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ABSTRACT OF THE DISSERTATION 

 
Mean-Feature and Centroid Estimations:  

A study on how the human visual system processes these two summary 
statistical representations 

 
By 

 
Laris M. Rodriguez Cintron 

 
Doctor of Philosophy in Cognitive Neurosciences 

 
 University of California, Irvine, 2019 

 
Professor Charles E. Wright 

 

When presented with a complex scene our visual system relies on perceptions that 

occur pre-attentively, or in just a fraction of a second.  This ability, known as summary 

statistical representations, allows us to get the gist of a group of items.  The studies 

presented in this thesis are focused on two of these summary statistical representations, 

the centroid and the mean-feature estimations, and are designed to understand mean-

feature estimations in the centroid paradigm framework.  First, we compared observers’ 

performances between mean-size and centroid estimations. There were two different 

centroid tasks: in one, observers were asked to give more weight to larger items and in 

the other they were asked to ignore size. In a third task, observers judged the mean size 

of the same stimuli used in the centroid tasks.  Results from this study showed that 

observers were able to either ignore or use size to make centroid responses efficiently, 

but that mean-size judgments were inefficient. To asses the generality of these results, 

in a second study we asked observers to estimate the mean luminance of a group of 

items and compared their performance when asked to estimate the centroid giving more 

weight to lighter items and less weight to darker items or to estimate the centroid 

ignoring the luminance of the items.  Again, we found high Efficiency in both centroid 
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tasks, but low Efficiency in the mean-luminance task. Finally, we explored whether the 

distinction between the ventral-dorsal streams of visual processing as described by 

Goodale & Milner (1992) might provide a plausible explanation for the difference in 

performances between the mean-size and centroid task.  We found that when the 

relative mean size of one of three groups was used to select and guide movements 

(dorsal processing) to that group, observers were again able to use size information 

efficiently.  
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Chapter 1 

Literature Review 

As ensemble is defined as a visual representation that minimizes individual features to 

provide a single description of a group of items (Ariely, 2001).  When representing 

multiple objects as an ensemble, our visual cognition is enhanced to process the gist of 

the scene and we use selective attention to process only the most relevant information 

(Alvarez, 2011; Chong & Treisman 2005). While this ensemble representation provides 

us with an accurate description of the gist of the group, it restricts the processing of the 

details of any individual features.  For example, when we are scanning a supermarket 

stand to buy the apple, it would be nearly impossible to attend to, and remember the 

individual sizes of each apple.  However, these restrictions are a small price to pay since 

summary statistical representations provide us with a helpful and efficient way to 

process large amounts of information for multiple items.  

The consensus of most of the previous research is that people are very good at the 

discrimination of the average size (or mean size) of a group. Ariely (2001) and Chong & 

Treisman (2003, 2005) found that observers were able to judge better the mean size of a 

set independently of its set size, heterogeneity, numerosity and density than determining 

if a single item was a member of that set.  Based on these results they concluded that 

our visual system is able to judge the mean size of a set through a parallel process using 

a global strategy (Ariely 2001, Chong & Treisman 2003, 2005).  This means that when 

judging the mean size of a group of items, our visual system gathers information from 

the whole display, processing all the items presented in the stimuli simultaneously.  

Ariely (2001) claimed that observers were not only very good at calculating the mean 

size of a group, but that increasing the number of items in the display did not impair the 
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accuracy of the estimation.  In his experiment, observers were presented a display for 

500ms.  Each display had circles of four different sizes, and each display could consist 

of 4, 8, 12 or 16 circles. A second display followed, in which a single circle was displayed 

(Figure 1.1). At that point observers were asked to perform two different tasks: to 

determine if the circle presented in the second display was a member of the first group 

of items or if the circle was smaller or larger than the mean size of the group of circles 

presented in the first display. The results showed that observer’s performance was 

above chance, for a threshold between 6-12%, when they were estimating the mean 

size of the set.  This performance was substantially better than when asked if the second 

circle was a member of a set. 

 

Figure 1.1:  Schematic representation of Ariely (2001) experiment. On the left there is an example 
of a display with 16 circles with groups of 4 different sizes.  To the right is the second display, 
which prompted the observers’ response.  

Building on the results presented by Ariely (2001), Chong and Treisman (2003) 

conducted several experiments in which they tested if any of a series of manipulations 

that added complexity to the task would impair observers’ performance. In their first 

experiment, observers were presented a divided screen (Figure 1.2) and were asked to 

discriminate the mean size between the two sides of the displays.  In each trial, the 

divided displays presented different conditions for comparison: heterogeneous sets, 

homogenous sets or single items (clearly no averaging calculation is needed in the 
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single item condition and, arguably, this is true also for the homogenous condition). The 

sessions consisted of mixed blocks of two modes of stimuli presentation: simultaneous 

or successive (Figure 1.2).  In the successive presentation, the first display was located 

on one side of the visual field and after 100ms or 2 seconds a second display followed in 

the opposite side of the visual field. In the simultaneous condition, the divided screen 

presented the two displays at the same time. The simultaneous version of this 

experiment, along with Attarha, Moore & Vecera (2014) which will be described later, 

were used as an inspiration for the display we used in the experiment described in 

Chapter 5. 

Observers achieved 75% accuracy, when the difference in mean diameter was between 

6-8% for a simultaneous presentation, and between 8– 10% for the successive 

presentation.  Presentation time had little effect on the thresholds for the homogeneous 

arrays of circles (Figure 1.3). The thresholds for the heterogeneous arrays (mean) and 

the single circles did increase with delay, but they argued that this increase was minimal 

Figure 1.2: Schematic Representation of Chong and Treisman (2003) 
experiment. On the left an example of simultaneous presentation for a 
heterogeneous set and on the right an example of a successive 
pretention for a homogenous set. 
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(2%).  They concluded that observers’ performance under brief exposures was 

unaffected, due to a global, parallel process and suggested that it is unlikely that, with 

such brief exposure, observers have the time to use any other strategy (Chong and 

Treisman, 2003).  

 

Figure 1. 3: Results Experiment 1 Chong and Treisman (2003).  X-axis shows the duration of the 
stimulus exposure, the y-axis shows the percent diameter difference between the two displays on 
any given trial. 

 

The second experiment was very similar to the simultaneous displays used in the first 

experiment, except that they varied the display presentation time within blocks.  In the 

first experiment the exposure duration ranged from 100 ms to 2 seconds, but in this 

experiment it ranged from 50 ms to 1 second. Performance was not impaired by a brief 

successive exposure of 50 ms, for all conditions - single size items, homogeneous and 

heterogeneous groups. 
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The third experiment was conducted to test if observers were really averaging sizes.  

They presented observers with groups of circles that were chosen from four different 

distributions – uniform, two peaks, normal, and homogenous (Figure 1.4).  They argued 

that these distributions present a challenge to the observer that eliminates the possibility 

of using any strategy other than averaging the whole display.  How? They posit that 

when presented with different distributions, observers were forced to compare the 

means of the whole group (Chong and Treisman, 2003).  They do not see a 

subsampling strategy as plausible strategy being used because, they argue, that if 

observers were basing their judgments on a fixed-size subsample, then an increase in 

set size should lead to a decrease in performance, which they did not find.  Observers 

did obtained thresholds 2% higher when discriminating displays from the same 

distribution.   Their claim again is that a 2% is just a marginal increase of threshold.  

 

 

Figure 1. 4: In Experiment 3, Chong and Treisman varied the distribution of the display with that 
aim of presenting more difficult challenge for the mean size estimation.  Since performance was 
minimally affected they argue that observes must be using a global strategy. 
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In another study conducted by Chong and Treisman (2005) they tested observers’ ability 

to estimate the mean size of a group in three different experiments where: (1) 

numerosity and density of the display was manipulated (Figure 1.5), (2) mean size had 

to be determined in sets with two different colors (blue and green), and (3) when the 

colors of the members of the set were cued or non-cued.   

The aim of the first experiment in this study was to understand the weight observers 

gave to numerosity and density when judging the mean size. The display was split in two 

arrays - one array was presented on the left visual field and the other on the right visual 

field (Figure 1.5). Each trial presented observers with blocks in which the density and 

numerosity of one of the visual fields was either matched or mismatched to the other 

visual field.  The task was to determine which visual field had dots with the larger the 

mean size.   They found that the manipulation of numerosity or density in their displays 

had little effect in the observers’ performance. 

Figure 1. 5: Schematic representation Chong and Treisman 
(2005) Experiment 1. In this example the array on the left was 
less dense (they called it sparse - S) that the one on the right 
(dense - D). 
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Figure 1. 6: Results from numerosity and density experiment (Chong and Treisman, 2005). S 
stands for the sparse condition and D for the dense condition.  In the matching displays, 
performance was not impaired by the size of the set or how sparse or dense they were.  The 
performance in the non-matching displays performance was slightly worse than performance in 
the matching displays, but it was still 15 % over chance level. 

In the second and third experiments color was introduced as a variable.  The display 

presented either 1 green and 1 blue circle or a set of 12 circles of each color. The task 

was to discriminate which was the subset with the larger mean size between the two 

colors by selecting either blue or green.  The thresholds obtained were consistently low; 

with observer performing slightly better when judging the group or 24 items, than the 

comparing only two circles.  These threshold were also better that those obtained in the 

previous experiment (Chong & Treisman, 2003).  Note that this task required that the 

observer use some filtering between the two colors, an idea further explored in the next 

experiment.   

In the third experiment a filtering task was added.  A predetermined relevant color (blue 

of green) was cued or non-cued.  The non-cued condition included trials in which the 

stimulus and the same conditions used in experiment 2 – 12 blue and 12 green circles. 

Other trials presented 12 circles of different size in a single color.  Two test circles of the 

“relevant color for that task” followed these displays.  The task was to determine which 



 8 

of the two test circles matched the mean size of the color subset.  For the cued condition 

the observers were presented with a more sophisticated filtering challenge.  To cue a 

color, the fixation cross that preceded the first display included two lines of the color that 

was relevant for that trial. They found no difference in performance between the cue and 

non-cued conditions. 

For all three experiments the results showed that observers were able to discriminate 

the mean size independently from the numerosity or density of the display (Figure 1.6).  

In the matching displays, performance was not impaired by the size of the set or how 

sparse or dense they were.  Even though performance with the non-matching displays 

was not as good as in the matching displays, performance was 15 % over chance level.  

Also, they found that even when color was a variable, observers were able to determine 

which color subset had the larger mean size accurately (around 80%).   Additionally, the 

fact that the relevant color was cued or non-cued, did not affect performance either.  

The experiments described above, led Ariely (2001) and Chong and Treisman (2003 & 

2005) to conclude that observers were using information from the whole display to make 

mean size judgments.  They base this claim on the fact the performance of observers 

was minimally affected by the many factors they tested – set size, color (cued or non 

cued), density, numerosity, size distribution of the set and display exposure.  Their main 

arguments are the good performance after brief exposures - as low as 50 ms - suggest a 

“parallel, or very rapid serial, extraction of the mean”  (Chong and Treisman, 2005), and 

that a global strategy explains the fact that performance was not impaired by an increase 

of set size (Ariely, 2001). If an observer is truly using a sub-sampling strategy, he or she 

will be missing more relevant data when a set with a large number of items presented.  

Therefore, performance should be increasingly impaired as set size is increased. 
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In addition to the global and parallel claims mentioned above, Ariely (2001) proposed 

that the visual system reduces and combines the details of a group of items to create an 

ensemble representation and that the details of its individual members are then 

discarded.  Alvarez & Olivia (2008) conducted three multiple-object tracking experiments 

to study how the visual system processes withdrawing of attention from targets. All three 

experiments required observers to identify and follow targets.  These targets were a set 

of four flashing items, among a group of four non-flashing distractors (Figure 1.7).  After 

an uncertain amount of time, between 6-10 seconds, the items stopped moving and a 

number appeared in the center of screen indicating if either one or more items were 

missing from the display. Observers then were asked to click where: (1) one item was 

missing or  (2) if there were more items missing to click the centroid of that group of 

items. In two experiments the targets were the same color as the distractors (black), 

while in a third experiment the target was white and the distractors were black, making 

the identification process easier.  

 

Figure 1. 7: Schematic Representation of Alvarez and Olivia (2008) experiment. Observers were 
asked to identify and track targets.  After a 200ms they were asked to locate single or the centroid 
of missing items.  Observers performed better when they were asked to locate the centroid of the 
missing group of distractors. 

In all three experiments Alvarez and Olivia (2008) found that observers’ performance 

was worse when just a single item was missing; which confirms the claim that our ability 
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to process features of single items is worse than when we generate summary statistical 

representations to an ensemble (Ariely 2001). But they also found that performance was 

better than chance at selecting the location of the centroid of the distractors when a 

group of items was missing.  These results suggest that at some level, observers are 

processing both targets and distractors in the display, even though attention has been 

withdrawn from the distractors (Sun, Chubb, Wright, Sperling, 2018).  

Myczek and Simons (2008) challenged the claim that our visual system relies on a 

parallel system that uses information from the whole display to calculate the mean size 

(Ariely 2001, Chong Treisman 2003 & 2005). The alternative proposed by Myczek and 

Simons (2008) did not eliminate the possibility of a parallel mechanism that uses a 

global strategy as plausible explanation, but they claimed that observers could be using 

other strategies, such as sub-sampling, to calculate mean size of a sample set with the 

same accuracy. The results of previous experiments showed that observers were able to 

calculate quickly and accurately, the mean size of a sample set and that set size and 

heterogeneity did not impede this ability. Myczek and Simons replicated the results of 

previous experiments, specifically the ones conducted by Ariely (2001) and Chong and 

Treisman (2003 & 2005), and put them through a series of computer simulations.   

In these simulations an (otherwise) ideal observer processed only a random sub-sample 

of the stimuli: i.e., the computer would choose one, two, or three of the stimulus objects 

at random and calculate the mean size of a sample. Figure 1.8 shows the results of one 

of the simulations in which sub-sampling as few as 2 random items, out of a set if 8, 

could achieve similar results to the data of the real observers.  
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Figure 1. 8: Results from one of the Myczek and Simons (2008) simulations.  Computer 
simulations were able to achieve similar performance to previous experiments by randomly 
selecting 1, 2 or 3 items. 

Similar simulations were conducted for all the experiments published by Ariely (2001) 

and Chong and Treisman (2003 & 2005).   In one of this simulations they found that for a 

set stimuli with small difference in sizes subsampling 1 item out of a 4, 8, 12 or 16 set 

size, was enough to achieve the 75% accuracy as defined by Ariely, (2001).  For some 

of the Chong and Treisman (2003 & 2005) experiments, Myczek and Simons (2008) 

found that a subsampling four out of eight items produces simulated performance 

comparable to that of actual observers.   

The subsampling simulations of Myczek and Simons (2008) are similar to the Efficiency 

calculations performed for the centroid paradigm presented by Sun, Chubb, Wright, & 

Sperling (2016).  However, Sun et al. point out the almost certainty that an observer’s 

response is influenced by other sources of error that should not be overlooked analysis. 

Because of this, Sun et al. view Efficiency as a “lower bound on the proportion of display 
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items included by the observer in his/her centroid computation”.  As we shall see in 

Chapter 3, this insight from the Efficiency analysis could help reconcile the results 

obtained in Myczek and Simons (2008) simulations with the claims that mean size 

estimates result from a process that is global. 

Sun, et al. (2016) introduced the Efficiency parameter, and it has been used in the 

analysis of several experiments in which the centroid paradigm is tested. The centroid 

task consists of estimating the center of mass (or the average location of a group of 

items.  In this particular experiment, observers were asked to judge the centroid of (1) all 

dots, (2) lighter-than-background dots and (3) darker-than-background dots. The 

Efficiency values among observers were between 75% and 90%. The interpretation of 

these results is that observers are processing most of the relevant data presented in the 

stimuli (at least 75%), in both conditions – filtering and no filtering.  As will described in 

Chapter 2, this Efficiency analysis provides a mathematical framework that allows us to 

compare the results performance between two different tasks such as the centroid and 

the mean size task. 

Summary statistical representations such as the centroid, mean size or mean luminance 

are subject to several sources of errors. In their centroid research, Sun et al. name two 

main categories of errors: (1) corruption of responses by random error, and (2) 

corruption of responses by nonrandom error. Missing some of the items in the stimuli is 

an example of a random error. Some of the errors an observer could also be making are: 

mislocalizing of the item(s), inaccurate calculation of the centroid (or mean size of the 

set) and movement errors when clicking on the screen to indicate the location of the 

centroid. 
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Both the sub-sampling simulations (Myczek and Simons, 2008) and the Efficiency 

calculations (Sun et al., 2016) use missed stimuli to account for the error produced by 

observers.  The difference between the two analyses is that the Efficiency approach 

views missed stimuli as only one of a number of sources of error and attempts to identify 

and quantify as many of the other sources of error as possible.  Any error due to a 

process other than missed stimuli that is not accounted for will produce an overestimate 

of the number of stimuli missed and thus an underestimate of Efficiency.  The Myczek & 

Simons (2008) simulations assumes that all the error is due to the proportion of stimuli 

missed, so it is reasonable to assume that they must be overestimates.  A high efficiency 

value (ranges between 0-1) means that the observer is making a sensible computation 

given that all the other errors are accounted for by an unbiased estimate of the standard 

deviation of his/her response.  

Chong and colleagues (2008) argued that the sub-sampling strategy proposed by 

Myczek and Simons (2008) is hard for humans to implement.  To test their claim, they 

conducted a series of experiments to confirm that a parallel mechanism that uses a 

global strategy is still the most plausible explanation for this type of calculation.   

In their first experiment observers were asked to discriminate the larger mean size in two 

sets presented side to side.  One of the aims of this experiment was to test if observers 

were switching between focused attention strategies (sub-sampling, calculating the 

mean size for the largest and smallest circles, or choosing the largest circle on each side 

and compare them).  They presented observers three conditions: a heterogeneous 

display, a homogeneous display; and finally, they mixed the conditions of each display (a 

set with a uniform distribution, homogenous distribution or varied frequency distribution).  

Observer’s accuracy was around 80% across all conditions.  They argued that these 

results suggested that the use of attention is distributed across the whole display rather 
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than to just a few items.  In a different experiment they found that observers performed 

poorly when presented with a smaller sample than when a larger sample was presented.  

They hypothesized that if observers used a sub-sampling strategy, a small set size 

should not have impaired their performance since they should be using the same 

number of sampled of items when calculating average on a larger set.  

Robitaille and Harris (2011) also tested the claim that the extraction of summary 

statistics from a complex scene employs a sub-sampling strategy instead of a global 

mechanism. They conducted two experiments. The first one was similar to the 

experiment conducted by Ariely (2001) where observers were asked to estimate the 

average size of the circles.  In the second experiment, they used orientation bars instead 

of circles and introduced a visual search task.  A new measurement was added to both 

experiments - reaction time (RT).  They hypothesized that: (1) if a visual search was 

used to form summary statistical representations, reaction time should increase with a 

larger sample set and that (2) if subsampling was used the reaction time would remain 

the same of the number of stimuli presented, because the estimation would used the 

same “sampled” stimuli. 

In the first experiment observers were presented displays of 2, 4, 6, 8, 10 or 12 items 

controlled by a staircase procedure that was used to adjust the difficulty of the task. 

Similar to Ariely (2001), the task was to discriminate if a target circle was smaller or 

larger than the sample set.  The target, which was always the same size for all trials, 

was presented first followed by a blank screen.  Then the stimuli set was presented for 

94ms (brief exposure) in some trials or until response (large exposure) in other trials 

(Figure 1.9).  
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Surprisingly they found that both accuracy and reaction time benefited from a larger set 

size (Figure 1.10). Their hypotheses were that if RT slowed down, a serial search was 

suggested and if RT remained equal a sub-sampling strategy could be a viable 

alternative, because observers would be sub-sampling the same number of items in 

each display. However, the data showed that RT decreased with a larger set size.  

Robitaille and Harris (2011) reasoned that these results are better explained by the use 

of a global strategy, but they do not know why larger sets caused a reduction in RT.  

They offer two possible explanations to these behaviors.  First, they reasoned that with a 

larger sample set, the calculation of a summary statistical representation could be 

benefiting form a redundancy gain effect.   Alternatively, they proposed that with a larger 

set size the mean size of the set gets closer to the mean size of the population, making 

observers ability to discount items that are not essential to the mean size calculation. 

Figure 1.9: Schematic Representation of stimuli and trial 
sequences from the two experiments conducted by 
Robitaille and Harris (2011).   
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Figure 1. 10: Results from Experiment 1- Robitaille and Harris (2011).  Bars represent accuracy, 
and a solid line represents reaction time.  Reaction time benefited from set size. 

The aim of their second experiment was to understand how reaction times (RT) and 

accuracy are affected by the task differences of a visual search task and a summary 

statistical task.  The set consisted of orientation bars – sets of 2, 4, 6, 8, and 10. This 

time observers were presented with two different tasks: to determine if the target bar 

was more horizontal or more vertical than the stimulus set (summary statistics) or if the 

target was “present” or “absent” from the set (visual search).  For the summary statistic 

task, set size had no effect in accuracy, but the RT decreased with a larger set - 

replicating the results of experiment 1. The results were different for the visual search 

task – RT slowed down with an increase in set size and accuracy was decreased by 

larger set size (Figure 1.10).  They concluded that, in the summary statistic tasks, 

observers are using a rapid strategy that required attention to be distributed across the 

whole display to make their estimates (parallel mechanism), but that a slow serial search 

is used to process individual items. 
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Figure 1. 11: Results from Experiment 2- Robitaille and Harris (2011).  Bars represent accuracy, 
and a solid line represents reaction time.  A visual search in larger sets impaired both accuracy 
and reaction time. 

From the results of these two experiments Robitaille and Harris (2011) concluded that a 

parallel mechanism and global strategy is responsible, to explain observers’ accuracy 

performance.  However, these results do not eliminate the possibility of the mean size 

judgment being a low-Efficiency task.  The fact that RT benefited from a larger set, does 

not negate the possibility that the observer are using a sub-sampling strategy, making 

errors such as miscalculating the mean size of the group, misregistration of the types of 

different items, or motor response execution (Sun et al., 2016).        

Marchant, Simons and de Fockert (2011) also challenged the claim that a mean size 

calculation is result of a global strategy.  In their experiments, they set out to study the 

capacity and limitations of a parallel mechanism when calculating the average size of a 

set.  They saw these limitations as possible explanation the results of Myczek and 

Simons (2008) simulations.  They noted that studies that claimed that the calculation of 

average size was a parallel process used limited heterogeneity (two sets of different 

circle sizes) in their samples (Chong & Treisman, 2003 & 2005). With the aim of adding 

more complexity to the displays, they added more sizes among sample sizes (4 or 8 
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sizes) to increase the heterogeneity of the sample and they called these Irregular Sets.  

In addition and to re-create previous results, Marchant and colleagues presented their 

observers displays with circles of only two sizes (which they called ‘Regular Sets’). The 

task was the same in both experiments. Observers viewed a set of circles and were 

asked to estimate the mean size by adjusting the size of a single circle presented in a 

second display, by pressing keys on their keyboard (Marchant, Simons & de Fockert 

2011). 

Marchant and colleagues hypothesized that if the judgment of average size is a parallel 

process that uses a global strategy, set size and its heterogeneity shouldn’t matter. 

Alternatively, if increasing heterogeneity of item sizes impairs observer’s performance, a 

parallel mechanism, which uses a global strategy, could not support the estimation of 

mean size.   Their results showed that observers’ performance was indeed poorer in the 

Irregular Set trials, meaning that increasing set size and heterogeneity suggested a 

limited capacity.  They argue that the parallel model that uses a global strategy works 

only for displays of limited heterogeneity and that for increased heterogeneity a sub-

sampling strategy was used. The heterogeneity of the Irregular Sets adds more 

complexity to the mean size calculation.  This could also mean that the observers are 

more prone to make mistakes and possibly making this task a low Efficiency one.  

A recent study by Attarha and colleagues (2014) showed that there is a fixed processing 

capacity of summary statistics representations for multiple ensembles, but unlimited 

capacity for single ensembles.  They hypothesized that unlimited capacity models 

predict no difference between simultaneous and sequential conditions and that limited 

capacity will present an advantage for sequential conditions over simultaneous.  They 

set up three experiments in which observers were presented a display with four clusters 

with circles of different sizes. One of the clusters was the target and the other three were 
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distractors.  In one experiment the task was to report whether the mean size of the target 

cluster was relatively smaller or larger than the mean of the distractor clusters (Figure 

1.12).  The results (Figure 1.13) showed a better performance in the sequential condition 

suggesting that the calculation of mean size engaged a fixed-capacity process when 

averaging is required for multiple clusters (or ensembles).    A control experiment was 

conducted to eliminate the possibility that other factors were affecting performance in the 

first experiment described above. The task was the same, but now the calculation of 

mean size was removed from the task by showing clusters of circles of the same size.  

The results of this experiment showed no advantage to of sequential over simultaneous 

presentations, confirming that the results from the first experiment were due to the 

average size calculation.  In the third experiment, their goal was to analyze the capacity 

of a single ensemble.  To do this they combined the four clusters presented in the first 

experiment into one single cluster.  All aspects of the experiment were kept the same, 

but in this case observers were asked to report whether the average of the single set 

was smaller or larger than the probe circle that had been presented throughout the 

practice block.  In this experiment observers’ performance did not change under 

sequential and simultaneous conditions suggesting an unlimited capacity process 

(Figure 1.14).  They argued that an ensemble representation of the environment 

bypasses the limitations of our perceptual and cognitive systems and serves to guide 

later visual processes (Attarha, Moore & Vecera 2014).   

In the next chapters we will study the performances between mean size and centroid 

estimations.  Each experiment will present observers with different tasks with the aim to 

understand how this means perceptions compared with centroid in the framework of an 

Efficiency analysis.  
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Figure 1. 12: Illustration of display of the experiment conducted by Attarha & Colleagues (2014). 
In their experiment observers had to report is the target cluster was smaller or larger than the 
distractors. 

 

 

Figure 1. 13: Results of the one of the experiments conducted by Attarha & Colleagues (2014). 
When the task was to report whether the mean size of the target cluster was relatively smaller or 
larger than the mean of the distractor clusters, performance was better in a sequential condition; 
suggesting a fixed capacity. 

 



 21 

 

Figure 1. 14: Results of the one of the experiments conducted by Attarha & Colleagues (2014). 
When observers were asked to asked to report whether the average of the single set was smaller 
or larger than the probe circle that had been presented throughout the practice block, 
performance was the same for both simultaneous and sequential displays; suggesting an 
unlimited capacity. 
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CHAPTER 2:  

Overall Research Approach 

The three studies presented in this thesis are designed to understand mean-feature 

estimations in the centroid paradigm framework. We were able to compare 

performances across all the tasks by modifying the Efficiency analysis as described by 

Sun et.al (2016) and using Efficiency as a common measure by which to compare 

results across tasks.  Before we explain how the Efficiency value was obtained and 

used, a brief description of the three studies follows. 

Overview of the three studies: 

Chapter 3: How can we use perceived size? Centroid versus Mean-size 
Judgments 

In Chapter 3 we compared performances between two variants of the centroid task and 

the mean-size task.  Observers were presented with displays containing 1, 3, or 9 items 

that varied in size with the sizes drawn from a triangular distribution.  In different 

sessions that used similarly generated and presented stimuli they were asked to: (1) 

estimate the mean size by adjusting the size of a probe; (2) estimate the centroid 

ignoring the individual sizes of the stimulus items and (3) estimate the centroid giving 

more weight to larger items and less weight to smaller items.   

Chapter 4: How do Mean-Luminance judgments compare to Centroid 
estimations? 

For this study, observers were presented with displays containing 1, 3, or 9 squares of 

the same size, but different luminance (brightness).  Each set was created with 

luminance levels that were randomly selected without replacement from a discrete 

triangular distribution. This discrete distribution was constrained to nine equally spaced 
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levels, linearized in luminance space - with the middle value solely used for the 

background. These values were specifically adjusted for the monitor used in the 

experiment and room illumination.  

In different sessions that used similarly generated and presented stimuli observers were 

asked to: (1) estimate the mean luminance by adjusting the brightness of a probe; (2) 

estimate the centroid ignoring the luminance level of the items, and (3) estimate the 

centroid giving more weight to lighter items and less weight to darker items. 

 
Chapter 5: The availability and use of size in mean size estimations 

In this experiment, the display consisted of three clusters of stimuli, each containing four 

items varying in size, randomly positioned around points equidistant from fixation and 

evenly spaced around the circle. In the simplest form of this experiment, the size-choice 

condition, observers were asked to choose, from among the three clusters presented, 

the cluster with the largest and smallest mean sizes.  The observer made a correct 

response by moving the mouse to click anywhere within a pie-shaped portion the 

subsumed one-third of the circle that contained the chosen cluster; a response in some 

ways analogous to the one used in the centroid estimations. Some sessions also 

required the observer to select the correct clusters by clicking as close as possible to the 

centroid of that cluster. In some of these sessions, the centroids were to be formed 

ignoring the size of the of the stimulus items in the cluster; in other sessions, the centroid 

were to be formed giving more weight to large items and less weight to small items. 

Although their accuracy was not emphasized in the size-choice condition, the location of 

the centroid responses was measured in all sessions. In the two conditions emphasizing 

centroid accuracy, this was treated as a secondary task, with the choice of the correct 

large and small clusters constituting the primary task. 
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B. Overall Analysis 

In the experiments reported here, the stimulus types are: chapter 3, squares of different 

sizes; chapter 4, squares of the same sizes, but different luminance, and chapter 5, the 

mean size of clusters of four items that vary in size. The tasks in chapter 3, and chapter 

4 are based on two target filters. In the equi-weighted centroid task, the target filter gives 

equal weight to all the squares presented: for chapter 3 of all 9 sizes and for chapter 4 of 

all 9 levels of luminance. In the size-weighted centroid task and for the mean size task of 

chapter 3, the target filter gives a weight to each stimulus proportional to the size (more 

weight to larger items). A similar weighting scheme also should apply in chapter 5. In the 

luminance-weighted centroid task and for the mean luminance task of chapter 4, the 

target filter gives a weight to each stimulus proportional to the luminance (more weight to 

lighter items).  

Influence Functions and Efficiency 

The data from all three tasks were analyzed using procedures similar to those described 

by Sun, Chubb, Wright & Sperling (2016), with minor modifications for the data from the 

mean-estimation task.  The first step in these analyses generates estimates of the 

observer’s attention filter, !!. An observer’s attention filter is the vector of weights (one 

for each of the 8 square-widths used in our stimuli) used by the observer when 

performing a task with a particular target filter ϕ. The tasks in these experiments are 

based on two target filters. In the equi-weighted centroid task, the target filter ϕ gives 

equal weight to the squares of all 8 widths w: i.e., ! !! =   1/8, for all i from 1 to 8.  In 

the weighted centroid task and the mean-estimation task, the target filter ϕ gives weight 

to each square equal to its guiding feature: i.e., ! !! =   !! !!! .   
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In the centroid task with target filter !(!), the correct response, T, on a given trial has x- 

and y-coordinates 

!! =
! !! !!!

! !!!
      and      !! =

! !! !!!

! !!!
                                      (1) 

where the sum is over all squares i in the display, !! is the width of the square i, and !! 

and !! are the x- and y-coordinates of its location.  Typically, however, the response of 

the observer deviates from this target location. 

We assume that the x- and y-coordinates of the observer’s response on trial t are given 

by  

!!,! = !!,! + !!,!     and    !!,! = !!,! + !!,!                                (2) 

where !!,! and !!,! are independent, normally distributed random variables with mean 0 

and some standard deviation !, and for some function !!(w), 

!!,! =
!! !!,! !!,!!

!! !!,!!
      and      !!,! =

!! !!,! !!,!!

!! !!,!!
  .                                            (3) 

In Eq. (3) !!,!, !!,!, and !!,! are the width and x- and y-coordinates of the ith square in the 

stimulus on trial t, and  !!(!) is the attention filter that the observer uses to perform the 

task. 

Similarly, in the mean-estimation task with target function ! , we assume that the 

observer’s response on trial t is  

!! = !! + !! 
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where !! is a normally distributed random variable with mean 0 and some standard 

deviation !, and 

!! =
1
!

!! !!,!
!

,                                            (3) 

where !  is the number of squares in the display, either 3 or 9 depending on the 

condition, and !! is the attention filter achieved by the observer in this task. 

A Bayesian procedure was used to derive parameter estimates.  This method used a 

Markov chain Monte Carlo simulation to extract a sample of vectors from the joint 

posterior density characterizing the model parameters (Gelman et al., 2014).  Each 

iteration of this process required evaluation of the likelihood function (or more properly, 

of the log of the likelihood function).  The likelihood function for the centroid task model 

given in Eqs. (2) and (3) is 

Λ !! ,! =
1

2!!!
exp

− !!,! − !!,!
!
− !!,! − !!,!

!

2!!
,                                            (4)

!

 

where the product is over all trials t.  And similarly, the likelihood function for the mean-

estimation task is 

Λ !! ,! =
1
2!!

exp
− !! − !! !

2!!
.                                            (5)

!

 

 

For simplicity, we use uniform prior distributions on all parameters whose bounds are 

well-outside what might reasonably be expected. 
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In any MCMC process, one starts with some arbitrary guess at the parameter vector V 

(which will eventually be thrown away) and sets !! = !.  (In the current application, the 

vector V contains guesses at the 8 values of the function !! as well as a guess at  !.)  

Then, one iterates the following steps some large number, Niter, of times:  

Pick a candidate parameter vector, C, in the neighborhood of the last sample, S!!!.  

Then for  

! =
Λ !

Λ !!!!
, 

if P > 1, set !! = !; otherwise, set 

!! =
!          with  probability          !

!!!!  with  probability  1 − !
 

Provided that the procedure for choosing candidates satisfies certain conditions, as NIter 

goes to infinity, this process produces a sample from the posterior joint density 

characterizing the model parameter vectors (Hastings, 1970). For both the size and the 

centroid analyses, the initial values of !! !! = 1/8 for all i, and the initial value of σ was 

10. To ensure that the samples of this process used to generate estimates were stable, 

Niter was 20,000 and the first 10,000 samples were discarded. To ensure that the 

samples used to generate estimates were independent, of the remaining 10,000 

samples only every fortieth was retained. 

A key measure that we have adapted from Sun et al. (2016) to characterize the results 

of this experiment is Efficiency. Efficiency is particularly useful because it is a measure 

that can be used to compare the response error observed in tasks as disparate as the 

centroid tasks and the mean-estimation task. Sun, et al. (2016) developed this measure 
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for centroid data but simply called it Efficiency. The Efficiency value was estimated as 

the proportion of the stimulus squares that would need to be processed by an ideal 

observer using the observer’s estimated attention filter, !!, rather than the target filter, 

ϕ.  The value Efficiency ranges from 0 to 1. Because this is the estimate for an ideal 

observer, it is a lower bound on the proportion of squares that would have been 

processed by the actual observer. 

Efficiency estimates were obtained using a univariate optimization function in Matlab, 

fminsearch. To evaluate a proposed value of Efficiency, 100 decimations of the stimulus 

cloud used on each trial was generated. For every decimation, each square in the cloud 

had a probability equal to the Efficiency value of being included in the centroid (or size) 

calculation. The observer’s estimated attention filter was used to weight the included 

squares in that calculation. The difference between the estimated centroids (sizes) and 

the actual responses were combined across decimations and trials to guide the 

optimization process.  

Figure 7 illustrates how the Efficiency analysis works. Panel A shows a 9-item stimulus 

in the equi-weighted centroid task. The bullseye indicates the target centroid. To get a 

sense of how the Efficiency calculation works, consider Panel B, which shows an 

example in which an ideal observer, processing this display with Efficiency of .89, has 

based the centroid estimate on a random subset of 8 from the 9 tokens, producing an 

estimate that is, in this case, slightly shifted from the true estimate. Because the 

decimation is done independently for each item in the display, the ideal observer 

operating with an Efficiency of 0.89 would not always process 8 tokens, this is simply the 

expected number of items processed since 8 = 9 × .89; however, since it is the 

probability that an item is decimated that is fixed, sometimes the simulated ideal 

observer would be expected to process 8 or even all 9 tokens, and sometimes fewer 



 

 29 

than 8. As shown in Panel C, an ideal observer operating with Efficiency of 0.22, would 

be expected to produce the centroid estimate using only two tokens, although it could be 

more or less, and so would be expected to produce a larger error. These examples show 

a particular subset of the stimuli being used in the centroid calculation; however, as 

described above, the actual estimation was averaged over 100 subsets for the stimulus 

cloud used on each trial. 

 

Figure 2.1: Panel A is representation of an equi-weighted centroid estimation with an Efficiency 
value of 1. Panel B shows a typical equi-weighted centroid estimation with an Efficiency value of 
.89.  Note that the 0.89 Efficiency indicates that at a minimum 8 items out of the 9 are included in 
the estimation.  The observer’s response shown by the black bullseye is still close to the correct 
response, which is shown by the gray bullseye. Panel C, shows a typical response when the 
Efficiency is .22.  In this example, the observer’s centroid estimate (black bullseye) is far from the 
correct response (gray bullseye). 

Sun et al. (2016) describe Efficiency as a lower bound on the number of squares 

processed by the observer.  This is because the observer’s response is likely to be 

corrupted by sources of error other than decimation of the stimulus. For example, the 

locations or sizes of squares may be registered incorrectly, or the memory of the 

centroid estimate may deteriorate before the response can be completed. The Efficiency 

statistic treats the error from all of these sources as if it resulted only from random 

decimation of squares from the display. However, with this caveat of interpretation, 

Efficiency provides a useful way to compare the response error produced in different 

tasks. 
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CHAPTER 3:  

How can we use perceived size? Centroid versus Mean-size 
Judgments 

When looking at a group of flying birds, we easily detect the general direction the birds 

are flying, the center of mass of the group, their approximate number, and the average 

size of the birds.  Most of the time these perceptions occur pre-attentively - in just a 

fraction of a second. Visual researchers refer to this ability as the formation of a 

statistical summary representation. This ability allows us to get the gist of a group of 

items by effectively calculating the mean size of the objects in it, their centroid, 

numerosity, range and the variance of features like size, motion, location and orientation 

(Ariely 2001; Chong & Treisman 2003, 2005; Alvarez & Olivia, 2008; Alvarez, 2011; 

Marchant, Simons & de Fockert 2011; Robitaille, N., & Harris, I. M., 2011).  

The estimation of the mean size of a group of items has provoked the interest of many 

visual researchers studying summary statistical representations (Ariely 2001, Chong & 

Treisman 2003, 2005).  A recurring finding from this research is that observers can 

estimate the average size of the items in a group relatively well, certainly better than 

they can identify individual stimuli displayed (Ariely 2001).  Building on these results and 

previous research on mean size, one of the goals of this paper is to compare Efficiency 

of size estimation in two tasks: the mean-size task and the centroid task (Drew, Chubb & 

Sperling, 2010; Sun et al. 2016).  Of particular interest will be a variant of the centroid 

task in which observers weight stimulus items in proportion to their size, because in this 

weighting task observers must make use of both location and size information. 

As described in the Literature Review (chapter 1), most of the previous research on 

mean-size judgments has concluded that when making them, the visual system relies on 
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a global, parallel perception mechanism.  This suggests that observers incorporate most, 

if not all, of the displayed items into the mean-size estimate (Ariely, 2001; Chong & 

Treisman 2003, 2005). Initially, Ariely (2001) found that observers were able to judge the 

mean size of a group of disks better than they were able to determine if a single disk 

was a member of that set, independently of set size.  In his experiment, set size was 

varied (4, 8, 12, or 16 items) and used 4 distinct sizes within each set.  

In a follow-up paper, Chong & Treisman (2003, 2005) varied the heterogeneity of the 

disk sizes, the presentation mode (sequential vs. simultaneous) and their numerosity 

and density.  Across all these manipulations Chong & Treisman (2003, 2005) achieved 

results of 75% accuracy with a difference in size between 6-8%.  The fact that these 

discriminations were performed following relatively brief exposures (from 50 ms to 

1000ms) and that increasing the size of the sample set did not affect performance, led 

them to the conclusion that the estimation of mean size was based on including most, if 

not all, of the items presented on the screen.  

Recent research has supported the claim that the size of an individual item cannot be 

measured with complete accuracy in an ensemble representation such as the perception 

of the mean size of a group (Im & Halberda, 2012; Allik et.al, 2013). However this 

research has also challenged the claim that observers used most, or all of the items 

presented in a display in judging the mean size of a group of items (Myczek and Simons, 

2008; Im & Halberda 2012 Allik et.al, 2013), suggesting subsampling as a possible 

strategy. In a sub-sampling strategy, an otherwise ideal observer uses only a few items 

from the full set displayed to make the mean-size discrimination rather than attempting 

to include all of the items presented in the display.  Myczek and Simons (2008) 

simulated Ariely (2001) and Chong & Treisman (2003, 2005) experiments and 

suggested that observers could be using sub-sampling as one of their strategies when 
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making the mean-size discriminations. This interpretation assumes that all the errors in 

the observer’s responses are due to the observer failing to include all of the display 

items in their estimation. However, this assumption can be misleading as a model of 

human performance since other sources of error are almost certainly involved. 

In this paper, we present an experiment that compares performance for two summary 

statistical representations: centroid and mean size. We use an Efficiency analysis as a 

common framework to compare performance across these two tasks. The procedure 

used to estimate Efficiency and the differences between it and the measure originally 

proposed for the centroid task by Sun, et al. (2016) will be described later, but for this 

discussion, it can be understood as a lower bound on the proportion of information 

contained in the display that is incorporated into an observer’s judgment. But most 

importantly, our interpretation of the Efficiency analysis emphasizes the idea that failure 

to register stimulus items is only one source of error in these tasks.   

Observers viewed sets of 3 or 9 squares and were then asked, in different sessions to 

perform one of three tasks: (1) to estimate the centroid of the squares ignoring variations 

in item size, (2) to estimate the centroid of the squares weighting items in proportion to 

their size or (3) to estimate the mean-size of the squares. For the rest of this paper, 

these three tasks will be referred as: (1) the equi-weighted centroid task, (2) the size-

weighted centroid task and (3) the mean-size task. In these tasks, the size of the 

squares was defined as the length of a side, not the area (Solomon, Morgan & Chubb, 

2011). 

When deciding on stimuli to use in this experiment, we were concerned that, when 

presented with filled squares, observers could use mean luminance when estimating 

mean size.  However, there was also the concern that outline squares might fail to be 
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detected, especially those presented more peripherally. Because of these competing 

concerns, observers were presented with two types of stimuli in separate conditions: 

outlined squares and filled white squares.  As we will show, performance was similar for 

both classes of stimuli supporting the conclusion that observers were using size and not 

luminance in their estimations.  

In both centroid tasks used in this experiment (equi-weighted and size-weighted), we 

asked observers to estimate the center of mass (centroid) of a set of items. In previous 

research observers could judge the centroid of a group of dots when asked to attend to 

all dots and/or while selecting stimuli with a specific feature, such as attending darker 

dots versus lighter dots (Drew, Chubb & Sperling, 2010; Sun et al. 2016). They found 

that, with little training, observers were able to accurately determine the required 

centroids with efficiencies between 75% and 90%. These high efficiencies were obtained 

both when observers were asked to attend to all the dots or just to some targets.  These 

results suggest that centroid estimation is a highly efficient task.   

In contrast, results from Myczek and Simons’s (2008) simulations, suggest that mean 

size may be a less efficient task.  One of the simulations presented by Myczek and 

Simons (2008) showed that an ideal observer, attending to only 2 items out of a group of 

8 when estimating mean size, could still perform as well as the observers in experiments 

reported by Ariely (2001) and Chong & Treisman (2003, 2005). In other words, the 

mean-size task yields Efficiency as low as 25% (or 2÷8), much lower than the Efficiency 

estimations in the centroid task (75%-90%) found by Sun et al. (2016). 



 

 34 

In order to compare directly the efficiencies of these two tasks, we designed an 

experiment that minimizes the differences between the tasks other than the summary 

statistical representation to be estimated. For instance, the versions of the mean-size 

and centroid tasks that are typically studied have a procedural difference that might 

complicate comparing their results. In most studies of mean-size, observers submit 

binary responses, pressing one of two keys to indicate whether a probe disk is larger or 

smaller than the mean size of the stimuli (Ariely, 2001).  In other variations, the observer 

is asked to judge which side of the screen has the larger (or smaller) mean size by 

pressing a key on the keyboard (Chong & Treisman 2003, 2005). This presented a major 

methodological difference between the typical mean-size task and the centroid task 

since in the centroid task observers provide their responses in a continuous fashion by 

moving the mouse and clicking where they estimate the center of the mass is located.  

To make the observer’s response in the mean-size task similar to that of the centroid 

task, we presented observers with a probe square - the initial size of which was 

randomly selected by the computer - and asked them to indicate their response by 

moving the mouse to adjust the size of the probe square until it matched their 

remembered percept. Observers clicked on the mouse when they felt they had reached 

the size that represented their estimation of the group mean size. 

Another difference between the mean-size and the centroid tasks is that they require the 

observer to process different aspects of the stimuli: sizes or locations.  To explore this 

difference, we presented observers with a variation of the centroid task that we called 

the size-weighted centroid task.  This task requires a judgment based on two aspects of 

the stimuli: observers estimate the centroid giving proportionally more weight to the 

larger squares. Good performance - i.e., high Efficiency - in this task requires two things: 

that the observers register both the locations and the sizes of the stimuli accurately and 
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that they combine both types of information accurately when estimating the centroid.  

Figure 3.1 shows how the location of the centroid for a stimulus differs across these two 

tasks.   

 
 

Figure 3. 1: Example showing how the centroid response changes when asked to give equal 
weight to all the items (equi-weighted –EW- task) and when asked to give more weight to larger 
items (size weighted - SW- task) version of the centroid task for a set size of 9 squares.  
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Method 
 

Observers 

Eight observers, including the first author, participated in the experiment.  Four were 

novice observers, and the other four were experienced with the centroid task. All were 

students at the University of California, Irvine. Four were females and four were males 

between the ages of 17 and 40.  All observers reported having normal or corrected-to-

normal vision.  The present study was conducted in accordance with the regulations of 

the Institutional Review Board of the University of California, Irvine. 

 

Apparatus and Stimuli 

The observer sat in an adjustable height chair in a dark room and viewed the stimuli 

presented on an iMac (Mac OS X) with a 54 cm screen controlled by an ATI Radeon HD 

4670 graphics card from a distance of about 84 cm. The stimuli were generated using 

the Psychophysics Toolbox Version 3.0.8 (Brainard, 1997; Pelli, 1997; Kleiner et al, 

2007) for MATLAB (Version 7.1).   

Screen shots illustrating the two types of stimuli used in this experiment are shown in 

Figure3.2.  The size of the stimulus area was 500 x 500 pixels and the viewing angle 

was approximately 15 degrees. The outlined squares (Figure 3.2a) were constructed 

using white, 2-pixel-wide lines (115.80 cd/m2); the interior of each square matched the 

gray background luminance (46.00 cd/m2).  The other stimuli (Figure 3.2b) were filled 

white squares (115.80 cd/m2) on a gray (46.00 cd/m2) background. The display was 

constructed using squares of eight fixed sizes (0.23°, 0.27°, 0.34°, 0.45°, 0.52°, 0.67°, 

0.81°, 0.99°). Each set was created with sizes that were randomly selected without 

replacement from a discrete triangular distribution. The probability assigned to each of 
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the eight possible sizes to appear was: 5.63%, 10.25%, 14.75%, 19.38%, 19.38%, 

14.75%, 10.25%, or 5.63%.  This discrete distribution was constrained to have only 8 

levels, because we wanted to be able to estimate the influence of each level on the size 

and centroid judgments.  Given this constraint, this seemed a reasonable approximation 

of the Gaussian distribution used to determine item location. The dispersion of the 

location of the squares was determined by a Gaussian distribution with a standard 

deviation of 110 pixels (1.98°) centered in the middle of the screen.  The sampling from 

this distribution was constrained so that the edges of two squares were never closer 

than 6 pixels (0.11°) from each other. In addition, because, when going from 3 to 9 

stimuli, the standard deviation of the distribution of the centroids would normally be 

reduced by, after the stimulus clouds were generated, their centroids were then 

translated to a location separately chosen from a Gaussian distribution centered in the 

middle of the screen with a standard deviation of 63.5 pixels (1.9°). 

Figure 3.3 shows the timeline of events for both the centroid task and the mean-size task 

(using filled stimuli).  The mask stimulus constructed for each trial consisted of a 10x10 

jittered grid that filled the display area with a random sample of squares with sizes drawn 

from the triangular distribution used to generate the stimuli.  
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Figure 3. 2: Two screen shots of the displays used in the experiment. Figure 3.2A shows an example of a 
set size of 9 squares using the “outlined stimuli,” and Figure 3.2 B shows an example of a set of 3 squares 
using the “filled stimuli.” 

 
 

 

Figure 3. 3: The timeline of a trial (from a 9-item condition using an example based on filled squares). The 
two final frames show two possible (1) response screens and (2) feedback screens, one for the mean-size 
task and one for both the equi-weighted and size-weighted centroid tasks.  

!
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Procedure 

The present study consisted of three tasks: (1) the equi-weighted centroid task, in which 

observers strove to estimate the centroid of the stimulus array giving equal weight to all 

squares regardless of size, (2) the size-weighted centroid task, in which observers 

strove to estimate the centroid of the stimulus array weighting items in proportion to their 

size, with size being defined as the length of the square, and (3) the mean-size task, in 

which observers were asked to determine the mean size of the squares in the stimulus, 

ignoring their locations, by adjusting the size of a single square. An initial screen 

displayed the instructions for each session: whether to assess the size-weighted 

centroid, the equi-weighted centroid, or the mean size of the target stimuli.  The initial 

screen also displayed examples of each of the stimulus sizes using the type of stimuli to 

be judged - outlined or filled.  At the start of each trial, which began 500 ms after the 

initial block screen or the feedback from the previous trial ended, the observer was cued 

with a screen containing just the cue square, a white line that outlined the stimulus 

region (500 ms) that was followed by the stimulus (250 ms); then came a blank screen 

(50 ms), the mask (500 ms), another blank screen (50 ms), and then the display that the 

observer used to respond; finally, the feedback display was presented.  The feedback 

and response displays used for the different tasks are described below. In all tasks, the 

observer terminated the feedback screen by pressing any key. 

 

Feedback and the Response Screens in Centroid Task 

On the response screen for the centroid task, a white-cross appeared at the center of 

the display area. It functioned as a cursor, tracking the movements of the mouse. The 

appearance of this cursor prompted the observer to move the mouse and click on the 
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location of the estimated centroid.  After the location was selected, a feedback screen 

followed. The feedback screen redisplayed the stimulus used in that trial, but it also had 

a white cross that showed the location the observer chose as the centroid, and a black 

bullseye centered at the correct centroid location (Figure 3.4) depending on the 

weighting function.   

 

Figure 3. 4: Schematic representation of the feedback screen for the equi-weighted centroid task, 
for a set size of 9 (filled) squares. The dark gray bullseye represents the correct centroid and the 
cross shows the observer’s response. 
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Feedback and the Response Screens in Mean-Size Task 

The initial response screen in the mean-size task consisted of a probe square with a size 

randomly selected in the range of the stimulus sizes. By moving the mouse horizontally, 

the observer changed the size of the probe square until its size matched the size of the 

estimated mean of the stimuli.  Moving the mouse to the right made the probe square 

larger; moving the mouse to the left made it smaller; vertical movement was ignored. 

The probe square was either outlined or filled, to match the squares used in the current 

condition.  The observer terminated the response process with a mouse click.   An 

example of the feedback screen is shown in Figure 3.5. The screen showed the stimulus 

used in that trial and the probe square with the response. A white outlined square 

showed the observer’s response. A black outlined square showed the correct response.  

Between these two outlined squares, the region in red indicated the response error 

(Figure 3.5b). 

 

Figure 3. 5: Feedback screen for the mean-size task with a set of 9 outlined squares.  The black 
outline is the correct mean size; the red outline around the single square on the side represents 
the observer’s error; the white outline is the observer’s response.  Figure 3.4B: A zoomed in 
schematic representation of the mean-size task feedback square.  
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Design 

The conditions in this experiment were constructed from the factorial combination of 

three factors:  the task (equi-weighted Centroid, size-weighted Centroid, or Mean size), 

the type of stimuli (Outlined or Filled) and set size (1, 3, or 9 stimuli).  A session 

consisted of two blocks - one per stimulus type - of the same task.  Across sessions, the 

task was varied using a 3x3 Latin square, with the conditions for each observer taken 

from a different row. The conditions specified by the Latin square were mirrored twice 

resulting in the sequence A-B-C-C-B-A-A-B-C, so that each observer ran 9 sessions (3 

sessions per task). The order of filled versus outlined stimuli within a session were 

switched across the mirrored repetitions. We monitored each observer’s mean squared 

error to ensure that large improvements associated with learning did not occur after the 

first three sessions, which were dropped from the analyses reported below.  A block 

consisted of 105 trials of which five were singleton trials, on which only a single square 

was presented. Singleton trials were included to estimate the error due to processes that 

were not associated with estimating the mean size or the centroid (e.g., sensory 

mislocalization of items and response motor error). On the remaining trials, groups of 3 

or 9 squares were presented 50 times each. The order of the numerosity condition within 

a block was randomly determined.  
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Results 

All observers ran 9 sessions, 3 sessions per task. We measured the root mean square 

error (RMSE) of the responses in each session and compared them.  The RMSE was 

stable for the last 6 sessions, and for most observers the error was stable and constant 

for all 9 sessions. For all observers, only the data from the last 6 sessions are reported 

here.   

We expected experts to be better than naïve observers at least in the centroid task. The 

actual difference was small; the observed efficiencies were .88 and .85, respectively (Δ = 

0.03, SD = 0.09, t (6) = 0.523, p = 0.62, Bayes Factor1 BF=0.764). The main effect of 

stimulus type was negligible. Since there are also no reliable interactions involving 

stimulus type or level of expertise, the reported results are collapsed across these 

factors. Also, to simplify the summary, we will consider the data from the singleton trials 

separately, so that, for most of the summaries, only results for trials with three and nine 

items are reported. Finally, we will focus on two pre-planned contrasts for the task factor: 

one comparing the results in the equi-weighted and size-weighted centroid tasks and 

one comparing the size-weighted centroid tasks results with the mean-size task results. 

Efficiency 

Observers achieved higher, and almost identical, Efficiencies2 in the two centroid tasks, 

and lower efficiencies in the mean-size task (Figure 3.6). The preplanned contrast 

comparing both centroid tasks suggests that efficiencies for the size-weighted centroid 

task are essentially identical to those from the equi-weighted centroid task (Δ = 0.01, SD 

= 0.02, t (7) = 1.460, p = 0.188, BF = .74). The preplanned contrast comparing the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Bayes Factor computed using the calculator at http://pcl.missouri.edu/bayesfactor (Rouder, Speckman, 
Sun, Morey, & Iverson, 2009). 
2 Procedure explained in Chapter 2 
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Efficiency for the size-weighted centroid task with that in the mean-size task very 

strongly suggests that observers were able to use size more effectively when estimating 

the centroid of a group of squares than when estimating the mean size of the same 

group (Δ = 0.35, SD = 0.15, t (7) = 6.485, p < 0.001, BF = 45.9).   

Figure 3.6 also shows that observers achieved higher efficiencies when presented with 

three items than when presented with nine items. A t-test provided evidence for a 

reduction of Efficiency with increased numerosity (Figure 3.6) for all three tasks (Δ = -

0.14, SD = 0.08, t (7) = -4.810, p = 0.002, BF = 24.06).  

No interactions were found between: (1) stimulus type and numerosity, (2) stimulus type 

and task, (3) numerosity and task and (4) stimulus type, task and numerosity. The 

biggest t-value associated with the interactions of any of these factors was equal to 1.42 

with a p-value of 0.198 and BF = 0.71.  
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Figure 3. 6: Mean Efficiencies for all observers as a function of set size for equi- and size-
weighted centroid judgments and for mean-size judgments. The filled plotting symbols represent 
the mean across observers in each condition; the x’s are the Efficiencies for each observer. The 
error bars display the 95% confidence intervals for the averages.    
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Influence Functions 

Figure 3.7 shows the influence functions for both centroid tasks, averaged across 

observers and collapsed across level of expertise and stimulus type. In the size-

weighted centroid task, the slope of the ideal influence function is one. The average data 

follow this ideal closely.  With 9 stimuli, observers tended to overweight the larger stimuli 

and underweight the smaller stimuli relative to this ideal, but with 3 stimuli, observers 

produced the opposite pattern. In the case of the equi-weighted centroid task, observers 

were asked to give equal weight to all squares independently of their sizes, so the ideal 

influence should have a slope of zero. Although the resulting influence functions are 

flatter than those for the size-weighted centroid task, the observers substantially 

underweighted the smaller squares and overweighted the larger ones. We have omitted 

a figure showing the mean influence functions for the mean-size task because the 

influence functions estimated for each observer are not well constrained by the data; this 

makes sense with Efficiency values of 0.5. The wide confidence intervals obtained for 

this task makes these data hard to interpret.   
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Figure 3. 7: Influence as a function of stimulus size for the two centroid tasks and two types of 
stimuli averaged across observers and stimulus types. The intervals are 95%confidence intervals 
based on the variation across observers. The black dashed lines represent the ideal influence: 
slope = 0 for the equi-weighted task and slope =1 for the size-weighted task.  
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To precisely characterize the difference between the influence functions across task and 

numerosity and to create a summary that could be applied to the mean-size task, linear 

regression was used to estimate the slope of the influence function in each condition. 

Figure 3.8 provides a summary of the slope estimates from this analysis.  The means 

shown by the bars in the figure confirm the general impressions provided by Figure 3.7 

for the equi-weighted and size-weighted centroid tasks. As shown by the summary at the 

bottom of Figure 3.8, the slope estimates for the equi-weighted centroid task are close to 

zero and do not differ with numerosity. Because there is little variability across 

observers, the mean of these slopes collapsed across numerosity is clearly different 

from the ideal of zero, but the confidence intervals show how close to zero it is (slope= 

0.085 [0.068  .10], t(7) = 11.98, p = .0000, BF = 141.169). There is substantially more 

variability across observers looking at the slope estimates for the size-weighted centroid 

task. Despite this variability, there is a reliable numerosity effect. However, as shown 

Figure 3.8, for neither of numerosities 3 or 9 is the slope distinguishable from the 

expected slope of one, and this result still holds if the estimates for numerosities 3 and 9 

are averaged (slope = 1.055 [.76 1.33], t(7) = 0.43, p = .68, BF = 0.485).  

As noted previously, there was substantial variability in the influence function estimates 

for the mean-size task both within and across observers. Despite this variability, Figure 

3.8 includes a summary of the slope estimates for the mean-size task. Not surprisingly, 

these slopes vary more across observers than in the size-weighted centroid task, with 

slope estimates ranging from less than -1 to over 1.5. With this caveat, we note several 

things based on these slope estimates. First, there is no evidence for an effect of 

numerosity on these slopes. Second, averaged across numerosity, the slope in the 

mean-size task differs reliably from one (slope = 0.270 [-.35 .89], t(7) = -2.790, p = 



 

 49 

0.030, BF = 3.980), the expected value for the slope in this task. Further, averaging 

across numerosity in both cases, the slope in the mean-size task differs reliably from 

that in the size-weighted centroid task (Δ = -0.78, SD = 0.71, t (7) = -3.113, p = 0.017, 

BF = 4.32).  

 

Figure 3. 8: The influence function slope for all three tasks, summarized separately for three and 
nine items. The summary at the bottom of the figure displays results from two sets of t-tests. The 
upper sets of results are for data collapsed across stimulus type, but separated by numerosity; 
those in the lower set examine the effect of numerosity. Note that, for the mean-size and size-
weighted centroid tasks, the ideal slopes should be equal to 1, so the null hypothesis for these 
tests are highlighted in gray. In the equi-weighted centroid task, the ideal slopes should be equal 
to 0, so it is the tests for this null hypothesis that are highlighted in gray. 
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Discussion  

The central result here is that efficiencies were high in both centroid tasks, but 

substantially lower in the mean-size task. Based on previous literature, these results 

were expected for the mean-size task and the equi-weighted centroid task. The 

simulations reported by Myczek & Simons (2008) suggested that the estimate of the 

mean size of a group of items is obtained with low Efficiency. Also, previous research 

from our lab (Drew, Chubb & Sperling, 2010; Sun et al. 2016) found that equi-weighted 

centroids could be estimated with high Efficiency. The surprising result is that locating 

the centroid, while weighting items in proportion to their size, can also be done with high 

Efficiency. This is surprising because one might expect Efficiency in size-weighted 

centroid task to be no better than lesser of that obtained in the mean-size task or the 

equi-weighted centroid task. Our results show that observers achieved almost identical 

Efficiency in the two centroid tasks and that Efficiency was much lower in the mean-size 

task. However, this implies, counter-intuitively, that a summary statistical representation 

based on a combination of two distinct kinds of information, location and size, appears to 

be substantially easier for observers than a summary statistical representation based on 

only one of these components, size. 

These results suggest that the estimation of mean size is different and perhaps more 

difficult for observers than a centroid task that also involves size information. First, the 

high efficiencies achieved in the size-weighted centroid task show that both location and 

size information are accurately registered for most, if not all of the squares. Second, the 

influence function analysis suggests that, although observers can achieve a weighting 

rule that accurately gauges the sizes of display squares in the size-weighted centroid 

task, they are unable to achieve such a weighting rule in the mean-size task.  
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Figure 3.9 shows the root mean squared error (RMSE) for the mean-size task in degrees 

of visual angle, broken out by number of items on the abscissa. Each of the colored lines 

connecting the x plotting symbols, reflect the data from one observer. The black circles 

show the mean error for each numerosity averaged across observers. The black solid 

line is the best linear fit. The data for the 3- and 9-item conditions are a “raw” version of 

the data used as the basis for the Efficiency analysis; this is a raw summary because it 

does not depend on the influence function analysis. The singleton data were not 

included in the Efficiency analysis. Given that the stimulus items ranged in size from 

0.22° to 0.99°, the standard deviation of 0.17° [0.15° 0.19°] of the singletons suggests 

that observers were able to perceive and then recall a single size fairly accurately with 

the adjustment procedure used here.  
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Figure 3. 9: (Previous page) RMSE in the mean-size task as a function of number of items (on a 
log scale). The × plotting symbols connected by colored lines are the data from each of the eight 
observers. The black circles are the means over observers. The solid black line is the best fitting 
linear function. The dashed line represents the predictions of a model that assumes that all of the 
error in this task is due to misperception of item size so that mean-size error is, where n is the 
number of items and is the error in the singleton task (n = 1). 

Because the spacing on the abscissa of Figure 3.9 is logarithmic, it appears that the 

mean-size error increases linearly with the logarithm of the numbers of items (slope = 

0.033 [0.020 0.046], t(7) = 5.927, p = .001, BF = 63.97). What makes this observation 

striking is that it suggests that something other than the misperception of the sizes of the 

items must be contributing to the error observed in the 3- and 9-item conditions. We 

reach this conclusion because the mean-size error due to misperception of the items 

sizes would be expected to decrease as one over the square root of the number of 

observations (items). Under the extreme assumption that all the singleton error is due to 

size misperception, the dashed black line shows the predicted RMSE. Another possibility 

is that the error in the mean-size task, rather than being due to size misperception, 

arises from “late” sources: i.e., error depending on processes that come after the mean-

size estimate has been created. Two examples of late sources of error are memory 

errors that result from having to keep a perceived mean size in memory while making 

the response and reproduction errors that arise because of problems correctly 

reproducing the correctly-remembered mean size. One characteristic of late error is that 

it should not depend on the number of items included in the mean. Thus, an alternative 

but equally extreme model based on the assumption that all size error arises from late 

sources predicts that the dashed line in Figure 3.9 should be flat. However, neither size 

misperception errors, late errors, nor some combination of the two predict the increase in 

the RMSE with an increasing number of items that was observed. This argument 

suggests that there is some other component of error in the mean-size task that 

produces the observed increase in RMSE with n. 
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One clue that at least some of the error in the mean-size task results from the 

misperception of size is that, not surprisingly, the variability of the error increased with 

the size of the item being reproduced. To quantify this, a Markov chain Monte Carlo 

simulation was used to fit a three-parameter model to the singleton data from the mean-

size task. The three parameters were bias, (the amount that an observer systematically 

over- or under-estimated the size of the item) and the two parameters of a linear model 

for the standard deviation of the size response error (an additive term and a slope). This 

analysis showed there might have been a slight bias, in this case, a tendency for 

observers to underestimate the true item size (-0.042° [-0.092° 0.008°], t(7) = -1.979, p = 

.088, BF = 0.80), but the evidence for this is weak. There was evidence for an additive 

component of the standard deviation of the error (0.062° [0.031° 0.094°], t(7) = 4.691, p 

= .002, BF = 21.53) and even stronger evidence that the standard deviation of the size 

error also increased as the size of the item being estimated increased (0.106 [0.072 

0.140], t(7) = 7.300, p = .00016, BF = 182.9). One way to get a sense of the relative 

importance of the additive and multiplicative contributions to the standard deviation is to 

compare the contribution of the multiplicative component for an average size item 

(0.485°) with that of the additive component: 0.485° × 0.106 / 0.062° = 1.19. This 

suggests that the additive and multiplicative components contribute about equally to the 

standard deviation of the size estimation error for the singletons, with the multiplicative 

component possibly being slightly stronger. 

In the singleton task, size responses were strongly correlated with item size (r = .86). 

That correlation along with the comparison above showing that the multiplicative 

component made a substantial contribution to the overall error in size judgments for 

singletons, gives us confidence that observers were able to perceive the size differences 

of the stimuli used and report sizes using the response method employed in this 
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experiment. Another window on the accuracy with which the item sizes could be 

perceived in the stimulus displays is provided by a comparison of the results in the size-

weighted and equi-weighted centroid tasks. This comparison was done by extending the 

Efficiency analysis (Chapter 2) to allow for the perturbation of the item sizes. For each 

observer, the analysis of the data from the size-weighted centroid task used the 

estimated Efficiency in the equi-weighted centroid task as a fixed value determining what 

proportion of the items in a stimulus cloud would be retained after the simulated 

decimation process. In addition, in this expanded analysis, the size of each stimulus item 

was randomly perturbed prior to computing the simulated centroid judgment. The size 

perturbations were drawn from a Gaussian distribution with mean zero and a standard 

deviation that depended on item size. The Matlab optimization function fmincon() was 

used to estimate the slope and intercept of a linear function relating the standard 

deviation of item perturbation to item size so that the centroid response error produced 

in the simulation matched that produced by the observer in the size-weighted centroid 

task.  

Starting with the approximation that the centroid response error in the equi-weighted 

task does not reflect the size variation of the stimulus items, if one also accepts the 

assumption that additional centroid response error observed in the size-weighted task is 

only due to incorporating size information into the centroid judgments (and not, for 

example, the recruitment of some completely different centroid judgment process), then 

the size error estimated by this expanded analysis provides an upper bound on the 

variability in the misperception of size for these stimuli. This is an upper bound because 

all of the additional centroid response error in the size-weighted task is ascribed to size 

misperception; however, it seems plausible that the process of forming a size-weighted 

centroid introduces some of the additional error. 
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For the size-weighted centroid of 3 items, this elaboration of our Efficiency analysis 

estimated the additive component of the size misperception error to be 0.053° ([0.033° 

0.074°], t(7) = 6.085, p = .0005, BF = 72.78); for 9 items this was 0.044° ([0.033° 0.055°], 

t(7) = 9.366, p = .0000, BF = 692.5). Because there is only weak evidence for a 

difference between these estimates (Δ=0.010° [-0.006° 0.026°], t(7) = 1.490, p = .180, 

BF = 1.09), we will consider their average, 0.049° ([0.034° 0.063°], t(7) = 7.837, p = 

.0001, BF = 265.4). The slope relating the size misperception error to item size for the 3-

item task was 0.050 ([0.002 0.099], t(7) = 2.445, p = .044, BF = 2.073); for 9 items the 

slope was 0.038 ([-0.010 0.085], t(7) = 1.859, p = .105, BF = 0.65). Because there is 

only weak evidence for a difference between these estimates (Δ=0.013 [-0.069 0.094], 

t(7) = 0.369, p = .723, BF = 0.356), we will consider their average, 0.044 ([0.018 0.070], 

t(7) = 4.045, p = .005, BF = 11.473). What is striking here is that the estimate of the 

additive component of the size misperception error computed in this way is similar to that 

estimated above for the singleton trials in the mean-size task (0.049° versus 0.062°; Δ = 

0.014° [-0.025° 0.053°], t(7) = 0.850, p = .423, BF = 0.451), but the slope of the 

multiplicative component is substantially smaller (0.049 versus 0.106; Δ = 0.057 [0.022 

0.093], t(7) = 3.804, p = .007, BF = 8.975). We interpret this as evidence that the 

information about this size of the stimulus items in the size-weighted centroid task is 

more accurate than that incorporated into the mean-size judgments. 

If, as these analyses of the of the size-weighted centroid task suggest, the sizes (and 

locations) of up to 9 items can be perceived accurately and incorporated effectively into 

a centroid judgment, why are the mean-size judgments so inefficient? The analysis 

above suggests that, at least in part, this reflects degradation in the quality of the size 

information available to the mean-size calculation. However, the data summarized in 

Figure 3.9 suggests that the problem goes further than this. One possibility is that the 
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calculation of the mean size itself is a substantial source of error. The fact that size 

information can be used effectively in the size-weighted centroid task suggests that the 

brain has processes that can accurately perceive and calculate with this information, but, 

apparently, the mean-size responses do not tap these processes. Ours is not the only 

demonstration that comparing the mean size of a set of items with the size of a single 

item could be problematic; Chong & Treisman (2003) found reduced thresholds when 

observers were asked to compare the mean size of two stimulus arrays, even when they 

were presented sequentially. One speculation about the source of this difference 

between the centroid and mean-size tasks is that the centroid judgments may be 

produced by a mechanism in the dorsal visual pathway whose purpose is to guide 

movements (Goodale & Milner, 1992). In this interpretation, mean-size judgments result 

from a ventral mechanism that either has poor access to size information or that 

combines that information inefficiently. 

An issue that presents a potential complication for the interpretation of these results is 

that, depending on the task, observers may be registering size in different ways. 

Because it is a reproduction task, the mean-size task requires observers to register and 

then produce their judgment using absolute sizes. By contrast, for the size-weighted 

centroid task, observers could be using relative sizes; it is possible to perform this task 

perfectly well with size information that only preserves the proportional sizes of the 

stimuli.  We should point out, however, both that there is nothing in our results that 

suggests that observers were, in fact, using relative size estimates in the size-weighted 

centroid task and that we unaware of any literature that shows that using such relative 

sizes would be easier than actually using absolute sizes. Also, as discussed above in 

the analysis of the singleton data from the mean-size task, there is evidence that 
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suggests that, at least in this case, observers were able to perceive and report absolute 

size with good accuracy. 

A secondary result is that there was no effect on performance due to the two types of 

squares used in this experiment.   Both influence functions and efficiencies were very 

similar for both outlined and filled squares.  These findings suggest that the observer is 

actually using the sizes of the squares to make their judgments and is not being 

influenced by the luminance of the screen (e.g. using mean luminance to make their 

estimation).   

With the aim of exploring if there are systematic, individual differences across tasks, we 

conducted a correlation analysis of the efficiencies for all four variants of the three tasks, 

i.e., the variants due to stimulus type and by set size.  These correlations, averaged over 

stimulus type and set size, are summarized in Table 1. There was a strong, positive 

correlation of the Efficiency estimates both within (i.e., across the variants) and across 

the two centroid tasks, suggesting that the differences in Efficiency across observers in 

these tasks reflects a common mechanism.  In contrast, there was little or no correlation 

among the variants of the mean-size tasks or between them and the centroid tasks. 

Given that there are large Efficiency differences across observers and the variants of the 

mean-size task (ranging from .2 to almost .9), these correlations close to zero suggest 

two separate conclusions. First, the Efficiency variations across observers in the mean-

size task derive from a different source than the Efficiency variations in the size-

weighted centroid task. Even more troubling for those interested in the mean-size task is 

the lack of correlation across its variants, which suggests that any variation across 

observers in their ability to make mean-size judgments is swamped by other, unrelated 

sources of error. Of course, since these correlations are being computed based on only 
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eight observers, these estimates are not precise; however, the differences are large 

enough to suggest that there is an effect here worth considering. 

Efficiency	  Correlations	  (Average)	  

Mean	  Size	  to	  Mean	  Size	   0.06	  

Mean	  Size	  to	  Equi-‐Weighted	  Centroid	   -‐0.19	  

Mean	  Size	  to	  Size-‐Weighted	  Centroid	   -‐0.03	  

Equi-‐Weighted	  Centroid	  to	  Equi-‐Weighted	  Centroid	   0.85	  

Size-‐Weighted	  Centroid	  to	  Equi-‐Weighted	  Centroid	   0.80	  

Size-‐Weighted	  Centroid	  to	  Size-‐Weighted	  Centroid	   0.79	  

 

 

Table 3.1: A summary of the correlations of the efficiencies between the three tasks.   

 

Interim Conclusions 

The primary result reported here is that size information can be used substantially more 

efficiently in a size-weighted centroid judgment than in a mean-size judgment. Other 

research has shown that human gaze tends to prefer the centroid of items and that 

saccades land closer to the center of mass, suggesting why performance in both 

centroid tasks was better than in the mean-size task (Fehd & Seiffert, 2008 & Melcher 

and Kowler, 1999). A paper by Christie, Hinchey and Klein (2013) suggests that 

inhibition of return (IOR) is primarily driven by the center of gravity of the attended 

stimuli. Specifically, they found that when observers were presented with multiple cues, 

both manual and saccade-detection responses were considerably affected by the center 

of gravity and there was a stronger IOR for the center of gravity than for the actual 



 

 59 

stimuli. They suggest that the calculation of the centroid of a set of stimuli is an 

important, exogenous cue used to guide attention and the planning of future movements. 

Our findings elaborate these claims and suggest that reported judgments of mean size 

may not accurately reflect the information about the sizes of individual items available to 

later processes from a briefly perceived group of items.  
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Chapter 4 

How do Mean-Luminance judgments compare to Centroid 
estimations? 

 

The general finding from the experiment described in the previous chapter, was that 

observers were able to use or ignore size when asked to estimate the centroid, but that 

they were less efficient when asked to estimate the mean size of the same group of 

items.  To assess the generality these results, in this study we used a new feature - 

luminance - in the context of the same two tasks. Here, observers were asked to 

estimate the mean luminance of a group of three or nine items, and we compared their 

performance with centroid estimations in which their response was a result of one of two 

instructions: to locate the centroid by (1) ignoring the luminance of the items or (2) giving 

more weight to lighter items.   

The luminance, or brightness, of an item has been previously used to study perception 

of summary statistics, such as the centroid (Drew et al., 2010 and Sun et al., 2016).  

Results from Drew et al. (2010) show that observers can successfully estimate the 

centroid of a group of items when instructed to attend (1) to items that are lighter than 

the background, (2) to items that are darker than the background and (3) equally all 

items.  In their study, they used a display that consisted of 8 levels of luminance which 

were separated by increments or decrements of ¼ in a Weber Contrast scale from -1 to 

1, with  ‘0’ being defined as the background; and depending on the condition, observers 

were instructed to click on the screen at location that they thought was the centroid of 

the targets – items that were lighter or darker than background; or the location that they 

thought was the centroid of the whole set. Figure 4.1 shows an example of the displays 
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used in Drew et al. (2010) experiment and figure 4.2 shows the three possible 

responses, which varied depending on the instructions for a block of trials.   

 
 

 

Figure 4. 2: Feedback screen in the presented in the centroid task (Drew, Chubb & Sperling 
2010).  This shows observers where the correct centroid estimations were located in the display.  
The upper bulls-eye shows the correct centroid when the instruction given to observers was to 
attend to lighter items; the middle bulls-eye shows the correct centroid when the instruction given 
to observers was to attend all items; the lower bulls-eye shows the correct centroid when the 
instruction given to observers was to attend to darker items. 

Figure 4. 1: Displays presented in the centroid task (Drew, Chubb & Sperling 2010).  
Observers were asked to determine the centroid of a group set.  Figure A has a sample 
set of 8-items, Figure B has a sample set of 16-items. 
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For each display, the levels of luminance were drawn, with replacement, from eight 

levels of luminance, four that were lighter and four that were darker than the 

background.  In our experiment we used two different instructions for the centroid task: 

(1) to weight items according to their brightness when judging the location of the centroid 

and (2) to give equal weight to all items, in other words to estimate the centroid of the 

whole set. This type of display and methodology was used in a different study conducted 

by Sun et al. (2016).  We will use a similar approach to the one Sun et al. (2016) used to 

create the stimulus displays in our experiment, and it will be described later in the 

Methods section. 

In their study Sun et al. (2016) - using stimuli that consisted of 8 possible types of Gabor 

patterns with contrasts that varied by 1/8 from each other - asked observers to locate the 

centroid by giving (1) equal weight to all the Gabor patterns (Figure 4.3, top row), (2) by 

giving more weight to higher contrast Gabor patterns (Figure 4.3, middle panel) or (3) by 

giving more weight to lower contrast Gabor patterns (inverse-weighting condition, Figure 

4.3, bottom panel). Conditions (1) and (2) of this experiment, using grating contrast, are 

analogous to the conditions in our experiment in which the weight was based on 

luminance.  

Sun et al. (2016) found that observers, depending of the instruction, can generally 

produce differently weighted centroids.  The influence functions shown the top panel in 

have slopes close to 1, meaning that the observers were able weight items according to 

their contrast. They also found that can equally weight all the items, by ignoring their 

contrast, with the exception of the lowest contrast items. 

 

 



 

 63 

 

 

Figure 4. 3: Results from the centroid task experiment (Sun et al., 2016).  (Top Panel): attending 
all items, (B) grading condition, (C) for inverse-grading condition. 

 
Method 

Observers 

Eight observers, including the first author, participated in this experiment.  Seven 

observers were experienced with the centroid task.  All were students at the University of 

California, Irvine.  All observers reported having normal or corrected-to-normal vision.  

The present study was conducted in accordance with the regulations of the Institutional 

Review Board of the University of California, Irvine. 

Apparatus and Stimuli 

The observer sat in an adjustable height chair in a dark room and viewed the stimuli 

presented on an iMac (Mac OS X) with a 54 cm screen controlled by an ATI Radeon HD 
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4670 graphics card from a distance of about 84 cm. The stimuli were generated using 

the Psychophysics Toolbox Version 3.0.8 (Brainard, 1997; Pelli, 1997; Kleiner et al., 

2007) for MATLAB (Version 7.1).   

The size of the stimulus area was 600 x 600 pixels and the viewing angle was 

approximately 15 degrees.  The display was constructed using squares of a fixed size 2- 

pixel wide (0.36o) and eight fixed luminance levels (0cd/m2, 2.15cd/m2, 8.47cd/, cd/m2, 

18.67cd/m2, 31.49 cd/m2, 48.88 cd/m2, 69.26 cd/m2, 92.19 cd/m2, 118.1cd/m2) (Figure 

4.4).  

Observers were presented with displays containing of 1, 3, or 9 squares of the same 

size, but different luminance (brightness). We adjusted the luminance values to reflect 

the specific characteristics of the monitor by following a psychophysical adjustment 

described by Chubb et al. (2007) and Silva & Chubb (2014). The general idea of this 

procedure was to adjust the mid gray for the monitor, by a comparing with a low 

luminance level (black) and a high luminance level (white). After the texture grid – with 

the three luminances appeared on the screen - an observer, who was sitting at a 

predetermined distant from the monitor, adjusted the level of the mid gray until it 

disappeared. This procedure ensured that the luminance levels were specifically 

adjusted for the monitor used in the experiment and room illumination.  After the 

adjustment was completed a vector of 9 values from linearized luminance space: (0 

.0000, 0.1250, 0.2500, 0.3750, 0.5000, 0.6250, 0.7500, 0.8750, 1.0000) was generated 

with the middle value (.5000) used for the background luminance. The luminance levels 

displayed in each trial were randomly selected, with replacement, from the remaining 8-

luminance levels. RGB values associated with these levels were used to generate the 

display and the perceived response. To get the expected mean luminance for a 
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particular stimulus cloud, the luminance was averaged (i.e., the “0-1” values of the 

stimuli).  

 

Figure 4. 4: Schematic representation of the 8-luminance levels used in the experiment, including 
the background luminance level. 

Procedures 

An initial screen displayed the instructions for each session, which indicated to the 

observers whether to assess the luminance-weighted centroid, the equi-weighted 

centroid, or the mean luminance of the target stimuli.  The initial screen also showed 

examples of each of the stimulus luminance levels.  At the start of each trial, which 

began 500 ms after the instruction screen or the feedback from the previous trail ended, 

the observer was cued with a screen containing just the cue square, a white line that 

outlined the stimulus region (500 ms), that was followed by the stimulus (250 ms), then 

came a blank screen (50 ms), the mask (500 ms), another blank screen (50 ms), and 

then the display that the observer used to respond; finally, the feedback display was 

presented.  The feedback and response displays used for the different tasks are 

described below. In all tasks, the observer terminated the feedback screen by pressing 

any key. 

Response and Feedback Screens in Mean Luminance Task: 

We used a procedure similar to the one used for the mean-size task, described in 

chapter 3. The observers were asked provide their mean- luminance estimations in 

continuous manner, similar to what it is obtained in the centroid task.  The initial 
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response screen in the mean luminance task consisted of a probe square with a 

luminance randomly selected from a uniform distribution from the range of possible 

luminance levels. By moving the mouse horizontally, the observer changed the 

luminance of the probe square until its luminance matched the luminance of the 

estimated mean of the stimuli.  Moving the mouse to the left made the probe square 

darker; moving the mouse to the right made it lighter.  The observer terminated the 

response process with a mouse click.   After that feedback was provided (Figure 4.5), in 

which we presented the observer with the stimulus used in that trial and two square with 

the correct response (labeled ‘C’) and a square with the observer’s response (labeled 

‘R’).   

C R 

Figure 4. 5: Schematic representation of the feedback screen for the Mean 
Luminance task for a set luminance of 9 squares.  The square with the C on top 
shows the correct luminance; the square with the R on top shows the observers 
response.  In this example the observer perceived the mean luminance of the 
group to be lighter than the correct answer. 
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Response and Feedback Screens in Centroid Task: 

As described in Drew et al., (2010), Sun et al., (2016) and in the experiment described in 

the previous chapter, observers moved the mouse and clicked in the location of the 

estimated centroid.  Following this response, a feedback screen presented the original 

stimulus display along with a bullseye to indicate the location of the correct centroid and 

a white cross marking the observer’s response (Figure 4.6). 

 

Design 

The present study consisted of three tasks: (1) the equi-weighted centroid task, in which 

observers were instructed to estimate the centroid of the stimulus array by giving equal 

weight to all squares regardless of luminance, (2) the luminance -weighted centroid task, 

in which observers strove to estimate the centroid of the stimulus array weighting items 

in proportion to their luminance, giving more weight to lighter items, and (3) the mean 

Figure 4. 6: Screen shot of the display used in one of the trials use in the luminance-
weighted centroid task.  The white cross represents the observers’ response and the 
white bulls eye represents the correct response. 
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luminance task, in which observers were asked to determine the mean luminance of the 

squares in the stimulus, ignoring their locations, by adjusting the luminance of a single 

square. 

The conditions in this experiment were constructed from the factorial combination of two 

factors:  the task (equi-weighted Centroid, luminance-weighted Centroid, or Mean 

Luminance) and the number of items displayed (1, 3, or 9 items).  A session consisted of 

6 blocks with each task appearing twice in A-B-C-C-B-A order.  Across sessions the task 

order was varied using a 3x3 Latin square, with the conditions for each observer taken 

from a different row. After at least one training session, the data from which are not 

reported here, each observer ran 2 test sessions (a total of 4 blocks per task).  

Experimental session blocks consisted of 105 trials of which 5 were singleton trials. 

Singleton trials were included to estimate the error due to processes that were not 

associated with estimating the mean luminance or the centroid (e.g., sensory 

mislocalization of items and response motor error). On the remaining trials, trials with of 

3 or 9 items were presented 50 times each. The order of the numerosity condition within 

a block was randomly determined.  
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Results 
 

We computed the root mean square error (RMSE) of the responses across the across 

the four blocks for each task and compared them.  The RMSE was stable for seven out 

of the eight observers.  Due to the unstable performance for the remaining observer, the 

data from that observer were eliminated from the analysis. 

To simplify the summary, we will consider the data from the singleton trials separately, 

so that, for most of the summaries, only results for trials with three and nine items are 

reported. We will focus on two pre-planned contrasts for the task factor: one comparing 

the results in the equi-weighted and luminance-weighted centroid tasks and one 

comparing the luminance-weighted centroid tasks results with the mean- luminance task 

results.   

 

Efficiency 

Observers achieved higher, and almost identical, Efficiency in the two centroid tasks, 

and lower efficiencies in the mean-luminance task (Figure 4.7).  The preplanned contrast 

comparing both centroid tasks suggests that efficiencies for the luminance-weighted 

centroid task are essentially identical to those from the equi-weighted centroid task (Δ = 

0.01, SD = 0.03 t(6) = 0.625, p = 0.552, BF = 0.56). The preplanned contrast comparing 

the Efficiency for the luminance-weighted centroid task and the mean-luminance task 

very strongly suggests that observers were able to use luminance more effectively when 

estimating the centroid of a group of squares than when estimating the mean-luminance 

of the same group (Δ = 0.23, SD = 0.05, t(6) = 12.011, p = 0.00, BF = 57.6). 
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Figure 4.7 also shows that observers achieved higher efficiencies when presented with 

three items displays than when presented with nine items displays for all three tasks.  A 

t-test provided evidence for a reduction of Efficiency with increased numerosity (Figure 

4.7) for all three tasks (Δ=-0.19 SD = 0.06, t(6) = -8.117, p <0.00, BF = 37.14), but that 

there was no interaction between set size and task (Δ=-0.01 SD = 0.04, t(6) = .695, p = 

0.509, BF = .59). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: The efficiencies from all observers for all three tasks.  Individual data is presented by 
the X marks.  Note that the Mean Luminance tasks yields lower efficiencies than the two-centroid 
tasks. 
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Influence Functions 

Figure 4.8 shows the averaged influence functions for all observers for all three tasks: 

(1) equi-weighted centroid, in black (2) the luminance-weighted centroid, in red and, (3) 

the mean-luminance task, in blue. In the equi-weighted centroid task, the expected slope 

of the ideal influence function is zero. The average data follow this ideal closely- 

observers tended to give equal weight to all the items, regardless of their luminance 

level. In the luminance-weighted centroid task we found that in general observers are 

giving weight according to a square’s luminance level, as instructed but instead of the 

expected linear influence function, it appears that observers tend to assign the weights 

following a pattern similar to a S-shaped function. This inference based on the average 

data may be misleading, however. Looking at the data from the individual observers, 

only two clearly exhibit a sigmoid pattern. 

The variability and the larger confidence intervals obtained from the mean-luminance 

data, makes it difficult to make concrete comments about an overall tendency. The 

expectation was that observers will generate a linear influence function, similar to the 

function expected in luminance-weighted centroid task, which gives weight to the 

squares according to their luminance level. We see that, in general they are able to do 

this for the squares darker than background items, but that this response flattens out for 

the squares brighter than the background.  
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Figure 4. 8: Overall influence function for all observers in the three tasks for three and nine items.  
In the equi-weighted centroid task (black) observers are able to give equal weights to all the items 
in the display; in the luminance-weighted centroid task (red) observers are able to give equal 
weights more weight to lighter items: and in the mean-luminance task (black) observers are able to 
give more weights to all the items in the display. 
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Slopes Analysis 

A slope analysis was conducted for the three tasks. Different models had to be fitted to 

the influence functions obtained in each task, therefore the results of the slopes analysis 

will be reported separately.  

Equi- Weighted Centroid Slopes 

As shown in figure 4.8 (in black) observers were able to equally weight all the items in 

spite of their luminance level. A t-test analysis (Table 4.1) show that the influence 

function obtained from the equi-weighted centroid task closely resembles the expected 

flat function with slope = 0. (Mean = 0.02, SD = 0.13, t (6) = 0.448, p = 0.670, BF = .51).  

No effects of set size were found (Δ=0.01, SD = 0.02, t (6) = 0.740, p = 0.487, BF = .59).   

Luminance-Weighted Centroid Slopes 

At first glance, the influence function obtained from the Luminance-Weighted Centroid 

looks like its linear slope only approximates a sigmoid function.  We tested to see 

whether the sigmoid function actually fits better, but we found that the sigmoid model 

seems appropriate for the data averaged across observers, but for most of the individual 

data a linear fit is more appropriate. Figure 4.9 shows an example of the data of one 

observer for which the sigmoid function was not the best fit. A linear regression of the 

average data shows that there is a mild effect of numerosity for this task (Δ=0.12, SD = 

0.09, t (6) = 3.566, p = 0.012, BF = 6.5), but the slopes for both functions are close to 

one (Table 4.1).  
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Table 4. 1: Slope analysis for both centroid tasks.  The equi-weighted centroid task generates 
slopes close to zero and the luminance-weighted centroid task generates slopes close to one, as 
expected. 

3 9 3 9

Average 0.02 0.03 0.80 1.05
CI at 95% [-0.10 0.13] [-0.10 0.16] [0.69 0.92] [.88 1.23]

SD 0.12 0.14 0.12 0.19
t(6) 0.35 0.52 17.14 14.91

p-value 0.74 0.62 0.00 0.00
BF 0.50 0.53 71.85 66.90

Difference
CI at 95%

SD
t(6)

p-value
BF

Ideal Slope =0 Ideal Slope =1

Equi-Weighted Centroid
Luminance - Weighted 

Centroid

0.60

Effect of Numerosity
0.01
0.02

[-0.01 0.02]
0.74
0.49

6.56

0.12
0.09

[0.04 0.21]
3.57
0.01
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Figure 4. 9: The slopes of each observer were fit to a sigmoid function. For most of them, 
as shown in this figure, this was not an appropriate fit. Therefore linear fit was used for 
the slopes analysis. 
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Mean Luminance Slopes 

The influence function for this task (Figure 4.8 in blue) shows a linear function from the 

1st level of luminance (darkest item) and around the 5th level of luminance the function 

flattens out.  We fitted the data to a two-segment linear model with different slopes 

around a transition point (joint), which was estimated from the fit.  We found that, in 

general to the left of the 5th luminance level, the influence function has a positive slope, 

while function to the right of the 5th luminance level flattens out.  There was a mild effect 

of numerosity for the items to the left of the 5th luminance level. Details are summarized 

below in table 4.2. 

 

 

Table 4. 2: Analysis of the slopes for the Mean Luminance task.  Note that a two-segment linear 
model was fitted to the different slopes on either side of a joint point, which was estimated from 
the fit. 

 

Left Slope Right Slope Left Slope Right Slope
Average 0.67 -0.15 0.43 -0.07

CI at 95% [0.39  0.98] [ 0.00 -3.1] [0.683 0.184] [0.20 -0.35]
SD 0.30 0.17 0.27 0.30
t(6) 5.95 -2.44 4.25 -0.66

p-value 0.00 0.05 0.01 0.54
BF 21.70 2.60 10.13 0.57

Difference
CI at 95%

SD
t(6)

p-value
BF

-0.24
[-0.46  -0.02]

0.24
-2.36
0.04
2.43

0.08
[-0.147  0.308]

0.25
0.86
0.42
0.65

Effect of Numerosity

Ideal Slope =1

Mean Luminance -Task
3-items 9-items
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Discussion 

We found than observers are able to use the luminance of a group of items more 

efficiently when asked to estimate the centroid of a group of items than when asked to 

estimate the mean-luminance. Efficiencies for both centroid tasks are higher- and almost 

identical - suggesting that the luminance level of an item could be either ignored or used 

in the context of the centroid task, but not as efficiently in the mean-luminance task.  

These results confirm what was found in the size experiment (Chapter 3), that a 

summary statistical representation based on a combination of two distinct kinds of 

information, in this case location and luminance, is easier for observers to produce in the 

centroid context, than a summary statistical representation based on only one of these 

components, size when the task is estimating the average of that feature.  The high 

efficiencies achieved in the luminance-weighted centroid task show that observers 

perceived both location and luminance levels and that information is accurately 

registered for most, if not all of the squares.  

One of the purposes of including singleton trials was to understand how the feature 

being studied is perceived free of any model-based interpretation.  We conducted a root 

mean squared error analysis (RMSE) of the raw data from the mean luminance task for 

all three numerosities. Each of the colored lines connecting the x plotting symbols, 

reflect the data from one observer. The black circles show the mean error for each set 

size, averaged across observers. The black solid line is the best linear fit. The error for 

the singleton trials (in cd/m2) yields a standard deviation of 2.91. The luminance levels of 

the squares used as stimuli ranged from 2 to 118.18 (in cd/m2).  These results suggest 

that observers were able to accurately perceive and remember the luminance of the 

single square by using the procedure presented in this experiment (i.e. by moving the 

mouse to adjust its luminance level). 
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The plot for the best linear fit (Figure 4.10) shows that (see Chapter 3), the mean-

luminance error increases linearly with the logarithm of the numbers of items, but not 

reliably (slope = 0.875  [-1.81 3.57], t(6) = .794, p = .457, BF = 0.63).  The assumption is 

that if the errors were due to the misperception of the luminance levels, such error 

should decrease with set size (black dashed line in Figure 4.10, one over the square root 

of the number of items). These results suggest that something other than the 

misperception of the luminances of the items must be contributing to the error observed 

in the 3- and 9-item conditions. 

Figure 4. 10: RMSE plotted against the number of items.  The colored lines represent the error for 
each observer.  The black line represents the best-fit function for all observers and the black –
dashed line represents the expected RMSE function, which is to decrease as the set size 
increases. 

The influence functions from both centroid tasks are consistent with those found by Sun 

et al. (2016). In the equi-weighted centroid task observers were able to successfully give 

equal weight all the 8 levels of luminance used in the display. In the luminance-weighted 

task the expectation was that observers would apply a linear weighting rule, meaning 
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that they will give less weight to darker than background items and more weight to lighter 

than background items.   The influence function for the luminance-weighted centroid task 

shows that in general observers give more weight to brighter items and less weight to 

darker items, as instructed. The high efficiencies obtained from the luminance-weighted 

centroid task suggest that observers have used a weighting rule that accurately gauges 

the luminance of display squares needed to complete this task. 

But for the mean-luminance task, Figure 4.8 (in blue) shows how observers applied a 

different weighting rule that could be described as a positive linear weighting rule for 

darker items, and a flatter function for the lighter than background items. It has been 

documented that the discernibility of darker than background items is higher when 

compared to lighter than background items (Lu & Sperling, 2012).  The positive slope to 

the left side of the inflection point - located near the background luminance level - 

suggests that it the observer is able to gradually weight darker than background items.  

This tendency reaches a maximum near the background luminance level.  Then, the 

influence function to the right side of the inflection point flattens out, suggesting that as 

the items become lighter (brighter) it becomes more difficult to apply the appropriate 

weight according to their luminance level.  

The influence functions obtained from the mean-luminance task resemble one of the 

selectivity functions found by Silva & Chubb (2014).  In their study they identified four 

field channels.  They described these channels as a pre-attentive mechanism that 

transforms grayscale images into visual system perception. In their experiment they 

found that how observers are able to weight more one of the four channel types which 

are activated depending on what type of gray scrambles (task) that was presented.  One 

of the resulting sensitivity functions appears to be similar to the influence function that 

we found in the mean luminance condition, the “up-ramped channel.” This sensitivity 



 

 79 

function has zero sensitivity for the black level of luminance, increases linearly with 

brightness until reaches a limit near mid-gray, and then flattens out.  

 

Efficiency across features: Comparing size and luminance results  

Table 4.3, shows the Efficiency values for this and the previous experiment in which 

what was varied as size and luminance, respectively.  We found no significant difference 

when we asked observers to locate the centroid of a group of items when asked to 

weight size or luminance. Also, there was no significant difference when observers are 

asked to use the attended feature in the weighted- centroid estimation. We found a mild 

difference between the efficiencies obtained in both mean-feature tasks – which were 

slightly higher for the mean-luminance task. 

 

Table 4.3: Efficiencies comparison between Size- feature experiment (Chapter 3) and current 
study.  Note that the efficiencies for the Mean Size experiment are lower that those achieved in 
the Mean Luminance, while the centroid efficiencies in both studies are almost identical. 
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Interim Conclusions 

The main finding of this experiment is that the efficiencies obtained from the Mean -

Luminance task are lower that those obtained in the two-centroid task. These results 

replicated what it was found in the experiment in which the size was the guiding feature 

in the observers’ estimations.   

The results from this experiment provide more support to the claim that mean 

estimations are different and perhaps more difficult than the centroid estimations.  One 

speculation, which will be address in the following chapter, is that this difference in 

performance between the centroid and the mean estimations, could be explained by the 

distinctions between the ventral-dorsal pathways as described by Ungerleider and 

Mishkin (1982) and Goodale & Milner (1992).  In the following chapter we explore this 

idea by using size as the guiding feature in both mean size and centroid judgments.  
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Chapter 5 

The availability and use of size in mean size estimations 

So far, we have seen how observers achieve higher efficiencies in two variations of the 

centroid task than in mean-feature estimation tasks.  In addition to that, in the previous 

chapter we presented how participants seem to use luminance better than size when 

asked to estimate an average of each feature in a group of squares, but that their 

performance was still worse than when using these feature dimensions to weight 

centroid estimations. What is it that makes mean estimations more difficult than centroid 

estimations weighted by the same features?   

The main goal of the study presented in this chapter is to explore if the difference in 

performance between the size-weighted centroid and the mean size task, could be 

explained by the distinction between the ventral-dorsal pathways described by 

Ungerleider and Mishkin (1982) and Goodale & Milner (1992).  Ungerleider and Mishkin 

(1982) first described the functional and anatomical differences between the dorsal and 

ventral visual pathways in monkey brain. Subsequently, research conducted in patients 

with optic ataxia (damage in parts of the dorsal pathway) or visual agnosia (damage in 

parts of the ventral pathway), helped to differentiate the functions between these two 

visual pathways in humans.  The case study of patient D.F., who had damage in a part 

of the ventral stream, illustrated the implications of these two processes (Goodale & 

Milner, 1992). When D.F. was asked to describe the orientation of a slot in a mailbox, 

she was unable to do so, and claimed not to be able to see the slot; but when she was 

asked to put the letter inside the slot, she was successful at aligning the letter to match 

the orientation of the slot every time. Goodale and Milner (1992) suggested that this 

difference in performance was due to the damage of her ventral stream processing, 
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which impaired her awareness of the orientation of the slot. But since there was not 

damage reported in her dorsal pathway her ability to use guide movements using the 

visual information, the “how” processing of the dorsal stream, was not impaired.  

I hypothesize that the mean size estimations, as presented in the previous experiment, 

required ventral stream processing, while centroid responses, were processed in the 

dorsal stream. According to the “what/how-where” characterization proposed by Goodale 

& Milner (1992), processing in the ventral stream is associated with the recognition and 

description of visually-perceived objects, while the dorsal stream is associated with using 

visual information for motor planning.  The crux of the hypothesis is that, in the case of 

the mean size task, observers were required to identify and characterize the size of each 

item as a separate object, possibly in working memory, and then use that information to 

estimate the mean size of the set (so the response is based on “what” processing). By 

contrast, in the centroid tasks, size (or brightness) along with the location of the items is 

operated on directly, bypassing object identification and working memory, to determine 

the endpoint of a movement (so the response is based on “how/where” processing).  We 

speculate that performance of observers might be improved for a task in which the 

mean-size of a group of items is used directly to select a movement endpoint, in a 

similar fashion to the way that they respond in the centroid task.  

Some support for this suggestion is provided by the data from an fMRI MVPA study that 

showed that the relevance of the task and the features of the object play a role in the 

dorsal pathway (Vaziri-Pashkam et.al, 2017).  Results from three experiments, in which 

the strength of color and the shape of an object were manipulated to either be relevant 

or not relevant to the task, suggest that the dorsal pathway was significantly influenced 

when the feature of object was relevant to the task, while only a minor effect was found 

in the ventral system. They argued the dorsal system deals more with how the stimulus 
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is used in the context of the task.  For example, in the centroid task the observer uses 

stimulus features such as the location and size to guide their response, which makes 

these features relevant to the task.  We posit that if we present observers with a task in 

which the mean size of clusters of objects is used to determine an end point location, it 

is reasonable to think that the dorsal stream will be used to select and guide the 

movements of the observer’s response, generating measures of performance similar to 

those achieved in the centroid task. 

Another aim of this study is to address the possibility that in the study described in 

chapter 3, the centroid estimations might have been based on the relative size of the 

items while the mean size estimations required the use of absolute size information. In 

an experiment conducted by Chong and Treisman (2005)3 they used a display that 

allowed observers to estimate mean size by using relative size.  Their display consisted 

of an array of circles, which was split into to two subgroups; one array was located to the 

right and the other to the left visual field.  In each trial, they varied numerosity and 

density on each visual field. Using a 2AFC, observers were asked to click the key that 

represented the side of the screen with the largest mean size. They found that observers 

achieved 75% accuracy when the size difference between the displays was between 6-

8%.  

The experiment presented in this chapter eliminates, in a similar way, the necessity for 

using absolute sizes to carry out the task – although the task can be completed with 

absolute sizes. It also, in contrast to the 2AFC approach used by Chong and Treisman 

(2005), allows observers to respond using the mouse and clicking on the group of items 

selected as larger or smaller.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3  Described in detail in the Literature Review: Chapter 1 
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The display consisted of three clusters of items, spaced 120° apart with a randomly 

chosen starting orientation, on a circle surrounding fixation. In the simplest version of the 

experiment, the size-choice task, the responses need only be directed toward the correct 

cluster, which was the one with either the largest or the smallest mean size; however, 

the response was only required to select the cluster – no feedback was given comparing 

the endpoint of this movement and the centroid of the cluster.  In the other two 

conditions, observers were asked to indicate which of the three groups contained the 

largest (or smallest) items by accurately locating the centroid of the group selected. 

Constructing an accurate centroid response now potentially becomes a secondary task 

that must compete for processing resources with the task of determining the appropriate 

group. Of special interest is the relationship between the size processing done for the 

cluster selection task and the equi-weighted centroid task, and whether the equi-

weighted centroid response is disrupted by the cluster selection task.  

Method 
Observers 

Seven observers, including the first author, participated in the experiment.  All observers 

had previous experience with the centroid task and were students at the University of 

California, Irvine. Six were females between the ages of 17 and 40.  All observers 

reported having normal or corrected-to-normal vision.  The present study was conducted 

in accordance with the regulations of the Institutional Review Board of the University of 

California, Irvine. 

Apparatus and Stimuli 

The observer sat in an adjustable height chair in a dark room and viewed the stimuli 

presented on an iMac (Mac OS X) with a 54 cm screen controlled by an ATI Radeon HD 
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4670 graphics card from a distance of about 84 cm. The stimuli were generated using 

the Psychophysics Toolbox Version 3.0.8 (Brainard, 1997; Pelli, 1997; Kleiner et al, 

2007) for MATLAB (Version 7.1).   

A screen shot illustrating the display used in this experiment is shown in Figure 5.1.  The 

size of the stimulus area was 600 x 600 pixels and the viewing angle was approximately 

15 degrees.  

Observers were presented with a display that consisted of three clusters of four squares 

(Figure 5.1). The sizes of the squares were drawn from a set of eight fixed sizes (0.23°, 

0.27°, 0.34°, 0.45°, 0.52°, 0.67°, 0.81°, 0.99°) that were randomly selected and assigned 

to each cluster according to a discrete triangular distribution (5.63%, 10.25%, 14.75%, 

19.38%, 19.38%, 14.75%, 10.25%, 5.63%).  The locations of the center of each group 

were at a fixed radius of 2.9° from the center of the screen, spaced 120° apart with a 

random starting angle.  The color of the squares was fixed to white (90.48 cd/m2) on a 

gray (58.73 cd/m2) background.  

Figure 5. 1: Screen shot of the display used in one of the trials.  It 
consisted of three clusters, which were randomly separated by 120o.  
Each clusters had four items that were chosen randomly from 8 
predetermined sizes. 
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Procedure 

On each trial, observers were asked to identify both the cluster with the largest mean 

size and the cluster with the smallest mean size. Depending on the session they were 

presented with one of the following three tasks: a simple task (Size-Choice) and two 

combined tasks (Size-Choice-Equi-Weighted and Size-Choice-Size-Weighted).  In the 

size choice (SC) task, after being presented with the three clusters, observers were 

asked to select the cluster with the largest mean size and the cluster with the smallest 

mean size. In Size-Choice-Equi-Weighted (SCEW), observers were asked to select the 

cluster with the largest (smallest) mean size by clicking on the centroid of the chosen 

cluster, giving equal weight to all the items in the cluster. The procedure was similar in 

the Size-Choice-Size-Weighted (SCSW) task, except that the centroid of the selected 

clusters, computed by giving more weight to larger items, was now the expected 

response. An initial screen displayed the instructions for each session and showed 

examples of each of the stimulus sizes.   

The events on a trial are illustrated in Figure 5.2. At the start of each trial, the observer 

was cued with a blank screen that was followed with the stimulus, as described above, 

displayed for 250 ms. The stimulus was followed by a blank screen (50 ms), a mask 

made up of a jittered array of randomly sized items covering the display (500 ms), and 

another blank screen (50 ms) followed before the observer’s response was required.  

On the response screen, a red letter “L” or a blue letter “S” appeared initially at the 

center of the display area. The letter functioned as a cursor, tracking the movements of 

the mouse. The appearance of the letter “L” (or “S”) prompted the observer to move the 

mouse and click on the location of the cluster with the largest mean size or the smallest 

mean size. Half of the observers were asked to identify the largest cluster first. 
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Immediately after that, depending on the order assigned for that specific observer, the 

second letter appeared at the center of the display area and it also functioned as a 

cursor. The appearance of the second letter “S” (or “L”) also prompted the observer to 

move the mouse and click on the location of the cluster with the smallest mean size or 

largest mean size.   

 

Figure 5. 2: Experiment Timeline 

	  

After both responses were made, a feedback screen followed. The feedback screen 

displayed the stimuli used in that trial. For the SC task, the feedback screen was divided 

into three areas as illustrated in Figure 5.3.  Two areas were colored with a semi-

transparent overlay: red (for the segment containing the large cluster) and blue (for the 

segment containing the small cluster). The third cluster was uncolored. Red and blue 
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crosses marked the location of the large and small responses, respectively. As long as 

the large and small response locations were in the colored area, the response was 

counted as correct.   

  

Figure 5. 3: Feedback screen used in the Size Choice condition, for which no centroid feedback 
was provided. In this trial the red area has the cross on it, meaning that the observer selected the 
correct large cluster. However, the small size estimation was incorrect. 

For sessions in which responses were also judged based on how close they are to the 

centroid of the correct group, a feedback screen like that in Figure 5.4 was used.  The 

screen displayed the stimuli used in that trial, a red cross showing the perceived location 

of the largest group and a blue cross showing the perceived location of the smallest 

group. Instead of colored regions marking the regions of acceptable responses, this 

feedback screen had a red and blue bullseye centered at the centroid of the largest (red) 

and the smallest (blue) group, respectively.  The location of these bullseyes was based 

+ 

+ 
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on either the unweighted or the weighted centroids of the items in the group, depending 

on the condition. 

Following each block, summary feedback in the form of an overall score was provided. 

Observers were encouraged to improve their score from block to block. The components 

of this score varied depending on the condition tested: the accuracy of the cluster 

responses and the distance error of the centroid responses. After blocks for which only 

the accuracy of the cluster responses was emphasized, the score in the block level 

feedback was simply a count of the number of errors in that block. In the blocks for 

which the positional accuracy of the response was also emphasized, the observer 

received feedback for both cluster selection error and the root mean square error of the 

distance between the response position and the correct centroid, only on trials where the 

cluster selection was correct.   

 

Figure 5. 4: Feedback screen used in the combined conditions. In these conditions feedback for 
Size-Weighted and Equi-Weighted centroid was provided in addition to the main task, which was 
the cluster selection task.  In this trial the observer chose the correct “large” cluster, shown in red, 
but chose the incorrect “small” cluster.  The feedback for the correct cluster selection (large) show 
how close this particular observer was to the correct centroid. 
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Design 

Each observer participated in 12 sessions, divided into 4 sessions per day. On each day 

an observer ran four sessions, with the first and last ones being the Size-Choice (SC) 

task.  The two sessions in the middle were counterbalanced to be either the Size-

Choice-Equi-Weighted (SCEW) task or the Size-Choice-Size-Weighted (SCSW) task. 

Half of the observers followed the order shown in the figure 5.5 and, for the other half, 

the order of the SCEW and SCSW sessions was reversed. A session consisted of six 

blocks of 25 trials each, with block feedback provided after each block. 

SC 

SCEW 

SCSW 

SC 

Session 
2 

Session 
3 

Session 
4 

Session 
1 

DAY #1 

SC 

SCSW 

SCEW 

SC 

Session 
6 

Session 
7 

Session 
8 

Session 
5 

DAY #2 

SC 

SCEW 

SCSW 

 SC 

Session 
10 

Session 
11 

Session 
12 

Session 
9 

DAY #3 

Figure 5. 5: Observers ran the experiment in three days.  Each of the days the observer 
began and ended with the Size Choice condition.  In between these two conditions they 
were asked to judge the centroid in addition of selecting the correct cluster.  
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Estimation of the influence function and efficiency for cluster selection 
responses 

The nature of the Size Choice task allowed us to treat each of the two responses 

required in each trial as a separate piece of data. For this combined analysis, the 

responses choosing the smallest cluster were recoded so that all of the responses 

involved a comparison between a larger mean size, target cluster and a smaller mean 

size cluster. A Markov Chain Monte Carlo simulation was used to obtain weights 

associated with each of the item sizes in a Probit model. If the response on trial i, Ri, is 

coded as 1, when it is correct, or 0, when it is incorrect, then the predicted response 

under the Probit model is given by 

!! =
1,      if  ∆= ! !! −

!

!!!

!(!!)
!

!!!
+ !! > 0

0, otherwise

 

Where !! represents the size of one of the four stimuli in the cluster with larger mean 

size, !! represents the size of one of the four stimuli in the cluster with smaller mean 

size, !() maps stimulus size onto the weight (relative subjective size) of each stimulus 

type in the cluster selection response, and !! is a random variable drawn from a normal 

distribution with mean 0 and standard deviation 1. To convert the weights estimated from 

this model into influence function values, they were normalized to sum to 1. 

The calculation of the efficiency for the cluster selection responses was also done 

differently than that for the centroid responses. Because there were only 4 stimuli in 

each cluster, it is practical to enumerate the 16 possible ways that the items in a cluster 

might decimated. For a comparison involving two clusters, there are 256 possible ways 

that the two clusters might be decimated. Given the probability that an item will be 

retained – i.e., the efficiency – it is straightforward to calculate the exact probability of 
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occurrence for each these 256 outcomes. Using the item type weights estimated above, 

it is similarly straightforward to compute the probability that ∆> 0 for each decimation 

combination should it occur. Weighting these probabilities of a correct response for each 

decimation combination by the probability that that combination will occur provides an 

exact estimate of the average proportion of correct responses across a set of trials for a 

given level of efficiency. Based on this, it was straightforward to use the Matlab function 

fminbnd() to estimate the efficiency for a set of stimuli and the associated responses.  

Influence functions and efficiency for the centroid response were estimated as in the 

previous chapters except that we only included the data in this analysis for which the 

correct cluster was selected. 
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Results 

All observers ran 12 sessions, 6 sessions total for the Size Choice (SC) task, 3 sessions 

for the Size-Choice-Equi-Weighted (SCEW) task and 3 sessions on the Size-Choice-

Size-Weighted (SCSW) task. We will focus on two pre-planned contrasts for the task 

factor: one comparing the SC tasks results with the average of the two centroid tasks 

and one comparing the results in the SCEW and the SCSW centroid tasks. 

We calculated efficiencies for the cluster selection portion in all three tasks and 

measured the effects of the response order (“large response first versus small response 

first”).  We found that there are large main effects of response order for the cluster 

selection component: selecting the “Large” cluster first improved efficiency in all three 

tasks (SC: Δ = 0.11, SD = 0.06, t(6) = 3.907, p = 0.011, Bayes Factor (BF) = 4.25; 

SCSW: Δ = 0.16, SD = 0.04, t(6) = 5.71, p = 0.002, BF = 19.9; SCEW: Δ = 0.13, SD = 

0.04, t(6) = 4.583, p = 0.006, BF = 12.1). To test if the size of this effect depend on the 

task, we compared the response order effect between the size choice size weighted and 

size choice equi weighted task, (Δ = 0.01, SD = 0.02, t(6) = 0.767, p = 0.477, BF = 1.91) 

and also we compared the size choice task with the average of the two centroid task (Δ 

= 0.02, SD = 0.01, t(6) = 2.153, p = 0.084, BF =2). We found that the size of this effect 

doesn’t depend on the task. 

Size Choice Results (Cluster Selection) 

The main task in this experiment was to select the clusters with largest and the smallest 

mean size.  We measured performance on this selection task in two ways (Table 5.1), by 

tabulating the percentage of correct responses when selecting the correct cluster and 

with an efficiency analysis, calculated as described in the Methods section. There was a 

mild decrement in cluster selection accuracy when the feedback emphasized the 
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accuracy of the centroid response (Δ = -0.97%, SD = 1.22, t(6) = -2.260, p = 0.058, BF = 

3.02).  Similarly, we found a decrement in the cluster selection efficiency, when the 

feedback emphasized the accuracy of the centroid response (Δ = -0.01, SD = 0.01, t(6) 

=  -6.46, p = 0.001, BF = 24.42). 

 

Table 5. 1: Values for efficiency and percentage of correct cluster selection separated for 
response order and averaged for all observers. 

Centroid  - (Secondary Task) 

The secondary task of this experiment was to locate the centroid of each cluster while 

selecting the clusters with the largest or the smallest mean size.  For the trials on which 

the cluster was correctly selected, we measured observers’ performance in two ways, 

using efficiency and the root mean square error (RMSE) between the location of the 

responses and the correct location (Table 5.2).  We took the RMSE of the response end 

point location when centroid feedback was provided and compared it with the error when 

such feedback was not provided. Similar efficiencies were found between the two tasks 

for which centroid feedback was provided (Δ = 0.90, SD = 6.91, t(6) = 0.344, p = 0.743, 

BF = 0.50). Observers produced higher RMSE in the Size Choice when no feedback 

was provided (Δ = 13.93, SD = 9.43, t(6 )= 3.909, p = 0.008, BF = 8.2). 
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Table 5. 2: Values for efficiency and RMSE of the end point location (secondary task) averaged 
for all observers 

Influence Functions 

Figure 5.6 shows the influence functions for all observers for all three tasks: (1) SC, in 

green (2) SCEW in blue and, (3) SCSW, in red. The expectation is that the slopes of the 

influence values regressed against the normalized sizes should be close to one for the 

cluster selection responses, in all three tasks.  Table 5.3 show that the data do not 

accord with this expectation. Instead, for all three tasks, the slope is quite close to 1.4 

and is significantly greater than 1. There is also no difference in the slope across tasks. 

A slope analysis found that there is no significant difference between the two centroid 

(SCSW and SCEW) tasks (Δ = 0.01, SD = 0.034, t(6 )= 0.756, p = 0.478, BF =0.61) and 

also between the SC and the average of the two centroid tasks (Δ = 0.003, SD = 0.026, 

t(6 )= 0.299, p = 0.775, BF =0.49).  

Figure 5. 6:Overall Influence Function for the cluster selection portion in all three tasks.  In all 
three tasks observers weigh the squares according to their size. 
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Table 5. 3 Summary of the Slope Analysis conducted for the Size Choice influence functions 

	  

At first glance a similar pattern is shown in Figure 5.7.  This figure shows the influence 

function for the centroid portion of the task.  The slopes obtained from a linear 

regression of the influence values against the normalized sizes (Table 5.4) shows that 

the observers are in general weighting all the items in the display according to their size. 

The expected slope for the SCSW task is one, but as the table shows the observed 

values are closer to 0.7. The expected slope for the SCEW task is zero, but the table 

shows that, although smaller, these slopes were systematically larger than zero.  

However, the slope in the SCEW task, averaging across the large and small cluster 

responses, was reliably flatter than the slope obtained from the SCSW (Δ = 0.255, SD = 

0.175, t(6) = 3.847, p=0.008, BF = 8.44). Although there appears to be a systematic 

effect of cluster size on these slopes, averaging across tasks, this apparent difference 

was not reliable (Δ = 0.087, SD = 0.141, t(6) = 1.637, p=0.153, BF = 1.25). 
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Table 5. 4: Summary of the Slope Analysis conducted for both centroid influence functions 

 

Figure 5. 7: Influence Function for the centroid portion of the experiment. The equi-weighted 
centroid task is plotted in red, and the size-weighted centroid task is plotted in blue. Circles 
identify the large clusters and squares identify the small clusters. The black line, which has a 
slope equal to one, is plotted as a reference.  Note that regardless of the instructions, observers 
weigh items accordingly to their size. 
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Discussion 

Using the efficiency values obtained in this experiment we can draw a comparison with 

the efficiency values obtained in the experiment described in chapter 3 (Table 5.5).   The 

three efficiency values from the cluster selection response for all three tasks in this 

experiment were 0.72 or better. This is substantially larger than the efficiency of 0.55 

with which observers were able to estimate the mean size of a group of items in the 

previous experiment. This increased efficiency was observed even though, in this 

experiment, observers had to estimate the size of three clusters and make two 

responses on each trial.  

 

Table 5.5: Efficiency comparison across the two experiments that use size as the main feature. 

	   	  

A possible explanation for the improvement in performance could be the nature of the 

response:  the higher efficiency observed in this experiment could reflect a response that 

allows size information to be processed in the dorsal stream of visual processing, 

becoming more of a ‘how/ where’ task rather than a ‘what task’ as described by 

Ungerleider and Mishkin (1982) and Goodale & Milner (1992).   

In the trials when centroid feedback was provided, observers not only had to identify and 

then select the largest/smallest clusters, but they also had to determine and respond 

with the centroid of those two clusters.  Taking into account that this was the secondary 
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task and that two centroid locations had to be computed and then recalled on each trial, 

one could argue that the efficiencies on the centroid estimation portion of the experiment 

were relatively high, although lower than the ones obtained for the previous experiments 

(on average: .68 vs. .86). In addition, the centroid efficiencies obtained in this experiment 

are, however, still higher than the mean-size estimations obtained in Chapter 3 (.55).  

We suspect that observers can still reliably locate the centroid of a chosen cluster, 

because it has been documented that human gaze tends to prefer the centroid of items 

and that saccades land closer to the center of mass (Fehd & Seiffert, 2008 & Melcher 

and Kowler, 1999).  

Another interesting finding from this experiment stems from the influence functions. 

Although they show that for the both the Size Choice and the Centroid portion of the 

experiment all observers roughly linearly weight the squares according to their sizes, 

there are some important differences between them. First, the influence functions for the 

cluster selection task are similar to one another (as expected) but with higher slopes 

than those for the centroid responses.  In addition to that, for the centroid responses, 

although the SCEW slope is smaller than in the SCSW task, observers are unable to 

equally weight all the squares, as found previously in equi-weighted centroid tasks. It 

looks like the nature of the size choice task, which requires using size information to 

select the correct cluster, makes it difficult for observers to weight the items equally 

when locating the centroid of the cluster. It seems reasonable to ask whether the 

average data mask a mixture of observers who are able to achieve equal weight and 

those who produce centroids in the SCEW task using the same weighting as in the 

SCSW task. However, looking at the slopes of the influence functions for individual 

observers suggests that this is not the case: i.e., that the average data provides a 

reasonable summary for all observers.  
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As we described at the beginning of this chapter, the display that Chong and Treisman 

(2003) used in their experiment resembled the large cluster selection portion of our 

experiment. Chong and Treisman (2003) found that a 6-8% difference in size between 

the two clusters was needed to yield the 75% accuracy.  To achieve 75% accuracy in 

the Size Choice only task (when no centroid feedback was provided) our observers 

needed a larger difference to achieve the same accuracy criterion – for large clusters 

14.0% and for small clusters 13.1%.  Although a larger size difference is required in our 

experiment, this might reflect differences in task difficulty across the two experiments.  

First, our display was divided in three areas, (3 clusters). Second, on each trial we asked 

observers to make two choices (observers here needed to select two clusters). And 

finally, the centroid feedback, added more to the complexity to the task, which resulted in 

a slightly higher difference in size required (Table 5.6).   

 

Table 5.6: Difference in size (ratio) needed in all three variants of the experiment, compared with 
Chong and Treisman (2003) experiment. 

A complication of the results obtained for the mean-size estimations described in chapter 

3, was the possibility that the lower efficiency values observed were due to the fact that 

the task required observers to estimate and report absolute sizes. This is a complication 

because weighted centroid responses could have been based on judgments of relative 

size, although absolute sizes could also have been used.  However, we were skeptical 

of this interpretation due to the fact that the singleton analysis and the results from the 
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size-weighted centroid task, suggest that the observers are registering size accurately 

and that the only difference leading to the low efficiency values, was the mean 

estimation requirement of the task.   

To see if relative size was the reason of the performance improvement in the mean size 

estimations, we compared our results to Chong and Treisman’s (2003) using efficiency.  

To do this we decided to take a look at the simulations conducted by Myczek and 

Simons (2008) (for more details see chapter 1 and 3).  One of the main findings from 

Myczek and Simons (2008) simulations was that observers could be using a sub-

sampling strategy when estimating the mean size of a group of items.  More specifically, 

when they put Chong and Treisman (2003) experiment through this simulations, they 

found that a computer could sample 4 out 12 items, to achieve 75% accuracy - which 

could be interpreted as an efficiency = 0.334. The overall efficiency value obtained in our 

experiment for the size choice only task, averaged for all observers, is .75.  The higher 

efficiency obtained in this experiment could only be a result of the nature of the response 

used in this experiment, which is the major methodology difference between our 

experiment and Chong and Treisman’s (2003) experiment.  We argue the efficiency 

values obtained in our task are not due to the use of relative size because of the 

similarities the displays used in both experiments share.  Our efficiency is higher 

because our mean estimation response was made to be similar to the centroid task, 

which we argue allows to dorsal processing, and as a result better performance. 

Interim Conclusions 

We found that observers achieve higher efficiency when asked to estimate the mean 

size of a group of items and their responses are guided by movement, suggesting dorsal 

processing. Using size information in the cluster selection task is slightly more accurate 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 We interpret this ratio (4÷12) as a value similar to efficiency (as explained in chapter 2). 
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and efficient when there is no secondary task requiring the observer to report the 

centroid of each identified cluster, suggesting that observers treated the cluster selection 

as the primary task.  In addition to that we found that, in centroid estimations, observers 

could not help but to weight items according to their size, regardless of the instruction. 

We think this is a by-product of the demands of the main task, which is cluster (size) 

selection, because the demands of this task require the use of size information, and this 

information becomes hard to ignore when estimating on the centroid of the cluster. 

The use of relative size could be seen as a possible alternative explanation for the 

higher efficiency values, but the Myczek and Simons (2008) simulations provide some 

evidence against this argument. We argue that, the methodology used in our 

experiment, in contrast with Chong and Treisman (2003), allowed dorsal processing, 

resulting in a higher efficiencies for mean size estimations. 
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Summary and Conclusions 

The aim of the three studies described in this thesis is to take a small step along the 

journey of understanding how our preattentive visual perception works. The first two 

studies give compelling evidence that observers are more efficient at making centroid 

estimations than mean estimations of size or luminance even when the centroid 

estimations require the processing of both location and either size or luminance.  

Efficiency values remained high (above .86), and almost identical when observers are 

asked to weight all the items equally or to weight items according to their size or 

luminance.  In contrast, the efficiency of mean estimations was lower and influence 

functions for the mean judgments are vary considerably from the ideal for both features.  

Our results show how observers can efficiently use or ignore the guiding feature in the 

centroid context, but that they are not as efficient when estimating the mean of that 

feature.   

In the third study we explored the distinctions between the ventral-dorsal streams as 

described by Goodale & Milner (1992), as a plausible explanation for the difference in 

performances between the mean-size and centroid task.  We found that by making 

observers use size information to guide their movement for the response, they were able 

to obtain higher efficiencies. In addition to that, we found that observers are able to 

judge the location of the centroid in a secondary task. 

The study of summary statistical representations has helped researchers understand 

how the human visual system uses and incorporates information that is outside of our 

awareness and that the summary statistical representation that underlie explicit reports – 

like mean estimates – may not reflect the full power and generality of summary statistical 

representations. A better understanding of how our visual system builds such 
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representations and when they are used, could increase our understanding of how the 

processing of a scene is guided by the task at hand, and how some features in that 

scene could be easily accessible in one context and not in other context.  This 

knowledge could help us to understand the challenges facing patients with visual 

impairments and/or visual attention issues, but also could have applications in the visual 

systems for brain inspired machine designs, and marketing tools.  Future research 

should combine this type of psychophysical research and fMRI data to further 

understand the implications of these findings. 
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