition, incident outcomes, and general health status.
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Following the advances in measurement technologies,
microbiome composition has data from several large
cohorts that have been cross-sectionally linked to various

lifestyle factors and diseases1–5. In spite of these advances, pro-
spective associations between microbiome composition and
health have remained uncharacterised due to the lack of
sufficiently large and representative population cohorts with
comprehensive follow-up data6–8.

The long research tradition in population-level health surveys,
high participation rates and the availability of comprehensive,
nationwide health registers that allow monitoring of health var-
iations across an individual’s lifespan have brought Finland to the
forefront of population-based cohort studies9–12. Here, we ana-
lyse the faecal microbiome composition in a representative ran-
dom sample of 7211 adults (mean age 49.5 years, 55.1% women)
who participated in the FINRISK 2002 health examination sur-
vey, which included stool sample collection and cross-sectional
phenotyping in 20029. Access to electronic health registers and
death certificates across the 15-year time span following sample
collection is a unique feature of this study, allowing us to com-
plement the earlier cross-sectional studies by associating
gut microbiome profiles with a long-term follow-up of health
status and mortality after the baseline examination. Here, we
demonstrate that taxonomic and functional microbiome sig-
natures related to the Enterobacteriaceae family are associated
with mortality risk in the general population over an extended
follow-up.

Results
Study sample and microbiome taxonomic composition. Alto-
gether, 729 of the 7055 participants (10.2%) with complete data
available died during a median follow-up of 14.8 years (Fig. 1a, b).
We investigated links between mortality and the key features of
microbiome composition, including alpha and beta diversity,
genus abundances, taxonomic co-occurrence networks and
functional predictions. We observed altogether 51 phyla and 1754
genera in this cohort (Supplementary Data 1 and 2). Inter-
individual variation in taxonomic composition was largely attri-
butable to differences in the relative abundances of the most
prevalent and abundant genera (Fig. 1c, Supplementary Fig. 1 and
Supplementary Data 2). Most genera were rare and observed in
<1% of the study participants. In addition to analysing the overall
species diversity, we have focused on the 91 genus-level taxo-
nomic groups that were detected in >1% of the study participants
at a within-sample relative abundance of >0.1%. These included
mostly bacterial genera (87) but also viruses (1) and archaea (3)
(Supplementary Data 2), with a median relative abundance of
99.3%.

Microbiome features and mortality risk. We performed a pro-
spective analysis by examining how microbiome features were
related to mortality risk in a 15-year follow-up. Alpha diversity
was not significantly associated with mortality (false discovery
rate (FDR)-corrected P= 0.17, two-tailed Wald test for Cox
regression coefficient, Supplementary Table 1). However, we
detected a robust and significant signal between beta diversity, or
the overall community variation and elevated mortality risk. We
used the standard centred log-ratio (CLR) transformation to
reduce compositionality bias in taxonomic abundance data and
observed that the third principal component of the CLR-
transformed species abundance matrix (PC3) was strongly
linked to all-cause mortality risk (hazard ratio (HR), 1.14; 95%
confidence interval (CI), 1.07–1.23; FDR-corrected P= 0.001,
two-tailed Wald test for Cox regression coefficient, Fig. 2 and
Supplementary Table 1). The observation was robust to factors

known to affect microbiome composition and mortality risk, i.e.,
age, sex, BMI, smoking, diabetes, use of antineoplastic or
immunomodulating agents, systolic blood pressure and use of
antihypertensive medication. Surprisingly, PC3 demonstrated an
even stronger association with mortality than systolic blood
pressure, which has been established as the leading cause of global
burden of disease (Supplementary Table 2)13. Moreover, the
findings related to PC3 could be observed in independent samples
of the Eastern and Western Finnish populations whose genetic
backgrounds, lifestyles and life expectancies differ (Supplemen-
tary Fig. 2)14,15. PC3 was driven by species of the Enterobacter-
iaceae family that are a part of the normal gut microbiome but
can also cause infectious diseases in the gut and other body sites
Supplementary Figs. 3 and 4 and Supplementary Data 3)16.
Inclusion of a Healthy Food Choices Score, representing a healthy
diet (Supplementary Methods), among the covariates did not
materially change the association between PC3 and mortality
(HR, 1.13; 95% CI, 1.04–1.23; P= 0.005). The Healthy Food
Choices Score was related to reduced mortality risk in the same
model (HR, 0.86; 95% CI, 0.78–0.95; P= 0.003), demonstrating
the robustness of the score. In addition, after recalculating the
principal components in a sample of participants who had not
used antibiotics 6 months prior to baseline, the association
between PC3 and mortality remained significant (HR, 1.12; 95%
CI 1.04–1.21; P= 0.0003).

Enterobacteriaceae and cause-specific mortality. In analyses for
cause-specific death, increased Enterobacteriaceae abundance and
PC3 were particularly strongly related to death from gastro-
intestinal and respiratory causes (Fig. 3 and Supplementary
Fig. 5). Individuals in the fourth quartile of Enterobacteriaceae
abundance and PC3 had 34% (95% CI, 9–64) and 49% (95% CI,
21–83) greater risks of death compared to participants in the first
quartile, respectively. Several Enterobacteriaceae genera were also
individually associated with mortality (Supplementary Table 3).
The standardised CLR-transformed total Enterobacteriaceae
abundance was associated with prevalent liver disease (beta, 0.33;
95% CI, 0.027–0.64; unadjusted P= 0.03, two-tailed Wald test).
More in-depth analyses on the impact of virulence genes and
disease outcomes were not possible due to the lack of statistical
power as the prevalence of these genes among the FINRISK
samples was low (<1%; Supplementary Data 4). These genes were
mainly related to virulent strains of Escherichia coli.

Taxonomic composition and mortality risk. We then investi-
gated the overall capacity of taxonomic composition in reflecting
elevated mortality risk. We identified a significant linear and non-
linear association between the abundances of 40 genera and
mortality (FDR-corrected P < 0.05; Supplementary Fig. 6a and
Supplementary Table 3). Furthermore, we applied Random Sur-
vival Forests to identify a combined taxonomic signature that has
the strongest association with all-cause mortality. The top taxo-
nomic features identified in this supervised analysis also included
multiple Enterobacteriaceae genera (Supplementary Fig. 6b and
Supplementary Data 5). However, community composition did
not improve total mortality risk assessment compared to the
eight covariates (c-statistic 0.798 for covariates versus 0.796 for
covariates plus community composition; P= 0.11, paired t test,
5-fold cross-validation). The c-statistic for the community com-
position alone was 0.634). As an additional analysis, we identified
mortality-associated microbiome features in the Eastern popula-
tion based on the Random Survival Forest model, and then tested
their performance in the Western population (Table 1). Incor-
porating microbiome features did not significantly improve
Random Survival Forest performance when compared to using
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host covariates alone. Microbiome features were informative of
mortality risk but did not bring in additional performance gains
over host covariates.

Taxonomic co-occurrence networks and mortality risk. In
order to pinpoint specific taxonomic markers that could be linked
to mortality risk, we complemented the community-level analyses
by shifting the focus towards a more refined sub-community

analysis. We identified groups of tightly clustered genera based on
taxonomic co-occurrence network analysis. All four strongest
network modules, or subnetworks (Fig. 4, Supplementary Fig. 7
and Supplementary Data 6), included genera that were linked to
all-cause mortality. We observed the strongest intra-network
correlations and mortality associations for the subnetwork that
consisted mainly of Enterobacteriaceae genera (Fig. 4b). This
subnetwork was observed in both Western and Eastern Finnish

Fig. 1 Study sample and gut microbiome characteristics. a At baseline, the study sample (n = 7211) had a balanced sex ratio (55% women in red:men in
blue), a mean age of 49 years (range 24–74; left panel) and a mean body mass index (BMI) of 27 kg/m2 (range 16–57; middle panel). During a median
follow-up time of 14.8 years, 721 of 7055 (10.2%) participants with complete data who were included in the prospective analysis died (right panel). b A
total of 7211 out of 13,500 randomly sampled individuals (53.4% participation rate) from six catchment areas in Finland underwent stool sampling, a
physical examination and filled in a questionnaire on health behaviour, history of diseases and current health. c Principal coordinate analysis (PCoA)
indicates sample similarity based on species-level taxonomic composition. The colour indicates the dominant (most abundant) genus in each sample.
Altogether, 96% of the samples are dominated by one of the six genera that are indicated in the figure.

0.5

1

2

4

−50 0 50
PC1

H
R

 fo
r D

ea
th

−60 −30 0 30
PC2

−50 −25 0 25 50
PC3

P = 0.065 P = 0.172 P = 0.001

Fig. 2 Principal components and mortality risk. Association between mortality risk and the first three principal components of beta diversity (PC). Black
line indicates the estimated hazard ratio compared to median PC value and blue area the 95% confidence interval (CI). Unit variance increase in the PCs
were related to hazard ratios of 0.92 (95% CI, 0.85–0.99; FDR-adjusted P= 0.065; two-tailed Wald test), 0.95 (95% CI, 0.87–1.02; FDR-adjusted P= 0.17;
two-tailed Wald test) and 1.14 (95% CI, 1.07–1.23; FDR-adjusted P= 0.001; two-tailed Wald test) for PC1–PC3, respectively. Analyses are adjusted for age,
body mass index, sex, smoking, diabetes, use of antineoplastic and immunomodulating agents, systolic blood pressure and self-reported antihypertensive
medication. The dashed line represents a hazard ratio of 1 set at median PC value. HR hazard ratio.
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populations (Supplementary Fig. 8). The total abundance of this
subnetwork was associated with increased mortality risk (HR=
1.16, 95% CI, 1.08–1.24; P= 0.0002).

Microbiome functional profiles and mortality risk. Using Kyoto
Encyclopaedia of Genes and Genomes (KEGG) orthology (KO)
groups, we assessed the potential microbial functional roles in
individuals with an elevated mortality risk (Supplementary Fig. 9
and Supplementary Data 7). Many mortality-associated markers
were involved in the KEGG categories related to drug biode-
gradation, carbohydrate metabolism, lipid metabolism and
infectious diseases. These associations were both positive and
negative (Supplementary Fig. 9 and Supplementary Data 7).
Numerous prior studies have demonstrated that gut microbes can
affect lipid and glucose metabolism and their circulating levels,
which, in turn, may affect the risk of cardiometabolic disease17,18.
Furthermore, it has been previously shown that the gut micro-
biota can exert direct effects on drug metabolism, potentially
affecting disease risk through drug efficacy and toxicity19. On the
other hand, several commonly used drugs have been associated
with extensive changes in the taxonomy, metabolic potential and
resistome of the gut microbiome20. Functional pathways that
were negatively associated with mortality also included biological
processes related to the nervous system (Supplementary Fig. 9).
While these functional predictions suggest that gut–drug inter-
actions, gut microbiome–metabolome interactions and the
gut–brain axis could play a role in the development of disease,
additional research is needed to confirm the drivers of the
identified associations21,22.

Discussion
Our analysis provides a systematic quantification of the long-term
health associations of the human faecal microbiome. In spite of
using a remarkably heterogeneous, but robust outcome variable,
we could identify specific gut microbiome features that were
linked to all-cause mortality during the 15-year follow-up. These
associations can be observed both in the Eastern and Western
Finns who have differing genetic backgrounds, lifestyles and
mortality rates14,15. Our results extend previously reported cross-
sectional associations1–4,23. However, despite being a hetero-
geneous outcome, all-cause mortality is also a robust end point as
it is virtually free of misclassification or loss to follow-up.
Although individuals in the fourth quartile of PC3 had a 49%
greater relative risk for all-cause mortality than those in the first
quartile, microbiome signatures did not improve model dis-
crimination. However, the c-statistic is a conservative method for
assessing changes in model fit24. Even commonly accepted dis-
ease risk factors such as hypertension and smoking have only
marginal impact on the c-statistic individually, but lead to a more
accurate reclassification of large proportions of patients into
higher or lower risk categories25. The PCA signatures are opti-
mised to uncover maximal differences across individuals in the
population, and they are thus potentially influenced by environ-
mental and host factors. Whereas this may pose limitations for
significance estimation26,27, the unsupervised principal compo-
nent analysis (PCA) has been commonly used to uncover asso-
ciations between broad patterns of microbiome variation, health
and environmental factors, and it provides the first step towards
understanding the underlying causes. In addition, our results on
the association of the gut microbiome with cause-specific mor-
tality demonstrate that its association with some fatal outcomes is
considerably stronger than with others, in spite of the lower
number of events and hence reduced statistical power. The
observed associations suggest that specific taxonomic configura-
tions of the human gut microbiome may reflect health-associated
changes that are linked to increased mortality, or potentially play
a unique role in the maintenance of health and development of
incident disease5,16,21.

Our findings advance current research by demonstrating a
particularly strong link between members of the Enterobacter-
iaceae family and death from gastrointestinal and respiratory
causes in a general population cohort study setting with long-
term follow-up. In prior cross-sectional human studies, Enter-
obacteriaceae have been observed to be enriched in patients with
inflammatory bowel disease and colorectal cancer28. It has been
speculated that Enterobacteriaceae, normally dominant in the
upper gastrointestinal tract, become enriched in the stool due to a
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Fig. 3 The association between Enterobacteriaceae abundance and cause-specific mortality. Cox hazard ratios and 95% confidence intervals are
reported per unit variance increase in Enterobacteriaceae abundance. Box sizes are inversely proportional to P values. The entire study sample (n= 7211)
was examined independently with each cause of death as end point. Analyses are adjusted for age, body mass index, sex, smoking, diabetes, use of
antineoplastic and immunomodulating agents, systolic blood pressure and self-reported antihypertensive medication. HR hazard ratio, FDR false
discovery rate.

Table 1 Cause of death specific c-statistics for different
feature sets.

Cause of death Microbiome Covariates Microbiome and
covariates

All 0.63 0.80 0.79
Cancer 0.60 0.74 0.72
Cardiovascular 0.63 0.84 0.82
Gastrointestinal 0.62 0.63 0.69
Neurological 0.50 0.79 0.70
Respiratory 0.57 0.70 0.67
Other 0.60 0.69 0.76

Survival Random Forest was trained with the Eastern population and then tested on the Western
population. A c-statistic of 0.5 corresponds to a random expectation, and higher values indicate
improved performance. Incorporating core microbiome features did not significantly improve the
c-statistic over the host covariates.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22962-y

4 NATURE COMMUNICATIONS |         (2021) 12:2671 | https://doi.org/10.1038/s41467-021-22962-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


faster stool transit time that occurs in diarrhoea, a symptom of
many gastrointestinal diseases29. Host-mediated inflammation
has also been shown to disrupt the gut microbiome and promote
the overgrowth of Enterobacteriaceae30. On the other hand,
increased prevalence and enhanced virulence potential of gut E.
coli have both been linked to urinary tract infections31. In fact,
extraintestinal E. coli strains often exist in the gut without con-
sequences but have the capacity to disseminate and colonise other
host niches, including the blood, the central nervous system and
the urinary tract, resulting in disease32,33. Multidrug-resistant
Enterobacteriaceae cultured from skin or blood samples have also
been associated with poorer outcomes in highly selected groups of
intensive care unit patients over a short-term follow-up of weeks
to months34–36. Our results improve the understanding of the
Enterobacteriaceae–mortality link in the general population. That
is, we demonstrate a strong association between gut Enter-
obacteriaceae and fatal events in a random population sample
over a 15-year follow-up, allowing for increased generalisability of
our results and evidence on the long-term health associations of
the gut microbiome.

A particular strength of our analysis is the availability of a
random, representative population sample comprising thousands
of adults from a northern European population and the access to
comprehensive electronic health registers. Furthermore, our
findings were supported in both Eastern and Western Finnish
populations. As such, this can complement the findings from
earlier cross-sectional population studies that have had a more
limited representativeness based on their focus on specific
populations1,37, lack of random sampling1–4 or low participation
rates38. Although our sequencing depth was limited by financial
constraints, it has been previously demonstrated that shallow-
shotgun sequencing provides data that are strongly correlated
with ultradeep-sequenced data39. Our data contained many rare
genera and species. In order to reduce noise in taxonomic pro-
filing and potential misclassification between closely related spe-
cies that influence in particular low-abundant taxa40 and to focus
on population-level variation, we excluded the least prevalent
genera from most analyses (Supplementary Table 2), and
emphasise the role of Enterobacteriaceae as a family associated
with elevated mortality risk. In addition, our data lacked certain
covariates that have been recently linked to microbiome

composition, such as stool consistency and faecal chromogranin
A1–4. The results of our analysis, therefore, need to be further
replicated in independent cohorts with a long-term follow-up of
health status. Despite the current lack of cohorts that could be
used for external replication of our prospective results, our
findings have implications on the design of future studies that aim
to map microbiome–health associations across extended periods
of time.

Until now, prospective long-term data linking microbiome
composition with incident outcomes have been unavailable. Our
data provide a proof of concept that the microbiome can be used
to assess mortality risk, and potentially also disease risk. Addi-
tional studies will be needed to assess which disease states can be
most effectively predicted through microbiome profiling. In
addition, our findings can help establish a framework for
recruiting disease-susceptible individuals to randomised trials to
assess causal effects of gut microbiome variation on health out-
comes. However, extensive research is still warranted before
human microbiome sequencing can be used for prediction, pre-
vention and targeted treatment of disease.

Methods
Study sample. The FINRISK population surveys have been performed every 5
years since 1972 mainly to monitor trends in cardiovascular disease risk factors in
the Finnish population. The FINRISK 2002 study was based on a stratified random
sample of the population aged 25–74 years from specific geographical areas of
Finland (Fig. 1)9. The survey included participants from North Karelia and
Northern Savo in eastern Finland, Turku and Loimaa regions in southwestern
Finland, the cities of Helsinki and Vantaa in the capital region, the provinces of
Northern Ostrobothnia in northwestern Finland, Kainuu in northwestern Finland
and the province of Lapland in northern Finland. The sampling was stratified by
sex, region and 10-year age group so that each stratum had 250 participants. In
North Karelia, Lapland and the cities of Helsinki and Vantaa, the strata with
65–74-year-old men and women were also sampled, each with 250 participants.
The original population sample was thus 13,500 (excluding 64 who had died or
moved away between sampling and the survey); the overall participation rate was
65.5% (n= 8798). We successfully performed stool shotgun sequencing in n=
7231 individuals. After excluding 20 individuals with low read counts (<50,000),
n= 7211 participants (mean age 49.5 years, 55.1% women) remained for unsu-
pervised analysis, of whom n= 7055 had the full covariate information available
for survival analysis (Fig. 1). The study protocol of FINRISK 2002 was approved by
the Coordinating Ethical Committee of the Helsinki and Uusimaa Hospital District
(Ref. 558/E3/2001). All participants signed an informed consent. The study was
conducted according to the World Medical Association’s Declaration of Helsinki
on ethical principles. Due to a lack of external cohorts with microbiome and long-

Fig. 4 Taxonomic subnetwork associated with increased mortality risk. a Abundance variation across the study population for the subnetwork that
exhibits the strongest mortality associations (CLR-transformed abundances centred at zero and scaled to unit variance). The samples are ordered by the
total relative abundance of the subnetwork. b The observed subnetwork structure and mortality risk. The total subnetwork abundance was associated with
elevated mortality with a hazard ratio of 1.155 (95% confidence interval [CI], 1.08–1.24; P= 0.0002, Wald two-tailed test statistic for Cox regression, 4.07)
The respective hazard ratios were 1.17 (95% CI, 1.07–1.27; P= 0.001, Wald statistic 3.66) in the Eastern and 1.14 (95% CI, 1.001–1.31; P= 0.15, Wald
statistic 2.02) in the Western Finnish populations. The analyses are conducted after excluding rare taxa and adjusted for age, body mass index, sex,
smoking, diabetes, use of antineoplastic and immunomodulating agents, systolic blood pressure and self-reported antihypertensive medication; P values
are FDR-adjusted.
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term mortality data, we used two internal subsamples of 4979 Eastern Finns
(mainly from Northern Karelia, Northern Savo, Kainuu and Northern Ostro-
bothnia regions) and 2232 Western Finns (mainly from Helsinki, Turku and
Loimaa regions). Altogether, 4871 and 2184 samples had complete covariate
information, respectively. We used this to examine the robustness of the results in
distinct subpopulations within the cohort. These two subsamples were chosen due
to their well-known differences in genetic backgrounds, lifestyles and mortality
rates14,15,23. In addition, sensitivity analyses were performed in subsamples of
(1) 6191 individuals without antibiotics use 6 months prior to baseline and (2) 5727
individuals with dietary data available.

Baseline examination. The FINRISK 2002 survey included a self-administered
questionnaire, physical measurements and collection of blood and stool samples.
The questionnaire, together with an invitation to the health examination, was sent
by mail to all subjects. Trained nurses carried out a physical examination and blood
sampling in local health centres or other survey sites. The participants were advised
to fast for ≥4 h and avoid heavy meals earlier during the day. The venous blood
samples were centrifuged at the field survey sites, stored at −70 °C and transferred
daily to the laboratory of the Finnish Institute for Health and Welfare. Data for
physiological measures, biomarkers, dietary factors, demographic factors and life-
style factors was collected.

Stool sample collection. At the baseline examination, all willing participants were
given a stool sampling kit with detailed instructions. The participants mailed their
samples overnight between Monday and Thursday under Finnish winter condi-
tions to the laboratory of the Finnish Institute for Health and Welfare where the
samples were stored at −20 °C. The stool samples were stored unthawed until they
were transferred in 2017 to the University of California San Diego for microbiome
sequencing.

Stool DNA extraction and library preparation. A miniaturised version of the
Kapa HyperPlus Illumina-compatible library prep kit (Kapa Biosystems) was used
for library generation41. DNA extracts were normalised to 5 ng total input per
sample in an Echo 550 acoustic liquid-handling robot (Labcyte Inc). A Mosquito
HV liquid-handling robot (TTP Labtech Inc. was used for 1/10 scale enzymatic
fragmentation, end-repair and adapter-ligation reactions). Sequencing adapters
were based on the iTru protocol42, in which short universal adapter stubs are
ligated first and then sample-specific barcoded sequences added in a subsequent
PCR step. Amplified and barcoded libraries were then quantified by the PicoGreen
assay and pooled in approximately equimolar ratios before being sequenced on an
Illumina HiSeq 4000 instrument to an average read count of ~900,000 reads per
sample.

Taxonomic and functional profiling from sequencing data. We analysed shot-
gun metagenomic sequences using a pipeline built with the Snakemake bioinfor-
matics workflow library32,33. We trimmed the sequences for quality and adapter
sequences using Atropos34, and removed host reads by genome mapping against
the human genome assembly GRCh38 with Bowtie235. We assigned sequences
taxonomy using SHOGUN v1.0.536 against a database containing all complete
bacterial, archaeal and viral genomes available from NCBI RefSeq as of version 82
(May 8, 2017). SHOGUN calls Bowtie2 to align sequencing data against reference
genomes. For each query sequence, up to 16 hits were returned in order to max-
imise the inclusion of closely related organisms to which the query sequence
matches equally or similarly well (i.e. they all have a chance of being the true
positive). As a trade-off, this behaviour could potentially result in a larger number
of organisms than Bowtie2’s default behaviour, which returns one hit per query.
We then processed the results to estimate the relative abundance of taxa. Most
genera were rare and observed in <1% of the study participants. In order to reduce
the number of false positives that may contaminate low-abundant signals40, we
excluded taxonomic groups that were detected with <1% prevalence at a relative
abundance of 0.1%. We excluded plasmids from all analyses. We did not rarefy the
counts to the lowest sampling depth to avoid loss of data; 99.7% of the samples had
a sequencing depth >50,000. Functional profiles were calculated from a combi-
nation of observed and predicted KO group annotations from the RefSeq genomes
following the default parameters of the SHOGUN tool36. Briefly, the final KO table
represents a weighted average of directly observed functional genes and those
estimated to be present but unsampled based on their predicted presence within an
observed genome. A full description of the method has been published36.

Virulence genes. The 7211 FINRISK samples were matched to the Virulence
Factor Database (VFDB; DNA sequences of the full database)43. Anvi’o (v5.5) was
used to build a Bowtie2 database from the VFDB FASTA files and to map the
FINRISK reads to the VFDB genes using the Anvi’o default setting and 99%
sequence similarity44. The coverage was analysed with samtools (v1.9). A coverage
of 500 bp and 90% of the VFDB gene length was required. The prevalence of the
VFDB genes accepted with these filters is shown in Supplementary Table 745.

Register linkage for pre-existing (prevalent) diseases, medication use at
baseline and mortality. In Finland, each permanent resident is assigned a unique
personal identity number at birth or after immigration, which ensures reliable
linkage to the computerised health registers. The nationwide Finnish health reg-
isters ensure in practice 100% coverage of all major health events (Hospital Dis-
charge Register), all prescription drug purchases (Drug Purchase and Special Drug
Reimbursement Registers) and all deaths (Causes-of-Death Register). The quality
of the diagnoses in the Finnish national registers has been previously validated10,11.
We obtained dates and causes of deaths from the National Causes-of-Death Reg-
ister. The participants were followed through December 31, 2017. We observed 729
deaths between the baseline and end of follow-up period; 519 deaths occurred in
Eastern Finns and 210 in Western Finns (511 and 210 with complete covariate
information). The fatal events were also categorised according to their underlying
cause of death (cardiovascular, 10th revision of the International Statistical Clas-
sification of Diseases code I*, n= 218; cancer, C*, n= 205; other, n= 98; neuro-
logical, G*, n= 53; gastrointestinal, K*, n= 34; respiratory, J*, n= 26).

Covariates. We calculated body mass index (BMI) as weight in kilograms divided
by height in metres squared. Smoking (n= 1648) was defined as daily use of
tobacco products. We defined diabetes (n= 401) as having a health event with an
International Classification of Diseases code46 of E10-14 in the Hospital Discharge
Register or having a drug reimbursement code for diabetes in the Special Drug
Reimbursement Register prior to baseline. We defined prevalent liver disease (n=
42) as a diagnosis with ICD-10 codes K70-77 at the baseline. We defined systolic
blood pressure based on the mean of three measurements performed by a nurse
using a mercury sphygmomanometer. n= 1096 participants self-reported anti-
hypertensive medication use. Use of antineoplastic or immunomodulating agents
(n= 62) was defined as a purchase of medications with an Anatomical Therapeutic
Chemical (ATC) code of L* recorded in the Drug Purchase Register up to
4 months prior to baseline47. Antibiotics use (n= 1020) was defined as an ATC
code of J01* up to 6 months prior to baseline. For individuals with no missing data,
we defined a Healthy Food Choices Score based on a 42-item food propensity
questionnaire that had choices ranging from 1 to 6 for consumption frequency
(Supplementary Methods).

Statistical methods. Our statistical analysis workflow provides a systematic
approach for microbiome-based survival analysis in prospective population cohort
studies based on standard statistical techniques in microbiome bioinformatics. The
workflow is described in more detail in Supplementary Methods. It was specifically
designed for this study and could serve as a methodological basis for related future
studies. We conducted all statistical analyses using R48. We standardised all phe-
notype variables except dichotomous variables. We controlled all Cox proportional
hazards models and Random Survival Forests by including age, BMI, sex, smoking,
diabetes, use of antineoplastic or immunomodulating agents, systolic blood pres-
sure and self-reported antihypertensive medication use as covariates in the models,
unless otherwise indicated. We corrected for multiple testing using FDR correction
(Benjamini–Hochberg)49. We report the P values, where we considered an FDR-
corrected P < 0.05 significant.

Alpha diversity. We characterised the alpha diversity of the microbiome with the
Shannon index using the complete species-level abundance data.

Beta diversity. We used the common combination of (non-linear) principal coor-
dinate analysis based on Bray–Curtis dissimilarity index (estimated with the R
package phyloseq50) to visualise the overall population variation of microbiome
composition. For statistical analysis of microbiome variation and mortality risk, we
used the (linear) PCA based on between-samples Aitchison distances that were
obtained by using the CLR-transformed abundance data (R function “prcomp”).
The beta-diversity analysis was based on species-level abundance data. The first
three principal components that were included in our analysis explained 3.9%
(PC1), 1.6% (PC2) and 1.4% (PC3) of the observed variation.

Taxonomic co-occurrence network detection. After excluding the rare taxa, we
detected sparse taxonomic co-occurrence (sub)networks with SPIEC-EASI51 (R
package SpiecEasi) with the (bounded) StARS model selection (“bstars”), with
parameters “lambda.min.ratio”, “nlambda” that determine the lambda path set to
1e− 2 and 30 following documentation recommendations. We carried out StARS
with the prior stability parameter beta set at 0.01 to obtain a regularisation level
that produces stable networks under subsampling, with 50 subsampling rounds
(“rep.num”)52. We excluded the subnetworks with less than three members from
further analysis.

Survival analysis. We tested the association between the abundance of each genus, the
Enterobacteriaceae family and the first three principal components with mortality
using Cox proportional hazards models53 (two-tailed Wald tests for linear or χ2 tests
for non-linear associations; R package survival54). The package implements the Cox
proportional hazards model, which gives the hazard function for subject i at time t the
form λ tjXi

� � ¼ λ0 tð Þ exp βXi

� �
exp βXi

� �
, where λ0 tð Þ is the baseline hazard function,

Xi the vector of covariate variables for subject i and β are the regression coefficients
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that are estimated by maximising the corresponding partial likelihood. The relative
abundances were CLR-transformed in order to remove the sample comparison
biases arising from unit-sum restriction of compositional data. Moreover, to recover
potential non-linear associations, we modelled genus abundance both linearly and
with penalised cubic splines (R function “pspline” with the default parameters; R
package survival). The alpha diversity and principal components 1–3 were treated
similarly. We used the Benjamini-Hochberg method to correct for multiple testing.
We also reported the mortality risk ratio of individuals in the fourth quartile of PC3
relative to individuals in the first quartile in the Cox model. We assessed the
proportional hazards assumption using Schoenfeld residuals. We further analysed
the robustness of the observed associations by (i) rarifying the data to the lowest
10% read count, (ii) excluding the samples that belong to the lowest 10% read count
quantile and (iii) without any exclusion criteria. The PC3 associations with mor-
tality (Supplementary Data Fig. 5) remained significant after these changes (FDR <
7.5 × 10−4) for all-cause mortality in these data subsets. Similarly, the association
between the Enterobacteriaceae family and mortality (Fig. 3) remained robust to
these changes (FDR < 1.7 × 10−4)54. The alpha diversity and principal components
1–3 were treated similarly. We used the Benjamini–Hochberg method to correct for
multiple testing. We also reported the mortality risk ratio of individuals in the
fourth quartile of PC3 relative to individuals in the first quartile in the Cox model.
We assessed the proportional hazards assumption using Schoenfeld residuals. We
further analysed the robustness of the observed associations by (i) rarifying the data
to the lowest 10% read count, (ii) excluding the samples that belong to the lowest
10% read count quantile and (iii) without any exclusion criteria. The PC3 asso-
ciations with mortality (Supplementary Data Fig. 5) remained significant after these
changes (FDR < 7.5 × 10−4) for all-cause mortality in these data subsets. Similarly,
the association between the Enterobacteriaceae family and mortality (Fig. 3)
remained robust to these changes (FDR < 1.7 × 10−4).

We tested the relation of the community composition with mortality using
multivariate Random Survival Forest55 (R package randomForestSRC56). We used
default settings and measured the performance of this method with Harrell’s c-
statistic57 in 5-fold cross-validation and then calculated the importance scores
using all subjects. As an additional analysis, Random Survival Forest was trained on
the Eastern and then tested on the Western population. The c-statistic was used as
the performance metric and the model was trained and tested separately using the
same three predictor sets as in the main analysis (microbiome, covariates,
microbiome and covariates).

Prevalent liver disease. The cross-sectional association between prevalent liver dis-
ease at the time of sampling and Enterobacteriaceae was assessed by a linear model,
with a CLR-transformed total Enterobacteriaceae abundance as the dependent
variable and liver disease status and the aforementioned covariates as predictors.

Functional analysis. We associated each KO group with mortality in Cox pro-
portional hazards models. We used log(1+ x) transformation for the KO groups to
reduce skewness in the data and facilitate the use of linear models. The KO groups
were then analysed using a standard linear model to determine the direction of
association for all KO groups. We used the FuncTree application to analyse and
visualise the functional enrichment of the gut microbiome in individuals with an
increased risk of death58. For the module, pathway and biological process layers, we
used node sizes that corresponded to the average inverse P value of all KO groups
that could be assigned to that node. Analyses were performed separately for KO
groups that were related positively or negatively to mortality.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The metagenomic data are available from the European Genome-Phenome Archive
(accession number EGAD00001007035). The phenotype data contain sensitive
information from healthcare registers and they are available through the THL biobank
upon submission of a research plan and signing a data transfer agreement (https://thl.fi/
en/web/thl-biobank/for-researchers/application-process).

Code availability
The source code for the analyses is available at https://doi.org/10.5281/zenodo.4306060.
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