
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Low Bandwidth and Latency Secure Computation Oblivious RAM with Three Parties

Permalink
https://escholarship.org/uc/item/97v515b4

Author
Wei, Boyang

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97v515b4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Low Bandwidth and Latency Secure Computation Oblivious RAM with Three Parties

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Boyang Wei

Dissertation Committee:
Professor Stanislaw Jarecki, Chair

Professor Michael B. Dillencourt
Professor Michael T. Goodrich

2018

Chapter 4 c© 2015 Springer Nature
Chapter 5 c© 2018 Springer Nature

All other materials c© 2018 Boyang Wei

DEDICATION

To my parents, for their love from the other side of the earth.

To Nan, my love.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Definitions . 2
1.2 Problem Statement . 3
1.3 Road-map . 4

2 Literature Review 6
2.1 First ORAM, and Hierarchical Construction 6

2.1.1 “Square-Root” ORAM . 7
2.1.2 Hierarchical ORAM . 8
2.1.3 The Ω(log(n)) Asymptotic Lower-bound 9

2.2 Binary-Tree ORAM . 10
2.3 Path-ORAM . 11

2.3.1 Access . 11
2.3.2 Recursive Position Map . 12
2.3.3 Complexity . 13

2.4 Yao’s Garbled Circuit . 14
2.4.1 Optimizations . 17

2.5 2PC-Circuit-ORAM . 18
2.6 2PC-Sqrt-ORAM . 21
2.7 2PC-FLORAM . 23

2.7.1 Private Information Retrieval . 23
2.7.2 Distributed Point Function . 24
2.7.3 FLORAM Construction . 26

iii

2.8 Summary of 2PC-ORAM . 27

3 Method Overview 30
3.1 Study, Design, and Customize 3PC Protocols 30
3.2 Analysis of 3PC-ORAM . 32

4 First Customized 3PC-ORAM 35
4.1 Technical Overview . 37
4.2 Three-Party Protocol Building Blocks . 39
4.3 3PC-ORAM Protocol . 44
4.4 Protocol Analysis . 53
4.5 Implementation and Testing . 57

5 3PC-Circuit-ORAM 60
5.1 Technical Overview . 60
5.2 3PC-Circuit-ORAM Protocol . 64
5.3 Security . 72
5.4 Performance Evaluation . 73

6 3PC-Sqrt-ORAM 77
6.1 Technical Overview . 81
6.2 Access Protocols . 84

6.2.1 AccFirst, AccMid, and AccLast . 84
6.2.2 Initialization . 88

6.3 Analysis . 93
6.4 Implementation and Concrete Performance 94

7 3PC-DPF-ORAM 98
7.1 Definitions . 98

7.1.1 Random Access Machines (RAMs) 98
7.1.2 Oblivious RAM (ORAM) . 99
7.1.3 Oblivious Reading/Writing . 101
7.1.4 Distributed Point Functions . 103
7.1.5 Labeled Private-Key Encryption . 105

7.2 Two- and Three-Server DPF-ORAM . 106
7.2.1 PIR/PIW Schemes . 106
7.2.2 Two-Server DPF-ORAM . 109
7.2.3 Three-Server DPF-ORAM . 114

7.3 3PC-DPF-ORAM . 116
7.4 Implementation and Performance . 120

8 Results and Conclusion 123
8.1 Contributions and Improvements of 3PC-ORAM 123
8.2 Conclusion . 127

Bibliography 129

iv

A Supplementary Algorithm Figures 134
A.1 Algorithms for Client-Server Path-ORAM [42] 134
A.2 3PC-Circuit-ORAM Auxiliary Protocols . 136

A.2.1 Protocols for Retrieval . 139
A.2.2 Protocols for Reduced-Round Retrieval 141
A.2.3 Protocols for PostProcess . 143
A.2.4 Protocols for Eviction . 146

A.3 3PC-Circuit-ORAM Routing Circuit . 149
A.3.1 Main Routing Circuit . 149
A.3.2 Prepare Array dp . 150
A.3.3 Prepare Arrays σ and t . 151
A.3.4 Making the Eviction Map into A Cycle 154

v

LIST OF FIGURES

Page

2.1 Yao’s garbled circuit for the AND gate: (a) AND gate, with input wires i, j
and output wire k, and the pairs of wire keys; (b) truth table of the AND
gate represented using the corresponding wire keys, and the encryption; (c)
garbled version of the encrypted truth table. 16

2.2 2PC-ORAM access bandwidth comparison, for record size = 4 bytes, from [15] 28

3.1 3PC Oblivious Transfer: with Party1’s input two messagesm0,m1 and Party2’s
input bit b, obliviously transfer message mb from Party1 to Party2 31

4.1 w for different logN . 57
4.2 Online Wall Clock vs RAM address size log(n) 59

5.1 Randomization of Circuit ORAM’s Bucket Map 63
5.2 Round and bandwidth for sub-protocols of Alg. 5.2, for ` the number of tuples

on path and x the circuit input size (≈ `(d + log(n)) + d log(w + 1)) 68
5.3 Our 3PC-ORAM Online Wall-Clock Time(ms) vs log(n) for B = 4 bytes . . 75
5.4 CPU Time (ms) vs log(n), for B = 4 bytes 75
5.5 Online bndw.(MB) vs log(n) for B=4 bytes . 75
5.6 Comparison with 2PC-ORAM’s in online+offline bndw.(MB) vs log(n) for B=4

bytes . 75

6.1 3PC-Sqrt-ORAM Access Pattern (graph style based on [51]) 81
6.2 Runtime comparison between 3PC-Sqrt-ORAM and 3PC-Circuit-ORAM . . 95
6.3 Online Bandwidth comparison between 3PC-Sqrt-ORAM and 3PC-Circuit-

ORAM . 95
6.4 Total Bandwidth comparison between 2PC-Sqrt-ORAM and 3PC-Sqrt-ORAM 96

7.1 3PC-ORAM Total and Online Bandwidth Comparison 120
7.2 Access runtime comparison, with block size=4 bytes 121

8.1 Access bandwidth comparison of 3PC-ORAM schemes 126

vi

LIST OF TABLES

Page

2.1 Bandwidth per memory access for recent 2PC-ORAM schemes as a function
of security parameter κ, array length n, and record size B. 28

4.1 Comparison of Circuit Size between this proposal (without optimizations) and
the 2PC-SCORAM scheme [46]. All numbers are reported as function of array
size |M| = n for statistical security parameter λ = 80. The first 3PC-ORAM
estimation uses bucket size w = 128 mandated by the strict bound implied
by Lemma 4.2, while the second one uses bucket size w = 32 derived from the
Markov Chain approximation. 37

8.1 Bandwidth per memory access for 2PC- and 3PC-ORAM schemes as a func-
tion of security parameter κ, statistical parameter λ, memory array length n,
and record size B. 124

vii

LIST OF ALGORITHMS

Page

4.1 Protocol SS-COT[N](S,R,H) - Secret-Shared Conditional OT 41
4.2 Protocol XOT

[
N
k

]
(S,R, I) - Shuffle OT . 42

4.3 Protocol SS-XOT
[
N
k

]
(A,B, I) - Secret-Shared Shuffle OT 43

4.4 Protocol Retrieval[i] - Oblivious Retrieval of Next Label 47
4.5 Protocol PostProcess[i] - Inserting New Labels into Ti 51
4.6 Protocol Eviction[i] - Eviction in Path PLi of treei 52

5.1 Protocol 3PC-ORAM.Access - 3PC-Circuit-ORAM Access 66
5.2 Protocol 3PC-ORAM.ML - Main Loop of 3PC-Circuit-ORAM 67

6.1 Original Sqrt-ORAM Scheme from [22] . 78
6.2 Protocol 3PC-Sqrt-ORAM . 83
6.3 Protocol AccFirst - Access on the First Level 85
6.4 Protocol AccMid - Access on Each Middle Level 87
6.5 Protocol AccLast - Access on the Last Level 87
6.6 Protocol SSOT - Secret-Shared OT . 88
6.7 Protocol INIT - Initialize ORAM . 90
6.8 Protocol InitPosMap - Initialize Position Map 91
6.9 Protocol OblivPermute - Obliviously Permute 92
6.10 Protocol GenPermConcat - Generate Permutation Concatenation 92
6.11 Protocol GenPermShare - Generate Permutation Secret-Sharing 93

viii

ACKNOWLEDGMENTS

First and foremost, I would like to express the deepest appreciation to my Ph.D. advisor,
Professor Stanislaw Jarecki. Professor Jarecki has great passion in cryptography research
and education. He has taught me not only how to do research effectively but also how
to think with open-minds. Without his generous trust, patience, support, and guidance, I
would not be able to make achievements in this field and accomplish this degree. I am very
grateful of having the opportunity to work with you, and will never forget all you have done
for me.

I would also like to thank my defense committee members, Professors Stanislaw Jarecki,
Michael Dillencourt, Michael Goodrich. Thank you very much for your time, support, and
guidance.

In addition, many thanks to my collaborators and friends, Stanislaw Jarecki, Sky Faber,
Sotirios Kentros, Jonathan Katz, Mariana Raykova, Xiao Wang, Jiayu Xu, Di Yang, Wei
Wang, Fei Yu. Your efforts, support, and help were critical in my development.

Also, thanks to the Dean’s Fellowship from UCI Donald Bren School of Information and
Computer Sciences, NSF Secure and Trustworthy Cyberspace funding, which support my
study. And thanks to Springer Nature for permission to incorporate my publications into
this dissertation.

ix

CURRICULUM VITAE

Boyang Wei

EDUCATION

Doctor of Philosophy in Computer Science 2018
University of California, Irvine Irvine, California

Master of Science in Computer Science 2018
University of California, Irvine Irvine, California

Bachelor of Arts in Computer Science and Mathematics 2013
St. Olaf College Northfield, Minnesota

RESEARCH EXPERIENCE

Graduate Research Assistant 2013–2018
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

TA for Programming with Software Libraries (ICS 32) Spring 2018
University of California, Irvine Irvine, California

TA for Programming with Software Libraries (ICS 32) Winter 2018
University of California, Irvine Irvine, California

Reader for Introduction to Cryptography (CS 167) Winter 2017
University of California, Irvine Irvine, California

TA for Programming with Software Libraries (ICS 32) Spring 2016
University of California, Irvine Irvine, California

Reader for Programming in Java (ICS 45J) Fall 2016
University of California, Irvine Irvine, California

TA for Programming with Software Libraries (ICS 32) Spring 2015
University of California, Irvine Irvine, California

TA for Programming with Software Libraries (ICS 32) Winter 2015
University of California, Irvine Irvine, California

TA for Programming in C/C++ (ICS 45C) Fall 2015
University of California, Irvine Irvine, California

TA for Principles in System Design (ICS 53) Spring 2014
University of California, Irvine Irvine, California

x

INTERNSHIP EXPERIENCE

Software Engineer Intern Summer 2017
Google Mountain View, California

REFEREED CONFERENCE PUBLICATIONS

3PC ORAM with Low Latency, Low Bandwidth, and
Fast Batch Retrieval

2018

Applied Cryptography and Network Security (ACNS)

Three-Party ORAM for Secure Computation 2015
Theory and Application of Cryptology and Information Security (Asiacrypt)

SOFTWARE

3pc-dpforam https://github.com/Boyoung-/3pc-dpforam

3PC-DPF-ORAM C++ implementation

3pc-dpforam-java https://github.com/Boyoung-/3pc-dpforam-java

3PC-DPF-ORAM Java implementation

sqrt-oram-3pc https://github.com/Boyoung-/sqrt-oram-3pc

3PC-Sqrt-ORAM Java implementation

circuit-oram-3pc https://github.com/Boyoung-/circuit-oram-3pc

3PC-Circuit-ORAM Java implementation

oram3pc https://github.com/Boyoung-/oram3pc

3PC-ORAM Java implementation

xi

https://github.com/Boyoung-/3pc-dpforam
https://github.com/Boyoung-/3pc-dpforam-java
https://github.com/Boyoung-/sqrt-oram-3pc
https://github.com/Boyoung-/circuit-oram-3pc
https://github.com/Boyoung-/oram3pc

ABSTRACT OF THE DISSERTATION

Low Bandwidth and Latency Secure Computation Oblivious RAM with Three Parties

By

Boyang Wei

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Stanislaw Jarecki, Chair

An Oblivious RAM (ORAM) protocol allows a client to access memory outsourced at the

server without leaking the access pattern. A related notion is Multi-Party Computation

ORAM (MPC-ORAM), which is a protocol that can implement the RAM functionality

for secure computation of any RAM programs on large data, e.g., MPC processing of

database queries on a secret-shared database. MPC-ORAM can be constructed from any

(client-server) ORAM by implementing the ORAM client algorithm with MPC protocols.

However, efficient ORAM does not necessarily translate to efficient MPC-ORAM. Most

previous work constructed efficient MPC-ORAM in the two-party secure computation (2PC)

setting, but since secure computation of many functions is more efficient in the three-party

honest-majority setting than in the two-party setting, it is natural to ask if the cost of an

MPC-ORAM scheme can be reduced if one is willing to use three servers instead of two and

assumes an honest majority. In this study, we show four constructions of MPC-ORAM in the

three-party setting (3PC-ORAM) with honest majority, using customized 3PC protocols for

performance optimization, which can make the resulting 3PC-ORAM schemes to be orders of

magnitude more efficient than the current best 2PC-ORAM schemes. These improvements

help to achieve practical and efficient performance results, and make MPC-ORAM more

suitable for real world applications.

xii

Chapter 1

Introduction

Oblivious RAM (ORAM) is a protocol between client and server which allows the client

to access outsourced memory at server while hiding the accessed memory locations, i.e.,

the access pattern to data. The reason of using ORAM is that sensitive information may

be leaked if the data access pattern can be monitored by the adversary. Starting from the

seminal work of ORAM by Goldreich and Ostrovsky [22], numerous improvements on ORAM

techniques have been proposed to achieve more efficient asymptotic and concrete costs on

computation, communication bandwidth, rounds, and storage overhead [8, 23, 24, 32, 38,

41, 42, 48].

The above classic client-server ORAM provides secure outsourced memory for a single client.

This presents some issue: If there are multiple clients holding the same secrets to access the

memory and some of the clients are corrupted, then there is no security guarantee for the

rest of the clients. Multi-client ORAM has been studied to solve this problem [33, 34, 9].

However, a common issue for multi-client ORAM is that the number of clients does not scale.

In this study I focus on another solution to the above problem, which is ORAM in the secure

computation setting (SC-ORAM), or Multi-Party Computation ORAM (MPC-ORAM).

1

MPC-ORAM securely performs memory access on shared memory index and array. Because

sensitive information are secret-shared in MPC-ORAM, and no secrets like the encryption

master key used in client-server ORAM are needed and stored at the client, security is still

preserved for non-compromised clients. MPC-ORAM can provide oblivious RAM access

for secure computation of any RAM programs, and is especially well suited for information

retrieval algorithms which rely heavily on the RAM model.

The efficiency of MPC-ORAM is crucial for the overall efficiency of RAM-based secure

computation. As pointed out by Ostrovsky et al. [37], MPC-ORAM can be constructed

generically by implementing the client algorithm of the ORAM with MPC protocols. However,

because algorithms translated into MPC version in general become more expensive, the

generic MPC-ORAM implementations can be practically inefficient. Many work [46, 44, 51,

15] have been done to find and design MPC-friendly ORAM client algorithm in order to

improve efficiency of MPC-ORAM in the two-party setting (i.e., 2PC-ORAM) in terms of

bandwidth, computation, and rounds. However, we observe that for MPC protocols, often

the same protocol can be done more efficiently with three-party than with two-party. Thus,

we conduct the study on 3PC-ORAM, with the goal to construct more efficient MPC-ORAM

both asymptotically and practically.

1.1 Definitions

Oblivious RAM. Let the RAM data array M have length n, and each data record have B

bits. The RAM M is accessed by op(i, rec′), where op ∈ {read,write} is the access operation,

i ∈ {1, ..., n} is the memory access location, and rec′ is the new record to be inserted to M.

Access read(i, rec′) returns record rec = M[i] and keep M unchanged, while access write(i, rec′)

returns ⊥ but set M[i] := rec′.

2

Correctness: For a sequence of ` accesses [op1(i1, rec
′
1), op2(i2, rec

′
2), ..., op`(i`, rec

′
`)], and for

all t ∈ {1, ..., `}, if opt = read, then the result of opt(it, rec
′
t) is equal to the last value written

to location it on M.

Security: For any two access sequences x and y with same length ` (each of which has form

[op1(i1, rec
′
1), op2(i2, rec

′
2), ..., op`(i`, rec

′
`)]), x is computationally indistinguishable from y.

MPC-ORAM. Secure Multi-Party Computation allows m parties, each of which holding

some secret input xi, to jointly compute some function y = f(x1, x2, ..., xm), and guarantees

that no party learns information more than what is revealed from the output y and each

of their secret input. And Multi-Party Computation Oblivious RAM (MPC-ORAM) is a

protocol which lets m parties implement access operation to a secret-shared RAM and hides

both the memory access locations and data records at the same time. The correctness of

MPC-ORAM follows naturally from the underlying ORAM, and the security guarantee holds

as long as no more than a threshold t number of parties are corrupted.

3PC-ORAM. In this study I focus on the design of 3PC-ORAM, i.e., MPC-ORAM in the

three-party setting that m = 3, and the security assumption is that at most t = 1 party will

be corrupted. In other words, I consider 3PC-ORAM in the honest majority setting. And

the adversary model assumed in this study is honest-but-curious, or semi-honest adversary.

In such model, all the m participating parties will follow the executing MPC-ORAM protocol

honestly, but up to t parties would collude and be interested in finding out more information

other than their given input and output.

1.2 Problem Statement

This study addresses the problem of large performance overhead of MPC-ORAM in practice.

MPC-ORAM can be a good solution for many real world applications, including constructing

3

oblivious data structures like queues and heaps, designing oblivious versions of widely used

algorithms like Dijkstra’s Algorithm and Stable Matching, and building applications like

search-able encryption system and oblivious database [30, 47, 43, 35, 17, 52]. However,

often because of the large overhead on bandwidth, computation, or round complexity,

MPC-ORAM does not have competitive practical performance. Therefore, the goal of this

study is to design efficient 3PC-ORAM schemes (MPC-ORAM with efficiency advantage of

the three-party setting) in practice, which can be used to implement real world applications

and maintain data privacy with small overhead.

In this study we consider communication bandwidth, round, and computation cost as the

efficiency measurements of MPC-ORAM (as observed by Wang et al. [44], circuit size is also

a good performance metric especially for 2PC-ORAM, because generic 2PC garbled circuit is

often the bottleneck and affects bandwidth and computation, but with 3PC we may be able

to avoid the use of 2PC garbled circuit). The theoretical focus of this study is to improve the

asymptotic costs of the MPC-ORAM with 3PC. And the practical focus of this study is to

validate the theoretical improvements in practice, compare the trade-offs between variables,

and try to further improve the concrete performance.

1.3 Road-map

In Chapter 2 I give a summary of relevant ORAM work and state-of-art MPC-ORAM

literatures related to this 3PC-ORAM study, which covers well-known ORAM constructions,

cryptographic primitives, and generic MPC protocols commonly used for constructing MPC

ORAM. Chapter 3 is an overview of methods I used for conducting this 3PC-ORAM study.

Chapter 4 describes the first 3PC-ORAM scheme we designed with customized 3PC protocols

to achieve better efficiency over 2PC-ORAM at that time. Chapter 5 explains the our

3PC-Circuit-ORAM construction, which has the best asymptotic complexity and improves

4

concrete efficiency over previous schemes. Chapter 6 includes our 3PC-Sqrt-ORAM scheme,

which has the best concrete performance for small memory array size. Chapter 7 talks

about our 3PC-DPF-ORAM, which is extremely efficient on bandwidth, and also has better

computation cost for a wide range of memory sizes. Chapter 8 reports our results and

findings overall, and concludes this study.

5

Chapter 2

Literature Review

2.1 First ORAM, and Hierarchical Construction

Oblivious RAM was first introduced by Goldreich and Ostrovsky [22] for the software

protection issue. Software, as an intellectual property, is often difficult and expensive to

produce, but relatively easy to copy and steal. Goldreich et al. [22] argued that the

software protection problem could be reduced to the problem of preventing the adversary

from inspecting the contents of memory as well as the communication between CPU and

memory during software execution. And to solve this problem, they proposed the simulation

of arbitrary RAMs by oblivious RAM to hide the memory access pattern.

An naive approach for oblivious RAM is to visit every memory cell once per each access so

the access pattern is always the same and thus oblivious. However, the overhead for such

approach is not practical. Thus, the question is, can the oblivious RAM be achieved with

less cost.

6

Goldreich et al. [22] showed in their study that they could do a simulation of any RAM

program by oblivious RAM with only polylogarithmic overhead O(polylog(n)) of the RAM

size n, where the overhead means the additional oblivious RAM cost comparing to the cost

of the underlying RAM program. Goldreich et al. illustrated their oblivious RAM by first

showing a “Square-Root” scheme, with O(
√
n) overhead, to give some intuition for the later

more efficient O(polylog(n)) solution.

2.1.1 “Square-Root” ORAM

The general idea of this “Square-Root” ORAM is as following. Besides the main memory

array with size n, additionally there are
√
n dummy memory blocks appended to the main

memory and a data structure called stash with size
√
n which temporarily stores the accessed

memory records so far. The main memory will be randomly permuted by some permutation

π. For each ORAM access, the stash will first be linearly scanned to check existence of

the expected memory record. If not found, the record will be retrieved by lookup on the

permuted main memory using permutation π. Otherwise, a fake lookup will be perform on

some us-used dummy main memory block. And in any of the above two cases, the block from

lookup on the main memory will be appended to the stash. Once after
√
n accesses that

the stash becomes full and with the possibility that dummy memory blocks are all used, a

re-initialization of the ORAM will be performed, that new dummy blocks will be re-created,

and real data records on stash will be put back to the main memory, which will be randomly

permuted again by some new permutation π′.

The “Square-Root” construction is an ORAM because, first, the adversary monitoring the

RAM activity cannot tell the real order of memory locations that are being accessed because

of the random permutation, and second, the adversary cannot tell if a particular memory

location is accessed multiple times, because the access pattern is that each record from the

7

permuted main memory will only be accessed at most once, and same record that is accessed

multiple times will be on stash and retrieved with oblivious linear scan.

“Square-Root” ORAM has an amortized access overhead O(
√
n). This is because, first, each

access requires to linearly scan the stash which has size
√
n, and second, the periodic shuffling

cost using Batcher’s Sorting Network is O(n · log2(n)). Amortizing this re-initialization cost

over
√
n accesses, the overhead of “Square-Root” ORAM is O(

√
n · log2(n)) = O(

√
n).

2.1.2 Hierarchical ORAM

Goldreich et al. [22] also presented a hierarchical ORAM solution based on the “Square-Root”

ORAM idea, and reduced access overhead from O(
√
n) to O(polylog(n)). The idea of the

efficiency improvement was to decrease the amortized cost of the periodic permuting of the

main memory by storing the memory array as a recursive log(n)-level hierarchy of permuting

buffers (implemented by hash tables) with increasing sizes, to which the permuting frequency

is inversely proportional. The idea of the access algorithm is still similar to the “Square-Root”

scheme, that we either find the memory record on stash or at some unvisited location. The

difference in the hierarchical ORAM is that when we lookup record on some level L, all levels

before L kind of act like the stash for L.

The general steps of hierarchical ORAM access are as following. The first level of the

hierarchy will be scanned, and if record not found, then on the second level using its hash

function, we can locate one hash bucket and scan O(log(n)) blocks in the bucket to keep

looking; if the record is found in first level scan, then a fake lookup will be performed on

the second level (and the following levels). This whole lookup operation on the first and

second levels is like a “stash scan” for the third level, that based on whether record has

been found or not before the third level, real or fake hash bucket lookup will be performed

on the third level. And such lookup will be applied recursively on all levels, which makes a

8

single ORAM access. After each access, the (new) record will be inserted back to the first

level, like the idea of putting the record back onto stash in “Square-Root” scheme. And if

at this time any level is full, then that level will be re-initialized by randomly shuffling its

data records into the next level, and the hash tables of these levels will be re-built, which is

like the “Square-Root” idea of shuffling records from stash back to main memory, rebuilding

stash, and re-shuffling main memory.

This hierarchical solution preserves obliviousness as long as the hashing is oblivious so that

the lookup location has no correlation to the real memory address, and the access pattern

is random for particular memory location being accessed multiple times because accessed

records will be on “stash” and “scanned”, while the access pattern is supplemented with

fake lookup. The cost of overhead for this hierarchical ORAM is O(polylog(n)), as for

each access, on every log(n) level, the hash bucket scan cost is O(log(n)). And the cost of

re-hashing (oblivious sorting) of each level amortized over its level size is also O(polylog(n)).

2.1.3 The Ω(log(n)) Asymptotic Lower-bound

Besides the cornerstone theory on oblivious RAM and two ORAM constructions, Goldreich

et al. [22] also showed in their paper that for memory array size n, the lower-bound for

ORAM access overhead is Ω(log(n)). This is a powerful lower-bound, which is for arbitrary

memory block sizes and applies to both online and offline phrases of ORAM implementations

as well as other additional performance metrics used in MPC setting such as circuit size,

which will be explained more in the later chapters.

9

2.2 Binary-Tree ORAM

Since the hierarchical ORAM proposed by Goldreich et al. [22], many subsequent work

[8, 48, 23, 24, 32, 38] had been done to improve the construction. However, since these work

inherited the hierarchical design from [22], they relied on expensive primitive operations like

oblivious hashing, sorting, and periodic reshuffling. And people started to wonder whether

there could be alternative constructions of ORAM that could avoid expensive operations like

oblivious sorting and periodic reshuffling, and achieve O(polylog(n)) cost even in the worst

case comparing to the amortized O(polylog(n)) cost of [22].

The answer to the above question appeared in 2011, that Shi et al. [41] proposed a

novel ORAM construction called binary-tree ORAM. Binary-tree ORAM’s construction is

fundamentally different from the previous hierarchical ORAM construction, that in general

the memory is organized and stored in a binary tree, where each tree node is treated

as a bucket which can hold some number of data records. Data records will be moved

and relocated obliviously along the tree paths to preserve oblivious access pattern. And,

comparing to the hierarchical ORAM, the binary-tree ORAM is conceptually simpler and

eliminates the need to perform expensive operations like oblivious sorting and periodic

reshuffling, which leads to more practical results.

Since then, many work [14, 19, 42, 46, 40] has been done to continue the study and improve

the design of binary-tree ORAM. And Path-ORAM [42], is one of the binary-tree based

ORAMs well-known for its simplicity and practicality. In the next section, I will explain the

idea of binary-tree ORAM based on Path-ORAM.

10

2.3 Path-ORAM

Using the same notation in Section 1.1, let the memory array M has length n, and each data

record has size B. On the server side, the memory array is stored in a binary tree with

height log(n). Each tree node is a bucket that can store w number of tuples, and each tuple

is in the format of (fb, adr, lbl, rec), where fb is a full/empty bit flag indicating whether this

tuple contains real or dummy data record, adr is the memory location address of the data

record, lbl is a label indicating which binary tree path this tuple resides on, and rec stores

the data record. Notice that this binary-tree structure can store 2nw tuples, but up to n

tuples in the binary tree will be tuples containing real records, and the rest tuples will be

dummy ones.

On the client side, the client stores a position map, which is a two column table that maps

memory location address adr to binary tree path label lbl. In addition a stash is also stored

at the client, and the stash is an array of tuples with size s, a temporary storage for tuples

accessed before and not yet inserted back to the server side binary tree.

2.3.1 Access

The ORAM access in such binary-tree construction can be viewed as three steps, Retrieval,

PostProcess, and Eviction:

1. Retrieval. Given memory location address adr, Retrieval allows the client to retrieve

data record M[adr] from the server. This is done as following: the client searches in its

position map PM with address adr to get binary tree path label lbl = PM[adr]. The

client sends lbl to the server, who retrieves every tuples on the tree path corresponding

to the path label lbl from root to leaf, and send this array of tuples path back to the

client. The client will then decrypt the path, linear scan the stash and path, and the

11

invariant of the Path-ORAM algorithm guarantees that there is one and only one real

tuple among stash and path such that the tuple’s full/empty bit fb is 1 and its address

is adr. And this tuple contains the data record rec = M[adr] the client wants to access.

2. PostProcess. This is the process for the client to prepare writing the (updated)

tuple just retrieved back to the ORAM. The rec of the retrieved tuple can be updated

directly by the client with the new record rec′. Then the client will pick a new random

label lbl′, and update both the label field in the tuple and the position map by setting

PM[adr] = lbl′. The purpose of pick the new random label is to obliviously relocate the

retrieved tuple in the final Eviction step so the access pattern can be oblivious. The

client puts the updated tuple back to stash/path where it was retrieved.

3. Eviction. This step evicts tuples from stash and path along the path according to the

matching degree of each tuple’s label and the path label, so that tuples can be relocated

obliviously while maintaining the invariant that tuple with label lbl must reside on the

tree path with label lbl. Specifically, for each tuple with label lblt, the buckets on path

that this tuple can reside in are the buckets from root to the lowest common ancestor

bucket of lblt and lblpath. And the client can relocate this tuple to the deepest such

bucket that is not yet full (recall that each bucket has a capacity w). If during this

process some tuples cannot be relocated to the path from stash due to all satisfied

buckets are full, then these tuples will be kept on the stash. Finally, once the Eviction

is done, the client will re-encrypt the path and send the path back to the server, who

writes this new evicted path back to the binary-tree path where it was retrieved.

2.3.2 Recursive Position Map

For the above access algorithm, the client needs to store a position map for finding the path

label associated with the access memory address. If the memory stores n data records, and

12

each data record’s binary-tree path label has size log(n) (because the tree height is log(n)),

then the size of the position map is n · log(n), which can be a large storage for the client.

For example, for a memory storing n = 230 records, the position map size is already 230 · 30

bits which is about 4GB.

This large client storage problem can be solved by building this position map as a recursive

ORAM [41]. The idea is, consider a packing parameter τ , that if we pack 2τ path labels as a

data record, then the position map storing n path labels can be stored using a new ORAM

for memory size n/2τ with each data record size 2τ · log(n). Now this ORAM will have its

own position map storing n/2τ labels, and if we apply the above packing algorithm again,

we can pack and store this position map with another ORAM, which gives an even smaller

position map storing only n/22τ labels. So if we apply this algorithm recursively, eventually

we can have an O(1) size position map stored at the client.

2.3.3 Complexity

Unlike hierarchical ORAM, binary-tree based Path-ORAM does not have expensive periodic

re-initialization. As the bucket size w of Path-ORAM can be a small constant [42], the

access overhead complexity of Path-ORAM is O(log3(n)), because each accessed tree path

contains O(log(n)) tuples, each tuple stores adr and lbl which are O(log(n)) size, and there are

log(n) recursive levels. One can see from the above Path-ORAM algorithm that it is simpler

than the hierarchical ORAM algorithm described in [22]. And because the Path-ORAM

construction does not require sophisticated and expensive operations like oblivious sorting

and hashing, it has much better practical performance than the previous hierarchical ORAM

constructions.

13

2.4 Yao’s Garbled Circuit

With efficient client-server ORAM constructions, people started to think about building

efficient 2PC-ORAMs based on efficient client-server ORAMs. In the following sections I will

discuss the state-of-art 2PC-ORAM constructions. As pointed out in [37], with a client-server

ORAM scheme, one can construct a 2PC-ORAM by implementing the client algorithm of

the ORAM with 2PC protocols. So before describing 2PC-ORAM constructions, I will first

introduce a well-known generic 2PC secure computation protocol, Yao’s garbled circuit [49],

which is a common building block for various 2PC-ORAM schemes.

Yao’s garbled circuit [49] is a protocol for generic two-party secure computation, meaning

that it can be used to compute any functionality based on the boolean circuit representation

of the function algorithm. It consumes only constant round of communication, and is secure

against semi-honest adversary. Besides two-party secure computation, Yao’s garbled circuit

also has other practical applications like private function evaluation, zero-knowledge proofs,

key-independent-message secure encryption, etc. [7].

A garbled circuit is essentially an encrypted circuit, with the following properties:

1. Each input wire of the circuit has a pair of keys (w0, w1) corresponding to the 0 and 1

values of the wire.

2. For each boolean gate of the circuit, given two keys for the two input wires representing

the input values, the output of the gate can be computed and also returned as a wire

key. In such a way, the whole circuit can be evaluated using the wire keys.

3. Since the circuit is computed using the wire keys instead of the actual values, the

evaluator of the circuit is not able to learn anything but only the output expected to

be computed.

14

In order to do Yao’s garbled circuit, we need a auxiliary tool called Oblivious Transfer (OT)

[39]. Oblivious transfer is a protocol for obliviously transferring some message from the

sender party to the receiver party. In such protocol, the sender has two messages m0 and

m1, and the receiver has a bit b. The goal is for the receiver to only receive message mb but

nothing else, while the sender learns absolutely nothing. With oblivious transfer, one can

construct the garbled circuit in the following way:

1. Call the two parties of the garbled circuit protocol circuit generator G and circuit

evaluator E. Party G first constructs the garbled circuit (explained below), and sends

the garbled circuit along with wire keys corresponding to G’s input values to E. This

reveals nothing to E as E is just getting encrypted gates and randomly looking keys.

2. E executes the oblivious transfer protocol with G to receive wire keys corresponding

to E’s input values. Now E has all the input value wire keys for the garbled circuit.

As the property of OT, this reveals nothing about E’s input to G.

3. With the entire garble circuit, and one key per input wire, E can now evaluate the

circuit and get the output of the circuit, which is the output of the computation on

G and E’s input (what E directly gets are output wire keys, but G can provide an

output translation table just on output wires for E to acquire the true output values).

E can then share the output with G if needed.

It remains to show how garbled circuit is constructed and evaluated, and the demonstration

below uses the AND gate as an example, because it is the same method for all other boolean

gates, where the same garbled gate construction is used for all gates in the garbled circuit.

First, we will replace the bit values of the input and output of the boolean gate with their

corresponding wire keys. As Fig. 2.1 shows, the truth table of the AND gate is replaced

with the wire keys of the corresponding values. Then for the output column of the truth

15

Figure 2.1: Yao’s garbled circuit for the AND gate: (a) AND gate, with input wires i, j and
output wire k, and the pairs of wire keys; (b) truth table of the AND gate represented using
the corresponding wire keys, and the encryption; (c) garbled version of the encrypted truth
table.

table, the output wire key will be encrypted using its two input wire keys. The final step

is to garble the order of the four encryptions, and these garbled encryptions are the actual

garbled gate for this AND gate.

Now for evaluating this garbled gate, with only one key for each input wire, there is only

one of the four encryptions that can be correctly decrypted which returns the correct wire

key for the output value. Since the order of the encryption is garbled, the evaluator has no

idea which row of the real-order truth table it has decrypted and thus does not know if it

obtains a key for 0 or 1 output bit.

With this construction and evaluation of a single garbled gate, it is easy to construct and

evaluate an entire garbled circuit, as we just connect garbled gates with wire keys, and when

output of some gates are the input for other gates for the underlying circuit, we pass the

corresponding output wires evaluated from those garbled gates to the other garbled gates as

input wire keys.

16

2.4.1 Optimizations

Yao’s garbled circuit protocol is a fundamental primitive used in many applications. And

through out the years people have worked on optimizing this protocol. Below is a list of the

major optimizations:

1. Point and Permute. Beaver et al. [5] noticed that by annotating each wire key using

one bit, the evaluator of the garbled circuit does not need to decrypt all 4 rows of the

garbled gate but only one. This is done by always using different bits for the first bit

position when randomly picking a pair of keys for a wire. Then instead of randomly

garbling the rows of the encrypted truth table, we sort the rows according to the first

bit of the two input wire keys. In such a way, the evaluator immediately knows which

row of the garbled gate to decrypt using the first bits of the input keys, and thus saves

the work of decrypting the rest rows.

2. Row Reduction. Naor et al. [36] noticed that when transmitting each garbled gate,

the transmission of three rows instead of four are already enough. To achieve this,

when generating the output wire for the gate, instead of random generation, we always

generate it as a function of the input label such that the encryption of the first row of

the truth table is always 0. In such a way, as the first row is public information, there

is no need for sending it. Thus the communication bandwidth is reduced by 25%.

3. Free XOR Gate. Kolesnikov et al. pointed out in [31] that if a gate is an XOR gate,

then no encryption/decryption/garbling is needed for securely evaluating such gate.

This is done by picking a random global wire key offset, and randomly pick pairs of

wire keys in a way that the xor of each pair of the wire keys is always equal to this

global offset. In this way, the output wire key can simply be computed as the xor of

the two input wire keys. With this optimization, when designing the circuit for secure

17

computation, circuits with more XOR gates and less AND gates (all other gates can

be constructed using AND gates) will have better efficiency.

4. Half AND Gate. Zahur et al. showed in [50] that if the circuit generator and

evaluator will know in advance the wire key they will be using on one of the input wire

for the AND gate, then the evaluation becomes evaluating ”half AND” gate which only

requires one encryption/decryption with the row reduction optimization. And then

because a full AND can be represented as two such half gates and one free XOR gate,

only two cipher-texts (instead of three from row reduction optimization) are needed

for this garbled AND gate. Though this optimization has an additional cost that each

garbled AND gate now requires two decryption instead of one, the communication

bandwidth, which is often the bottle-neck, is further reduced by 33% from the row

reduction optimization.

2.5 2PC-Circuit-ORAM

In the following sections I will summarize three state-of-art 2PC-ORAMs. This section talks

about Circuit-ORAM by Wang et al. [44], which is an asymptotically and concretely efficient

ORAM for MPC secure computation applications.

For ORAM in the client-server setting, most time bandwidth is the main performance

bottleneck, and thus also the primary performance metric. And many ORAM work have

been focusing on optimizing the communication bandwidth. However, when constructing

MPC-ORAM, ORAM optimized on bandwidth does not necessarily translate into optimized

MPC-ORAM. This is because the client algorithm of the underlying ORAM scheme may

not have an efficient MPC implementation. Because often the MPC implementation of

the ORAM’s client algorithm is done using generic 2PC protocol Yao’s garbled circuit, the

circuit complexity of the ORAM’s client algorithm becomes a natural performance metric

18

for MPC-ORAM [44]. Therefore, ORAM with efficient and “MPC-friendly” client algorithm

is needed and has been studied.

Wang et al. in 2014 proposed a binary-tree based ORAM called Circuit-ORAM [44] with

the goal to achieve optimal circuit complexity for the MPC setting. Want et al. noticed

that by naively implementing the state-of-art ORAM schemes at that time like Path-ORAM

in the MPC setting, it was hard to get practical performance due to the complex circuit of

Path-ORAM’s eviction algorithm. Though Want et al. found alternative oblivious sorting

solution to perform the same Path-ORAM eviction algorithm, due to the cost of oblivious

sorting which is an expensive circuit, the improvement was not significant. Thus a new

“MPC-friendly” eviction algorithm would be needed for optimizing the circuit size.

The solution Want et al. [44] had was to have a less complex eviction algorithm than the

Path-ORAM one but still preserve most of the eviction effectiveness. Their key idea was to

first determine the eviction pattern, i.e., how tuples will be evicted on the path, by only using

linear scans on the metadata, i.e., flag bits and labels of the data blocks, without including

the data record fields. Then, for the most expensive eviction movement, i.e., actually evicting

the tuples along the path, they accomplished it only with a single scan on the path, and

thus reduced the eviction algorithm circuit complexity.

In more detail, 2PC-Circuit-ORAM’s eviction algorithm can be spitted into two steps:

1. Eviction Logic. This step determines the eviction pattern, that how the tuples on

the current retrieved path can be evicted towards the bottom of the path. The idea

is as following: For every bucket on the path, scan only the metadata fields of each

tuple in the bucket. If the current tuple is a real tuple, compute the deepest bucket

on the path that this tuple can be evicted to. Once the tuple metadata scan for a

bucket is completed, a tuple from this bucket that can be evicted deepest on the path

is found. When the deepest tuple for each bucket is found, the eviction pattern can

19

be determined by starting from the root bucket and checking with the rest buckets on

path in order: if the deepest tuple from previous bucket can be evicted deeper than the

deepest tuple in the current bucket, then the deepest tuple from previous bucket should

keep comparing with the rest buckets, and the deepest tuple in the current bucket will

not be evicted; however, if the previous deepest tuple cannot be evicted deeper than

the current deepest tuple, then the previous deepest tuple should be evicted to the

current bucket, and the current deepest tuple should continue comparing with the

rest buckets. Notice that at all time of this eviction algorithm, at most one tuple is

being evicted and compared with the rest deepest tuples from each bucket, which is

an oblivious pattern and leads to a simple algorithm circuit.

2. Eviction Movement. Once the eviction logic is finished that an eviction pattern is

determined, the eviction movement can be performed by a single scan on every tuples

on the path. This is because, as pointed out above, at all time at most once tuple is

being held for eviction. So at each bucket level during the eviction, if an eviction jump

is happening at this level, then the tuple being held will be dropped at the current

bucket, and the tuple being kicked out in the current bucket will be on hold to be

moved into the following buckets. It is like an oblivious swap operation, that if there

is an eviction on current bucket level, we perform the tuple swap; otherwise, we do

not perform the swap and continue to the next bucket. Therefore, only a single on the

actual data records on the path is needed, which has the optimized circuit size.

In comparison with ORAM schemes at that time, 2PC-Circuit-ORAM achieves about 58x

times improvement over straightforward 2PC implementation of the Path-ORAM, and about

5x times improvement over another SCORAM with client algorithm designed for the 2PC

setting [44]. And notice that 2PC-Circuit-ORAM still has the O(log3(n)) complexity, while

the second efficient 2PC-SCORAM is a heuristic scheme without theoretical performance

bounds.

20

2.6 2PC-Sqrt-ORAM

As discussed above, for MPC-ORAM, the underlying ORAM client algorithm circuit size is

an important performance metric because it can greatly affect the efficiency of MPC-ORAM

like communication bandwidth. At the same time there is work like Circuit-ORAM which

tried to find MPC-friendly ORAM algorithm with binary-tree structure, people also tried to

work on the hierarchical ORAM construction originated from [22] to see if there could be

MPC-friendly solution to reduce the expensive cost of oblivious sorting, hashing, and secure

computation of pseudo-random functions (PRF) used in [22].

In 2016, Zahur et al. [51] published a new 2PC-Sqrt-ORAM design based on the Square-Root

ORAM of [22]. Like in [22] that its “Square-Root” client-server ORAM has O(
√

(n))

overhead, the new 2PC-Sqrt-ORAM scheme also has the similar overhead complexity which

is not asymptotically better than the 2PC-Circuit-ORAM by Want et al. [44]. However, as

illustrated by Zahur et al., for smaller memory array length like n < 216, the 2PC-Sqrt-ORAM

has very efficient concrete performance due to small constants in the cost formula, and

their concrete performance is actually better than the 2PC-Circuit-ORAM. Moreover, for

initializing the ORAM, unlike binary-tree based ORAM which may require inserting memory

data records one by one, 2PC-Sqrt-ORAM can initialize the whole memory array at once

and the initialization time significantly outperforms the previous schemes.

Zahur et al. [51] pointed out that the original Square-Root ORAM construction was not

designed and well-suited for the MPC setting and there were two main problems that made

it very expensive if using generic MPC implementation: first, the access of the original

Square-Root ORAM requires evaluation of PRF, which is very inefficient because doing PRF

in MPC requires thousands of circuit gates. Second, the shuffling of data blocks require many

oblivious sorting operations, which is also a noticeable cost in the MPC setting.

21

The new 2PC-Sqrt-ORAM [51] solved the above problems mainly with the three modifications

below:

1. The expensive PRF is replaced with random permutation secret-shared among the

two parties. This eliminates the needs for expensive oblivious sorting on PRF output

during re-shuffling of initialization, which can be done with more efficient Waksman

shuffling network.

2. The 2PC-Sqrt-ORAM does not require the use of extra dummy blocks in the main

memory array. Whenever a dummy access is needed, it will access a random unaccessed

real block, and append it to the stash just like other real accessed block. As stash is

always scanned at first for each access, it still guarantees to find the real target record

that should be accessed.

3. Each accessed location is now a public information. This eliminates the need for moving

blocks from stash back to memory array using oblivious sorting during re-initialization.

The reason this is still secure is that each main memory location will be accessed at

most once. And if some location is being requested for access multiple times, then fake

accesses on unvisited locations will be performed after the first access, and the real

record lookup is done by scanning the stash, so the access pattern is still the same.

The asymptotic complexity of the 2PC-Sqrt-ORAM isO(
√
n log3(n)), which is not as good as

the O(log3(n)) complexity of 2PC-Circuit-ORAM mentioned in the above section. However,

according to the performance measurement and comparisons in [51], for small memory

array size, the 2PC-Sqrt-ORAM concrete cost can even be very close to the linear scan

cost (so much better than 2PC-Circuit-ORAM), and for moderate memory array size, the

2PC-Sqrt-ORAM performs better than 2PC-Circuit-ORAM for all memory block counts up

to 216. And for concrete initialization cost, the 2PC-Sqrt-ORAM can be about two orders

of magnitude better than 2PC-Circuit-ORAM [51].

22

2.7 2PC-FLORAM

Recently in 2017, Doerner et al. proposed a new 2PC-ORAM scheme called Function

secret-sharing Linear ORAM, or FLORAM [15]. Unlike previous 2PC-ORAM schemes like

2PC-Circuit-ORAM and 2PC-Sqrt-ORAM, 2PC-FLORAM considers a variant of the base

ORAM model called distributed ORAM, where the ORAM memory is replicated among two

servers instead of stored at a single server. With this slightly weaker model of ORAM and the

use of techniques of DPF based two-server PIR of Boyle et al. [10, 11], the 2PC-FLORAM

achieves constant round ORAM access, efficient access time and smaller bandwidth, and

small initialization time. Though due to the nature of PIR protocol that the computation

complexity of FLORAM is O(n), linear to the memory size, the local computation can

be fastened with multi-threading, and Doerner et al. showed up to 10x times runtime

improvement with parallelism.

Before showing the construction of the FLORAM, Distributed Point Function (DPF) and

Private Information Retrieval (PIR) will be introduced which serve as the building blocks of

the 2PC-FLORAM.

2.7.1 Private Information Retrieval

Private information retrieval (PIR) [13] is the protocol that allows the client to retrieve some

item from a database on server without revealing to the server which item was retrieved.

It is a weaker notion of the Oblivious Transfer, that it does not require the client to not

learn information about other items in the database. For the construction of FLORAM, the

two-server PIR is used, that for such protocol, there will be two servers holding replications

of the entire database, while the client is retrieving some database item with some secret

index.

23

A very primitive way to implement the two-server PIR is as following [13]. Let the client be

C and two servers be S1 and S2. The memory storage at the servers is denoted as M, with

size n. C would like to retrieve item M[i] at index i from S1 and S2:

1. C generates an array v1 of n random bits, and another array v2 of n bits such that

v2[j] = v1[j] for all j 6= i and v2[i] = 1⊕ v1[i]. C sends v1 to S1 and v2 to S2.

2. S1 computes b1 =
⊕n

j=1(v1[j] ·M[j]). S2 computes b2 =
⊕n

j=1(v2[j] ·M[j]). S1 and S2

sends back b1, b2 to C.

3. C computes b = b1 ⊕ b2, which is M[i].

It is trivial to verify that b = M[i] because for j 6= i, (v1[j] ·M[j])⊕ (v2[j] ·M[j]) = (v1[j]⊕

v2[j]) ·M[j] = 0, and (v1[i] ·M[i])⊕ (v2[i] ·M[i]) = (v1[i]⊕ v2[i]) ·M[i] = M[i]. And C’s index

i remains secret because v1, v2 looks random to S1, S2.

Notice that the bandwidth cost for such two-server PIR protocol is O(n + B), where B is

the size of each memory item. And the servers are doing O(n) local computation. For large

n, the computation can be parallelized to reduce runtime, however, the O(n) bandwidth can

be a bottle-neck for such protocol.

2.7.2 Distributed Point Function

Boyle et al. [10, 11] pointed out that two-server PIR can be constructed using the technique

called Distributed Point Function (DPF) with bandwidth complexity O(log(n)κ+B) where

κ is the security parameter. In the following I will first introduce distributed point function,

and then describe the two-server PIR construction using DPF.

A point function is a function fα,β such that fα,β(x) = β if x = α, and fα,β(x) = 0 for

all x 6= α. In other words, at at most one domain point, the function has some non-zero

24

value, while at all other points the function output is zero. And a distributed point function

is a two-party function secret-sharing scheme of such point function, which is a pair of

probabilistic polynomial time algorithms Gen and Eval:

1. Gen(α, β) is a key generation algorithm, that with the description of the point function

fα,β as the input, it outputs a pair of keys k1, k2 as the secret-sharing of the function

fα,β.

2. Eval(kb, x) is an evaluation algorithm, which takes a point function secret-sharing key

kb (for b ∈ {1, 2}) and a function domain point x, and outputs y such that y is

one of the xor secret-sharing of fα,β(x). This means the Eval algorithm satisfies that

Eval(k1, x)⊕ Eval(k2, x) = fα,β(x) for all x.

With this distributed point function technique, Boyle et al. [10, 11] gave a new two-server

PIR construction as following:

1. C runs Gen(i, 1), and send the DPF keys k1, k2 to corresponding servers S1, S2. This

is like C secret-shares a vector of bits among S1, S2, where the i-bit on vector is 1, and

all rest bits are 0.

2. S1 computes b1 =
⊕n

j=1(Eval(k1, j) ·M[j]). S2 computes b2 =
⊕n

j=1(Eval(k2, j) ·M[j]).

S1 and S2 sends back b1, b2 to C.

3. C computes b = b1 ⊕ b2, which is M[i].

With the property of the DPF, (Eval(k1, j) · M[j]) ⊕ (Eval(k2, j) · M[j]) = (Eval(k1, j) ⊕

Eval(k2, j)) ·M[j] = 0, and (Eval(k1, i) ·M[i])⊕ (Eval(k1, i) ·M[i]) = (Eval(k1, i)⊕ Eval(k1, i)) ·

M[i] = M[i]. Therefore such two-server PIR construction is still correct. And the security of

this new construction follows directly from the security of DPF that each party’s function

share does not leak information about the domain point i.

25

In this new construction, the servers’ local computation complexity remains the same as

O(n). What is change is the bandwidth complexity that the client is only sending DPF

secret-sharing keys instead of bit vectors, so the bandwidth complexity is changed to the

DPF key length plus database item size which is O(log(n)κ + B). For large n, this new

construction will be more efficient on bandwidth.

2.7.3 FLORAM Construction

2PC-FLORAM [15] has three main data structures, read-only memory rom, write-only

memory wom, and a stash. For the memory array M stored in this FLORAM scheme,

rom is the encrypted M replicated at every parties, wom is encrypted M secret-shared

among the two parties, and stash is the temporary storage for accessed and updated data

records so far. For ORAM access with address adr, the stash will be linearly scanned

to search record with adr, similar to other ORAM schemes. What is different is that

after the stash scan, the two parties will run DPF key Gen algorithm on adr with secure

computation. This will output one DPF secret-sharing key to each of the party, who acts

like servers in the two-server PIR to retrieve secret-sharing of rom[adr]. Then through secure

computation, rom[adr] can be updated to rom[adr]′ and appended to stash for later scan, and

4(rom[adr]) = rom[adr] ⊕ rom[adr]′ will be output to each party. With this 4(rom[adr]),

the two parties can perform a private information writing (PIW) protocol (similar to the

PIR protocol, but applied on secret-sharing data structure wom instead of replication data

structure rom) to update the wom data structure by using the same DPF secret-sharing keys

so that wom[adr]′ = wom[adr] ⊕4(rom[adr]). So wom always stores the most recent copies

of the memory records, which allows us to re-initialize and update the rom when stash is

full. This rom re-initialization is done by simple re-share protocol, to reconstruct encrypted

replication rom of most recent M using secret-sharing of M which is wom.

26

There is no recursive ORAM structure in the above FLORAM like in Circuit-ORAM and

Sqrt-ORAM, so the access has constant round of communication. However, this requires the

DPF key Gen algorithm to be done entirely with generic 2PC secure computation, which

is expensive even with AES circuits to implement the required PRG calls of Gen. Doerner

et al. [15] proposed an optimization to actually move the PRG computation out of the

secure computation, which greatly reduced the secure computation circuit size. However,

this induces O(log(n)) more communication rounds for computing DPF key Gen. But for

small values of n, as secure computation tends to be the bottle-neck instead of the linear

complexity local computation, this significantly improves FLORAM’s performance.

Despite the server local computation cost, like the 2PC-Sqrt-ORAM construction, the 2PC

FLORAM also hasO(
√
n) complexity due to amortizing periodic reinitialization over accesses.

And the O(n) local computation cost seems to be the most obvious disadvantage of 2PC

FLORAM. In fact for very large n, though multi-threading can be used and the local

computation is highly parallelizable, the computation is indeed the bottle-neck and more

asymptotically efficient scheme like Circuit-ORAM is more efficient on access run-time

according to the trend of the runtime graph in [15]. But still, [15] has shown that for a

wide range of n, 2PC-FLORAM has the most efficient concrete cost on both bandwidth and

runtime.

2.8 Summary of 2PC-ORAM

Table 2.1 compares the asymptotic complexity of bandwidth of the three recent 2PC-ORAM

schemes. The round complexity for these three schemes with best concrete performance

construction are all O(log(n)) and thus not listed redundantly in the table. The secure

computation complexity of each of these schemes is the same as their bandwidth and

27

thus omitted as well. But note that 2PC-FLORAM also has an O(nB) complexity local

computation.

MPC-ORAM schemes Bandwidth

2PC-Circuit-ORAM [44] O(κ log3(n) +κB log(n))

2PC-Sqrt-ORAM [51] O(κB
√
n log3(n))

2PC-FLORAM [15] O(κB
√
n)

Table 2.1: Bandwidth per memory access for recent 2PC-ORAM schemes as a function of
security parameter κ, array length n, and record size B.

According to Table 2.1, 2PC-Circuit-ORAM has the best asymptotic complexity, which

indicates that for large n, 2PC-Circuit-ORAM will have the smallest cost. 2PC-Sqrt-ORAM

has the worst asymptotic cost, but in practice it is very efficient and has the smallest cost for

small n values. 2PC-FLORAM’s asymptotic complexity is worse than 2PC-Circuit-ORAM,

but in practice, its performance is better than 2PC-Circuit-ORAM and 2PC-Sqrt-ORAM

for a wide range of n’s. However, due to O(nB) local computation cost, 2PC-FLORAM it

not well-suited for very large n or B.

Figure 2.2: 2PC-ORAM access bandwidth comparison, for record size = 4 bytes, from [15]

Doerner et al. reported concrete bandwidth comparisons between these three 2PC-ORAM

schemes in [15], which I include here in Figure 2.2. From the figure we see that for

28

B = 4 bytes, roughly for n < 26, linear scan is most efficient; then for 26 < n < 212,

2PC-Sqrt-ORAM is most efficient; then for the tested range 212 < n < 232, 2PC-FLORAM

is most efficient. But the line trends show that eventually at some point 2PC-Circuit-ORAM

will have the most efficient bandwidth. And for larger B, this break-even point should be

even earlier.

29

Chapter 3

Method Overview

Starting this chapter, I will present my 3PC-ORAM study aiming to achieve more efficient

asymptotic and concrete performance for real world applications. And in this chapter I will

give an overview of the methods and approaches I used to study, design, construct, and

analyze the 3PC-ORAM schemes.

3.1 Study, Design, and Customize 3PC Protocols

Learn existing 3PC protocols. As briefly mentioned in Chapter 1, for multi-party

secure computation, often the 3PC implementation can be much more efficient than the

2PC implementation of the same protocol. An example is the Oblivious Transfer protocol.

Though nowadays there are great techniques and optimizations like OT-extensions [4, 27, 2]

(running a small number of OTs with public key crypto, which can be used as a base to obtain

many OTs via only symmetric key crypto) to reduce the cost, doing oblivious transfer in 2PC

still requires some work equivalent to public key cryptography [26]. However, in the 3PC

setting, the same OT protocol can be done much simpler with symmetric key encryption,

30

specifically, only four xor operations are needed [3] (see Figure 3.1). So there exists secure

computation building blocks like OT that has been proved that 3PC can be more efficient

than 2PC. Learning these existing work would be beneficial since they may be used for the

construction of the 3PC-ORAM.

Figure 3.1: 3PC Oblivious Transfer: with Party1’s input two messages m0,m1 and Party2’s
input bit b, obliviously transfer message mb from Party1 to Party2

Build 3PC-ORAM from 2PC scheme. Many work has been done in the 2PC setting

to find and design efficient ORAM solution for secure computation [46, 44, 51, 15]. And

existing 2PC-ORAM can be great starting point for designing more efficient 3PC-ORAM.

One possible approach for constructing 3PC scheme is that, the 2PC-ORAM may be done

using generic MPC protocol, which means it already has a generic 3PC implementation.

However, the 3PC generic implementation may not have the optimal cost comparing to

protocol implementations customized just for 3PC. Another approach is that, take an efficient

2PC scheme, and explore whether some of its components can be done with more efficient

3PC implementation. Though this may require more work to design customized 3PC protocol

which is not generic MPC solution, often this gives better performance with the advantage

of 3PC.

Modify 2PC algorithm to meet 3PC requirements. 2PC protocol can still be executed

in the 3PC setting as long as two of the three parties still provide the same input required

by the 2PC protocol. For example, the 2PC Yao’s garbled circuit protocol [49] is used

31

in some schemes of this 3PC-ORAM study. However, often the better efficiency of 3PC

protocol comes from the simpler and more efficient 3PC data structures and secret-sharing,

and sometimes there is no direct way of converting 2PC protocol input/output to the 3PC

ones. In such cases, to still adopt the MPC-friendly ORAM algorithm designed for 2PC

and try to improve efficiency in the 3PC setting, some modification of the algorithm may

be required for the conversion from 2PC to 3PC, which may also lead to a new customized

3PC design of the protocol.

3.2 Analysis of 3PC-ORAM

Once we have some ideas about a possible 3PC-ORAM design, it is important to analyze it

so the correctness can be verified, security can be argued, efficiency can be estimated, and

performance can be compared with previous schemes for improvements. Below is a list of

aspects that should be considered when analyzing a 3PC-ORAM design:

1. Correctness. An ORAM construction often involves many sub-protocols. To prove

the correctness of an ORAM scheme, besides having a good intuition and pseudo-code

for the idea of the ORAM algorithm, it is also important to prove the correctness of

each building block/sub-protocol. Then the correctness of the ORAM algorithm can

be argued.

2. Failure probability. Some ORAM constructions are correct with failure probability.

For example, the binary-tree based ORAM like Circuit-ORAM has the possibility

of overflowing the tree nodes (buckets) which causes the ORAM algorithm to fail.

However, we still consider this ORAM construction correct if the failure probability

is negligible. Thus, in such case, we would need to prove the possible design of a

32

3PC-ORAM scheme also has negligible failure probability. Often this follows the same

failure probability argument of the underlying ORAM.

3. Security. The 3PC-ORAM scheme should be a 3PC secure emulation of the underlying

client-server ORAM algorithm, therefore the security proof of the 3PC-ORAM scheme

can be done by proving the 3PC-ORAM protocol securely realizes the underlying

ORAM functionality in the 3PC setting as long as the underlying client-server ORAM

algorithm is secure (by the argument of [44]). To argue the 3PC-ORAM is indeed

a secure MPC protocol, we can first verify each building block of the 3PC-ORAM

protocol is a MPC protocol. Then as long as the output of these MPC protocols do

not leak secret ORAM information when entered in other MPC protocols as input, the

whole ORAM protocol is also an MPC protocol.

4. Asymptotic Complexity. The asymptotic complexity should be considered when

designing the 3PC-ORAM scheme as the goal is to build more efficient 3PC-ORAM

construction. When the correctness and security are both verified, the asymptotic

cost of the ORAM scheme can then be claimed and compared with other schemes for

improvements.

5. Concrete Performance. As MPC-ORAMs are more expensive than the underlying

client-server ORAM, it is often desirable to verify the concrete cost of a MPC-ORAM

design and its practicality. Bandwidth and runtime are the performance metrics

mostly used to compare between different schemes. While the runtime may depend on

many factors like machine specs, actual code implementations, network, and more, the

bandwidth is a more reliable indicator of the actual performance.

6. Code implementation. Many MPC protocols and recent MPC-ORAM constructions

have implementations to support their claimed improvements. So for a 3PC-ORAM

design, it is better to also have an actual code implementation to verify the theory

and estimated cost of the 3PC-ORAM design and see the concrete improvements. Like

33

recent 2PC-ORAM implementations, in this study, my 3PC-ORAM implementations

are tested using Amazon Web Service (AWS) to ensure fair comparison with standard

machine configuration and testing environment.

34

Chapter 4

First Customized 3PC-ORAM

This chapter describes a customized 3PC-ORAM scheme to achieve efficient performance. It

is based on my publication Three-Party ORAM for Secure Computation, a joint work with

Sky Faber, Stanislaw Jarecki, and Sotirios Kentros, published on Asiacrypt 2015 [18].

We proposed our first customized 3PC-ORAM which uses a variant of the binary-tree ORAM

as the underlying data-structure. Recall that the access of a binary-tree ORAM can be

viewed as three steps: Retrieval, PostProcess, and Eviction. The retrieval part of the

proposed 3PC-ORAM is based on the following observation: If P1 and P2 secret-share an

array of (keyword,value) pairs (k, v) (this will be a path in the binary-tree ORAM) and a

searched-for keyword k∗ (this will be the searched-for address prefix), then a variant of the

Conditional Disclosure of Secret protocol of [21] which we call Secret-Shared Conditional OT

(SS-COT) allows P3 to receive value v associated with keyword k∗ at the cost roughly equal

to the symmetric encryption and transmission of the array. Moreover, while SS-COT reveals

the location of pair (k∗, v) in the array to P3, this leakage can be easily masked if P1, P2

first shift the secret-shared array by a random offset. The eviction part of the 3PC-ORAM

springs from an observation that instead of performing the eviction computation on all the

35

data in the path from retrieval, one can use garbled circuit to encode only the procedure

determining eviction movement logic, i.e., determining which entries in each bucket should

be evicted down the path. Then, if P1, P2 secret-share the retrieved path, and hence the

bits which enter this computation, we can let P3 evaluate this garbled circuit and learn

the positions of the entries to be moved if (1) the eviction moves a constant number of

entries in each bucket in a predictable way, e.g., one step down the path, and (2) P1, P2

randomly permute the entries in each bucket, so that P3 always computes a fixed number of

randomly distributed distinct indexes for each bucket. Computation of this movement logic

uses only two input bits (appropriate direction bit and a full/empty flag) and 17 non-xor

gates per bucket entry, so the garbled circuit is much smaller than if it coded the whole

eviction procedure. Finally, the secret-shared data held by P1, P2 can be moved according

to the movement logic matrix held by P3 in another OT/CDS variant we call Secret-Shared

Shuffle OT which uses only xor’s and whose bandwidth is roughly four times the size of the

secret-shared path.

Assuming constant record sizes, the bandwidth of the resulting 3PC-ORAM protocol is

O(w(log3(n) + κ log2(n))) where w is the bucket size in the underlying binary-tree ORAM.

Since the best exact bound on overflow probability we can give requires w = Ω(λ + log(n))

where λ is a statistical security parameter, and since log(n) < κ, this asymptotic bound is

essentially the same as the one of the 2PC-ORAM of [46]. However, the exact numbers

for bandwidth and computation cost (measured in the number of block cipher or hash

operations) are much lower, and this is because of two factors: First, even though we

still use garbled circuits, the circuits involved have dramatically smaller complexity than

in the 2PC implementations (see Table 4.1). Secondly, the cost of all operations outside the

garbled circuits is a small factor away from the cost of transmission and decryption of server

data in the underlying binary-tree ORAM algorithm. Concretely, the non-GC bandwidth

is under 9|path| where |path| is the (total) size of tree path retrieved by the binary-tree

ORAM, and computation is bounded by symmetric encryption of roughly 20|path| bits,

36

whereas for the underlying binary-tree ORAM both quantities are 2|path|. Finally, stochastic

evidence suggests that it suffices that w = Ω(
√
λ+ log(n)), which for concrete parameters

of log(n) = 36 and λ = 40 reduces the required w, and hence all our protocol costs, by a

further factor between 3 and 4.

ORAM Circuit Size Circuit Size (gates) Number of Inputs
(Asymptotic Bounds) log(n) = 20 log(n) = 29 log(n) = 20 log(n) = 29

2PC-Path-ORAM Õ
(
log3(n) +B log(n)

)
ω (1) 37.2 M 111.7 M 0.2 M 0.3 M

2PC-SCORAM N/A (heuristic) 4.6 M 13.0 M 0.3 M 0.9 M

3PC-ORAM (w = 128) O
(
log3(n)

)
ω (1) 96.9K 213.9K 11.5K 25.3K

3PC-ORAM (w = 32) O
(
log3(n)

)
ω (1) 28.5K 62.6K 3.4K 7.4K

Table 4.1: Comparison of Circuit Size between this proposal (without optimizations) and
the 2PC-SCORAM scheme [46]. All numbers are reported as function of array size |M| = n
for statistical security parameter λ = 80. The first 3PC-ORAM estimation uses bucket size
w = 128 mandated by the strict bound implied by Lemma 4.2, while the second one uses
bucket size w = 32 derived from the Markov Chain approximation.

4.1 Technical Overview

Our implementation is based on the Shi et al. [41], and uses a combination of three-party

OT’s and secure computation (using Yao’s garbled circuits [49]) in order to ensure privacy in

the three party setting. Our protocol follows the same technical approach of 2PC-SCORAM

schemes, i.e., of providing a secure computation protocol for retrieval, post-process, and

eviction algorithms in a client-server ORAM. However, the existence of a third party allows

us to greatly reduce the cost of this secure computation. Our main observation is that in

binary-tree based retrieval and eviction algorithms, like that of Gordon et al. [25], there is

a separation in the role played by the input bits of the access or eviction circuit. Part of

the bits are used to implement the logic of the circuit, but the majority are data that do

not participate in the output of the logic and are, at best, just being moved between some

locations based on the output of the logic. We exploit this separation in the three-party

setting, by isolating the bits necessary for the logic, using Yao’s garbled circuit to securely

37

compute the logic only on those bits, and then use several variants of the (three-party)

Oblivious Transfer (OT) protocol to move data to the locations pointed out by the output

of the circuits. Since all these variants of OT can be implemented at a cost similar to just

the secure transmission of the data the OT operates on, this leads to dramatic reductions in

the cost of the resulting secure computation protocol. In addition, in the retrieval protocol,

as opposed to the eviction, we avoid using garbled circuits entirely, as the entire logic comes

down to finding an index where two lists of m bit-strings contain a matching entry, which

we implement using a three-party variant of Conditional OT which takes a single interaction

round and costs roughly as much as encryption and transmission of these m bit-strings.

We make several modifications in the binary-tree ORAM of Shi et al. [41] to make it more

efficient for the type of operations we are interested in. We use ideas from Gentry et al.

[20] and Stefanov et al. [42]. In particular, we make the ORAM trees more shallow, as in

Gentry et al. [20] by increasing how many entries in the ORAM will be mapped to each

leaf in expectation and increasing the total capacity (in terms of entries) of the leaf nodes.

To be more precise, for a tree that has a total capacity of n entries and a capacity in each

node of w, instead of having n leafs in the ORAM tree, we have n
w

leafs instead. In order

to ensure that overflow does not occur in the leafs of the tree we increase capacity of leaf

nodes to 4w. With this change we achieve linear overhead in terms of storage needed for the

ORAM, meaning that now the total entries that can be stored in the ORAM are O(n), in

contrast with the O(w · n) entries that the ORAM of Shi et al. [41] had (note that for most

settings w = O(log(n))). In addition, we observe that for internal nodes it is not necessary

to increase their capacity, since the overflow of internal nodes is mandated by a difference

probabilistic process that the one of leaf nodes. In contrast with the approach used in Gentry

et al. [20], by only increasing the capacity of leaf nodes, we avoid doubling the bandwidth

needed by the ORAM protocol (which is what happened in Gentry et al. [20], since they

increase the capacity of all nodes, whether they are leafs or internal nodes).

38

We adopt the idea of eviction through a single path introduced by Gentry et al. [20]. The

main problem we identified in the single path eviction, is that both Gentry et al. [20] and

Stefanov et al. [42] evict all entries in all nodes of the path, as far down in the path as

they can go. Although this is easy to do in a client-server ORAM where the client retrieves

the whole path and performs all operations in the clear text data, in the setting of secure

computation on the secret shared data, such eviction is very costly. For this reason, we

modify the eviction to only evict at most two items from each node to the next node in

the path, provided such items exist. This operation is limited enough to allow for simple

garbled circuits. Moreover, it is an oblivious operation in the sense that always two entries

are evicted to the next level (we evict empty entries if appropriate entries do not exist),

which allows for its simple 3-party implementation. We choose not to increase the fan-out

of nodes as Gentry et al. [20] do, since this would complicate both our circuits and the rest

of the protocols. We also choose to avoid using the overflow cache used in Path-ORAM

of Stefanov et al. [42] in order to decrease the total space requirements for their ORAM,

deciding instead to experiment at first with a design which maximally simplifies the eviction

logic and the associated garbled circuits.

4.2 Three-Party Protocol Building Blocks

Our 3PC-ORAM protocols retrieval, post-process, and eviction of Section 4.3 rely on several

variants of Oblivious Transfer (OT) or Conditional Disclosure of Secrets (CDS) protocols

which we detail here. The efficiency of our 3PC-ORAM protocol relies on the fact that

all these OT variants, including the OT variant employed in Yao’s Garbled Circuit (GC)

protocol, have significantly cheaper realizations in the 3-party setting. All presented protocols

assume secure channels, although in many instances encryption overhead can be eliminated

with simple protocol changes, e.g., using pairwise-shared keys in PRG’s and PRF’s.

39

Notation. We refer to the three parties involved in our 3PC-ORAM protocol as C, D, and

E. Let κ denote the cryptographic security parameter, which is both the key length and the

block length of a symmetric cipher. Let G` be a PRG which outputs `-bit strings given a

seed of length κ. Let F`k be a PRF which maps domain {0, 1}κ onto {0, 1}`, for k randomly

chosen in {0, 1}κ. We will write G and Fk when ` = κ. In our implementation both F and

G are implemented using counter-mode AES. If party A holds value a and party B holds

value b s.t. a ⊕ b = v then we call pair (a, b) an “A/B secret-sharing” of v and denote it

as (sA[v], sB[v]). Whenever we describe an intended output of some protocol as A/B secret

sharing of value v, we mean this to be a random xor-sharing of v, e.g., pair (r, r ⊕ v) for r

random in {0, 1}|v|. Let x[j] denote the j-th bit of bit-string x, and let [m] denote integer

range {1, ...,m}.

3-Party Variants of Oblivious Transfer. We use several variants of the Oblivious

Transfer protocol in three-party setting, namely Secret-Shared Conditional OT, SS-COT[N],

Secret-Shared Index OT, SS-IOT[2τ], Shuffle OT, XOT
[
N
k

]
, Shift OT, Shift, and Secret-Shared

Shuffle OT, SS-XOT
[
N
k

]
. We explain the functionality and our implementations of these OT

variants below. The common feature of all our implementations is that they require one or

two messages both in the pre-computation phase and in the online phase (except of Secret

Shared Shuffle OT which sends four messages), and the computational cost of each protocol

for each party, both in pre-computation and on-line, is within a factor of 2 of the cost of

secure transmission of the sender’s inputs. We stress that all protocols we present form secure

computation protocols of the corresponding functionalities assuming an honest-but-curious

adversary, secure channels, and a single corrupted player. In each case the security proof is

a straightforward simulation argument.

Secret-Shared Conditional OT, SS-COT[N](S,R,H), is a protocol where S inputs two lists,

(m1, . . . ,mN) and (a1, . . . , aN), H inputs a single list (b1, . . . , bN), and the protocol’s goal is

for R to output all pairs (t,mt) s.t. at = bt. This is a very close variant of the Conditional

40

Disclosure of Secrets protocol of [21], and it can be implemented e.g., using modular arithmetic

in a prime field. In Alg. 4.1 we provide an alternative design which uses fewer (pseudo)random

bits, and hence requires fewer PRG ops in pre-computation, but uses block ciphers in the

on-line phase (the algorithm proposed here was faster in our implementation even in the

on-line stage). S and H share two PRF keys k, k′, and for each t helper H sends to R a

pair (pt, wt) = (Fk(bt),Fk′(bt)), while S sends (et, vt) where et is an xor of message mt and

G(Fk(at)) while vt = Fk′(at). For each t receiver R checks if vt = wt, and if so then it

concludes that at = bt and outputs mt = et ⊕ G(pt). To protect against collisions in (short)

at, bt values both within each protocol instance and across protocol instances each at and bt

is xor-ed by respectively S and H by a pre-shared one-time κ-bit random nonce rt, with all

nonces derived via a PRG on a seed shared by S and H.

Algorithm 4.1 Protocol SS-COT[N](S,R,H) - Secret-Shared Conditional OT

Input: S’s input (m1, ...,mN) and (a1, ..., aN), H’s input (b1, ..., bN).
Output: R outputs pairs (t,mt) s.t. at = bt.
Parameters: ` and `′ s.t. |mt| = ` and |at| = |bt| = `′ ≤ κ for all t.
Pre-computation phase: S,H share PRF F keys k, k′ and κ-bit random nonces r1, ..., rN .

1: S sends {(et, vt) = (G`(Fκk(xt))⊕mt,F
κ
k′(xt))}Nt=1 to R where xt=rt⊕[at|0κ−`

′
].

2: H sends {(pt, wt) = (Fκk(yt),F
κ
k′(yt))}Nt=1 to R where yt = rt ⊕ [bt|0κ−`

′
].

3: R outputs (t,mt) where m′t = et ⊕ G`(pt) for each t s.t. vt = wt.

Secret-Shared Index OT, SS-IOT[2τ](S,R,H), is a close variant of Secret-Shared Conditional

OT, where S holds a list of messages (m1, . . . ,mN) for N = 2τ and an index share jS ∈

{0, 1}τ while H holds the other share jH ∈ {0, 1}τ , and the aim of the protocol is for R to

output (j,mj) s.t. j = jS ⊕ jH. Our protocol for SS-IOT[2τ] executes similarly to SS-COT[N]

except H sends only two values, (p, v) = (Fk(jH),Fk′(jH)) and S’s messages are computed

as et = G(Fk(jS ⊕ t)) and vt = Fk′(jS ⊕ t). Finally, to avoid correlations across protocol

instances, H and S xor their PRF inputs with a single pre-shared random κ-bit nonce r.

Shuffle OT, XOT
[
N
k

]
(S,R, I), is a protocol between sender S, receiver R, and indicator I,

where S inputs a sequence of messages m1, ...,mN , I inputs a sequence of indexes i1, ..., ik

41

and a sequence of masks δ1, ..., δk, and the protocol lets R output a sequence of messages

mi1 ⊕ δ1, ...,mik ⊕ δk, without leaking anything else about S’s and I’s inputs. See Alg. 4.2

for an implementation of this protocol.

Algorithm 4.2 Protocol XOT
[
N
k

]
(S,R, I) - Shuffle OT

Input: S’s input (m1, ...,mN) and I’s input (i1, ..., ik) and (δ1, ..., δk).
Output: R’s output (z1, ..., zk) s.t. zσ = miσ ⊕ δσ for all σ.
Parameters: Let |mt| = ` for all t.
Pre-computation phase: I and S pick a random permutation π on (1, ..., N) and a sequence
of `-bit random pads r1, ..., rN .

1: S sends (a1, ..., aN) = (mπ(1) ⊕ r1, ...,mπ(N) ⊕ rN) to R.
2: I sends (j1,..., jk)=(π-1(i1),..., π-1(ik)) and (p1,..., pk)=(rj1⊕ δ1,..., rjk⊕ δk) to R.
3: R outputs (z1, ..., zk) = (aj1 ⊕ p1,..., ajk ⊕ pk).

(Note that zσ = (mπ(jσ) ⊕ rjσ)⊕ (rjσ ⊕ δσ) = miσ ⊕ δσ because π(jσ) = iσ.)

Secret-Shared Shuffle OT, SS-XOT
[
N
k

]
(A,B, I), involves indicator I and two parties A and

B. It is a close variant of the Shuffle OT above, where I holds indexes i = (i1, ..., ik), the pads

δ1, ..., δk are all set to zero, and both inputs m1, ...,mk and outputs mi1 , ...,mik are secret

shared by A and B. We implement this protocol with two instances of XOT
[
N
k

]
, shown in

Alg. 4.3. The indicator I first chooses a sequence of random masks δ = (δ1, ..., δk), and inputs

i, δ into both instances, where the first instance runs on A’s input (sA[m1], ..., sA[mN]), and

lets B output (sA[mi1] ⊕ δ1, ..., sA[mik] ⊕ δk), while the second instance runs on B’s inputs

(sB[m1], and lets A output (sB[mi1]⊕ δ1, ..., sB[mik]⊕ δk). It’s easy to see that these outputs

form a randomized A/B secret-sharing of (mi1 , ...,mik).

Shifting a Secret-Shared Sequence, Shift(A,B,H). As the access protocol traverses the forest

of (h + 1) ORAM trees forest = (tree0, tree1, ..., treeh), parties D and E recover the secret

sharing of path PLi for label Li, for i = 1, ..., h, and make several modifications to it. In

particular, the buckets in the path are rotated by a random shift σi known to D and E.

In the eviction protocol on this retrieved path we need a sub-protocol Shift to reverse this

shift by transforming the secret-sharing of this path, which is a sequence of buckets, to a

42

Algorithm 4.3 Protocol SS-XOT
[
N
k

]
(A,B, I) - Secret-Shared Shuffle OT

Input: A/B secret-sharing of (m1, ...,mN), index vector (i1, ..., ik) held by I.
Output: A/B secret-sharing of (m′1, ...,m

′
k) s.t. yσ = miσ for all σ.

Parameters: Let |mt| = ` for all t.
Pre-computation phase: I generates k random bit-strings (δ1, ..., δk) of length ` each.

1: Parties run XOT
[
N
k

]
(B,A, I) (see Alg. 4.2) on inputs (sB[m1], ..., sB[mN]) for B and

(i1, ..., ik) and (δ1, ..., δk) for I. Protocol outputs (a1, ..., ak) for A s.t. aj = sB[mij] ⊕ δj.
A outputs (sA[y1], ..., sA[yk]) = (a1, ..., ak).

2: Parties run XOT
[
N
k

]
(A,B, I) (see Alg. 4.2) on inputs (sA[m1], ..., sA[mN]) for A and

(i1, ..., ik) and (δ1, ..., δk) for I. Protocol outputs (b1, ..., bk) for B s.t. bj = sA[mij]⊕ δj. B
outputs (sB[y1], ..., sB[yk]) = (b1, ..., bk).

(fresh) secret-sharing of the same buckets but rotated back by σi positions. An inexpensive

implementation of this task relies on the fact that in our three-party setting player D can act

as a “helper” party and create, in pre-computation, correlated random inputs for E and C,

which allows for an on-line protocol which consists of a few xor operations and a transmission

of a single |PLi |-bit message from C to E.

Yao’s Garbled Circuit on Secret-Shared Inputs. The last component used in our

ORAM construction is protocol GC[F](A,B,R), a Yao’s garbled circuit solution for secure

computation of an arbitrary function [49], executing on public inputs a circuit of function F,

where the inputs X to this circuit are secret-shared between A and B, i.e., A’s inputs sA[X]

and B’s inputs sB[X], and the protocol lets R compute F(X). We stress that even though

we do use Yao’s garbled circuit evaluation as a sub-protocol in our 3PC-ORAM scheme,

we use it sparingly, and the computation involved is comparable, for realistic log(n) values,

to the necessary cost of decryption of paths PLi retrieved by the underlying binary-tree

client-server ORAM scheme. The protocol is a simple modification of the delivery of the

input-wire keys in Yao’s protocol, adopted to the setting where the input X is secret-shared

by parties A and B, while the third party R will compute the garbled circuit and get the

F(X). Let m = |X| and let κ be the bit-length of the keys used in Yao’s garbled circuit.

In the off-line stage either A or B, say party A, prepares the garbled circuit for function F

43

and sends it to R, and then for each input wire key pair (K0
i , K

1
i) created by Yao’s circuit

garbling procedure, A picks random ∆i in {0, 1}κ, computes (A0
i , A

1
i) = (∆i, K

0
i⊕K1

i ⊕∆i)

and (B0
i , B

1
i) = (K0

i ⊕∆i, K
1
i ⊕∆i), and sends (B0

i , B
1
i) to B (to optimize pre-computation

A can send to B a random seed from which {K0
i , K

1
i ,∆i}mi=1 can be derived via a PRG).

In the on-line phase, for each i = 1, ...,m, party A on input bit a = sA[Xi] sends Aai to R,

while party B on input bit b = sB[Xi] sends Bb
i . For each i = 1, ...,m, party R computes

Ki = Ai⊕Bi for Ai, Bi received respectively from A and B, and then runs Yao’s evaluation

procedure inputting keys K1, ..., Km into the garbled circuit received for F. Observe that

Ai⊕Bi = Kv
i for v = a⊕b, and hence if a, b is the XOR secret-sharing of the i-th input

bit, i.e., if a⊕b = Xi, then Ki = K0
i if Xi = 0 and Ki = K1

i if Xi = 1. The protocol is

secure because of the random pad ∆i, since for every Xi and every possible sharing (a, b) of

Xi, values (Ai, Bi) sent to R are distributed as two random bit-strings s.t. Ai⊕Bi = Kv
i for

v = Xi.

4.3 3PC-ORAM Protocol

In this section we describe our 3PC-ORAM access protocol. The basic idea for the protocol

is to secret-share the data structure forest between two parties D and E, and have these two

parties implement the server’s algorithm of the underlying binary-tree client-server ORAM

scheme, while the corresponding client’s algorithm will be implemented with a three-party

secure computation involving parties C,D,E. In the description below we combine these two

conceptually separate parts into a single protocol, but almost all of the protocol implements

the three-party computation of the ORAM client’s algorithm, as the server’s side consists

only of retrieving (the shares of) path PLi from (the shares of) the i-th tree treei at the

beginning of i-th iteration of the access procedure, and then writing (the shares of) a new

path P�Li in place of (the shares of) PLi at the end.

44

Given this secret-sharing scenario, the task of the 3PC-ORAM protocol is to securely

compute the following two functionalities:

1. The retrieval functionality computes the next-tree label Li+1 = Fi(N
i+1) given the D/E

secret-sharing of path PLi , for Li = Fi−1(Ni) and the D/E secret-sharing of address

prefix Ni+1;

2. The eviction functionality computes the D/E secret-sharing of path P�Li output by the

eviction algorithm applied to the D/E secret-shared path PLi , after the tuple containing

the label identified by the access functionality is moved to the root node.

Both tasks can be computed using standard secure computation techniques but the protocol

we show beats a generic one by a few orders of magnitude, and comes close to the computation

cost of the underlying client-server ORAM itself. Note that the i-th iteration of client-server

ORAM needs a server-to-client transmission and decryption of path PLi and then encryption

and client-to-server transmission of path P�Li (see Section 2.3). Therefore the base-line cost

we want the 3PC-ORAM to come close to are h+ 1 rounds of client-server interaction with

2 · |PLi | bandwidth and (2/κ) · |PLi | block cipher operations for i = 0, ..., h. The main idea

which allows us to come close to these parameters is that if the inputs to either access

or eviction functionalities, secret-shared by two parties, e.g., D and E, are permuted and

masked in an appropriate way, then the correspondingly permuted and masked outputs of

these functionalities can be revealed to the third party, e.g., C.

In the 3-party setting we separate the ORAM access protocol into Retrieval, PostProcess,

and Eviction. Protocol Retrieval contains all parts of the client-server access which have to

be executed sequentially, i.e., for memory address N, the retrieval of sequence Fforest(N) =

(L1,L2, ...,Lh,M[N]) done by sequential identification (and removal from the treei trees) of the

tuple sequence (T1,T2, ...,Th) where Ti is defined as path PLi of tree treei whose address field

is equal to N’s prefix Ni and whose rec field contains label Li+1 at position N(i+1). Protocol

45

PostProcess performs cleaning-up operations on each tuple Ti in this tuple sequence, by

modifying its label field from Li to (Li)′ and modifying the label held at N(i+1)-th position

in the reci array of this tuple from Li+1 to (Li+1)′. Importantly, the PostProcess and Eviction

protocols can be done in parallel for all trees treei, which allows for a better CPU utilization

in the protocol execution.

Retrieval. Protocol Retrieval runs on D/E secret-sharing of searched-for address N and

the ORAM forest forest, and it’s goal is to compute a D/E secret-sharing of record M[N].

Protocol Retrieval creates two additional outputs, for each i = 0, . . . , h (with some parts

skipped in the edge cases of i = 0 and i = h): (1) C/E secret-sharing of the path PLi in

treei, modified in the way we explain below, and with the tuple Ti defined above removed;

and (2) whatever information needed for the PostProcess protocol to modify Ti into (Ti)′

which will be inserted into the root of treei in protocol Eviction.

Protocol Retrieval proceeds by executing loop Retrieval[i] sequentially, see Alg. 4.4, for i =

0, . . . , h. The inputs to Retrieval[i] are: (1) D/E secret-sharing of treei; (2) D/E secret

sharing of address prefix Ni+1 = [Ni|N(i+1)]; (3) Leaf label Li as the input of D and E (with

N0, N(h+1), and L0 all empty strings). Its outputs are: (1) C’s output the next leaf label

Li+1 = Fi(N
i+1), for i 6= h, or the C/E secret-sharing of record rec = M[N], for i = h; (2) C/E

secret-sharing of tuple Ti defined above; and (3) C/E secret-sharing of path Rot[σi,δi,ρi](P′Li)

which results from rotating the data in PLi by three random shifts (σi, δi, ρi) known to E

and D (and of removing Ti from PLi).

Data-Rotations and Conditional OT’s. We first explain how E and D perform the three

data-rotations on the secret-shared path PLi retrieved from the (shares of) the i-th level

ORAM tree treei (and randomized by D and E xor-ing the shares of PLi retrieved from treei

by a pre-agreed random pad). E and D pick three values during preprocessing, σi, δi, ρi, at

random in ranges resp. {1, ..., di + 4}, {1, ..., w}, and {0, 1}τ , for di the depth of treei. The

46

Algorithm 4.4 Protocol Retrieval[i] - Oblivious Retrieval of Next Label

Input: D,E’s inputs: label Li and secret-sharing of treei and Ni+1 = [Ni|N(i+1)];
Output: (1) C outputs Li+1 = reci[N(i+1)] where reci is the rec field of tuple Ti in PLi whose
address field matches Ni; (2) C and E output a secret-sharing of Ti and P∗Li = Rot[σ,δ,ρ](P′Li),
where P∗Li is PLi without tuple Ti; (3) D & E output σ, ρ;
Pre-computation phase: D & E’s input: (σ, δ, ρ, p)← [di+4]× [w]× {0, 1}τ × {0, 1}|PLi |;
Parameters: n = w(di+4).

1: D retrieves share sD[PLi] from sD[treei] and sets sD[Rot[σ,δ,ρ](PLi)] as the result of the three
data-rotations using shifts (σ, δ, ρ) applied to (sD[PLi]⊕p). E computes sE[Rot[σ,δ,ρ](PLi)]
in the corresponding way.

2: D sends sD[Rot[σ,δ,ρ](PLi)] and sD[Ni+1] = (sD[Ni]|sD[N(i+1)]) to C.
3: D and E isolate in their shares of Rot[σ,δ,ρ](PLi) a vector of shares of pairs (fbj,Nj) for
j = 1, ..., n of fb and adr fields of all tuples in this (rotated) path. E also isolates in
sE[Rot[σ,δ,ρ](PLi)] shares (sE[Rot[ρ](rec1)], ..., sE[Rot[ρ](recn)]) of the rec field of all tuples.
The parties then run SS-COT[n](E,C,D) on E’s input (m1, ...,mn) and (a1, ..., an) and
D’s input (b1, ..., bn) where mt = sE[Rot[ρ](rect) ⊕ y], at = sE[fbt|Nt] ⊕ [0|sE[Ni]], and
bt = sD[fbt|Nt]⊕ [1|sD[Ni]]. This sub-protocol outputs (j1, ē) for C s.t. [fbj1|Nj1] = [1|Ni]

and ē = y ⊕ sE[Rot[ρ](recj1)]. The client computes z = ē ⊕ d̄ where d̄ is the rec field in

the j1-th tuple in sD[Rot[σ,δ,ρ](PLi)]. (Note that j1-th tuple in Rot[σ,δ,ρ](PLi) is equal to
Ti, hence recj1 = reci and z ⊕ y = Rot[ρ](reci).)

4: Parties run SS-IOT[2τ](E,C,D) on E’s input (y1, . . . , y2τ) and sE[N(i+1)] and D’s input
sD[N(i+1)]⊕ ρi, which outputs pair (j2, yj2) for C.

5: Each party computes its output as follows:

• C outputs Li+1 = yj2 ⊕ zj2 where zj2 is j2-th di+1-bit segment in z;

• C and E form (sC[Ti], sE[Ti]) as ((1, sD[Ni], 0di , z), (0, sE[Ni],Li, y));

• C and E form secret-sharing of P∗Li by C setting its share to sD[Rot[σ,δ,ρ](PLi)] but
with the j1-th tuple modified by flipping bit fb and setting its other bits at random,
and E setting its share to sE[Rot[σ,δ,ρ](PLi)];

• D and E output (σ, ρ).

data-rotation defined by σi is performed on the bucket level, i.e., the di + 4 buckets in path

PLi (recall that there are di internal nodes containing a bucket each and that the leaf node

contains 4 buckets) are rotated clock-wise by σi positions. The data-rotation defined by δi

is performed on the level of tuples within each bucket, i.e., in each of the di + 4 buckets

in PLi the sequence of w tuples held in that bucket is rotated clock-wise by δi positions.

Finally, the bit-vector ρi defines τ flips which will be applied to the array rec in each of the

(di + 4) · w tuples in the path. Namely, the rec field in each tuple in the path is treated

47

as a τ -dimensional cube whose content is flipped along the j-th dimension if the j-th bit in

ρi is 1. Such τ flips define a permutation on elements of rec where an element at position

t moves to position t ⊕ ρi, for each t ∈ {0, 1}τ . Note that E and D can perform all these

data-rotations locally on their shares of the path PLi . We use Rot[σi,δi,ρi](PLi) to denote the

resulting tree, and we use Rot[ρi](rec) to denote the result of the permutation defined by

ρi ∈ {0, 1}τ on field rec as explained above. After applying these data-rotations to PLi the

parties run protocols SS-COT[n] and SS-IOT[2τ] described in Section 4.2, with E as the sender,

D as the helper, and C as the receiver in both protocols. The goal of protocol SS-COT[n],

for m = (di + 4) · w, is two-fold: (1) to let C compute the index j1 ∈ {1, ...,m} where path

Rot[σi,δi,ρi](PLi) contains the unique tuple Ti defined above (i.e., the tuple that contains the

searched-for address prefix Ni); and (2) to create a C/E secret-sharing of this tuple. The

goal of SS-IOT[2τ] is to let C compute the N(i+1)-th entry in the rec field of this secret-shared

tuple Ti, because that field contains the next-tree label Li+1 = Fi(N
i+1).

Note that D and E hold the secret-sharing of Ni and for each t = 1, ...,m they also hold the

shares of the address Nt in the t-th tuple in Rot[σi,δi,ρi](PLi). If D and E form values at and

bt as an xor of these two sharings, i.e., at = sE[Ni ⊕ sE[Nt]] and bt = sD[Ni ⊕ sD[Nt]] then

at = bt if and only if Nt = Ni, i.e., if and only if t points to a unique tuple Ti in (rotated)

path Rot[σi,δi,ρi](PLi) whose address field N equals the searched-for address Ni. Therefore if

D and E run the Secret-Shared Conditional OT SS-COT[m] on (a1, ..., am) and (b1, ..., bm)

defined above as their condition-share vectors, then C will compute the index j1 to the

searched-for tuple Ti contained in this path. Moreover, SS-COT[m] will also compute the

secret-sharing of Ti if E picks a random pad y of length 2τ · di+1, and defines the message

vector it inputs to SS-COT[m] as (v1, ..., vn) where vt is an xor of y with E’s share of the rec

field in the t-th tuple in Rot[σi,δi,ρi](PLi). Note that the rec field in any entry in the rotated

path corresponds to array Rot[ρi](rec) where rec was the field of the corresponding entry

in the original path. Therefore C’s output in this SS-COT[m] instance will be j2 together

with ē = y ⊕ sE[Rot[ρi](reci)] where the searched-for tuple Ti is defined as (1,Li,Ni, reci).

48

Finally, D can send to C its share of the whole path Rot[σi,δi,ρi](PLi), so if C computes z as

an xor of ē with the rec field in the j1-th tuple in sD[Rot[σi,δi,ρi](PLi)] then (z, y) form a C/E

secret-sharing of Rot[ρi](reci).

It remains for us to explain how SS-IOT[2τ] computes an entry in this secret-shared field that

corresponds to the next-level address chunk N(i+1), because that’s the entry which contains

Li+1 = Fi(N
i+1). Note that E and D hold the secret-sharing of N(i+1) and that they also

hold the bit-vector ρi s.t. the entry at t-th position in reci is located at position t ⊕ ρi

in Rot[ρi](reci). Since Li+1 sits at the t-th position in reci for t = N(i+1), we will find if

we retrieve the j2-th entry of Rot[ρi](reci) for j2 = N(i+1) ⊕ ρi. Note, however, that e.g.,

sD[N(i+1)] ⊕ ρi and sE[N(i+1)] form a secret-sharing of j2, and therefore the Secret-Shared

Index OT protocol SS-IOT[2τ] executed on sharing (sD[N(i+1)] ⊕ ρi, sE[N(i+1)]) and E’s data

vector y = (y1, ..., y2τ), will let C output j2 together with the j2-th fragment yj2 of y. Since

(z, y) form the secret-sharing of Rot[ρi](reci), C can compute the j2-th entry of Rot[ρi](reci),

i.e., the next-level tree label Li+1, by xor-ing yj2 with j2-th fragment of z = (z1, ..., z2τ).

Security Argument. This protocol is a secure computation of Retrieval[i] functionality.

Note that D and E do not receive any messages in this protocol, while C learns D’s fresh

random share sD[Rot[σi,δi,ρi](PLi)] of the rotated path, the index j1 to the location of Ti =

(1,Ni+1,Li,Rot[ρi](reci)) in this rotated path, string ē = y ⊕ sE[Rot[ρi](reci)], the index

j2 = N(i+1) ⊕ ρi where Li+1 is held in Rot[ρi](reci), and label Li+1 = Fi(N
i+1). This view

can be efficiently simulated given only Li+1 because (1) D’s share of any path retrieved from

treei is always a fresh random string because D and E randomize the sharing of PLi after

retrieving it from treei; (2)j1 is a random integer in {1, ..., w · (di + 4)} because the buckets

are rotated by random σi ∈ {1, ..., di + 4} and the tuples within each bucket are rotated by

random δi ∈ {1, ..., w}; (3) ē and j2 are random bit-strings, because so are y and ρi; (4) C’s

view of SS-COT[m] and SS-IOT[2τ] can be simulated from their outputs.

49

Boundary Cases. Alg. 4.4 shows protocol Retrieval[i] for 0 < i < h. For i = 0 tree0 contains

a single node, shifts σ0, δ0 are not used, sub-protocol SS-COT[m] is skipped, index j1 is not

used, and the outputs include only j2 for C, ρ0 for D and E, and the C/E secret-sharing of

T0 (with L0 and N0 set to empty strings). For i = h the SS-IOT[2τ] sub-protocol is skipped,

shift ρh and index j2 are not used, and (z, y) held by C and E form a secret-sharing of record

M[N].

PostProcess. The post-process protocol PostProcess transforms the C/E secret-shared

tuples T0, ...,Th output by Retrieval to prepare the inputs for protocol Eviction. It does

so by executing a loop PostProcess[i] in Alg. 4.5 in parallel for i = 0, ..., h − 1 (tuple Th

is not part of this step). The goal of post-processing is to replace the Li+1 value which

sits at the j2-th position in the rec field of the secret-shared tuple Ti (where j2 is an index

C learns in Retrieval[i]), with the secret-shared value (Li+1)′. In other words, we need to

inject a secret-shared value into a secret-shared array at a secret position known only to

one party. However, we can utilize the fact that this secret-shared value to be injected

can be chosen in preprocessing and that E’s share of it can be revealed to D. Let (c, e) =

(sC[(Li+1)′], sE[(Li+1)′]) and let E sends its share e to D in preprocessing. If D precomputes

two |rec|-long correlated random pads, one for C and one for E, with the known difference e

between them at random location α known to C, then e ⊕ c can be injected at position j2

into the C/E secret-sharing of Ti if (1) C sends δ = α − j2 mod 2τ to E, (2) both parties

rotate the pads they receives from D counter-clockwise by δ positions, in this way placing

the unique pad cells that differ by e at position j2, (3) both parties xor their shares of Ti

with these pads, with C injecting an xor with c at position j2 into her share (in addition C

will also erase the previous leaf value at position j2 in rec field of Ti by adding Li+1 to that

xor).

Eviction. Protocol Eviction executes sub-protocol Eviction[i] in Alg. 4.6 in parallel for each

i = 0, ..., h (for i = 0 protocol Eviction[i] skips all the steps in Alg. 4.6 except the last

50

Algorithm 4.5 Protocol PostProcess[i] - Inserting New Labels into Ti

Input: C’s input sC[Ti],Li,Li+1, j2; E’s input sE[Ti];
Input known in pre-computation: C/D secret-sharing of labels (Li)′ and (Li+1)′, where
E forwards its shares to D;
Output: E/C secret-sharing of tuple (Ti)′ = (1,Ni, (Li)′, rec′) where rec′[j2] = (Li+1)′ and
rec′[t] = rec[t] for all t 6= j2 where Ti = (1,Ni,Li, rec);
Pre-computation phase: D picks r1, ..., r2τ in {0, 1}di+1 and α in {0, 1}τ , and sends α, r1, ..., r2τ

to C and s1, ..., s2τ to E s.t. sα = rα ⊕ sE[(Li+1)′] and st = rt for t 6= α.

1: C sends δ = α− j2 (mod 2τ) to E.
2: C outputs sC[(Ti)′] = sC[Ti]⊕ (0, 0iτ ,Li⊕ sC[(Li)′], (c1|...|c2τ)) where ct = rt+δ (mod 2τ) for

all t 6= j2 and ct = rt+δ (mod 2τ) ⊕ Li+1 ⊕ sC[(Li+1)′] for t = j2.
3: E outputs sE[(Ti)′] = sE[Ti]⊕ (0, 0iτ , sE[(Li)′], (e1|...|e2τ)) where et = st+δ (mod 2τ).

one). Sub-protocol Eviction[i] performs an ORAM eviction procedure on path P∗Li , whose

C/E secret-sharing is output by protocol Retrieval. The protocol has two parts: First, using

Yao’s garbled circuit protocol GC (see Section 4.2) it allows D to identify two tuples in each

internal bucket of P∗Li which are either movable one notch down this path or they are empty.

Another instance of GC will similarly find two empty tuples in the four buckets corresponding

to the leaf in P∗Li . The reason these pairs of indexes j0, j1 can be leaked to D is that (1) C

and E randomly permute the tuples in each bucket in P∗Li before using them in this protocol,

and (2) index jb computed for b = 0, 1 for each bucket in P∗Li is defined as the first movable

tuple in that bucket after a random offset λb (counting the tuples cyclically), where shifts

λ0, λ1 are chosen by E independently for each bucket at random in {1, ..., w}. The circuit

computed for every internal bucket takes only 2w bits of input (one for bit fb and one for

an agreement in the i-th bit of a leaf label in the tuple and the i-th bit of label Li defining

path P∗Li), and has only about 16w non-xor gates. Once D gets two indexes per each bucket

in the path, it uses the Secret-Shared Shuffle OT protocol SS-XOT
[
k+2
k

]
(see Section 4.2) to

randomizes the secret-sharing of all tuples in PLi while (1) moving the secret-shared tuple

(Ti)′ prepared by PostProcess into the root bucket, and (2) moving the two chosen tuples in

each bucket to the space vacated by the two tuples chosen in the bucket below. Finally, C

and E randomize their secret-sharing of the resulting path P∗∗Li by xor-ing their shares with

a pre-agreed random pad, C sends its share of P∗∗Li to D, and D and E insert their respective

51

Algorithm 4.6 Protocol Eviction[i] - Eviction in Path PLi of treei

Input: C/E secret-sharing of path P∗Li and tuple (Ti)′; σ, ρ held by E,D;
Output: D/E secret-sharing of path P�Li to be inserted into tree treei in place of PLi .
Notation: Let W = {1, ..., w}, IB = {0, ..., di − 1}, and EB = {di, di + 1, di + 2, di + 3}.
Pre-computation phase: C and E share random permutations π1, ..., πdi on set [w], a random
permutation πdi+1 on set [4 · w], and a random pad ξ of length |PLi |;

1: Parties run protocol Shift(C,E,D) on inputs C/E-secret-sharing of P∗Li and on D,E
input a shift σ. The protocol outputs a C/E-secret-sharing of path identical to P∗Li but
with buckets shifted back by σ positions. In addition, for each j ∈ IB, C and E use πj
to permute (their shares of) the tuples in the j-th bucket in the resulting path, and they
use πdi+1 to permute (their shares of) the tuples in the four buckets corresponding to
the leaf node. The resulting path, shared by C and E, is denoted P∗∗Li .

2: Let fbj` and Lj` be the fb and L fields of the `-th tuple in the j-th bucket in P∗∗Li . For each

j ∈ IB, parties run protocol GC[F2FT](E,C,D), see Sec. 4.2, on C’s inputs {sC[fbj`,L
j
`[j+

1]]}`∈W and on E’s inputs {sE[fbj`], Bj}`∈W where Bj = sE[Lj`[j + 1]]⊕ 1⊕ Li[j + 1] (note
that sC[Lj`[j + 1]] ⊕ Bj = 1 iff the secret-shared value Lj` and the public value Li agree
on (j + 1)-st bit). For each j ∈ IB, D defines α1

j , α
2
j ∈ [1, ..., w] as the indexes of the two

output wires of F2FT on which D received output bit 1 in the j-th instance of GC[F2FT].
3: The parties run protocol GC[F2ET](E,C,D) on E’s inputs {sE[fbj`]}`∈W,j∈EB and C’s

inputs {sC[fbj`]}`∈W,j∈EB. D defines α1
di
, α2

di
∈ [1, ..., 4 · w] as the indexes of the two

output wires of F2ET on which D received output bit 1 in this instance of GC[F2ET].
4: D prepares a sequence of k = w · (di + 4) indexes I = (β1, ..., βk) s.t.

βw·j+` =

k + 1, if j = 0 and ` = α1
0

k + 2, if j = 0 and ` = α2
0

w · (j − 1) + α1
j−1, if 1 ≤ j ≤ di − 1 and ` = α1

j

w · (j − 1) + α2
j−1, if 1 ≤ j ≤ di − 1 and ` = α2

j

w · (di − 1) + α1
di−1, if j ≥ di and w · (j − di) + ` = α1

di

w · (di − 1) + α2
di−1, if j ≥ di and w · (j − di) + ` = α2

di

w · j + ` otherwise

and then divides I into di + 4 chunks, each of which has w indexes, and permutes each
chunk with the corresponding %r.

5: C prepares a sequence of k + 2 shares (sC[a1], ..., sC[ak+2]) by setting sC[aw·j+`] = sC[Tj
`]

where Tj
` is `-th tuple in j-th bucket Bj in P∗∗Li , for ` ∈ W and j ∈ IB ∪ EB, sC[ak+1] as

sC[(Ti)′], and sC[ak+2] as 0 concatenated with a random string of i · τ + di + 2τ ·di+1 bits.
E prepares a sequence of k + 2 shares (sE[a1], ..., sE[ak+2]) in the corresponding way.

6: The parties run protocol SS-XOT
[
k+2
k

]
on C’s input (sC[a1], ..., sC[ak+2]), E’s input

(sE[a1], ..., sE[ak+2]), and D’s input I. C and E set their shares of path P�Li to their
output in this SS-XOT

[
k+2
k

]
protocol xor’ed with string ξ.

7: C sends sC[P�Li] to D; D and E insert their shares of P�Li into their shares of treei.

52

shares of P∗∗Li into their shares of treei, in place of the shares of the original path PLi retrieved

in the first step of Retrieval[i].

4.4 Protocol Analysis

Assuming constant record size the bandwidth of our protocol is O
(
w(log3(n) + κ log2(n))

)
,

where w the bucket size of the nodes in our protocol, |M| = n, and κ is the cryptographic

security parameter.The O
(
w log3(n)

)
term comes from the fact that all our protocols except

for the GC evaluation have bandwidth O(|PLi |) where PLi is a path accessed in treei (the

online part of our protocol requires 7 such transmissions per each treei). Each path PLi in

treei has length O (w(di)
2) where di is linear in i, and the summation is then done for i from

1 to h = O
(
log2(n)

)
. The O (wκ log(n)2) term is the bandwidth for garbled circuits, since

the inputs to the circuits for a path have O (w log(n)) bits and there are O (log(n)) paths

retrieved during the traversal of the ORAM forest.

Each party’s local cryptographic computation is O
(
w
(
log3(n)/κ+ log2(n)

))
block cipher or

hash operations. Note that the O
(
wlog3(n)/κ

)
factor comes already from secure transmission

of data in the Client-Server ORAM, hence this cost seems cryptographically minimal. The

GC computation contributes O
(
w log2(n)

)
hash function operations, all performed by one

party. Since log(n) < κ, the O
(
w log2(n)

)
term could dominate, and indeed we observe that

the GC computation occupies a significant fraction of the overall CPU cost.

The performance of the scheme is linear in the bucket size parameter w, and the size of this

parameter should be set so that the probability of overflow of any bucket throughout the

execution of the scheme is bounded by 2−λ for the desired statistical security parameter λ.

The probability that an internal node overflows and the probability that a leaf node overflows

are independent stochastic processes and for this reason we examine them separately. The

53

analytical bounds we give for both cases are not optimal. For the leaf node overflow

probability the bound we give in Lemma 4.1 could be made tight if the number of ORAM

accesses N is equal to the number of memory locations n, but for the general case of N > n

we use a simple union bound which adds a N factor. If a tighter analysis could be made,

it could potentially reduce the required w by up to log(N) bits. The bound we give for the

internal node overflow probability in Lemma 4.2 is simplistic and clearly far the optimal.

We amend this bound by a discussion of a stochastic model which we used to approximate

the eviction process. If this approximation is close to the real stochastic process then the

scheme can be instantiated with much smaller bucket sizes than those implied by Lemma

4.2.

Lemma 4.1. (Leaf Nodes) If we have N accesses in an ORAM forest with the total capacity

for n records and with leaf nodes which hold 4w entries, then the probability that some leaf

node overflows at some access is bounded by:

Pr[some leaf node in forest overflows] ≤ N · h2 · n
w
· 2−2w

The proof of this lemma follows from a standard bins-and-balls argument.

To keep this probability below 2−λ we need that 2w ≥ λ + logN + log(n) + 2 log log(n).

It is easy to see that if you increase the number of buckets in a leaf node, the constant of

this linear relationship (which is roughly 1
2

for 4 buckets per leaf) decreases rapidly. For

example if one uses 6 buckets per leaf, the constant of the linear relationship between w

and log(n) + logN + λ becomes 1
6
, allowing for much smaller buckets. This means that by

modifying the number of buckets per leaf, we can ensure that it is the internal nodes that

define the size of buckets. We note that increasing the number of buckets per leaf increases

the total space for the ORAM forest forest.

54

Lemma 4.2. (Internal Nodes) If we have N accesses and subsequent evictions in an

ORAM forest with internal buckets of size w, then the probability that some internal bucket

overflows at some access is bounded by:

Pr[some internal bucket in forest overflows] ≤ N · h · dh · w · 2−(w−1)

We can prove Lemma 4.2 by assuming that there exists an internal node that during all

accesses and subsequent evictions is on the verge of overflowing (has w or w − 1 entries in

it). We also assume the worst case of each node always receiving exactly two new entries,

and we compute the probability that a node is not able to evict two entries, thus causing an

overflow.

To keep this probability below 2−λ, the lemma implies that w − logw ≥ λ + logN +

2 log log(n) + 1. For w < 512 this can be simplified as w ≥ λ+ logN+ 2 log log(n) + 10. For

N ≤ c · n this implies w ≥ λ+ log(n) + 2 log log(n) + 10 + log c.

Stochastic Approximation. The above analysis is pessimistic, since it assumes that there

exists a critical bucket that is always full, having w or w−1 entries and bounds the probability

of such a bucket having a “bad event”. It does not explore how difficult it is for a bucket

to reach such a state, or how a congested bucket is emptying over time. In order to better

understand such behaviors we observe that each internal node can be modeled as a Markov

Chain, where the state of the chain counts how many entries are currently in the node. The

node is initially empty. Whenever a node is selected in an eviction path it may receive up

to two entries depending on whether the parent node was able to evict one or two entries.

Moreover the node could evict up to two entries to its child that participates in the eviction

path. The root always receives 1 entry and may evict up to two entries. Intuitively since the

eviction path is picked at random and each entry is assigned to a random leaf node, each

entry in a node in the eviction path can be evicted to the selected child node with probability

55

1
2
. So for this model we make the following relaxation: Instead of mapping an entry to a leaf

node, when it is inserted for the first time in the root, we just let the leaf node be “defined”

as the entry is pushed down the tree during eviction. In that sense we abstract entries and

the only think we need to care for, is how many entries there exist in a given internal node

at a given moment, which is expressed by the state of the Markov Chain.

This model needs one Markov Chain for each internal node. We make the following relaxation:

We use one Markov Chain for each level of the tree. A Markov Chain starts empty. At each

eviction step, a Markov Chain at level i may receive up to two entries depending on how

many entries the Markov Chain in the previous level i − 1 was able to evict. Moreover the

Markov Chain at level i may evict up to two entries to level i + 1. The Markov Chain for

the root (level 0) always receives 1 entry. The state of a Markov Chain keeps tracks of how

many entries are in it. At each eviction step an entry can be evicted with probability 1
2

(the

same as the probability we had for the previous model).

The final relaxation we do, is that we remove the direct relationship between a Markov Chain

at level i evicting an entry and the Markov Chain at level i+ 1 receiving an entry. We first

observe that on expectation at every level the Markov Chain receives at most 1 entry at

each eviction step. Intuitively in order to prove this we observe that initially all nodes are

empty. The root receives one entry in each eviction step, from there we can use a recursive

argument that at any level i a node cannot be evicting more than 1 entry on expectation

in each eviction step, which is what the node at level i + 1 is receiving. Since the eviction

probabilities only depend on the current state of a Markov Chain, the worst case for the

Markov Chain, is when the variance of the input is maximized. This happens when with

probability 1
2

the node receives 0 entries and with probability 1
2

the node receives 2 entries

(also maximizes the expectation to 1).

We use this last model in order to bound the probability of overflow for internal nodes in

our implementation and in order to set bucket sizes. In particular we generate a Markov

56

Figure 4.1: w for different logN

Chain the has w + 2 states, w for the bucket size, one empty state and one overflow state.

The overflow state is a sink. We compute the probability of being in the overflow state

after N accesses assuming the node was initially empty and perform a union bound on the

number of nodes in all paths of the ORAM forest forest. In Figure 4.1 for different statistical

security parameters λ equal with 20, 40 and 80, we show the minimum bucket sizes w for

logN in the range 12, . . . 36 and log(n) = O (logN). Generally, we observe that using the

Markov Chain based approximation can lead to tighter bounds on the internal node sizes,

from which we conjecture that the size of internal nodes can be reduced to O
(√

λ+ logN
)

(w > 2
√
λ+ logN + 2 log log(n)).

4.5 Implementation and Testing

We built and benchmarked a prototype Java implementation of the proposed 3PC-ORAM

protocol. We tested this implementation on the entry-level AWS EC2 t2.micro virtual

servers, which have one hyper-thread on a 2.5GHz CPU and 1GB RAM. Each of the three

57

protocol participants C, D, E where co-located in the same availability zone and connected

via a local area network.

We measured the performance of the online and offline stages of our protocol separately,

but our development effort was focused on optimizing the online stage so the offline timings

provide merely a loose upper-bound on the pre-computation overhead. We measured both

wall clock and CPU times for each execution, where the wall clock time is defined as the

maximum of the individual wall clocks, and the CPU time as the sum of the CPU times

of the three parties. We tested our prototype for bit-length log(n) of the RAM addresses

ranging from 12 to 36, and for record size B ranging from 4 to 128 bytes. Since the 3PC

ORAM protocol has two additional parameters, the bucket size w and the bit-length of RAM

address segments τ , we tested the sensitivity of the performance to w with w equal to 16,

32, 64, or 128, and for each (log(n), w,B) tuple we searched for τ that minimize the wall

clock (an optimal τ was always between 3 and 6 for the tested cases).

Figure 4.2 shows the wall clock time of the online stage as a function of the bit-length log(n)

of the RAM address space, for the two cases (w,B) = (16, 4) and (w,B) = (32, 4). We found

that the CPU utilization in the online phase of our protocol is pretty stable, growing from

about 25% for smaller log(n)’s to 35% for log(n) ≥ 30, hence the graph of the CPU costs

as function of log(n) has a very similar shape. Our testing showed that the influence of the

record size B on the overall performance is very small for B less than 100 bytes, but higher

payload sizes start influencing the running time. Our testing confirms that the running time

has clear linear relationship to the bucket size w: The wall clock for w = 64 grows by a

factor close to 1.8 compared to w = 32, and for w = 128 by a factor close to 3.5 (for large

log(n) and small B). The offline wall clock time grows from 400 msec for log(n) = 12 to

1300 msec for log(n) = 36 for w = 32, but these numbers should be taken only as loose

upper bounds on the pre-computation overhead of our 3PC-ORAM. Finally, we profiled the

code to measure the percentage of CPU time spent on different protocol components. We

58

found that the fraction of the total CPU costs of the online phase spent on garbled circuit

evaluation decreases from 45%− 50% for log(n) = 12 to 25% for log(n) = 36. We also found

that only about half of that cost is spent in SHA evaluation, i.e., that the Garbled Circuit

evaluation protocol spends only about half its CPU time on decryption of the garbled gates.

The fraction of the CPU cost spent on symmetric ciphers, which form the only cryptographic

costs of all the non-GC part of our protocol, decreases from the already low figure of 10% for

small log(n)’s to below 5% for log(n) = 36. By contrast, the fraction of the CPU cost spent

on handling message passing to and from TCP communication sockets grows from 12% for

small log(n) to 30% for log(n) = 36.

Figure 4.2: Online Wall Clock vs RAM address size log(n)

59

Chapter 5

3PC-Circuit-ORAM

This chapter describes our 3PC-Circuit-ORAM scheme, which adopts MPC-friendly client

eviction algorithm from 2PC-Circuit-ORAM [44] and improves performance efficiency over

2PC-Circuit-ORAM and our previous 3PC-ORAM construction [18]. It is based on my

publication 3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval, a

joint work with Stanislaw Jarecki, published on Applied Cryptography and Network Security

2018 [29].

5.1 Technical Overview

High Level Design of 3PC-Circuit-ORAM. The client algorithm in all variants of

binary-tree ORAM, which includes Path-ORAM and Circuit-ORAM, consists of the following

phases:

1. Retrieval, which given path = tree.path(L) and address prefix N, locates tuple T =

(1,N,L, rec) in path and retrieves next-level label in rec;

60

2. PostProcess, which removes T from path, injects new labels into T, and re-inserts it

in the root (= stash);

3. Eviction, which can be divided into two sub-steps:

(a) Eviction Logic: An eviction map EM is computed, by function denoted Route, on

input label L and the metadata fields (fb, lb) of tuples in path,

(b) Data Movement: Permute tuples in path according to map EM.

Our 3PC-ORAM is a secure emulation of the above procedure, with the Eviction Logic

function Route instantiated as in Circuit-ORAM [44], and it performs all the above steps

on the sharings of inputs tree and N, given label L as a public input known to all parties.

With the exception of the next-level label recovered in Retrieval, all other variables remain

secret-shared. Our implementation of the above steps resembles the 3PC-ORAM emulation

of binary-tree ORAM by [18] such that we use garbled circuit for Eviction Logic, and

specialized 3PC protocols for Retrieval, PostProcess, and Data Movement. However, our

implementations are different from [18]: First, to enable low-bandwidth batch processing of

retrieval we use different sharings and protocols in Retrieval and PostProcess. Second, to

securely “glue” Eviction Logic and Data Movement we need to mask mapping EM computed

by Eviction Logic and implement Data Movement given this masked mapping. We explain

both points in more detail below.

Low-Bandwidth 3PC Retrieval. The Retrieval phase realizes a Keyword Secret-Shared

PIR (Kw-SS-PIR) functionality: The parties hold a sharing of an array of (keyword,value)

pairs, and a sharing of a searched-for keyword, and the protocol must output a sharing of

the value in the (keyword,value) pair that contains the matching keyword. In our case the

address prefix N[1,i] is the searched-for keyword and path is the array of the (keyword,value)

pairs where keywords are address fields adr and values are payload fields rec.

61

The 3PC implementation of Retrieval in [18] has O(`B) bandwidth where `=O(log(n)) is

the number of tuples in path, and here we reduce it to 3B+O(` log `) as follows: First, we

re-use the Keyword Search protocol KSearch of [18] to create a secret-sharing of index j of a

location of the keyword-matching tuple in path. This sub-protocol reduces the problem to

finding an index where a secret-shared array of length ` contains an all-zero string, which

has Θ(` log `) communication complexity. Our KSearch implementation has 2`(c + log `)

bandwidth where 2−c is the probability of having to re-run KSearch because of collisions in

` pairs of (c+ log `)-bit hash values. The overall bandwidth is optimal for c≈ log log `, but

we report performance numbers for c= 20.

Secondly, we use a Secret-Shared PIR (SS-PIR) protocol, which creates a fresh sharing of

the j-th record given the shared array and the shared index j. We implement SS-PIR in

two rounds from any 2-server PIR [16] whose servers’ PIR responses form an xor-sharing

of the retrieved record. Many 2-server PIR’s have this property, e.g., [13, 6, 28], but we

exemplify this generic construction with the simplest form of 2-server PIR of Chor et al.

[13] which has 3` + 3B bandwidth. This is not optimal in `, but in our case `≤ 150 + b

where b is the number of accesses with postponed eviction, the optimized version of SS-PIR

sends only ≈`+3B bits on-line, and KSearch already sends O(` log `) bits. Our generic 2-PIR

to 3PC-SS-PIR compiler is simple (a variant of it appeared in [28]) but the 3-round 3PC

Kw-SS-PIR protocol is to the best of our knowledge novel.

Efficient 3PC-Circuit-ORAM Eviction. In Eviction we use a simple Data Movement

protocol, with 2 round and ≈ 2|path| bandwidth. With three parties denoted as (C,D,E),

our protocol creates a two-party (C,E)-sharing of path′ = EM(path) from a (C,E)-sharing of

path if party D holds eviction map EM in the clear. Naively outputting EM = Route(path)

to party D is insecure, as eviction map is correlated with the ORAM access pattern, so the

question is whether EM can be masked by some randomizing permutation known by C and

E. [18] had an easy solution for its binary-tree ORAM variant because its algorithm Route

62

Figure 5.1: Randomization of Circuit ORAM’s Bucket Map

outputs a regular EM, that buckets on every except the last level of the retrieved path always

move two tuples down to the next level, so all [18] needed to do is to randomly permute

tuples on each bucket level of path, and the resulting new EM′ on the permuted path leaks

no information on EM. By contrast, Circuit-ORAM eviction map is non-regular (see Fig.

5.1): Its bucket level map Φ of EM can move a tuple by variable distance and can leave some

buckets untouched, both of which are correlated with the density of tuples in path, and thus

with ORAM access pattern.

Thus our goal is to transform the underlying Circuit-ORAM eviction map EM = (Φ, t) into a

map whose distribution does not depend on the data (Φ describes the bucket-level movement,

while t is an array containing one tuple index from each bucket that will be moved). We do

so in two steps. First, we add an extra empty tuple to each bucket and we modify Circuit

ORAM algorithm Route to expand function Φ : Zd→Zd ∪ {⊥} into a cyclic permutation σ

on Zd (d is the depth of path, Zd is the set {0, ..., d − 1}), by adding spurious edges to Φ

in the deterministic way illustrated in Fig. 5.1. Second, we apply two types of masks to

the resulting output (σ, t) of Route, namely a random permutation π on Zd and two arrays

(δ, ρ), each of which contains a random tuple index in each bucket. Our Eviction Logic

protocol will use (π, δ, ρ) to mask (σ, t) by computing (σ◦, t◦) s.t. σ◦=π ·σ ·π−1 (permutation

63

composition) and t◦= ρ ⊕ π(t ⊕ δ). And now we have a masked eviction map EMσ◦,t◦ that

can be revealed to party D but does not leak information on EMσ,t or EMΦ,t.

5.2 3PC-Circuit-ORAM Protocol

Protocol Parties. We use C,D,E to denote the three parties participating in 3PC-ORAM.

We use xP to denote that variable x is known only to party P ∈ {C,D,E}, xP1P2 if x is

known to P1 and P2, and x if known to all parties.

Shared Variables, Bitstrings, Secret-Sharing. Each pair of parties P1,P2 in our

protocol is initialized with a shared seed to a Pseudorandom Generator (PRG), which allows

them to generate any number of shared (pseudo)random objects. We write xP1P2 $←− S if P1

and P2 both sample x uniformly from set S using the PRG on a jointly held seed. We use

several forms of secret-sharing, and here introduce four of them which are used in our high

level protocols 3PC-ORAM.Access and 3PC-ORAM.ML (Alg. 5.1 & 5.2):

〈x〉 = (xDE
1 , xCE

2 , xCD
3) for x1, x2, x3

$←− {0, 1}|x| where x1 ⊕ x2 ⊕ x3 = x

〈x〉P1–P2

xor = (xP1
1 , x

P2
2) for x1, x2

$←− {0, 1}|x| where x1 ⊕ x2 = x

〈x〉P1P2–P3

shift = (xP1P2
12 , xP3

3) for x ∈ Zm, x12, x3
$←− Zm s.t. x12 + x3 = x mod m

〈x〉shift = (〈x〉CD–E
shift , 〈x〉CE–D

shift , 〈x〉DE–C
shift)

Integer Ranges, Permutations. We define {1, ..., n} as set {0, ..., n−1}, and permn as

the set of permutations on {1, ..., n}. If π, σ ∈ permn then π−1 is an inverse permutation of

π, and π · σ is a composition of σ and π, i.e., (π · σ)(i) = π(σ(i)).

64

Arrays. We use arraym[`] to denote arrays of ` bit-strings of size m, and we write array[`]

if m is implicit. We use x[i] to denote the i-th item in array x. Note that x ∈ arraym[`] can

also be viewed as a bit-string in {0, 1}`m.

Permutations, Arrays, Array Operations. Permutation σ ∈ perm` can be viewed as

an array x ∈ arraylog `[`], i.e., x = [σ(0), ..., σ(`−1)]. For π ∈ perm` and y ∈ array[`]

we use π(y) to denote an array containing elements of y permuted according to π, i.e.,

π(y) = [yπ−1(0), ..., yπ−1(`−1)].

Garbled Circuit Wire Keys. If variable x ∈ {0, 1}m is an input/output in circuit C, and

wk ∈ arrayκ[m, 2] is the set of wire key pairs corresponding to this variable in the garbled

version of C, then {wk :x} ∈ arrayκ[m] denotes the wire-key representation of value x on

these wires, i.e., {wk :x} = {wk[x[i]]}mi=1. If the set of keys is implicit we will denote {wk :x}

as x.

3PC-ORAM Protocol. Our 3PC-ORAM protocol, 3PC-ORAM.Access, Alg. 5.1, performs

the same recursive scan through data-structure tree0, ..., treeh−1 as the client-server Path

ORAM (and Circuit-ORAM), included for reference as Alg. A.1 in Appendix A, except it

runs on inputs in 〈·〉 secret-sharing format, i.e., sharings of ORAM trees, 〈tree0〉 , ..., 〈treeh−1〉,

sharing of address 〈N〉, and sharing of a new record 〈rec′〉 if instr = write. The main loop

of 3PC-ORAM.Access, i.e., protocol 3PC-ORAM.ML, Alg. 5.2, also follows the corresponding

client-server algorithm ORAM.ML, included for reference as Alg. A.2 in Appendix A, except

that apart of the current-level leaf label L which is known to all parties, all its other inputs

are secret-shared as well.

Protocol 3PC-ORAM.ML calls sub-protocols whose round/bandwidth specifications are stated

in Fig. 5.2. (We omit computation costs because they are all comparable to link-encryption

of communicated data). The low costs of these sub-protocols are enabled by different forms

of secret-sharings, e.g., xor versus additive, or 2-party versus 3-party, and by low-cost (or

65

Algorithm 5.1 Protocol 3PC-ORAM.Access - 3PC-Circuit-ORAM Access

Params: Address size log(n), address chunk size τ , number of trees h = log(n)
τ

+ 1

Input: 〈ORAM,N, rec′〉, for ORAM = (tree0, ..., treeh−1), N = (N1, ...,Nh−1)

Output: 〈rec〉: record stored in ORAM at address N

1: {〈L′i〉 $←− {0, 1}i·τ}h−1
i=1 ; 〈N0,Nh,L

′
0,L

′
h〉 := ⊥ ; L0 := ⊥

2: for i = 0 to h−1 do

3PC-ORAM.ML: Li,
〈
treei, (N0|...|Ni),Ni+1,L

′
i,L
′
i+1, * rec

′〉
−→ Li+1 (* 〈rec〉 instead of Li+1), 〈treei〉

3: end for

*: On top-level ORAM tree, i.e., i = h− 1

no cost) conversions between them. For implementations of these protocols we refer to

Appendix A.

Three Phases of 3PC-ORAM.ML: Protocol 3PC-ORAM.ML computes on sharing 〈path〉 for

path = tree.path(L) and it contains the same three phases as the client-server Path-ORAM,

but implemented with specialized 3PC protocols:

(1) Retrieval runs protocol KSearch to compute “shift” (i.e., additive) sharing 〈j〉shift of

index for tuple T = path[j] in path s.t. path[j].adr= N and path[j].fb= 1, i.e., it is the unique

(and non-empty) tuple pertaining to address prefix N; Then it runs protocol 3ShiftPIR to

extract sharing 〈X〉 of the payload X = path[j].rec of this tuple, given sharings 〈path〉 and

〈j〉shift; In parallel to 3ShiftPIR it also runs protocol 3ShiftXorPIR to publicly reconstruct the

next-level label stored at position ∆N in this tuple’s payload, i.e., Li+1 = (path[j].rec)[∆N],

given sharing 〈path〉 and 〈∆N〉. This construction of the Retrieval emulation allows for

presenting protocols 3ShiftPIR and 3ShiftXorPIR (see resp. Alg. A.9 and A.11 in Appendix

A.2) as generic SS-PIR constructions from a class of 2-Server PIR protocols. However, a

small modification of this design achieves better round and on-line bandwidth parameters,

see an Optimizations and Efficiency Discussion paragraph below.

66

Algorithm 5.2 Protocol 3PC-ORAM.ML - Main Loop of 3PC-Circuit-ORAM

Param: Tree level index i. path depth d (number of buckets). Bucket size w.
Input: Li,

〈
tree,N,∆N,L′i,L

′
i+1

〉
(* 〈rec′〉)

Output: (1) Li+1 = T.rec[∆N] for tuple T on tree.path(Li) s.t.
T.(fb|adr) = 1|N (* 〈rec〉 := 〈T.rec〉)

(2) 〈tree.path(L)〉 modified by eviction, with T.lb := L′i and
T.rec[∆N] := L′i+1 (* T.rec := rec′)

Offline: pick (π, δ, ρ)CE, for π $←− permd, δ, ρ $←− arraylog(w+1)[d]

Retrieval of Next Label/Record

〈path〉 := 〈tree.path(Li)〉
1: KSearch: 〈path.(fb|adr), 1|N〉 → 〈j〉shift . path[j].(fb|adr) = 1|N
2: 3ShiftPIR: 〈path.rec〉 , 〈j〉shift → 〈X〉 (* 〈rec〉 := 〈X〉) . X = path[j].rec

3: 3ShiftXorPIR: 〈path.rec,∆N〉 , 〈j〉shift →Li+1(*skip) . Li+1=path[j].rec[∆N]

Post-Process of Found Tuple

4: ULiT:
〈
X,N,∆N,L′i,L

′
i+1 (* rec′)

〉
,Li+1 → 〈T〉

. X[∆N] := L′i+1 (* X := rec′), T = (1,N,L′i, X)

5: FlipFlag: 〈path.fb〉 , 〈j〉shift → 〈path.fb〉 . path[j].fb := 0

〈path〉 := 〈path.append-to-root(T)〉
Eviction

6: GC(Route): Li, δ
CE, 〈path.(fb, lb)〉 → (σ, t′)D , wkE

. σ = {wk :σ} and t′ = t⊕ δ for expanded Circuit-ORAM eviction map (σ, t)

7: PermBuckets: σD, πCE,wkE → σ◦D . σ◦ = π · σ · π−1

8: PermTuples: t′D, (π, ρ)CE → t◦D . t◦ = ρ⊕ π(t′)

9: SSXOT: 〈path〉 , (π, δ, ρ)CE, (σ◦, t◦)D → 〈path′〉 . path′ = EMσ,t(path)

〈tree.path(Li)〉 :=〈path′〉

*: On top-level ORAM tree, i.e., i = h− 1. .: Comments.

(2) PostProcess runs the Update-Label-in-Tuple protocol ULiT to form sharing 〈T〉 of a

new tuple using sharing 〈X〉 of the retrieved tuple’s payload, sharings 〈N〉 and 〈∆N〉 of

the address prefix and the next address chunk, and sharings 〈L′i〉 ,
〈
L′i+1

〉
of new labels; In

parallel to ULiT it also runs protocol FlipFlag to flip the full/empty flag to 0 in the old version

of this tuple in path, which executes on inputs the sharings 〈path.fb〉 of field fb of tuples in

path and on the “shift” sharing 〈j〉shift; Once ULiT terminates the parties can insert 〈T〉 into

67

rounds bandwidth

KSearch 2 ≈ 2`(c+ log `)
3ShiftPIR 2 3`+ 3|rec| for |rec| = 2τ |L|

3ShiftXorPIR 2 3 · 2τ`+ 6|L|
ULiT 2 ≈ 4|rec| (+4|rec| offline)

FlipFlag 2 4`
GC(Route) 1 2|x|κ (+4|circ|+ 2|x|)κ offline)

PermBuckets 2 3d log d (+d2(κ+ 2 log d) + 3d log d offline)
PermTuples 2 2d(w+1) (+d(w+1) offline)

SSXOT 3 2|path|+ 2` log(`) (+2|path| offline)

Figure 5.2: Round and bandwidth for sub-protocols of Alg. 5.2, for ` the number
of tuples on path and x the circuit input size (≈ `(d + log(n)) + d log(w + 1))

sharing of the root bucket in path. At this point the root bucket has size s+1 (or s+b if we

postpone eviction for a batch of b accesses).

(3) Eviction emulates Circuit-ORAM eviction on sharing 〈path〉 involved in retrieval (or

another path because 3PC-ORAM.Access, just like client-server Circuit-ORAM, performs

eviction on two paths per access). It uses the generic garbled circuit protocol GC(Route) to

compute the Circuit-ORAM eviction map (appropriately masked), and then runs protocols

PermBuckets, PermTuples, and SSXOT to apply this (masked) eviction map to the secret-shared

〈path〉. We discuss the eviction steps in more details below.

Eviction Procedure. As we explain in Section 5.1, we split Eviction into Eviction Logic,

which uses garbled circuit sub-protocol to compute the eviction map EM, and Eviction

Movement, which uses special-purpose protocols to apply EM to the shared path, which in

protocol 3PC-ORAM.ML will be 〈path〉. However, recall that revealing the eviction map to

any party would leak information about path density, and consequently the access pattern.

We avoid this leakage in two steps: First, we modify the Circuit-ORAM eviction logic

computation Route, so that when it computes bucket-level map Φ and the tuple pointers

array t, which define an eviction map EMΦ,t, the algorithm scans through the buckets once

more to expand the partial map Φ into a complete cycle σ over the d buckets (see Fig. 5.1,

68

and we include the modified Circuit-ORAM algorithm Route in Appendix A.3). Second, the

garbled circuit computation GC(Route), see Step 6, Alg. 5.2, does not output (σ, t) to D in

the clear: Instead, it outputs t′= t ⊕ δ where δ is a random array, used here as a one-time

pad, and the garbled wire encoding of the bits of σ= [σ(1), ..., σ(d)], i.e., the output wire keys

{wk :σ}=wk[i][σ[i]]}d log d
i=1 .

Recall that we want D to compute (σ◦, t◦), a masked version of (σ, t), where σ◦=π · σ · π−1

and t◦= ρ⊕ π(t⊕ δ), for π a random permutation on Zd and δ, ρ random arrays, all picked

by C and E. This is done by protocol PermBuckets, which takes 2 on-line rounds to let D

translate {wk :σ} into σ◦=π ·σ ·π−1 given wk held by E and π held by C,E, and (in parallel)

PermTuples, which takes 2 rounds to let D translate t′= t⊕δ into t◦= ρ⊕π(t′) given π, ρ held

by C,E. Then C,E permute 〈path〉C–E
xor (implied by 〈path〉, because 〈x〉 = (xDE

1 , xCE
2 , xCD

3)→

(xE
1 , x

E
2 , x

C
3) = 〈x〉C–E

xor) by Π = ρ̃ · π̈ · δ̃ where π̈, δ̃, and ρ̃ are permutations on ` = d · (w+1)

tuples in the path induced by π, δ, ρ:

• π ∈ permd defines π̈ ∈ perm` s.t. π̈(j, t) = (π(j), t), i.e., π̈ moves position t in bucket j

to position t in bucket π(j);

• δ ∈ arraylog (w+1)[d] defines δ̃ ∈ perm` s.t. δ̃(j, t) = (j, t ⊕ δ), i.e., δ̃ moves position t in

bucket j to position t⊕ δ[j] in bucket j; same for ρ and ρ̃;

Now use protocol SSXOT in 2 round and ≈ 2|path| bandwidth to apply map EMσ◦,t◦ held by

D to 〈Π(path)〉C–E
xor . The result is 〈path◦〉C–E

xor for path◦ = (EMσ◦,t◦ · Π)(path), and when C,E

apply Π−1 to it they get 〈path′〉C–E
xor for path′ = (Π−1 · EMσ◦,t◦ ·Π)(path). Finally 〈path′〉 can

be reconstructed from 〈path′〉C–E
xor in 1 round and 2|path| bandwidth (see Appendix A.2 for

secret-sharing conversions and reasoning), and can then be injected into 〈tree〉.

69

Eviction Correctness. We claim that the eviction protocol described above implements

mapping EMσ,t applied to path, i.e., that (note that (x̃)−1 = x̃):

EMσ,t = Π−1 · EMσ◦,t◦ · Π = (δ̃ · π̈−1 · ρ̃) · (EMπσπ−1,ρ⊕π(t⊕δ)) · (ρ̃ · π̈ · δ̃) (5.1)

Consider the set of points S = {(j, t[j]) | j ∈ Zd} which are moved by the left hand side (LHS)

permutation EMσ,t. To argue that eq. (5.1) holds we first show that the RHS permutation

maps any point (j, t[j]) of S in the same way as the LHS permutation:

(j, t[j])
(ρ̃·π̈·δ̃)−→ (π(j), ρ[π(j)]⊕ t[j]⊕ δ[j]) = (π(j), t◦[π(j)])

EMπσπ−1,t◦−→ (πσπ−1(π(j)), t◦[πσπ−1(π(j))]) = (πσ(j), t◦[πσ(j)])

= (πσ(j), ρ[πσ(j)]⊕ t[σ(j)]⊕ δ[σ(j)])

ρ̃−→ (πσ(j), t[σ(j)]⊕ δ[σ(j)])
π̈−1

−→ (σ(j), t[σ(j)]⊕ δ[σ(j)])

δ̃−→ (σ(j), t[σ(j)])

It remains to argue that RHS is an identity on points not in S, just like LHS. Observe that

set S ′ of tuples moved by EMσ◦,t◦ consists of the following tuples:

(k, t◦[k]) = (k, ρ[k]⊕ t[π−1(k)]⊕ δ[π−1(k)]) = (π(j), ρ[π(j)]⊕ t[j]⊕ δ[j])

Also note that:

(ρ̃ · π̈ · δ̃)(j, t[j]) = (ρ̃ · π̈)(j, t[j]⊕ δ[j]) = ρ̃(π(j), t[j]⊕ δ[j]) = (π(j), ρ[π(j)]⊕ t[j]⊕ δ[j])

which means that S ′= Π(S), so if (j, t) 6∈S then Π(j, t) 6∈S ′, hence (EMσ◦,t◦ ·Π)(j, t) = Π(j, t),

and hence Π−1 · EMσ◦,t◦ · Π and EMσ,t are equal on (j, t) 6∈S.

70

Optimizations and Efficiency. As mentioned above, we can improve on both bandwidth

and rounds in the Retrieval phase of 3PC-ORAM.ML shown in Alg. 5.2. The optimization

comes from an observation that our protocol KSearch (see Alg. A.6, App. A.2) takes just

one round to compute shift-sharing 〈j〉DE–C
shift of index j, and its second round is a resharing

which transforms 〈j〉DE–C
shift into 〈j〉shift. This round of resharing can be saved, and we can

re-arrange protocols 3ShiftPIR and 3ShiftXorPIR (shown as Alg. A.9 and A.11 in App. A.2) so

they use only 〈j〉DE–C
shift as input and effectively piggyback creating the rest of 〈j〉shift in such

a way that the modified protocols, denoted resp. 3ShiftPIR-Mod and 3ShiftXorPIR-Mod (shown

as Alg. A.12 and A.13 in App. A.2) take 2 rounds, which makes the whole Retrieval take

only 3 rounds, hence access protocol 3PC-ORAM.Access takes 3h rounds in Retrieval, and,

surprisingly, the same is true for Retrieval with PostProcess (protocols 3ShiftPIR-Mod and

3ShiftXorPIR-Mod also use resp. 2` and 2·2τ` less bandwidth than 3ShiftPIR and 3ShiftXorPIR).

Surprisingly, the modified Retrieval and PostProcess phases together take only 3 rounds,

amortized over the tree traversal, which enables pipelined processing of b accesses in 3b+ 3h

rounds (with postponed eviction). Very briefly, this is because (1) the 2-round protocol

FlipFlag can start after the first round of Retrieval (and thus terminates in round 3) because

KSearch produces FlipFlag’s input 〈j〉DE–C
shift in round 1; and (2) protocol ULiT has 2 rounds,

but its first round can be computed in parallel to 1st round of KSearch because it needs

only ∆N as an input, and while its 2nd round requires Li+1 which is output only in round 3

by 3ShiftXorPIR-Mod (other inputs of ULiT are available before), this 2nd round of ULiT can

execute in parallel with the 1st round of Retrieval instance for the next access request on

the same tree, and this is because the 1st round of retrieval consists of KSearch which takes

only fb, adr fields of the tuples in path as inputs while the 2nd round of ULiT works only on

the rec field of tuple T.

71

Eviction takes 6 rounds, which can run in parallel on all trees per access, and O(κ log3(n) +

B log(n)) bandwidth, which in practice is about 100x more than Retrieval and PostProcess,

but it can be postponed for a batch of accesses.

5.3 Security

Protocol 3PC-ORAM of Section 5.2 is a three-party secure computation of an Oblivious

RAM functionality, i.e., it can implement RAM for any 3PC protocol in the RAM model.

We define a Universally Composable (UC) Oblivious RAM functionality FORAM for 3-party

computation (3PC) in the framework of Canetti [12], and we argue that our 3PC ORAM

realizes FORAM in the setting of m= 3 parties with honest majority, i.e., only t= 1 party is

(statically) corrupted, assuming honest-but-curious (HbC) adversary, i.e., corrupted party

follows the protocol. We assume secure pairwise links between the three parties. Since we

have static corruptions, HbC adversary, and non-rewinding simulators, security holds even

if communication is asynchronous.

3PC ORAM Functionality. Functionality FORAM is parametrized by address and record

sizes, resp. log(n) and B, and it takes command Init, which initializes an empty array M ∈

arrayB[n], and Access(instr, 〈N, rec′〉) for (instr,N, rec′) ∈ {read,write} × {0, 1}log(n) × {0, 1}B,

which returns a fresh secret-sharing 〈rec〉 of record rec=M[N], and if instr=write it also

assigns M[N] := rec′. Technically, FORAM needs each of the three participating parties to

make the call, where each party provides their part of the sharing, and FORAM’s output

〈rec〉 is also delivered in the form of a corresponding share to each party. However, in the

HbC setting all parties are assumed to follow the instructions provided by an environment

algorithm Z, which models higher-level protocol which utilizes FORAM to implement oblivious

memory access. Hence we can simply assume that Z sends Init and Access(instr, 〈N, rec′〉) to

FORAM and receives 〈M[N]〉 in return.

72

Security of our 3PC-ORAM. Our protocol securely realizes FORAM in the (t,m) = (1, 3)

setting if Circuit-ORAM defines a secure client-server ORAM, which implies security of

3PC-ORAM by the argument for Circuit-ORAM security given in [44]. We note that protocol

3PC-ORAM.Access of Section 5.2 implements only procedure Access. Procedure Init can be

implemented by running 3PC-ORAM.Access with instr=write in a loop for N from 0 to n−1

(and arbitrary rec′’s). And our main security claim, stated as Corollary 5.1 below, assumes

that Init is executed by a trusted-party.

Corollary 5.1. Assuming secure initialization, 3PC-ORAM.Access is a UC-secure realization

of 3PC ORAM functionality FORAM.

Briefly, the proof uses UC framework, arguing that each protocol securely realizes its intended

input/output functionality if each sub-protocol it invokes realizes its idealized input/output

functionality. All sub-protocols executed by protocol 3PC-ORAM.ML of Section 5.2 are

accompanied with brief security arguments which argue precisely this statement. As for

3PC-ORAM.ML, its security proof is centered around two facts argued in Section 5.2, namely

that our way of implementing Circuit-ORAM eviction map, with D holding σ◦ = π · σ · π−1

and t◦ = ρ⊕π(t⊕ δ) and E,C holding π, ρ, δ is (1) correct, because Π−1 ·EMσ◦,t◦ ·Π = EMσ,t

for Π = ρ̃ · π̈ · δ̃, and (2) it leaks no information to either party, because random π, ρ, δ induce

random σ◦, t◦ in D’s view.

5.4 Performance Evaluation

We tested a Java prototype of our 3PC-Circuit-ORAM, with garbled circuits implemented

by ObliVM library of Wang [44], on three AWS EC2 c4.2xlarge servers, with communication

links encrypted using AES-128. Each c4.2xlarge instance is equipped with eight Intel Xeon

E5-2666 v3 CPU’s (2.9 GHz), 15 GB memory, and has 1 Gbps bandwidth. (However, our

tested prototype utilizes multi-threading only in parallel Eviction, see below.)

73

In the discussion below we use the following acronyms:

- cust-3PC: our 3PC-Circuit-ORAM protocol;

- gen-3PC: generic 3PC-Circuit-ORAM using 3PC of Araki et al. [1];

- 2PC: 2PC-Circuit-ORAM [44];

- C/S: the client-server Path-ORAM [42].

Wall Clock Time. Fig. 5.3 shows online timing of cust-3PC for small record sizes (B= 4

bytes) as a function of address size log(n). It includes Retrieval wall clock time (WC),

End-to-End (Retrieval+PostProcess+Eviction) WC, and End-to-End WC with parallelized

Eviction for all trees, which shows 60% reduction in WC due to better CPU utilization. Note

that Retrieval takes about 8 milliseconds for log(n) = 30 (i.e., 230 records), and that Eviction

takes only about 4-5 times longer. Recall that Retrieval phase has 3h rounds while Eviction

has 6, which accounts for much smaller CPU utilization in Retrieval.

CPU Time. We compare total and online CPU time of cust-3PC and 2PC in Fig. 5.4

with respect to memory size n, for B = 4 bytes1. Since 2PC implementation [44] does not

provide online/offline separation, we approximate 2PC online CPU time by its garbled circuit

evaluation time, because 2PC costs due to OT’s can be pushed to pre-computation. As Fig.

5.4 shows, the cust-3PC CPU costs are between 6x and 10x lower than in 2PC, resp. online

and total, already for log(n) = 25, and the gap widens for higher n.

Bandwidth Comparison with Generic 3PC. Timing results depend on many factors

(language, network, CPU, etc.), and bandwidth is a more reliable predictor of performance

for protocols using only light symmetric crypto. In Fig. 5.5 we compare online bandwidth

of cust-3PC, gen-3PC, and C/S, as a function of the address size log(n), for B = 4 bytes. We

1We include CPU comparisons only with 2PC-Circuit-ORAM [44], and not 2PC-Sqrt-ORAM [51] and
2PC-FLORAM [15], because the former uses the same Java ObliVM GC library while the latter two use
the C library Obliv-C. Still, note that for n = 30, the on-line computation due to FSS evaluation and linear
memory scans contributes over 1 sec to wall-clock in [15], while our on-line wall-clock comes to 40 msec.

74

Figure 5.3: Our 3PC-ORAM Online
Wall-Clock Time(ms) vs log(n) for B = 4
bytes

Figure 5.4: CPU Time (ms) vs log(n), for
B = 4 bytes

Figure 5.5: Online bndw.(MB) vs log(n) for
B=4 bytes

Figure 5.6: Comparison with 2PC-
ORAM’s in online+offline bndw.(MB) vs
log(n) for B=4 bytes

see for small records our cust-3PC is only a factor of 2x worse than the optimal-bandwidth

gen-3PC (which, recall, has completely impractical round complexity).

Bandwidth Comparison with 2PC ORAMs. In Fig. 5.6 we compare total bandwidth of

cust-3PC and several 2PC-ORAM schemes, including 2PC-FLORAM scheme of [15], the 2PC

Sqrt-ORAM of [51], and a trivial linear-scan scheme. Our cust-3PC bandwidth is competitive

to FLORAM for all n’s, but for n≥ 24 the O(
√
n) asymptotics of FLORAM takes over. Note

also that FLORAM uses O(n) local computation vs. our O(log3n), so in the FLORAM case

75

bandwidth comparison does not suffice. Indeed, for n = 230 and B = 4 bytes, [15] report

> 1 sec overall processing time on LAN vs. 40 msec for us.

76

Chapter 6

3PC-Sqrt-ORAM

This chapter describes our 3PC-Sqrt-ORAM scheme, which is based on the 2PC-Sqrt-ORAM

of [51] but improves efficiency by simplifying the access procedure and replacing expensive

2PC protocols with 3PC protocols, especially by completely eliminating the use of Yao’s

garbled circuit and replacing O(n log(n)) 2PC permutation network with O(n) 3PC-OT

variant. This a joint work with Stanislaw Jarecki.

We describe our 3PC-Sqrt-ORAM by first recalling the Sqrt-ORAM protocol of Goldreich

and Ostrovksky [22] (see Alg. 6.1), using the notations suitable for our 3PC-Sqrt-ORAM

construction. The goal of an ORAM scheme is for the client to outsource an array M of n

records to the server in such a way that the client can read (and write to) any record M[N]

in M without leaking any information about the accessed address N. The first idea of Sqrt

ORAM is to let the server store fresh = π(M), a random permutation of array M, while the

client stores permutation π, which it can do succinctly if it is a pseudorandom permutation

(PRP) and the client stores its key. In addition, each record in fresh is encrypted under the

client’s key, so the server always sees only the ciphertexts. To retrieve a record at address N,

the client sends N′ = π(N) to the server, who sends back fresh[N′] = (π(M))[π(N)] = M[N].

77

Algorithm 6.1 Original Sqrt-ORAM Scheme from [22]

function Initialize(Data, T)
n← |Data|
π ← pseudorandom function
append

√
n dummy blocks to Data

Shuffle ← ObliviousSort(Data, π)
Oram ← (n, ctr ← 0,T, π, Shuffle, Stash ← ∅)
return Oram

end function

function SqrtOram(Oram, 〈N〉)
// Access
〈found〉 ← LinearScan(Oram.Stash, 〈N〉)
if 〈found〉 then

read/write found block
〈k〉 ← Oram.n + Oram.ctr

else
〈k〉 ← 〈N〉

end if
p← π(〈k〉)
if not 〈found〉 then

read/write Oram.Shuffle[p]
end if
append Oram.Shuffle[p] to Oram.Stash
Oram.Shuffle[p]← dummy block
Oram.ctr ← Oram.ctr + 1 (mod Oram.T)
// (Re)initialization
if Oram.ctr = 0 then

Data ← real blocks in Oram.Shuffle ∪ Oram.Stash
Oram ← Initialize(Data, Oram.T)

end if
end function

Note that π(N) is uncorrelated to N because π is random, except that the server learns if

two accessed addresses N1 and N2 are equal, because N1 = N2 if and only if π(N1) = π(N2).

To avoid this leakage the server stores an additional record list stash, initially empty, and (1)

whenever the server retrieves a record in fresh, it adds this record to stash, and (2) before the

client sends N′ to the server, the server sends the entire list stash to the client, who checks if

fresh[π(N)] is already in stash: If it is then the client picks N′ at random in Zn, and if it not

78

then the client sets N′ = π(N). Either way the server retrieves fresh[N′], sends it to the client,

and adds it to stash. Note that this way the client always finds record M[N] = fresh[π(N)],

but the values N′ the server sees are now random in Zn regardless of the client’s access

pattern, in particular regardless whether some addresses are accesed more than once. To

keep list stash short, after T of accesses the client retrieves the entire fresh, puts the elements

in stash back to their positions in fresh, permutes fresh by π−1 to get array M in the standard

form, picks a new permutation π′, and re-initializes the scheme by sending fresh′ = π′(M) to

the server and using a fresh empty list stash. Note that the amortized bandwidth per access

is T + n/T records for re-initialization period T, which is minimized to O(
√
n) if T =

√
n,

hence the algorithm’s name.

2PC-ORAM based on Sqrt-ORAM. A standard approach to converting Sqrt-ORAM

to 2PC-ORAM, i.e., the two-party secure computation of ORAM functionality, would be

to secret-share fresh, stash between the two parties (which allows us to avoid encrypting the

records) and to implement the Sqrt-ORAM client’s code using two-party secure computation.

However, since this would involve computing a PRP π on (secret-shared) address N and a

key, rather than resorting to rather expensive two-party secure PRP computation, the 2PC

Sqrt-ORAM due to [51] proposed to store permutation π using a recursive data structure,

somewhat similar to the recursive way the Path-ORAM keeps the position map [42]. Let h =

(log(n)/τ)+1 for some constant τ , and let N(0)|...|N(h−2) be the log(n)-bit address N divided

into τ -bit segments (we will denote N(0)|...|N(i) as Ni). The recursive data structure contains

h lists, from fresh0 to freshh−1, where the top-level list freshh−1 is the array fresh = π(M)

described above, with the top-level permutation π denoted πh−1, while freshi, for i<h−1, is

a list containing 2i·τ records, each of which is an array of size 2τ , permuted by a random

permutation πi. These lists maintain an invariant that for every (i−1)τ -bit address prefix

N∗, the record array at position πi(N∗) in freshi, stores 2τ pointers to the locations in freshi+1

which correspond to the 2τ extensions of N∗ by the next chunk of τ bits. For example, if

79

τ = 2 then freshi stores at location πi(N∗) a record containing the following 2τ = 4 pointers

to freshi+1:

(πi+1(N∗|00) , πi+1(N∗|01) , πi+1(N∗|10) , πi+1(N∗|11))

The first list fresh0 is a single record with 2τ pointers to fresh1 corresponding to the τ -bit

address prefixes N(0), e.g., for τ = 2, fresh0 = (π1(00), π1(01), π1(10), π1(11)).

In this way position π(N) in the top-level list freshh−1 = π(M) can be retrieved by the

following walk through fresh0, ...freshh−2: Given the (sharing of) address N = Nh−2, use N(0)

to reconstruct π1(N(0)) from position N(0) in fresh0, and then for i = 1, 2, ... use pointer

πi(Ni−1) to retrieve (the sharing of) record freshi[π
i(Ni−1)] from (the sharing of) freshi, and

use (the sharing of) N(i) to publicly reconstruct πi+1(Ni) contained at position N(i) in this

record. In other words, given the sharing of N and fresh0, ..., freshh−1, the walk through this

sequence of lists reconstructs pointer π1(N0) from fresh0, then uses π1(N0) to retrieve pointer

π2(N1) from fresh1, then uses π2(N1) to retrieve pointer π3(N2) from fresh2, and so forth,

until it uses pointer πh−1(Nh−2) = πh−1(N) to retrieve record M[N] = freshh−1[πh−1(N)] from

the top-level list freshh−1 = πh−1(M).

In the 2PC-Sqrt-ORAM construction of [51], each level list freshi maintains its own stashi,

and if some position on freshi was already visited, then this record will be retrieved from the

stash by linear scan, but a random-looking pointer is publicly generated for a fake access

to maintain obliviousness. And, just like other 2PC-ORAMs, [51] used circuits to facilitate

oblivious operations, like creation of these random-looking entries but letting the search

algorithm pursue the real access path from the stashes until some level and then use the new

entries when position pointers to these levels are fresh and never accessed/revealed before.

In our 3PC-Sqrt-ORAM construction, we make use of the similar data structure used in

2PC-Sqrt-ORAM [51], but make modifications so customized 3PC protocols can be used to

80

achieve the similar access operations without the use of any 2PC generic secure computation

like Yao’s garbled circuit, and thus efficiency can be improved.

6.1 Technical Overview

As shown in Fig. 6.1, similar to [51], our 3PC-Sqrt-ORAM can be constructed by first

arranging the last level of record array and recursive levels of position map with identity

alignment. Then, random permutation will be picked at every level to shuffle the fresh

blocks. During this process, because of the physical locations of the blocks are changed,

the pointers stored in corresponding previous levels will also be updated accordingly to the

shuffling.

Figure 6.1: 3PC-Sqrt-ORAM Access Pattern (graph style based on [51])

81

Our 3PC-Sqrt-ORAM protocol is presented in Alg. 6.2. To perform the ORAM access, at

each level, two blocks A and B from stash and fresh will be accessed. Block B is accessed

using the pointer output from the previous level (on the first level block B will always be

the current first block on fresh0, as fresh0 size shrinks on the first level). As on fresh, this

block B is guaranteed to be a block never accessed before with fresh pointers to the next

level. We append block B to stash, and then perform stash linear scan using the 3PC-OT

variant protocol KSearch from [29] to find the block A that we want to access. The reason

to perform stash linear scan after appending block B is that the KSearch protocol requires

exactly one block to be found with the search key, and this requirement is met only if we

include B on the stash (the most updated version of all the blocks either reside on stash or

fresh, so for each access, either we can find the block on stash meaning it is accessed before,

or we are accessing it right now using the pointer from previous level). So appending block

B to stash guarantees the correctness of access using the 3PC KSearch protocol. Notice that

while B is guaranteed to be a fresh block, A can be either a fresh block (meaning A = B),

or a used block.

Once we identify blocks A and B, we can find the pointer for the next level access. If the

pointer associated with the access address suffix in A is used, meaning we have done such

access before, then we must output the pointer in B, which is fresh, to later perform a fake

access on the next level. Otherwise, A’s pointer can be used for output. This pointer search

step is skipped on the last level of the ORAM, because the record we want to access is stored

in block A, which can be output directly. After the update of the record for the access

operation = write, or the update of the pointer flag bit in block A or B, which ever is used

for pointer output, this updated block will be inserted back onto the stash using the 3PC-OT

variant protocol SSXOT from [44].

When the access counter indicates the stash is full on all levels, a re-initialization is needed for

putting the accessed blocks on stashh−1 on last level back to freshh−1 to be re-shuffled again,

82

Algorithm 6.2 Protocol 3PC-Sqrt-ORAM

Parameters: Pack parameter τ . Shuffle period T. Number of levels h.
Input: Public used. C/E’s secret-sharing of address N ∈ {0, 1}log(n) and new record rec′ ∈
{0, 1}B, D/E’s secret-sharing of stash = [stash0, ..., stashh−1], fresh = [fresh0, ..., freshh−1].
Output: Updated used′. C/E’s secret-sharing of record rec ∈ {0, 1}B at address N. New
D/E’s secret-sharing of stash′, fresh′ with rec replaced by rec′.
Pre-computation: Complete pre-computation of all sub-protocols for all levels.
Online-stage:

// Access
1: Run AccFirst with D/E’s secret-sharing of N(0,1), fresh0 and stash0, which outputs pointer
p1 and secret-sharing of fresh′0, stash

′
0 to D/E.

2: for i := 1 to h− 2 do
3: Run AccMid with index i, pointer pi, and D/E’s secret-sharing of Ni+1, freshi, stashi,

which outputs pointer pi+1, and secret-sharing of stash′i to D/E.
4: end for
5: Run AccLast with ph−1, used, C/E’s secret-sharing of rec′, and D/E’s secret-sharing of

N, freshh−1, stashh−1, which outputs used′, C/E’s secret-sharing of rec and D/E’s secret-
sharing of stash′h−1 with rec′ inserted.

6: Access counter ctr := ctr + 1 (mod T).
7: Output used′, C/E’s secret-sharing of rec, D/E’s secret-sharing of stash′ =

[stash′0, stash
′
1, ..., stash

′
h−1] and fresh′ = [fresh′0, fresh1, ..., freshh−1] (note that only fresh0

is changed).
// (Re)initialization

8: if ctr = 0 then
9: D/E move blocks from stash′h−1 to used′ positions on freshh−1.

10: Run INIT with D/E’s secret-sharing of freshh−1, which outputs new D/E secret-
sharing of fresh′ = [fresh′0, ..., fresh

′
h−1].

11: D/E empty/reset used′ and secret-sharing of stash′.
12: end if

and also re-building the position map. Moving the used block on stashh−1 back to freshh−1 is

only local operation, as the accessed positions are public information stored in used, an array

data structure. Then the re-shuffling is done by first reverting the previous permutation used

for shuffling, and then shuffling the freshh−1 again with new randomly picked permutation.

And all previous levels, which is the position map, is completely re-built as in the first

initialization, using the newly picked last level permutation.

83

6.2 Access Protocols

6.2.1 AccFirst, AccMid, and AccLast

In this section we explain how access protocol is done in 3PC-Sqrt-ORAM in detail. Because

there are differences for access on different ORAM levels, we will explain all these access

protocols, AccFirst - access on the first level, AccMid - access on the middle levels, and AccLast

- access on the last level, in the following.

AccFirst. AccFirst protocol in Alg. 6.3 takes stash0, fresh0, address prefix N0, and address

suffix ∆N0 as input, and outputs the pointer to the next level. At the same time, block of

the output pointer will have that pointer flag set to used, and the first block of fresh will be

moved to stash (not copied as in all other levels), with stash0 size increased by 1 and fresh0

size decreased by 1. Detailed access steps are described as following.

First, we retrieve the first block B of fresh0 which is guaranteed to be a fresh block. We also

append stash0 and fresh0 together into list, which contains all the blocks on the first level.

Then the 3PC protocol KSearch is performed with input N0 and list to identify the index i

of the block with address N0. With this index i, 3PC protocol 3ShiftPIR can be performed

to retrieve the block A with address N0, and 3ShiftXorPIR can be performed on input A, B,

∆N0 to retrieve the pointers a (from A) and b (from b) at pointer position ∆N0 in A and

B. We now can execute 3PC protocol SSOT to obliviously select which pointer of a, b is the

fresh one we want to output for the next level. The decision is made based on the pointer

flag a.fb of a, that if a.fb = 0 (not used), then we should output pointer a.ptr; otherwise, we

should output b.ptr. Once we have decided which pointer to use, we should now update the

pointer flag accordingly. Since B is always a fresh block that b.fb = 0, there are only two

different cases, that a.fb is either 0 or 1. So after the flag update, a.fb becomes 1 if it was

0, or b.fb becomes 1 from 0 if a.fb is already 1. Thus we have such observation: a.fb after

84

Algorithm 6.3 Protocol AccFirst - Access on the First Level

Input: 〈N,∆N, stash, fresh〉 (super/subscript omitted)
Output: (1) pnxt = X.rec[∆N].ptr for block X s.t.

X =

{
list[i] if (list[i].adr = N) ∧ (list[i].rec[∆N].fb = 0)

fresh[0] if no such i exists

(2) 〈stash′〉 := 〈stash|X〉, with block X s.t. X.rec[∆N].fb is set to 1
(3) 〈fresh′〉 := 〈fresh[1 : −1]〉

(if ∃ i > 0 s.t fresh[i].adr = N, then fresh′[i− 1] is set to fresh[0])
Online:

1: 〈B〉 := 〈fresh[0]〉, 〈list〉 := 〈stash|fresh〉 . |list| = |stash|+ |fresh|
2: KSearch: 〈list,N〉 → 〈i〉shift . i s.t. list[i].adr = N

3: 3ShiftPIR: 〈list〉 , 〈i〉shift → 〈A〉 . A = list[i]

4: 3XorPIR: 〈A,B,∆N〉 → 〈a, b〉 . a, b = A.rec[∆N], B.rec[∆N]

5: SSOT: 〈a.fb, a.ptr, b.ptr〉 → pnxt . if a.fb = 0, pnxt = a.ptr; else pnxt = b.ptr

6: SSXOT 〈∆N, A〉 → 〈A′〉 . set A.rec[∆N].fb := 1

7: SSXOT: 〈∆N, B, a.fb〉 → 〈B′〉 . set B.rec[∆N].fb := a.fb

8: SSXOT: 〈i〉shift , 〈list, B′〉 → 〈list′〉 . set list[i] := B′

9: 〈list′[|stash|]〉 := 〈A′〉
10: 〈stash′|fresh′〉 := 〈list′〉 . |stash′| = |stash|+ 1, |fresh′| = |fresh| − 1

the update is always 1 no matter what it was before, and b.fb after the update is equal to

the same value of a.fb before the update. With this observation, using SSXOT protocol from

[18], we can first set a.fb to 1, and also set b.fb to the old a.fb value. And now blocks A and

B are obliviously updated to A′, B′ based on whose pointer is used for output.

The final step of AccFirst is to move the updated block on to stash0. We do this by first

inserting B′ back to list at position i using protocol SSXOT, and then resetting the |stash0|-th

item on list to A′. And then the new list′ is split into the new stash′0 and fresh′0, where stash′0

now has 0-th to |stash0|-th items from list′, and fresh′0 has the rest blocks (so the total blocks

on the first level doesn’t change, but every time we move the first block of fresh0 on to stash0).

The order here for inserting A′ and B′ back to list is critical to the correctness of the access.

The reason is as following: there are three possibilities for the locations of A and B on list,

85

(1) A is before B, meaning A is on stash0; (2) A is at the same location of B, meaning A

= B is a fresh block; (3) A is after B, meaning A is a different fresh block on fresh0. For

case (1), no matter whether A or B is updated on pointer flag, after inserting back, the new

versions of A′ and B′ are still on the new stash′0. For case (2), since A is a fresh block, A’s

pointer flag must be updated while B’s flag is not, and because A and B are at the same

location, inserting B back first and then inserting A ensures that the correct version of the

block, which is A′, can overwrite the old version of the block B′. For case (3), A is also the

block to be updated while B is not, but A’s position i is after B’s position, meaning this

position i is still on the new fresh′0 at the end of this access, and we cannot put an non-fresh

block at this position. Thus, we first insert B′, which is unchanged and fresh, back to the

position i, and then insert A′ to the old position of B. In such a way, the updated block A′

will be on the new stash′0, while the fresh block B′ is still on fresh′0.

AccMid. AccMid protocol in Alg. 6.4 takes stashi, freshi,N
i,∆Ni, and pointer p from previous

level as input, outputs next level pointer, and updates block pointer flag accordingly, similar

to AccFirst. What’s different is that now block B is not the first block of freshi but the p-th

block, and when we do KSearch to search for index i of block A, we are only linear scanning

the stashi appended with block B (after each access the stashi size is increased by 1 and freshi

remains unchanged). In AccMid, the same procedure of AccFirst is followed to retrieve block

A and the next level pointer. However, unlike AccFirst, blocks A and B are both on stash

now, so we don’t need to update blocks A and B and insert whole blocks of them back to

stash. Instead, to make pointer flag update, we may just set the i-th block’s (A’s) pointer

flag to 1, and set the pointer flag of last block on stash (B) to A’s previous pointer flag (same

reason as in AccFirst). Both of these updates can be done with SSXOT as the way in AccFirst.

AccLast. Protocol AccLast in Alg. 6.5 is very similar to AccMid, except for access = write, we

have the extra input new record rec′, and we don’t output pointer any more but the accessed

record rec. We still perform the same procedure for finding index i of block A. Then 3ShiftPIR

86

Algorithm 6.4 Protocol AccMid - Access on Each Middle Level

Input: p, 〈N,∆N, stash, fresh〉 (super/subscript omitted)
Output: (1) pnxt = X.rec[∆N].ptr for block X s.t.

X =

{
stash[i] if (stash[i].adr = N) ∧ (stash[i].rec[∆N].fb = 0)

fresh[p] if no such i exists

(2) 〈stash′〉 := 〈stash|fresh[p]〉,
with block X on stash′ s.t. X.rec[∆N].fb is set to 1

Online:

1: 〈B〉 := 〈fresh[p]〉, 〈list〉 := 〈stash|B〉 . |list| = |stash|+ 1

2: KSearch: 〈list,N〉 → 〈i〉shift . i s.t. list[i].adr = N

3: 3ShiftPIR: 〈list〉 , 〈i〉shift → 〈A〉 . A = list[i]

4: 3XorPIR: 〈A,B,∆N〉 → 〈a, b〉 . a, b = A.rec[∆N], B.rec[∆N]

5: SSOT: 〈a.fb, a.ptr, b.ptr〉 → pnxt . if a.fb = 0, pnxt = a.ptr; else pnxt = b.ptr

6: SSXOT: 〈i〉shift , 〈∆N, list〉 → 〈list′〉 . set list[i].rec[∆N].fb := 1

7: SSXOT: 〈∆N, list′, a.fb〉 → 〈stash′〉 . set list′[−1].rec[∆N].fb := a.fb

Algorithm 6.5 Protocol AccLast - Access on the Last Level

Input: p, used, 〈N, stash, fresh, rec′〉
Output: (1) 〈rec〉 = 〈X.rec〉 for block X s.t.

X =

{
stash[i] if stash[i].adr = N

fresh[p] if no such i exists

(2) 〈stash′〉 := 〈stash|fresh[p]〉
with block X on stash′ s.t. X.rec is set to rec′

(3) used′ := Append(used, p)
Online:

1: 〈B〉 := 〈fresh[p]〉, 〈list〉 := 〈stash|B〉 . |list| = |stash|+ 1

2: KSearch: 〈list,N〉 → 〈i〉shift . i s.t. list[i].adr = N

3: 3ShiftPIR: 〈list〉 , 〈i〉shift → 〈rec〉 . rec = list[i].rec

4: SSXOT: 〈i〉shift , 〈list, rec′〉 → 〈stash′〉 . set list[i].rec := rec′

5: used′ := Append(used, p)

87

can be used to directly output the record rec. And the record update operation can also

be done directly using SSXOT, to overwrite rec with rec′ at position i. Finally the accessed

position is recorded in used. And a 3PC-Sqrt-ORAM record retrieval is completed at this

point.

Sub-protocol SSOT. Most of the 3PC sub-protocols like KSearch, 3ShiftPIR, 3ShiftXorPIR,

SSXOT, are adoption or modification from the 3PC-Circuit-ORAM of [18]. Sub-protocol

SSOT in Alg. 6.6 is a new protocol used in our 3PC-Sqrt-ORAM construction, but it is

essentially another variant of the 3PC-OT protocol.

Algorithm 6.6 Protocol SSOT - Secret-Shared OT

Input: 〈b〉C–E
xor = (bC

0 , b
E
1), 〈m0〉C–E

xor = (uC
0 , v

E
0), 〈m1〉C–E

xor = (uC
1 , v

E
1).

Output: p = mb.
Offline: Let l = |m0|. D picks x0, x1, y0, y1, δ

$←− {0, 1}l, c, e $←− {0, 1}1, computes x =
xe ⊕ δ, y = yc ⊕ δ, and sends x0, x1, y, c to C and y0, y1, x, e to E.
Online:

1: C sends s = b0 ⊕ c to E. E sends t = b1 ⊕ e to C.
2: C sends u′0 = ub0 ⊕ xt, u′1 = ub0 ⊕ xt to E.

E sends v′0 = vb1 ⊕ ys, v′1 = vb1 ⊕ ys to C.
C computes p0 = v′b0 ⊕ y, E computes p1 = u′b1 ⊕ x,

s.t. p0 ⊕ p1 = mb (so we have 〈p〉C–E
xor = (pC

0 , p
E
1) = 〈mb〉C–E

xor).

3: Reshare: 〈p〉C–E
xor → p.

Correctness: When (b0, b1) = (0, 0), meaning b = 0, p = p1 ⊕ p0 = (u′0 ⊕ x)⊕ (v′0 ⊕ y) = (u0 ⊕ xt ⊕ xe ⊕ δ)⊕
(v0 ⊕ ys ⊕ yc ⊕ δ) = (u0 ⊕ xe ⊕ xe)⊕ (v0 ⊕ yc ⊕ yc) = u0 ⊕ v0 = m0 = mb.
The other 3 cases with different (b0, b1) values can be verified in the same way.

6.2.2 Initialization

To randomize the data block locations for oblivious access, at the beginning when initializing

the ORAM, or after each T accesses when re-initializing the ORAM, we need to shuffle the

data blocks on the last level as well as (re-)building the position map as the previous levels.

In this section we describe how the initialization protocol works.

88

By the observation of [51], the logical indexes stored in data blocks and the physical indexes

of these blocks together define the inverse of the permutation used to shuffle the data blocks

from the identity positions. Therefore the permutation for the data block shuffling can

be efficiently stored as secret-sharing among parties. And in our 3PC-Sqrt-ORAM, we

still apply this trick to secret-share the permutation used for shuffling, and in addition, we

design efficient 3PC protocol to convert secret-sharing of permutation between permutation

composition format and standard xor sharing format, which allows us to efficiently shuffle

data blocks with complexity O(n) using 3PC-OT variants instead of the O(n log(n)) shuffling

network in [51].

The Initialization protocol INIT is presented in Alg. 6.7 and works as following. Before any

access, or after T accesses, we may isolate the logical index field of data blocks on last level

freshh−1 into an array L, and L defines either the identity permutation if this is the first time

we plan to shuffle the data blocks, or the permutation used to shuffle the data blocks for

the past T accesses. In order to update this L and re-shuffle the data blocks, party D will

pick new random permutation πD, and parties C/E will pick random permutation πE. Then

through the 3PC protocol OblivPermute of Alg. 6.9, secret-sharing of the new logic index array

L′ = πD ·πE(L) can be generated (and its inverse (L′)−1 is equivalent to the permutation for

shuffling blocks if started with the identity positions). The above logic index array shuffling

can be done offline, as once initialized, logic index array of blocks do not change during the

ORAM accesses. However, as records may be updated during the access, the (re-)shuffling

of block data part has to be done online. This is also done by using the 3PC protocol

OblivPermute with the permutations πD and πE.

When the permutation concatenation sharing πD, πE for (re-)shuffling data blocks on the

last level is determined, the previous levels position map can be re-built. If this is the first

time we build the position map, then obliviously permutation π = πD ·πE is the permutation

we should use for building the position map. However, if we are re-building the position

89

Algorithm 6.7 Protocol INIT - Initialize ORAM

Parameter: Number of levels h. Number of data records n = 2log(n) = |freshh−1|.
Input: D/E’s secret-sharing of freshh−1.
Output: New D/E’s secret-sharing of fresh = [fresh0, ..., freshh−1].

Pre-computation:
1: D picks πD

$←− permn. E picks πE
$←− permn and sends it to C.

2: D/E extract secret-sharing of l field of every block in freshh−1 into L ∈ permn.
3: D sends sα[L] to C. Run OblivPermute with input D’s πD, C and E’s πE, C and D’s sα[L],

and E’s sβ[L], which outputs D/E’s secret-sharing of L′ = πD · πE(L).
4: if first time initializing then
5: D sets πh−1

D := πD. C and E sets πh−1
E := πE.

6: else
7: Run GenPermConcat with D/E’s secret-sharing of L′, which outputs πh−1

D to D and
πh−1

E to E where πh−1
D · πh−1

E = (L′)−1. E sends πh−1
E to C.

8: end if
9: Run InitPosMap with D’s πh−1

D and C and E’s πh−1
E , which outputs D/E’s secret-sharing

of fresh0, ..., freshh−2.
Online-stage:

1: D/E extract secret-sharing of rec field of every block in freshh−1 into Y ∈ arrayB[n].
2: D sends sα[Y] to C. Run OblivPermute with input D’s πD, C and E’s πE, C and D’s sα[Y],

and E’s sβ[Y], which outputs D/E’s secret-sharing of Y ′ = πD · πE(Y).
3: D/E rewrite secret-sharing of freshh−1 with L′ and Y ′, and output fresh =

[fresh0, ..., freshh−1].

map, then the current permutation defined by the logic index array is (L′)−1, and we should

use concatenation sharing of (L′)−1 to re-build the position map. With the 3PC protocol

GenPermConcat of Alg. 6.10, given the xor sharing of L′, we can compute πh−1
D , πh−1

E such that

πh−1
D · πh−1

E = (L′)−1. And this allows us to re-build the position map with concatenation

sharing πh−1
D , πh−1

E of (L′)−1.

Initialize Position Map. Each level of the position map is built and shuffled similarly to

the initialization of the last data block level. Given the concatenation sharing of permutation

used to shuffle the next level, xor sharing of such permutation can be generated with 3PC

protocol GenPermShare of Alg. 6.11, and pointers to the next level, which are stored in xor

sharing format, can be arranged accordingly. Then permutation concatenation sharing

for the current level will be randomly picked to shuffle blocks on the current level using

90

Algorithm 6.8 Protocol InitPosMap - Initialize Position Map

Input: D’s πh−1
D and C and E’s πh−1

E where πh−1
D , πh−1

E ∈ perm|freshh−1|.
Output: D/E’s secret-sharing of fresh0, ..., freshh−2.
Pre-computation: D picks random π0

D, ..., π
h−2
D and E picks random π0

E, ..., π
h−2
E where

πiD, π
i
E ∈ perm|freshi|. E sends π0

E, ..., π
h−2
E to C.

1: for i := h− 2 to 0 do
2: Run GenPermShare with D’s πi+1

D and C and E’s πi+1
E , which outputs D/E’s secret-

sharing of [πi+1] where πi+1 = πi+1
D · πi+1

E .
3: for j := 0 to n− 1 do
4: D/E set secret-sharing of freshi[j].l := j.
5: for k := 0 to 2τ − 1 do
6: D/E set secret-sharing of freshi[j].{F [k], P [k]} := {0, [πi+1][j · 2τ + k]}.
7: end for
8: end for
9: D sends sα[freshi] to C. Run OblivPermute with D’s πiD, C and E’s πiE, C and D’s

sα[freshi], and E’s sβ[freshi], which outputs new D/E’s secret-sharing of freshi = πiD ·
πiE(freshi).

10: end for
11: D/E output secret-sharing of fresh0, ..., freshh−2.

OblivPermute, and this permutation concatenation sharing will also be passed on to build

the previous level position map. The implementations of OblivPermute, GenPermConcat, and

GenPermShare will be included in the following for completeness.

Oblivious Permutation. Given input permutations πD, πE and secret-sharing of an array

x, protocol OblivPermute outputs secret-sharing of array y where y = πD ·πE(x). OblivPermute

is a secure (1,3)-MPC against semi-honest adversaries because: (1) E’s view is its output.

(2) D’s view sα[y] can be simulated as sα[y]′ $←− arrayt[v] because it is an output of a secure

(1,3)-MPC SSXOT. (3) Same reason as above for a semi-honest C.

Generate Permutation Concatenation Shares Using Xor Shares. Given secret

sharing sα[π], sβ[π] of a permutation π, GenPermConcat outputs two permutations πD and

πE s.t the permutation concatenation πD · πE = π−1. GenPermConcat is a secure (1,3)-MPC

against semi-honest adversaries because: (1) E’s view includes σ1, r1, z1, z2. σ1, r1 can be

simulated as σ′1
$←− permv, r

′
1

$←− arraylog(v)[v]. z1 = γ1(a1) ⊕ t1 = γ1(a1) ⊕ γ1(r1) ⊕ s can be

91

Algorithm 6.9 Protocol OblivPermute - Obliviously Permute
Parameter: Positive integers v, t.
Input: D’s πD ∈ permv, C and E’s πE ∈ permv. C and D’s sα[x] and E’s sβ[x], where
sα[x], sβ[x] are secret-sharing of array x ∈ arrayt[v].
Output: D/E’s secret-sharing of y where y = πD · πE(x).
Pre-Computation: C/E pick r $←− arrayt[v].
Online-stage:

1: Run SSXOT with D’s π−1
D , and C/E’s secret-sharing of πE(x), which outputs secret-

sharing sα[y], sβ[y] of y ∈ arrayt[v] to C/E, where each y[i] = πE(x)[π−1
D [i]], which means

y[πD[i]] = πE(x)[i], so y = πD(πE(x)) = πD · πE(x).
2: C sends sα[y] = sα[y]⊕ r to D. D outputs sα[y]. E outputs sβ[y] = sβ[y]⊕ r.

Algorithm 6.10 Protocol GenPermConcat - Generate Permutation Concatenation

Input: 〈π〉D–E
xor = (πD

a , π
E
b), for π ∈ permv and some positive integer v.

Output: πD
1 , π

E
2 ∈ permv s.t. πD · πE = π−1.

Offline: D picks π1, σ1, σ2
$←− permv and s, r1, r2

$←− arraylog(v)[v], and computes γ1 = π−1
1 ·

σ−1
1 , γ2 = π−1

1 · σ−1
2 , t1 = γ1(r1)⊕ s, t2 = γ2(r2)⊕ s. D sends γ1, t1 to C and σ1, r1 to E.

Online:

1: E sends a1 = σ1(πb)⊕ r1 to C.
2: C sends z1 = γ1(a1)⊕ t1 to E.

D computes a2 = σ2(πa)⊕ r2, z2 = γ2(a2)⊕ t2 and sends z2 to E.
D outputs π1. E outputs π2 = (z1 ⊕ z2)−1.

Correctness : z1 ⊕ z2 = γ1(a1)⊕ t1 ⊕ γ2(a2)⊕ t2
= γ1(a1)⊕ γ1(r1)⊕ γ2(a2)⊕ γ2(r2)

= γ1(a1 ⊕ r1)⊕ γ2(a2 ⊕ r2)

= γ1(σ1(πb))⊕ γ2(σ2(πa))

= γ1 · σ1(πb)⊕ γ2 · σ2(πa)

= π−1
1 (πb)⊕ π−1

1 (πa)

= π−1
1 (πb ⊕ πa)

= π−1
1 ([π])

= [π · π1]

π1 · π2 = π1 · (z1 ⊕ z2)−1 = π1 · (π · π1)−1 = π1 · π−1
1 · π−1 = π−1

92

simulated as z′1
$←− arraylog(v)[v] because s is unknown to E. Then given E’s output πE, z2

can be simulated as z′2 = [π−1
E]⊕ z1. (2) D receives nothing. (3) C’s view includes γ1, t1, a1.

γ1 can be simulated as γ′1
$←− permv because πD is unknown to C. t1 can be simulated as

t′1
$←− arraylog(v)[v] because s is unknown to C. And a1 can be simulated as a′1

$←− arraylog(v)[v]

because r1 is unknown to C.

Generate Permutation Xor Shares from Concatenation Shares. Given permutations

πD and πE, GenPermShare outputs secret-sharing sα[π], sβ[π] of permutation π s.t. π is the

permutation concatenation πD ·πE. GenPermShare is a secure (1,3)-MPC against semi-honest

adversaries because: (1) E’s view includes r and z. z can be simulated as z′ $←− arraylog(v)[v]

because p is unknown to E. Then given E’s input πE and output sβ[π], r can be simulated

as r′ = πE(sβ[π])⊕ z′. (2) D’s view sα[π] is its output. (3) C receives nothing.

Algorithm 6.11 Protocol GenPermShare - Generate Permutation Secret-Sharing

Input: πD
1 , π

CE
2 ∈ permv, for some positive integer v.

Output: 〈π〉D–E
xor , where π = π1 · π2.

Offline: Pick pCD, rCE $←− arraylog(v)[v].
Online:

1: C sends a = π−1
2 (p⊕ r) to D. D sends z = [π1]⊕ p to E.

E computes b = π−1
2 (z ⊕ r). 〈π〉D–E

xor = (aD, bE).

Correctness : a⊕ b = π−1
2 (p⊕ r)⊕ π−1

2 (z ⊕ r) = π−1
2 (p⊕ z) = π−1

2 ([π1]) = [π1 · π2]

6.3 Analysis

Asymptotic Complexity. At each level of the access, the main cost comes from linearly

scanning and updating the stash with size T using 3PC-OT variant protocols from [29],

therefore the asymptotic cost would be O(TB) for the last level and O(T log(n)) for each

of the rest levels. For every T accesses, the ORAM is re-initialized with 3PC oblivious

shuffling, which has complexity O(nB) for the last level and O(n log(n)) for each of the

93

rest levels. Amortizing the re-initialization cost over each access, and taking the O(log(n))

recursive levels into the account, we get the the total 3PC-Sqrt-ORAM access complexity is

O(
√
n · (log2(n) + B)) for T = O(

√
n). As access on each level takes constant rounds, the

total round complexity is O(log(n)).

Security. Our Sqrt-ORAM algorithm meets the ORAM requirement that no information

is revealed about the memory access pattern. At each level of the access, a new and fresh

block is visited and added to the stash regardless of the sequence and address of the access,

and the stash is always linearly scanned, which guarantees to find a block and a new fresh

pointer for the next level. The entire ORAM structure is reshuffled every fixed number of

accesses, which is independent of the access pattern. The only public information are the

visited block positions and the current stash size counter, which also contains no information

about the access locations and pattern. Therefore, as the 3PC protocols used in this scheme

are secure (1,3)-MPC protocols and leaks no information about the oblivious variables of

the ORAM scheme, our 3PC-Sqrt-ORAM is a secure 3PC-ORAM, by the argument of [44].

6.4 Implementation and Concrete Performance

We tested a Java prototype of our 3PC-Sqrt-ORAM, on three AWS EC2 c4.2xlarge servers,

with communication links encrypted using AES-128. Each c4.2xlarge instance is equipped

with eight Intel Xeon E5-2666 v3 CPU’s (2.9 GHz), 15 GB memory, and has 1 Gbps

bandwidth. As online complexity is more important in the real world, we paid more attention

towards the optimization of the online phrase of our algorithm, and compared with the

state-of-art 3PC-Circuit-ORAM scheme on both wall clock time and bandwidth.

Online Wall Clock Time. As shown in Fig. 6.2, our 3PC-Sqrt-ORAM is very efficient for

small log(n), and takes only 5ms for each access for small log(n) = 6. For the range of log(n)

94

from 5 to 22, our 3PC-Sqrt-ORAM requires less runtime than 3PC-Circuit-ORAM, and can

be about 4x times better for some log(n) in that range. Due to the asymptotic complexity

that O(
√
n) cost of 3PC-Sqrt-ORAM is worse than O(log(n)) of 3PC-Circuit-ORAM, as

log(n) grows, eventually the runtime of 3PC-Sqrt-ORAM is worse than the runtime of 3PC

Circuit-ORAM, but for a wide range of small log(n), 3PC-Sqrt-ORAM is extremely efficient

in practice.

Figure 6.2: Runtime comparison between 3PC-Sqrt-ORAM and 3PC-Circuit-ORAM

Figure 6.3: Online Bandwidth comparison between 3PC-Sqrt-ORAM and 3PC-Circuit-
ORAM

95

Figure 6.4: Total Bandwidth comparison between 2PC-Sqrt-ORAM and 3PC-Sqrt-ORAM

Online Bandwidth. The online bandwidth comparison graph with the 3PC-Circuit-ORAM

has very similar looking to the wall clock time comparison graph. To view it with larger

bandwidth range, in Fig. 6.3 we compare the bandwidth v.s. log(n) on a log scale. The break

even point is still around log(n) = 22, that for log(n) > 22, due to the asymptotic complexity,

the bandwidth of 3PC-Sqrt-ORAM is worse than the bandwidth of 3PC-Circuit-ORAM.

However, for small log(n) < 22, the bandwidth of 3PC-Sqrt-ORAM outperforms bandwidth

of 3PC-Circuit-ORAM, and can be around 40x times better for log(n) = 7 due to much

better constants in the concrete cost.

Total Bandwidth. The total bandwidth comparison with 2PC-Sqrt-ORAM [51] is shown

in Fig. 6.4. As expected, because of the use of cheap 3PC protocols, and the careful design

which eliminates the needs of using expensive generic 2PC computation Yao’s garbled circuit,

our 3PC-Sqrt-ORAM does not have the extra security parameter factor in the cost formula,

and thus our bandwidth can outperform the bandwidth of 2PC-Sqrt-ORAM as log(n) grows,

and is 70x better at log(n) = 21, which is getting closer and closer to the garbled circuit

security parameter 80 used in 2PC-Sqrt-ORAM. Due to different implementation of 2PC

Sqrt-ORAM, which uses C implementation different from our Java implementation, there is

96

no direct comparison on access runtime between the two schemes. However, we speculate

the runtime graph would be very similar to the bandwidth graph if implementation is done

in the same setting.

97

Chapter 7

3PC-DPF-ORAM

This chapter describes our 3PC-DPF-ORAM scheme, which is based on the 2PC-FLORAM

of [15] but improves efficiency by eliminating the expensive PRF evaluation, removing the

use of Yao’s garbled circuit, and replacing the primitive 2PC stash linear scan with more

efficient 3PC recursive ORAM access. This a joint work with Stanislaw Jarecki, Jonathan

Katz, Mariana Raykova, and Xiao Wang.

7.1 Definitions

We make new definitions or recall from previous chapters to make notations most suitable

for the 3PC-DPF-ORAM scheme of this chapter.

7.1.1 Random Access Machines (RAMs)

A RAM program is defined by its next-instruction function Π, which takes as input the

current state st as well as the last data item d retrieved from memory. The function

98

computes an updated state st′ together with a new memory access instruction (op, i, v). The

computation of the RAM program with external memory M proceeds by repeated execution

of the Π function, followed by memory access, until an end state is reached as shown below.

while(st 6= stop) {

(st′, (op, i, v))← Π(st, d)

d← RetrievalM(op, i, v)

st← st′ }

7.1.2 Oblivious RAM (ORAM)

We use the standard definitions of correctness and security for (two-server) ORAM, adapted

from [45]; they are included here for convenience and to establish notation.

Let M be an n-element array containing B-bit entries. For fixed n,B, a memory access is

a tuple (op, i, v) where op ∈ {read,write}, i ∈ {1, . . . , n}, and v ∈ {0, 1}B. The result of

applying (read, i, v) to M is M[i], and the array M is unchanged. The result of applying

(write, i, v) is ⊥, and M is updated to a new array M′ that is identical to M except that

M′[i] = v. Given an initial array M and a sequence of memory accesses (op1, i1, v1), . . . ,

(opm, im, vm), we define correctness for the sequence of results o1, . . . , om in the natural way;

namely, the sequence of results is correct iff, for all t, if opt = read then the result ot is equal

to the last value written to it (or M[it] if there were no previous writes to it).

A two-server ORAM scheme is defined by algorithms ORAM.INIT, ORAM.C, ORAM.S1, and

ORAM.S2 with the following syntax:

• ORAM.INIT takes as input 1κ and elements M[1], . . . ,M[n] ∈ {0, 1}B. It outputs state

st and data M̃1, M̃2 to be stored at the servers.

99

• ORAM.C is an interactive algorithm that takes as input st and a memory access

(op, i, v), and outputs updated state st′ and a value o.

• ORAM.S1 and ORAM.S2 are interactive algorithms that take as input data M̃ and

outputs updated data M̃′.

We define correctness and security via an experiment Expt. Given an array M (which

defines the parameters n and B) and a sequence of memory accesses seq = ((op1, i1, v1), . . . ,

(opm, im, vm)), experiment Expt(1κ,M, seq) first runs (st0, M̃1,0, M̃2,0) ← ORAM.INIT(1κ,M).

Then, for t = 1 to m:

• Run ORAM.C(stt−1, (opt, it, vt)), ORAM.S1(M̃1,t−1), and ORAM.S2(M̃2,t−1), allowing them

to interact until they all terminate. Let (stt, ot) denote the output of ORAM.C, and let

M̃1,t (resp., M̃2,t) denote the output of ORAM.S1 (resp., ORAM.S2).

We let view1 (resp., view2) denote the entire view of ORAM.S1 (resp., ORAM.S2) throughout

the above experiment. We define the output of the experiment to be (view1, view2, o1, . . . , om).

Correctness requires that for any κ,M, and any sequence of m memory accesses seq =

((op1, i1, v1), . . . , (opm, im, vm)), if we compute

(view1, view2, o1, . . . , om)← Expt(1κ,M, seq)

then the sequence of results o1, . . . , om is correct (relative to M and seq).

An ORAM scheme is secure if for any ppt adversary A the following is negligible in κ:

∣∣∣∣∣∣∣Pr

 (M0, seq0,M1, seq1)← A(1κ); b← {0, 1};

(view1, view2, o1, . . . , om)← Expt(1κ,Mb, seqb)
: A(view1) = b

− 1

2

∣∣∣∣∣∣∣
100

(and analogously for view2), where M0,M1 have identical parameters n,B, and where seq0, seq1

have the same length. As usual, this notion of security assumes the servers are semi-honest.

7.1.3 Oblivious Reading/Writing

We define schemes that support (only) oblivious reads or (only) oblivious writes. Definitions

can be obtained by appropriately specializing the ORAM definition given above, but because

the schemes we construct for oblivious read/write use only one round of interaction, we can

simplify the definitions somewhat. We refer to a scheme supporting oblivious reads as a

private information retrieval (PIR) scheme, and a scheme supporting oblivious writes as a

private information writing (PIW) scheme (since we do not require sub-linear computation

for the memory accesses).

Oblivious Reads. A two-server, one-round PIR scheme is defined by algorithms PIR.INIT,

PIR.C, PIR.C′, and PIR.S with the following syntax:

• PIR.INIT takes as input 1κ and elements M[1], . . . ,M[n] ∈ {0, 1}B. It outputs state st

and data Mr to be stored at each server.

• PIR.C takes as input st and an index i. It outputs a pair of queries q1, q2.

• PIR.S takes as input data Mr and a query q. It outputs a response r.

• PIR.C′ takes as input state st, i, and responses r1, r2. It outputs a value o.

Correctness requires that for any κ, any M, any values st,Mr output by PIR.INIT(1κ,M),

any i, any s̃t, q1, q2 output by PIR.C(st, i), and any r1 output by PIR.S(Mr, q1) and r2 output

by PIR.S(Mr, q2), it holds that

PIR.C′(st, i, r1, r2) = M[i].

101

A scheme is secure if for any ppt adversary A the following is negligible in κ:

∣∣∣∣∣∣∣∣∣∣
Pr

(M0, i0,M1, i1)← A(1κ); b← {0, 1};

(st,Mr)← PIR.INIT(1κ,Mb);

(s̃t, q1, q2)← PIR.C(st, ib)

: A(Mr, q1) = b

− 1

2

∣∣∣∣∣∣∣∣∣∣
(and analogously for Mr, q2), where M0,M1 have identical parameters n,B. This definition

ensures privacy of the data as well as obliviousness of the indexes being accessed.

Oblivious Writes. Similarly, a two-server, one-round PIW scheme consists of algorithms

PIW.INIT,PIW.C, and PIW.S with the following syntax:

• PIW.INIT takes as input 1κ and elements M[1], . . . ,M[n] ∈ {0, 1}B. It outputs data

Mw
1 ,M

w
2 to be stored at the servers.

• PIW.C takes as input (i, vold, v) with i ∈ {1, . . . , n} and vold, v ∈ {0, 1}B (intuitively,

vold is the current value stored at address i, and v is the new value to be written to

that address). It outputs a pair of queries q1, q2.

• PIW.S takes as input data Mw and a query q. It outputs new data M̃w.

We also require an algorithm PIW.Read that is not part of the scheme, but is used to define

correctness. This algorithm takes as input Mw
1 ,M

w
2 and an index i, and outputs a value

o ∈ {0, 1}B.

We define correctness and security via an experiment Expt-W. Given an array M and seq =

((i1, v1), . . . , (im, vm)), experiment Expt-W(1κ,M, seq) first runs (Mw
1,0,M

w
2,0)← PIW.INIT(1κ,

M) and then, for t = 1 to m, does:

• Let vold,t be the logical value currently stored at address it, i.e., it is equal to the last

value written to it, or M[it] if it 6∈ {i1, . . . , it−1}.

102

• Compute (q1,t, q2,t)← PIW.C(st, (it, vold,t, vt)).

• Compute Mw
1,t ← PIW.S(Mw

1,t−1, q1,t) and Mw
2,t ← PIW.S(Mw

2,t−1, q2,t).

We let view1 (resp., view2) denote Mw
1,0, q1,1, . . . , q1,t (resp., Mw

2,0, q2,1, . . . , q2,t), and define the

output of the experiment to be (view1, view2,M
w
1,m,M

w
2,m).

Correctness requires that for any κ,M, any sequence seq = ((i1, v1), . . . , (im, vm)), and any i,

if we compute

(view1, view2,M
w
1,m,M

w
2,m)← Expt-W(1κ,M, seq),

then PIW.Read(Mw
1,m,M

w
2,m, i) is equal to the last value written to address i (or M[i] if i 6∈

{i1, . . . , im}).

A scheme is secure if for any ppt adversary A the following is negligible in κ:

∣∣∣∣∣∣∣Pr

 (M0, seq0,M1, seq1)← A(1κ); b← {0, 1};

(view1, view2,M
w
1,m,M

w
2,m)← Expt-W(1κ,Mb, seqb)

: A(view1) = b

− 1

2

∣∣∣∣∣∣∣
(and analogously for view2), where M0,M1 have identical parameters n,B and seq0, seq1 have

the same length. This definition ensures privacy of the data and the updates, in addition to

obliviousness of the indexes being updated.

7.1.4 Distributed Point Functions

We recall the notion of a distributed point function (DPF) as introduced by [10]. Fix some

parameters n and `. For i ∈ {1, . . . , n} and v ∈ {0, 1}`, we define the point function

103

PFi,v : {1, . . . , n} → {0, 1}` as follows:

PFi,v(x) =

 v if x = i

0` otherwise.

A distributed point function can be viewed as providing a secret sharing of a point function.

Definition 7.1. A distributed point function consists of algorithms KG,Eval with following

functionality:

• KG takes as input parameters 1κ and n, along with i ∈ {1, . . . , n} and v ∈ {0, 1}`, and

outputs a pair of keys k1, k2.

• Eval is a deterministic algorithm that takes as input a key k and an index i ∈ {1, . . . , n},

and outputs a string ṽ ∈ {0, 1}`.

Correctness requires that for any κ, n, `, any (i, v) ∈ {1, . . . , n} × {0, 1}`, any k1, k2 output

by KG(1κ, n, i, v), and any x ∈ {1, . . . , n}:

Eval(k1, x)⊕ Eval(k2, x) = PFi,v(x).

Security requires that neither k1 nor k2 leak information about i or v. Formally, for any ppt

adversary A the following is negligible in κ (for k1 below, and analogously for k2):

∣∣∣∣∣∣∣Pr

 (i0, v0, i1, v1)← A(1κ); b← {0, 1};

(k1, k2)← KG(1κ, n, ib, vb)
: A(k1) = b

− 1

2

∣∣∣∣∣∣∣
Securely Computing a DPF. In several of our protocols we will use the algorithms of the

distributed point function in the context of secure computation. While our constructions

104

assume general distributed point function schemes, for our efficiency estimates we will use

the DPF scheme of Boyle, Ishai and Gilboa [10] as well as the optimizations in the context of

two party computation introduced by Doerner and Shelat [15]. This DPF construction uses

an extension of the GGM pseudorandom function, which in addition to the PRF key which

is the initial seed for the first PRG, provides also a set of masking values for each of the

log(n) evaluation levels. These key parts used for masking provide the capability to modify

the PRF value at one specific input and fix it to be a desired output. The computation of the

masking values depends on the PRG evaluations related to nodes on the evaluation path to

the specific input point. Thus, a generic two party computation for the DPF key generation

will require secure evaluation of the PRGs. However, the CPRG optimization of [15] shows a

two party computation protocol that requires secure computation only for an xor operation

per level while moving all PRG evaluations as local computation to each party. As a result

this protocol requires only O(κ log(n)) communication. Since this construction increases the

local computation that each party does, the authors further observe that this computation

can be reused during the evaluation of the DPF.

7.1.5 Labeled Private-Key Encryption

In our construction we use a labeled private-key encryption scheme and require it to satisfy

a weaker notion of security than usual. For completeness, we include the definitions here.

Definition 7.2. Fix some B. A labeled private-key encryption scheme consists of two

algorithms (Enc,Dec) with the following syntax:

• Enc takes as input a key K, a label i, and a message m ∈ {0, 1}B. It outputs a

ciphertext c. We denote this by c← EncK(i,m).

• Dec takes as input a key K, a label i, and a ciphertext c. It outputs a message m. We

denote this by m := DecK(i, c).

105

For all K, i,m, if c is output by EncK(i,m) then DecK(i, c) = m.

For our application, we require security only as long as the same label is never used to

encrypt more than one message. Let EncbK(i,m0,m1)
def
= EncK(i,mb).

Definition 7.3. A labeled private-key encryption scheme is secure if for all ppt adversaries

A the following is negligible in κ:

∣∣∣∣Pr[K ← {0, 1}κ; b← {0, 1} : AEncbK(·,·,·)(1κ) = b]− 1

2

∣∣∣∣ ,
where A may never re-use a label in a query to EncbK.

Note that a scheme satisfying the above definition may be deterministic. In particular, we

may take the simple scheme based on a pseudorandom function F in which EncK(i,m) =

FK(i)⊕m.

7.2 Two- and Three-Server DPF-ORAM

In this section we describe a construction of a two-server ORAM scheme that we call

DPF-ORAM. Our construction is based on specific constructions of PIR and PIW schemes

that are, in turn, based on a distributed point function. Although those schemes have already

appeared in prior work, we include them here because we rely on specific features of those

schemes.

7.2.1 PIR/PIW Schemes

In what follows, let (KG,Eval) be a distributed point function.

Oblivious Reads. In the PIR scheme we use, both servers store identical copies of an

encrypted version Mr of the array M. When the client wants to retrieve the ith element of

106

the array, it computes (k1, k2) ← KG(1κ, n, i, 1) and sends k1 and k2 as queries to the first

and the second server, respectively. The servers compute their responses as

r1 :=
n⊕
j=1

Eval(k1, j) ·Mr[j] and r2 :=
n⊕
j=1

Eval(k2, j) ·Mr[j].

Upon receiving the responses r1, r2, the client computes Mr[i] := r1 ⊕ r2, which it can then

decrypt to recover M[i].

If we let (Enc,Dec) denote a labeled private-key encryption scheme, then we can formally

describe the PIR scheme as follows:

• PIR.INIT(1κ,M) chooses uniform K, and then sets Mr[i] := EncK(i,M[i]) for all i. It

outputs Mr
1 := Mr

2 := Mr and st := (K,n).

• PIR.C((K,n), i) computes (k1, k2)← KG(1κ, n, i, 1) and outputs k1 and k2 as the queries

for the two servers.

• PIR.S(Mr, k) computes r :=
⊕n

j=1 Eval(k, j) ·Mr[j].

• PIR.C′((K,n), i, r1, r2) outputs DecK(i, r1 ⊕ r2).

Correctness and security follow immediately from the properties of the distributed point

function and the encryption scheme.

We remark that the above scheme has the useful property that it can support appends.

Specifically, say the client holds state (k, n) and the servers each hold an encrypted array

Mr = (Mr[1], ...,Mr[n]) corresponding to the plaintext array M. Then the client can append

a value v to M (i.e., set M[n + 1] := v) by sending c := EncK(n + 1, v) to both servers who

then set Mr[n+ 1] := c.

107

Oblivious Writes. In the PIW scheme we use, the servers store secret shares of the client’s

array M. That is, the servers hold arrays Mw
1 ,M

w
2 , respectively, such that for all i we have

Mw
1 [i]⊕Mw

2 [i] = M[i]. To write a new value v to address i, where vold is the value currently

stored at that address, the client begins by computing (k1, k2) ← KG(1κ, n, i, v ⊕ vold) and

sending k1 and k2 as its queries to the first and second servers, respectively. The two servers

then update their arrays by computing

M̃w
1 [j] := Mw

1 [j]⊕ Eval(k1, j) and M̃w
2 [j] := Mw

2 [j]⊕ Eval(k2, j)

for all j. Note that for j 6= i we have

M̃w
1 [j]⊕ M̃w

2 [j] = Mw
1 [j]⊕ Eval(k1, j)⊕Mw

2 [j]⊕ Eval(k2, j)

= Mw
1 [j]⊕Mw

2 [j]

whereas

M̃w
1 [i]⊕ M̃w

2 [i] = Mw
1 [i]⊕ Eval(k1, i)⊕Mw

1 [i]⊕ Eval(k2, i)

= vold ⊕ (v ⊕ vold) = v,

so correctness holds. Security follows immediately from the security of the distributed point

function.

The formal definition of the PIW scheme (including PIW.Read) is as follows:

• PIW.INIT(1κ,M) does: For i = 1, . . . , n, choose uniform Mw
1 [i] ∈ {0, 1}B and set

Mw
2 [i] := Mw

1 [i]⊕M[i]. Output Mw
1 ,M

w
2 .

108

• PIW.C(i, vold, v) computes (k1, k2)← KG(1κ, n, i, v⊕ vold) and outputs k1 and k2 as the

queries for the two servers.

• PIW.S(Mw, k) sets M̃w[j] := Mw[j]⊕ Eval(k, j) for all j.

• PIW.Read(Mw
1 ,M

w
2 , i) outputs Mw

1 [i]⊕Mw
2 [i].

7.2.2 Two-Server DPF-ORAM

We now describe our construction of a two-server ORAM scheme based on the PIR and

PIW schemes just introduced. We first describe a base scheme that introduces all the main

ideas, but in which the storage of the client is n log(n) bits. We can then use logarithmically

many levels of recursion (in the usual way) to obtain a scheme in which the client’s storage

is constant.

At a high level, in the base scheme the servers maintain three arrays: a main array supporting

oblivious reads, a stash supporting oblivious reads and appends, and an auxiliary array

supporting oblivious writes. At any point in time, there is an entry in the auxiliary array

that corresponds to the current value M[i] for each address i of the client’s array M. In

addition, there are entries for M[i] in the main array and possibly the stash such that

• If there is an entry for M[i] in the stash, then the rightmost (i.e., newest) entry is the

current value of M[i].

• If there is no entry for M[i] in the stash, then the entry for M[i] in the main array is

the current value of M[i].

Roughly, a read of address i is done by reading the entry for M[i] from the main array and,

if present, the stash. (In addition, dummy operations are performed on the auxiliary array

and the stash to obscure the fact that a read is being done.) A write of a value v to address i

109

is done by first reading the value vold currently stored in M[i], and then writing the new value

v to the auxiliary array as well as appending it to the stash. When appending a value to the

stash, the client also maintains local state keeping track of that fact (this will be described

in further detail below).

As described, the stash and the client’s local state can grow without bound. To prevent

this, we have the two servers perform a conversion step after every n accesses. In this step,

the servers delete the stash and the main array, and then create a new main array that

corresponds to a copy of the plaintext data currently stored in the auxiliary array. This is

easy to do with the PIR and PIW schemes defined in the previous section. Recall that for

the PIW scheme, the servers store Mw
1 ,M

w
2 with Mw

1 [i] ⊕Mw
2 [i] = M[i] for all i, whereas for

the PIR scheme the servers both store Mr with Mr[i] = EncK(i,M[i]) for an encryption key

K held by the client. If we implement encryption as

Enc(K1,K2)(i, x) = x⊕ FK1(i)⊕ FK2(i) (7.1)

where F is a pseudorandom function, then conversion can be done as follows:

• Servers 1 and 2 choose K1, K2, respectively, and send them to the client.

• For all i, server 1 sends U1[i] := Mw
1 [i]⊕ FK1(i) to server 2.

• For all i, server 2 sends U2[i] := Mw
2 [i]⊕ FK2(i) to server 1.

• For all i, each server locally computes Mr[i] := U1[i]⊕ U2[i].

This conversion step requires O(n ·B) bits of communication, but since it is run only every

n steps the amortized cost it introduces is only O(B) bits.

110

Let PIR,PIW refer to the schemes described in the previous section, where PIR instantiates

encryption Enc with the two-key scheme described above. Then the base ORAM scheme is

defined by the following algorithms:

Initialization. ORAM.INIT(1κ,M) initializes a PIR array Mr for the main memory, a PIR

array Sr for the stash, and PIW arrays Mw
1 ,M

w
2 for the main memory, as follows:

1. ((K,n),Mr)← PIR.INIT(1κ,M), where K = (K1, K1).

2. ((K ′, 1), Sr)← PIR.INIT(1κ, 0B), where K ′ = (K ′1, K
′
2).

3. (Mw
1 ,M

w
2)← PIW.INIT(1κ,M).

The client also initializes an array P with P [1] = · · · = P [n] := 0log(n), and sets n′ := 1. It

outputs state st := (K,n,K ′, n′, P), and data (Mr, Sr,Mw
1) for server 1, and (Mr, Sr,Mw

2) for

server 2.

By way of intuition, P is a position map where P [i] contains the location in the stash of

the current value of M[i] if address i has been accessed before. (If address i has not been

accessed before, then P [i] = 0log(n).) Counter n′ will keep track of the length of the stash.

Access. Let the state of the client be (K,n,K ′, n′, P) and the data stored at the servers

be (Mr, Sr,Mw
1) and (Mr, Sr,Mw

2), respectively. When the client wants to perform memory

access (op, i, v), the parties interact as follows:

1. The client computes PIR queries to retrieve Mr[i] and Sr[p] for p = P [i]:

(a) Compute (q1, q2)← PIR.C((K,n), i).

(b) Compute (q′1, q
′
2)← PIR.C((K ′, n′), P [i]).

(c) Send q1, q
′
1 to server 1, and q2, q

′
2 to server 2.

111

2. Servers respond to both PIR queries:

(a) Server 1 sends r1 := PIR.S(Mr, q1) and r′1 := PIR.S(Sr, q′1) to the client.

(b) Server 2 sends r2 := PIR.S(Mr, q2) and r′2 := PIR.S(Sr, q′2) to the client.

3. The client reconstructs M[i] and updates P , Sr, and Mr, as follows:

(a) Compute o := PIR.C′((K,n), i, r1, r2).

(o is the original value of M[i] held in read-only memory.)

(b) Compute o′ := PIR.C′((K ′, n′), P [i], r′1, r
′
2).

(If P [i] 6= 0log(n) then o′ is the most recent copy of M[i] held in stash S.)

(c) If P [i] = 0log(n) then set vold := o, else set vold := o′.

(d) Output vold. If op = read then set v := vold.

(e) Compute c := EncK′(n
′, v) and set P [i] := n′. Increment n′.

(f) Compute (q1, q2)← PIW.C(i, vold, v).

(g) Send q1, c to server 1 and q2, c to server 2.

4. The servers append c to Sr and update their Mw shares:

(a) Server 1 computes the updated array Mw
1 := PIW.S(Mw

1 , q1).

(b) Server 2 computes the updated array Mw
2 := PIW.S(Mw

2 , q2).

Periodic refresh. After every n memory accesses, the servers carry out a conversion step

as described previously. In detail, let the state of the client be (K,n,K ′, n′, P) and the data

stored at the servers be (Mr, Sr,Mw
1) and (Mr, Sr,Mw

2), respectively. Then:

• Server 1 chooses uniform K∗1 ∈ {0, 1}κ and sends it to the client.

• Server 2 chooses uniform K∗2 ∈ {0, 1}κ and sends it to the client.

112

• For all i, server 1 sends U1[i] := Mw
1 [i]⊕ FK∗1 (i) to server 2.

• For all i, server 2 sends U2[i] := Mw
2 [i]⊕ FK∗2 (i) to server 1.

• For all i, each server locally computes Mr[i] := U1[i]⊕ U2[i].

• Servers set Sr := 0B. The client sets K := (K∗1 , K
∗
2), chooses fresh key K ′ = (K ′1, K

′
2),

re-initializes the array P to 0, and sets n′ := 1.

Parameters. Each keys in the DPF of [15] have length B+κ log(n). Thus, an oblivious read

using the PIR construction from the previous section requires a total of 4B+2κ log(n) bits of

communication (with B+ κ log(n) bits sent to each server, and B bits sent from each server

back to the client), and an oblivious write using the PIW construction requires 2B bits of

communication for client to send 4v := v⊕vold to servers. Consider a sequence of n memory

accesses, that for each access, our ORAM scheme performs one oblivious read on an array of

length n, one oblivious read on an array of length n′ ≤ n, one oblivious write to an array of

length n, and an append. In addition, the refresh step uses 2κ+2nB bits of communication.

The total, amortized communication complexity is thus 12B + 4κ log(n) + 2κ/n bits.

The storage per server is 3nB bits, and the client storage is dominated by the array P that

requires n log(n) bits.

A recursive ORAM scheme. As in prior work [41, 42, 44], we can reduce the client’s

storage by recursively using our base ORAM scheme to store P , viewing P as an array of

n/2τ elements each of length 2τ log(n). Doing so reduces the client storage by a factor of τ ,

and thus recursing O(log(n)) times with any constant τ results in O(1) client storage. Since

the recursion is independent of B (because the client’s storage in the base scheme is n log(n)

bits, regardless of B), the resulting scheme has total (amortized) communication complexity

O(B) +O(κ log2 n).

113

7.2.3 Three-Server DPF-ORAM

Our two-server ORAM construction above makes a black-box use of the PIR and PIW

primitives, so if these functionalities are implemented in a multi-server setting the same

protocol becomes a multi-server ORAM. Note that the DPF-based implementation of PIR

uses encryption because, unlike PIW, it requires that both servers store identical databases

and thus we need to use encryption to provide privacy. This encryption layer creates

a significant overhead if this two-server ORAM is converted to 2PC-ORAM, i.e., a two

party secure computation of the ORAM functionality. However, both PIR and PIW can be

implemented without the encryption overhead in the three-server setting, which leads to

reduced cost in the 3PC-ORAM protocol based on the same ORAM construction, described

in Section 7.3.

If v1, v2, v3 are 3-out-of-3 shares of a value v (i.e., v = v1⊕v2⊕v3), then we let v2,3 = (v2, v3),

v1,3 = (v1, v3), and v1,2 = (v1, v2). Note that v2,3, v1,3, and v1,2 are 2-out-of-3 shares of v:

that is, v remains secret given any one of those shares, but can be reconstructed given any

two of them.

The idea for a three-server PIR is to share the database in a 2-out-of-3 way, i.e., share M

three-way and then give each of the three shares to a different pair of servers. This way each

server pair holds one identical share, allowing them to service a DPF-based two-server PIR on

that share. Xor-ing the values retrieved by these three two-server PIR instances reconstructs

the retrieved record M[i]. This 3-server implementation of PIR increases the DPF overhead

because the client runs three DPF key generation instances, one for each share of M, and

each server executes two DPF-based reads, one for each share of M which it holds. However,

DPF key generation can be precomputed off-line, and increasing local computation from

DPF evaluation by a factor of 2 is a good trade-off for removing garbled circuit over AES,

except for very large n.

114

Below we show the resulting three-server PIR without using key K as input:

• PIR.INIT(1κ,M) : For i = 1, . . . , n, choose two uniform shares M1[i],M2[i] ∈ {0, 1}B

and set M3[i] := M1[i]⊕M2[i]⊕M[i].

Output (Mr
1,M

r
2,M

r
3) s.t. Mr

1 = M2,3 = (M2,M3), Mr
2 = M1,3 = (M1,M3), Mr

3 = M1,2 =

(M1,M2).

• PIR.C(n, i) : For j= 1, 2, 3, do (kj,(j−1 mod 3), kj,(j+1 mod 3)) ← KG(1κ, n, i, 1). Output

q1 = (k2,1, k3,1), q2 = (k1,2, k3,2) and q3 = (k1,3, k2,3) as the queries for the three servers.

• PIR.S(Mr, q) : Parse q = (ka, kb) and Mr = (Ma,Mb), and return ra ⊕ rb for ra :=⊕n
j=1 Eval(ka, j) ·Ma[j] and rb :=

⊕n
j=1 Eval(kb, j) ·Mb[j].

• PIR.C′(n, i, (r1, r2, r3)) : Output r1 ⊕ r2 ⊕ r3.

For completeness we include also three-server PIW. Procedures INIT and Read generalize

the two-server PIW in a straightforward way, using three-way xor-sharing instead, while

procedures C and S are actually identical because in the three-server PIW only two servers

need to update their shares.

• PIW.INIT(1κ,M) : For i = 1, . . . , n, choose uniform Mw
1 [i],Mw

2 [i] ∈ {0, 1}B and set

Mw
3 [i] := Mw

1 [i]⊕Mw
2 [i]⊕M[i]. Output (Mw

1 ,M
w
2 ,M

w
3).

• PIW.C(i, vold, v) computes (k1, k2)← KG(1κ, n, i, v⊕ vold) and outputs k1 and k2 as the

queries for any chosen two servers, e.g., server 1 and server 2.

• PIW.S(Mw, k) modifies Mw by setting Mw[j] := Mw[j]⊕ Eval(k, j) for all j.

• PIW.Read(Mw
1 ,M

w
2 ,M

w
3 , i) outputs Mw

1 [i]⊕Mw
2 [i]⊕Mw

3 [i].

115

7.3 3PC-DPF-ORAM

Our client-server ORAM of Section 7.2 can be converted to a Three Party Secure Computation

ORAM (3PC-ORAM), using a generic conversion. Namely, we implement the client’s code

with a three-party computation between parties P1,P2,P3 while secret-sharing all client-held

variables between them. We note that by the three-party secure computation (3PC) setting

we mean the case of three parties with only one fault, i.e., the honest majority setting.

In the 3PC setting it is convenient to think of the three-server version of our client-server

ORAM, discussed in Section 7.2.3, because in addition to secret-sharing the client each of

the three parties in the 3PC-ORAM protocol will play a role of one of the servers of the three

server ORAM. The point of starting from the three-server ORAM is that the PIR and PIW

building blocks can be implemented in the three-server setting using only secret-sharing,

without the layer of encryption (see Section 7.2.3). This allows 3PC-ORAM to use secret

sharing reconstruction in the MPC(Enc) and MPC(Dec) steps which in the 2PC setting were

implemented with GC(AES) sub-protocols, i.e., garbled-circuit over AES. Asymptotically,

this reduces the O(B · κ) off-line and O(κ(κ+B)) on-line bandwidth terms to O(B).

The second significant cost component of 2PC-ORAM are the 2PC(KG) sub-protocols used

in PIR.C and PIW.C, which we implemented re-using the secure computation protocol for

DPF key-generation of [15]. Below we show that in the 3PC setting PIR.C and PIW.C can

be implemented using plain DPF key-generation, i.e., without the secure computation layer,

which reduces the O(κ2 log(n)) term in off-line bandwidth to O(κ log(n)).

After these modifications the remaining significant costs are in protocol steps 1c and 3d,

where p(i) is identified as δ-th record in block P [i′] retrieved from the lower-level ORAM,

and a new value n′ is written to the same position in P [i′]. Using garbled circuits these

steps take O(κ ∗ |P [i′]|) = O(κ2τ log(n)) bandwidth. Alternatively, we could reduce this

to O(2τ log(n)) by implementing these secret-shared reads and writes with (1,m)-OT’s, for

116

m = 2τ . However, in our context it is easiest to implement these operations by re-using the

same DPF-based techniques we use for PIR and PIW, which takes O(κτ log(n)) offline and

O(2τ log(n)) online bandwidth.

Optimizations. We describe the last two of these cost-saving ideas in more detail below (the

first cost-saving component follows immediately from the three-server ORAM description in

Section 7.2.3).

Generating PIR/PIW Queries without Garbled Circuits. Consider the 2-out-of-3 sharing of

the PIR database Mr and the lookup index i, introduced in Section 7.2.3: The database is

shared as Mr = Mr
1 ⊕Mr

2 ⊕Mr
3 and the index as i = i1 ⊕ i2 ⊕ i3. If we use xi,j as a short-cut

for pair (xi, xj) then in the 2-out-of-3 sharing the shares the three parties of Mr and i are

respectively Mr
2,3,M

r
1,3,M

r
1,2 and i2,3, i1,3, i1,2.

We first show how P1 and P2 obtain a two-party xor-sharing of Mr
3[i]. Note that if P1 and

P3 set i1,2 := i3 and P3 sets i3 := i1 ⊕ i2 then (i1,2, i3) forms an xor-sharing of i = i1,2 ⊕ i3.

Next, if P3 runs (k1, k2)← KG(1κ, i3, 1) and sends k1 to P1 and k2 to P2, then P1 and P2 can

compute their shares of Mr
3[i] as follows:

Mr
3[i]1 = ⊕nj=1F (k1, j⊕i1,2) ·Mr

3[j] ; Mr
3[i]2 = ⊕nj=1F (k2, j⊕i1,2) ·Mr

3[j]

Note that PFi3,1(j ⊕ i1,2) = PFi3⊕i1,2,1(j) = 1 iff j = i3 ⊕ i1,2 = i, which implies that

Mr
3[i]1 ⊕Mr

3[i]2 = Mr
3[i]. We run three copies of this protocol in parallel, to form sharing of

Mr
3[i] held by P1,P2, sharing of Mr

2[i] held by P1,P3, and sharing of Mr
1[i] held by P2,P3. If

the parties xor their shares of these sharings, the result is a three-party xor-sharing of Mr[i].

The same idea works for generating the PIW queries. Recall that in 3-server PIW of Section

7.2.3 the PIW database Mw is secret-shared using a standard xor-sharing, Mr = Mw
1⊕Mw

2⊕Mw
3 ,

where each Pt holds Mw
t . Assume that PIW.C inputs (i, vold, v) are secret-shared s.t. i is shared

117

in the 2-out-of-3 sharing and ∆ = vold ⊕ v is secret-shared with standard three-party xor

sharing, i.e., each Pt holds ∆t where ∆ = ∆1 ⊕ ∆2 ⊕ ∆3. The following protocol update

shares Mw
1 ,M

w
2 held by P1,P2 s.t. Mw[i] is xor’ed by ∆3: Let (i1,2, i3) be as above, and let P3

run (k1, k2) ← KG(1κ, i3,∆3) and sends k1 to P1 and k2 to P2. Let P1 and P2 then update

Mw
1 [j] and Mw

1 [j] for all j as follows:

Mw
1 [j] := Mw

1 [j]⊕ F (k1, j⊕i1,2) ; Mw
2 [j] := Mw

2 [j]⊕ F (k2, j⊕i1,2)

Since PFi3,∆3
(j⊕i1,2) = PFi3⊕i1,2,∆3

(j) = PFi,∆3(j), it follows that this transformation updates

each Mw[j] by xor-ing it with PFi,∆3(j), i.e., with ∆3 if and only if j = i. If three instances

of this protocol are run in parallel they update the sharing of Mw by xor-ing its entry at the

i-th position by ∆1 ⊕∆2 ⊕∆3 = ∆.

Implementing Array Read/Write without Garbled Circuits. As mentioned above, there are

several ways we can implement reading p(i) from the block of m = 2τ pointers in P [i′], and

writing a new value of p(i) back into the same position in P [i′]. Note that the general form

of the functionality we are dealing here is a read and write operation to a secret-shared data,

i.e., the read takes a secret-shared array 〈M〉 of n records and a secret-shared index 〈i〉, and

outputs a sharing 〈M[i]〉 of M[i]. The write operation takes additional input a sharing 〈v〉 of

a new value to be written into M[i]. In the case of writing p(i) and and from P [i′] we have

M = P [i′], m = 2τ , i = δ, M[i] = (P [i′])[δ] = p(i), and v = n′. However, note that the above

PIR and PIW constructions already implement exactly these secret-shared read and write

functionalities, except that they assume different forms of secret-sharing of M: PIR assumes

a 2-out-of-3 secret-sharing, while PIW assumes a standard 3-party xor-sharing. Transferring

a 2-out-of-3 sharing to an xor-sharing is non-interactive, but the opposite direction takes

O(|M|) bandwidth. However, here |M| = |P [i′]| = 2τ log(n), so regardless of the sharing used

for P , a sequence of PIR read and PIW write on P [i′] will implement the read and write we

118

need, using O(logm log(n)) = O(τ log(n)) bandwidth offline for DPF key generation and

O(2τ log(n)) bandwidth online for re-sharing.

Efficiency. We summarize the communication costs for the different steps in the 3PC

ORAM protocol, differentiating between online and offline communication, where offline is

all which can be precomputed without the inputs.

• Three-party computation of DPF key generation for PIR and PIW on Mr, Sr, and

Mw. As described above, in 3PC we do it with three standard DPF key generation

procedures. The resulting bandwidth is O(κ log(n)) offline and O(log(n) +B) online.

• Retrieving p(i) from block P [i′] and writing back a new value for p(i), done using same

PIR and PIW techniques as explained above. The resulting bandwidth is O(τ log(n))

offline and O(2τ log(n)) online.

• A mux selecting Mr[i] or Sr[p(i)] takes O(B + log(n)) online.

• Deamortized cost in refresh performed after n accesses is O(B) offline.

Assuming τ = O(1), adding up the above costs, we obtain the following communication cost

for a single level:

online: O(B + log(n)) offline: O(κ log(n)).

When we add the recursive cost over log(n) levels have:

online: O(B + log2 n) offline: O(κ log2 n).

119

7.4 Implementation and Performance

We tested a C++ prototype of our 3PC-DPF-ORAM, on three AWS EC2 r4.4xlarge servers.

Each r4.4xlarge instance is equipped with eight Intel Xeon E5-2686 v4 CPU’s (2.3 GHz) and

122 GB memory.

Figure 7.1: 3PC-ORAM Total and Online Bandwidth Comparison

3PC Total and Online Bandwidth. We show our 3PC-DPF-ORAM total and online

bandwidth in Fig. 7.1, and compare with bandwidth of 3PC-Circuit-ORAM by [29]. Because

in our 3PC construction, secure computation by garbled circuit is not necessary, that the

PRF encryption on read only memory blocks are not needed, and the DPF key generation

can be done as local computation instead of secure computation, our 3PC-DPF-ORAM has

complexity O(κlog2n+B) and O(log2n+B) for total and online bandwidth, and is extremely

efficient comparing to bandwidth of other 2PC/3PC schemes. For example, for log(n) = 30

and B = 4 bytes, our 3PC-DPF-ORAM total and online bandwidth are 30KB and 1.6KB.

Comparing with other 3PC-ORAM schemes, that for the same log(n) and B parameters,

3PC-Circuit-ORAM of [29] has total and online bandwidth 4.4MB and 1.1MB (shown in

Fig. 7.1), which are 150x and 713x times larger than our bandwidth; 3PC ORAM of [18]

120

has online bandwidth 2.5MB for bucket size=32 (they require large bucket size to reduce

overflow probability) which is 1500x times larger than our online bandwidth; for generic

3PC construction using [1], FLORAM has online bandwidth at least 2.5MB due to their

O(n1/2) stash linear scan and periodic refresh (which is also 1500x more comparing to ours),

and Circuit-ORAM’s online bandwidth will be at least 750KB based on the circuit size

reported in [15], which is 468x times larger than our online bandwidth (Sqrt-ORAM’s online

bandwidth will be even more because of circuit size larger than Circuit ORAM).

Figure 7.2: Access runtime comparison, with block size=4 bytes

Access Wall Clock Time. We compare access total runtime (single-threaded) with recent

2PC-FLORAM [15] and 3PC-Circuit-ORAM [18] in Fig. 7.2, because both of these schemes

have most efficient access runtime for a wide range of log(n) for 2PC and 3PC settings.

For memory size n = 210, our 3PC-DPF-ORAM wall clock (WC) time is 9.5x better than

2PC-FLORAM and 32x better than 3PC-Circuit-ORAM; for n = 220, our 3PC-DPF-ORAM

WC is 4.7x better than 2PC-FLORAM and 20x better than 3PC-Circuit-ORAM. Due to

O(n) linear local computation complexity, for n = 230, our 3PC-DPF-ORAM’s WC is not

as good as 3PC-Circuit-ORAM’s (the break-even point between the 3PC-DPF-ORAM and

121

3PC-Circuit-ORAM is around n = 226, as in Fig. 7.2), however, our WC is still 2.4x better

than 2PC-FLORAM.

122

Chapter 8

Results and Conclusion

This chapter presents the overall results of this 3PC-ORAM study, discusses the contributions

and improvements of the 3PC-ORAM schemes, and concludes this 3PC-ORAM study.

8.1 Contributions and Improvements of 3PC-ORAM

In Table 8.1 we list the bandwidth complexity for all our 3PC-ORAM schemes, together with

the 2PC-ORAM bandwidth complexity from Table 2.1 in Chapter 2. Since most efficient

constructions of all the listed schemes have round complexity O(log(n)), we omit it in the

table to avoid duplication. And note that the computation complexity of each scheme is the

same as the bandwidth complexity, except for 2PC-FLORAM and 3PC-DPF-ORAM which

have O(n) complexity due to local computation.

123

MPC-ORAM schemes Bandwidth

2PC-Circuit-ORAM [44] O(κ log3(n) +κB log(n))

2PC-Sqrt-ORAM [51] O(κB
√
n log3(n))

2PC-FLORAM [15] O(κB
√
n)

3PC-ORAM [18] O(κλ log3(n) +λB log(n))

3PC-Circuit-ORAM [29] O(κ log3(n) +B log(n))

3PC-Sqrt-ORAM O(log2(n)
√
n+B

√
n)

3PC-DPF-ORAM O(κ log2(n) +B)

Table 8.1: Bandwidth per memory access for 2PC- and 3PC-ORAM schemes as a function
of security parameter κ, statistical parameter λ, memory array length n, and record size B.

The contributions and the performance improvements we made on 3PC-ORAM can be

summarized as following:

1. 3PC-ORAM [18]. We see our contributions as three-fold: First, we provide an

immediate improvement to any application of MPC-ORAM which can be done in

the setting of three parties with an honest-majority. Secondly, the techniques we

explore can be utilized in a different context, e.g., for a different “secure-computation

friendly” eviction strategy for a binary-tree ORAM. Finally, the proposed protocol

leaves several avenues for further improvements in 3PC-ORAM both on the level of

system implementation and algorithm design. Indeed, both the idea and the actual

design of the customized 3PC protocols used in [18] are adopted in all three following

3PC-ORAMs of our work. And asymptotically, as in Table 8.1, the complexity of 3PC

ORAM [18] eliminates the security parameter κ factor on record size B comparing to

generic 2PC implementation of the similar underlying binary-tree ORAM (i.e., 2PC

Path-ORAM), and thus gives more efficient bandwidth for large B.

2. 3PC-Circuit-ORAM [29]. 3PC-Circuit-ORAM is our practically efficient MPC

ORAM with best asymptotic complexity considering both bandwidth and computation.

There is often an efficiency gap between known MPC-ORAM and client-server ORAM

due to client algorithm complexity. Current asymptotically best 2PC-ORAM is implied

124

by an “MPC-friendly” variant of Path-ORAM [42] called Circuit-ORAM, due to Wang

et al. [44]. However, using garbled circuit for Circuit-ORAM’s client implies MPC

ORAM which matches Path-ORAM in rounds but increases bandwidth by Ω(κ) factor.

With 3PC-Circuit-ORAM, we bridge the gap between MPC-ORAM and client-server

ORAM by showing a specialized 3PC-ORAM protocol, which uses only symmetric

ciphers and asymptotically matches client-server Path-ORAM in round complexity

and for large records also in bandwidth. And comparing to our previous 3PC-ORAM

of [18], we completely removes the statistical parameter λ factor from the complexity

formula (as in Table 8.1), and thus achieves a lot better concrete performance. Our

3PC-Circuit-ORAM also allows for fast pipelined processing: with postponed clean-up

it processes b=O(log(n)) accesses in O(b+ log(n)) rounds with O(B+ poly(log(n)))

bandwidth per item.

3. 3PC-Sqrt-ORAM. Inspired and based on the work of 2PC-Sqrt-ORAM of [51] that

asymptotically worse MPC-ORAM schemes can still have better concrete performance

due to smaller constants, we designed 3PC-Sqrt-ORAM which improves further more

on bandwidth than 2PC-Sqrt-ORAM for small n. In 3PC-Sqrt-ORAM, we simplified

the round-trip of each 2PC-Sqrt-ORAM access into a single level traversal, replaced

O(n log(n)) shuffling network with O(n) 3PC-OT variants, and eliminated the needs of

using generic 2PC Yao’s garbled circuit. As shown in Table 8.1, our 3PC-Sqrt-ORAM

is the only non-generic MPC-ORAM with O(log(n)) rounds and without security

parameter κ in the bandwidth cost. Though it is indeed asymptotically worse than our

previous two 3PC-ORAM schemes, 3PC-Sqrt-ORAM has the smallest bandwidth for

small n in practice: comparing to 3PC-Circuit-ORAM, 3PC-Sqrt-ORAM’s bandwidth

can be smaller up to n = 222.

4. 3PC-DPF-ORAM. In this work we first show a new, “MPC-friendly,” 2-server

ORAM scheme. It has communication complexity O(B + log2(n)), while the servers

125

perform only symmetric-key operations. It is therefore, to the best of our knowledge,

the first 2-server ORAM which uses only symmetric key cryptography and achieves

O(B) bandwidth for B = Ω(polylogn), with B = (log2(n)). Importantly for our

application to MPC-ORAM, our 2-server ORAM protocol is relatively simple, and has a

lightweight client algorithm which is amenable to secure computation. We are therefore

able to use it to construct 3PC-DPF-ORAM protocol that significantly improves on

prior work. The bandwidth cost of our 3PC-DPF-ORAM beats all our prior 3PC

ORAM work asymptotically (see Table 8.1) and concretely (see Figure 8.1). And also

because 3PC-DPF-ORAM has the best asymptotic cost on record size B, it is the best

3PC-ORAM for both large n and B in practice.

Figure 8.1: Access bandwidth comparison of 3PC-ORAM schemes

Figure 8.1 presents the access concrete bandwidth comparison graphs including all four of

our 3PC-ORAM schemes, for B = 4 bytes. As reflected by the asymptotic cost, the concrete

bandwidth of 3PC-DPF-ORAM is extremely efficient, despite the fact that it requires O(n)

local computation. And for large B, the bandwidth advantage of 3PC-DPF-ORAM will

be even larger comparing to the other 3PC-ORAM schemes. 3PC-Sqrt-ORAM and 3PC

Circuit-ORAM still have their merits that when efficient computation is required, 3PC

126

Sqrt-ORAM has most efficient bandwidth for n up to 222, and 3PC-Circuit-ORAM has

more efficient bandwidth afterwards. And in practice that for n > 225, 3PC-DPF-ORAM

has significant runtime slowdown due to the local computation bottle-neck and is actually

slower than the 3PC-Circuit-ORAM. So for application that requires fast processing and

response time for large n, 3PC-Circuit-ORAM is probably the best option. Comparing with

the best bandwidth efficiency of state-of-art 2PC-ORAM schemes shown in Figure 2.2, for

the testing range of n = 26 to 230, our best 3PC-ORAM bandwidth can be 39x to 181x

times better, with similar similar number of communication rounds (due to implementation

differences, the 2PC and 3PC runtime is not compared directly, but we speculate the runtime

performance improvements will have the same trend as the bandwidth performance).

8.2 Conclusion

The 3PC-ORAM work accomplished in this study proves that with a slightly weaker security

which requires the majority of the parties being honest, the 3PC-ORAM can be a lot more

efficient on performance than the best 2PC-ORAM schemes. And our efficient and practical

3PC-ORAM implementations enables secure computation of any RAM program on large data

for real world applications that rely on the RAM model. In this study we have presented

multiple constructions and approaches for designing ORAMs for MPC, and demonstrated

how we can utilize the 3PC setting to overcome the bottle-necks like large circuit size and

inefficient crypto operations of previous ORAM designs. We believe our contributions can

give insights towards efficiently implementing standard algorithms as MPC protocols.

For future work, first, we are considering semi-honest adversary model for all the 3PC-ORAM

work conducted in this study, and it will be good to have efficient MPC-ORAM which

is secure against malicious adversary as well. Second, many 3PC protocols presented in

this work are customized protocols just for their own setting, which may require careful

127

adjustments when adopting to other constructions or schemes, so it will be good to also

have efficient and generic MPC protocols. Third, notice that our 3PC-DPF-ORAM scheme

with the best bandwidth has a trade-off of doing more expensive local computation, and it

will be ideal to design some new MPC-ORAM scheme to achieve efficient bandwidth and

computation at the same time, for both large memory and record sizes.

128

Bibliography

[1] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-
honest secure three-party computation with an honest majority. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, pages 805–817, 2016.

[2] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, pages 535–548,
New York, NY, USA, 2013. ACM.

[3] D. Beaver. Precomputing oblivious transfer. In D. Coppersmith, editor, Advances in
Cryptology — CRYPT0’ 95, pages 97–109, Berlin, Heidelberg, 1995. Springer Berlin
Heidelberg.

[4] D. Beaver. Correlated pseudorandomness and the complexity of private computations.
In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 479–488, New York, NY, USA, 1996. ACM.

[5] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In
Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing,
STOC ’90, pages 503–513, New York, NY, USA, 1990. ACM.

[6] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers computation in private
information retrieval: Pir with preprocessing. J. Cryptol., Mar. 2004.

[7] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In Proceed-
ings of the 2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 784–796, New York, NY, USA, 2012. ACM.

[8] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang. Practicing oblivious
access on cloud storage: The gap, the fallacy, and the new way forward. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, pages 837–849, New York, NY, USA, 2015. ACM.

[9] E.-O. Blass, T. Mayberry, and G. Noubir. Multi-client oblivious ram secure against mali-
cious servers. In D. Gollmann, A. Miyaji, and H. Kikuchi, editors, Applied Cryptography
and Network Security, pages 686–707, Cham, 2017. Springer International Publishing.

129

[10] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part II, pages 337–367, 2015.

[11] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and exten-
sions. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016, pages 1292–1303, 2016.

[12] R. Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In Proceedings of the 42Nd IEEE Symposium on Foundations of Computer Science,
FOCS ’01, Washington, DC, USA, 2001. IEEE Computer Society.

[13] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. J.
ACM, 45(6):965–981, Nov. 1998.

[14] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs. Onion ORAM:
A Constant Bandwidth Blowup Oblivious RAM, pages 145–174. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2016.

[15] J. Doerner and A. Shelat. Scaling ORAM for secure computation. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 523–535, 2017.

[16] Z. Dvir and S. Gopi. 2 serverr pir with subpolynomial communication. J. ACM,
63(4):39:1–39:15, Sept. 2016.

[17] S. Eskandarian and M. Zaharia. An oblivious general-purpose SQL database for the
cloud. CoRR, abs/1710.00458, 2017.

[18] S. Faber, S. Jarecki, S. Kentros, and B. Wei. Three-Party ORAM for Secure Computa-
tion, pages 360–385. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[19] C. W. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov. Bucket oram: Single
online roundtrip, constant bandwidth oblivious ram. IACR Cryptology ePrint Archive,
2015:1065, 2015.

[20] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and D. Wichs. Op-
timizing oram and using it efficiently for secure computation. In Privacy Enhancing
Technologies, PETS’13, pages 1–18, 2013.

[21] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private
information retrieval schemes. In STOC, 1998.

[22] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams.
J. ACM, 43(3):431–473, May 1996.

130

[23] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via
oblivious ram simulation. In L. Aceto, M. Henzinger, and J. Sgall, editors, Automata,
Languages and Programming, pages 576–587, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[24] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving
group data access via stateless oblivious ram simulation. In Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 157–
167, Philadelphia, PA, USA, 2012. Society for Industrial and Applied Mathematics.

[25] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and Y. Vahlis.
Secure two-party computation in sublinear (amortized) time. In Computer and Com-
munications Security (CCS), CCS ’12, pages 513–524, 2012.

[26] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way per-
mutations. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of
Computing, STOC ’89, pages 44–61, New York, NY, USA, 1989. ACM.

[27] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently.
In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 145–161, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

[28] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private large-scale databases with
distributed searchable symmetric encryption. In Proceedings of the RSA Conference on
Topics in Cryptology - CT-RSA 2016 - Volume 9610, pages 90–107, New York, NY,
USA, 2016. Springer-Verlag New York, Inc.

[29] S. Jarecki and B. Wei. 3pc oram with low latency, low bandwidth, and fast batch
retrieval. In B. Preneel and F. Vercauteren, editors, Applied Cryptography and Network
Security, pages 360–378, Cham, 2018. Springer International Publishing.

[30] M. Keller and P. Scholl. Efficient, oblivious data structures for mpc. In P. Sarkar and
T. Iwata, editors, ASIACRYPT, volume 8874 of Lecture Notes in Computer Science,
pages 506–525. Springer Berlin Heidelberg, 2014.

[31] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and applica-
tions. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir,
and I. Walukiewicz, editors, Automata, Languages and Programming, pages 486–498,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[32] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based oblivious ram
and a new balancing scheme. In Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, pages 143–156, Philadelphia, PA, USA,
2012. Society for Industrial and Applied Mathematics.

[33] M. Maffei, G. Malavolta, M. Reinert, and D. Schrder. Privacy and access control for
outsourced personal records. In 2015 IEEE Symposium on Security and Privacy, pages
341–358, May 2015.

131

[34] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder. Maliciously secure multi-client
oram. In D. Gollmann, A. Miyaji, and H. Kikuchi, editors, Applied Cryptography and
Network Security, pages 645–664, Cham, 2017. Springer International Publishing.

[35] J. C. Mitchell and J. Zimmerman. Data-Oblivious Data Structures. In E. W. Mayr and
N. Portier, editors, 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014), volume 25 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 554–565, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[36] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design.
In Proceedings of the 1st ACM Conference on Electronic Commerce, EC ’99, pages 129–
139, New York, NY, USA, 1999. ACM.

[37] R. Ostrovsky and V. Shoup. Private information storage (extended abstract). In Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,
El Paso, Texas, USA, May 4-6, 1997, pages 294–303, 1997.

[38] B. Pinkas and T. Reinman. Oblivious ram revisited. In Proceedings of the 30th Annual
Conference on Advances in Cryptology, CRYPTO’10, pages 502–519, Berlin, Heidelberg,
2010. Springer-Verlag.

[39] M. O. Rabin. How to exchange secrets with oblivious transfer, 2005. Harvard University
Technical Report 81 talr@watson.ibm.com 12955 received 21 Jun 2005.

[40] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk, and S. Devadas.
Constants count: Practical improvements to oblivious ram. In Proceedings of the 24th
USENIX Conference on Security Symposium, SEC’15, pages 415–430, Berkeley, CA,
USA, 2015. USENIX Association.

[41] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with o((logn)3) worst-
case cost. In Proceedings of the 17th International Conference on The Theory and
Application of Cryptology and Information Security, ASIACRYPT’11, pages 197–214,
Berlin, Heidelberg, 2011. Springer-Verlag.

[42] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path
oram: An extremely simple oblivious ram protocol. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer Communications Security, CCS ’13, pages 299–310,
New York, NY, USA, 2013. ACM.

[43] T. Toft. Secure data structures based on multi-party computation. In Proceedings
of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, PODC ’11, pages 291–292, New York, NY, USA, 2011. ACM.

[44] X. Wang, H. Chan, and E. Shi. Circuit ORAM: On tightness of the goldreich-ostrovsky
lower bound. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 850–861, New York, NY, USA, 2015. ACM.

132

[45] X. Wang, D. Gordon, and J. Katz. Simple and efficient two-server oram. Cryptology
ePrint Archive, Report 2018/005, 2018. https://eprint.iacr.org/2018/005.

[46] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi. Scoram: Oblivious ram
for secure computation. In Conference on Computer and Communications Security,
CCS ’14, pages 191–202, New York, NY, USA, 2014. ACM.

[47] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and Y. Huang.
Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 215–226, New York, NY,
USA, 2014. ACM.

[48] P. Williams and R. Sion. Single round access privacy on outsourced storage. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 293–304, New York, NY, USA, 2012. ACM.

[49] A. C.-C. Yao. Protocols for secure computations (extended abstract). In Proceedings
of the 23rd Annual Symposium on Foundations of Computer Science, FOCS’82, pages
160–164, 1982.

[50] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data transfer
in garbled circuits using half gates. In Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 220–250,
2015.

[51] S. Zahur, X. Wang, M. Raykova, A. Gascn, J. Doerner, D. Evans, and J. Katz. Revisiting
square-root oram efficient random access in multi-party computation. In Proceedings of
the 37th IEEE Symposium on Security and Privacy (Oakland), IEEE ’16, 2016.

[52] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica.
Opaque: An oblivious and encrypted distributed analytics platform. In Proceedings
of the 14th USENIX Conference on Networked Systems Design and Implementation,
NSDI’17, pages 283–298, Berkeley, CA, USA, 2017. USENIX Association.

133

https://eprint.iacr.org/2018/005

Appendix A

Supplementary Algorithm Figures

A.1 Algorithms for Client-Server Path-ORAM [42]

For completeness we recall the access algorithm of Client-Server Path-ORAM of [42], which

we briefly described in Section 5.1. As we explain in Section 5.1, we call the main Path-ORAM

algorithm ORAM.Access and its main loop ORAM.ML, and here we show both algorithms as

resp. Alg. A.1 and Alg. A.2.

The main point of including these algorithms here is to observe that our 3PC-ORAM protocol

described in Section 5.2 is a 3PC emulation of the (client-server) Path-ORAM algorithm,

except that the eviction map computation in step 6 of algorithm ORAM.ML, algorithm

PathORAM-Route, is replaced by the eviction computation algorithm Route of Circuit-ORAM

[44] (with some necessary modifications described in Section 5.2). In particular, observe that

our top-level protocol, 3PC-ORAM.Access shown as Alg. 5.1 in Section 5.2, and its main loop

3PC-ORAM.ML, shown as Alg. 5.2 in Section 5.2, are 3PC emulations of resp. algorithms

ORAM.Access, Alg. A.1, and ORAM.ML, Alg. A.2.

134

Algorithm A.1 ORAM.Access: Client/Server Path-ORAM

Param: Address size log(n), address chunk size τ , number of trees h = log(n)
τ

+ 1

Input: ORAMS = (tree0, ..., treeh−1), NC = (N1, ...,Nh−1), (* rec′C)

Output: recC: record stored in ORAM at address N

1: {L′Ci $←− {0, 1}i·τ}h−1
i=1 ; (N0,Nh,L

′
0,L

′
h)

C := ⊥ ; L0 := ⊥
2: for i = 0 to h−1 do (for i = 0 see footnote “!” in Alg. A.2)

ORAM.ML: Li, tree
S
i , (N0|...|Ni, Ni+1, L′i, L′i+1, *rec′)C

−→ Li+1 (* recC instead of Li+1), treeSi

3: end for

*: On top-level ORAM tree

Algorithm A.2 ORAM.ML: Main Loop of Client/Server Path-ORAM

Input: L, treeS, (N,∆N,L′,L′i+1, * rec′)C

Output: (1) Li+1 where Li+1 = T.rec[∆N] for T on tree.path(L) s.t.
T.(fb|adr) = 1|N (* or recC where rec = T.rec)

(2) tree.path(L)S modified by eviction, with T.lb := L′ and
T.rec[∆N] := L′i+1 (* T.rec := rec′)

S sends path = tree.path(L) to C, who computes the following:

Retrieval of Next Label/Record

1: T := retrieve(path.(fb|adr), 1|N) . T ∈ path s.t. T.(fb|adr) = 1|N
2: Li+1 := T.rec[∆N] (* replace with rec := T.rec)

Post-Process

3: T.lb := L′, T.rec[∆N] := L′i+1 (* T.rec := rec′)

4: set fb := 0 at position in path where T was found in step 1

5: path := path.append-to-root(T)

Eviction

6: EM := PathORAM-Route(L, path.(fb, lb)) . EM is an eviction map

7: path′ := ApplyMovement(EM, path) . path′ = EM(path)

C sends Li+1 and path′ to S, who inserts it in tree as tree.path(L)

*: On top-level ORAM tree; .: Comments;
!: For i = 0, C runs steps 2-3 for T := tree0 and sends Li+1 and (modified) tree0 to S

135

A.2 3PC-Circuit-ORAM Auxiliary Protocols

In this section we specify all sub-protocols used in protocol 3PC-ORAM.ML, Alg. 5.2, of

Section 5.2, together with the round/bandwidth characteristics of their implementation.

In subsection A.2.2 we also include modified versions of protocols 3ShiftPIR, Alg. A.9, and

3ShiftXorPIR, Alg. A.11, namely protocols 3ShiftPIR-Mod, Alg. A.12, and 3ShiftXorPIR-Mod,

Alg. A.13. As we explain in Section 5.2, using these protocols results in reducing the round

complexity of 3PC-ORAM.ML from 4 to 3 per ORAM tree in the retrieval and post-processing

phase.

Types of Secret-Sharing. In Alg. A.3 we list the types of secret-sharing used in all

our protocols. Random sharings of the first three types can be chosen non-interactively by

random sampling each sharing component. First four sharings are xor-homomorphic, e.g.,

for any shared variables 〈x〉 , 〈y〉 and constant c, we write 〈x⊕ y〉 and 〈x⊕ c〉 for sharing of

x ⊕ y and x ⊕ c locally computed by all players. We can transform one sharing to another

via either local transformations, denoted Extract, Alg. A.4, or via 1-round protocols, denoted

Reshare, Alg. A.5. All Reshare protocols output fresh sharings of the target type, while the

non-interactive transformations Extract are deterministic.

Additional Tools and Notation. In the description of some of the protocols in this section

we will find it helpful to use shortcuts which we list below.

Sometimes we need to randomize a secret-sharing with a fresh zero-sharing, i.e., a random

secret-sharing of a zero. We will use a two-party zero-sharing, 〈0m〉P1–P2

xor = (xP1
1 , x

P2
2),

generated by sampling rP1P2 $←− {0, 1}m and setting (x1, x2) := (r, r), and a three-party

zero-sharing, 〈0m〉xor = (xC
1 , x

D
2 , x

E
3), generated by sampling rDE

1
$←− {0, 1}m, rCE

2
$←− {0, 1}m,

rCD
3

$←− {0, 1}m, and setting (x1, x2, x3) := (r2 ⊕ r3, r1 ⊕ r3, r1 ⊕ r2).

136

If σ ∈ permm and we permute σ by π ∈ permm, then the result, [ρ] = π(σ), encodes

permutation ρ = σ · π−1, because ρ(i) = ρ[i] = σ[π−1(i)] = σ(π−1(i)) = (σ · π−1)(i). More

generally, consider a 1-1 function σ : Zk → Zm for m ≥ k, and a relation in Zm × Zk defined

as σ−1 = {(j, i) s.t. (i, j)∈σ}. If m > k then π = σ−1 is not a function, but if x ∈ array[m]

then π(x) denotes an array y ∈ array[k] s.t. y[i] = x[π−1(i)] = x[σ(i)] for i ∈ Zk.

We use additional shortcuts, for a∈ array`[m], t∈Zm, p∈{0, 1}k, v ∈{0, 1}`:

• ashift[t] denotes b ∈ array`[m] s.t. b[i] = a[i+ t mod m] for i ∈ Zm;

• arot[p] denotes array b ∈ array`[m] s.t. b[i⊕ p] = a[i] for i ∈ Zm;

• axor[v @ t] denotes b ∈ array`[m] s.t. b[t] = a[t]⊕ v and b[i] = a[i] for i 6= t;

• indmt denotes x ∈ array1[m] s.t. x[t] = 1 and x[i] = 0 for all i 6= t;

• tbit[i] denotes the i-th bit of binary representation of t, for i ∈ log(m).

Algorithm A.3 Types of Secret-Sharing

• 〈x〉 = (xDE
1 , xCE

2 , xCD
3) for x1, x2, x3

$←− {0, 1}|x| s.t. x1 ⊕ x2 ⊕ x3 = x

• 〈x〉xor = (xC
1 , x

D
2 , x

E
3) for x1, x2, x3

$←− {0, 1}|x| s.t. x1 ⊕ x2 ⊕ x3 = x

• 〈x〉P1–P2

xor = (xP1
1 , x

P2
2) for x1, x2

$←− {0, 1}|x| s.t. x1 ⊕ x2 = x

• 〈x〉2,1-xor = (〈x〉CD–E
2,1-xor , 〈x〉

DE–C
2,1-xor , 〈x〉

EC–D
2,1-xor),

where 〈x〉P1P2–P3

2,1-xor = (xP1P2
12 , xP3

3) for x12, x3
$←− {0, 1}|x| s.t. x12 ⊕ x3 = x

• 〈x〉shift = (〈x〉CD–E
shift , 〈x〉DE–C

shift , 〈x〉EC–D
shift), for x ∈ Z`,

where 〈x〉P1P2–P3

shift = (xP1P2
12 , xP3

3) for x12, x3
$←− Z` s.t. x12 + x3 = x mod `

137

Algorithm A.4 Extract on input 〈x〉= (xP1P2
1 , xP2P3

2 , xP3P1
3)

−→ 〈x〉P1–P2

xor = ((x1 ⊕ x3)P1, x2
P2)

−→ 〈x〉xor = (x1
P1, x2

P2, x3
P3)

−→ 〈x〉2,1-xor = (((x1
P1P2,(x2⊕x3)P3), (x2

P2P3,(x1⊕x3)P1), (x3
P3P1,(x1⊕x2)P2))

Algorithm A.5 Reshare: Interactive Sharing Transformation

(i) 〈x〉P1–P2

xor = (xP1
1 , x

P2
2) −→ 〈x〉 = (zP2P3

1 , zP1P3
2 , zP1P2

3)
Pick zP2P3

1 , zP1P3
2

$←− {0, 1}|x|;
P1 and P2 exchange (x1 ⊕ z2) and (x2 ⊕ z1), set z3 := (x1 ⊕ z2)⊕ (x2 ⊕ z1)

(ii) 〈x〉xor = (xP1
1 , x

P2
2 , x

P3
3) −→ 〈x〉 = (zP1P2

1 , zP2P3
2 , zP3P1

3)
Generate random m-bit zero-sharing, (sP1

1 , s
P2
2 , s

P3
3) $←− 〈0m〉xor;

Each Pi sets zi := xi ⊕ si and sends zi to P(i+1 mod 3)

(iii) 〈x〉P2P3–P1

shift = (xP2P3
23 , xP1

1) → 〈x〉shift = (〈x〉P1P2–P3

shift ,〈x〉P2P3–P1

shift ,〈x〉P3P1–P2

shift)
If x12

P1P2 $←− Zm, P1 sends δ = x1−x12 to P3, and P3 sets x3 := x23+δ (modm), then
〈x〉P1P2–P3

shift := (xP1P2
12 , xP3

3); (〈x〉P3P1–P2

shift computed likewise.)

(iv) 〈x〉P1–P2

xor = (xP1
1 , x

P2
2) , zP1

1 −→ zP2
2 s.t. (zP1

1 , zP2
2) = 〈x〉P1–P2

xor

P1 sends δ = x1 ⊕ z1 to P2 who sets z2 := x2 ⊕ δ
Note: Protocol Reshare type (iv) is deterministic given input z1, but InsertLbl, Alg.
A.15, invokes it on random z1, making (z1, z2) a fresh sharing of x.

Bandwidth: (i): 2|x|, (ii): 3|x|, (iii): 2|x|, (iv): |x|; Rounds: 1 (for each protocol);
Security: (i): Message x2 ⊕ z1 received by P1 can be computed from P1’s input and output as x1 ⊕ z2 ⊕ z3,
likewise for P2; (ii) Sharing (z1, z2, z3) is fresh by security of zero-sharing, and each party receives only its
output; (iii) Sharing (x23, x1) is fresh, and value δ received by P3 can be computed from P3’s input and
output; (iv) P2 can compute message δ from its input and output.

138

A.2.1 Protocols for Retrieval

Algorithm A.6 Protocol KSearch (from [18]) (Step 1 in Alg. 5.2)

Param: Security parameter κ, round-complexity parameter λ,
PRF F:{0, 1}κ → {0, 1}λ, array size `, record size c ≤ κ

Input: 〈u, v〉D–E
xor for u ∈ arrayc[`], v ∈ {0, 1}c s.t. u[i] = v for exactly one i ∈ Z`

Output: 〈i〉shift for i as above, i.e., unique i s.t. u[i] = v

Offline: kDE $←− PRF F keyspace (can be re-used for multiple protocol instances)

1: rDE $←− arrayκ[`], sDE $←− Z`; (aD, bE) := 〈z〉D–E
xor where 〈z〉D–E

xor is locally transformed from

〈u, v〉D–E
xor s.t. z[j] =u[j+s mod `]⊕ v for all j

D sends array x to C s.t. x[j] = Fk (r[j]⊕ (a[j] | 0κ−c)) for all j
E sends array y to C s.t. y[j] = Fk (r[j]⊕ (b[j] | 0κ−c)) for all j

2: Let 〈i〉DE–C
shift := (sDE, tC) for unique t s.t. x[t] = y[t]

(if x[t] = y[t] for ≥ 2 t’s, C asks D,E to re-run from step 1 with fresh rDE)
3: Reshare: 〈i〉DE–C

shift → 〈i〉shift

Bandwidth: ≈(1 + 2−λ+1)2`λ; Rounds: 2 (with ≤ 2−λ+ln ` re-run probability);
Security: By randomness of PRF pre-pad r and PRF property of F, each pair x[j], y[j] of entries in x, y
received by C is indistinguishable from a random pair of λ-bit values except for unique i in Z` s.t.
a[i] = b[i], where x[i] = y[i] is distributed as a single random λ-bit value.
Note: This holds over multiple executions with same PRF key k due to freshness of r.

Algorithm A.7 Protocol SSPIR (from [13]) (Used in Alg. A.10 and A.8)

Input: xP1P2 ∈ arraym[n], tP3 ∈ Zn

Output: 〈x[t]〉P1–P2

xor

Pick aP1P3
1

$←− {0, 1}n, rP1P2 $←− {0, 1}m;
1: P3 sends a2 = a1 ⊕ indnt to P2 (Note that a2 = a1 except a2[t] = a1[t]⊕ 1)
2: P1 sets z1 := r ⊕ XORSelect(x, a1), and P2 sets z2 := r ⊕ XORSelect(x, a2),

where XORSelect(x, a) =
⊕

i s.t. a[i]=1 x[i]

Output 〈x[t]〉P1–P2

xor = (zP1
1 , zP2

2).

Bandwidth: n; Rounds: 1;
Security: This is the basis of security of PIR of Chor et al. [13]: P2’s received message a2 is a random string
because a1 is a one-time pad. Moreover, the secret-sharing of x[t] is random because r is a one-time pad.

Algorithm A.8 Protocol ShiftPIR (Used in Alg. A.9)

Input: xP1P2 ∈ array`[m], 〈i〉P1P2–P3

shift = (sP1P2 , tP3), for i ∈ Zm

Output: 〈x[i]〉P1–P2

xor

1: P1 and P2 set x′ := xshift[s], i.e., x′[j] = x[j + s mod m] for all j

2: SSPIR: (x′)P1P2 , tP3 → 〈x′[t]〉P1–P2

xor (= 〈x[i]〉P1–P2

xor)

Bandwidth: m; Rounds: 1; Security: No message sent besides SSPIR.

139

Algorithm A.9 Protocol 3ShiftPIR (Step 2 in Alg. 5.2)

Input: 〈x〉 = (xDE
1 , xEC

2 , xCD
3), 〈i〉shift, for x ∈ array`[m], i ∈ Zm

Output: 〈x[i]〉
1: ShiftPIR: xDE

1 , 〈i〉DE–C
shift → 〈x1[i]〉D–E

xor = (dD
1 , e

E
1)

ShiftPIR: xEC
2 , 〈i〉EC–D

shift → 〈x2[i]〉E–C
xor = (eE

2 , c
C
1)

ShiftPIR: xCD
3 , 〈i〉CD–E

shift → 〈x3[i]〉C–D
xor = (cC

2 , d
D
2)

Note: (d1 ⊕ e1)⊕ (e2 ⊕ c1)⊕ (c2 ⊕ d2) = x1[i]⊕ x2[i]⊕ x3[i] = x[i]
2: Reshare: 〈x[i]〉xor =

(
(c1 ⊕ c2)C, (d1 ⊕ d2)D, (e1 ⊕ e2)E

)
−→ 〈x[i]〉

Bandwidth: 3(m+ `); Rounds: 2;
Security: No message is sent besides secure computation ShiftPIR and Reshare, which outputs random
shares to each participant.

Algorithm A.10 Protocol ShiftXorPIR (Used in Alg. A.11)

Input: xP1P2 , 〈i1〉P1P2–P3

shift = (sP1P2
1 , tP3

1), 〈i2〉P1P2–P3

2,1-xor = (sP1P2
2 , tP3

2),

for x ∈ array`[n,m], i1 ∈ Zn, i2 ∈ Zm

Output: 〈x[i1][i2]〉P1–P2

xor

1: P1 and P2 set x′ ∈ array`[nm] s.t. for all (j1, j2) ∈ Zn × Zm,
x′[j1 ·m+ j2] = x[j1 + s1 mod n][j2 ⊕ s2]

P3 computes t = t1 ·m+ t2 (over integers)
2: SSPIR: x′P1P2 , tP3 → 〈x′[t]〉P1–P2

xor (= 〈x[i1][i2]〉P1–P2

xor)

Bandwidth: nm; Rounds: 1; Security: No message sent besides SSPIR.

Algorithm A.11 Protocol 3ShiftXorPIR (Step 3 in Alg. 5.2)

Input: 〈x〉 = (xDE
1 , xCE

2 , xCD
3), 〈i1〉shift, 〈i2〉2,1-xor,

for x ∈ array`[n,m], i1 ∈ Zn, i2 ∈ Zm

Output: x[i1][i2]

Generate (δc
C, δd

D, δe
E) $←−

〈
0`
〉
xor

1: ShiftXorPIR: xDE
1 , 〈i1〉DE–C

shift , 〈i2〉DE–C
2,1-xor → 〈x1[i1][i2]〉D–E

xor

ShiftXorPIR: xEC
2 , 〈i1〉EC–D

shift , 〈i2〉EC–D
2,1-xor → 〈x2[i1][i2]〉E–C

xor

ShiftXorPIR: xCD
3 , 〈i1〉CD–E

shift , 〈i2〉CD–E
2,1-xor → 〈x3[i1][i2]〉C–D

xor

2: Denote 〈x1[i1][i2]〉D–E
xor = (dD

1 , e
E
1), 〈x2[i1][i2]〉E–C

xor = (eE
2 , c

C
1),

〈x3[i1][i2]〉C–D
xor = (cC

2 , d
D
2)

3: Each party Pt, for t = c, d, e broadcasts vt where
vc = c1 ⊕ c2 ⊕ δc, vd = d1 ⊕ d2 ⊕ δd, ve = e1 ⊕ e2 ⊕ δe

Output x[i1][i2] := vc ⊕ vd ⊕ ve.

Bandwidth: 3nm+ 6`; Rounds: 2;
Security: By security of zero-sharing (δc, δd, δe), the broadcast values (vc, vd, ve) are distributed as random
xor-sharing of output x[i1][i2]. The rest is secure computation ShiftXorPIR which outputs random shares
to each participant.

140

A.2.2 Protocols for Reduced-Round Retrieval

Algorithm A.12 Protocol 3ShiftPIR-Mod (Step 2 in Alg. 5.2)

Input: 〈x〉 = (xDE
1 , xEC

2 , xCD
3), 〈i〉DE–C

shift = (sDE
1 , tC1), for x ∈ array`[n], i ∈ Zn

Output: 〈x[i]〉
Offline: Pick aCD

12 , a
DE
23 , a

DE
32

$←− {0, 1}n
D picks t2

$←− {1, . . . , N} and sends a21 := a23 ⊕ indnt2 to C
E picks t3

$←− {1, . . . , N} and sends a31 := a32 ⊕ indnt3 to C

On input sDE
1 :

1: D sends δ12 = s1 − t2 mod n to C
E sends δ13 = s1 − t3 mod n to C

On input 〈x〉 , tC1 :

1: C sets s2 := t1 + δ12 mod n, s3 = t1 + δ13 mod n, and
a13 := a12 ⊕ indnt1 ; C sends s3 to D and (s2, a13) to E

C sets c1 := XORSelect((x2)shift[s2], a21)
C sets c2 := XORSelect((x3)shift[s3], a31)
D sets d1 := XORSelect((x1)shift[s1], a12)
D sets d2 := XORSelect((x3)shift[s3], a32)
E sets e1 := XORSelect((x1)shift[s1], a13)
E sets e2 := XORSelect((x2)shift[s2], a23)

2: Reshare: 〈x[i]〉xor =
(
(c1 ⊕ c2)C, (d1 ⊕ d2)D, (e1 ⊕ e2)E

)
−→ 〈x[i]〉

Correctness: Observe that d1 ⊕ e1 = (x1)shift[s1][t1] = x1[s1 + t1], because a12 ⊕ a13 = indnt1 , and therefore

XORSelect(z, a12) ⊕ XORSelect(z, a13) = z[t1] for any z, e.g., z = (x1)shift[s1]. Likewise c1 ⊕ e2 = x2[s2 + t2]

and c2 ⊕ d2 = x3[s3 + t3].
Note that s1 + t1 = i, but also s2 + t2 = (t1 + δ12) + t2 = (t1 + (s1 − t2)) + t2 = t1 + s1 = i and
s3 + t3 = (t1 + δ13) + t3 = (t1 + (s1 − t3)) + t3 = t1 + s1 = i.
It follows that d1 ⊕ e1 = x1[i], c1 ⊕ e2 = x2[i], and c2 ⊕ d2 = x3[i].
Consequently, (c1 ⊕ c2)⊕ (d1 ⊕ d2)⊕ (e1 ⊕ e2) = x1[i]⊕ x2[i]⊕ x3[i] = x[i].

Bandwidth: on-line: ≈n+ 3`, off-line: ≈2n (assuming sDE
1 known off-line) ;

Rounds: 2;
Security: Party C receives only δ21 and δ31, but these are random in {1, . . . , N} because of one-time pads
t2 and t3. These one-time pads were used also in computing a21 and a31 (resp. by D and E) but
nevertheless a21, a31 are uniform random strings in C’s view because of onetime pads a23 and a32. Party D
receives s3 = t1 + δ13 from C, but t1 + δ13 = t1 + (s1 − t3) = i− t3 where t3 is E’s one-time pad, so s3 is
random in {1, . . . , N} in D’s view. Party E receives a13 and s2 = t1 + δ12 from C, but
t1 + δ12 = t1 + (s1 − t2) = i− t2 where t2 is D’s one-time pad, so s2 is random in {1, . . . , N} in E’s view.
Value a13 = a12 ⊕ indnt1 is also random in E’s view because of one-time pad a12.
Finally, by correctness of Reshare, the final sharing is a random sharing of x[i].

141

Algorithm A.13 Protocol 3ShiftXorPIR-Mod (Step 3 in Alg. 5.2)

Input: 〈x〉 = (xDE
1 , xEC

2 , xCD
3), 〈i〉DE–C

shift = (sDE
1 , tC1),

〈j〉2,1-xor = ((uDE
1 , vC

1), (uCE
2 , vD

2), (uCD
3 , vE

3)),

for x ∈ array`[n][m], i ∈ Zn, j ∈ Zm

Output: x[i][j]

Offline: Pick aCD
12 , a

DE
23 , a

DE
32

$←− {0, 1}n×m
D picks t2

$←− {1, . . . , N} and sends a21 := a23 ⊕ indn×mt2×m+v2
to C

E picks t3
$←− {1, . . . , N} and sends a31 := a32 ⊕ indn×mt3×m+v3

to C

On input (s1, u1)DE:

1: D sends δ12 = s1 − t2 mod n, ρ12 = u1 ⊕ v2 to C
E sends δ13 = s1 − t3 mod n, ρ13 = u1 ⊕ v3 to C

On input 〈x〉 , (t1, v1)C:

1: C sets s2 := t1 + δ12 mod n, s3 = t1 + δ13 mod n, u2 = v1 ⊕ ρ12, u3 = v1 ⊕ ρ13, and
a13 := a12 ⊕ indn×mt1×m+v1

; C sends s3 to D and (s2, a13) to E

For every P ∈ {C,D,E}, kC ∈ {2, 3}, kD ∈ {1, 3}, kE ∈ {1, 2}, f ∈ {1, . . . , N}, g ∈ Zm,
P sets x′kP ∈ array`[n][m] s.t. x′kP [f][g] = xkP [f + skP mod n][g ⊕ ukP].

C sets c1 := XORSelect(x′2, a21), c2 := XORSelect(x′3, a31)
D sets d1 := XORSelect(x′1, a12), d2 := XORSelect(x′3, a32)
E sets e1 := XORSelect(x′1, a13), e2 := XORSelect(x′2, a23)

2: C,D,E broadcast shares they have among (c1, c2, d1, d2, e1, e2), and compute x[i][j] =
(d1 ⊕ e1)⊕ (c1 ⊕ e2)⊕ (c2 ⊕ d2).

Correctness: Observe that d1 ⊕ e1 = XORSelect(x′1, a12)⊕ XORSelect(x′1, a13) = XORSelect(x′1, a12 ⊕ a13) =
XORSelect(x′1, ind

n×m
t1×m+v1) = x′1[t1][v1] = x1[t1 + s1 mod n][v1 ⊕ u1] = x1[i][j].

It follows that c1 ⊕ e2 = x2[i][j] and c2 ⊕ d2 = x3[i][j].
Consequently, (c1 ⊕ c2)⊕ (d1 ⊕ d2)⊕ (e1 ⊕ e2) = x1[i][j]⊕ x2[i][j]⊕ x3[i][j] = x[i][j].

Bandwidth: on-line: ≈nm+ 6`, off-line: ≈2nm (assuming (s1, u1)DE known off-line) ;
Rounds: 2;
Security: Party C receives (δ12, δ13, ρ12, ρ13), but these are random because of one-time pads t2 and t3 and
freshness of v2 and v3. The rest follows the same security of 3ShiftPIR-Mod.

142

A.2.3 Protocols for PostProcess

Algorithm A.14 Protocol ULiT - Update Labels in Tuple (Step 4, Alg. 5.2)

Input:
〈
X,N,∆N,L′,L′i+1

〉
,Li+1 = X[∆N]

where X ∈ array`[2τ], |∆N| = τ , |Li+1| = |L′i+1| = `

Output: 〈T〉 for T = (1|N|L′|X) with X[∆N] := L′i+1

Offline:

1: xCD
1 , xDE

2
$←− {0, 1}|X|

2: Run the offline phase of two InsertLbl instances of step 2, where first instance outputs aD
1

and second instance outputs aD
2 .

3: D sends me = a1 ⊕ x1 ⊕ x2 to E and mc = a2 ⊕ x1 ⊕ x2 to C.

Online:

1: 〈xor-Li+1〉 :=
〈
L′i+1 ⊕ Li+1

〉
Extract: 〈∆N, xor-Li+1〉 → 〈∆N, xor-Li+1〉C–D

xor

Extract: 〈∆N, xor-Li+1〉 → 〈∆N, xor-Li+1〉E–D
xor

2: InsertLbl: 〈∆N〉C–D
xor , 〈xor-Li+1〉C–D

xor → 〈M〉D–E
xor = (aD

1 , b
E
1)

InsertLbl: 〈∆N〉E–D
xor , 〈xor-Li+1〉E–D

xor → 〈M〉D–C
xor = (aD

2 , b
C
2)

for M which is an all-zero array except M [∆N] = xor-Li+1

3: 〈M〉 :=(xCD
1 , xDE

2 , xCE
3) for xC

3 := mc ⊕ b2, xE
3 := me ⊕ bE

1

Output 〈T〉 :=〈1|N|L′|(X ⊕ M)〉

Bandwidth: Online: ≈ 4|X|, Offline: ≈ 4|X|;
Rounds: 2 (the first round requires only input 〈∆N〉, see Alg. A.15);
Security: Note that by security of InsertLbl, everything the parties receive in the InsertLbl instances can be
simulated from their inputs and outputs in these instances.
Security for D: Party D’s view includes only its InsertLbl outputs, aD

1 and aD
2 , which are random strings by

security of InsertLbl.
Security for C: Party C receives mc = a2 ⊕ x1 ⊕ x2 and b2, but b2 is random by security of InsertLbl and
mc is random by randomness of x2.
Security for E: Likewise E receives me = a1 ⊕ x1 ⊕ x2 and b1, but b1 is random by security of InsertLbl and
me is random by randomness of x1..

143

Algorithm A.15 Protocol InsertLbl - Inserting Label (Used in Alg A.14)

Input: 〈∆N〉P1–P2

xor , 〈L〉P1–P2

xor = (LP1
1 ,L

P2
2), for |∆N| = τ , |L| = `

Output: 〈M〉P2–P3

xor = (zP2
2 , zP3

3),
for M ∈ array`[2τ] s.t. M [∆N] = L and M [t] = 0` for t 6= ∆N

Offline:

1: (p, a, b)P1P2 $←− array`[2τ], (v, w)P1P2 $←− {0, 1}τ
2: P1 : α1

$←− {0, 1}τ , set u1 := α1 ⊕ v, p∗ := p⊕ arot[u1]

3: P2 : β2
$←− {0, 1}τ , set u2 := β2 ⊕ w, z2 := p⊕ brot[u2]

4: P1 sends (u1, p
∗) to P3; P2 sends u2 to P3; P2 outputs z2

Online:

1: Reshare: 〈∆N〉P1–P2

xor , αP1
1 → αP2

2 s.t. (α1, α2) = 〈∆N〉P1–P2

xor

Reshare: 〈∆N〉P1–P2

xor , βP2
2 → βP1

1 s.t. (β1, β2) = 〈∆N〉P1–P2

xor

2: P1 sends s1 = bxor[L1 @ β1⊕w] to P3

i.e., s1 = b except s1[β1 ⊕ w] = b[β1 ⊕ w]⊕ L1

P2 sends s2 = axor[L2 @ α2⊕v] to P3

i.e., s2 = a except s2[α2 ⊕ v] = a[α2 ⊕ v]⊕ L2

3: P3 outputs z3 := p∗ ⊕ (s2)rot[u1] ⊕ (s1)rot[u2]

Correctness: Observe that z2 = p⊕ brot[β2⊕w] and p∗ = p⊕ arot[α1⊕v].

Note that (s2)rot[u1] = (axor[L2 @ α2⊕v])rot[α1⊕v]

= (arot[α1⊕v])
xor[L2 @ (α2⊕v) ⊕ (α1⊕v)]

= (arot[α1⊕v])
xor[L2 @ ∆N]

.

Likewise (s1)rot[u2] = (brot[β2⊕w])
xor[L1 @ ∆N]

.
It follows that
z3 = p∗ ⊕ (s2)rot[u1] ⊕ (s1)rot[u2]

= p ⊕ arot[α1⊕v] ⊕ (arot[α1⊕v])
xor[L2 @ ∆N] ⊕ (brot[β2⊕w])

xor[L1 @ ∆N]

By xor-ing z2 and z3 observer that pad p and rotated pads a and b cancel out and we get M = z2 ⊕ z3 =

[0, ..., 0]
xor[L @ ∆N]

where [0, ..., 0] is an all-zero array.
Bandwidth: Online: 2 · (2τ `+ τ) ≈ 2 · 2τ `, Offline: ≈ 2τ `;

Rounds: 2 (the first round requires only input 〈∆N〉P1–P2

xor);
Security:
(1) For P1,P2: Let (∆NP1

1 ,∆NP2
2) denote input 〈∆N〉P1–P2

xor . P2 receives ∆N1 ⊕ α1 and P1 receives
∆N2 ⊕ β2 in in Reshare in step 1. Bot values are random because α1, β2 are randomly chosen resp. by P1

and P2, and neither value affects the distribution of protocol outputs (z2, z3), because z2 is uniform by
randomness of a, and z3 is a deterministic function of z2 and protocol inputs.

(2) For P3: Values p∗, u1, u2, s1, s2 sent to P3 are independently random because of resp. random pads
p, v, w, a, b. Sharing (z1, z2) is fresh by randomness of p.

144

Algorithm A.16 Protocol FlipFlag (Step 5, Alg. 5.2)

Input: 〈fb〉 , 〈i〉DE–C
shift = (iC1 , i

DE
2), for fb ∈ array1[n], i ∈ {1, . . . , N}

Output: 〈fb′〉 s.t fb′ is the same as fb except fb′[i] = fb[i]⊕ 1

1: C creates a1 ∈ array1[n] s.t. a1[i1] = 1 and a1[j] = 0 for j 6=i1
2: E creates a2 ∈ array1[n] s.t. a2[j] = 0 for all j
3: Shift: 〈a〉C–E

xor = (aC
1 , a

E
2), (s = n− i2)DE → 〈m〉C–E

xor

note: m[i] = a[(i1+i2)+s] = 1, and m[j] = 0 for j 6= i
4: Reshare: 〈m〉C–E

xor → 〈m〉
5: 〈fb′〉 := 〈fb⊕m〉

Bandwidth: 4n; Rounds: 2;
Security: Protocol FlipFlag is secure if protocol Shift is a secure computation of 〈m〉C–E

xor and Reshare

produces fresh secret-sharing 〈m〉 from 〈m〉C–E
xor .

Algorithm A.17 Protocol Shift (based on [18]) (Used in Alg A.16)

Input: 〈x〉C–E
xor = (xC

1 , x
E
2), sDE ∈ Zn, where x ∈ array`[n]

Output: 〈y〉C–E
xor = (yC

1 , y
E
2) s.t. y[t] = x[(t+ s) mod n] for all t

Offline: pCD, rDE, qCE $←− array`[n]

1: D sends array a to C s.t. a[t] = (p⊕ r)[(t+ s) mod n]
2: C sends z = x1 ⊕ p to E, and outputs y1 = a⊕ q
3: E outputs y2 = b⊕ q for b s.t. b[t] = (x2 ⊕ z ⊕ r)[(t+ s) mod n]

y[t] = (y1 ⊕ y2)[t] = (a⊕ b)[t] = ((p⊕ r)⊕ (x2 ⊕ z ⊕ r))[t+ s]

= (p⊕ x2 ⊕ z)[t+ s] = (p⊕ x2 ⊕ (x1 ⊕ p))[t+ s] = x[t+ s]

Bandwidth: 2n`; Rounds: 1;
Security: Sharing 〈y〉C–E

xor is fresh by randomness of q, message a received by C is random by randomness
of r, message z received by E is random by randomness of p.

145

A.2.4 Protocols for Eviction

Algorithm A.18 Protocol GC(circ) (Step 6, Alg. 5.2)

Input: 〈x〉C–E
xor , for x the input of circuit circ

Output: ((y, z)D, owkE), for y = {owk : y}, (y, z) = circ(x), owk $←− arrayκ[|y|, 2]

Offline: E sends to D a garbled version of circ′, where circ′(x1, x2) = circ(x1 ⊕ x2), which
includes the wire-key-to-bit translation table only for the output wires corresponding
to variable z;
E also sends to C the set of wire keys iwk1 corresponding to input variable x1, and
retains the set of wire keys iwk2 corresponding to input variable x2 and set owk
corresponding to output variable y

1: C and E on input 〈x〉C–E
xor = (xC

1 , x
E
2), select input wire keys according to their respective

input xC
1 , x

E
2 and send to D resp. {iwk1 :x1} and {iwk2 :x2}

2: D evaluates the garbled circuit circ′ starting given the received sets of wire keys; Because
the garbled circuit contains the wire-key-to-bit translation table only for the wires corre-
sponding to variable z, D outputs the z part of the output in the clear, but for variable
y it can only output the wire key set {owk : y} corresponding to value y.

Bandwidth: Online: 2|x|κ, for sec. par. κ; Offline: (4|circ|+ 2|x|)κ; Rounds: 1;
Security: This is a trivial modification of Yao’s garbled circuit computation procedure.

Algorithm A.19 Protocol PermTuples (Step 8, Alg. 5.2)

Param: Number of buckets d, bucket size w

Offline Input: (π, ρ)CE for π ∈ permd, ρ ∈ arrayw+1[d]

Input: tD ∈ arrayw+1[d]

Output: t◦D = ρ⊕ π(t)

Offline: pED, rEC $←− arrayw+1[d]; E sends a = π(p⊕ r) to D

1: D sends z = t⊕ p to C.
2: C sends g = ρ⊕ π(z ⊕ r) to D.
3: D outputs t◦ = a⊕ g.

Correctness: t◦ = a⊕ g = π(p⊕ r)⊕ ρ⊕ π(z ⊕ r) = π(p⊕ r)⊕ ρ⊕ π(t⊕ p⊕ r)
= π(p⊕ r)⊕ ρ⊕ π(t)⊕ π(p⊕ r) = ρ⊕ π(t)

Bandwidth: Online: 2|t| = 2d(w+1); Offline: |t| = d(w+1); Rounds: 2;
Security: Array z received by C is random because p is a one-time pad known only to D and E. Array a
received by D off-line is random because r is a one-time pad known only to C and E, and array g received
by D on-line gives no additional information because it can be computed as g = a⊕ t◦ from a and D’s
output t◦.

146

Algorithm A.20 Protocol PermBuckets (Step 7, Alg. 5.2)

Param: Path depth d, security parameter κ;
hash function HDE : {0, 1}log(d)·κ → {0, 1}κ.

Input: σD, πCE,wkE, s.t. π ∈ permd, wk ∈ arrayκ[d, log(d), 2],
and σ = {wk :σ} for some σ ∈ permd

Output: σ◦D s.t. σ◦ = π · σ · π−1

Offline: (assume pre-generated πCE and wkE)

1: E sets keys ∈ arrayκ[d, d, log(d)] s.t. for each i, j ∈ Zd, k ∈ Zlog(d),
keys[i][j][k] = wk[i][k][jbit[k]], which means keys[i][j] = σ[i] for σ[i] = j.

2: E picks MK $←− arraylog(d)[d, d], and sets TB ∈ arrayκ+log(d)[d, d] s.t. each TB[i] ∈
arrayκ+log(d)[d] is a sequence of d (key,value) pairs, each of which binds key H(keys[i][j])
to value π(j)⊕MK[i][j], i.e., TB[i][j] = (H(keys[i][j]), π(j)⊕MK[i][j]). In another words,
TB[i](·) is a look-up function s.t. TB[i](H(keys[i][j])) = π(j)⊕MK[i][j] for j ∈ d.

3: For every i ∈ Zd, E picks a random permutation in permd and uses it to permute the
entries of both TB[i] and MK[i].

4: E picks p, r $←− arraylog(d)[d], and computes a = π(p⊕ r).
5: E sends TB, p, a to D and MK, r to C.

Online:
1: D initializes I ∈ arraylog(d)[d]. For every i ∈ Zd, D sets [σ′][i] = TB[i](H(σ[i])), and sets

I[i] = j s.t. H(σ[i]) is the key of TB[i][j] (key,value) pair. D then sends z = σ′ ⊕ p and I
to C.

2: C sets m ∈ arraylog(d)[d] s.t. m[i] = MK[i][I[i]] for every i ∈ Zd. C sends g = π(z⊕ r⊕m)
to D

3: D outputs σ◦ s.t. σ◦ = a⊕ g.

Correctness:

σ◦ = a⊕ g = π(p⊕ r)⊕ π(σ′ ⊕ p⊕ r ⊕m) = π(σ′ ⊕m)

= π([(TB[0][I0]⊕MK[0][I0]), ..., (TB[d− 1][I[d− 1]]⊕MK[d− 1][I[d− 1]])])

= π([π(σ0), ..., π(σd−1)]) = π(π · σ) = π · σ · π−1

Bandwidth: Online: 3d log(d); Offline: d2(κ+ 2 log(d)) + 3d log(d); Rounds: 2;
Security: C’s view z and I are indistinguishable from random strings because p is random and unknown to
C, and for every i ∈ Zd,TB[i] and MK[i] are permuted by a random permutation in Zd. Given D’s input a
(from pre-computation) and output σ◦, D’s view g can be simulated as a⊕ σ◦. E receives nothing online.

147

Algorithm A.21 Protocol SSXOT (Step 9, Alg. 5.2)

Input: 〈path〉 , (π, δ, ρ)CE, (σ◦, t◦)D, for σ◦ = π · σ · π−1, t◦ = ρ⊕ π(δ ⊕ t)

Output: 〈path′〉, for path′ = EMσ,t(path)

Offline: D picks p $←− {0, 1}|path| and executes the first step of the two instances of HalfXOT
below (see step 1, Alg. A.22)

Extract: 〈path〉 → 〈path〉C–E
xor . Parties sets EM◦D:=EMσ◦,t◦ , ΠCE := ρ̃ · π̈ · δ̃,

and (xC
1 , x

E
2) = 〈path◦〉C–E

xor := 〈Π(path)〉C–E
xor . (see eq. (5.1) in Sec. 5.2)

1: The following two steps are performed in parallel:
HalfXOT: xC

1 , (EM
◦, p)D → yE

1 . y2 = p⊕ EM◦(x1)
HalfXOT: xE

2 , (EM
◦, p)D → yC

2 . y1 = p⊕ EM◦(x2)
Parties set 〈y〉C–E

xor := (yC
1 , y

E
2), . y=EM◦(x) =EMσ◦,t◦(Π(path))

and set 〈path′〉C–E
xor := 〈Π−1(y)〉C–E

xor . path′ = Π−1(y) = EMσ,t(path)

2: Reshare: 〈path′〉C–E
xor →〈path

′〉

Bandwidth: Online: 4|path|+ 2m log(m), m = # tuples; Offline: 2|path|; Rounds: 3;
Security: Because p is a one-time pad known only to D, both y1 and y2 are individually random, and by
security of HalfXOT, the protocol leaks nothing beyond (locally random) values y1 to E and y2 to C.
Moreover, by correctness of HalfXOT we have that (y1, y2) is an xor-sharing of y = EM◦(x). Then by eq.
(5.1) in Sec. 5.2, we have path′ = Π−1(y) = Π−1 · EMσ◦,t◦ ·Π(path) = EMσ,t(path).

Algorithm A.22 Protocol HalfXOT (Steps 1 and 2 in Alg. A.21)

Param: n, k, ` s.t. k ≤ n.

Input: xP1 , (σ, p)P2 s.t. x ∈ array`[n], p ∈ array`[k], and σ−1 : Zk
1−1→ {1, . . . , N}

Output: yP3 s.t. y = p⊕ σ(x), i.e., y[i] = p[i]⊕ x[σ−1(i)] for i ∈ Zk

Offline: rP1P2 $←− array`[n]; δP2P3 $←− permn

1: On P2’s input p: P2 sends s = p⊕ δ(r) to P3

2: On P2’s input σ: P2 sends π = δ−1 · σ to P1

3: On P1’s input x (and message π): P1 sends a = r ⊕ π(x) to P3

P3 outputs y = s⊕ δ(a)

Note that y = s⊕ δ(a) = p⊕ δ(r)⊕ δ(a) = p⊕ δ(r⊕ a) = p⊕ δ(π(x)) = p⊕ (δ · π)(x) = p⊕ (δ · (δ−1 · σ))(x)
= p⊕ σ(x)
Bandwidth: n`+ k`+ k log(n); Rounds: 2;
Security: P3’s view includes s, a where a is random n`-bit string because of one-time pad r and s reveals no
additional information beyond P3’s output because it can be computed as s = y ⊕ δ(a); P1’s view includes
π = δ−1 · σ but π is a random 1-1 function from Zk to {1, . . . , N} because δ is a random permutation in
{1, . . . , N} .

148

A.3 3PC-Circuit-ORAM Routing Circuit

In this section we explain the construction of the routing circuit Route used in the eviction

phase of protocol 3PC-ORAM.ML (see Step 6 in Alg. 5.2, Section 5.2).

A.3.1 Main Routing Circuit

Circuit Route determines eviction map by generating a dp array (PrepareDeepest), computing

the eviction array σ from dp (PrepareTarget), and making the eviction map σ into a cycle

(MakeCycle). Circuits PrepareDeepest and PrepareTarget are, with minor variations, the same

circuits which implemented the original Circuit-ORAM eviction computation CircORAM-Route

[44], but circuit MakeCycle is new. Because of some small differences in the implementation

of PrepareDeepest and PrepareTarget, the combined size of circuit Route is virtually identical to

the size of CircORAM-Route reported in [44]. We discuss these three circuits in the following

subsections.

Algorithm A.23 Circuit Route (Used in Step 6, Alg. 5.2)

Param: Tree height d, bucket size w.

Input: Full/empty bits fb ∈ array1[d, w]; labels lbl ∈ arrayd[d, w];
path label L ∈ {0, 1}d; masks δ ∈ arraylog (w+1)[d]

Output: σ ∈ permd and t′ ∈ arraylog (w+1)[d], where σ extends Φ into a cycle and t′ = δ ⊕ t
for Eviction Map Φ and Tuple Index t computed as in Circuit-ORAM [44]

1: (dp, jd, je, e) :=PrepareDeepest(L, fb, lbl)
2: (Φ, t′, nTop, nBot, eTop, eBot) :=PrepareTarget(dp, jd, je, e, δ)
3: σ :=MakeCycle([Φ], nTop, nBot, eTop, eBot)

Circuit cost: [3wd + (2w + 5) · log(w) + (d + 34) · log(d)] · d → O(d2 log(d))

149

A.3.2 Prepare Array dp

Algorithm PrepareDeepest in Alg. A.24, based on the same name algorithm in [44], outputs

an array dp where dp[i] < i is the index of the first bucket in the path which contains a tuple

that can be evicted to the i-th bucket. (If no tuples in higher levels can be evicted to the

i-th bucket then dp[i] =⊥.) In addition, PrepareDeepest outputs three other arrays jd, je, e,

where jd[i] is the index of the “deepest tuple” in the i-th bucket, i.e., a tuple which could

be evicted furthest down from that bucket, e[i] = 1 if and only if there is an empty tuple at

this level, and je[i] is the index of that empty tuple. (If e[i] = 0 then je[i] is meaningless.)

Algorithm A.24 Circuit PrepareDeepest [44] (Used in Alg. A.23)

Param: Tree height d, non-root bucket size w.

Input: Path label L ∈ {0, 1}d, array of full/empty bits fb ∈ array1[d, w] and labels lbl ∈
arrayd[d, w]

Output: dp ∈ arraylog(d)[d], e ∈ array1[d], jd, je ∈ arraylog(w+1)[d],
s.t. jd[i], je[i] are indexes of deepest/empty tuples in i-th bucket, e[i] = 1 if there i-th
bucket has an an empty tuple, and dp[i] = i′ s.t. the deepest tuple in (i′)-th bucket
can move to bucket i (dp[i] =⊥ if no such i′ exists)

1: dp := [⊥,⊥, ...,⊥], src :=⊥, goal := −1
2: for i := 0 to d− 1 do . cycle: d
3: if goal ≥ i then . cost: log(d)
4: dp[i] := src . cost: log(d)
5: end if
6: (l, jd[i], je[i], e[i]) :=FDAE(i,L, fb[i], lbl[i]) . cost: Alg. A.25
7: if l > goal then . cost: log(d)
8: goal := l . cost: log(d)
9: src := i . cost: log(d)

10: end if
11: end for

Circuit cost: (3w + log d) · d2 + (2w logw + 5 log d) · d

Find the Deepest and Empty Tuples. Algorithm FDAE in Alg. A.25 (which stands for

FindDeepestAndEmpty) is adopted from [44], and it is a sub-procedure of Alg. A.24 which

finds the “deepest tuple”, i.e., a tuple which can be evicted the furthest down the path, in

a bucket at level (=depth) i in the path, and outputs its index jd in the bucket together

150

with the target level l′. FDAE also determines if there is an empty tuple in this bucket, and

outputs its index je and a flag e which is set to 1 if an empty tuple was found. If no tuple

can be moved down from the i-th bucket then FDAE returns (jd, l
′) = (0, i), and if there is

no empty tuple then (je, e) = (0, 0).

Algorithm A.25 Circuit FDAE [44] (Used in Alg. A.24)

Param: Tree height d, non-root bucket size w.

Input: Level index i ∈ Zd, path label L ∈ {0, 1}d, tuples’ full/empty bits fb ∈ array1[w] and
labels lbl ∈ arrayd[w].

Output: l′ ∈ Zd, jd, je ∈ Zw+1, e ∈ {0, 1}, where l′ is the deepest level index, jd, je are
indexes of resp. the first deepest tuple and the first empty tuple, and e is a flag
indicating whether the bucket contains an empty tuple.

1: l := 0i|1d−i−1; jd, je, et := 0
2: for j := 0 to w−1 do . cycle: w
3: lz := lbl[j]⊕ L
4: lz′ := set all bits after the first bit 1 in lz to 1 . cost: d
5: if fb[j] = 1 and lz′ < l then . cost: d
6: jd := j . cost: logw
7: l := lz′ . cost: d
8: else if fb[j] = 0 and e = 0 then
9: je := j . cost: logw

10: e := 1
11: end if
12: end for
13: l′ := number of leading 0s in l . cost: d · log(d)

Circuit cost: d · (3w + log d) + 2w logw

A.3.3 Prepare Arrays σ and t

Algorithm PrepareTarget in Alg. A.26 is an extended version of the corresponding algorithm

in [44], which determines the final eviction pattern. PrepareTarget outputs a σ array which

contains the same eviction movement as in [44], plus the eviction jumps filling up the possible

gaps. PrepareTarget also outputs an array t where t[i] is the index of the tuple that will be

evicted on level i. Note that each t[i] is selected from one of jd[i], je[i], or w (fake/empty

151

tuple index) depending on what kind of eviction movement level i is doing. And this t will

be finally masked by δ so the real indexes will be hidden to D.

152

Algorithm A.26 Circuit PrepareTarget (following [44]) (Used in Alg. A.23)

Param: Tree height d, non-root bucket size w

Input: dp ∈ arraylog(d)[d], jd, je ∈ arraylog(w+1)[d], e ∈ array1[d], δ ∈ arraylog(w+1)[d]

Output: σ ∈ arraylog(d)[d], t′ ∈ arraylog(w+1)[d], nTop, nBot, eTop, eBot ∈ Zd

1: nTop, nBot, eTop, eBot, src, dest := ⊥
2: σ, t := [⊥,⊥, ...,⊥]
3: for i := d− 1 to 0 do
4: if i = src then . cost: log(d)
5: σ[i] := dest . cost: log(d)
6: t[i] := jd[i] . cost: log(w)
7: src :=⊥ . cost: log(d)
8: if dp[i] = ⊥ then . cost: log(d)
9: dest := i . cost: log(d)

10: else
11: dest := ⊥ . cost: log(d)
12: end if
13: end if
14: if dp[i] 6= ⊥ then
15: if dest 6= ⊥ and src = ⊥ then . cost: 2log(d)
16: σ[i] := dest . cost: log(d)
17: t[i] := je[i] . cost: log(w)
18: end if
19: if (dest = ⊥ and e[i] = 1) or σ[i] 6= ⊥ then . cost: log(d)
20: src := dp[i] . cost: log(d)
21: dest := i . cost: log(d)
22: eTop := src . cost: log(d)
23: if eBot = ⊥ then . cost: log(d)
24: eBot := dest . cost: log(d)
25: t[i] := je[i] . cost: log(w)
26: end if
27: end if
28: end if
29: if t[i] = ⊥ then . cost: log(w)
30: t[i] := w . cost: log(w)
31: nTop := i . cost: log(d)
32: if nBot = ⊥ then . cost: log(d)
33: nBot := i . cost: log(d)
34: end if
35: end if
36: t′[i] = t[i]⊕ δ[i]
37: end for

Circuit cost: [5log(w) + 18log(d)] · d

153

A.3.4 Making the Eviction Map into A Cycle

Algorithm MakeCycle in Alg. A.27 adds upwards spurious jumps to the eviction jump array

σ output from PrepareTarget and makes the final eviction map as a cycle.

Algorithm A.27 Circuit MakeCycle (Used in Alg. A.23)

Param: Tree height d.

Input: σ ∈ arraylog(d)[d], nTop, nBot, eTop, eBot ∈ Zd

Output: σ ∈ arraylog(d)[d]

1: nPrev :=⊥
2: for i := 0 to d− 1 do
3: if nTop = ⊥ then . cost: log(d)
4: if i = eBot then . cost: log(d)
5: σ[i] := eTop . cost: log(d)
6: end if
7: else if i = eBot then
8: σ[i] := nBot . cost: log(d)
9: else if σ[i] = ⊥ then . cost: log(d)

10: if i = nTop then . cost: log(d)
11: if eTop = ⊥ then . cost: log(d)
12: σ[i] := nBot . cost: log(d)
13: else
14: σ[i] := eTop . cost: log(d)
15: end if
16: else
17: σ[i] := nPrev . cost: log(d)
18: end if
19: nPrev := i . cost: log(d)
20: end if
21: end for

Circuit cost: 11log(d) · d

154

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Definitions
	Problem Statement
	Road-map

	Literature Review
	First ORAM, and Hierarchical Construction
	``Square-Root'' ORAM
	Hierarchical ORAM
	The (log(n)) Asymptotic Lower-bound

	Binary-Tree ORAM
	Path-ORAM
	Access
	Recursive Position Map
	Complexity

	Yao's Garbled Circuit
	Optimizations

	2PC-Circuit-ORAM
	2PC-Sqrt-ORAM
	2PC-FLORAM
	Private Information Retrieval
	Distributed Point Function
	FLORAM Construction

	Summary of 2PC-ORAM

	Method Overview
	Study, Design, and Customize 3PC Protocols
	Analysis of 3PC-ORAM

	First Customized 3PC-ORAM
	Technical Overview
	Three-Party Protocol Building Blocks
	3PC-ORAM Protocol
	Protocol Analysis
	Implementation and Testing

	3PC-Circuit-ORAM
	Technical Overview
	3PC-Circuit-ORAM Protocol
	Security
	Performance Evaluation

	3PC-Sqrt-ORAM
	Technical Overview
	Access Protocols
	AccFirst, AccMid, and AccLast
	Initialization

	Analysis
	Implementation and Concrete Performance

	3PC-DPF-ORAM
	Definitions
	Random Access Machines (RAMs)
	Oblivious RAM (ORAM)
	Oblivious Reading/Writing
	Distributed Point Functions
	Labeled Private-Key Encryption

	Two- and Three-Server DPF-ORAM
	PIR/PIW Schemes
	Two-Server DPF-ORAM
	Three-Server DPF-ORAM

	3PC-DPF-ORAM
	Implementation and Performance

	Results and Conclusion
	Contributions and Improvements of 3PC-ORAM
	Conclusion

	Bibliography
	Supplementary Algorithm Figures
	Algorithms for Client-Server Path-ORAM PathORAM
	3PC-Circuit-ORAM Auxiliary Protocols
	Protocols for Retrieval
	Protocols for Reduced-Round Retrieval
	Protocols for PostProcess
	Protocols for Eviction

	3PC-Circuit-ORAM Routing Circuit
	Main Routing Circuit
	Prepare Array dp
	Prepare Arrays and t
	Making the Eviction Map into A Cycle

