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Abstract

Yet Another Local Learner (YALL): a localized machine learning algorithm with
applications to precision medicine

by

Sara Elizabeth Moore

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Alan E. Hubbard, Chair

We sought to develop an improved decision algorithm for applications in precision
medicine. This algorithm should perform as well or better than existing prognostic
scores, be interpretable and parsimonious in the predictors it uses for an individual
patient, and be able to perform competitively against best-in-class existing ensem-
ble learning algorithms. The algorithm must be flexible enough to predict well in
heterogeneous patient populations, where we might expect the covariates that are
related to the outcome of interest to be different for different types of patients. To
this end, a new supervised classification method is proposed which performs both di-
mension and instance reduction data-adaptively to hone in on only the most relevant
information for a given patient.
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Chapter 1

Introduction & Literature Review

Trauma Scoring
Traumatic Injury

Since 1976, the United States has spent more on healthcare per capita than any
other country in the world [35]. This trend is not subsiding; year after year, the U.S.
consistently outspends nearly all other countries in this arena. For example, in 2017,
the U.S. was second only to the small island nation of Tuvalu in healthcare spending
as a proportion of gross domestic product (GDP) [1]. Trauma-related disorders com-
prised the eighth largest medical expenditure in the U.S. in that same year, totaling
over $87 billion. Among the subset of patients aged 18 to 44 years, trauma-related
medical expenditures ranked third, surpassed only by (“normal”) preganancy/birth
and mental disorders (ranked first and second, respectively) [19].

Also in 2017, traumatic injury was the primary cause of 243,003 deaths in the
U.S. [48]. U.S. mortality data from 2017 provided by the CDC [48], broken down into
seven broad causes and fifteen ranges of age at death, is displayed in Figure 1.1. The
width of each bar indicates the relative proportion of individuals who died within the
respective age range. (Individuals for whom age was ‘not stated’ – 91 of 2,818,862 –
are not included in this visualization.) Traumatic injury is defined broadly here as
‘external causes’ of death, which includes such specific categories as ‘motor vehicle
accidents,’ ‘suicide,’ and ‘homicide,’ but also includes causes not typically thought
of as injuries, such as ‘poisoning.’

Both the wide-angle view in Figure 1.1a and the zoomed-in view in Figure 1.1b
demonstrate that children and adults under the age of 45 are disproportionately
susceptible to death due to traumatic injury. In 2017, as in many years before it,
traumatic injury was the leading individual cause of death in Americans between



Traumatic Injury 2

0%

25%

50%

75%

100%

<1 1-4
4
45-

49
50-

54
55-

59
60-

64
65-

69
70-

74
75-

79
80-

84
85-

89
90-

94
95-

99
100

+

Age range, in years
(width proportional to number of deaths in range)

U
.S
.
D
ea
th
s
b
y
C
au

se
in

20
17

as
P
er
ce
n
t
o
f
T
ot
al

D
ea
th
s

Major cardiovascular diseases

Malignant neoplasms

Respiratory system diseases

Alzheimer disease

Certain infectious and parasitic diseases

Diabetes mellitus

Other (Non-Injury)

Injury

Mortality among all age groups

Data Source: CDC Wonder Database (http://wonder.cdc.gov/ucd-icd10.html)

a

0%

25%

50%

75%

100%

<1 1-1
4
15-

19
20-

24
25-

29
30-

34
35-

39
40-

44

Age, in years
(width proportional to number of deaths in category)

U
.S
.
D
ea
th
s
b
y
C
a
u
se

in
2
01

7
as

P
er
ce
n
t
of

T
o
ta
l
D
ea
th
s Non-Injury Injury

Injury-related mortality under age 45

Data Source: CDC Wonder Database (http://wonder.cdc.gov/ucd-icd10.html)

b

Figure 1.1: Causes of Death in the U.S., 2017
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1 and 44 years of age, and was responsible for more deaths of individuals in the
U.S. between the ages of 15 and 34 than all types of natural causes, combined (see
Figure 1.1b). This threat is particularly pronounced for those between ages 15 and
24, for whom 79% of deaths were caused by traumatic injury [48]. For comparison,
unintentional injuries were the third-leading cause of death for Americans ages 45 to
64 in that same year [49].

Despite the higher cost of healthcare in the United States and resources available
to U.S. trauma centers not available elsewhere in the world, the traumatic injury
mortality rate in the U.S. is no better than the worldwide average. Taking all classes
of fatal injury into consideration, whether accidental, self-inflicted, or due to assault,
injury was responsible for 9% of deaths worldwide in 2014 [2] and 9% in the U.S.
three years later [48].

However, there is evidence to suggest that some of these deaths could be pre-
vented via improved trauma care. Severely injured patients tend to have a better
chance of surviving their injuries when treated at a level I trauma center than at
non-trauma center hospitals, even after adjustment for observed confounders [73].
This pattern holds when comparing survival rates of the severely injured outside the
U.S. at trauma centers versus non-trauma center hospitals [18]. Assuming a level I
trauma center in an urban area of an industrialized nation is the standard-bearer of
modern trauma care, patients who succumb to severe injury at these centers could
be characterized to better elucidate situations where modern medical interventions
could not have changed the outcome. Conversely, using data to better understand
which traumatically injured patients’ deaths are preventable would inform what im-
provements in care would be necessary to decrease injury-related mortality rates.

For example, in 1998, one study recommended that, since low-income developing
nations without basic emergency medical services (EMS) experience relatively high
mortality rates of seriously injured adults prior to reaching a hospital, the most cost-
effective reductions in mortality could be realized by improving telecommunications
infrastructure and providing basic first aid training to existing emergency response
organizations. Overall trauma mortality rates are lower in middle-income develop-
ing nations with basic EMS, but still higher than the rates observed in industrialized
nations. Relative to poorer nations, these middle-income countries see fewer prehos-
pital deaths but more deaths in the emergency department (ED), shifting the realm
in which care must be improved [77].

In mature trauma systems in developed nations, evidence indicates that the qual-
ity of care could still be improved. Elderly patients, those who suffer from dementia
or are taking anticoagulants have been shown to be at higher risk of undertriage and
thereby mortality after major trauma in the U.S. [99, 10]. The American College of
Surgeons – Committee on Trauma (ACS-COT) recommends an undertriage (or false
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negative) rate of no higher than 5% [28] but, in practice, the overall rate may be
much higher. One recent estimate places the rate at 34% nationally [121].

Overtriage under high patient load, or, more generally, an overwhelmed trauma
system – one exceeding surge capacity where the short-term demand outstrips the
local resources, typically as a result of a mass casualty incident – can also lead
to higher mortality rates in severely injured patients [5]. Precise overtriage (false
positive) rates for recent mass casualty events are in short supply, but the 2005
London Bombings were estimated to have a field overtriage rate of 64% [7]. In
contrast, ACS-COT suggests that an acceptable overtriage rate falls between 25%
and 35% [28].

Montmany et al. [79] reviewed 115 trauma fatalities in Spain over nearly nine
years and deemed 16.5% “preventable or potentially preventable.” They concluded
that the majority of these deaths were due to human “rule-based” error where medical
professionals failed “to observe the established instructions or protocols.” Recent
studies from the U.S. using the same standard to classify errors in treatment came
to mixed conclusions. In one, rule-based errors were again the largest contributor
[54], while in another, the majority of errors made in preventable trauma deaths were
due to lack of medical knowledge [117].

How many deaths could be prevented via improved trauma care? By improving
trauma care at only “low-performing hospitals” to that of average performers, a crude
estimate puts the number of civilian lives that could be saved at over 4,000 annually
in the U.S. alone. If all low or average performing U.S. hospitals could improve to
reach the performance level of high performers, the same estimation method predicts
that nearly 20,000 lives could be saved each year [46].

These figures do not account for potentially preventable casualties internationally,
civilian or military. For example, of 4,596 U.S. military combat fatalities during
Operations Iraqi Freedom and Enduring Freedom, 976 (or approximately 21% of)
deaths which occurred over that nearly ten year period were potentially survivable
[34]. Moreover, preventable trauma mortality rates are not the only figures by which
trauma care quality can or should be judged – a patient whose life was saved may
still suffer a permanent disability after a traumatic injury. Death or disability can
result in lost wages for individuals or families, another hidden cost of traumatic
injury. Improved care could yield lower the rate of lifelong disability resulting from
critical injuries.

Regardless of the maturity of the trauma system at play, the appropriate and
efficient allocation of resources can save lives. This is particularly salient for resource-
limited settings and mass casualty incidents, but novel improvements even have the
potential to further improve the current “gold standard” trauma mortality rate in
prosperous nations.
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Precision medicine
In recent years, many novel improvements in patient care have fallen under the

umbrella of precision medicine or personalized medicine, both of which rapidly be-
came buzzwords early in the twenty-first century. These concepts serve as major
motivators for the work presented in this manuscript, warranting a concise definition
of both terms (provided below).

In 2011, the National Research Council (NRC) produced a report called “Toward
Precision Medicine,” and in it, they defined precision medicine as “the tailoring of
medical treatment to the individual characteristics of each patient.” The authors
went on to state the following:

“Precision medicine does not literally mean the creation of drugs or med-
ical devices that are unique to a patient, but rather the ability to classify
individuals into subpopulations that differ in their susceptibility to a
particular disease, in the biology and/or prognosis of those diseases they
may develop, or in their response to a specific treatment. Preventive
or therapeutic interventions can then be concentrated on those who will
benefit, sparing expense and side effects for those who will not.” [29]

The report clarified that the term personalized medicine is also used to convey the
same meaning as precision medicine, but personalized medicine can be misinterpreted
as implying that unique treatments will be designed for each individual patient.
Therefore, they recommend use of the phrase precision medicine. They also note
that “precision” should not be interpreted strictly in the statistical sense (i.e. the
inverse of the variability of a measurement or estimator), but is instead intended to
imply both accuracy and precision (i.e. both unbiasedness and reliability).

From a statistical standpoint, the implementation guidance derivable from this
definition is that the development of a precision medicine treatment would involve
separating individuals with known medical outcomes into small subpopulations based
on their clinical history and other relevant attributes. After exploring which treat-
ment regimens led to the best clinical outcomes for patients in each group, the treat-
ment for a new patient could be informed by using her characteristics to associate
her with the group to which she is most similar. In this way, a patient’s treat-
ment plan is customized, broadly, to her individual clinically-relevant attributes. In
addition, when guided by this precision medicine approach, clinicians may be able
to utilize resources more efficiently than they otherwise would have. In a trauma
care setting, those resources can include blood products, medications, labs, imaging,
trauma surgery, and, perhaps most importantly, the treating physician’s time spent
monitoring and developing a treatment plan for the patient.
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Existing Trauma Scoring Systems
Physicians who attend to critically injured patients often have limited time and

information to make life-saving treatment decisions. Efficiency, both in determining
the small subpopulation into which a patient ‘fits’ and in the allocation of appropriate
resources to that patient, is therefore of particular importance in emergency and
trauma care. These decisions are often based upon only a handful of variables which
can either be chosen based on clinical experience and combined qualitatively, or
chosen via and summarized using a regression-based trauma severity score formula.
Many modern trauma scoring systems have chosen the latter approach [122, 24, 120,
105, 115, 91]. Because these summary scores are simple by design, they must ignore
the majority of (potentially relevant) information that would likely be available for
the typical trauma patient and instead use the same information for every patient.
In other words, use of these scoring systems in practice rests on the assumption that
sufficient meaningful variability and predictive power can be captured by the same
few variables across all patients. Given that each new trauma score emerging from the
literature purports competitive performance via utilization of a novel combination
of covariates, this may be a dubious assumption unless serious redundancy exists
between the many available predictors.

Clinical Outcomes

Of the dozens of trauma, intensive care unit (ICU), organ dysfunction, and organ-
or disease-specific prognostic scores in the literature, many – but not all – were de-
signed to predict mortality risk, whether by 24 hours, 30 days, or over some other
fixed time period pre- or post-discharge. However, even scoring systems which don’t
target mortality are used to that end, a practice which can result in diminished pre-
dictive performance for this clinical outcome. For example, the Glasgow Coma Scale
(GCS) was designed to quantify a patient’s level of consciousness, and although it
may successfully serve as an indicator of physiological well-being, was never statis-
tically “targeted” for any outcome (i.e. with coefficient estimates) [111]. However,
the GCS has been used in comparison studies as an independent predictor of in-
hospital mortality. For instance, in Guzzo et al. [43], it performed respectably but
not competitively with multi-variable, mortality-targeted scoring systems.

Although trauma scores tend to target mortality risk more than any other clinical
outcome, death is not the only outcome of interest in trauma care. Other commonly
used scoring systems such as Assessment of Blood Consumption (ABC) [93] and
Trauma-Associated Severe Hemorrhage (TASH) [123] were designed to predict, with
high sensitivity, a patient’s need for massive transfusion (MT) (of blood products).
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Other popular scoring systems predict risk of a specific illness [116], assess injury
to or predict failure of a specific organ [86, 84, 80, 81, 85, 82, 83], or assess injury
to a particular part of the body [27], while still other scores are designed to predict
risk of general organ failure [74, 40]. Ideally, additional clinical outcomes could be
targeted easily as needed, but in practice, development of a new scoring system is
lengthy process.

Specific Scores

Table 1.1 outlines some of the more popular modern trauma and ICU scoring
systems used for mortality prediction in the general adult trauma patient population.
Scores designed to assess specific illnesses or organ failure (such as the GCS [111],
Multiple Organ Dysfunction Score (MODS) [74], Logistic Organ Dysfunction System
(LODS) [40], and Sepsis-related or Sequential Organ Failure Assessment (SOFA)
[116]) are omitted from this comparison.
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Table 1.1: A Comparison of Common Modern Scoring Systems used to Predict Mortality in Trauma Patients.

Abbreviation Name Authors First
Published

Injury
Scoring*

Weights

ISS Injury Severity Score Baker et al.9,8 1974 AIS No
TRISS Trauma ISS Champion et al.23 1981 AIS; mech. Yes
APACHE II Acute Physiology and Chronic

Health Evaluation II
Knaus et al.59 1985 No

RTS/T-RTS (Triage -) Revised Trauma Score Champion et al.22,20 1989 Yes/No
ASCOT A Severity Characterization of

Trauma
Champion et al.21 1990 AIS; mech. Yes

SIRS Systemic Inflammatory Response
Syndrome score

Bone et al.14,92 1992 No

SAPS II Simplified Acute Physiology Score II Gall et al.38 1993 No†
ICISS International Classification of

Disease (ICD)-based ISS
Osler et al.96 1996 ICD Yes

NISS New ISS Osler et al.94 1997 AIS No
HARM Harborview Assessment for Risk of

Mortality
West et al.118 2000 ICD Yes

KTS Kampala Trauma Score Kobusingye and Lett61 2000 count No
PTS Physiologic Trauma Score Kuhls et al.64 2002 Yes
SAPS 3 Simplified Acute Physiology Score 3 Moreno et al.90 2005 No†
TMPM Trauma Mortality Prediction Model Osler et al.; Glance et al.95,42 2008 AIS/ICD Yes
RISC/RISC II Revised Injury Severity

Classification (II)
Lefering; Lefering et al.68,69 2009 AIS Yes

MGAP Mechanism, GCS, Age, and Pressure Sartorius et al.103 2010 mech. Yes
GAP GCS, Age, and Pressure Kondo et al.62 2011 Yes
mREMS modified REMS Miller et al.76 2017 No
NTS/T-NTS (Triage -) New Trauma Score Jeong et al.55 2017 Yes/No
* AIS = Abbreviated Injury Scale; ICD = International Classification of Disease Clinical Modification codes; count = Number

of injuries (none, one, or multiple); mech. = Mechanism of Injury (blunt or penetrating)
† Regression coefficient estimates required to use score to estimate probability of death
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Also omitted are some of the many iterations on a few of the more popular
scores. For example, only one of the four variations of the Acute Physiology and
Chronic Health Evaluation (APACHE) score and two of the three varieties of the
Simplified Acute Physiology Score (SAPS) are included. These omissions are made
for the sake of both brevity and viability – APACHE II requires substantially fewer
variables than other APACHE scores (only 17 [59] versus 26 [60], 34 [58], or 142
[125]), making its use in the ED more practical, while the original SAPS [39], shown
to have significantly worse predictive performance than its successor [38], has largely
fallen out of use in comparison studies.

Predictors

Typical covariates employed in trauma scores are anatomical, physiological,
and/or demographic characteristics of the patient. For example, anatomical
descriptors could include the mechanism of injury (whether the injury was blunt
or penetrating), number of injuries, AIS scores, or summary of ICD codes. Tem-
perature, heart rate, respiratory rate, blood pressure, GCS (or its three component
scores), and base deficit/excess are some of the more common physiological features
used. Age and/or gender are among the most commonly included demographic
characteristics of the patient, if such information is available.

The components of most scores are chosen subjectively via “clinical knowledge,”
though some scores’ development began with large lists of predictors which were
reduced via stepwise regression (as in HARM and PTS) or more complex regression-
based techniques (as in TMPM). Selected variables are nearly always discretized,
with cutoffs often also chosen via “clinical knowledge” but occasionally via ex-
ploratory statistical techniques such as Locally Weighted Scatterplot Smoothing
(LOWESS). The typical argument posed for discretization is ease of use in the field –
an argument that some researchers bolster by reporting the absence of a statistically
significant difference in predictive performance between models using continuous
versus binned versions of the same covariates.

However, discretization of continuous predictors as a practice is based upon unten-
able assumptions, uses additional degrees of freedom, results in residual confounding,
and induces loss of information, power, and precision [45, 101]. Under certain con-
ditions, this approach can increase both bias in the coefficient estimates and the
probability of erroneously rejecting the null hypothesis for tests of statistical signif-
icance performed on coefficient estimates resulting from multiple regression [6, 101].
This is important in the current context because discretized predictors are sometimes
tested for statistical significance during scoring system development and included in
(or excluded from) the score based on the results of those tests.
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In addition, cutpoints are often uncertain and inconsistent across studies regard-
less of whether they are set a priori or informed by the data at hand. As an alternative
to discretizing or binning, it has been suggested that analysts utilize more flexible
methods that can accommodate non-linear relationships between predictor(s) and
outcomes [45, 101].

Score Development/Statistical Considerations

Scores for which Table 1.1 indicates “Yes” in the “Weights” column require exact
coefficient estimates to be used in their calculation. Most scores requiring weights
were developed using logistic regression, typically with an outcome of in-hospital
mortality over some fixed time period. The “ease of use” argument made for dis-
cretization of variables in this context is particularly puzzling, since a calculator
would still be required to use regression coefficients and apply a logit function to
the result. In contrast, scores without weights were intentionally developed as such
for ease of use in the field. There are also hybrid approaches; SAPS II and 3 assign
“points” to (ordinally) discretized “bins” of each variable and were developed using
regression (where points for each bin were based on rounded regression coefficient
estimates). Notably, a separate regression equation – using exact, not rounded, coef-
ficient estimates – is necessary to “convert” a SAPS II or 3 score into an estimated
probability of death [38, 90].

Generally speaking, the more recent the scoring system, the more complex the
statistical modeling technique used to formulate it. The exceptions to this rule are
newer scores which build upon older scores, of which there are many examples. An
existing scoring system can be published as a retooled, “new” scoring system after
only minor modification. For instance, the New Trauma and Injury Severity Score
(NTRISS) is the result of replacing the ISS with the NISS in the TRISS [31]. The
Base Excess Injury Severity Scale (BISS) is estimated by switching out the RTS in
the TRISS with “the absolute difference of the base deficit from its normal range” (−2
to 2) [63]. BISS was followed by BISSGCS, which added (binned) GCS to the BISS
regression equation [57], and the Base Excess New Injury Severity Scale (BNISS),
wherein the ISS was ousted from the equation in favor of the NISS [66].

Another common situation where new scores build upon old are simple updates
to coefficient estimates of existing scoring systems using a different patient database,
be it newer, larger, or the result of sampling from a different population. For ex-
ample, the seminal paper establishing covariate weights for the TRISS used patient
data from the Major Trauma Outcome Study (MTOS) for coefficient estimation [15].
In the thirty years since, many versions of covariate weights for the TRISS have been
published, each based on a slightly different data source or structure. Perhaps the
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most widely used set of “alternative” TRISS weights are those estimated in 2009
using the National Trauma Data Bank (NTDB) [104]. However, the dissension sur-
rounding TRISS weights is perhaps best exemplified by a single issue of The Journal
of Trauma published in 1995, wherein Champion, Sacco, and Copes [20] provided
updated TRISS weights based on AIS-90 injury coding (whereas the original TRISS
weights were based on injury data scored using the older AIS-85 system), Hannan
et al. [44] updated TRISS weights using the Institute for Trauma and Emergency
Care (ITEC) patient database, and Jones, Redmond, and Templeton [56] provided
an argument against use of the original MTOS-derived TRISS weights in a dissimilar
sample of trauma patients.

Mutable covariate weights, then, allow the TRISS (and other scoring systems) to
act as data-adaptive procedures requiring calibration, rather than as deterministic
equations. However, the implication of this flexibility is that any specific set of
weights – and perhaps even chosen sets of covariates – are not expected to be broadly
applicable and are unlikely to stay constant in the population of interest over time
or space. One scenario under which this can occur is given by Champion et al. [23]:
“as improvements in trauma care over time result in decreased mortality… coefficients
can be expected to change.”

Some scores are not updated, but are instead completely revised every few years,
with the resulting new score proposed as a replacement for the old. SAPS and
APACHE are representative of this strategy; for example, the “points” assigned to
various categories in scores such as SAPS II and 3 are not designed to be re-estimated.

Even when weights are periodically re-estimated for a given population of patients,
the motivation appears to be future reuse of those weights so that re-estimation is not
necessary for every new sample for which prediction is desired. One major purpose of
this “fixed weight” approach is to provide a consistent basis for comparing outcomes
at different trauma centers for quality assurance or academic research purposes –
perhaps the most common use of trauma scoring systems outside of triage.

One way to conceptualize this “do-ahead” approach of trauma scoring systems
from a machine learning or artificial intelligence perspective is as an “eager learning”
algorithm where the computationally intensive portion of the individual patient’s
estimate is completed well ahead of time. Specifically, covariates are selected and
weights estimated (regression coefficients, point systems, or, in the case of ICISS,
survival risk ratios (SRRs): empirical probabilities of survival given a particular in-
jury [96]) prior to the time when predictions will be needed, using clinical knowledge
and/or via a data-driven procedure performed on a large patient database. Unfor-
tunately, prediction accuracy can suffer when an eager learning approach is utilized
if the prediction function is too generalized or the training data used are not drawn
from the same population as the sample on which a prediction is desired.
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Limitations

Some trauma scoring systems are subject to additional limitations. Of the scores
listed in Table 1.1, APACHE II [59] and SAPS II [38] aren’t useful for triage or
prediction of early mortality, as the scores are designed to be based on the worst
measurements over the first 24 hours spent in the ICU (though at least one study
has demonstrated that calculating such scores using admission values may not result
in significantly decreased discrimination performance [51]). Some of their brethren,
not listed in Table 1.1, have the same requirement [39, 58, 60, 125].

Most importantly for the purposes of triage and early outcome prediction, many
trauma scores are typically not available until days or weeks after the scores could be
utilized to inform treatment. This includes any scoring system which depends on AIS
or ICD coding (see the “Injury Scoring” column in Table 1.1). The reason for this
delay is that, to correctly code injuries, some of the required details aren’t knowable
until treatment is well underway or concluded. Assigning AIS ratings based only on
information available in the ED would result in underestimation of any trauma score
which depends on those values, particularly for patients with penetrating injuries [72,
122, 105].

In addition, translating medical records into standardized injury or medical codes
is expensive and time-consuming, requiring extensive specialized training for medical
coders. AIS coding is typically too costly for smaller hospitals, non-trauma centers,
or medical facilities in developing nations to implement, and is therefore primarily
utilized at large, urban trauma centers with trauma registries [105]. Post-operative
AIS coding by trauma surgeons using a specialized mobile health application may
provide a more affordable alternative [109]. On the other hand, ICD coding is avail-
able at most U.S. hospitals as a byproduct of the billing process, but since the ICD
standard was not designed with injury severity assessment in mind, its capacity for
predicting clinical outcomes may be limited [102].

A Trauma Scoring System for the 21st Century
Machine Learning

Over roughly the past twenty-five years, trauma researchers have increasingly uti-
lized advanced machine learning methodology in scoring system development. Liu
and Salinas [71] identified 65 published studies pertaining to the use of machine learn-
ing to predict clinical outcomes in trauma patients. Although 1993 was the earliest
publication date of the articles retained by their search, just over half (50.8%) of the
selected studies were published in the seven years prior to the article’s publication
(2010 to 2016, inclusive).
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While the majority of the research catalogued by Liu and Salinas [71] focused
on the prediction of patient mortality, other outcomes of interest included shock,
hemorrhage, hospital admission, and length of hospital stay. Many covariates were
common across studies, particularly patient age, physiological measurements (blood
pressure, RR, and HR), and trauma severity scores (especially GCS and ISS). Popular
prediction algorithms included artificial neural networks, support vector machines,
decision trees, Bayesian methods (such as naive Bayes classifiers or Bayesian belief
networks), clustering/nearest neighbor methods, random forests, and other ensemble
classifiers (such as SuperLearner [65]). The great majority of these studies observed
improvements in prediction over existing trauma scores when using machine learning
methods, a gain that was perhaps due to the former’s adaptability to nonlinear rela-
tionships or their objectivity in weighting or selecting predictive features. However,
performance varied greatly across studies.

Computerized Clinical Decision Support Systems

Aside from post hoc trauma scoring, a promising and related mechanism by which
machine learning could be better utilized is via clinical decision support (CDS) dur-
ing triage or treatment of traumatically injured patients. Berner [12] defines CDS
systems (CDSS) as “computer systems designed to impact clinician decision making
about individual patients at the point in time that these decisions are made.” Such
systems are not intended to replace physicians but rather to encourage standard-
ization of care and offload a portion of the memory-intensive, easily automatable,
and/or error-prone tasks associated with patient care. In fact, accurate clinician
input is critical for a CDSS to provide reliable output, and eliciting accurate CDSS
input from a physical exam of a patient in the ED has been shown to be highly
dependent upon the treating clinician’s level of expertise [50].

Computerized CDSS can improve drug prescribing and dosing, reducing drug-
drug interactions and adverse drug events [119]. CDSS also have been shown to
improve adherence to protocols for the prevention of diseases for which traumati-
cally injured patients are at higher risk, such as venous thromboembolism, thereby
conferring a lower risk of morbidity [119, 78]

Historically, CDS has been implemented as combinations of deterministic rules,
developed and specified by subject-matter experts. A rule- or “knowledge”-based
system such as this can provide suggestions based on information available in a
patient’s electronic health record (EHR) but cannot “learn” from clinical data. In
contrast, a CDSS which employs machine learning techniques can identify novel
patterns in data, requires less direct supervision (since specification of a priori rules
isn’t required), and can improve its performance as clinical data are added [12].
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Machine learning algorithms are also more robust to missing information than rule-
based systems and hold the potential to yield more accurate predictions when many
variables influence the outcome [3].

With medical practitioners’ increasing use of handheld devices by the bedside
and increased availability and affordability of high-performance computing resources,
including machine learning in CDS is more feasible than ever before. However, to
be useful in the ED or for mobile triage, predictions must be available in real-time.
Past work on real-time prediction for CDS includes ensembles of simple classifiers
for early prediction of adverse outcomes in trauma patients [25] and patient-specific
calibration of bedside monitor alarms in the ICU [124]. Perhaps the most critical
hurdle for the successful integration of machine learning into CDS, though, is gaining
the trust of clinicians. To achieve this goal, machine learning algorithms must be
accurate, their methodology must not be enveloped in an “opaque box,” and their
results must be easily interpreted by medical experts [3].

A Novel Approach

With the above requirements and constraints in mind, we sought to develop an
improved decision algorithm for precision trauma medicine.

The ideal prognostic tool would be more accurate than existing scoring systems
and would perform competitively against established ensemble machine learning al-
gorithms. This algorithm should be parsimonious in the predictors it uses for an
individual, and comprehensible to end users, clinicians, who may be wary of so-called
“opaque box” machine learning algorithms. It should utilize all available information
and make use of the knowledge of what information isn’t available. For example,
there may be value in utilizing a patient’s baseline respiratory rate for prediction of
a particular outcome, but knowing that a patient’s baseline respiratory rate was not
observed may also be informative.

Our goal is to provide a patient-specific, personalized prognosis of a future out-
come at any timepoint during care. However, the algorithm used must be flexible
enough to predict well in heterogeneous patient populations, where a physician might
expect the covariates that are related to the outcome of interest to be different for
different subpopulations of patients.

Physicians and trauma surgeons are skilled at synthesizing information from the
many patients they treat and case studies they read about and subsequently mentally
grouping similar patients together. Partly via this practice, some physicians are able
to develop an “instinct” for patient care based on the symptoms, treatment, and
outcomes they’ve seen in patients past. Motivated by this learned instinct, we’d like
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to know if we can accomplish something analogous by synthesizing patients’ medical
records using some type of statistical modeling.

This idea of mimicking the physician’s learned instinct or personal “knowledge
base” built by observing many patients inspired us to employ what can be referred
to as a local or localized learner, a concept introduced in earlier chapters in this
manuscript. These are algorithms which don’t assume a global model but instead
adapt to the characteristics of an observation for which a prediction is desired. A
toy example of this concept in a trauma setting is looking in a database to find
past patients who are “most similar” to the patient for whom a prediction is desired.
The new patient’s prediction could then simply be an average (or similarity-weighted
average) of the observed outcomes for the similar patients who were identified.

Prognoses from such an algorithm – using only the covariates available during
treatment – would ideally be made directly available to the treating physician via a
mobile app or bedside biomedical device. This means that the prediction algorithm
would need to be fast without sacrificing predictive power. One tactic for accom-
plishing that goal would be to complete much of the time-consuming computational
work in advance.

Local Learning
Definition

‘Local’ or ‘localized’ machine learning has previously been described as follows:

“Instead of globally modeling data, local learning is more task-oriented.
It does not aim to estimate a density from data as in global learning… it
also does not intend to build an accurate model to fit the observations of
data globally…. it only extracts useful information from data and directly
optimizes the learning goal.” [53]

More generally, local learners are non- or semiparametric algorithms which don’t
assume a global model, and instead, fit ‘locally’ in that they adapt to the charac-
teristics of an observation for which a prediction is desired by using a subset of
information from similar observations seen during model training. More specifically,
in this manuscript, the phrase ‘local learner’ is intended to describe a machine learn-
ing algorithm which is designed to be capable of using observation-specific a) reduced
feature spaces and/or b) reduced data spaces (in practice, reduced sets of training
observations) in its prediction of outcomes of interest.
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Local learning spans a spectrum of algorithmic designs, with some algorithms
more ‘local’ than others. Some related categories of machine learning algorithms
include memory-based, instance-based, case-based, or distance-based learners [113].
As alluded to in the paragraph above, it is perhaps easiest to define local learners
relatively; in other words, local learning algorithms are best defined by what they
are not: global.

To provide a concrete comparison point, a classic example of a ‘global’ learner
is simple linear regression. It is considered a global learner because a single set of
parameters (α and β) are estimated using a single predictor to predict an outcome
of interest. When these parameters are estimated, all observations in the training
set are used, and when this function is used to generate predictions, it does so using
the same single predictor and same estimated parameters (α̂ and β̂) across any and
all available observations.

In contrast, a simple example of a local learning algorithm is a decision tree.
Each branch of the tree can be thought of as containing a ‘local’ model that was
estimated using a subset of the data space and potentially a subset of the feature
space. For example, consider a decision tree with depth two where two branches are
grown out of the root node and subsequently two branches are grown out of each
of the two first-level nodes, producing a total of four terminal nodes at the second
level. Imagine further that the first split that creates the two branches between the
root node and the first-level nodes is predicated on the value of X1. The split that
grows two branches out of the ‘left’ first-level node is based on the value of X2, while
the split that grows two branches out of the ‘right’ first-level node is based on the
value of X3. This simple tree can then be thought of as representing two prediction
functions, where the function applied to a given observation is dependent on that
observation’s value for X1. Each of these two prediction functions uses a subset of
the feature space: X1 and X2 on the left side of the tree, and X1 and X3 on the right
side of the tree. Additionally, after each split, the left and right branches will each
use only a subset of the data space to both grow additional branches and to predict
the outcome of interest, with the observations eligible to contribute being filtered by
any prior splits in the tree.

Taking the local concept to its extreme in the ‘data space’ dimension, another
example of a local learner could involve selecting from a training set a single record
that is most ‘similar’ to the observation for which a prediction is desired (more
commonly referred to as its ‘nearest neighbor’). The prediction, in that case, would
simply be the observed outcome for that single most similar observation. In this
case, only a subset of the data space (n = 1) is used to predict the outcome for the
observation of interest, selected via some quantification of similarity (e.g. an inverse
Euclidean distance) involving some or all of the feature space.
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Feature Space Reduction Methods
We will first provide some concrete examples of algorithms that help to define

‘localness’ in the feature dimension. This is by no means an exhaustive list of feature
selection or reduction methods, but is intended to highlight some commonly-used
algorithms that possess desirable qualities.

Least Absolute Shrinkage and Selection Operator

The least absolute shrinkage and selection operator, or LASSO [112], is a partic-
ular form of regularized regression. Broadly speaking, application of regularization
to a machine learning algorithm constrains or shrinks the magnitude of coefficient
estimates [33]. In the case of the LASSO, the shrinkage method utilized happens to
have the additional benefit of setting some coefficient estimates to exactly zero, ef-
fectively eliminating the influence of the corresponding features from the final model.
This makes the LASSO a useful algorithm for feature selection.

The LASSO achieves this feature elimination via the addition of the product
of a penalty term and a regularization parameter to the least squares regression
equation where the optimal set of coefficient estimates still minimizes the residual
sum of squares. Specifically, the penalty term used is the sum of absolute value
of the coefficient estimates, or the L1 norm of the vector β̂, ∥β̂∥1. For this reason,
the LASSO is also known as L1 regularization. The regularization parameter λ,
where λ ≥ 0, indirectly controls the degree of shrinkage, with a larger λ forcing the
magnitude of coefficient estimates toward zero and λ = 0 being equivalent to no
regularization (i.e. ordinary least squares).

In practice, λ serves as a tuning parameter and a search across many potential
values of λ is performed, with each λi potentially resulting in a different set of
‘optimal’ coefficient estimates β̂i. The selection of the ‘optimal’ value of λ for a
given feature selection problem is typically performed via k-fold cross-validation.
This yields a single set of ‘optimal’ coefficient estimates β̂. In the feature selection
context, the retained features are those with non-zero β̂ at this ‘optimal’ λ.

Random Forests

The family of decision tree algorithms, introduced above as an example of a
broad class of local learners, forms the basis of random forests (RF) [17]. As the
name implies, random forests are collections or ensembles of many trees, each of
which is fit on a random subset of features and bootstrap-sampled observations from
the overall training set. A predicted outcome for the ith observation is estimated by
aggregating across the predictions for i from each tree in which i was omitted from
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the bootstrap sample [47], where the aggregation method depends on the prediction
task (e.g. averaging for regression; majority vote for classification).

More generally, the technique of aggregating across B model fits, each of which
used one of B bootstrap samples as its training set, is known as ‘bagging’ [16].
An estimate that utilizes, for each observation, only those predictions where the
observation was omitted from the bootstrap sample, is referred to as an ‘out-of-bag’
estimate. Thus, predicted outcomes generated by random forests are out-of-bag
predictions.

As is the case with many algorithms used for variable selection, including the
LASSO described above, random forests are primarily supervised learners that hap-
pen to double as highly effective feature selectors. In the case of random forests,
variable importance can be estimated via either Breiman’s original method or one
of a number of alternative methods [108]. Subsequently, using a tuning parameter
specifying a cutoff, the continuous variable importance measure can be dichotomized
into a variable selector.

Specifically, Breiman’s original variable importance method for random forests
uses the same model fit but a series of slightly modified datasets to generate P
alternative sets of predictions for each of P features. For each of the features in turn,
the values for the out-of-bag observations are scrambled or permuted to simulate the
loss of any predictive information from that feature. Then P new accuracy estimates
are compared with the accuracy estimated from the original predictions generated
without permutation [17]. The percent decrease in accuracy under permutation can
then be used as a measure of variable ‘importance,’ where a larger value indicates
that the feature was more informative for accurate prediction of the outcome and
a smaller value indicates that the feature led to relatively little improvement in the
accuracy of the predictions.

The value of the tuning parameter used to dichotomize the variable importance
measure into a variable selection indicator will typically be slightly greater than zero.
However, the ‘optimal’ setting may depend on the objective: a small value very close
to zero may be used to maximize prediction accuracy, whereas a larger value further
from zero may be better to maximize interpretability [41].

Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) [37] predict an outcome vector
by optimally combining several piecewise linear functions, or splines. A spline is
estimated for a feature by iteratively choosing a point in the training set to serve as
a ‘hinge’ or ‘knot.’ Each knot serves as a breakpoint, and the placement of k knots
allows a formerly linear function to be broken into k + 1 segments. In order to be
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chosen as the next knot during any given iteration, the spline formed using that knot
must minimize the prediction error relative to the set of splines that could be formed
by placing the knot at any other point (of the points available in the training set).
To avoid overfitting, this knot selection process can be controlled by one or more
tuning parameters.

In MARS, the optimal set or ensemble of splines is selected via a two-step process
where, during the first (forward) step, many splines are added, and during the second
(backward) step, a subset of those splines are removed. The backward step performs
this deletion or ‘pruning’ by iteratively choosing the term that confers the least
reduction in error and removing it until the stopping criterion is reached. This
stopping criterion or ‘optimal’ fit is typically one which minimizes a generalized cross-
validation criterion balancing prediction error and model complexity. The features
contributing to the splines remaining in the model after the backward pass completes
can be thought of as ‘selected’ features, and in this way, MARS can be used as a
feature selection algorithm.

Data space reduction methods
k-Nearest Neighbors

The k-nearest-neighbors (kNN) algorithm is quintessential example of a non-
parametric supervised learning algorithm which uses only a subset of the data space
for each prediction. In kNN, for each observation for which a prediction is desired,
a ‘neighborhood’ relative to the training set observation is defined using a distance
metric and k, or the number of neighbors to consider in estimation of the predicted
value [30]. A smaller distance between a pair of observations implies they are more
similar and therefore closer neighbors, whereas a larger distance implies dissimilarity
and so the two are more distant neighbors. Equivalently, the closest neighbors of
an observation can be thought of as those maximizing similarity as measured by the
pairwise inverse distance.

This distance is a function of the covariate space. The canonical example (in the
case of continuous covariates) is the application of the Euclidean distance function to
the standardized covariates or a particular subset thereof. Subsequently, the mean
(or majority vote, in a classification context) is estimated across the k neighbors
in the training set closest to the test set observation, and that mean (or majority
class) serves as the prediction for that test set observation. Specifically, the k-nearest
neighbor outcome estimate Ŷ in the continuous case is defined as

Ŷ (x) = 1
k

∑
xi∈Nk(x)

yi
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where Nk(x) is the neighborhood of x defined by the closest points xi in the training
set [47]. The tuning parameter k can range from 1 (where the predicted value is the
observed value in the closest neighbor) to n (where the predicted value is the mean
across all training set observations). Any value of k < n therefore serves to reduce
the data space considered for any given prediction.

Holding the sizes of the training set and covariate space constant, as k increases,
the bias of predictions increases but their variance decreases. Cross-validation can
be used to choose the optimal k that balances bias and variance while minimizing
mean squared error.

Weighted Nearest Neighbors

There are many extensions to the simple kNN framework described above that,
taken together, form a family of nearest neighbor methods. One salient extension, for
example, extends the kNN algorithm beyond the case where a prediction is the mean
of or majority vote among the nearest neighbors to the more general case where the
prediction for the observation of interest is estimated via a weighted combination of
its nearest neighbors [32]. From this perspective, unweighted kNN can be thought
of as a special case where a constant weight 1

k
is applied to each observed value for

all observations in the neighborhood of size k.
To predict a value for the observation of interest in the weighted case, the values

of closer neighbors are upweighted and those further away are downweighted. Op-
tions for estimation of weight vectors include functions of the distance (such as the
standardized inverse distance) or of the covariates themselves.

A method that could be used in either case is kernel density smoothing or kernel
density estimation (KDE). In the latter case, a multivariate density could be utilized,
using observed values of covariates as input. An example of the former case is a kernel
function K input d, a vector of estimated distances. The function K also requires
a tuning parameter: a bandwidth, h. If a K with bounded support is selected, its
bandwidth h determines the extent of that support. This leads to the downweighting
of distant neighbors to zero, while closer neighbors have larger, non-zero weights.
In this way, the bandwidth h subsumes the role of the kNN tuning parameter k
by limiting the number of neighbors and thereby defining each ‘neighborhood’ of
training set observations. Simultaneously, the bandwidth h, in combination with the
chosen function K, produces a vector of weights to be used in the prediction of the
value for the observation of interest e.g. via a weighted mean (after standardizing
the weight vector w such that ∑

w = 1).
Advantages of weighted kNN over the unweighted approach include better-than-

random tie-breaking in the classification context and an error rate in either context
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that is less sensitive to the choice of an unduly large k [32].

A Brief Review of Existing Local Learning Algorithms
Scatterplot Smoothers

“Scatterplot smoothers” are local regression algorithms that derive their collo-
quial name from their simplest, two-dimensional form [26]. Locally estimated scat-
terplot smoothing (LOESS) and the related locally weighted scatterplot smoothing
(LOWESS) are the two most commonly used techniques in this category. These
methods are popular nonparametric alternatives to linear regression, particularly for
exploratory data analysis. They are in the category of local regression algorithms
because they are made up of multiple locally-estimated regression estimates where
each estimate uses only a subset of the observed data.

In basic terms, the LOESS is fit as follows. First, for each observation, distances
to every other observation are computed. These distances are based on some set
of one or more observed covariates (W ) and are typically the Euclidean distance in
the multivariate case. Then, these distances are used to calculate weights based on
some weight function or kernel. Assuming a sample size of n observations, n locally
weighted polynomial regressions are then fit for each of the n observations (for each
{wi, yi}, a ŷi is estimated). These may be of degree 0 (implying a running mean),
they may be locally linear (degree D = 1), or they could be locally quadratic (D = 2).
A larger D leads to decreased bias but increased variance [47] and is more likely to
produce an overfit estimate.

In the typical implementation, estimation is performed iteratively to increase ro-
bustness to outliers. At a minimum, the following tuning parameters are needed:
span/window width h, distance function d, weight/kernel function g, and polyno-
mial degree D ∈ {0, 1, 2}. The optimal span (h) is often selected via cross-validation,
while other necessary tuning parameters are typically fixed by the particular imple-
mentation or chosen by the analyst [47]. Although the continuous, nonlinear features
of scatterplot smoothers make them valuable exploratory analysis tools, the lack of
explanation provided for individual predictions (ŷi) limits the interpretability and
usefulness of this class of algorithms.

LIME

The Local Interpretable Model-agnostic Explanation (LIME) [98] algorithm is
another type of local learner, one which is focused on filling in the interpretability
gap between any so-called “black box” model and one of its predictions. A small
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library of interpretable prediction algorithms (including linear regression and decision
trees) are utilized by LIME to approximate and explain any model fit locally, where
‘local’ is with regard to the data space (within some tolerance around an individual
observation of interest).

LIME’s first focus is on model interpretability for the intended audience. Its sec-
ond focus is that the “local surrogate model” and subsequent explanation produced
are a faithful approximation of the original model, but only with regard to a small
neighborhood centered around the individual observation of interest. Specifically,
LIME minimizes the sum of the local infidelity of the explanatory model with re-
gard to the original model and the complexity of the explanation (a proxy for ease
of interpretation). In this way, regularization is encouraged and therefore a LIME
estimate is often ‘local’ with regard to the feature space, as well.

As an extension to the core LIME algorithm, local (observation-specific) explana-
tions can be compiled using a targeted subset of training set observations to produce
a “global” model interpretation. This process, resulting in a global approximation of
the original predictive model’s feature weights, is referred to as “submodular pick.”
This “submodular” method of choosing a subset of local explanations to include in
the global explanation has been shown to yield more useful and representative feature
weights than random selection would [98].

Notably, the LIME algorithm does not directly optimize for prediction accuracy
with regard to the observed outcomes. In addition, the predictions and complex
behaviors of some “black box” model fits are not guaranteed to be faithfully repre-
sentable via LIME or members of its library of interpretable prediction algorithms.

Conditional SuperLearner

The Conditional Super Learner (CSL) is a local learner developed concurrently
with the algorithm to be presented in this manuscript [114]. This prediction algo-
rithm, also like the algorithm to be presented in this manuscript, builds on a powerful
ensemble learner, the Super Learner (SL) [65]. The SL algorithm splits a dataset
into V cross-validation folds, and within each fold, fits a library of learning algo-
rithms to the training set and evaluates those fits on the respective test set. The
predictions from each learner in the library can be combined via non-negative least
squares or other similar methods to yield weights, which are subsequently applied to
each learner’s predictions. The library of learners is then refit on the entire dataset,
the predicted outcomes from which are combined according to the weights from the
previous step, yielding a vector of predictions at least as good as the best learner in
the library (asymptotically).
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Instead of a global model estimate, the CSL algorithm adds a classification ‘met-
alearner’ layer (referred to as the ‘oracle’), producing K localized SL fits (referred
to as ‘experts’). The cross-validated, two-step iterative algorithm first utilizes a sub-
set of the covariate set to estimate the ‘oracle,’ dividing the covariate space into
K regions. Subsequently, within each of the K regions, an ‘expert’ is fit and out-
comes are estimated using each cross-validation training set that falls within that
region. This iterative process is repeated T times and, finally, each observation’s
predicted outcome is the one produced by the final ‘expert’ for the region in which
the observation’s covariate values place it.

CSL’s hierarchical approach allows for more interpretable models to be fit at
both the global ‘oracle’ level and the local ‘expert’ level than would be possible if
only a single global model were estimated instead. The authors demonstrate that
the accuracy of predictions estimated via CSL are, in real-world datasets, nearly
always no worse than the global model in which the ‘expert’ learners are stacked.
However, the stability and performance of CSL are highly sensitive to the choice
of K [114], and an automated method for choosing the optimal K has not been
proposed. Additionally, this method does not target the best ‘expert’ model fit for
an individual observation, but instead targets the best model fit for some subregion
of the full covariate space.

Advantages of Local Learning
Through the review above, some desirable qualities of a local learning algorithm

can be identified. The ideal local learning algorithm should be flexible in the true un-
derlying data generating distributions it accommodates, allowing for complex and/or
non-linear patterns in its estimation. Simultaneously, these algorithms should em-
phasize interpretability and explainable predictions. To that end, the model fit for
a given observation should be parsimonious, but without being limited in the covari-
ates it can choose to utilize in its prediction estimates. This behavior should enable
accurate, personalized predictions, but without overfitting.

With the above in mind, the remainder of this manuscript proposes and validates
a local learning algorithm that fulfills the above requirements. First, the specifics of
the method will be presented, and subsequently, its potential use in clinical decision
support as an alternative to existing trauma scoring systems will be demonstrated.
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Chapter 2

Methodology & Simulation Results

Prediction Framework
Data and target parameter

The solution proposed in this manuscript applies to a data structure shared by
many prediction problems. This data structure contains an outcome Y , which will
be assumed, for simplicity, to be binary. It also contains covariates W , which could
include variables both directly observed and calculated from observed, such as indi-
cators of missing data or derived features. These covariates are assumed or known
to be related to the outcome and therefore informative for its prediction. This frame-
work yields an observed data structure of O = (W,Y ) ∼ P0 where P0 is the true –
but in practice unknown – data-generating distribution.

The parameter of interest in the estimation problem presented here is the ex-
pected value of some outcome Y given the covariates W , for some specific com-
bination of covariate values in the covariate space. More specifically, this target
parameter is ψ0 = Ψ(P0) = E0(Y | W = w), or the conditional mean (or probability)
of the (binary) outcome Y evaluated at a specific stratum w ∈ W . For example,
an estimate of the probability of death by 24 hours after hospital admission for a
particular patient profile may be desired, where a ‘patient profile’ implies specific
values of relevant clinical variables.

Algorithm
To estimate this target parameter, we propose a supervised semiparametric pre-

diction algorithm which is ‘localized’ such that only the most relevant information
for a given observation is utilized for that observation’s prediction. Here, relevant
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information includes both observations and covariates. The most relevant observa-
tions are those for which observed covariate values are most similar to the values in
the stratum of interest, where similarity is defined in the “Distances and Neighbor-
hoods” section below. The most relevant covariates are those which are determined,
via feature selection or variable importance algorithms, to be more closely related to,
or predictive of, the outcome of interest than other covariates. General outlines of
the algorithms used in this determination are detailed below under “ ‘Global’ Feature
Selection” and “ ‘Local’ Feature Selection.”

Data Preprocessing

If the observed data for which a prediction is desired contain missing observations
within the covariates, any covariates not fully observed should be preprocessed to
eliminate these missing values before applying the algorithm described below. One
approach, referred to as the “missingness indicator” method, is to recode missing
observations to zero (or another suitable value, such as the empirical mean or median)
and create an indicator of whether the covariate was measured for each observation.
This strategy, or one like it, implies that the missingness may be informative in
itself for prediction of the outcome of interest. In fact, it has been argued that this
approach to handling missingness may be superior to other approaches when the
primary goal is prediction (as opposed to parameter estimation), the missingness is
potentially predictive, and particularly when it is difficult or impossible to achieve
consistency in the approach taken to handle missingness between model training and
model deployment [110].

Note that the selection of imputation strategy could be considered a tuning pa-
rameter (explained in greater detail below) and an alternative a priori choice could
be made by the analyst at this juncture. Since missing data imputation was not
the focus of this project, for the purpose of simplicity, the “missingness indicator”
method was utilized wherever necessary for all analyses presented herein.

Algorithm Overview

After any preprocessing steps are complete, the proposed prediction algorithm
first reduces the size of the feature set. This reduced set of covariates is then used
to define a neighborhood of observations that are similar to the observation for
which a prediction is desired, reducing the observed data to be utilized. Finally,
within this small neighborhood, a smaller, neighborhood-specific set of covariates is
chosen, further reducing the dimensionality of the feature space. Simple parametric
prediction functions are then used to predict the observation’s outcome. In short,
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this method performs both dimension and instance reduction data-adaptively to
hone in on only the most relevant information for a given observation. The details
of this process will be expanded upon in the subsections that follow, and a high-
level summary of the algorithm can be reviewed in Algorithm 1. Additionally, an R
package implementing this algorithm is available on GitHub [89].

Algorithm 1: Local Learning Algorithm
within the tuning set, divide records into k folds;
foreach unique combination of tuning parameters do

for i = 1 to k do
using training set observations for which fold ̸= i, perform global
variable selection W ′ ⊆ W via CV Super Learner [65];

foreach validation set observation j for which fold == i do
estimate dist. Dj from j to each training set obs. using W ′,
centered on W ′

j and scaled by a selected norm;
input Dj into kernel function(s) to define j-specific kernel
weighted neighborhood(s) of training set obs.;

estimate Ŷj via simple parametric algorithms on weighted
training set obs., utilizing neighborhood-specific W ′′ ⊆ W ′;

select the tuning parameter combination optimizing a measure of model
performance in the tuning set;

foreach test set observation m do
predict Ŷm using the selected tuning parameter combination set for a
model trained on the tuning set;

Training Procedure

Each step of this procedure is data-adaptive and therefore utilizes tuning param-
eters (also known as hyperparameters) that must be tuned or optimized for the data
generating mechanism at hand. The process of selecting optimal tuning parameters
is also sometimes referred to in machine learning as model selection. This is ac-
complished by first “training” the prediction algorithm on a representative data set,
which will be referred to here as a tuning set, assessing prediction performance via
cross-validation under a variety of settings for each tuning parameter. These perfor-
mance assessments can be used to inform the selection of an appropriate value for
each tuning parameter – selections which must be made prior to predicting outcomes
for new observations of interest.

To retain some data on which to fairly evaluate the prediction performance of the
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algorithm with final chosen tuning parameter settings, the data should be split. For
example, 25% of a data set could be ‘held out’ for use as a test set, and the remaining
75% would therefore be utilized as the tuning set to select tuning parameter settings.
Alternatively, an entire data set with observed outcomes could be utilized as a tuning
set, and the selected tuning parameter settings would subsequently be used to predict
outcomes for incoming new observations, provided outcomes could be ascertained for
those new observations to estimate the performance of the prediction algorithm.

The phrase tuning set is used rather than the more customary training set in order
to signify that these tuning set observations will be further split, during the tuning
parameter selection process, into V cross-validation folds, resulting in V partitions
of the data into training and validation sets.

The purpose of this cross-validation procedure is to choose the optimal value for
each tuning parameter data-adaptively. A combination of tuning parameter settings
is deemed “optimal” for a given data set when it maximizes (or minimizes) some
objective function. For example, the goal may be to find the combination of tuning
parameter settings which maximizes the mean cross-validated area under the receiver
operating characteristic (ROC) curve (cvAUC) [67] in the tuning set. The search for
“optimal” tuning parameter settings may be performed exhaustively over a smaller
space of possible parameter settings (i.e. via grid search) or randomly over a larger
space of possible parameter settings (e.g. via random search) [11].

Specific tuning parameters for this algorithm will be discussed below. Generally,
these are parameters which can impact the results of any of the steps of the local
learning algorithm: feature selection, neighborhood selection, and prediction.

Once identified, optimal tuning parameter settings are subsequently used in com-
bination with the entire tuning set to build a model with which to predict the out-
comes Ŷ in the test set. It is this predictive performance by which the algorithm
is ultimately evaluated. Prediction performance in the test set could be compared
with, for example, the Super Learner’s [65] predictions in the test set (after being
trained on the tuning set). This performance could also be compared against existing
field-specific deterministic prognostic scoring systems, such as those used in trauma
care.

Initial Covariate Space

A prediction problem of interest is assumed to begin with an initial set of features
or covariates, which could be restricted by those available or by a priori hypotheses
regarding covariates relevant for targeting the parameter and outcome of interest.

As a toy example, consider the following simulation of 200 tuning set observa-
tions and a single test set observation arising from a simple data structure of three
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covariates (W ) and a binary outcome (Y ). The initial covariate space in this example
is three-dimensional: {W1,W2,W3}. The first of these covariates is Gaussian noise
and so is irrelevant to the prediction problem by design, as it does not influence the
outcome or other covariates in any way. The remaining two covariates {W2,W3} are
related to one another and to the outcome Y .

W1 ∼ N (µ = 1, σ2 = 1)
W2 ∼ ln N (µ = 3.56, σ2 = 0.442)
W3 ∼ ln N

(
µ = 0.08 × ln [W2] + 3.01, σ2 = 0.212

)
Y ∼ Bern(logit−1[0.015 ×W2 − 0.013 ×W3 − 2.35])

where logit−1(α) = exp(α)
exp(α) + 1

(2.1)

Equation Set 2.1 specifies the true data-generating distribution of the simulated
data and therefore the true relationship between these variables. Figure 2.1 depicts,
graphically, the relationship between the covariates W and outcome Y in the form
of a directed acyclic graph (DAG) [107]. Figure 2.2 visualizes the empirical rela-
tionships between the three covariates and the outcome in the 200 simulated tuning
set observations. In each panel of this plot matrix, visualizations are stratified by
the binary outcome with the two outcome groups distinguished from one another by
color. Gaussian kernel density estimates of each covariate appear along the diagonal,
for which the bandwidths are estimated using Silverman’s rule of thumb [106, p. 48].
In the panels on the lower left, scatterplots with simple linear regression lines over-
laid describe the observed relationships between the continuous covariates. Due to
sampling variability, spurious differences may appear to the naked eye where they
do not exist in the data generating distribution.

‘Global’ Feature Selection

Particularly when the initial covariate space is high-dimensional, problems
such as irrelevant features and data sparsity (either in the observed data or in the
data-generating distribution) can hinder or even damage predictive performance [4].
Therefore, refining this initial feature space for the target parameter and population
of interest may be desirable for improved predictive performance. High-dimensional
spaces containing irrelevant features can be particularly troublesome when similar-
ities or distances must be calculated [13], e.g. in a “localized” learning algorithm,
as those estimates may indicate that two observations are “nearest” neighbors for
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Figure 2.1: DAG representing relationships between variables in simulated example

reasons irrelevant to the outcome of interest. For that reason, feature selection or
reduction is a critical first step in that context, since determining what is “similar”
or “local” to a given observation is best determined by considering only relevant
features.

Consequently, the first step in the local learning algorithm described here is to
perform “global” feature selection. Figure 2.3 displays the result of having (hypo-
thetically) applied feature selection globally – utilizing all tuning set observations –
to the simulated data. The single simulated test set observation is overlaid in gray.
In this case, the predictor known to be unrelated to the others via knowledge of the
data-generating distribution, W1, has been eliminated, while features known to be
related to the outcome of interest Y have been retained. More generally, performing
feature selection on the initial feature space W yields W ′ ⊆ W .

“Global” feature selection can be achieved in many ways, but in the preliminary
results presented in the next section and chapter, feature selection was performed via
a novel algorithm implemented in the SuperSelector R package [88]. This algorithm
applies an ensemble learner – the cross-validated Super Learner (CVSL) [65] – within
each of k cross-validation folds in the tuning set to select k sets of features to retain.
The CVSL algorithm chooses the best combination of individual learners via mini-
mization of cross-validated loss and subsequently reports the overall cross-validated
loss of the entire Super Learner. Many ensemble loss functions for the Super Learner



Algorithm 30

Y
0

1

W1 W2 W3
W

1
W

2
W

3

-1 0 1 2 3 25 50 75 100 20 30 40 50

0.0

0.1

0.2

0.3

0.4

25

50

75

100

20

30

40

50

Figure 2.2: Initial covariate space

are available, but the two employed in the section that follows (included as potential
settings for a tuning parameter, with one “optimal” setting chosen via grid search)
were non-negative binomial likelihood maximization and non-negative least squares.
Alternatives include AUC maximization. The loss function was one of a variety of
tuning parameters for which the “best” setting was chosen via application of the al-
gorithm to the tuning set, where this combination of settings would later be applied
to the test set.

For the “global” variable selection process in this analysis, algorithms provided to
5-fold CVSL included LASSO [112, 36], random forest (RF) [17, 70], and multivariate
adaptive regression splines (MARS) [37, 75]. Specifically, each algorithm performed
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variable selection as follows. The regularized GLM with LASSO penalty retained
covariates with non-zero coefficient estimates at an optimal regularization parameter
λ (where the optimal λ was one which minimized a 10-fold cross-validated binomial
deviance loss function). RF chose covariates for which the mean decrease in accuracy
under permutation exceeded a reasonable cutoff value (0.005). Covariates selected
via MARS were those included in its final model. This was controlled by a parameter
(nk) limiting the number of terms, including the intercept, created by the forward
pass. In Super Learner’s MARS “wrapper function,” the default setting for nk is
one plus two times the number of covariates, up to a maximum of 21. Alternatively,
this can be controlled by specifying the maximum number of terms to keep from the
backward or “pruning” pass (nprune).

To select features globally for prediction of the test observation’s outcome, the
CVSL procedure was applied across the entire tuning set using the settings of the
tuning parameters selected after cross-validation was performed within the tuning
set. Overall feature importance for the test observation was determined by the mean
proportion of CVSL folds across the tuning set in which the covariate was retained.
This per-fold proportion could either be calculated as unweighted or weighted, where
the weight would be the coefficient estimated for the respective algorithm by Super
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Learner in that fold. The final tuning parameter choice needed for this process was
the number of high-ranking features to keep, which could be a constant (such as top
20 or top 40, depending on the dimensionality of the initial covariate space) or a
data-adaptive parameter. Ad hoc data-adaptive settings for this parameter include
limiting the selected features to those with a higher ranking than the point where
the maximum gap in importance scores (weighted or unweighted mean proportions)
occurs or those for which the importance score was higher than some constant.

Alternatively, many other feature selection methods could instead, or additionally,
be used at this junction. The local learning algorithm can treat the feature selection
method as a tuning parameter and choose the “optimal” one via grid search.

Distances and Neighborhoods

Localized prediction algorithms require rules regarding which observations will
be included in the prediction function of a given observation – and with what
weights. These rules typically begin, implicitly or explicitly, with distance met-
rics d(xtest, xtuningi

), functions of two vectors {xtest, xtuningi
} in the covariate space.

Figure 2.4a demonstrates the Euclidean distances between the observation of inter-
est xtest and all tuning set observations in the two-dimensional covariate space W ′.
Similarly, in Figure 2.4b, transparency is proportional to the Euclidean distance of
tuning set observations (in two-dimensional covariate space) from the observation
of interest xtest. The distances are calculated using centered and scaled features
W ′ ⊆ W (centered on W ′

test and scaled by their L1-norm). The distance metric
(here, Euclidean or L2) could be considered a tuning parameter.

These distances must, in turn, be transformed into a measure of similarity,
wherein a larger value indicates that two observations are more “similar” to one
another than a pair with a smaller value. The simplest such transformation is the
inverse distance, or 1

d(xtest,xtuningi
) . An alternative method and the one which is em-

ployed here is to use the distances as inputs to a smoothing kernel Kh(xtest, xtuningi
).

Implicit in this function K is the bandwidth or window width h. The resulting sim-
ilarity measure can be used as a weight for each observation xtuningi

relative to the
observation for which a prediction is desired, xtest. One advantage of this method
of distance transformation is that the similarities it yields are standardized to be be-
tween zero and one. Moreover, if the kernel has bounded support, some observations’
weights will be explicitly zero, effectively creating a neighborhood N (xtest) around
the observation of interest, xtest. An example of this transformation with a tricube
kernel is provided in Equation Set 2.2 below and assumes d(xtest, x⃗tuning) is ordered
from smallest to greatest and at least 1 − h% of d(xtest, x⃗tuning) are non-zero.
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Figure 2.4: Distances and Neighborhoods

v = d⌈ntuning×h⌉(xtest, x⃗tuning)

Kh(xtest, xtuningi
) =

{
70
81 × (1 − d(xtest, xtuningi

)3)3 if d(xtest, xtuningi
) ≤ v

0 if d(xtest, xtuningi
) > v

(2.2)

In Figure 2.4c, the transparency of each point now is proportional to its weight,
which (in this example) is the result of applying a tricube kernel like that in Equation
Set 2.2 with a window width (h) of 20%. Figure 2.4d displays the same information,
but an ellipse is now overlaid to delineate the covariate space containing tuning set
observations with non-zero weight from that space outside the “neighborhood” where
observations are assigned weights of zero.

The kernel K and window width h are also tuning parameters. Figure 2.5 con-
tains a graphical depiction of the kernels included in this example: uniform, tricube,
and Epanechnikov. These kernel functions are commonly used and share the prop-
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Figure 2.5: Demonstration of weighting functions for weighted regression: kernels
used, in common coordinate system

erty of bounded support, meaning that some observations’ weights will be explicitly
zero. This leads to weighted ‘neighborhoods’ of observations, enabling a ‘localized’
prediction based on a subset of observations in the tuning set. Other kernel func-
tions could be used instead. Window widths included in the examples which follow
are expressed as a percentage of the number of observations in the tuning set (10%,
15%, 20%, and 25%) because these are also the sizes of the resulting “neighborhoods”
around the test observation.

‘Local’ Feature Selection

Within the relatively small “neighborhood” determined above, we perform “lo-
cal” feature selection. This process determines a further reduced set of covariates
specific to the “neighborhood” of the test observation: W ′′test ⊆ W ′. For a given
test observation, some quantity (e.g. five) of the top covariates in that observation’s
“neighborhood” could be used. This ranking could be determined by, for example,
sorting on the magnitude of the weighted Pearson correlation coefficient estimates
between the feature and the outcome of interest. Both the number of local covariates
and the process by which they are selected can be additional tuning parameters.
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Figure 2.6: ’Local’ feature selection

Figure 2.6a focuses on the reduced covariate space of W ′ = {W2,W3} where
the transparency of each point is proportional to the weight given to that tuning
set observation (where weights are derived from the kernels and distances above).
Figure 2.6b demonstrates the collapsing of the space of W ′ into a further reduced
covariate space resulting from ‘local’ feature selection, W ′′test = {W2}.

Prediction

Finally, within this relatively small neighborhood, using a neighborhood-specific
set of covariates, simple weighted parametric prediction functions are used to predict
the outcome for the observation of interest. The list of prediction algorithms fit at
this step would be considered a tuning parameter and could include, for example,
the weighted mean, weighted GLM, weighted GLM with pairwise interactions, or
weighted GLM with pairwise interactions and quadratic terms.

Figure 2.7 demonstrates this process in a simple scenario where only a single
covariate was retained by the local feature selection process. The points are vertically
jittered for visibility around Y = 0 and Y = 1. The transparency of each point
again corresponds to that observation’s weight, determined by its distance from the
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Figure 2.7: Prediction

observation of interest (overlaid in gray). A simple logistic regression line is fit to
the tuning set data to obtain a predicted value for the test observation.

Summary

Several considerations went into designing this data-adaptive procedure. If we
assume that the optimal prediction function is not static across the covariate space,
then it might also stand to reason that the features which are important may change,
too. Therefore, while global feature selection is performed, an additional localized fea-
ture selection step is also performed, with the goal of eliminating features irrelevant
to a particular observation’s prediction. Similarly, globally optimized predictions
may not be sufficient if the optimal prediction function is not static across the co-
variate space, and so an appropriate loss function for local optimization must be
used. Overfitting is combated via cross-validation, and the large number of tuning
parameters are handled via a grid search on the tuning data.
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Simulated Trauma Patient Dataset
To demonstrate the performance of the prediction algorithm, a simple trauma

patient dataset composed of of 2,000 observations, each with nine ‘observed’ co-
variates and a single binary outcome Y , was simulated. Four of these covariates,
{X1, X2, X3, X4}, were simulated as independent random normals and did not influ-
ence the outcome or other covariates in any way. The remaining five covariates are
related to the outcome Y and, in some cases, one another.

Data-generating Process

[X1, X2, X3, X4] ∼ N4(µ = [−2,−1, 1, 2],Σ = I4)

GCS ∼


Pr(GCS = 3) = 0.32,
Pr(4 ≤ GCS ≤ 14) = 0.28,
Pr(GCS = 15) = 0.40.

Age ∼ ln N (µ = 3.56, σ2 = 0.442)
Prehosp. OCY ∼ Exponential(λ = 0.54)

BMI ∼ ln N
(
µ = 0.08 × ln [age] + 3.01, σ2 = 0.212

)
Sys. BP ∼ NB(µ = exp [−0.002 × age + 0.016 × prehosp ocy + 4.7] ,

θ = 10.9)

where E[X] = µ and V ar[X] = µ+ µ2

θ
.

24hr Mortality ∼ Bern(logit−1[1.34 × 1{gcs = 3} − 0.45 × 1{gcs = 15}
+ 0.00012 × sys. bp − 0.013 × bmi + 0.015 × age
− 0.16 × prehosp. ocy − 2.68])

where logit−1(α) = exp(α)
exp(α) + 1

(2.3)

Equation Set 2.3 specifies the true data-generating distribution of the simulated
data. A directed acyclic graph (DAG) [107] in Figure 2.8 illustrates, graphically, the
relationships between the covariates and outcome Y .

In this simple simulated example, each observation can be thought of as a sin-
gle trauma patient, with the binary outcome indicating survival (0) or death (1)
at 24 hours post-admission. The probability of this event is directly influenced, in
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Figure 2.8: DAG representing relationships between variables in simulated trauma
patient dataset

this simulation, by the patient’s age, BMI, Glasgow Coma Scale (GCS) measure-
ment (binned into three categories), systolic blood pressure (SysBP) at admission,
as well as the quantity of crystalloids the patient received prior to hospital admis-
sion (PrehospOCY). Additionally, BMI is directly influenced by age, while systolic
blood pressure at admission is directly influenced by both age and the quantity of
crystalloids received prior to admission.

For example, within this data-generating process, all other covariates held con-
stant, a patient with a GCS of 15 would be more likely to survive than a patient with
a GCS between 4 and 14, whereas a patient with a GCS of 3 would be less likely to
survive than patients with higher GCS measurements.

Simulated data
Figure 2.9 visualizes the empirical relationships between the outcome Y and the

five related covariates in 400 randomly selected tuning set observations. Points and
summaries in each panel of the plot matrix are stratified by the simulated binary out-
come Y , indicated by color. This matrix of visualizations illustrates more concretely
the underlying relationships described in Equation Set 2.3 and Figure 2.8 above. For
example, in the scatterplot of BMI versus Age in the fourth row and second column,
BMI is observed to increase with increasing age among both outcome groups. How-
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Figure 2.9: Bivariate and univariate simulated covariate visualizations stratified by
simulated binary outcome

ever, on average, the older patients who did not survive had higher BMIs than those
who did.

Fifteen hundred (75%) of the two thousand simulated observations were used for
tuning the local learning model, and the remaining five hundred simulated observa-
tions were held out for inclusion in the test set. Subsequently, the model built using
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the tuning set was used to predict outcomes for observations in the test set. The
overall prediction performance of the “best” localized prediction function in the test
set was compared with predictions in the test set made by a logistic regression and
by the ensemble learner Super Learner. The Super Learner and logistic regression
fits were also estimated using the simulated tuning set only.

Results
‘Global’ Covariate Selection

Prior to ensembling the feature selection results to yield “globally” selected fea-
tures, the results from each screening algorithm used by CVSL can be visualized
separately. In Figure 2.10, the importance estimate from each screening algorithm
for each simulated feature is represented as the percentage of CVSL folds in which
that feature was retained. The variability across screening algorithms demonstrated
in this visualization effectively illustrates the value of ensembling. For example, the
random forest retains only GCS, and does so in every fold, but incorrectly discards
several features known to influence the simulated outcome, also across all folds. At
the other end of the spectrum, the LASSO screening algorithm retained most of the
predictive covariates across all cross-validation folds (with the exception of BMI),
but also retained two unrelated covariates in every fold, and retained every covariate
in at least 40% of folds. Understanding the behavior of the individual chosen screen-
ing algorithms on simulated data can help us to tune each algorithm to improve
sensitivity and specificity prior to applying the screening algorithm to real-world
data.

Variable importance estimates are combined across screening algorithms in Figure
2.11 via the unweighted average of the proportion of folds within screening algorithm
where the feature was retained. GCS stands out for having been retained relatively
often, and generally (with the exception of BMI), the simulated covariates with a
stronger true relationship with the outcome are retained by the ensemble of screen-
ing algorithms more frequently than the simulated random, unrelated covariates. As
alluded to above, improved tuning of the screening algorithms could improve the
ensembled variable importance in this simulation. Additionally, algorithm ensem-
ble weights could be utilized to estimate variable importance via a weighted mean
proportion.
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Figure 2.10: Feature selection by screening algorithm
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Figure 2.11: Feature selection across all screening algorithms

Performance comparison
The distribution of the predicted probabilities in the test set of the simulated out-

come from each candidate prediction algorithm (the local learner, logistic regression,
and Super Learner) are visualized in Figure 2.12. Perfect differentiation between
outcomes by a prediction algorithm would manifest as predicted probabilities for
the “Living” (blue) group stacking up on the left (low) end of the axis, while pre-
dicted probabilities for the “Deceased” (orange) group would accumulate on the right
(high) end of the axis. Instead, while there are subtle differences between the dis-
tributions of the predicted probabilities among the three prediction methods – for
example, logistic regression and Super Learner both correctly assigned high proba-
bilities of death to several simulated patients, while the local learner did not – the
overwhelming take-away from Figure 2.12 is that the three predictors all confidently
and correctly predict low probabilities of death for the majority of the surviving
patients, but the predicted probabilities for simulated deceased patients are more
uniformly distributed across the range of predicted probabilities and are therefore
less discriminating.

The accuracy of the local learner on the simulated test set over a range of cut-
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Figure 2.12: Prediction density comparison for simulated PROPPR data (test set
only)

points applied to predicted probabilities is visualized in the green line of Figure
2.13. Instead of having a clear peak, the maximal accuracy in the test set (90.2%)
is achieved at the maximum predicted probability, indicating that the best “over-
all” classifier performance is achieved when every simulated patient is predicted to
have survived, such that the true negative rate (TNR) is 100% and the true positive
rate (TPR) is 0%. However, in practice, and particularly in a real-time patient care
setting, a different balance of true positives and true negatives is preferable. This
balance can be selected via the orange (TNR) and purple (TPR) lines in Figure
2.13. If both are equally important to optimize, for example, one might choose a
classification cutpoint near where the two lines cross (a predicted probability of ap-
proximately 13.3% in this simulated example), such that simulated patients with
predictions above that threshold would not be predicted to survive, while simulated
patients with predictions below it would.

Overall prediction performance in the simulated test set is compared in Figures
2.14 and 2.15 between the “best” localized prediction function (local learner), the
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Figure 2.13: Local learner classification accuracy by predicted probability cutoff (test
set only)

ensemble learner Super Learner, and a logistic regression. The estimates of area
under the ROC curves in the test set are compared in Figure 2.14, the best of
which belongs to the localized algorithm (AUC = 0.733). In particular, for a cutoff
where survival is correctly predicted at a high rate (i.e. FPR < 25%), the local
learner correctly predicts death at a higher rate than the comparison algorithms.
In comparison, at a cutoff where simulated surviving patients are often incorrectly
predicted to have died (i.e. FPR > 50%), the logistic regression and Super Learner
more frequently correctly predict patient deaths than the local learning algorithm
does.

However, the 95% confidence intervals of these AUC estimates indicate that the
three modeling strategies don’t significantly differ in their predictive performance
in the simulated dataset. It is not unexpected that the local learning algorithm
wouldn’t dramatically outperform competing algorithms, given that the data gener-
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Figure 2.14: Receiver operating characteristic curve comparison (test set only)

ating functions are not designed to simulate a clustered dataset, the scenario under
which the local learner would be expected to most excel.

The precision-recall curves in Figure 2.15 shed more light on each algorithm’s
performance and are particularly useful to highlight the minority class (patients
who did not survive) in this simulation containing a somewhat imbalanced outcome.
For example, the local learner falsely predicted many simulated patients would not
survive in order to achieve even a relatively low rate of correct identification of
simulated patients who did not survive. On the other hand, the logistic regression’s
area under the precision recall curve exceeds that of the local learner and the Super
Learner, mostly due to it casting too small a net in predicting death (low probability
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Figure 2.15: Precision-recall curve comparison (test set only)

the logisitic regression would predict death given the patient died) in order to achieve
a higher proportion of patients who did not survive among those who were predicted
to not survive. However, at classification cutoffs casting a wider net in flagging
patients at risk for death (i.e. with a lower rate of misdiagnosis among those who
didn’t survive), as expected, the proportion of patients who did not survive among
those predicted to not survive is much lower.
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Conclusion
The simulation study described in the current chapter demonstrates that the lo-

cal learner can perform competitively with existing prediction methods. However,
real-world trauma patient data is significantly more complex than its simulated coun-
terpart. This complexity is evidenced by past attempts at developing scoring systems
and predictive models for this population, the details of which will be described in
the first half of the upcoming chapter. Due to this complexity and the potential for,
e.g., patient clusters and other patterns to arise (due to the true data generating
process) that are not handled equally well by all modeling approaches, it is critical
that any proposed new methodology also be compared with existing “gold standard”
approaches utilizing real-world, highly complex patient data. This exercise will be
the focus of the second half of the following chapter.
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Chapter 3

Data study

Real-world Data
To test the real-world predictive performance of our algorithm, we utilized trauma

patient data from the Pragmatic, Randomized Optimal Platelet and Plasma
Ratios (PROPPR) study [52], a randomized clinical trial comparing two blood trans-
fusion protocols. The study involved 680 patients at 12 U.S. Level 1 trauma cen-
ters. Patients qualified by both receiving blood products and triggering the highest
trauma level activation. The ratio of plasma to platelets to red blood cells received
in the two randomized groups was approximately 1:1:1 (“whole blood” or “balanced;”
n1:1:1 = 338) or 1:1:2 (“unbalanced;” n1:1:2 = 342).

Outcome (Y )
In the example presented in this chapter, the clinical outcome of interest (Y )

was all-cause death by 24 hours after randomization to treatment group. Eighty-five
percent of patients enrolled in PROPPR remained alive 24 hours post-randomization.
Other outcomes of interest in the PROPPR study that won’t be points of focus in
this text included death due to exsanguination or hemorrhagic shock at any time
after randomization.

Covariates (W )
To predict the outcome above, we included measures established prior to random-

ization as well as results from labs for which blood was drawn very early, usually
just minutes after beginning the treatment protocol. These covariates (W ) included
basic demographics, treatment information, injury type, primary vital signs, trauma
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scoring systems, lab measures from the initial blood draw, and pre-randomization
fluid and blood products received.

Below is a full listing of the patient information utilized in the prediction of all-
cause death by 24 hours post-randomization. Covariates in bold were fully observed.
Any not in bold were included along with an additional (non-)missingness indicator.
Values of categorical covariates displayed in italics served as the reference levels of
those covariates.

• Study Site: Baltimore, Birmingham, Cincinnati, Houston, Los Angeles, Mem-
phis, Milwaukee, Portland, San Francisco, Seattle, Toronto, or Tucson;

• Age; Gender; BMI; Hispanic ethnicity;
• Racial Group: African-American, Asian, Native American, Multiple Races,

Pacific Islander, Unknown, or White;
• ANY Blunt Injury; ANY Penetrating Injury;
• Systolic Blood Pressure (SBP); Diastolic Blood Pressure (DBP); Pulse; Respi-

ratory Rate (RR); Temperature;
• Results of Focused Assessment with Sonography in Trauma (FAST)

exam: Positive, Negative, Indeterminate, or Not Done;
• Glasgow Coma Score (GCS); ABC Score;
• Platelet count; White blood cell (WBC) count; Hematocrit (HCT);

Hemoglobin; Base excess; pH;
• Thromboelastography (TEG) reaction time (R-Time); prothrombin time (PT);

partial thromboplastin time (PTT); International Normalized Ratio (INR);
Fibrinogen;

• Pre-randomization volumes of: Red Blood Cells (RBCs), Plasma,
Platelets, Crystalloids (OCY), Colloids (OCL), Other OCL/OCY;

• Pre-randomization Plasma:RBC Ratio; Platelet:RBC Ratio;
• Time to Randomization; Treatment Group.

Notably, the Revised Trauma Score (RTS) was not employed as a predictor, as it
served as a comparison score against which the algorithm’s performance was judged.
In practice, the RTS would likely be calculable for most trauma patients during
assessment, as it only depends on its components (GCS, SBP, and RR) having been
measured. Moreover, one or more of those components having not been measured
could also aid in the prediction of certain clinical outcomes. Therefore, the RTS
could feasibly be included as a predictor in a real-world setting and would have the
potential to boost the performance of a highly parsimonious prediction model.
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Methods
The sample of 680 patients was randomly partitioned into tuning (75%, ntuning =

510) and test (25%, ntest = 170) sets, with outcome distributions approximately
balanced in the two groups (mortality rates were 16% and 12% in tuning and test,
respectively).

Five-fold cross-validation was utilized to avoid overfitting to the tuning set.
Within each fold, a ‘global’ feature selector was first applied. Then, the local
learning algorithm predicted the probability of the outcome for each observation,
also within each fold, by first weighting observations by their similarity to that
observation and subsequently using those weights in the application of a simple
linear predictor. The details of each step are governed by one or more tuning
parameters.

The local learning algorithm’s tuning parameters were optimized by performing
a grid search over many unique combinations of parameter settings while applying
the algorithm to the tuning set. The ‘optimal’ combination of tuning parameter set-
tings were defined as those resulting in the minimum cross-validated sum of squared
prediction errors (cvSSE) within the tuning set. The cvSSE was assessed separately
for the global feature selection algorithm and the local learning algorithm. These
‘optimal’ tuning parameter settings were used to generate a final local learning algo-
rithm fit (without cross-validation) using the entire tuning set. This predictive model
was subsequently applied to the test set to predict the probability of the outcome of
interest for each of the ntest patients.

The local learner’s prediction performance in the test set was compared with that
of a logistic regression fit on the tuning set, along with that of a Super Learner fit
on the tuning set, both likewise applied to the test set. The Super Learner predictor
library included a selection of learners supplied with the SuperLearner R package
[65]: logistic regression (with and without interaction terms), LASSO regression [112,
36], random forest [17, 70], and multivariate adaptive regression splines [37, 75].

The predictions from these machine learning methods were also compared with
predictions for patients in the test set derived from the RTS trauma scoring method
[22]. The RTS, as detailed above, is a function of the patient’s SBP, RR, and GCS
(a measure of how conscious a patient is). Champion et al. [22] provides, in Table V,
a mapping from RTS values to survival probability estimates via a logistic function.
Here, that logistic function was approximated using the provided information such
that the RTS estimates presented below are one minus those survival probability
estimates.

Seventy-three of 680 PROPPR patients were missing SBP and/or RR. In those
cases, the RTS was calculated using all available information, and when information
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was missing, the RTS was imputed as the worst value possible given other observed
information. Reasons for missing SBP and RR were that they couldn’t be measured
or that they weren’t taken, both of which could be attributable to a patient being
in critical condition when their treatment began. Therefore, the assumptions made
by this imputation strategy seemed reasonable.

Results
‘Global’ Covariate Selection

Figures 3.1 and 3.2 visualize the variable importance estimates resulting from
the application of the initial ‘global’ covariate selection step to the test set. Feature
importance was estimated here via five-fold Cross-Validated SuperLearner (CVSL)
[65] using three screening algorithms: observation-weighted LASSO [112, 36]; ran-
dom forest [17, 70] using a data-adaptive variable selection cutoff [100]; and case-
weighted multivariate adaptive regression splines [37, 75], using backward pruning
and without cross-validation. These three screening algorithms are available in the
SLScreenExtra R package [87]. Additional technical details on these screening algo-
rithms are provided in the previous chapter.

Figure 3.1 conveys the importance estimate for each feature within each screening
algorithm as the proportion of CVSL folds in which the feature was retained by that
screener. Here, we observe a large amount of variability across screening algorithms,
with the random forest retaining only pH in four of five folds and only BMI in the
remaining fold, while the lasso and spline screeners retained many more features
in each fold, but the retained features retained differ somewhat between the two
screeners.

These screener-specific variable importance estimates are combined in Figure 3.2
by taking the unweighted average over screening algorithms of the proportion of
folds within each where the feature was retained. GCS and pH stand out for having
been retained relatively often, whereas many of the study site indicators along with
some of the missingness indicators are rarely, if ever, observed to be retained by the
screening algorithms.

For simplicity, only the unweighted average of screening algorithms’ feature im-
portance estimates was included in the tuning parameter grid search for this ex-
ample. However, an alternative that could have been included in the grid search
is the weighted average over screening algorithms of the proportion of folds within
each where the feature was retained, where the weights would be derived from Super
Learner’s coefficient estimates for each combination of screening and prediction algo-
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Figure 3.1: Feature selection by screening algorithm
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rithms in the Super Learner library. Building on this, when including the weighted
feature importance in the grid search, the method by which Super Learner coef-
ficients are estimated (e.g. non-negative log-likelihood maximization, non-negative
least squares minimization, or AUC maximization/rank loss minimization [97]) may
also be included as a tuning parameter, the ‘optimal’ setting for which could then
be selected via grid search.

The tuning parameters for ‘global’ feature selection which were searched over
in this example were the metaselector parameters controlling what subset of the
available features were selected by the ‘global’ feature selector, the options being:

• the 20 most highly ranked features,
• the 40 most highly ranked features,
• the features chosen in at least 5% of the [5 folds × 3 screening algorithms]

(note that this is equivalent, in this case, to the feature being chosen at least
once over all 5 folds × 3 screening algorithms), and

• the features which are separated from the others by the largest difference in
estimated importance.

In the tuning set, the setting above which minimized the cvSSE was the final
one: a subset of features was optimally chosen by determining which features were
most separated from the others. Applying this selection method to the importance
estimates in Figure 3.2, for this run of the CVSL feature importance estimation, only
GCS and pH would be retained.

Local Learner
Features retained by the initial selection step are subsequently used to create a

weighted ‘neighborhood’ of observations around each observation for which a predic-
tion is desired. Several tuning parameters govern this process:

• A distance function: here, taxicab (L1) or Euclidean (L2);
• A kernel function: tricube, uniform, or Epanechnikov; and
• A window width or ‘neighborhood’ size: 10%, 15%, 20%, or 25% of the obser-

vations in the remaining sample.

Finally, prediction estimates are generated by combinations of screener and
learner algorithms, pairings which are also treated as tuning parameters (where only
one is selected, much like discrete Super Learner). The estimated weights from the
previous step can be used by the screener and learner algorithms in this step. Three
options were supplied to the grid search in this example:
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Figure 3.2: Feature selection across all screening algorithms
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• weighted mean (screening algorithm immaterial),
• weighted GLM using, at most, the top 5 covariates in the ‘neighborhood’ (the

ranking of which was determined by the p-values of Spearman’s rank correlation
coefficient estimates), and

• weighted GLM using, at most, the top 5 covariates in the ‘neighborhood’, plus
pairwise interaction terms.

In the tuning set, the combination of tuning parameters minimizing the cvSSE
were the L1 distance combined with the tricube kernel with a 10% window width
and a weighted mean.

Performance comparison
Figure 3.3 visualizes the distribution of the predictions from each candidate pre-

diction algorithm (or score). If a prediction algorithm had perfectly differentiated
between the two groups of patients formed by their observed outcomes, the predicted
probabilities for the “Living” (blue) group would be clustered on the left side of the
plot and the predictions for the “Deceased” (orange) group would be clustered on
the opposite end, signifying a high predicted probability of death. In contrast, Fig-
ure 3.3 indicates that all four predictors do a decent job of correctly assigning low
probabilities of death to patients who survived – with the possible exception of the
RTS – but that none of them does a particularly good job of correctly classifying the
patients who did not survive.

Figure 3.4 more precisely identifies, for the local learning algorithm, the cutpoint
for predicted probabilities at which the algorithm’s classification accuracy is maxi-
mized. Setting the cutpoint higher than a predicted probability of approximately
30% would result in very little accuracy gained. This assessment echoes what is im-
plied in the upper left panel of Figure 3.3 where a probability of ≤ 30% was predicted
for the great majority of the patients who were observed to survive.

In Figures 3.5 and 3.6, the overall prediction performance of the “best” localized
prediction function in the test set was compared with the test set predictions of the
ensemble learner Super Learner, a logistic regression, and the RTS. Super Learner
and the logistic regression were fit using the tuning set only.

It is clear that, for the outcome of death in the first 24 hours after randomization,
Super Learner performs best in the test set as measured by the area under the
ROC curve displayed in Figure 3.5. The performance of the localized algorithm and
the imputed RTS fall in the middle, and the performance of the logistic regression
is the poorest of the three. However, these algorithms don’t significantly differ in
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Figure 3.4: Classification accuracy by predicted probability cutoff (test set only)

their predictive performance according to the 95% confidence intervals of the AUC
estimates.

If these predictions were utilized in practice to determine a patient’s priority, false
negative classifications might correspond to patients who would be undertriaged via
this algorithmic approach, while patients who are false positives may have been
overtriaged. According to Figure 3.5, a 35% overtriage (false positive) rate would
correspond to a 19% undertriage rate (false negative rate, or 1 - sensitivity) for the lo-
cal learning algorithm, while a more stringent 5% undertriage rate would correspond
to a 62% overtriage rate.

In some cases where the binary outcome is imbalanced, the precision-recall curve
may reveal performance issues that are hidden by the traditional ROC curve. How-
ever, here, the ranking established by the area under the ROC curves is echoed in
Figure 3.6 when comparing the area under the precision-recall curves for the four pre-
diction methods applied to the test set. Super Learner achieves the highest AUCPR,
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Figure 3.6: Precision-recall curve comparison (test set only)

followed by the local learner and the RTS, with logisitic regression lagging behind.
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Table 3.1: Example Local Regression Model Coefficient Estimates

Patient A Patient B
Characteristic OR SE 95% CI OR SE 95% CI
(Intercept) 90.4 1.99 3.35, 1.08e+04 2.67 35.0 0.00, 3.26e+27
pH 0.74 0.178 0.50, 1.03 0.39 4.66 0.00, 1.43e+04
Glasgow Coma Scale (GCS) 0.79 0.113 0.60, 0.96
Crystalloids, Pre-randomization, Post-ER arrival 0.52 0.535 0.16, 1.42
Missing: BMI 0.12 1.15 0.01, 0.96
WBCs 0.97 0.112 0.77, 1.21 0.84 0.122 0.64, 1.05
PTT 1.01 0.013 0.98, 1.03
BMI 1.18 0.131 0.92, 1.59
Base excess (mmol/L) 0.91 0.126 0.67, 1.13
1 OR = Odds Ratio, SE = Standard Error, CI = Confidence Interval
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The local prediction function selected as a part of the ‘optimal’ tuning parameter
settings for the local learner in the above example was the weighted mean. However,
in order to better demonstrate the local learner’s retention of interpretability, a
‘runner-up’ set of tuning parameter settings were applied, producing a final model
in which a weighted GLM using the top 5 features in the patient’s ‘neighborhood’
is chosen as the local prediction function. The local model fit for two example test
set patients produced the coefficient estimates displayed in Table 3.1 and the partial
regression plots (for one of the two test set patients only) displayed in Figure 3.7.
Neither of the two example patients were alive at 24 hours post-randomization.

The exponentiated coefficient estimates in Table 3.1 demonstrate the differences
and similarities between the top 5 features in each patient’s ‘neighborhood’ – with
WBC count and pH selected as important features for both – as well as the differences
in each feature’s relative contribution to the predicted outcome both across and
within patients. The top 5 features for each were a subset of the 9 globally selected
features, which included the 8 in Table 3.1, along with Age. Although most of the
coefficient estimates are not statistically significant in these particular examples from
the non-optimal local learner fit, the ease with which these estimates can be retrieved
and examined is an advantage of the local learning approach more generally.

Using the partial regression visualization in Figure 3.7, it is clear not only which
features influenced the prediction for this patient, but also where this patient’s values
for each predictor lined up against the values of the other patients in their ‘neigh-
borhood.’ In this particular example, an extremely low base excess and pH, along
with a fairly low WBC count and fairly high PTT, appear to be driving the predicted
classification of this patient as one who would be at risk to not survive past 24 hours.



Performance comparison 62

0%

25%

50%

75%

100%

0 2 4 6
pH

0 50 100 150
PTT

0%

25%

50%

75%

100%

0 20 40 60 80
BMI

−30 −20 −10 0 10 20
Base excess (mmol/L)

0%

25%

50%

75%

100%

0 10 20 30 40
WBCs

Status by 24h post−randomization Living Deceased

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

 d
ea

th
 b

y 
24

h 
po

st
−

ra
nd

om
iz

at
io

n
gi

ve
n 

al
l o

th
er

 X
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Chapter 4

Discussion

In this manuscript, we propose a novel local learning framework for prediction.
This local learning algorithm accommodates complex and non-linear patterns be-
tween predictors and outcome, mitigating overfitting via cross-validation while si-
multaneously prioritizing interpretable results and explainable predictions.

Accuracy advantages over opaque and/or “global” learners are not guaranteed,
nor did this work attempt to establish that data generating distributions exist for
which the local learner would consistently and dramatically outperform any exist-
ing global learning algorithm. Theoretically, a local learner like the one proposed
in this manuscript could have accuracy advantages when applied to e.g. real-world
clinical data sampled from a mixture of several patient populations. However, the
major advantage of the approach proposed in this manuscript – as demonstrated by
simulations presented herein – is its retention of interpretability without significant
sacrifices to predictive performance, particularly when compared against “global”
learners. This interpretability is provided in the form of both local (observation-
specific) variable selection and local parameter estimates.

The “training” of the local learner involves selection of a combination of tun-
ing parameter settings optimizing a global criterion (e.g. maximizing AUC). After
tuning parameters are selected, prediction is far less computationally intensive than
model tuning. However, in the current implementation, the tuning process involves a
grid search among many combinations of settings for the various tuning parameters
and so is computationally intensive. This is mitigated somewhat via parallelization
and vectorization, but future work should explore alternatives, such as explicit pre-
specification of tuning parameters, tuning parameter selection via random search
instead of grid search, and optimization of an objective criterion via iterating on
tuning parameter settings until that criterion reaches a predefined threshold.

Some modeling approaches that could have improved predictive performance were
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eschewed in favor of retention of interpretability. One such approach is the centering
of feature values for each local model around those of the observation for which a
prediction is desired.

Still other extensions to this framework were beyond the scope of an initial imple-
mentation. These potential extensions include enabling an adaptive window width so
that local models are not restricted to using a single, globally-imposed neighborhood
size.
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