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ABSTRACT OF THE DISSERTATION

Foliations, Contact Structures and Finite Group Actions

by

Christopher Anthony Carlson

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2012

Dr. Reinhard Schultz , Chairperson

I have considered two main questions in my research. First, which foliations

on a manifold are compatible with a particular symmetry group. Second, which contact

structures are preserved by which symmetry groups. The existence of both foliations

and contact structures have been studied for over a half-century with no consideration

for symmetry groups. I have looked thus far at finite symmetry groups. Historically,

the study of manifolds and symmetry groups goes back to Riemann’s formulation of the

manifold concept in his 1854 lecture on the foundations of geometry.

An equivalence class of smooth 1−forms [λ] on a manifold M consists of all hλ

where h is any smooth function M → R−0. Given a smooth finite group action G on M ,

preserving this equivalence class means that there is a homomorphism ε : G→ {−1, 1}

and a λ′ ∈ [λ] such that for any g ∈ G, g∗λ′ = ε(g)λ′. In other words, there is a

representative form λ′ such that g∗λ′ = ±λ′.

There are mostly negative results for orientation reversing group actions. Let

M be a smooth oriented (4n− 1)-manifold. If Z2k, k > 1 acts smoothly but not orien-

tation preservingly on M then there is no contact form on M which is compatible with

this group action. For foliations, there are no compatible codimension 1 foliations on
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S3 with a group action containing an orientation reversing subgroup that is isomorphic

to Z2k, for k ≥ 2.

An equivalent condition for a smooth n−manifold M to have a G-invariant

codimension 1 foliation is that each connected component of each fixed point set has

Euler characteristic zero, where G is an odd order group that acts smoothly on M , with

isotropy groups linearly ordered by inclusion.

The last result is constructive. Let M be a closed smooth oriented 3-manifold

with a smooth orientation-preserving G-action, where G is a group of prime order p.

Then there is a G-invariant contact form θ on M . This form is constructed from an

open-book decomposition, and a branched covering.
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Chapter 1

Introduction

Manifolds are vital in many areas of mathematics and physics, especially gen-

eral relativity. Manifolds are locally Euclidean, but to understand the manifold as a

whole, we have to examine the global properties. There are many ways to look more

closely at a manifold other than simply zooming in. Embedded submanifolds and im-

mersions can determine a lot about the larger manifold. One such way of breaking a

manifold up is a foliation.

1.1 Foliations

Definition 1 A foliation F of an m-dimensional manifold M is a collection of lower

n-dimensional disjoint connected submanifolds, {Li}i∈S called leaves such that their

union is all of M . Locally, they appear as flat n-planes, Rn × {x}, where x is a point

with m−n coordinates. The difference m−n is called the codimension of the foliation.

For any b ∈ M , there is a neighborhood U and local coordinates x = (x1, ..., xm) such

that for any U ∩{L}i, this set can be described by: xn+1 = cn+1, ..., x
m = cm. These are

called local coordinates distinguished by F . A maximal covering of M in local coordinates
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distinguished by F is called a foliated atlas.

A 3-dimensional manifold with a codimension 1 foliation locally looks like a

stack of papers. The union of tangent bundles of the n-dimensional leaves of the foliation

T (F) is an n-dimensional subbundle of the tangent space T (M), called an n-plane

distribution. Locally, a foliation is defined by a family of (m− n) differential 1-forms.

Note that these 1-forms have to be nowhere zero, and at each point in M , linearly

independent. A codimension 1 foliation of a simply connected manifold can be defined

by a single suitable 1-form λ. This λ does so by annihilating the tangent subbundle,

ker(λ) = T (F). There is an equivalence class of forms defining a single foliation. Given

a form λ that annihilates exactly the tangent subbundle of the foliation, any nowhere

zero f ∈ C∞(M) can act on this form by multiplication, and the kernel is preserved

ker(fλ) = ker(λ). For simplicity, a representative will be chosen, and referred to as the

foliation form. A codimension 1 foliation is considered trivial at the boundary of M if

the foliation on the boundry extends to a collared neighborhood of the boundary. The

new leaves will be ∂M × {t} where t ∈ [0, ε] is the collar parameter for a suitably small

positive ε. Which 1-forms on smooth 3-manifolds define a codimension 1 foliation?

Theorem 2 On a smooth 3-manifold, a nowhere zero one form λ defines a codimension

1 foliation if and only if λ ∧ dλ = 0

The proof requires the Frobenius [Fro77] theorem, which gives equivalent con-

ditions for a k-plane bundle to define a foliation.

Theorem 3 (Also the work of A. Clebsch and F. Deahna) Equivalent conditions for

a k-plane distribution E ⊂ T (M) on a smooth manifold M to define a k-dimensional

foliation:
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• E is completely integrable, i.e: ∀x ∈M,∃Lα such that i∗(Tx(Lα)) = Ex

• I∗(E) is a differentiable graded ideal

• d(I1(E)) ⊂ I2(E)

• E is involutive (it’s a Lie subalgebra)

• There is a C∞ foliated atlas on M of codimension q = m− k, where every plaque

is an integral manifold to E

Now, to prove theorem 2, using the Frobenius theorem.

Proof. Define

E = ker(ω) = {X ∈ Γ(TM) : ω(X) = 0}

I(E) = {ω ∈ Λp(T ∗M) : ω(ζ) = 0,∀ζ ∈ Λp(E)}

Note: I(E) is a 2 sided graded ideal.

(=⇒) Claim: I(E) is closed under exterior derivative. E defines a foliation, so

the Frobenius theorem implies I(E) is differentiable. Thus dω = ω ∧ θ. Now, ω ∧ dω =

ω ∧ (ω ∧ θ) = 0

(⇐=) Locally, extend ω to a basis of 1-forms: {ω, α, β}. Then dω = Pα ∧ ω +

Qβ ∧ ω +Rα ∧ β, for functions P,Q,R ∈ C∞(M). Because

ω ∧ dω = ω ∧ (Pα ∧ ω +Qβ ∧ ω +Rα ∧ β)

= 0 + 0 +Rω ∧ α ∧ β

= 0

R must be zero everywhere. Let θ = Pα+Qβ, then dω = ω ∧ θ, and d(I1(E) ⊂ I2(E).
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Definition 4 Let M be a compact manifold. An open book decomposition on M is

a smooth function F : M → C such that:

1. 0 ∈ C is a regular value. Let B = F−1(0). B is an oriented link, and has a

neighborhood U such that F |U is a submersion. B is called the binding.

2. The function f = F
|F | : M −B → S1 is a smooth submersion.

There is a neighborhood U that is diffeomorphic to B ×D2. The fiber Bγ =

f−1(eiγ) is called a page. The closure of a page Bγ is a compact manifold with ∂Bγ = B.

Theorem 5 [Woo70] Codimension 1 foliations exist on all closed oriented 3-manifolds.

This foliation is created from the open book decomposition that [Ale23] proved

exists on any closed oriented 3-manifold. Around each component in the binding C,

there is a neighborhood U ∼= B ×D2 that is a submersion into C. Take a codimension

1 foliation on U to be the Reeb foliation. Explicitly, consider the map

h : U → R

(r, θ, φ) 7→ (1− r2)eφ

where φ is the coordinate along the binding B, and (r, θ) are coordinates for D2. The

fibers of this map are the leaves of the Reeb foliation on U . The fibers of strictly

positive real numbers are the usual leaves that are sometimes called endless snakes

eating themselves. The fiber h−1(0) is the leaf that is diffeomorphic to T 2, and is trivial

at the boundary, h−1(0) = ∂U . Some leaves are depicted in Figure 1.1, including the

leaf h−1(0) ∼= T 2.

The foliation on the outside of U is constructed differently. The leaves will

be the pages outside a neighborhood N ⊃ U . These pages transversely intersect U , so
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Figure 1.1: Reeb foliation of the torus

to accommodate these leaves, inside N , they are spiraled around ∂U . This is a view

where the induced Reeb foliation on D2 appears as concentric circles, the outermost

circle being the leaf that is ∂U = T 2 intersected with D2.

Figure 1.2: A cross-section of the Reeb foliation meeting the page foliation
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1.2 Contact Structures

We saw that a foliation 1-form λ had the property that λ∧ dλ = 0 everywhere

on M . The opposite of a foliation form is a contact structure. A contact structure

corresponds to a 1-form λ on a (2k + 1)-manifold with λ ∧ (dλ)k 6= 0. Such structures

arose in the work of C. Huygens and S. Lie. One particular motivation for studying

symmetric contact structures is their relationship to symplectic structures. The latter

arise in the Lagrange-Hamiltonian approach to classical mechanics, and during the past

two decades symplectic structures have been studied, particularly for 4-manifolds. It

is useful to analyze how such structures can be built out of pieces which are manifolds

with boundary [Gom95]. These boundaries turn out to have contact structures, and

thus compatible symmetric groups of contact structures arise immediately in any study

of symmetric symplectic manifolds that can be built out of pieces. Furthermore, there

has also been a surge of recent activity on contact manifolds, particularly in dimension

3, and it is also natural to analyze how this progress applies to manifolds with symmetry

groups.

A smooth contact form θ annihilates an n-plane bundle, just as a foliation

form does. The action of a nowhere-zero function f : M → R − {0} by multiplication

will preserve the n-plane bundle annihilated by θ because ker(θ) = ker(fθ). Thus an

equivalence class of contact forms will be considered, and a representative will be chosen

as needed.

On smooth 3-manifolds, in addition to the difference between a contact struc-

ture θ and a foliation form λmentioned above, λ∧dλ = 0 6= θ∧dθ, there is another big dif-

ference between these two forms. The kernel of a foliation form ker(λ) = T (F) ⊂ T (M)

is a 2-plane bundle that consists of the union of all tangents to the leaves of a foliation.
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Consider a point x ∈ Li ⊂ M . Taking any smooth path in γ : (0, 1) → M passing

through x with the property that the tangents along γ are contained in T (F) means

that the path must remain on the same leaf Li. This condition on the foliation form λ

is that λ(γ′(t)) = 0 for all t ∈ (0, 1). This effectively partitions M into disjoint leaves

when considering these smooth paths.

A contact structure θ has a kernel E = ker(θ) ⊂ T (M) that is also a 2-

plane subbundle of the tangent space of M . Unlike how a foliation form keeps smooth

paths on a single leaf, partitioning a manifold into leaves, the kernel of a contact form

allows piecewise smooth paths to go from any point to any other point in a 3-manifold,

while keeping the tangents of these paths contained in ker(θ). When a smooth curve

is tangent to the subbundle E in the kernel of a contact form on a 3−manifold, it is

called Legendrian. The standard contact form on R3 is θ = −ydx + dz. To show there

is a path from any point to any other point, we will construct a path from the origin

to any point, then compose it with the reverse of another path from the origin to the

other point. First, begin the path at (0, 0, 0). Notice that we can always travel in the

y-direction, at any point. To change the z-coordinate, move in the y-direction ±(0, 1, 0)

to (0, 1, 0) and then travel in the direction ±(1, 0, 1) until the desired z-coordinate is

reached. Travel back to the y = 0-plane in the direction ±(0,−1, 0). Then travel to

the proper x-coordinate along ±(1, 0, 0). Then finally to the proper y-coordinate along

±(0, 1, 0). In general, there is a Legendrian path between any 2 points in a connected

manifold [EF08], and references cited there.

Proposition 6 Given a smooth function h : M → R−{0} acting on forms by multipli-

cation. If λ is a foliation form a smooth 3-manifold, then hλ is also a foliation form on

M . If θ is a contact form on a smooth (2n+ 1)−manifold M then hθ is also a contact
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form on M .

Proof. Since λ 6= 0 and θ 6= 0 on all of M , hλ 6= 0 and hθ 6= 0 on M .

Computing the foliation form first,

hλ ∧ d(hλ) = hλ ∧ [(dh ∧ λ) + (hdλ)]

= hλ ∧ dh ∧ λ+ h2λ ∧ dλ

= 0 + 0

we see that hλ ∧ d(hλ) = 0, so hλ is a foliation form on a 3-manifold.

As a contact form, θ has the property that θ ∧ (dθ)n 6= 0. Computing this for

hθ yields

hθ ∧ [d(hθ)]n = hθ ∧ d(hθ) ∧ [d(hθ)]n−1

= hθ ∧ (dh ∧ θ + hdθ) ∧ [d(hθ)]n−1

= (hθ ∧ dh ∧ θ + hθ ∧ hdθ) ∧ [d(hθ)]n−1

= (0 + h2θ ∧ dθ) ∧ [d(hθ)]n−1

...

= hn+1θ ∧ [dθ]n

6= 0

showing that hθ is a contact form on M .

Frequently, given a metric on the cotangent bundle, the form that will be chosen

to represent a foliation form or a contact form will be the one with unit length. This

metric is needed, especially in the following section. These results are used through the

remainder of the paper, so all manifolds are assumed to be Riemannian.
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1.3 Group Actions and Compatible Forms

A smooth group action G on M is said to be compatible with a foliation if

it simply permutes the leaves, g(Li) = Lj for any g ∈ G. This is to say that each

leaf maps exactly to itself, or another leaf. Note that points within the leaf may not

be fixed, yet the leaf may map to itself. When the foliation is defined by a 1-form,

this compatibility with a group action can be examined using just this form. This also

works for contact 1-forms. Preserving a smooth 1-form λ amounts to preserving the

hyperplane field annihilated by λ. This preservation of the form means that at x ∈M ,

the tangent space map T (g) maps the hyperplane Ex at x ∈M to the hyperplane, Eg(x)

at g(x). This condition means that for each g ∈ G, there is a nowhere zero function

h : M → R such that g∗λ = hλ, as this preserves the hyperplane field annihilated by

λ. When M is connected, h is either always positive or negative. This compatibility

condition can also be examined using equivalence classes. A form λ is preserved by a

smooth group action G if any g ∈ G maps λ into its equivalence class. In other words,

Gλ ⊂ [λ].

Proposition 7 Suppose a finite group G acts smoothly on a smooth connected Rie-

mannian manifold M , and H is a smooth hyperplane field on M which is G-invariant.

Let [λ′] be the equivalence class of nowhere zero forms that annihilate H. Then there

is a λ ∈ [λ′] such that g∗λ = ±λ, for any g ∈ G. Also there is a homomorphism

ε : G→ {−1, 1} such that g∗λ = ε(g) · λ.

Proof. Averaging the Riemannian metric L on the cotangent bundle, define a

new metric

|λ| = 1

|G|
∑
g∈G

L(λ, λ).
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This metric is invariant under the action of G on T ∗M . There is a form λ ∈ [λ] such

that |λ| = 1. One such form is λ′

|λ′| . By construction |g∗λ| = |λ| = 1 for all g ∈ G.

Since G preserves the hyperplane field, we have G∗λ = hgλ for some nowhere

zero function hg : M → R. Combining this with the preceding calculations,

|hg| = |hg||λ| = |hgλ| = |g∗λ| = 1

so that hg(x) = ±1 for all x ∈M . Since M is connected, hg must be constant, call this

constant ε(g).

There is such a constant function ε for each g ∈ G. Let ε : G → {−1, 1} be

the function associated to g. Claim: this assignment is a homomorphism. Take any

g1, g2 ∈ G,

ε(g1g2)λ = (g1g2)∗λ

= g∗2(g∗1λ)

= g∗2(ε(g1) · λ)

= ε(g1)(g∗2λ)

= ε(g1)ε(g2)λ

then ε(g1g2) = ε(g1)ε(g2), and this assignment is a homomorphism.

Contact structures will be defined to be compatible with a group action in a

similar fashion to foliation forms.

Definition 8 An equivalence class [θ′] of smooth contact structures on a smooth mani-

fold M is compatible with a smooth group action G on M if there exists a homomorphism

ε : G→ {−1, 1} such that for some θ ∈ [θ′] and any g ∈ G, g∗θ = ε(g)θ. An equivalent

condition is that G[θ′] ⊂ [θ′], where the G-action is a pullback.

Now we examine a specific foliation preserved by a finite linear group action.
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Example 9 A finite group G acts linearly on R4. Let x, y ∈ R2 × R2. Define a new

inner product:

< x, y >=
1

|G|
∑
g∈G

< gx, gy >R4

where < ·, · >R4 is the standard inner product on R4. Now, G acts orthonormally.

Specifically, G acts as diffeomorphisms on S3 ⊂ R4. Denote S(X) be the unit ball in X.

G acts on R4 = R ⊕ L ⊕W , in a decomposable way. Let (x, y) ∈ S(R2 ⊕ R2)

such that |x|2 + |y|2 = 1

S(R⊕ L⊕W ) =

S(R⊕ L)×D(W ) ∪S(R⊕L)×S(W ) D(R⊕ L)× S(W ) =

{(x, y) : |y| ≤ |x| ≤ 1} ∪{(x,y):|x|=|y|= 1√
2
} {(x, y) : |x| ≤ |y| ≤ 1} =

The open book decomposition is defined in the following way:

The binding, B = {(x, y) : |y| = 0} = S(R⊕ L)× {0} = S(R⊕ L) and map,

π : S(R⊕ L⊕W )−B → D(R⊕ L)× C

(x, y) 7→ (x, y)

Where the open book map F is just (x, y) 7→ y
|y| . Now, G preserves the binding, and the

boundary torus S(R⊕L)× S(W ), since they are defined using only the norms of x and

y.

If G is any subgroup of the torus group T 2 acting as described above, then the

Reeb foliation F , of S3 is compatible with the standard linear action of G ⊂ T 2 ⊂ U2 on

S3. This action preserves the leaf S(R⊕L)×S(W ), as it is defined using only the norm.

The snake-like Reeb leaves on S(R⊕L)×D(W ) are either spun, which preserves them,

or permuted. They are permuted when a group element acts on the first coordinate, and
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spun when a group element acts on the second coordinate. The group elements acting

on both coordinates will both spin and permute these leaves. The 2-sheets that foliate

D(R ⊕ L) × S(W ) are spiraled around S(R ⊕ L) × S(W ). If a group element acts on

the first coordinate, these sheets are permuted. If a group element acts on the second

coordinate, then these sheets are translated to themselves, preserving each of these leaves.

And again for group elements that change both coordinates, these leaves are permuted

and translated.

Free actions and compatible foliations on smooth closed manifolds are easy to

pair up. For a free G-action, any foliation F on M/G can be lifted back to a foliation on

M , with the same codimension. This is a consequence of the inverse function theorem.

In the 3-dimensional case, the same is true for contact structures.

Theorem 10 Let G be a discrete group acting smoothly and freely on a smooth 3-

manifold M such that M/G is also a smooth manifold, and q : M →M/G is a submer-

sion. A G-compatible codimension 1 foliation exists on M if a codimension 1 foliation

exists on M/G. A G-compatible contact form exists on M if a contact form exists on

M/G.

Proof. Let λ be a foliation form on M/G, and let θ be a contact form on

M/G. Also let q : M →M/G be the quotient map. If a 1-form is nowhere zero on M/G

then it is also nowhere zero on M , because the pullback q∗ is injective. The pullbacks

q∗λ and q∗θ are G-invariant since g∗q∗ = (qg)∗ = q∗. Now we check if the pullbacks are

a foliation form and contact form,

λ ∧ dλ = 0 6= θ ∧ dθ

q∗(λ ∧ dλ) = 0 6= q∗(θ ∧ dθ)

q∗(λ) ∧ d(q∗(λ)) = 0 6= q∗(θ) ∧ d(q∗(θ)).

12



Thus, q∗(λ) is a G-invariant foliation form on M if λ is a foliation form on M/G.

Likewise, q∗(θ) is a G-invariant contact form on M if θ is a contact form on M/G.

Contact structures exist on all closed orientable 3-manifolds. Thurston and

Winkelnkemper [Thu75] have a constructive proof where they create the form from an

open book decomposition. We will create a contact structure in a much more careful

fashion so that it is compatible with the group action. In some cases, smooth group

actions have compatible contact structures and in other cases there are no compatible

contact structures.

1.4 Local Results on Tangency and Transversality

The finite group G acts smoothly on a smooth 3-manifold M . We saw earlier

that if this G-action preserves a codimension 1 foliation, then there is a foliation 1-form

λ such that any g ∈ G, g∗λ = ±λ. We will now consider the implications of this action

near a fixed point set. Since we are looking at the action locally, assume that M is

connected. The fixed sets considered are of strictly positive dimension, so they have

a non-trivial tangent space. Singular fixed point sets are not considered in this paper.

Let N ⊂ M be the fixed point set of G, and let x ∈ F be any point fixed by G. These

hypothesis and variables are used in the next two theorems.

Theorem 11 If g∗(λ) = λ for all g ∈ G, then the fixed point set must be transverse to

the leaves.

Proof. Since transversality is a local property, it is enough to examine a fixed

point, and restrict to an invariant open neighborhood on which the action is orthogonal.

We will also use the isomorphism between forms and vector fields associated to a specified
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invariant Riemannian metric. Without loss of generality, the fixed point set is the 0 in

the orthogonal representation V .

Consider the image of the vector field Xω ↔ ω in the tangent space T (V ) ∼=

V × V . The condition g∗ω = ω translates into saying that X(v) = (v, ϕ(v)) where

ϕ : V → V G and v ∈ V G.

This means that ϕ(v), which is normal to the leaf Lv through v, is also tangent

to the fixed set V G ⊆ V , so that Lv and V G meet transversely.

Theorem 12 If g∗(λ) = −λ for some g ∈ G, then the fixed point set must be tangent

to the leaves. This is to say that each connected component will be contained in some

leaf.

Proof. Suppose that there is a connected component C of the fixed point set

not contained in a leaf. C is fixed by G thus so is its tangent space T (C). C must

intersect some leaf L. Take x ∈ C ∩ L. Because C is not contained in L, there must be

some Y ∈ Tx(C) such that λ(Y )x 6= 0. Now the pullback is computed using a g ∈ G

such that g∗(λ) = −λ.

g∗λ(Y )x = λ(g∗Y )g(x)

−λ(Y )g(x) = λ(Y )g(x)

−λ(Y )x = λ(Y )x

This is a contradiction since these quantities are both non-zero. Therefore, there cannot

be fixed connected components that are not contained in a leaf. This means that all

connected fixed components are contained in leaves, making the fixed point set tangent

to the leaves.

Example 13 Suppose we are given a faithful representation of a finite group, G acting
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on a real 3-dimensional vector space, V . Then it is easy to check that codimension 1

foliations and contact structures exist if and only if V can be written as a direct sum

of a 2−dimensional and 1−dimensional representation W ⊕ L. The leaves are W × {l}

for l ∈ L. On the other hand, if G is the symmetry group of a regular polyhedron, such

as a cube, tetrahedron, or dodecahedron, then no such structures exist because every

faithful representation is irreducible. On the other hand, if G is abelian or dihedral,

then they always exist. This is because the action can be split into a 2−dimensional and

a 1−dimensional representation.

1.5 General background material

On a Riemannian manifold, M , the metric tensor, gp : TpM × TpM → R

induces and isomorphism between 1-forms and vector fields. A nowhere zero vector field

corresponds to a nowhere zero 1-form. The existence of one implies the existence of the

other, which will frequently be used.

Theorem 14 (Poincaré-Hopf) [Mil65] Let M be a closed connected oriented n-manifold.

Let ξ be an oriented n-plane bundle. χ(ξ) = 0 ⇐⇒ ∃ non-vanishing section of ξ.

When ξ = TM , since ξ is a fiber bundle with contractable fiber, F = Rn ∼=

point thus, χ(Rn) = 1. Now, χ(TM) = χ(M)χ(F ) = χ(M). So, χ(M) = 0 ⇐⇒ ∃

non-zero vector field, or form.

The relative version of this theorem will also be used:

Theorem 15 Relative Poincaré-Hopf [Jub09]: (M,∂M) is compact, and X is a vec-

tor field on M such that X|∂M is inward pointing with respect to some collar, then

index(X) = ±χ(M,∂M)
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By rotating this inward pointing vector field near the boundary such that

X|∂M is tangent to ∂M , we have a similar version of this theorem, which will be used

extensively.

Given a non-vanishing vector field defined on ∂M , this can be extended to a

non-vanishing vector field on M exactly when χ(M,∂M) = 0. Now, the existence of a

non-vanishing vector field on ∂M implies that χ(∂M) = 0, thus to extend X to all of

M , all that is needed is χ(M) = 0.

Lastly, the Euler characteristic will be computed over a covering space, and

the following theorem is needed.

Theorem 16 If p : M → N is an n-sheeted covering, then χ(M) = n · χ(N).
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Chapter 2

Orientation Reversing Group

Actions

There are no compatible foliations or contact structures for group actions with

an orientation reversing subgroup Z2k on 3-manifolds for k ≥ 2. Foliations will be

examined first, followed by contact structures. Assume all group actions are effective.

2.1 Contact Structures and Orientation Reversing Group

Actions

This theorem will only be used in the 3-dimensional case, but it is presented

here in it’s generality.

Theorem 17 Let M be a smooth oriented (4n−1)-manifold. If Z2k, k ≥ 2 acts smoothly

but not orientation preservingly on M then there is no contact form on M which is

compatible with this group action.

Proof.
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If M is not connected, reduce the general case to the connected case by con-

sidering each connected component separately. For simplicity, call each connected com-

ponent M .

For effective Z2k actions, the free orbits are open and dense by local linearity.

The proof considers the case when G acts freely. In the non-free case, let M0 ⊂ M be

the set of points on free orbits. M0 is open and dense. If there was a compatible contact

form on M , it would restrict to a compatible contact form on M0, which will be shown

to not exist.

Consider the orbit manifold M∗ = M/Z2k. M∗ is orientable exactly when

there exists a nowhere zero (4n − 1)-form. Suppose that there is such an orientation

form Ω, a section of Λ4n−1(M∗). Its pullback p∗Ω ∈ Γ(Λ4n−1(M)) is also nowhere zero.

p∗Ω is fixed for any g ∈ Z2k because g∗p∗Ω = (pg)∗Ω = p∗Ω. Now let g0 ∈ Z2k be

an orientation reversing generator. The space of sections of Λ4n−1(M)is isomorphic to

C∞(M). Since Z2k acts orientation reversingly, and the action of g0 on Γ(Λ4n−1(M))

is simply the multiplication of a real valued function h ∈ C∞(M) that is negative

everywhere. Consider g∗0 on p∗(Ω),

g∗0p
∗Ω = h · p∗Ω

p∗Ω = h · p∗Ω.

Since h < 0 everywhere, this is impossible, and thus such an orientation form Ω cannot

exist on M∗. Therefore, M∗ cannot be oriented.

Suppose that there is a contact structure compatible with the action of G.

Then there is a contact form θ on M and a homomorphism ε : Z2k → {−1, 1} such that
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g∗θ = ε(g)θ for any g ∈ Z2k.

g∗(θ ∧ (dθ)2n−1) = g∗θ ∧ (dg∗θ)2n−1

= ε(g)θ ∧ (dε(g)θ)2n−1

= (ε(g))2nθ ∧ (dθ)2n−1

= θ ∧ (dθ)2n−1

This form is contact, so the pullback form g∗(θ ∧ (dθ)2n−1) = θ ∧ (dθ)2n−1 is nonzero,

and thus is also a contact form, which is invariant under Z2k.

Claim 18 Let p : N ′ → N be a smooth regular covering of smooth n-manifolds with

deck transformation group D. The map p∗ : Λ∗(N)→ Λ∗(N ′) is injective and its image

is all forms fixed under g∗, for any g ∈ D.

Proof.

The map p is a smooth submersion, so p∗ is injective. Take any g ∈ D, then

p ◦ g = p making g∗(p∗ω) = (pg)∗ω = p∗ω. Thus Im(p∗) contains only D-invariant

forms. Now we show all D-invariant forms are contained in the image.

Take any ω ∈ Γ(T ∗(N ′)) such that g∗ω = ω for all g ∈ D. We will construct a

θ ∈ Γ(T ∗(N)) such that p∗θ = ω.

Case I: N ′ → N is evenly covered. Then N ′ ∼= N ×D, and we will use this

second formulation of N ′. Take any g ∈ D, then

g : N ×D → N ×D

(x, a) 7→ (x, ga)

Let ωg be the restriction of ω to N ×{g}, then ωg = g∗(ωe), where e ∈ D is the identity.

Therefore, ω = p∗(θ) where θ ∈ D∗(N), such that θ = ωe via the diffeomorphism

N ∼= N × {e}.
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Case II: N ′ → N is not evenly covered. Take an open covering {Uα} of N

such that Uα is diffeomorphic to an open set in Rn, and Uα is evenly covered for all α.

Let ωα be the restriction of ω to p−1[Uα].

Case I implies that there exists θα on Uα such that p∗(θα) = ωα, because ωα is

D-invariant. There is a θα for each α, but they need to fit together properly, so they fit

together to make a 1-form that will pullback to ω. This compatibility condition is that

θα|Uα∩Uβ = θβ|Uβ∩Uα . The pullback function p∗ is injective, so if these forms pullback

to the same form, then they must be equal.

p∗(θα|Uα∩Uβ ) = ωα|p−1[Uα∩Uβ ] = ω|p−1[Uα∩Uβ ] = ωβ|p−1[Uα∩Uβ ] = p∗(θβ|Uα∩Uβ )

This is indeed that case, so θα|Uα∩Uβ = θβ|Uβ∩Uα , and we get a well-defined form θ on N .

To ensure p∗(θ) = ω, it suffices to check locally, on each p−1[Uα]. By the construction

of θ, this is true.

From this claim, θ ∧ (dθ)2n−1 must be a pullback from Λ
4n−1

(M∗). So it is

a nowhere (4n − 1)-form that is a pullback from an orientation form. There are no

orientation forms on M∗, so there can not be any contact forms on M compatible with

the Z2k action.

2.2 Foliations and Orientation Reversing Group Actions

Now foliations and orientation reversing group actions are considered.

Remark 19 Before considering negative results, there are codimension 1 foliations

compatible with a smooth Z2k action. For example, let L and W be nontrivial rep-

resentations of Z2k, with dimensions 1 and 4n− 2 respectively. Then, L⊕W , which is

homeomorphic to R4n−1 as a manifold, has the product foliation {v}×W , where v ∈ L.
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The incompatibility of codimension 3 foliations on S3 and orientation reversing

Z2k actions will now be constructed.

Example 20 The Klein bottle, K can be viewed as S1 × S1/Z2, where Z2 acts freely

by:

F (z, w) = (−z, w̄),

where K fibers over S1 ∼= S1/Z2, via:

K → S1/Z2 = S1

[z, w] 7→ [z] .

Consider the nowhere zero vector field on S1×S1 defined by ∂
∂θ , where ∂

∂θ and

∂
∂φ generate the vector fields on S1 × S1 respectively. The integral curves of ∂

∂θ are of

the form S1 × {c} where c ∈ S1, and these define a codimension 1 foliation of S1 × S1.

Look at the image of this foliation in K. It defines a codimension 1 foliation in K that

is transverse to the fibers of the circle bundle K → S1. If c 6= ±1, then S1 × {c} maps

1-1 into a leaf, L such that L→ S1 has degree 2, and if c = ±1 then S1×{c} maps 2-1

onto a leaf L such that L → S1 has degree 1. Visually, this is two copies of the usual

foliation on the Mobius strip, joined on their boundaries:

Figure 2.1: A leaf in two mobius strips joined on their boundaries

where the dotted lines are a leaf that wraps around S1 twice.
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Does this foliation extend to the solid Klein bottle? The solid Klein bottle can

be viewed as:

S1 ×Z2 D
2 ∼=

[
S1 ×D2/(z, w) ∼ (−z, w̄)

]
Claim 21 The answer is no.

Claim 22 This implies that if Z2k acts orientation reversingly and linearly on S3, then

there is no codimension 1 foliation compatible with the action.

Note that if k > 1, then the fixed point set of the group is S0, while if k = 1

then it is S2 or S0. It is only necessary to to consider the S0 case here because the S2

case is easily shown to have no compatible foliations. If the fixed point set of Z2k is S2

then the foliation F is either transverse to the fixed point set, or it is tangent. In the

transverse case, codimension 1 foliation induces a codimension 1 foliation on S2. By the

Poincaré-Hopf Theorem, the existence of this foliation implies that χ(S2) = 0, and this

is not true. In the tangent case, S2 must be contained in a leaf, L. Both S2 and L are

connected 2-manifolds, and S2 is open in L. Therefore, S2 = L. Let T = 2-plane bundle

of tangents to the leaves of the foliation F , so T is a subbundle of T (S3). Restricting

T to S2, T |S2 = T (S2). The Euler classes satisfy χ(T ) = 0 ∈ H2(S3), but χ(T |S2) 6= 0.

Thus the fixed point set cannot be S2.

Theorem 23 The codimension 1 foliation on the hollow Klein bottle does not extend to

the solid Klein bottle. More specifically, the 1-dimensional normal bundle to the leaves

of this foliation does not extend to a line bundle on the solid Klein bottle.

Proof. The normal bundle to the foliation on the Klein bottle can be presented as the

image of the subbundle of

T (S1 ×D2) ∼= S1 ×D2 × R3 ∼= S1 ×D2 × R× C
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of all elements taking the form: (z, w; 0,−iwt) for t ∈ R. Let ξ be this subbundle. ξ is

invariant under:

F ∗ : T (S1 ×D2) → T (S1 ×D2)

(z, ω, s, ζ) 7→ (−z, ω, s, ζ).

Looking at the subbundle: F ∗(z, ω, 0,−iωt) = (−z, ω, 0,−iωt) = (−z, ω, 0, iωt).

Hence, the normal bundle to the foliation is just S1 × S1 ×R modulo the identification

(z, ω, t) ∼ (−z, ω,−t)

We will verify that this line bundle embedding does not extend to a line bundle

embedding of the solid Klein bottle: S1 ×Z2 D
2.

Since H1(S1)→ H1(K) is a monomorphism with Z2 coefficients and the bundle

over K extends to S1×Z2D
2, it follows that there is an unique extension to a line bundle

over the solid Klein bottle.

Equivalently, we need to check that the Z2 equivariant vector bundle embedding

of

S1 × S1 × R→ S1 ×D2 × R× C

does not extend to a Z2−equivariant vector bundle embedding of

S1 ×D2 × R→ S1 ×D2 × R× C.

Suppose such an embedding exists, and look at its restriction to D1
+×D2×R ∼=

[0, π]×D2 × R.

We then get a map

ϕ : [0, π]×D2 × R → R× C

(θ, z, t) 7→ (t, z)
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Figure 2.2: Restricted domains of the Z2−equivariant embedding

Also, the restriction to [0, π] × D2 × {1} is non-zero, and the restrictions to

{0} ×D2 × {1} and {π} ×D2 × {1} are linear on the fibers, so they are related by the

identification condition:

ϕ(θ, ω, t) = tϕ(θ, ω, 1) = tϕ0(θ, ω)

where

ϕ0 : [0, π]×D2 → R× C

(θ, ω) 7→ ϕ(θ, ω, 1).

Now because (0, ω, t) ∼ (π, ω,−t), we have ϕ0(0, ω)t ∼ −ϕ0(π, ω)t for all ω, t.

On the other hand, equivariance implies that we have a commutative diagram

{0} ×D2 × R

const×conj×−1
��

ϕ // R× C

id×conj
��

{π} ×D2 × R ϕ // R× C

so that −ϕ0(π, ω)t = Aϕ0(0, ω)t. conj is the conjugate map, and const is the

constant map, and A is

A : R× C → R× C

(θ, ω) 7→ (θ, ω).

Thus ϕ0(π, ω) = −Aϕ0(0, ω).
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Let’s look at the restriction of ϕ0 to S2 ∼= ∂([0, π]×D2) more closely. This is

homotopic to a map from S2 to S2, and since ϕ0 extends to [0, π] × D2, which is the

interior of S2, its degree must be zero.

On [0, π] × S1 the map sends (s, ω) to (s,−iω), so we can deform it so that

it sends [π2 − δ,
π
2 + δ] × S1 into a belt around the equator in S2 in the obvious diffeo-

morphic fashion for some δ > 0. Visually the map is where the tropical zone is mapped

diffeomorphically, as in Figure 2.3.

Figure 2.3: Restriction of ϕ to S2

The maps on the top and bottom disks are equivariant by the formula ϕ0(π, ω) =

−Aϕ0(0, ω). In other words, we have diffeomorphisms α and β of D2 and S2 such that

g = βαf , where f = ϕ0|∂([0,π]×D2
+) and g = ϕ0|∂([0,π]×D2

−). In other words, f is the re-

striction of ϕ0 on the northern hemisphere, and g is the restriction of ϕ0 to the southern

hemisphere. Over the topical zone, there is a single preimage of this regular value.

Claim 24 f and g make equal contributions to the mod 2 degree.

Proof. View S2 ∼= ∂([0, π] × D2) as the unit sphere in R ⊕ C. The equator

is {0} × S(C), the north and south poles are {±1, 0, 0}. To simplify notation, let NH

be the northern hemisphere with x1 > 0, SH be the southern hemisphere with x1 < 0,
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and TZ be the tropical zone with −δ < x1 < δ. Let h be ϕ0 smoothly deformed so that

h|TZ is a diffeomorphism.

Define Y = h−1[{y}. Then Y ∩TZ = {pt} that lies on the equator, and because

the tropical zone is mapped diffeomorphically,

(Y ∩NH) ∩ (Y ∩ TZ) = ∅ = (Y ∩ SH) ∩ (Y ∩ TZ).

Also (Y ∩NH)∩ (Y ∩SH) ⊂ NH ∩SH = ∅. Thus, the three sets are pairwise disjoint,

open in Y , and their union is Y . Hence, they are also closed, but Y ⊂ S2 is compact,

so each of these closed subsets are also compact. Thus, Y := h−1[{y}] is a union of

pairwise disjoint open-closed subsets Y ∩ NH, Y ∩ SH and Y ∩ TZ. Therefore, Y is

a union of three pairwise disjoint open-closed compact subsets Y ∩ NH, Y ∩ SH and

Y ∩ TZ.

The local degrees of the restrictions h|NH , h|SH and h|TZ at y ∈ {0} × S1 are

definable. Using the additive properties of local degrees [Dol80] we have

deg(h) mod 2 = loc degy(h) mod 2

= loc degy(h|NH) + loc degy(h|SH) + loc degy(h|TZ) mod 2

Since h|TZ is a diffeomorphism on its image, the second term must be ±1. Thus, mod

2 it equals 1.

It will suffice to show that loc degy(h|NH) mod 2 = loc degy(h|SH) mod 2 for

some y on the equator.

The restrictions of h to NH and SH are related by the identity ϕ0(π,w) −

−Aϕ0(0, w). This implies loc degy(h|SH) mod 2 = loc deg−Ay(h|NH) mod 2. Therefore,

the mod 2 local degrees are equal if y = −Ay. By construction −Ay = −y, so a y is

needed so that y = −y. This is true for y = ±i, and for this choice, the local degrees will
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be the same mod 2. When they are added, loc degy(h|NH) + loc degy(h|SH) mod 2 = 0.

Therefore

deg(h) mod 2 = 0 + loc degy(h|TZ) mod 2 = 1 mod 2

h and thus ϕ0 on the northern hemisphere and the southern hemisphere contribute

equally to the degree mod 2.

Hence, the local degree is odd, and the degree of the map is odd. The degree was

also shown to be even, so this is a contradiction. Therefore, the line bundle embedding

over K does not extend to the solid Klein bottle, S1 ×Z2 D
2.

Conclusion 25 Application to Foliations

Suppose we have a codimension 1 foliation on S3 that is compatible with a

linear, orientation reversing Z2k-action.

Display the action of Z2k on S3 via some representation R ⊕ L ⊕W , where

Z2k acts trivially on R, non-trivially on L, with dimension 1, and by rotation on the

2-dimensional vector space W . Take the usual splitting

S(R⊕ L⊕W ) = (S(R× L)×D(W )) ∪∂ (D(R× L)× S(W ))

where each piece on the right hand side is a solid torus, and the orbit space of the second

piece is a solid Klein bottle. For convenience, call the first torus: S(R×L)×D(W ) the

inner torus, and the second torus, D(R× L)× S(W ) the outer torus.

Theorem 26 Let G be a finite group acting smoothly on Mn, and let F be a compatible

codimension 1 foliation on Mn. Suppose that g : V k → Mn is a smooth equivariant
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embedding which is transverse to the leaves of F , and that g[V ] is closed. Then there is

a closed tubular neighborhood E of V k such that:

1. ∂E is transverse to the leaves of F such that F determines a pair of codimension

k foliations on (E, ∂E)

2. the leaves of (E, ∂E) are the fibers of the projections of E and ∂E to V .

Proof. Let TL(M) ⊂ T (M) be the subbundle of tangents along the leaves of

M , and take a suitable G-compatible spray on T (M). Near g[V ], define the metric on

this spray to be an orthogonal direct sum of a metric on T (V ) and a metric on TL(M).

Near g[V ], this metric makes the fibers of the tubular neighborhood totally geodesic

submanifolds.

From the hypothesis, the normal bundle to g[V ] is equal to TL(M)|g[V ]. By con-

struction, an invariant tubular neighborhood is G-diffeomorphic to an invariant neigh-

borhood of the 0-section and the diffeomorphism is given by the spray’s exponential

map, exp. The exponential map sends a vector w ∈ TL(M)|g[V ], which projects to

v ∈ V , into a point w′ such that w′ and g(v) are joined by a geodesic whose initial

condition is w ∈ TL(M)|g[V ]. Since the fibers are totally geodesic and TL(M) is the

bundle of tangents along the fibers of E and along the leaves of F , it follows that w′ lies

in the leaf of F containing g(v).

By the invariance of domain and the inverse functions theorem, it follows that

the image of exp contains an open neighborhood of g(v). Hence locally, the points in

Ev correspond to points in Lg(v) and conversely.

Transversality to the boundary implies that ∂E will be transverse to the leaves

if chosen to be sufficiently close to the zero section.
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By the preceding construction, the foliation can be isotoped so that it is a

product foliation given by {pt}×D(W ) on the inner torus. So on the boundary, S(R⊕

L)× S(W ) the foliation is {pt} × S(W ). This is also the boundary of the outer torus.

Let Z2 = G/H be the quotient of G by all of the orientation preserving ele-

ments. The foliation passes to the orbit space, S(R×L)× S(W )/Z2k
∼= S1 × S1/Z2k

∼=

S1×S1/Z2 which is a Klein bottle. The leaves of this foliation are just as in the foliation

of the Klein bottle at the start of this chapter. The image of this foliation on the orbit

space of the outer torus, S1 × D2/Z2 cannot exist. This is a contradiction, thus the

following theorem is proved,

Theorem 27 There are no compatible codimension 1 foliations on S3 with a group

action containing an orientation reversing subgroup that is isomorphic to Z2k, for k > 1.
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Chapter 3

Increasing Isotropy Subgroups

and Foliations

The odd order finite group G acts on a smooth manifold M . Assume that all

of the subgroups Hi of G are linearly ordered and normal. Let H ⊆ G be the maximal

isotropy subgroup. Let MH , the fixed point set of H, which has a free G/H-action

because H CG.

Theorem 28 Let G be an odd order abelian group acting on a smooth n-manifold, with

isotropy groups linearly ordered by inclusion. If there is a compatible codimension 1

foliation, then this foliation must be transverse to any 1-dimensional fixed point sets.

Proof. Let C be a 1-dimensional fixed point set of G. For any p ∈ C, the

tangent space Tp(C) must be fixed by any g∗, with g ∈ G.

From representation theory of finite groups, every irreducible real representa-

tion of the odd order group G comes from a complex representation and hence is even-

dimensional [FH91]. Every real representation of H is a direct sum of irreducible rep-

resentations, so Tp(M) is a direct sum of a trivial representation, and even-dimensional
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irreducible representations. Thus, the fixed subspace Sp of Tp(M) must be 1-dimensional

and lie in Tp(C). Considering the dimensions, dim(Tp(C)) = 1 = dim(Sp), the spaces

must then be equal.

Let λ ∈ Λ1(M) be a unit length 1-form defining the invariant foliation. G

being odd order implies that g∗(λ) = λ. In other words, ε(g) = 1 for all g ∈ G. Using

a riemannian metric, let ω be the dual of λ. G preserves λ, and thus also ω. Therefore,

ω ∈ Tp(C) and the foliation must be transverse to the fixed point set C.

Theorem 29 Suppose G is an odd order group that acts smoothly on a smooth n-

manifold M , with isotropy groups linearly ordered by inclusion. Each connected compo-

nent of each fixed point set of each isotropy group has Euler characteristic zero if and

only if M has a G-invariant codimension 1 foliation.

In the case of a 3-manifold, the fixed point sets must be a link L, and χ(L) = 0

automatically.

Suppose there is a line bundle over a smooth manifold C which may or may

not be trivial. Line bundles are classified by elements of H1(C;Z2) or equivalently by

homomorphisms π1(C) → Z2. If the line bundle is trivial then it is the image of a

nowhere zero vector field and thus χ = 0 by the Poincaré-Hopf theorem. If it is not

trivial, let C ′ be the 2-sheeted covering associated to the kernel of the homomorphism

π1(C)→ Z2. Then the pullback of the line bundle to C ′ is trivial and hence χ(C ′) = 0

by the Poincaré-Hopf theorem. Since χ(C ′) = 2χ(C), we again get χ(C) = 0 even if the

line bundle is nontrivial.

Proof. (⇐)

Let p ∈ M with a non-minimal isotropy subgroup H. The component C of

MH containing p is a proper smooth submanifold. Suppose that on some invariant
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neighborhood of p the foliation is defined by a suitable 1-form λ. G acts linearly on

Tp(M), and the fixed point set of this action on the tangent space is Tp(C). The

subspace Sp ⊂ Tp(M) spanned by a vector field dual to λ(p), with respect to some

invariant metric, will be H-invariant, and 1-dimensional.

This means that the leaves of the foliation must be transverse to C, and hence

define a codimension 1 foliation of C. The normal bundle to the leaves of this restricted

foliation on C must then define a 1-dimensional vector subbundle of T (C). The existence

of this subbundle implies that χ(C) = 0, by the preceding discussion.

(⇒)

This is an inductive argument. The base case is very similar to the inductive

step, so they will both be presented together. All fixed point sets are connected and the

isotropy subgroups are all normal and linearly ordered by inclusion. For each isotropy

subgroup H, let σ(MH) ⊂MH be the singular set of all points whose isotropy subgroups

strictly contain H.

Base case: Let H be the maximal isotropy subgroup. Since there are no

points whose isotropy subgroups strictly contain H, σ(MH) will then be empty, and

have the empty foliation which is trivially compatible with any group action. Note, if

MG is nonempty, then the maximal isotropy subgroup is the entire group, G.

Inductive step: Let H be a non-maximal isotropy subgroup. The inductive

hypothesis is that there is a codimension 1 foliation compatible with the G-action on

σ(MH). In either case, the foliation on σ(MH) will then be extended to a compatible

foliation on MH .

σ(MH) is a connected G-invariant smooth submanifold of MH , so it has an

invariant closed tubular neighborhood N with boundary ∂N .
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Assume there is a compatible codimension 1 foliation on σ(MH) such that

the bundle of normals to the leaves is the trivial line bundle. Using the submersion

N → σ(MH), pull this foliation back to N . Now we have a codimension 1 foliation on

N that is invariant under H. This foliation extends to a foliation on an open tubular

neighborhood W ⊃ N . Call this foliation F . By construction, the normal bundle to the

leaves will also be trivial.

Let P be obtained from MH by cutting out the interior of N , so that ∂P = ∂N .

Then G acts on P with a single isotropy subgroup, H and

G/H → P → P/G

is a principle bundle. The compatible foliation yields a codimension 1 foliation on an

invariant collar neighborhood of the orbit manifold ∂N/G, and again the normal bundle

to the leaves will be trivial, so that it corresponds to a nowhere zero vector field X on

∂P/G. In order to proceed, this foliation must be extended to all of P/G. It suffices to

extend the normal vector field to the leaves on a neighborhood of ∂P/G = ∂N/G to a

nowhere zero vector field over all of P/G.

The Law of Vector Fields due to M. Morse [Mor29], allows X to be extended

to all of P/G, if χ(P/G) = 0. Since P is a finite covering of P/G,

χ(P ) = χ(P/G)|G|

so it suffices to show that χ(P ) = 0.

If σ(MH) is empty, then χ(σ(MH)) = 0. If σ(MH) is not empty, then

σ(MH) = MK for some isotropy subgroup K properly containing H. So, σ(MH) is

a closed manifold that has a nowhere zero vector field because ∂N → σ(MH) is a

submersion. Therefore we have

0 = χ(σ(MH)) = χ(∂N)
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On the other hand, χ(MH) = 0. Using excision

χ(P, ∂N) = χ(P, ∂P ) = χ(MH , σ(MH))

= χ(MH)− χ(σ(MH))

= 0− 0.

These calculations imply

χ(P ) = χ(P, ∂N) + χ(∂N)

= 0 + 0

= 0.

Both χ(P ) and χ(P/G) are zero, so the foliation F|∂P/G extends to all of P/G.

Now that there is a nowhere zero vector field on P/G, there is a foliation on

P/G extending the pulled-back foliation near the boundary of P/G. Pull this foliation

back to P , and glue it to F . This is now a foliation of MH . This concludes the inductive

step.

The foliation is fully constructed when H is the minimal isotopy subgroup,

the trivial group {e}. At this point, the G-compatible codimension 1 foliation has been

extended to M{e} = M .
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Chapter 4

Invariant Open Book

Decompositions and Contact

Structures

Contact structures have been constructed on smooth closed orientable 3-manifolds

by Thurston and Winkelnkemper [TW75]. They can be constructed using open book

decompositions, where they are carefully defined on pages, and then across the binding

link. We will construct a contact form in a similar fashion, except it will be constructed

on the quotient space, and pulled back. This will yield an invariant contact form on the

manifold. In the case of fixed point sets, a branched covering will be examined, and a

form constructed there so the the pullback will be a contact form, and match up with

the form as already defined.

One correspondence that may suggest that this is the correct path to take is a

theorem by Giroux,

Theorem 30 [Gir02] If M is a closed oriented 3-manifold then there is a one-to-one
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correspondence between oriented contact structures on M up to isotopy and open book

decompositions of M up to positive stabilization.

We can see that open book decompositions correspond to a class of contact structures.

An open book decomposition exists for every closed smooth orientable 3-manifold.

Theorem 31 (Alexander) [Ale23] Every closed, smooth, orientable 3-manifold M3 is

diffeomorphic to C×D2∪idX, where D2 is a 2-disc and X an an orientable 2-manifold

with boundary that is also a mapping torus.

To prove the following theorem, a smooth function with certain properties will

be created. This can be done under these conditions:

Lemma 32 Function interpolation construction

Given C∞ functions f and g defined near 0 and b ∈ R respectively such that

f(0) = f ′(0) = 0, and f ′′(0) ≥ 0

g(b) > 0, and g′(b) > 0.

Then there is a C∞ function defined on an open neighborhood of [0, b] such that

h = f near 0

h = g near 1

h′ > 0 on (0, b]

The following proposition is used. It is a common result in immersion theory.

Proposition 33 Suppose a closed 1-manifold Γ is embedded as Γ ↪→ W
F−→ S1, where

F is a smooth submersion, and W is a smooth manifold with dim(W ) ≥ 3. Then the

embedding can be isotoped so that this new composition is 1-1 on each fiber.
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Proof. There is a vector bundle splitting TW ∼= α ⊕ F ∗(TS1) such that the

derivative map of tangent spaces F∗ : TW → TS1 is zero on α and and isomorphism on

F ∗(TS1). Note that TS1 is trivial.

Locally the submersion F looks like

Rm−1 × R → R

(x, y) 7→ y

so by standard chart-by-chart approximation techniques, and compactness of Γ, we need

to prove the following local result:

Let γ : (−3, 3) → Rm be a regular smooth curve where m ≥ 3. Then there is

a C1 approximation to γ by a curve β such that

• γ = β for |t| ≥ 2

• the last coordinate of β′ is positive if |t| ≤ 1.

Note: Since close enough approximations to γ are smoothly isotopic to γ keeping γ = β

for |t| ≥ 2, then the isotopy will follow.

Let K be the set of all vectors and their negatives in Sm−1 of the form γ′(t)
|γ′(t)|

for |t| < 3. Since m − 1 ≥ 2, this set has measure zero by Sard’s theorem. So there is

some q ∈ Sm−1 such that q /∈ K and the last coordinate of q is positive. Let ϕ(t) be a

smooth bump function on (−3, 3) which is 0 if |t| ≥ 2 and 1 if |t| ≤ 1. Define

β = γ(t) + t · ϕ(t) · h · q

where h > 0 is a small constant.

If h is small enough, then β is a good C1 approximation to γ.

|β(t)− γ(t)| = |t| · |ϕ(t)| · h ≤ 3h
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and

|β′(t)− γ′(t)| = |ϕ(t) + tϕ(t)| · h

≤ (|ϕ(t)|+ |t| · |ϕ′(t)|) · h

≤ (1 + 3 ·max|ϕ′(t)|) · h

so both |β − γ| and |β′ − γ′| can be made arbitrarily small for a suitable choice of h.

Lastly to check that β is regular. γ′(t) and q are always linearly independent

by definition, so

β′(t) = γ′(t) + [ϕ(t) + t · ϕ′(t)] · q · h

is never zero.

Now we are ready to consider a smooth Zp-action on a manifold.

Theorem 34 If M is a closed smooth oriented 3-manifold with a smooth orientation-

preserving G-action, where G is a group of prime order p, then there is a G-invariant

contact form θ on M .

Proof.

If G acts freely, then M/G is a manifold, and a contact form on M/G can be

pulled back to a contact form on M . This form will be invariant under G.

This contact form exists if M/G is a closed orientable 3-manifold [TW75].

For this reason, assume that MG is non-empty, and M is connected. If M consists

of multiple connected components, then an invariant contact form can be constructed

on each component separately, and thus an invariant contact form will exist across the

entire manifold.

Let MG be the fixed point set of M by G. For x ∈MG, G maps the component

containing x into itself. By local linearity, the components of MG are 1-dimensional.
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We will begin by constructing an open book decomposition.

Theorem 35 [Sch82] There is a smooth structure on the orbit space M/G, which is

a topological 3-manifold, such that the orbit space projection M → M/G is a regular

branched covering.

Begin by taking any open book decomposition of M/G and let Σ = q(MG)

where q : M → M/G is the quotient map. Let B be the diffeomorphic image of the

binding of the open book decomposition in M/G.

Because dim(Σ) = 1 and dim(M) = 3, the inclusion Σ ↪→ M is isotopic to

an embedding whose image is disjoint from B, and transverse to the pages of the open

book. Specifically if Σ ∩ B = ∅ then we have a submersion (M/G − B) → S1, and by

immersion theory we can isotop the embedding Σ ↪→ (M/G−B) so that the composite

Σ ↪→ (M/G−B)
F−−−−−→

fibering
S1

is a submersion, (M/G−B) is the disjoint union of the pages, and F is the open book

map described in definition 4. This is due to proposition 33.

The regular branched coverings along this embedding of Σ, and Σ are smoothly

equivariant, so the original group action on M is equivalent to an action for which the

orbit space projection M → M/G is branched at this embedding, instead of being

branched at Σ. This equivalent action will be considered henceforth. The open book

decomposition of M is obtained by taking the inverse image of the pages and the binding

in M/G. Also, Σ will refer to this embedding of the original Σ.

The pages are examined first. We will be looking at pages in M/G. A page

is Bγ = F−1(eiγ), where eiγ ∈ S1. Σ is transverse to the pages of the open book

decomposition ofM/G, and disjoint from the binding B, which implies that the branched
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covering

(M − q−1(B))
q−→ (M/G−B)

MG q−→ Σ

is sheet preserving, and the second map is the restricted map of branched sets. The

composite with the fibering

(M − q−1(B))
q−→ (M/G−B)

F−→ S1

is also a fibering. On each page Bγ this composite is a branched covering of surfaces

along the finite sets Σ ∩ Bγ . On the other hand, near the binding the orbit space

projection q is an ordinary unbranched covering space projection.

Let B′ = q−1(B), which is the binding in M . Since the fixed set MG is disjoint

from the binding, and transverse to the pages, there is an invariant closed tubular

neighborhood N ⊃ MG in M such that N ∩ B′ = ∅ and the fibers of N are contained

in pages of the open book. N is diffeomorphic to MG ×D2 such that G acts trivially

on MG and by rotation on D2. Also N/G ∼= Σ×D2/G.

Now that the open book decomposition has been created, we will construct

a contact form. We will begin by creating a general volume form on D2. Using the

coordinates u = rcos(θ) and v = rsin(θ), let

α = 1
2(udv − vdu) =

1

2
r2dθ

polar cartesian

Applying the exterior derivative:
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dα =
1

2
d(udv − vdu) =

1

2
d(r2dθ)

=
1

2
(du ∧ dv − dv ∧ du) = rdrdθ

= du ∧ dv

we see that this is the standard volume form on D2.

The binding B is a link in M/G, and it has a fiberwise tubular neighborhood

U such that U ∼= B×D2, and each {b}×D2 is contained in a single page. Also since the

binding B is disjoint from N , U can be shrunk so that U ∩N = ∅. Let X = (M/G)−U ,

the complement of U in M/G. Note that U ⊂ Int(X). The restricted map F : X → S1

is a fiber bundle, with fiber P ,

P ↪→ X
F |X−−→ S1.

This fiber is a page intersected with X. We can also look at the fiber bundle restricted

to ∂X. Note the new fibers are isolated points, one for each connected component of B,

π0(B) ↪→ ∂X
F |∂X−−−→ S1.

The boundary of X is ∂X ∼= B × S1. The entire manifold M/G is diffeomorphic to

(B ×D2) ∪∂ X.

Let X0 = (X − Int(Σ × D2)). A single page intersected with X0 is P0 =

P ∩X0 = P −Int(
⊔

π0(Σ)

D2), where
⊔

π0(L)

D2 is the finite disjoint union of the intersection

of Σ ×D2 with P . There is one point of intersection for each connected component of

the link Σ. Then there is a fiber bundle, P0
� � // X0

FX0 // S1 .

Now we create the 1-form on a page of this new bundle P0, then we will extend

this form to X0. The boundary of P0 is ∂P0 = ∂P ∪ (
⊔

π0(Σ)

∂D2) = ∂P ∪ (
⊔

π0(Σ)

S1). The

page P is an oriented manifold thus P0 is also orientable. Let dψ be a volume form on
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∂P0. Let α0 be any 1-form on P0 that is tdψ near ∂P0, with t being a collar parameter

of ∂P0 × [1, 1 + δ] ⊂ P0 such that t = 1 on ∂P0, and δ is a small positive number.

∫
P0

dα0 =

∫
∂P0

α0 =

∫
∂P0

tdψ =

∫
∂P0

dψ = 1

This means dα0 is a volume form on P0.

Take any volume form Ω on P0 such that Ω = dt ∧ dφ near ∂P0. Since P0 is a

2-manifold, d(Ω− dα0) = 0. P0 is non-compact, so H2(P0) = 0. By de Rham’s theorem

there is a volume form β on P0 such that dβ = Ω− dα0, and from the way β is defined,

β = 0 near ∂P0. Let α′ = α0 + β, then

∫
P0

dα′ =

∫
P0

d(α0 + β) =

∫
P0

dα0 +

∫
P0

Ω−
∫
P0

dα0 = 1 + 1− 1 = 1.

Now α′ satisfies (1) α′ is a volume form on P0, and (2) α′ = tdψ near ∂P0.

The form α′ was constructed on a single fiber of P0. It will now be extended

across X0. The 1-forms satisfying (1) and (2) are a convex set, so there is a 1-form α

on X0 such that α restricted to any fiber P0 satisfies (1) and (2). ψ and t are defined

as a parameter of a one dimensional boundary, and a collar neighborhood parameter

respectively. On (∂P0× [1, 1 + δ))×S1 ⊂ X0, property (2) is true, so on a neighborhood

of ∂X0, α = tdψ.

Let ω = α+Kdφ, where K is a positive constant, and dφ is the pull back of a

volume form over S1 via F |X0 . The form dφ∧ dα is a volume form since it is the wedge

of complementary volume forms. X0 is compact, so α ∧ dα is bounded. Then

ω ∧ dω = (α+Kdφ) ∧ dα = α ∧ dα+Kdφ ∧ dα

will be nonzero when K is sufficiently large. Therefore, ω is a contact form on X0. Near

the boundary of X0, ω = tdψ +Kdφ.
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There are two components of the boundary of X0 and each will be treated

differently, ∂X0 = ∂X tΣ×S1. On Σ×S1, a 1-form will be created that is compatible

with the group action, and the fixed point set Σ × {0} ⊂ Σ × D2. On the boundary

∂X = B×S1, a form will be created that is compatible with the component containing

the binding, B ×D2. To be compatible with ω, these extensions need to be tdψ +Kdφ

near the boundary. We will begin by extending ω on this second component B ×D2.

On the boundary of X, which is ∂X = B × S1, the contact form is ω = tdψ +

Kdφ = rdψ+Kdφ where r and ψ are polar coordinates for D2. Here M/G− Int(X) =

U = ∂X ×D2, and φ is still the coordinate for ∂X. Over U , r ranges from 0 to 1. The

form ω will be changed so that ω ∧ dω is the standard volume form near B × {0}:

rdr ∧ dψ ∧ dφ = du ∧ dv ∧ dφ

in polar and rectangular coordinates respectively. To achieve this, ω needs to equal

−dψ + 1
2r

2dφ when r ∈ [0, ε), for a small positive ε.

Now near r = 0,

ω ∧ dω = (−dψ + 1
2r

2dφ) ∧ d(−dψ + 1
2r

2dφ)

= (−dψ + 1
2r

2dφ) ∧ (rdr ∧ dφ)

= −rdψ ∧ dr ∧ dφ

= rdr ∧ dψ ∧ dφ

which is a volume form, making ω a contact form near r = 0. ω is defined for r ∈

[0, ε) ∪ (1 − ε, 1], so it needs to be defined for r ∈ [ε, 1 − ε], where here ε may need to

be a smaller positive number. We will create two smooth functions h0, h1 : [0, 1] → R

such that ω = h0(r)dψ + h1(r)dφ. These functions need to have certain properties.

First, for r ∈ (1 − ε, 1], the functions (h0(r), h1(r)) = (r,K), and for r ∈ [0, ε), the
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functions (h0(r), h1(r)) = (−1, 1
2r

2). The form so defined is a contact form for all r

except r ∈ [ε, 1− ε]. For r in this range, dω = h′0dr ∧ dψ + h′1dr ∧ dφ, then

ω ∧ dω = (h0(r)dψ + h1(r)dφ) ∧ (h′0dr ∧ dψ + h′1dr ∧ dφ)

= h0h
′
1dψ ∧ dr ∧ dφ+ h1h

′
0dφ ∧ dr ∧ dψ

= (h1h
′
0 − h0h

′
1)dr ∧ dψ ∧ dφ

we can see that ω will be a contact form on all of U when h1h
′
0 − h0h

′
1 > 0. This is

to say that the position and tangent vector of the curve (h0(r), h1(r)) in R2 must be

linearly independent. One such curve is depicted below.

Figure 4.1: One possible smooth parameterized function (h0, h1)

To summarize, this curve must be smooth, and

(h0(r), h1(r)) =



(−1, 1
2r

2) if 0 ≤ r < ε

the above graph if ε ≤ r < 1− ε

(r,K) if 1− ε ≤ r ≤ 1.

This form ω is a contact form on X0, that is equal to tdφ + Kdψ near the

boundary. Pull this contact form back over F |X0 to get a G-invariant contact form on

F−1(X0).
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In a similar fashion, we must extend ω across the last remaining piece, Σ×D2

of M/G. Suppose that b : N → N is a smooth branched covering of degree p > 1 with

branch set Σ, and N a smooth 3-manifold. Composing with an automorphism of Zp if

necessary, there are smooth injections Σ×D2 ↪→ N and Σ×D2 ↪→ N/G such that this

diagram commutes.

N
b // N/G

Σ×D2 //
?�

OO

Σ×D2
?�

OO

Where the induced map Σ ×D2 → Σ ×D2 is given in rectangular and polar

coordinates by

(x, z) 7→ (x, zp)

(x, (r, ψ)) 7→ (x, (rp, pψ)).

Since b|N−Σ×{0} is a smooth submersion, if ω is a contact form on N/G then b∗ω will

be a contact form on N − Σ × {0}. Now we will construct a contact form on Σ × D2

which extends b∗ω near Σ× S1, where r is close to 1.

Using the form created previously ω = α + Kdφ, its pullback under b|Σ×D2

would be

b∗ω|Σ×D2 =
p

2
rpdψ +Kdφ.

This pullback is not a contact form because db∗ω = p2

2 r
p−1dr ∧ dψ, and so

b∗ω ∧ db∗ω = K
p2

2
rp−1dφ ∧ dr ∧ dψ

is zero when r = 0 which happens exactly on Σ× {0}. To make ω into a contact form,

it must be modified near Σ× {0}. As discussed earlier, the standard contact form in a

neighborhood of Σ× {0} is 1
2r

2dψ +Kdφ. A new smooth function H : Σ×D2 → R is
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needed such that µ = Hdψ + Kdφ will be a contact form on all of Σ ×D2, and this µ

will be a smooth extension of ω defined on all of X. H will be defined so that it depends

only on r. To ensure the extension is smooth from X0 to Σ ×D2, when r ∈ (1 − ε, 1],

H(r) = p
2r
p. For µ to be a contact form near Σ × {0}, when r ∈ [0, ε), H(r) needs to

equal 1
2r

2. Now we have to connect these two definitions of H, and ensure that µ is still

a contact form between them. On Σ×D2, dµ = d(Hdψ +Kdφ) = H ′dr ∧ dψ. Now,

µ ∧ dµ = KH ′dr ∧ dψ ∧ dφ

and we can see that H ′(r) > 0 for all 0 ≤ r ≤ 1 means that µ is a contact form. The

Interpolation Lemma (29) yields a smooth function H(r) with the properties described.

Another way to define H by constructing its derivative, h = H ′. We know that

H(0) = 0, so this integral condition will have a constant of integration of zero. Let

h(r) =



r if 0 ≤ r < ε

the following graph if ε ≤ r < 1− ε

p2

2 r
p−1 − p2

2 + 1 if 1− ε ≤ r.

Figure 4.2: One possible smooth function h, with a bump than can be made arbitrarily
high

Then, H(r) =
∫ s=r
s=0 h(s)ds. The constant ε can be chosen small enough so
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that H(b) =
∫ s=b
s=0 h(s)ds < p2

2 b
p−1 for b < 1 − ε. Also, the height of the bump can be

arbitrarily high, so H(1) =
∫ s=1
s=0 h(s)ds = p2

2 ≥ 1. This allows us to smoothly define h

with the properties mentioned above. To summarize,

H(r) =

∫ s=r

s=0
h(s)ds =



1
2r

2 if 0 ≤ r < ε

smooth with H ′(r) > 0 if ε ≤ r < 1− ε

p
2r
p if 1− ε ≤ r

Now, the pullback F ∗(ω) is extended by b∗µ to all of F−1(Σ×D2). This extended form

is a G-invariant contact form on all of M .
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