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To characterize type 2 diabetes (T2D)-associated var-
iation across the allele frequency spectrum, we conduc-
ted a meta-analysis of genome-wide association data
from 26,676 T2D case and 132,532 control subjects of
European ancestry after imputation using the 1000 Ge-
nomes multiethnic reference panel. Promising association
signals were followed up in additional data sets (of 14,545
or 7,397 T2D case and 38,994 or 71,604 control subjects).
We identified 13 novel T2D-associated loci (P < 5 3 1028),
including variants near the GLP2R, GIP, and HLA-DQA1
genes. Our analysis brought the total number of indepen-
dent T2D associations to 128 distinct signals at 113 loci.
Despite substantially increased sample size and more
complete coverage of low-frequency variation, all novel

associations were driven by common single nucleotide
variants. Credible sets of potentially causal variants were
generally larger than those based on imputation with ear-
lier reference panels, consistent with resolution of caus-
al signals to common risk haplotypes. Stratification of
T2D-associated loci based on T2D-related quantitative
trait associations revealed tissue-specific enrichment of
regulatory annotations in pancreatic islet enhancers
for loci influencing insulin secretion and in adipocytes,
monocytes, and hepatocytes for insulin action–associated
loci. These findings highlight the predominant role
played by common variants of modest effect and the
diversity of biological mechanisms influencing T2D
pathophysiology.
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Type 2 diabetes (T2D) has rapidly increased in prevalence
in recent years and represents a major component of the
global disease burden (1). Previous efforts to use genome-
wide association studies (GWAS) to characterize the genetic
component of T2D risk have largely focused on common
variants (minor allele frequency [MAF].5%). These studies
have identified close to 100 loci, almost all of them cur-
rently defined by common alleles associated with mod-
est (typically 5–20%) increases in T2D risk (2–6). Direct
sequencing of whole genomes or exomes offers the most
comprehensive approach for extending discovery efforts to

the detection of low-frequency (0.5% , MAF , 5%) and
rare (MAF ,0.5%) risk and protective alleles, some of
which might have greater impact on individual predisposi-
tion. However, extensive sequencing has thus far been lim-
ited to relatively small sample sizes (at most, a few thousand
cases), restricting power to detect rarer risk alleles even if they
are of large effect (7–9). Although evidence of rare variant
associations has been detected in some candidate gene stud-
ies (10,11), the largest study to date, involving exome se-
quencing in ;13,000 subjects, found little trace of rare
variant association effects (9).
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Here, we implement a complementary strategy that
makes use of imputation into existing GWAS samples
from the DIAbetes Genetics Replication And Meta-analysis
(DIAGRAM) Consortium with sequence-based reference
panels (12). This strategy allows the detection of common and
low-frequency (but not rare) variant associations in extremely
large samples (13) and facilitates the fine-mapping of causal
variants. We performed a European ancestry meta-analysis
of GWAS with 26,676 T2D case and 132,532 control sub-
jects, and we followed up our findings in additional inde-
pendent European ancestry studies of 14,545 T2D case and
38,994 control subjects genotyped using the Metabochip
(4). All contributing studies were imputed against the March
2012 multiethnic 1000 Genomes Project (1000G) reference
panel of 1,092 whole-genome–sequenced individuals (12).
Our study provides near-complete evaluation of common
variants with much improved coverage of low-frequency var-
iants, and the combined sample size considerably exceeds that
of the largest previous T2D GWAS meta-analyses in individ-
uals of European ancestry (4). In addition to genetic discov-
ery, we fine-mapped novel and established T2D-associated
loci to identify regulatory motifs and cell types enriched for
potential causal variants, as well as pathways through which
T2D-associated loci increase disease susceptibility.

RESEARCH DESIGN AND METHODS

Research Participants
The DIAGRAM stage 1 meta-analyses comprises 26,676
T2D case and 132,532 control subjects (effective sample

size Neff = 72,143 individuals, defined as 4/[(1/Ncases) +
(1/Ncontrols)]) from 18 studies genotyped using commercial
genome-wide single nucleotide variant (SNV) arrays (Sup-
plementary Table 1). The Metabochip stage 2 follow-up
comprises 14,545 T2D case and 38,994 control subjects
(Neff = 38,645) from 16 nonoverlapping stage 1 studies
(4,14). We performed additional follow-up in 2,796 T2D
case and 4,601 control subjects from the European Pro-
spective Investigation into Cancer and Nutrition-InterAct
(EPIC-InterAct) study (15) and in 9,747 T2D case and
61,857 control subjects from the Resource for Genetic Ep-
idemiology on Adult Health and Aging (GERA) study (16)
(Supplementary Material).

Statistical Analyses
We imputed autosomal and X chromosome SNVs using
the all-ancestries 1000G reference panel (1,092 individuals
from Africa, Asia, Europe, and the Americas [March 2012 re-
lease]) using minimac (17) or IMPUTE2 (18). After imputa-
tion, from each study we removed monomorphic variants
or those with imputation quality r2-hat , 0.3 (minimac) or
proper-info ,0.4 (IMPUTE2, SNPTEST). Each study per-
formed T2D association analysis using logistic regression,
adjusting for age, sex, and principal components for ances-
try, under an additive genetic model. We performed in-
verse-variance weighted fixed-effect meta-analyses of the
18 stage 1 GWAS (Supplementary Table 1). Fifteen of the
18 studies repeated analyses also adjusting for BMI. SNVs
reaching suggestive significance P , 1025 in the stage
1 meta-analysis were followed up. Novel loci were selected
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using the threshold for genome-wide significance (P , 5 3
1028) in the combined stage 1 and stage 2 meta-analysis.
For the 23 variants with no proxy (r2 $ 0.6) available in
Metabochip with 1000G imputation in the fine-mapping
regions, the stage 1 result was followed up in EPIC-InterAct
and GERA (Neff = 40,637), both imputed to 1000G variant
density (Supplementary Material). Summary-level statis-
tics from the stage 1 GWAS meta-analysis are available
online at http://diagram-consortium.org/downloads.html.

Approximate Conditional Analysis With GCTA
We performed approximate conditional analysis in the stage
1 sample using GCTA v1.24 (19,20). We analyzed SNVs in
the 1-Mb window around each lead variant, conditioning
on the lead SNV at each locus (Supplementary Material)
(21). We considered loci to contain multiple distinct signals
if multiple SNVs reached locus-wide significance (P ,
1025), accounting for the approximate number of variants
in each 1-Mb window (14).

Fine-Mapping Analyses Using Credible Set Mapping
To identify 99% credible sets of causal variants for each
distinct association signal, we performed fine-mapping for
loci at which the lead independent SNV reached P ,
5 3 1024 in the stage 1 meta-analysis. We performed cred-
ible set mapping using the T2D stage 1 meta-analysis re-
sults to obtain the minimal set of SNVs with cumulative
posterior probability .0.99 (Supplementary Material).

Type 1 Diabetes/T2D Discrimination Analysis
Given the overlap between loci previously associated with
type 1 diabetes (T1D) and the associated T2D loci, we used
an inverse-variance weighted Mendelian randomization
approach (22) to test whether this was likely to reflect mis-
classification of T1D case subjects as individuals with T2D
in the current study (Supplementary Material).

Expression Quantitative Trait Locus Analysis
To look for potential biological overlap of T2D lead variants
and expression quantitative trait locus (eQTL) variants, we
extracted the lead (most significantly associated) eQTL for
each tested gene from existing data sets for a range of
tissues (Supplementary Material). We concluded that a lead
T2D SNV showed evidence of association with gene expres-
sion if it was in high linkage disequilibrium (LD) (r2 . 0.8)
with the lead eQTL SNV (P , 5 3 1026).

Hierarchical Clustering of T2D-Related Metabolic
Phenotypes
Starting with the T2D-associated SNVs, we obtained T2D-
related quantitative trait z scores from published HapMap-
based GWAS meta-analysis for the following: fasting
glucose, fasting insulin adjusted for BMI, HOMA for
b-cell function, and HOMA for insulin resistance (23);
2-h glucose adjusted for BMI (24); proinsulin (25); corrected
insulin response (CIR) (26); BMI (27); and HDL cholesterol,
LDL cholesterol, total cholesterol, and triglycerides (28).

When an association result for an SNV was not available,
we used the results for the variant in highest LD and only
for variants with r2 . 0.6. We performed clustering of phe-
notypic effects using z scores for association with T2D risk
alleles and standard methods (Supplementary Material) (29).

Functional Annotation and Enrichment Analysis
We tested for enrichment of genomic and epigenomic
annotations using chromatin states for 93 cell types (after
excluding cancer cell lines) from the National Institutes of
Health (NIH) Roadmap Epigenomics Project, as well as
binding sites for 165 transcription factors from the
Encyclopedia of DNA Elements (ENCODE) project (30)
and Pasquali et al. (31). Using fractional logistic regression,
we then tested for the effect of variants with each cell type
and transcription factor annotation on the variant posterior
probabilities (pc) using all variants within 1 Mb of the lead
SNV for each distinct association signal from the fine-mapping
analyses (Supplementary Material). In each analysis, we con-
sidered an annotation significant if it reached a Bonferroni-
corrected P , 1.9 3 1024 (i.e., 0.05/258 annotations).

Pathway Analyses With DEPICT
We used the Data-driven Expression Prioritized Integration
for Complex Traits (DEPICT) tool (32) to 1) prioritize genes
that may represent promising candidates for T2D patho-
physiology and 2) identify reconstituted gene sets that are
enriched in genes from associated regions and might be
related to T2D biological pathways. As input, we used in-
dependent SNVs from the stage 1 meta-analysis SNVs with
P , 1025 and lead variants at established loci (Supplemen-
tary Material). For the calculation of empirical enrichment P
values, we used 200 sets of SNVs randomly drawn from
entire genome within regions matching by gene density; we
performed 20 replications for false discovery rate (FDR)
estimation. Supplementary tables, supplementary material,
and DEPICT analyses are available online at http://diagram-
consortium.org/2017_Scott_DIAGRAM_1000G/.

RESULTS

Novel Loci Detected in T2D GWAS and Metabochip-
Based Follow-up
The stage 1 GWAS meta-analysis included 26,676 T2D case
and 132,532 control subjects and evaluated 12.1 million
SNVs, of which 11.8 million were autosomal and 260,000
mapped to the X chromosome. Of these, 3.9 million var-
iants had MAF between 0.5 and 5%, a near fifteen-fold
increase in the number of low-frequency variants tested for
association compared with previous array-based T2D GWAS
meta-analyses (2,4) (Supplementary Table 2). Of the 52 sig-
nals showing promising evidence of association (P , 1025)
in stage 1, 29 could be followed up in the stage 2 Metab-
ochip data. In combined stage 1 and stage 2 data, 13 novel
loci were detected at genome-wide significance (Table 1, Fig. 1,
Supplementary Fig. 1A–D, and Supplementary Table 3).

Lead SNVs at all 13 novel loci were common. Although
detected here using 1000G imputed data, all 13 were well
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captured by variants in the HapMap CEU (Central EUrope)
reference panel (two directly, 10 via proxies with r2 . 0.8,
and one via proxy with r2 = 0.62) (Supplementary Material).
At all 13, lead variants defined through 1000G and those
seen when the SNP density was restricted to HapMap con-
tent had broadly similar evidence of association and were of
similar frequency (Supplementary Fig. 2 and Supplementary
Table 3). Throughout this article, loci are named for the
gene nearest to the lead SNV, unless otherwise specified
(Table 1 and Supplementary Material).

Adjustment for BMI revealed no additional genome-wide
significant associations for T2D and, at most known and
novel loci, there were only minimal differences in statisti-
cal significance and estimated T2D effect size between
BMI-adjusted and unadjusted models. The four signals at
which we observed a significant effect of BMI adjustment
(Pheterogeneity ,4.4 3 1024; based on 0.05/113 variants
currently or previously reported to be associated with
T2D at genome-wide significance) were FTO and MC4R
(at which the T2D association is known to reflect a primary
effect on BMI) and TCF7L2 and SLC30A8 (at which T2D
associations were strengthened after BMI-adjustment)
(Supplementary Fig. 3 and Supplementary Table 4).

Insights Into Genetic Architecture of T2D
In this meta-analysis, we tested 3.9 million low-frequency
variants (r2 $ 0.3 or proper-info $0.4; minor allele present
in $3 studies) for T2D association, constituting 96.7% of
the low-frequency variants ascertained by the 1000G Euro-
pean panel (March 2012) (Supplementary Table 2). For
variants with risk allele frequencies (RAF) of 0.5%, 1%, or
5%, we had 80% power to detect association (P , 5 3
1028) for allelic odds ratios (ORs) of 1.80, 1.48, and 1.16,
respectively, after accounting for imputation quality (Fig. 1
and Supplementary Table 5). Despite the increased coverage
and sample size, we identified no novel low-frequency var-
iants at genome-wide significance (Fig. 1).

Since we had only been able to test 29 of the 52 pro-
mising stage 1 signals on the Metabochip, we investigated
whether this failure to detect low-frequency variant as-
sociations with T2D could be a consequence of selective
variant inclusion on the Metabochip. Among the remaining
23 variants, none reached genome-wide significance after
aggregating with GWAS data available from EPIC-InterAct.
Six of these 23 SNVs had MAF ,5%, and for these we
performed additional follow-up in the GERA study. How-
ever, none reached genome-wide significance in a com-
bined analysis of stage 1, EPIC-InterAct, and GERA (a
total of 39,219 case and 198,990 control subjects) (Supple-
mentary Table 6). Therefore, despite substantially enlarged
sample sizes that would have allowed us to detect low-
frequency risk alleles with modest effect sizes, the overwhelm-
ing majority of variants for which T2D association can be
detected with these sample sizes are themselves common.

To identify loci containing multiple distinct signals, we
performed approximate conditional analysis within the
established and novel GWAS loci and detected two such

novel common variant signals (Supplementary Table 7)
(19,20). At the ANKRD55 locus, we identified a previously
unreported distinct (Pconditional , 1025) association signal
led by rs173964 (Pconditional = 3.54 3 1027, MAF = 26%)
(Supplementary Table 7 and Supplementary Fig. 4). We also
observed multiple signals of association at loci with previ-
ous reports of such signals (4,14), including CDKN2A/B
(three signals in total), DGKB and KCNQ1 (six signals),
and HNF4A and CCND2 (three signals) (Supplementary Ta-
ble 7 and Supplementary Fig. 4). At CCND2, in addition to
the main signal with lead SNV rs4238013, we detected 1) a
novel distinct signal led by a common variant, rs11063018
(Pconditional = 2.70 3 1027, MAF = 19%) and 2) a third
distinct signal led by a low-frequency protective allele
(rs188827514, MAF = 0.6%; ORconditional = 0.60, Pconditional =
1.24 3 1026) (Supplementary Fig. 5A and Supplementary
Table 7), which represents the same distinct signal as that
at rs76895963 (Pconditional = 1.0) reported in the Icelandic
population (Supplementary Fig. 5B) (7). At HNF4A, we con-
firmed recent analyses (obtained in partially overlap-
ping data) (14) that a low-frequency missense variant
(rs1800961, p.Thr139Ile, MAF = 3.7%) is associated with
T2D and is distinct from the known common variant
GWAS signal (which we mapped here to rs12625671).

We evaluated the trans-ethnic heterogeneity of allelic
effects (i.e., discordance in the direction and/or magnitude
of estimated ORs) at novel loci on the basis of Cochran’s Q
statistics from the largest T2D trans-ancestry GWAS meta-
analysis to date (2). Using reported summary statistics from
that study, we observed no significant evidence of hetero-
geneity of effect size (Bonferroni correction PCochran’s Q ,
0.05/13 = 0.0038) between major ancestral groups at any of
the 13 loci (Supplementary Table 8). These results are con-
sistent with these loci being driven by common causal var-
iants that are widely distributed across populations.

1000G Variant Density for Identification of Potentially
Causal Genetic Variants
We used credible set fine-mapping (33) to investigate
whether 1000G imputation allowed us to better resolve
the specific variants driving 95 distinct T2D association
signals at 82 loci (Supplementary Material). The 99% cred-
ible sets included between 1 and 7,636 SNVs; 25 included
fewer than 20 SNVs, 16 fewer than 10 (Supplementary
Tables 9 and 10). We compared 1000G-based credible sets
with those constructed from HapMap SNVs alone (Fig. 2B
and Supplementary Table 9). At all but three of the associ-
ation signals (two at KCNQ1 and rs1800961 at HNF4A),
1000G imputation resulted in larger credible sets (median
increase of 34 variants) spanning wider genomic intervals
(median interval size increase of 5 kb) (Fig. 2B and Supple-
mentary Table 9). The 1000G-defined credible sets in-
cluded .85% of the SNVs in the corresponding HapMap
sets (Supplementary Table 9). Despite the overall larger
credible sets, we asked whether 1000G imputation enabled
an increase in the posterior probability afforded to the lead
SNVs, but we found no evidence to this effect (Fig. 2C).
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Within the 50 loci previously associated with T2D in
Europeans (4), which had at least modest evidence of asso-
ciation in the current analyses (P , 5 3 1024), we asked
whether the lead SNV in 1000G-imputed analysis was of
similar frequency to that observed in HapMap analy-
ses. Only at TP53INP1 was the most strongly associated
1000G-imputed SNV (rs11786613, OR = 1.21, P = 1.6 3
1026, MAF = 3.2%) of substantially lower frequency than
the lead HapMap-imputed SNV (3) (rs7845219, MAF =
47.7%) (Fig. 2A). rs11786613 was neither present in
HapMap nor on the Metabochip (Supplementary Fig. 6).
Reciprocal conditioning of this low-frequency SNV and
the previously identified common lead SNV (rs7845219,
OR = 1.05, P = 5.0 3 1025, MAF = 47.5%) indicated that
the two signals were likely to be distinct but the signal at
rs11786613 did not meet our threshold (Pconditional , 1025)
for locus-wide significance (Supplementary Fig. 4).

Pathophysiological Insights From Novel
T2D Associations
Among the 13 novel T2D-associated loci, many (such as
those near HLA-DQA1, NRXN3, GIP, ABO, and CMIP) in-
cluded variants previously implicated in predisposition to
other diseases and traits (r2 . 0.6 with the lead SNV)
(Supplementary Table 3 and Supplementary Material). For
example, the novel association at SNV rs1182436 lies
;120 kb upstream of MNX1, a gene implicated in pancre-
atic hypoplasia and neonatal diabetes (34–36).

The lead SNV rs78761021 at the GLP2R locus, encoding
the receptor for glucagon-like peptide 2, is in strong LD
(r2 = 0.87) with a common missense variant in GLP2R

(rs17681684, D470N, P = 3 3 1027). These signals were
strongly dependent and mutually extinguished in reciprocal
conditional analyses, consistent with the coding variant be-
ing causal and implicating GLP2R as the putative causal
gene (Supplementary Fig. 7). While previously suggested
to regulate energy balance and glucose tolerance (37),
GLP2R has primarily been implicated in gastrointestinal
function (38,39). In contrast, GLP1R, encoding the gluca-
gon-like peptide 1 receptor (the target for a major class of
T2D therapies [40]), is more directly implicated in pancre-
atic islet function, and variation at this gene has been as-
sociated with glucose levels and T2D risk (41).

We also observed associations with T2D centered on
rs9271774 near HLA-DQA1 (Table 1), a region showing a
particularly strong association with T1D (42). There is con-
siderable heterogeneity within, and overlap between, the
clinical presentations of T1D and T2D, but these can
be partially resolved through measurement of islet cell
autoantibodies (43). Such measures were not uniformly
available across studies contributing to our meta-analysis
(Supplementary Table 1). We therefore considered whether
the adjacency between T1D and T2D risk loci was likely to
reflect misclassification of individuals with autoimmune di-
abetes as case subjects in the current study.

Three lines of evidence make this unlikely. First, the lead
T1D-associated SNV in the HLA region (rs6916742)
was only weakly associated with T2D in the current
study (P = 0.01), and conditioning on this variant had only
modest impact on the T2D association signal at rs9271774
(Punconditional = 3.3 3 1027; Pconditional = 9.1 3 1026). Sec-
ond, of 52 published genome-wide significant T1D association

Figure 1—The effect sizes of the established (blue diamonds,N = 69, P< 53 1024) (Supplementary Material), novel (red diamonds,N = 13), and
additional distinct (sky blue diamonds, N = 13) (Supplementary Table 7) signals according to their risk allele frequency (Supplementary Table 3).
The additional distinct signals are based on approximate conditional analyses. The distinct signal at TP53INP1 led by rs11786613 (Supple-
mentary Table 7) is plotted (sky blue diamond). This signal did not reach locus-wide significance but was selected for follow-up because of its
low frequency and absence of LD with previously reported signal at this locus. The power curve shows the estimated effect size for which we
had 80% power to detect associations. Established common variants with OR >1.12 are annotated.
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GWAS signals, 50 were included in the current analysis: only
six of these reached even nominal association with T2D (P ,
0.05; Supplementary Fig. 8), and at one of these six
(BCAR1), the T1D risk allele was protective for T2D. Third,
in genetic risk score analyses, the combined effect of these
50 T1D signals on T2D risk was of only nominal signif-
icance (OR = 1.02 [95% CI 1.00–1.03], P = 0.026), and
significance was eliminated when the six overlapping loci
were excluded (OR = 1.00 [95% CI 0.98–1.02], P = 0.73). In
combination, these findings argue against substantial mis-
classification and indicate that the signal at HLA-DQA1 is
likely to be a genuine T2D signal.

Potential Genes and Pathways Underlying the T2D Loci:
eQTL and Pathway Analysis
cis-eQTLs analyses highlighted four genes as possible effec-
tor transcripts: ABO (pancreatic islets), PLEKHA1 (whole
blood), and HSD17B12 (adipose, liver, muscle, whole blood)

at the respective loci and HLA-DRB5 expression (adipose,
pancreatic islets, whole blood) at the HLA-DQA1 locus (Sup-
plementary Table 11).

We next asked whether large-scale gene expression data,
mouse phenotypes, and protein–protein interaction net-
works could implicate specific gene candidates and gene
sets in the etiology of T2D. Using DEPICT (32), 29 genes
were prioritized as driving observed associations (FDR
,0.05), including ACSL1 and CMIP among the genes map-
ping to the novel loci (Supplementary Table 12). These
analyses also identified 20 enriched reconstituted gene sets
(FDR ,5%) falling into four groups (Supplementary Fig. 9)
(complete results, including gene prioritization, can be
downloaded from http://diagram-consortium.org/2017_
Scott_DIAGRAM_1000G/). These included pathways re-
lated to mammalian target of rapamycin (mTOR) based
on coregulation of the IDE, TLE1, SPRY2, CMIP, andMTMR3
genes (44).

Figure 2—A: The number (N) of SNVs included in 99% credible sets when performed on all SNVs compared with when analyses were restricted
to those SNVs present in HapMap. B: The cumulative pc of the top three SNVs among all 1000G SNVs and after restriction to HapMap SNVs is
shown. While the low-frequency SNV at TP53INP1 (rs11786613) did not reach the threshold for a distinct signal in approximate conditional
analyses, we fine-mapped both this variant and the previous common signal separately after reciprocal conditioning, which suggested they were
independent. C: The MAF of the lead SNV identified in current analyses compared with that identified among SNVs present in HapMap. D: The
association of the low-frequency variant rs11786613 (blue) and that of the previous lead variant at this locus, rs7845219 (purple). The low-
frequency variant overlaps regulatory annotations active in pancreatic islets, among other tissues, and the sequence surrounding the A allele of
this variant has an in silico recognition motif for a FOXA1:AR (androgen receptor) protein complex.
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Overlap of Associated Variants With Regulatory
Annotations
We observed significant enrichment for T2D-associated
credible set variants in pancreatic islet active enhancers
and/or promoters (log odds [b] = 0.74, P = 4.2 3 1028)
and FOXA2 binding sites (b = 1.40, P = 4.1 3 1027), as
previously reported (Supplementary Table 13) (14). We also
observed enrichment for T2D-associated variants in coding
exons (b = 1.56, P = 7.9 3 1025), in EZH2-binding sites
across many tissues (b = 1.35, P = 5.3 3 1026), and in
binding sites for NKX2.2 (b = 1.73, P = 4.1 3 1028) and
PDX1 (b = 1.46, P = 7.4 3 1026) in pancreatic islets (Sup-
plementary Fig. 10).

Even though credible sets were generally larger, analyses
performed on the 1000G imputed results produced stron-
ger evidence of enrichment than equivalent analyses re-
stricted to SNVs present in HapMap. This was most notably
the case for variants within coding exons (b = 1.56, P =
7.9 3 1025 in 1000G compared with b = 0.68, P = 0.62 in
HapMap) and likely reflects more complete capture of the
true causal variants in the more densely imputed credible
sets. Single lead SNVs overlapping an enriched annotation
accounted for the majority of the total posterior prob-
ability (pc . 0.5) at seven loci. For example, the lead SNV
(rs8056814) at BCAR1 (pc = 0.57) overlaps an islet en-
hancer (Supplementary Fig. 11A), while the newly identi-
fied low-frequency signal at TP53INP1 overlaps an islet
promoter element (rs117866713, pc = 0.53) (Fig. 2D)
(31).

We applied hierarchical clustering to the results of
diabetes-related quantitative trait associations for the
set of T2D-associated loci from the current study, identify-
ing three main clusters of association signals with differing
impact on quantitative traits (Supplementary Table 9). The
first, including GIPR, C2CDC4A, CDKAL1, GCK, TCF7L2,
GLIS3, THADA, IGF2BP2, and DGKB, involved loci with a
primary impact on insulin secretion and processing (26,29).
The second cluster captured loci (including PPARG, KLF14,
and IRS1) disrupting insulin action. The third cluster, show-
ing marked associations with BMI and lipid levels, included
NRXN3, CMIP, APOE, and MC4R but not FTO, which clus-
tered alone.

In regulatory enhancement analyses, we observed strong
tissue-specific enrichment patterns broadly consistent with
the phenotypic characteristics of the physiologically strat-
ified locus subsets. The cluster of loci disrupting insulin
secretion showed the most marked enrichment for pancre-
atic islet regulatory elements (b = 0.91, P = 9.5 3 1025). In
contrast, the cluster of loci implicated in insulin action was
enriched for annotations from adipocytes (b = 1.3, P =
2.7 3 10211) and monocytes (b = 1.4, P = 1.4 3 10212),
and that characterized by associations with BMI and lipids
showed preferential enrichment for hepatic annotations
(b = 1.15, P = 5.8 3 1024) (Fig. 3A–C). For example, at
the novel T2D-associated CMIP locus, previously associated
with adiposity and lipid levels (28,45), the lead SNV
(rs2925979, pc = 0.91) overlaps an active enhancer element

in both liver and adipose tissue, among others (Supplemen-
tary Fig. 11B).

DISCUSSION

In this large-scale study of T2D genetics, in which individual
variants were assayed in up to 238,209 subjects, we identi-
fied 13 novel T2D-associated loci at genome-wide signifi-
cance and refined causal variant location for the 13 novel
and 69 established T2D loci. We also found evidence for
enrichment in regulatory elements at associated loci in
tissues relevant for T2D and demonstrated tissue-specific
enrichment in regulatory annotations when T2D loci were
stratified according to inferred physiological mechanism.

We calculate that the present analysis, together with loci
reported in other recent publications (9), brings the total
number of independent T2D associations to 128 distinct
signals at 113 loci (Supplementary Table 3). Lead SNVs at
all 13 novel loci were common (MAF .15%) and of com-
parable effect size (1.07 # OR # 1.10) to previously iden-
tified common variant associations (2,4). Associations at
the novel loci showed homogeneous effects across diverse
ethnicities, supporting the evidence for coincident common
risk alleles across ancestry groups (2). Moreover, we con-
clude that misclassification of diabetes subtype is not a
major concern for these analyses and that the HLA-DQA1
signal represents genuine association with T2D, indepen-
dent of nearby signals that influence T1D.

We observed a general increase in the size of credible
sets with 1000G imputation compared with HapMap im-
putation. This is likely due to improved enumeration of
potential causal common variants on known risk haplotypes
rather than resolution toward low-frequency variants of
larger effect driving common variant associations. These
findings are consistent with the inference (arising also from
the other analyses reported here) that the T2D risk signals
identified by GWAS are overwhelmingly driven by common
causal variants. In such a setting, imputation with denser
reference panels, at least in ethnically restricted samples,
provides more complete elaboration of the allelic content of
common risk haplotypes. Finer resolution of those haplo-
types that would provide greater confidence in the location
of causal variants will likely require further expansion of
trans-ethnic fine-mapping efforts (2). The distinct signals at
the established CCND2 and TP53INP1 loci point to contri-
butions of low-frequency variant associations of modest
effect but indicate that even larger samples will be required
to robustly detect association signals at low frequency. Such
new large data sets might be used to expand the follow-up
of suggestive signals from our analysis.

The discovery of novel genome-wide significant associ-
ation signals in the current analysis is attributable primarily
to increased sample size rather than improved genomic
coverage. Although we queried a large proportion of the
low-frequency variants present in the 1000G European
reference haplotypes and had .80% power to detect ge-
nome-wide significant associations with OR .1.8 for the
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tested low-frequency risk variants, we found no such low-
frequency variant associations in either established or novel
loci. While low-frequency variant coverage in the current
study was not complete, this observation adds to the grow-
ing evidence (2,4,9,46) that few low-frequency T2D risk
variants with moderate to strong effect sizes exist in

European ancestry samples and is consistent with a
primary role for common variants of modest effect in
T2D risk. The current study reinforces the conclusions
from a recent study that imputed from whole-genome
sequencing data—from 2,657 European T2D case and
control subjects rather than 1000G—into a set of GWAS
studies partially overlapping with the present meta-analysis.
We demonstrated that the failure to detect low-frequency
associations in that study is not overcome by a substantial
increase in sample size (9). It is worth emphasizing that we
did not, in this study, have sufficient imputation quality to
test for T2D associations with rare variants and we cannot
evaluate the collective contribution of variants with MAF
,0.5% to T2D risk.

The development of T2D involves dysfunction of multiple
mechanisms across several distinct tissues (9,29,31,47,48).
When coupled with functional data, we saw larger effect
estimates for enrichment of coding variants than observed
with HapMap SNVs alone, consistent with more complete
recovery of the causal variants through imputation using a
denser reference panel. The functional annotation analyses
also demonstrated that the stratification of T2D risk loci
according to primary physiological mechanism resulted in
evidence for consistent and appropriate tissue-specific ef-
fects on transcriptional regulation. These analyses exem-
plify the use of a combination of human physiology and
genomic annotation to position T2D GWAS loci with re-
spect to the cardinal mechanistic components of T2D de-
velopment. Extension of this approach is likely to provide a
valuable in silico strategy to aid prioritization of tissues for
mechanistic characterization of genetic associations. Using
the hypothesis-free pathway analysis of T2D associations
with DEPICT (32), we highlighted a causal role of mTOR
signaling pathway in the etiology of T2D not observed from
individual loci associations. The mTOR pathway has pre-
viously been implicated in the link between obesity, insulin
resistance, and T2D from cell and animal models (44,49).

The current results emphasize that progressively larger
sample sizes, coupled with higher density sequence-based
imputation (13), will continue to represent a powerful strat-
egy for genetic discovery in T2D and in complex diseases
and traits more generally. At known T2D-associated loci,
identification of the most plausible T2D causal variants
will likely require large-scale multiethnic analyses, where
more diverse haplotypes, reflecting different patterns of
LD, in combination with functional (31,50,51) data allow
refinement of association signals to smaller numbers of
variants (2).
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