
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Visual Content Creation by Generative Adversarial Networks

Permalink
https://escholarship.org/uc/item/97b9x94c

Author
Azadi, Samaneh

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97b9x94c
https://escholarship.org
http://www.cdlib.org/

Visual Content Creation by Generative Adversarial Networks

by

Samaneh Azadi

A thesis submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Alexei Efros

Professor Bruno Olshausen

Spring 2021

Visual Content Creation by Generative Adversarial Networks

Copyright 2021
by

Samaneh Azadi

1

Abstract

Visual Content Creation by Generative Adversarial Networks

by

Samaneh Azadi

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

We live in a world made up of different objects, people, and environments interacting
with each other: people who work, write, eat, and drink; vehicles that move on land, water,
or in the air; rooms that are furnished with chairs, tables, and carpets. This vast amount
of information can be easily collected from the recorded videos and photographs shared on-
line. However, it still remains a challenge to teach an intelligent machinery agent to reliably
analyze and understand this extensive collection of data. Generative models are one of the
most compelling methods towards modeling visual realism from the large corpus of available
images, which operate by teaching a machine to create new contents. These models are not
only beneficial in understanding the visual world, but more deeply in visual synthesis and
content creation. They can assist human users in manipulating and editing an existing visual
content. In the last few years, Generative Adversarial Networks (GANs) as an important
type of generative models have made remarkable enhancements in learning complex data
manifolds by generating data points from scratch. The GAN training procedure pits two
neural networks against each other, a generator and a discriminator. The discriminator is
trained to distinguish between the real samples and the generated ones. The generator is
trained to fool the discriminator into thinking its outputs are real. The network learns the
real-world distribution while generating high-quality images, translating a text phrase into
an image, or transforming images from one domain to another. This dissertation investi-
gates algorithms to improve the performance of such models in creating new visual content
specifically in structural and compositional domains in a wide range from hand-designed
fonts to natural complex scenes. In Chapter 2, we consider text as a visual element and
propose tools to synthesize new glyphs in a font domain and transfer the style of the seen
characters to the generated ones. From Chapter 3, we focus on the domain of natural im-
ages and propose GAN models capable of synthesizing complex scene images with lots of
variations in the number of objects, their locations, shapes, etc. In Chapter 4, we explore
the role of compositionality in the GAN frameworks and propose a new method to learn
a function that maps images of different objects sampled from their marginal distributions
into a combined sample that captures the joint distribution of object pairs. Despite all the

2

improvements in training GANs, it still remains a challenge to fully optimize the GAN gen-
erator in a two-player adversarial game, resulting in samples that do not always follow the
target distribution. In Chapter 5, instead of trying to improve the training procedure, we
propose an approach to improve the quality of the trained generator by post-processing its
generated samples using information from the optimized discriminator.

i

To my best friends ever,
Maman, Baba, Sahar,

& Mohammad,
for supporting me in every possible way

and to my darling daughter, Jaanaan,
for motivating me to grow and keep trying.

ii

Contents

Contents ii

List of Figures v

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 1
1.3 Thesis Goal and Contributions . 2

2 Few-Shot Glyph Synthesis and Font Style Transfer 5
2.1 Introduction . 5
2.2 Multi-Content GAN Architecture . 7

2.2.1 Conditional Generative Adversarial Networks 8
2.2.2 Glyph Network . 8
2.2.3 Ornamentation Network . 9
2.2.4 End-to-End Network . 10

2.3 Font Dataset . 12
2.4 Experiments and Results . 12

2.4.1 Image Translation Baseline . 12
2.4.2 Ablation Study . 14
2.4.3 Automatic Learning of Correlations between Contents 14
2.4.4 Number of Observed Letters . 15
2.4.5 Perceptual Evaluation . 15
2.4.6 Ground Truth Glyph Ornamentation 17
2.4.7 Generalization on Synthetic Color Font Dataset 17

2.5 Related Work . 18
2.6 Discussion . 19

3 Unconditional Synthesis of Complex Scenes 25
3.1 Introduction . 25

iii

3.2 Semantic Bottleneck GAN (SB-GAN) . 27
3.2.1 Semantic bottleneck synthesis . 28
3.2.2 Semantic image synthesis . 29
3.2.3 End-to-end framework . 29

3.3 Experiments and Results . 30
3.3.1 Qualitative results . 33
3.3.2 Quantitative evaluation . 35
3.3.3 Perceptual evaluation . 36

3.4 Related Work . 36
3.5 Discussion . 38

4 Image-Conditional Binary Composition 47
4.1 Introduction . 47
4.2 Background: Conditional GAN . 49
4.3 Compositional GAN . 49

4.3.1 Supervising composition by decomposition 50
4.3.2 Example-Specific Meta-Refinement (ESMR) 52

4.4 Implementation Details . 53
4.4.1 Relative spatial transformer network 53
4.4.2 Relative Appearance Flow Network (RAFN) 54
4.4.3 Inpainting network . 54
4.4.4 Full model . 55

4.5 Experiments . 56
4.5.1 Synthetic data sets . 58

4.5.1.1 Ablation study and baselines 58
4.5.1.2 User evaluations . 60

4.5.2 Real data sets . 60
4.5.2.1 Qualitative analysis and baselines 61
4.5.2.2 User evaluations . 62

4.5.3 Generalization to unseen categories 62
4.5.4 Extension to adding more objects . 62

4.6 Related Work . 63
4.7 Discussion . 64

5 Discriminator Rejection Sampling 68
5.1 Introduction . 68
5.2 Background . 69

5.2.1 Evaluation metrics: Inception Score (IS) and Fréchet Inception Dis-
tance (FID) . 69

5.2.2 Self-Attention GAN . 69
5.2.3 Rejection Sampling . 70

5.3 Rejection sampling for GANs . 71

iv

5.3.1 Rejection sampling for GANs: the idealized version 71
5.3.2 Discriminator Rejection Sampling: the practical scheme 72

5.4 Experiments . 74
5.4.1 Mixture of 25 Gaussians . 75

5.5 Ablation Study . 75
5.5.1 ImageNet Dataset . 76

5.6 Nearest Neighbors from ImageNet . 79
5.7 Discussion . 79

6 Discussions 86

A My Earlier Works in Computer Vision 88

Bibliography 90

v

List of Figures

2.1 Schematic of our Glyph Network to be trained on our 10K font data set. 6
2.2 Schematic of our end-to-end MC-GAN model including (a) GlyphNet and (b)

OrnaNet. Inputs and Outputs are illustrated in white, network layers in green,
and loss functions are shown in blue. We use a leave-one-out approach among
all observed letters of a word like TOWER (in orange) to construct a batch of
input image stacks to be fed into G1: For each input stack in the batch, we
extract the left out generated glyph. In addition, the remaining 21 glyphs will
be generated by feeding in all observed letters together. After a reshape and
gray-scale channel repetition, T , these extracted generated glyphs, Ã, B̃, · · · , Z̃
will be fed into OrnaNet. 7

2.3 Random subset of our 10K gray-scale font dataset 11
2.4 Example synthetic color gradient fonts . 11
2.5 Ablation study on our MC-GAN model components: For each exemplar font,

we show ground truth (1st row), observed letters (red squares in the 1st row),
predictions of a baseline image translation network (2nd row), predictions of our
end-to-end model with randomly initialized (RI) OrnaNet and λ2 = λ3 = λ4 = 0
(3rd row), with pre-trained (PT) OrnaNet weights and λ2 = λ3 = λ4 = 0 (4th
row), selectively disabled loss terms (rows 5-7), and the full end-to-end MC-
GAN model (bottom row). Style transfer improvements by λ3 are highlighted
in blue and degradation in the predictions by omitting each individual regularizer
is highlighted in red. 13

2.6 Effect of number of observed glyphs on the quality of GlyphNet predictions. Red
line is passing through median of each distribution. 14

2.7 Distributions (α|β) over SSIM scores for generating letter α given β in blue and
given any other letter rather than β in red. Distributions for the most informative
given letters β in generating each glyph α is shown in the left of each column
while the least informative givens are presented in the right. 16

2.8 Text Effect Transfer (Yang et al., 2016) failure example on clean input glyphs. . 17
2.9 Failure cases on clean input glyphs. 17

vi

2.10 Comparison of our end-to-end MC-GAN model (3rd rows) with the text effect
transfer approach (Yang et al., 2016) using GlyphNet synthesized glyphs (2nd
rows). Ground truth glyphs and the observed subset are illustrated in the 1st
row of each example font. Scores next to each example reveal the percentage of
people who preferred the given results. 20

2.11 Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the
text effect transfer approach (Yang et al., 2016) using GlyphNet synthesized
glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated
in the 1st row of each example font. Scores next to each example reveal the
percentage of people who preferred the given results. 21

2.12 Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the
text effect transfer approach (Yang et al., 2016) using GlyphNet synthesized
glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated
in the 1st row of each example font. Scores next to each example reveal the
percentage of people who preferred the given results. 22

2.13 Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the
text effect transfer approach (Yang et al., 2016) using GlyphNet synthesized
glyphs (2nd rows). Ground truth glyphs and the observed subset are illustrated
in the 1st row of each example font. Scores next to each example reveal the
percentage of people who preferred the given results. 23

2.14 Comparison between image translation and our end-to-end multi-content GAN
on our synthetic color font data set. For each example, ground truth and given
letters are shown in the 1st row, image translation outputs in the 2nd row and
MC-GAN in the last row. 24

3.1 (a) Examples of non-complex images from ImageNet synthesized by the state-of-
the-art BigGAN model (Brock et al., 2019). Although these samples look decent,
the complex scenes synthesized by BigGAN (e.g., from the Cityscapes dataset)
are blurry and defective in local structure (e.g., cars are blended together) (b).
Zoom in for more detail. (c) A complex scene synthesized by our model re-
spects both local and global structural integrity of the scene. (d) Schematic of
our unconditional Semantic Bottleneck GAN. We progressively train the adver-
sarial segmentation synthesis network to generate realistic segmentation maps
from scratch, then synthesize a photo-realistic image using a conditional image
synthesis network. End-to-end coupling of these two components results in state-
of-the-art unconditional synthesis of complex scenes. 26

vii

3.2 Schematic of Semantic Bottleneck GAN. Starting from random noise, we syn-
thesize a segmentation layout and use a discriminator to bias the segmentation
synthesis network towards realistic looking segmentation layouts. The generated
layout is then provided as input to a conditional image synthesis network to syn-
thesize the final image. A second discriminator is used to bias the conditional
image synthesis network towards realistic images paired with real segmentation
layouts. Finally, a third unconditional discriminator is used to bias the condi-
tional image synthesis network towards generating images that match the real
image distribution. 27

3.3 Images synthesized on Cityscapes-5K. Best viewed on screen; zoom in for more
detail. Although both models capture the general scene layout, SB-GAN (1st
row) generates more convincing objects, e.g. buildings and cars. 31

3.4 Images synthesized on Cityscapes-25K. Best viewed on screen; zoom in for more
detail. Images synthesized by BigGAN (3rd row) are blurry and sometimes de-
fective in local structures. 31

3.5 Images synthesized on ADE-Indoor. This dataset is very challenging, causing
mode collapse for the BigGAN model (3rd row). In contrast, samples generated
by SB-GAN (1st row) are generally of higher quality and much more structured
than those of ProGAN (2nd row). 32

3.6 The effect of SB-GAN on improving the performance of the state-of-the-art
semantic image synthesis model (SPADE) on ground truth segmentations of
Cityscapes-25K validation set. For SB-GAN, we train the entire model end-to-
end, extract the trained SPADE sub-network, and synthesize samples conditioned
on the ground truth labels. 34

3.7 The effect of SB-GAN on improving the performance of the state-of-the-art se-
mantic image synthesis model (SPADE) on ground truth segmentations of ADE-
Indoor validation set. For SB-GAN, we train the entire model end-to-end, ex-
tract the trained SPADE sub-network, and synthesize samples conditioned on the
ground truth labels. 39

3.8 The effect of fine-tuning on the baseline setup for the Cityscapes-25K dataset.
We observe improvements in both the global structure of the segmentations and
the performance of semantic image synthesis, resulting in images of higher quality. 40

3.9 The effect of fine-tuning (FT) on the baseline setup for ADE-Indoor dataset.
Analogously to the results on Cityscapes-25K, we observe improvements in both
the global structure of the segmentations and the performance of semantic image
synthesis. 41

viii

3.10 Architectural differences between our unconditional semantic bottleneck synthe-
sis network and the conditional semantic layout synthesis network in Hong et
al. (2018) and Li et al. (2019). (a) Schematic of our unconditional Semantic
Bottleneck GAN. We progressively train an adversarial segmentation synthesis
network to generate realistic segmentation maps from scratch, then synthesize a
photo-realistic image using a conditional image synthesis network. End-to-end
coupling of these two components results in state-of-the-art unconditional syn-
thesis of complex scenes. For more detail about our conditional image synthesis
network, one can refer to Section 3.2.2. (b) Schematic of the hierarchical text-
to-image synthesis models inferring a semantic layout (Hong et al., 2018; Li et
al., 2019). From an encoding of the input sentence, object bounding boxes are
generated sequentially using an auto-regressive decoder, and are refined by a syn-
thesized binary shape mask in the next step. The final image is synthesized given
the constructed semantic layout and the text description. Note that whereas
(b) conditionally generates masks only for objects, our model (a) unconditionally
generates segmentation maps for the entire scene. 42

3.11 Segmentations and their corresponding images synthesized by SB-GAN trained
on the Cityscapes-25K dataset. 43

3.12 Segmentations and their corresponding images synthesized by SB-GAN trained
on the Cityscapes-25K dataset. 44

3.13 Segmentations and their corresponding images synthesized by SB-GAN trained
on the ADE-Indoor dataset. 45

3.14 Segmentations and their corresponding images synthesized by SB-GAN trained
on the ADE-Indoor dataset. 46

4.1 Binary Composition examples. Top Row : The first object or the background
image, Middle Row : The second object or the foreground image, Bottom Row :
The generated composite image. 48

4.2 (a) The CoDe training network includes the composition network getting a self-
consistent supervisory signal from the decomposition network. This network is
trained on all training images, (b) ESMR: At test time, the weights of the trained
composition and decomposition networks are fine-tuned given only one test ex-
ample of X and one test example of Y . The decomposition network provides the
self-supervision required for updating the weights of the composition network at
test time. The layers of the composition generator are presented in pink and the
decomposition generator in yellow. 49

ix

4.3 Schematic of our binary compositional GAN model at training and test times: (a)
Our training model includes the inpainting networks (for unpaired data), RAFN
(for paired data), the relative STN model, and the CoDe and mask prediction
networks. Xs and Ys stand for the respective object segments of real compos-
ite images in an unpaired training setup. Xr indicates the input image in an
arbitrary viewpoint different from its corresponding composite image, and Ymask

is the binary segmentation mask of the object images in Y encoding the target
viewpoint, (b) A toy example of a real composite image C, its object cutouts CX
and CY , and their segmentation masks, (c) We convert an unpaired training data
to a paired setup by inpainting the object segment cutouts of the real composite
image. The inpainted segments and their cropped variants at the center of the
image are then used for training STN, (d) At test time, we fine-tune the weights
of the CoDe network given only one test example from the X domain and one
test example from the Y domain. The weights of the mask prediction network
and STN are not updated on test examples. Each of the above modules is rep-
resented by a different color, and repeating the same module in different parts of
this diagram is for the illustration purpose. 51

4.4 Relative Spatial Transformer Network: First input with three RGB channels
(e.g., image of a chair) concatenated channel-wise with the second RGB image
(e.g., image of a table). The network generates two transformed images each with
three RGB channels. The orange feature maps are the outputs of the conv2d layer
(represented along with their corresponding number of channels and dimensions),
and the yellow maps are the outputs of the max-pool2d followed by a ReLU. The
blue layers also represent fully connected layers. 53

4.5 Relative Appearance Flow Network: Input is an image of a chair with three RGB
channels concatenated channel-wise with the table foreground mask. Output is
the appearance flow for synthesizing a new viewpoint of the chair. All layers are
convolutional. 55

4.6 Test results on (a) the chair-table and (b) the basket-bottle composition tasks
trained with either paired or unpaired data. In the chair-table examples, we use
XRAFN as the input to all models.“NN” stands for the nearest neighbor image in
the paired training set, and “NoInpaint” shows the results of the unpaired model
without the inpainting network. In both paired and unpaired cases, ĉbefore and
ĉafter show outputs of the generator before and after ESMR, respectively. Also,
ĉafter
s represents summation of masked transposed inputs after the ESMR step. . 57

4.7 (a) Ablation Study: output of our compositional GAN model without the com-
ponent specified on top of each column. Input is the channel-wise concatenation
of the bottle and basket shown in the first two columns, (b) Baselines: As the
input (9th column), each bottle is added to the basket after being scaled and
translated with constant parameters. The Pix2Pix and CycleGAN outputs are
shown in the last two columns. 59

x

4.8 (a) Test examples for the face-sunglasses composition task. Top two rows : input
sunglasses and face images, 3rd and 4th rows : the output of our compositional
GAN for the paired and unpaired models, respectively, Last row : images gener-
ated by the ST-GAN (Lin et al., 2018) model, (b) Test examples for the street
scene-car composition task. Top two rows : input cars and street scenes, 3rd
and 4th rows : the output of our compositional GAN after the meta-refinement
approach. Here, ĉafter shows the output of the composition generator and ĉafter

s
represents the summation of the masked transposed inputs, Last row : images
generated by ST-GAN. 61

4.9 Generalization of the compositional GAN model trained on bottle-basket exam-
ples to a similar unseen category of cans to be composed with baskets. The first
two rows indicate the new test examples, and the last row show the generated
composite images. 62

4.10 Test examples for an iterative extension of the street scenes-cars composition
task to more than two objects. The first two rows show the input street and the
input car images in the first iteration. The 3rd row illustrates the output of our
compositional generator, used as the street scene inputs for the next iteration to
be composed with the cars shown in the 4th row. The 5th row indicates the final
generated composite image of the two cars added to the street scenes iteratively. 63

4.11 Failure test cases for both the paired and unpaired models on the chair-table
composition task. 64

4.12 Test results on (a) the chair-table and (b) bottle-basket composition tasks trained
with either paired or unpaired data. “NN” stands for the nearest neighbor image
in the paired training set, and “NoInpaint” shows the results of the unpaired
model without the inpainting network. In both paired and unpaired cases, ĉbefore

and ĉafter show outputs of the generator before and after the ESMR approach,
respectively. Also, ĉafter

s represents summation of masked transposed inputs after
ESMR. 65

4.13 Test examples for the face-sunglasses composition task. First two columns show
the input sunglasses and face images, 3rd and 4th columns show the output of
our compositional GAN for the paired and unpaired models, respectively. Last
column shows images generated by the ST-GAN (Lin et al., 2018) model. 66

4.14 Test examples for the street scenes-cars composition task. First two columns
show the input car and street images, 3rd and 4th columns show the output of
our compositional generator before and after the inference meta-refinement step,
respectively. The 5th column shows our model’s output by directly adding the
masked inputs. The 6th and 7th columns correspond with images generated by
the ST-GAN (Lin et al., 2018) model and the nearest neighbor training images. 67

xi

5.1 Left: For a uniform proposal distribution and Gaussian target distribution, the
blue points are the result of rejection sampling and the red points are the result
of naively throwing out samples for which the density ratio (pd(x)/pg(x)) is below
a threshold. The naive method underrepresents the density of the tails. Right:
the DRS algorithm. KeepTraining continues training using early stopping on the
validation set. BurnIn computes a large number of density ratios to estimate
their maximum. D̃∗ is the logit of D∗. F̂ is as in Equation 5.7. M̄ is an empirical
estimate of the true maximum M . 70

5.2 (A) Histogram of the sigmoid inputs, F̂ (x) (left plot), and acceptance proba-
bilities, σ(F̂ (x)) (center plot), on 20K fake samples before (purple) and after
(green) adding the constant γ to all F (x). Before adding gamma, 98.9% of the
samples had an acceptance probability < 1e-4. (B) Histogram of maxj p(yj|xi)
from a pre-trained Inception network where p(yj|xi) is the predicted probability
of sample xi belonging to the yj category (from 1, 000 ImageNet categories). The
green bars correspond to 25, 000 accepted samples and the red bars correspond to
25, 000 rejected samples. The rejected images are less recognizable as belonging
to a distinct class. 74

5.3 Real samples from 25 2D-Gaussian Distributions (left) as well as fake samples
generated from a trained GAN model without (middle) and with DRS (right).
Results are computed as an average over five models randomly initialized and
trained independently. 75

5.4 Different models generating 10,000 samples from a 2D grid of Gaussian compo-
nents.“No FT” stands for the discriminator not being trained to convergence. . . 77

5.5 Synthesized images with the highest (left) and lowest (right) acceptance proba-
bility scores. 79

5.6 (A) Inception Score and FID during ImageNet training, computed on 50,000
samples. (B) Each row shows images synthesized by interpolating in latent space.
The color bar above each row represents the acceptance probabilities for each
sample: red for high and white for low. Subjective visual quality of samples with
high acceptance probability is considerably better: objects are more coherent
and more recognizable as belonging to a specific class. There are fewer indistinct
textures, and fewer scenes without recognizable objects. 80

5.7 Inception Score versus the rate of accepting samples on average (left), and the
acceptance probability assigned to each sample xi by DRS versus the maximum
probability of belonging to one of the 1K categories based on a pre-trained In-
ception network, maxj p(yj|xi) (right). 81

5.8 Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features . 81

5.9 Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features . 82

5.10 Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features . 82

xii

5.11 Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features . 83

5.12 Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features . 83

5.13 Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features . 84

5.14 Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features . 84

5.15 Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features . 85

xiii

List of Tables

3.1 FID of the synthesized samples (lower is better), averaged over 5 random sets
of samples. Images were synthesized at resolution of 256x512 on Cityscapes and
256x256 on ADE-Indoor. 33

3.2 FID of the synthesized samples (lower is better), averaged over 5 random sets
of samples. Images were synthesized at resolution of 128x256 on Cityscapes and
128x128 on ADE-Indoor. 33

3.3 FID of the synthesized samples when conditioned on the ground truth labels. For
SB-GAN, we train the entire model end-to-end and extract the trained SPADE. 35

3.4 Ablation study of various components of SB-GAN. We report FID scores of SB-
GAN before fine-tuning, fine-tuning only the semantic bottleneck synthesis com-
ponent, fine-tuning only the image synthesis component, and full end-to-end fine-
tuning. Experiments are performed on the Cityscapes-5K dataset at a resolution
of 128× 256. 36

3.5 Average perceptual evaluation scores when each evaluators has selected a quality
score in the range of 1 (terrible quality) to 4 (high quality) for each image. . . . 36

4.1 AMT user evaluation comparing components of our model on the synthetic datasets.
2nd column: number of test images, 3rd column: % preferences to after vs. before
refinement, 4th column: % preferences to paired training vs. unpaired. 60

4.2 AMT user evaluation comparing our model with ST-GAN on the real datasets.
2nd column: number of test images, 3rd and 4th columns: % preferences respec-
tively to paired and upaired training vs. ST-GAN. 62

5.1 Results with and without DRS on 10,000 generated samples from a model of a
2D grid of Gaussian components. 76

5.2 Ablation study on 10,000 generated samples from a 2D grid of Gaussian compo-
nents. The third to sixth columns represent % of high-quality samples within x
standard deviations. “No FT” stands for the discriminator not being trained to
convergence. 77

5.3 Results with and without DRS on 50K ImageNet samples. Low FID and high IS
are better. 78

xiv

Acknowledgments

First and foremost, I would like to start by expressing my sincere gratitude to my advisor,
Trevor Darrell, for taking me as his student and supporting me through my PhD. I am
grateful for the opportunity he gave me to join his group although I was coming from a
background different from computer vision once I applied to the PhD program at Berkeley.
I would like to thank him for teaching me how to think broad and come up with cool
research ideas and for giving me the freedom under his guidance to find the research direction
that interests me the most. Additionally, I would like to thank Alyosha Efros and Bruno
Olshausen for serving on my qualification and thesis committees and Jitendra Malik for
chairing my qualification exam. I learned a lot from all of you and enjoyed being part of the
discussions at the vision reading groups, courses, and seminars at Berkeley.

I would also like to thank those who mentored me and provided me a new insight into
how to be a good researcher, in particular Jiashi Feng, Stefanie Jegelka, Matthew Fisher,
and Ian Goodfellow. I started my PhD working with Jiashi and Stefanie once they were both
post-docs at Berkeley. I learned the initial steps of doing research and writing a scientific
paper in computer vision from them. Matt was my mentor during my internship at Adobe
Research and motivated me to start working on GANs. Besides his great mentorship and
precise attitude in research, I was amazed by his personality for always being motivated while
relaxed and selfless. Working with Ian, The GANfather, during an internship at Google Brain
was a priceless experience where he showed me how to constantly look at the big picture of
a research project while questioning its fundamentals and details simultaneously.

Before starting my PhD, I was fortunate to have the opportunity to work with Suvrit Sra
and Pieter Abbeel. Coming from a background of Electrical Engineering, Suvrit and Pieter
showed me the beauties of computer science, machine learning, and AI through their courses
at Berkeley and the projects I did under their supervision back then.

I would also like to thank all my other collaborators at Berkeley, Adobe, and Google
Brain: Augustus Odena, Deepak Pathak, Mario Lucic, Michael Tschannen, Anna Rohrbach,
Eli Shechtman, Eric Tzeng, Seth Dong Huk Park, Sayna Ebrahimi, Catherine Olsson, and
Sylvain Gelly. I learned a lot from every single one of them, and this dissertation would not
have been completed without them. In addition, I am grateful for all my peers and friends
at SDH7, who were there whenever I had a concern and made beautiful memories remained
from sitting in the bay and sharing scones and chocolates: Lisa Anne Hendricks, Evan
Shelhamer, Jeff Donahue, Judy Hoffman, Jun-Yan Zhu, Shiry Ginosar, Marcus Rohrbach,
Parsa Mahmoudieh, Yang Gao, and Kate Rakelly.

I am also thankful to my other friends at Berkeley for providing emotional support,
bringing cheer and joy to our life, and making this long journey look shorter: Maedeh
Golshirazi, Fereshteh Radaei, Negar Mehr, Maryam Farahmand, and many others. I am
honored to have them in my life.

Finally, I would like to express my deepest gratitude to my family. My dear parents, Zahra
Eghlidos and Ahmadreza Azadi, for their love and continuous support and for teaching me to
be strong. My one and only sister, Sahar, for being on my side from thousands of miles away

xv

and encouraging me to be persistent and keep up trying. My beloved husband, Mohammad
Sahraeian, who has gone through all ups and downs of life with me in the last few years,
for all his supports, understanding, and encouragements. I have shared so many moments
of successes, failures, smiles, and tears along this journey with him and am so grateful for
having him in my life. My beautiful daughter, Jaanaan, for inspiring me to try to make a
better version of myself as a human and for allowing me to grow with her. Thank you all
for your unconditional love. This thesis is dedicated to you.

1

Chapter 1

Introduction

1.1 Motivation
The technological advancements in online digital resources have made a large extent of

visual content, such as photos and videos, accessible to millions of users in the blink of an
eye. But how can we, as researchers, use this extensive collection of visual data to train an
artificial agent to have a deep understanding of its surrounding environment? One approach
towards this goal is by teaching the machine to create a new visual content that follows
the regulations and structure governing the natural world projected into the existing visual
data, similar to a child or a student who learns to draw a new scene after having enough
observations of a similar scene. For example, painting the sky at the top and the ocean at
the bottom confirms the child’s understanding of these concepts (“sky” vs. “ocean”) and their
relationships. The family of these methods is called “generative modeling”. A noteworthy
advantage of training these creative artificial agents would be also in assisting and inspiring
amateur human users and even artists to manipulate and edit an existing visual content,
generate new designs, unleash their creativity, and effectively express their thoughts visually.

A good sketch is better than a long speech;
Napoleon Bonaparte

1.2 Background
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) as an important type

of generative models have made remarkable enhancements in learning complex data manifolds
by generating data points from scratch and have been used in a wide variety of settings
including image generation (Denton et al., 2015; Yang et al., 2017; Karras et al., 2017a) and
representation learning (Radford et al., 2016; Salimans et al., 2016; Liu & Tuzel, 2016; Chen
et al., 2016). The GAN training procedure pits two neural networks against each other,
a generator G and a discriminator D. The discriminator is trained to distinguish between

CHAPTER 1. INTRODUCTION 2

the real samples and the generated ones. The generator is trained to fool the discriminator
into thinking its outputs are real. It takes as input a sample from the prior z ∈ Z ∼ pz
and produces a sample G(z) ∈ X. The discriminator takes an observation x ∈ X as input
and produces a probability D(x) that the observation is real. The observation is sampled
either according to the density pd (the data generating distribution) or pg (the implicit
density given by the generator and the prior). Using the standard non-saturating variant,
the discriminator and generator are then trained using the following loss functions:

LD = −Ex∼pdata [logD(x)]− Ez∼pz [1− logD(G(z))]

LG = −Ez∼pz [logD(G(z))]

The GAN training procedure is thus a two-player differentiable game, and the game dynamics
are largely what distinguishes the study of GANs from the study of other generative models.
Conditional Generative Adversarial Networks (cGANs) have emerged as a powerful method
for generating images conditioned on a given input. The input cue could be in the form of
an image (Isola et al., 2017a; Zhu et al., 2017a; Liu et al., 2017; Azadi et al., 2017b; Wang
et al., 2017a; Pathak et al., 2016), a text phrase (Zhang et al., 2017a; Reed et al., 2016b;
Reed et al., 2016a; Johnson et al., 2018) or a class label layout (Mirza & Osindero, 2014;
Odena et al., 2016; Antoniou et al., 2017).

Training GANs is notoriously hard and recent efforts focused on improving neural archi-
tectures (Wang & Gupta, 2016; Karras et al., 2017b; Zhang et al., 2019; Chen et al., 2019a),
loss functions (Arjovsky et al., 2017), regularization (Gulrajani et al., 2017a; Miyato et al.,
2018), large-scale training (Brock et al., 2019), self-supervision (Chen et al., 2019b), and
sampling (Brock et al., 2019; Azadi et al., 2019a). Improving the performance of GANs by
disentangling structure and style has been studied by (Wang & Gupta, 2016) where structure
is represented by a surface normal map and style is the texture mapped onto the structure.
Another compelling approach which enables generation of high-resolution images is based
on progressive training: a model is trained to first synthesize lower-resolution images (e.g.
8×8), then the resolution is gradually increased until the desired resolution is achieved (Kar-
ras et al., 2017b). Recently, (Brock et al., 2019) showed that GANs significantly benefit from
large-scale training, both in terms of model size and batch size. We note that these models
are able to synthesize high-quality images in settings where objects are very prominent and
centrally placed or follow some well-defined structure, as the corresponding distribution is
easier to capture.

1.3 Thesis Goal and Contributions
The structure shared between different elements of a domain plays an important role in

learning its distribution and creating new visual contents from that domain. For instance, the
well-defined structure of a human face with specific features and range of distances between
different parts of the face (e.g., between the two eyes, or between the nose and the lips) has
been an influential factor in the success of recent GAN models in synthesizing the human

CHAPTER 1. INTRODUCTION 3

faces (Karras et al., 2019; Karras et al., 2020). Our goal in this thesis has been to study
the role of structure in content creation in a wide range from hand-designed fonts to natural
complex scenes.

We start in the Chapter 2 focusing on glyph synthesis and font style transfer. Artists
invest significant time into designing glyphs that are visually compatible with each other in
their shape, structure, and texture. This process is labor intensive and artists often design
only the subset of glyphs that are necessary for a specific task, like a movie ad title, making it
difficult to be extended to other texts after the design is created. We developed an end-to-end
GAN that learns the font manifold of the 26 English alphabets and automatically synthesizes
the missing glyphs from a few observed letters. Leveraging the consistent structure of the A
to Z letters across all fonts, we were able to predict unseen glyph shapes of a specific font,
then learn to ornament the glyphs with a spectrum of styles and textures.

From Chapter 3, we switch gears to the domain of natural images where the scenes layout
and objects shapes vary significantly making the image generation problem more error-prone
and challenging. Recent techniques mostly perform well on the domains or categories with
a specific structure such as center-aligned faces (Karras et al., 2017a; Karras et al., 2019)
or single objects at the center of the scene (Brock et al., 2019). As image resolution and
complexity increase, the coherence of synthesized images decreases, i.e., samples contain con-
vincing local textures, but lack a consistent global structure. Label-conditional GANs (Wang
et al., 2018; Park et al., 2019) were recently proposed to alleviate some of these issues by
synthesizing high-quality scenes using a strong conditioning mechanism based on semantic
segmentation labels during the scene generation process. Global structure encoded in the
segmentation layout of the scene is what allows these models to focus primarily on generating
convincing local content consistent with that structure.

In Chapter 3, we couple the high-fidelity generation capabilities of label-conditional image
synthesis methods with the flexibility of unconditional generative models and propose a
Semantic Bottleneck GAN model for unconditional synthesis of complex scenes. This model
generates a novel content image represented as a realistic segmentation layout and then
synthesizes a photorealistic scene conditioned on that layout. This enables the model to
synthesize an unlimited number of novel complex scenes, while still maintaining high-fidelity
output characteristic of image-conditional models. When trained end-to-end, the model
yields samples which have a coherent global structure as well as fine local details.

In Chapter 4, we investigate the importance of structure to model compositionality in
natural images considering the fact that an image is a 2D projection of a composition of
multiple objects interacting in a 3D visual world. We explore the role of compositionality
in GAN frameworks and propose a new method which learns a function that maps images
of different objects sampled from their marginal distributions (e.g., chair and table) into a
combined sample (table–chair) that captures the joint distribution of object pairs. Here, we
specifically focus on the composition of a pair of objects. For instance, given an image of a
chair and an image of a table, our formulation is able to generate an image containing the
same chair–table pair arranged in a realistic manner. The structure here defines the relative
scaling of the objects, their spatial layout, occlusion ordering, and viewpoint transformation.

CHAPTER 1. INTRODUCTION 4

We propose a novel self-consistent composition-by-decomposition framework consisting of
two conditional GANs to compose a pair of objects.

Despite the efforts made to improve the performance of the GAN models as discussed
above, the synthesized samples do not always follow the target distribution and could be de-
fective in the structure due to the challenging GAN optimization as a two-player adversarial
game. In Chapter 5, instead of trying to improve the GAN training procedure, we propose
an approach to improve the quality of the trained generator by post-processing its generated
samples using information from the optimized discriminator. This practical method focuses
on using the discriminator as part of a probabilistic rejection sampling scheme to discard
faulty generated samples. We show that under quite strict assumptions, this scheme allows
us to recover the data distribution exactly.

5

Chapter 2

Few-Shot Glyph Synthesis and Font
Style Transfer

2.1 Introduction
Text is a prominent visual element of 2D design. Artists invest significant time into

designing glyphs that are visually compatible with other elements in their shape and texture.
This process is labor intensive and artists often design only the subset of glyphs that are
necessary for a title or an annotation, which makes it difficult to alter the text after the
design is created, or to transfer an observed instance of a font to your own project. In this
work, we propose a neural network architecture that automatically synthesizes the missing
glyphs from a few image examples 1.

Early research on glyph synthesis focused on geometric modeling of outlines (Suveeranont
& Igarashi, 2010; Campbell & Kautz, 2014; Phan et al., 2015), which is limited to particular
glyph topology (e.g., cannot be applied to decorative or hand-written glyphs) and cannot
be used with image input. With the rise of deep neural networks, researchers have looked
at modeling glyphs from images (Baluja, 2016; Upchurch et al., 2016; Lyu et al., 2017;
Chang & Gu, 2017). We improve this approach by leveraging recent advances in conditional
generative adversarial networks (cGANS) (Isola et al., 2016), which have been successful
in many generative applications, but produce significant artifacts when directly used to
generate fonts (Figure 5.4, 2nd row). Instead of training a single network for all possible
typeface ornamentations, we show how to use our multi-content GAN architecture to retrain
a customized network for each observed character set with only a handful of observed glyphs.

Our network operates in two stages, first modeling the overall glyph shape and then
synthesizing the final appearance with color and texture, enabling transfer of fine decorative
elements. Some recent texture transfer techniques directly leverage glyph structure as guid-
ing channels to improve the placement of decorative elements (Yang et al., 2016). While this

1This chapter is based on joint work done with Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli
Shechtman, and Trevor Darrell (Azadi et al., 2018) presented at CVPR 2018

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 6

Bx26x64x64 Bx26x64x64

LSGAN
local

LSGAN
global

+

Discriminator 1
 (D1)

Bx26x64x64

 × L Loss1

G
ro

un
d

Tr
ut

h

Fake P
air

R
eal P

air

Generator 1
 (G1)

1

1

Figure 2.1: Schematic of our Glyph Network to be trained on our 10K font data set.

approach provides good results on clean glyphs it tends to fail on automatically-generated
glyphs, as the artifacts of the synthesis procedure make it harder to obtain proper guidance
from the glyph structure. Instead, we propose to train an ornamentation network jointly
with the glyph generation network, enabling our ornament synthesis approach to learn how
to decorate automatically generated glyphs with color and texture and also fix issues that
arise during glyph generation. We demonstrate that users strongly preferred the output of
our glyph ornamentation network in the end-to-end glyph synthesis pipeline.

Our Contributions. We propose the first end-to-end solution to synthesizing orna-
mented glyphs from images of a few example glyphs in the same style. To enable this, we
develop a novel stacked cGAN architecture to predict the coarse glyph shapes, and a novel
ornamentation network to predict color and texture of the final glyphs. These networks
are trained jointly and specialized for each typeface using a very small number of observa-
tions, and we demonstrate the benefit of each component in our architecture (Figure 5.4).
We use a perceptual evaluation to demonstrate the benefit of our jointly-trained network
over effect transfer approaches augmented with a baseline glyph-outline inference network
(Section 2.4.5).

Our Multi-Content GAN (MC-GAN) code and dataset are available at https://github.
com/azadis/MC-GAN.

https://github.com/azadis/MC-GAN
https://github.com/azadis/MC-GAN

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 7

6x26x64x64

A
B
C
D
E
F
G
.
.
.

Z

E

O

R

T

W

Grou
nd

 Trut
h

P
re

di
ct

io
n

of
 G

ly
ph

N
et

 G

’1

(a) Glyph Network (b) Ornamentation Network

Generator 1
 (G1)

Z

A

~
~
~
~
~
~
~

~

~

Z

Discriminator 2
 (D2)

LSGAN
+
LSGAN

6x26x64x64

1x26x64x64

26x3x64x64 26x3x64x64

Fake P
air

R
eal P

air

ZZ

Z
 × MSE Loss

Extract

 Ƭ

4

 × L Loss3

 × L Loss1

 × MSE Loss2
1

1

local

global
O

R

T

W

E

R

T

W

E

O

T

W

E

O

R

W

E

O

R

T

Generator 2
 (G2)

2

2

1

Figure 2.2: Schematic of our end-to-end MC-GAN model including (a) GlyphNet and (b)
OrnaNet. Inputs and Outputs are illustrated in white, network layers in green, and loss
functions are shown in blue. We use a leave-one-out approach among all observed letters of
a word like TOWER (in orange) to construct a batch of input image stacks to be fed into
G1: For each input stack in the batch, we extract the left out generated glyph. In addition,
the remaining 21 glyphs will be generated by feeding in all observed letters together. After a
reshape and gray-scale channel repetition, T , these extracted generated glyphs, Ã, B̃, · · · , Z̃
will be fed into OrnaNet.

2.2 Multi-Content GAN Architecture
We propose an end-to-end network to take a subset of stylized images of specific cate-

gories (such as font glyphs) and predict the whole set of stylistically similar images. We have
specifically designed our model for the font generation problem to predict the set of letters
from A to Z for in-the-wild fonts with a few observed letters. We divide this problem into two
parts: glyph generation and texture transfer. Our first network, called GlyphNet, predicts
glyph masks while our second network, called OrnaNet, fine-tunes color and ornamentation
of the generated glyphs from the first network. Each sub-network follows the conditional
generative adversarial network (cGAN) architecture (Isola et al., 2016) modified for its spe-
cific purpose of stylizing glyphs or ornamentation prediction. We assume the label for each
observed letter is known for the model and thus, skip the need for categorizing each letter
into the 26 letters. In the following sections, we will first summarize the cGAN model, and
then discuss our proposed GlyphNet and OrnaNet architectures and stack them together in
an end-to-end final design which we refer to as MC-GAN.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 8

2.2.1 Conditional Generative Adversarial Networks

Starting from a random noise vector z, generative adversarial networks (GANs) (Good-
fellow et al., 2014a) train a model to generate images y following a specific distribution by
adversarially training a generator versus a discriminator (z → y). While the discriminator
tries to distinguish between real and fake images, the generator opposes the discriminator by
trying to generate realistic-looking images. In the conditional GAN (cGAN) scenario (Isola
et al., 2016; Mirza & Osindero, 2014), this mapping is modified by feeding an observed image
x alongside the random noise vector to the generator ({x, z} → y), and thus, the adversary
between generator and discriminator is formulated as the following loss function:

LcGAN(G,D) = Ex,y∼pdata(x,y)[logD(x, y)] + Ex∼pdata(x),z∼pz(z)[1− logD(x,G(x, z))], (2.1)

where G and D minimize and maximize this loss function, respectively.
Given the ground truth output of the generator, it is also beneficial to force the model

to generate images which are close to their targets through an L1 loss function in addition
to fooling the discriminator. The generator’s objective can be summarized as:

G∗ = arg min
G

max
D
LcGAN(G,D) + λLL1(G), (2.2)

where LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[‖y −G(x, z)‖1].
We follow this conditional GAN setting in each of our sub-networks to generate the whole

set of letters with a consistent style, y, by observing only a few examples fed in as a stack,
x. Similar to (Isola et al., 2016), we ignore random noise as the input to the generator, and
dropout is the only source of randomness in the network.

2.2.2 Glyph Network

Generalizing all 26 capital letters of a font from a few example glyphs requires capturing
correlations and similarities among source letters and the unseen ones. Our GlyphNet learns
such correlations automatically in order to generate a whole set of stylistically similar glyphs.
We study this behavior in Section 2.4.3.

Due to the style similarity among all content images, we add one input channel for each
individual glyph in our proposed GlyphNet resulting in a “glyph stack” in both input and the
generated output (as illustrated in Figure 2.1). A basic tiling of all 26 glyphs into a single
image, however, fails to capture correlations among them specifically for those far from each
other along the image length. This occurs due to the smaller size of convolution receptive
fields than the image length within a reasonable number of convolutional layers.

With our novel input glyph stack design, correlation between different glyphs are learned
across network channels in order to transfer their style automatically. We employ our gen-
erator, G1, based on the image transformation network introduced in (Johnson et al., 2016)
including six ResNet blocks.

We consider 64× 64 glyphs in gray-scale resulting in the input and output dimension of
B×26×64×64 for the 26 capital English alphabets, with B indicating batch size. Following

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 9

the PatchGAN model proposed by (Isola et al., 2016), we apply a 21×21 local discriminator
with three convolutional layers on top of the generated output stack in order to discriminate
between real and fake local patches resulting in a receptive field size equal to 21. In parallel,
we add two extra convolutional layers as a global discriminator, resulting in a receptive field
covering the whole image to distinguish between realistic font images and generated ones.
In Figure 2.1, our local and global discriminators are shown within one discriminator block
and will be referred as D1.

For higher quality results and to stabilize GAN training (Zhu et al., 2017a), we use two
least squares GAN (LSGAN) loss functions (Mao et al., 2017a) on our local and global
discriminators added with an L1 loss penalizing deviation of generated images G1(x1) from
their ground truth y1:

L(G1) = λLL1(G1) + LLSGAN(G1, D1) = λEx1,y1∼pdata(x1,y1)[‖y1 −G1(x1)‖1]
+ Ey1∼pdata(y1)[(D1(y1)− 1)2] + Ex1∼pdata(x1)[D1(G1(x1))

2],

where

LLSGAN(G1, D1) = Llocal
LSGAN(G1, D1) + Lglobal

LSGAN(G1, D1).

We train this network on our collected 10K font data set (Section 2.3) where in each training
iteration, x1 includes a randomly chosen subset of y1 glyphs with the remaining input chan-
nels being zeroed out. We will refer to this trained model as G′1 in the following sections.
We explored adding in a separate input indicator channel denoting which of the glyphs are
present, but did not find this to significantly affect the quality of the generator.

While we pre-train the GlyphNet using the conditional discriminator, we will remove this
discriminator when training the joint network (Section 2.2.4).

2.2.3 Ornamentation Network

Our second sub-network, OrnaNet, is designed to transfer ornamentation of the few
observed letters to the gray-scale glyphs through another conditional GAN network consisting
of a generator, G2, and a discriminator, D2. Feeding in the glyphs as input images, x2, this
network generates outputs, G2(x2), enriched with desirable color and ornamentation. The
main difference between our proposed OrnaNet and GlyphNet lies in the dimension and type
of inputs and outputs, as well as in how broad vs. specific the model is in generating images
with a particular style; the generator and conditional discriminator architecture is otherwise
identical to GlyphNet.

While GlyphNet is designed to generalize glyph correlations across all our training fonts,
OrnaNet is specialized to apply only the specific ornamentation observed in a given observed
font. It is trained only on the small number of observations available. Moreover, inputs
and outputs of the OrnaNet include a batch of images with three RGB channels (similar to
the format of the input and output images used in (Isola et al., 2016)) where the the input
channels are repeats of the gray-scale glyphs. In the next section, we will describe how to

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 10

combine our GlyphNet and OrnaNet in an end-to-end manner in order to generate stylized
glyphs in an ornamented typeface.

2.2.4 End-to-End Network

The goal of our end-to-end model, illustrated in Figure 2.2, is to generalize both style and
ornamentation of the observed letters to the unobserved ones. For this purpose, we generate
all 26 glyphs including the observed ones through the pre-trained GlyphNet and feed them
to the OrnaNet (initialized with random weights) to be fine-tuned. To accomplish this, we
use a leave-one-out approach to cycle all possible unobserved letters:

For instance, given 5 observed letters of the word TOWER shown in Figure 2.2, we
first use 4 letters T, O, W, E as the given channels in a 1 × 26 × 64 × 64 input stack and
feed it to the pre-trained GlyphNet to generate all 26 letters and then extract the one fake
glyph, R̃, not included in the input stack. Repeating this process would generate all of the
5 observed letters from the pre-trained GlyphNet. Similarly, we extract the 21 remaining
letters from the pre-trained model by feeding in a 1× 26× 64× 64 input stack filled with all
5 observed letters simultaneously while zeroing out all other channels. This whole process
can be summarized by passing 6 input stacks each with dimension 1× 26× 64× 64 through
GlyphNet as a batch, extracting the relevant channel from each output stack, and finally
concatenating them into one 1 × 26 × 64 × 64 output. After a reshape transformation and
gray-scale channel repetition, represented by T , we can transform this generated output to
26 images with dimension 3 × 64 × 64 and feed them as a batch, x2, to OrnaNet. This
leave-one-out approach enables OrnaNet to generate high quality stylized letters from coarse
generated glyphs.

To stabilize adversarial training of the OrnaNet generator (G2) and discriminator (D2),
we likewise use an LSGAN loss added with an L1 loss function on generated images of the
observed letters, x2, and their ground truth, y2. Moreover, to generate a set of color images
with clean outlines, we minimize the mean square error (MSE) between binary masks of the
outputs and inputs of the generator in OrnaNet which are fake color letters, G2(x2), and fake
gray-scale glyphs, x2, respectively. Binary masks are obtained by passing images through a
sigmoid function, indicated as σ in equation 2.3. In summary, the loss function applied on
top of the OrnaNet in the end-to-end scenario can be written as:

L(G2) = LLSGAN(G2, D2) + λ1LL1(G2) + λ2LMSE(G2)

= Ey2∼pdata(y2)[(D2(y2)− 1)2] + Ex2∼pdata(x2)[D2(G2(x2))
2] (2.3)

+ Ex2,y2∼pdata(x2,y2)

[
λ1‖y2 −G2(x2)‖1 + λ2(σ(y2)− σ(G2(x2)))

2
]
,

where x2 = T (G1(x1)) and

LLSGAN(G2, D2) = Llocal
LSGAN(G2, D2) + Lglobal

LSGAN(G2, D2).

.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 11

Figure 2.3: Random subset of our 10K gray-scale font dataset

Figure 2.4: Example synthetic color gradient fonts

In the final end-to-end training, we do not use discriminator D1 in the GlyphNet and
instead, OrnaNet plays the role of a loss function by back propagating the gradients of the
objective in equation 2.3 to improve style of the generated glyphs. Adding a weighted L1

loss on top of the generator in GlyphNet, G1, also penalizes deviating from the predictions
of the pre-trained GlyphNet, G′1. We also add an MSE loss function between binary masks
of fake versions of the observed glyphs, T (G1(x1)), and masks of their corresponding ground
truth glyphs, y2. Putting this all together, the gradients of the following loss functions would
be passed through GlyphNet in addition to the gradient coming from OrnaNet:

L(G1) = λ3Lw,L1(G1) + λ4LMSE(G1) (2.4)

= Ex1∼pdata(x1),y2∼pdata(y2)

[
λ3

26∑
i=1

wi × |Gi
1(x1)−G

′i
1 (x1)|+ λ4(σ(y2)− σ(T (G1(x1)))

2
]
,

where wi allows us to apply different weights to observed vs. unobserved glyphs. Ratio
between different terms in loss functions in equation 2.3, equation 2.4 is defined based on
hyper-parameters λ1 to λ4. Moreover, as mentioned in Section 2.2.2, G′1(x) indicates the
prediction of the pre-trained GlyphNet before being updated through end-to-end training.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 12

2.3 Font Dataset
We have collected a dataset including 10K gray-scale Latin fonts each with 26 capital

letters. We process the dataset by finding a bounding box around each glyph and resize
it so that the larger dimension reaches 64 pixels, then pad to create 64 × 64 glyphs. A
few exemplar fonts from our dataset are depicted in Figure 2.3. These fonts contain rich
information about inter-letter correlations in font styles, but only encode glyph outlines and
not font ornamentations. To create a baseline dataset of ornamented fonts, we apply random
color gradients and outlining on the gray-scale glyphs, two random color gradients on each
font, resulting in a 20K color font data set. A few examples are shown in Figure 2.4. Size
of this data set can be arbitrarily increased through generating more random colors. These
gradient fonts do not have the same distribution as in-the-wild ornamentations but can be
used for applications such as network pre-training.

2.4 Experiments and Results
We demonstrate the quality of our end-to-end model predictions on multiple fonts with

various styles and decorations. First, we study the advantage of various components of our
model through different ablation studies. Next, we will show the significant improvement ob-
tained by our model in transferring ornamentations on our synthesized glyphs compared with
patch-based text effect transfer approach (Yang et al., 2016). In the following experiments,
we have set λ1 = 300, λ2 = 300 if epoch < 200 and λ2 = 3 otherwise, λ3 = 10, λ4 = 300,
while wi = 10 if i is an observed glyph and wi = 1 otherwise.

For evaluation, we download ornamented fonts from the web1. For all experiments in
sections 2.4.1 and 2.4.2, we have made sure that all font examples used in these studies were
not included in our 10K font training set by manually inspecting nearest neighbors computed
over the black-and-white glyphs.

2.4.1 Image Translation Baseline

To illustrate the significant quality improvement of our end-to-end approach, we have
implemented a baseline image-to-image translation network (Isola et al., 2016) for this task.
In this baseline approach, we consider channel-wise letters in input and output stacks with
dimensions B × 78× 64× 64, where B stands for training batch size and 78 corresponds to
the 26 RGB channels. The input stack is given with “observed” color letters while all letters
are generated in the output stack. We train this network on our color font data set where we
have applied randomly chosen color gradients on each gray-scale font. Feeding in a random
subset of RGB letters of an arbitrary font into this model during test time, it is expected
to generate stylistically similar 26 letters. Results of this model are shown in the second
rows of Figure 5.4 for each example font. Observe that while the network has learned rough

1http://www6.flamingtext.com/All-Logos

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 13

Figure 2.5: Ablation study on our MC-GAN model components: For each exemplar font, we
show ground truth (1st row), observed letters (red squares in the 1st row), predictions of
a baseline image translation network (2nd row), predictions of our end-to-end model with
randomly initialized (RI) OrnaNet and λ2 = λ3 = λ4 = 0 (3rd row), with pre-trained (PT)
OrnaNet weights and λ2 = λ3 = λ4 = 0 (4th row), selectively disabled loss terms (rows
5-7), and the full end-to-end MC-GAN model (bottom row). Style transfer improvements
by λ3 are highlighted in blue and degradation in the predictions by omitting each individual
regularizer is highlighted in red.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 14

Figure 2.6: Effect of number of observed glyphs on the quality of GlyphNet predictions. Red
line is passing through median of each distribution.

aspects of glyph structure, the predictions do not follow a consistent color or ornamentation
scheme, as the network is not able to effectively specialize for the provided ornamentation
style. Similar artifacts are observed even when evaluating on a test set derived from our
simplified color-gradient dataset (see Section 2.4.7).

2.4.2 Ablation Study

In Figure 5.4 we demonstrate the incremental improvement of our proposed regular-
izers, Lw,L1(G1),LMSE(G1), and LMSE(G2). We found that pre-training on our OrnaNet
on gradient-based ornamentations was not helpful, and that the best result comes from a
random initialization of OrnaNet and using all the proposed loss terms.

As mentioned in Section 2.2.4, Lw,L1(G1) prevents network predictions from going far
from the original pre-trained predictions of the GlyphNet. However, it also reduces the
freedom in modifying the style of the new glyphs during the end-to-end training. We show
this trade-off in the fourth rows of each instance font in Figure 5.4 by highlighting letters
with additional artifacts in red and improved letters in blue when this regularizer is excluded
from the network. The other two MSE loss regularizers weighted by λ2 and λ4 prevent blurry
predictions or noisy artifacts to appear on the generated gray-scale and color letters.

2.4.3 Automatic Learning of Correlations between Contents

Automatic learning of the correlations existing between different letters is a key factor in
transferring style of the few observed letters in our multi-content GAN. In this section, we
study such correlations through the structural similarity (SSIM) metric on a random subset
of our 10K font data set consisting of 1500 examples. For each instance, we randomly keep
one of the 26 glyphs and generate the rest through our pre-trained GlyphNet.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 15

Computing the structural similarity between each generated glyph and its ground truth,
we find 25 distributions over its SSIM scores when a single letter has been observed at a
time. In Figure 2.7, we illustrate the distributions α|β of generating letter α when letter β
is observed (in blue) vs when any other letter rather than β is given (in red). Distributions
for the two most informative given letters and the two least informative ones in generating
each of the 26 letters are shown in this figure. For instance, looking at the fifth row of the
figure, letters F and B are the most constructive in generating letter E compared with other
letters while I and W are the least informative ones. As other examples, O and C are the
most guiding letters for constructing G as well as R and B for generating P.

2.4.4 Number of Observed Letters

Here, we investigate the dependency of quality of GlyphNet predictions on the number
of observed letters. Similar to Section 2.4.3, we use a random subset of our font data set
with 1500 example fonts and for each font, we generate 26 letters given n observed ones
from our pre-trained GlyphNet. The impact of changing n from 1 to 8 on the distribution
of SSIM scores between each unobserved letter and its ground truth is shown in Figure 2.6.
The slope of the red line passing through the median of each distribution is decreasing as n
increases and reaches to a stable point once the number of observations for each font is close
to 6. This study confirms the advantage of our multi-content GAN method in transferring
style when we have very few examples.

2.4.5 Perceptual Evaluation

To evaluate the performance of our model, we compare the generated letters of our end-
to-end multi-content GAN against the output of the patch-based synthesis method in (Yang
et al., 2016). Since this model is designed only for transferring text decorations on clean
glyphs, it is not fully comparable with our approach which synthesizes unobserved letters.
To explore this method, we use the predictions of our pre-trained GlyphNet as the input
to this algorithm. Moreover, this model transfers stylization from only one input decorated
glyph, while our method uses all observed examples simultaneously. Therefore, to enable
a fair comparison in transferring ornamentations, we allow their model to choose the most
similar glyph among the observed instances to the generated glyph mask using a simple
image-space distance metric.

We generated the output of both methods on 33 font examples downloaded from the web
and asked 11 people to choose which character set they preferred when presented with the ob-
served letters and the full glyph results of both methods. Overall users preferred the result of
our method 80.0% of the time. We visualize these examples in Figures 2.10, 2.11, 2.12, 2.13
including ground truth and given letters (first rows), predictions of the text effect trans-
fer method (Yang et al., 2016)which are applied on top of the glyphs synthesized by our
GlyphNet (second rows), and predictions of our full end-to-end model in the last rows. The

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 16

Figure 2.7: Distributions (α|β) over SSIM scores for generating letter α given β in blue and
given any other letter rather than β in red. Distributions for the most informative given
letters β in generating each glyph α is shown in the left of each column while the least
informative givens are presented in the right.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 17

Ground Truth

OrnaNet

T-Effect

Figure 2.8: Text Effect Transfer (Yang et al., 2016) failure example on clean input glyphs.

Ground Truth

OrnaNet

T-Effect

Figure 2.9: Failure cases on clean input glyphs.

two best and two worst scoring results for each method are shown on the top and bottom
examples of Figure 2.10.

The text effect transfer approach is designed to generate text patterns on clean glyphs
but mostly fails to transfer style given our synthesized gray-scale letters. In addition, due
to their dependency on a patch matching based algorithm, they often cannot transfer style
correctly when the shape of the given and new letters are not very similar (e.g., they cannot
transfer straight line patterns when there is a curvature in their new input glyph as clear
from the sixth and seventh examples in Figure 2.10).

2.4.6 Ground Truth Glyph Ornamentation

We further compare the performance of our ornamentation network against patch-based
synthesis in the case where we are given correct grayscale glyphs (i.e. the ground-truth for
GlyphNet). Figure 2.8 indicates a failure mode of patch-based effect transfer, where spatial
patterns present in the input are often violated. Figure 2.9 represents a failure mode of both
methods: our method averages over the distinct colors present and does not always generate
the observed ornamentation such as eyes, while patch-based effect transfer better preserves
the input color distrubtion but can still fail to capture the frequency of stylistic elements.

2.4.7 Generalization on Synthetic Color Font Dataset

In this section, we compare our end-to-end multi-content GAN approach with the image
translation method discussed in Section 2.4.1. In Figure 2.14, we demonstrate the results
on multiple examples from our color font data set where we have applied random color
gradients on the gray-scale glyph outlines. By looking at the nearest neighbor examples, we
have made sure that the fonts shown in this experiment were not used during training of our
Glyph Network.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 18

Given a subset of color letters in the input stack of GlyphNet with dimension 1×78×64×
64 including RGB channels, we generate all 26 RGB letters from the pre-trained GlyphNet
on our color font data set. Results are denoted as “Image Translation” in Figure 2.14. Our
MC-GAN results are outputs of our end-to-end model fine-tuned on each exemplar font. The
image translation method cannot generalize well in transferring these gradient colors at test
time by observing only a few examples although other similar random patterns have been
seen during training.

2.5 Related Work
Font glyph synthesis from few examples has been a long-studied problem. Earlier meth-

ods (Suveeranont & Igarashi, 2010; Campbell & Kautz, 2014; Phan et al., 2015) mostly
relied on explicit shape modeling to construct the transformation between existing and novel
glyphs. Glyph part models for radicals (Zhou et al., 2011) and strokes (Lian et al., 2016)
were designed specifically for Chinese characters. Based on a shape representation, machine
learning techniques, including statistical models (Phan et al., 2015) and bilinear factoriza-
tion (Tenenbaum & Freeman, 1997), have been used to infer and transfer stroke styles and
composition rules. More recently, with the rise of deep learning, convolutional neural net-
works have also been applied to novel glyph synthesis. Promising results were obtained with
conventional model structures (Baluja, 2016; Upchurch et al., 2016) as well as generative
adversarial networks (GANs) (Lyu et al., 2017; Chang & Gu, 2017). All these networks
only predict glyph shape, a goal also targeted by our glyph network. We adopt a distinct
multi-content representation in our glyph network which proves to effectively capture the
common style among multiple glyphs.

Transferring artistic styles of color and texture to new glyphs is a challenging problem
distinct from inferring the overall glyph shape. The problem was investigated in (Yang et al.,
2016) with the assumption that the unstylized glyph shape is given. A patch-based texture
synthesis algorithm is employed to map sub-effect patterns to correlated positions on text
skeleton for effect generation. Style transfer has been more actively studied on general images
with the aid of convolutional neural networks (CNNs). CNN features are successfully used
to represent image styles, and serve as the basis for optimization (Gatys et al., 2016; Li &
Wand, 2016a; Liao et al., 2017). Recently, networks trained with feed-forward structure and
adversarial loss have achieved much improved efficiency (Li & Wand, 2016b; Johnson et al.,
2016) and generalization ability (Huang & Belongie, 2017; Li et al., 2017b). Our proposed
ornamentation network is the first to employ deep networks for text effect transfer.

Several problems in graphics and vision require synthesizing data that is consistent with
partial observations. These methods typically focus on learning domain-specific priors to
accomplish this task. For example, given a single-view image, encoder-decoder architectures
have been proposed to hallucinate novel views of faces (Kulkarni et al., 2015; Tran et al.,
2017), bodies (Zhao et al., 2017), and other rigid objects (Zhou et al., 2016; Park et al.,
2017). CNNs were also used to complete missing regions in images (Pathak et al., 2016)

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 19

and new stereo and lightfield views (Flynn et al., 2016; Kalantari et al., 2016) given a set
of input images. Similarly, 3D models can be completed from a partial 3D shape (Dai et
al., 2017; Sung et al., 2015). Our problem is different since different glyphs in the same
font share the same style, but not structure (unlike one object under different viewpoints).
Various geometry modeling techniques have been proposed for learning structural priors
from example 3D shapes (Huang et al., 2015; Kalogerakis et al., 2012) and transferring style
from a few examples to an input model (Lun et al., 2016). Font data provides a cleaner
factorization of style and content that we leverage in our approach.

2.6 Discussion
We propose the first end-to-end approach to synthesizing ornamented glyphs from a

few examples. Our method takes a few example images as an input stack and predicts
coarse shape and fine ornamentations for the remaining glyphs. We train two networks:
one for the shape and one for the texture, and demonstrate that by training them jointly,
we can produce results that are strongly preferred by users over existing texture transfer
approaches that focus on glyphs. A surprising discovery of this work is that one can efficiently
leverage GANs to address a multi-content style transfer problem. In many practical settings,
however, fonts need to be generated at extremely high resolution, motivating extensions to
this approach such as hierarchical generation or directly synthesizing smooth vector graphics.
In the future, we would also like to explore other problems where content has to be stylized
consistently from a few examples. For example, modifying a particular human face (style)
to have a specific expression (content), consistent stylization of shapes such as emoticons, or
transferring materials to consistent sets of objects such as clothing or furniture.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 20

MC-GAN:0.45

T-Effect:0.55

MC-GAN:0.45

T-Effect:0.55

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.91

T-Effect:0.09

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

MC-GAN:1.0

T-Effect:0

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 2.10: Comparison of our end-to-end MC-GAN model (3rd rows) with the text
effect transfer approach (Yang et al., 2016) using GlyphNet synthesized glyphs (2nd rows).
Ground truth glyphs and the observed subset are illustrated in the 1st row of each example
font. Scores next to each example reveal the percentage of people who preferred the given
results.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 21

MC-GAN:0.64

T-Effect:0.36

Ground Truth

MC-GAN:1.0

T-Effect:0.0

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.91

T-Effect:0.09

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.91

T-Effect:0.09

MC-GAN:0.73

T-Effect:0.27

MC-GAN:1.0

T-Effect:0.0

MC-GAN:0.64

T-Effect:0.36

MC-GAN:0.82

T-Effect:0.18

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 2.11: Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the
text effect transfer approach (Yang et al., 2016) using GlyphNet synthesized glyphs (2nd
rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of each
example font. Scores next to each example reveal the percentage of people who preferred
the given results.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 22

MC-GAN:0.91

T-Effect:0.09

Ground Truth

MC-GAN:0.45

T-Effect:0.55

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.91

T-Effect:0.09

MC-GAN:0.55

T-Effect:0.45

MC-GAN:0.82

T-Effect:0.18

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.82

T-Effect:0.18

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 2.12: Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the
text effect transfer approach (Yang et al., 2016) using GlyphNet synthesized glyphs (2nd
rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of each
example font. Scores next to each example reveal the percentage of people who preferred
the given results.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 23

MC-GAN:0.91

T-Effect:0.09

Ground Truth

MC-GAN:0.73

T-Effect:0.27

MC-GAN:0.82

T-Effect:0.18

MC-GAN:1.0

T-Effect:0

MC-GAN:0.64

T-Effect:0.36

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 2.13: Continue - Comparison of our end-to-end MC-GAN model (3rd rows) with the
text effect transfer approach (Yang et al., 2016) using GlyphNet synthesized glyphs (2nd
rows). Ground truth glyphs and the observed subset are illustrated in the 1st row of each
example font. Scores next to each example reveal the percentage of people who preferred
the given results.

CHAPTER 2. FEW-SHOT GLYPH SYNTHESIS AND FONT STYLE TRANSFER 24

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Ground Truth

Img Translation

MC-GAN

Figure 2.14: Comparison between image translation and our end-to-end multi-content GAN
on our synthetic color font data set. For each example, ground truth and given letters are
shown in the 1st row, image translation outputs in the 2nd row and MC-GAN in the last
row.

25

Chapter 3

Unconditional Synthesis of Complex
Scenes

3.1 Introduction
Significant strides have been made on generative models for image synthesis, with a

variety of methods based on Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014b) achieving state-of-the-art performance. At lower resolutions or in specialized do-
mains, GAN-based methods are able to synthesize samples which are near-indistinguishable
from real samples (Brock et al., 2019). However, generating complex, high-resolution scenes
from scratch remains a challenging problem, as shown in Figure 4.1-(a) and (b). As image
resolution and complexity increase, the coherence of synthesized images decreases — samples
lack consistent local or global structures.

Stochastic decoder-based models, such as conditional GANs, were recently proposed to
alleviate some of these issues. In particular, both Pix2PixHD (Wang et al., 2018) and
SPADE (Park et al., 2019) are able to synthesize high-quality scenes using a strong con-
ditioning mechanism based on semantic segmentation labels during the scene generation
process. Global structure encoded in the segmentation layout of the scene is what allows
these models to focus primarily on generating convincing local content consistent with that
structure.

A key practical drawback of such conditional models is that they require full segmentation
layouts as input. Thus, unlike unconditional generative approaches which synthesize images
from randomly sampled noise, these models are limited to generating images from a set of
scenes that is prescribed in advance, typically either through segmentation labels from an
existing dataset, or scenes that are hand-crafted by experts.

Contributions To overcome these limitations, we propose a new model, the Semantic
Bottleneck GAN (SB-GAN), which couples high-fidelity generation capabilities of label-
conditional models with the flexibility of unconditional image generation. This in turn

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 26

Z ...

...

...

Z

Z

...

Conditional Image
Synthesis

Se
gm

en
ta

tio
n

La
yo

ut
 S

yn
th

es
is

4x8

256x512

(d) Semantic Bottleneck GAN:
unconditional synthesis of complex scenes

(a) Non-complex samples
 synthesized by BigGAN

(from ImageNet)

(b) A complex sample
 synthesized by BigGAN

(from Cityscapes)

(c) A complex sample
 synthesized by SB-GAN

(from Cityscapes)

Figure 3.1: (a) Examples of non-complex images from ImageNet synthesized by the state-
of-the-art BigGAN model (Brock et al., 2019). Although these samples look decent, the
complex scenes synthesized by BigGAN (e.g., from the Cityscapes dataset) are blurry and
defective in local structure (e.g., cars are blended together) (b). Zoom in for more detail. (c)
A complex scene synthesized by our model respects both local and global structural integrity
of the scene. (d) Schematic of our unconditional Semantic Bottleneck GAN. We progressively
train the adversarial segmentation synthesis network to generate realistic segmentation maps
from scratch, then synthesize a photo-realistic image using a conditional image synthesis net-
work. End-to-end coupling of these two components results in state-of-the-art unconditional
synthesis of complex scenes.

enables our model to synthesize an unlimited number of novel complex scenes, while still
maintaining high-fidelity output characteristic of image-conditional models 1.

Our SB-GAN first unconditionally generates a pixel-wise semantic label map of a scene
(i.e. for each spatial location it outputs a class label), and then generates a realistic scene
image by conditioning on that semantic map, Figure 4.1-(d). By factorizing the task into
these two steps, we are able to separately tackle the problems of producing convincing
segmentation layouts (i.e. a useful global structure) and filling these layouts with convincing
appearances (i.e. local structure). When trained end-to-end, the model yields samples
which have a coherent global structure as well as fine local details, e.g., Figure 4.1-(c).
Empirical evaluation shows that our Semantic Bottleneck GAN achieves a new state-of-the-
art on two complex datasets with relatively small number of training images, Cityscapes and
ADE-Indoor, as measured both by the Fréchet Inception Distance (FID) and by perceptual
evaluations. Additionally, we observe that the conditional segmentation-to-image synthesis
component of our SB-GAN jointly trained with segmentation layout synthesis significantly

1This chapter is based on joint work done with Michael Tschannen, Eric Tzeng, Sylvain Gelly, Trevor
Darrell, and Mario Lucic (Azadi et al., 2019d) presented at Synthetic Data Generation Workshop at ICLR
2021.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 27

Discriminator
“Which image is real?”

 z

~~

Random
noise

Discriminator
“Which segmentation

is real?”

Segmentation
Synthesis Network

Conditional Image
 Synthesis Network

Discriminator
“Which image is more

consistent with the
segmentation?”

Figure 3.2: Schematic of Semantic Bottleneck GAN. Starting from random noise, we syn-
thesize a segmentation layout and use a discriminator to bias the segmentation synthesis
network towards realistic looking segmentation layouts. The generated layout is then pro-
vided as input to a conditional image synthesis network to synthesize the final image. A
second discriminator is used to bias the conditional image synthesis network towards realistic
images paired with real segmentation layouts. Finally, a third unconditional discriminator is
used to bias the conditional image synthesis network towards generating images that match
the real image distribution.

improves the state-of-the-art semantic image synthesis network (Park et al., 2019), resulting
in higher-quality outputs when conditioning on ground truth segmentation layouts.

Key Challenges While both unconditional generation and image-to-image translation are
well-explored learning problems, fully unconditional generation of the segmentation maps is
a notoriously hard task: (i) Semantic categories do not respect any ordering relationships and
the network is therefore required to capture the intricate relationship between segmentation
classes, their shapes, and their spatial dependencies. (ii) As opposed to RGB values, seman-
tic categories are discrete, hence non-differentiable which poses a challenge for end-to-end
training (Sec. 3.2.2) (iii) Naively combining state-of-the-art unconditional generation and
image-to-image translation models leads to poor performance. However, by carefully design-
ing an additional discriminator component and a corresponding training protocol, we not
only manage to improve the performance of the end-to-end model, but also the performance
of each component separately (Sec. 3.2.3).

We emphasize that despite these challenges our approach scales to 256× 256 resolution
and 95 semantic categories, whereas existing state-of-the-art GAN models directly generating
RGB images at that resolution already suffer from considerable instability (Sec. 3.3).

3.2 Semantic Bottleneck GAN (SB-GAN)
We propose an unconditional Semantic Bottleneck GAN architecture to learn the distri-

bution of complex scenes. To tackle the problems of learning both the global layout and the

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 28

local structure, we divide this synthesis problem into two parts: an unconditional segmenta-
tion map synthesis network and a conditional segmentation-to-image synthesis model. Our
first network is designed to coarsely learn the scene distribution by synthesizing semantic
layouts. It generates per-pixel semantic categories following the progressive GAN model
architecture (ProGAN) (Karras et al., 2017b). This fully unconditional generation of the
segmentation maps is novel, very challenging, and a careful design is crucial, as described in
Section 3.2.1. The second network populates the synthesized semantic layouts with texture
by predicting RGB pixel values using Spatially-Adaptive Normalization (SPADE), following
the architecture of the state-of-the-art semantic synthesis network in (Park et al., 2019).
We assume the ground truth segmentation masks are available for all or part of the target
scene dataset. In the following sections, we will first discuss our semantic bottleneck syn-
thesis pipeline and summarize the SPADE network for image synthesis. We will then couple
these two networks in an end-to-end design which we refer to as Semantic Bottleneck GAN
(SB-GAN).

3.2.1 Semantic bottleneck synthesis

Our goal is to learn a (coarse) estimate of the scene distribution from samples corre-
sponding to real segmentation maps with K semantic categories. Starting from random
noise, we generate a tensor Y ∈ 1, KN×1×H×W which represents a per-pixel segmentation
class, with H and W indicating the height and width, respectively, of the generated map
and N the batch size. In practice, we progressively train from a low to a high resolution us-
ing the ProGAN architecture (Karras et al., 2017b) coupled with the Improved WGAN loss
function (Gulrajani et al., 2017a) on the ground truth discrete-valued segmentation maps,
illustrated in Figure 4.1-(d). Similar to ProGAN, to increase the spatial resolution of the
generated segmentation maps during training, we incrementally add layers to the generator
and the discriminator. In contrast to ProGAN, in which the generator outputs continuous
RGB values, we predict per-pixel discrete semantic class labels. This task is extremely chal-
lenging as it requires the network to capture the intricate relationship between segmentation
classes and their spatial dependencies. To this end, we apply the Gumbel-softmax trick (Jang
et al., 2017; Maddison et al., 2016) coupled with a straight-through estimator (Jang et al.,
2017), described in detail below.

We synthesize segmentation layouts by first generating per-pixel probability scores of be-
longing to each of the K semantic classes and then sampling a semantic class per pixel. The
per-pixel probability scores are computed by applying a softmax function to the last layer of
the generator (i.e. logits) which results in probability maps P ij ∈ [0, 1]K , with

∑K
k=1 P

ij
k = 1

for each spatial location (i, j) ∈ 1, H × 1,W . To sample a semantic class from this multino-
mial distribution, we would ideally apply the following well-known procedure at each spatial
location: (1) sample k i.i.d. samples, Gk, from the standard Gumbel distribution, (2) add
these samples to each logit, and (3) take the index of the maximal value. This reparametriza-
tion indeed allows for an efficient forward-pass, but is not differentiable. Nevertheless, the
max can be replaced with the softmax function and the quality of the approximation can be

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 29

controlled by varying the temperature hyperparameter τ — the smaller the τ , the closer the
approximation is to the categorical distribution (Jang et al., 2017):

Sijk =
exp{(logP ij

k +Gk)/τ}∑K
i=1 exp{(logP ij

i +Gi)/τ}
. (3.1)

Similar to the real samples, the synthesized samples fed to the GAN discriminator should still
contain discrete category labels. As a result, for the forward pass, we compute arg maxk Sk,
while for the backward pass, we use the soft predicted scores Sk directly, a strategy known
as straight-through estimation (Jang et al., 2017).

3.2.2 Semantic image synthesis

Our second sub-network converts the synthesized semantic layouts into photo-realistic
images using spatially-adaptive normalization (Park et al., 2019). The segmentation masks
are employed to spread the semantic information throughout the generator by modulating the
activations with a spatially adaptive learned transformation. We follow the same generator
and discriminator architectures and loss functions used in (Park et al., 2019), where the
generator contains a series of SPADE residual blocks with upsampling layers. The loss
functions to train SPADE are summarized as:

LDSPD = −Ey,x[min(0,−1 +DSPD(y, x))]− Ey[min(0,−1−DSPD(y,GSPD(y)))]

LGSPD = −Ey[DSPD(y,GSPD(y)))] + λ1L
VGG
1 + λ2L

Feat
1 , (3.2)

where GSPD, DSPD stand for the SPADE generator and discriminator, and LVGG
1 and LFeat

1

represent the VGG and discriminator feature matching L1 loss functions, respectively (Park
et al., 2019; Wang et al., 2018). We pre-train this network using pairs of real RGB images,
x, and their corresponding real segmentation masks, y, from the target scene data set.

In the next section, we will describe how to employ the synthesized segmentation masks
in an end-to-end manner to improve the performance of both the semantic bottleneck and
the semantic image synthesis sub-networks.

3.2.3 End-to-end framework

After training semantic bottleneck synthesis model to synthesize segmentation masks and
the semantic image synthesis model to stochastically map segmentations to photo-realistic
images, we adversarially fine-tune the parameters of both networks in an end-to-end approach
by introducing an unconditional discriminator network on top of the SPADE generator (see
Figure 3.2).

This second discriminator, D2, has the same architecture as the SPADE discriminator,
but is designed to distinguish between real RGB images and the fake ones generated from
the synthesized semantic layouts. Unlike the SPADE conditional GAN loss, which examines

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 30

pairs of input segmentations and output images, (y, x) in equation 3.2, the GAN loss on
D2, LD2 , is unconditional and only compares real images to synthesized ones, as shown
in equation 3.3:

LD2 = −Ex[min(0,−1 +D2(x))]− Ez[min(0,−1−D2(G(z)))] (3.3)
LG = −Ez[D2(G(z)))] + LGSPD + λLGSB , G(z) = GSPD(GSB(z))

where GSB represents the semantic bottleneck synthesis generator, and LGSB is the improved
WGAN loss to pretrain GSB described in Section 3.2.1. In contrast to the conditional dis-
criminator in SPADE, which enforces consistency between the input semantic map and the
output image, D2 is primarily concerned with the overall quality of the final output. The
hyper parameter λ determines the ratio between the two generators during fine-tuning. The
parameters of both generators, GSB and GSPD, as well as the corresponding discriminators,
DSB and DSPD, are updated in this end-to-end fine-tuning.

We illustrate our final end-to-end network in Figure 3.2. Jointly fine-tuning the two net-
works in an end-to-end fashion allows the two networks to reinforce each other, leading to
improved performance. The gradients with respect to RGB images synthesized by SPADE
are back-propagated to the segmentation synthesis model, thereby encouraging it to synthe-
size segmentation layouts that lead to higher quality final images. Hence, SPADE plays the
role of a loss function for synthesizing segmentations, but in the RGB space, hence providing
a goal that was absent from the initial training. Similarly, fine-tuning SPADE with synthe-
sized segmentations allows it to adapt to a more diverse set of scene layouts, which improves
the quality of generated samples.

3.3 Experiments and Results
We evaluate the performance of the proposed approach on two datasets containing im-

ages with complex scenes, where the ground truth segmentation masks are available during
training (possibly only for a subset of the images). We also study the role of the two network
components, semantic bottleneck and semantic image synthesis, on the final result. We com-
pare the performance of SB-GAN against the state-of-the-art BigGAN model (Brock et al.,
2019) as well as a ProGAN (Karras et al., 2017b) baseline that has been trained on the RGB
images directly. We evaluate our method using Fréchet Inception Distance (FID) as well as
a perceptual evaluation.

Datasets We study the performance of our model on the Cityscapes and ADE-indoor
datasets as the two domains with complex scene images.

• Cityscapes-5K (Cordts et al., 2016a) contains street scene images in German cities
with training and validation set sizes of 3,000 and 500 images, respectively. Ground
truth segmentation masks with 33 semantic classes are available for all images in this
dataset.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 31

SB-GAN

ProGAN

Figure 3.3: Images synthesized on Cityscapes-5K. Best viewed on screen; zoom in for more
detail. Although both models capture the general scene layout, SB-GAN (1st row) generates
more convincing objects, e.g. buildings and cars.

SB-GAN

ProGAN

BigGAN

Figure 3.4: Images synthesized on Cityscapes-25K. Best viewed on screen; zoom in for more
detail. Images synthesized by BigGAN (3rd row) are blurry and sometimes defective in local
structures.

• Cityscapes-25K (Cordts et al., 2016a) contains street scene images in German cities
with training and validation set sizes of 23,000 and 500 images, respectively with 19
semantic classes. Cityscapes-5K is a subset of this dataset, providing 3,000 images in
the training set here as well as the entire validation set. Fine ground truth annotations
are only provided for this subset, with the remaining 20,000 training images containing
only coarse annotations. We extract the corresponding fine annotations for the rest
of training images using the state-of-the-art segmentation model (Yu et al., 2017a)
trained on the training annotated samples from Cityscapes-5K.

• ADE-Indoor is a subset of the ADE20K dataset (Zhou et al., 2017) containing 4,377
challenging training images from indoor scenes and 433 validation images with 95
semantic categories.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 32

SB-GAN

ProGAN

BigGAN

Figure 3.5: Images synthesized on ADE-Indoor. This dataset is very challenging, causing
mode collapse for the BigGAN model (3rd row). In contrast, samples generated by SB-GAN
(1st row) are generally of higher quality and much more structured than those of ProGAN
(2nd row).

Evaluation We use the Fréchet Inception Distance (FID) (Heusel et al., 2017) as well
as a perceptual evaluation of the quality of the generated samples. To compute FID, the
real data and generated samples are embedded in a specific layer of a pre-trained Inception
network. Then, a multivariate Gaussian is fit to the data, and the distance is computed as
(x, g) = ||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)

1
2), where µ and Σ denote the empirical mean

and covariance, and subscripts x and g denote the real and generated data respectively. FID
is sensitive to both the addition of spurious modes and to mode dropping (Sajjadi et al.,
2018; Lucic et al., 2018). On the Cityscapes dataset, we ran five trials where we computed
FID on 500 random synthetic images and 500 real validation images, and report the average
score. On ADE-Indoor, this is repeated on batches of 433 images.

Implementation details In all our experiments, we set λ1 = λ2 = 10, and λ = 10. The
initial generator and discriminator learning rates for training SPADE both in the pretraining
and end-to-end steps are 10−4 and 4 · 10−4, respectively. The learning rate for the seman-
tic bottleneck synthesis sub-network is set to 10−3 in the pretraining step and to 10−5 in
the end-to-end fine-tuning on Cityscapes, and to 10−4 for ADE-Indoor. The temperature
hyperparameter, τ , is always set to 1. For BigGAN, we followed the setup by Lucic et al.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 33

Table 3.1: FID of the synthesized samples (lower is better), averaged over 5 random sets of
samples. Images were synthesized at resolution of 256x512 on Cityscapes and 256x256 on
ADE-Indoor.

ProGAN SB-GAN w/o FT SB-GAN

Cityscapes-5k 92.57 83.20 65.49

Cityscapes-25k 63.87 71.13 62.97

ADE-Indoor 104.83 91.80 85.27

Table 3.2: FID of the synthesized samples (lower is better), averaged over 5 random sets of
samples. Images were synthesized at resolution of 128x256 on Cityscapes and 128x128 on
ADE-Indoor.

ProGAN BigGAN SB-GAN

Cityscapes-5k 178.19 - 57.48

Cityscapes-25k 56.7 64.82 54.92

ADE-Indoor 85.94 156.65 81.39

(2019)2, where we modified the code to allow for non-square images of Cityscapes. We used
one class label for all images to have an unconditional BigGAN model. For both datasets,
we varied the batch size (using values in {128, 256, 512, 2048}), learning rate, and location
of the self-attention block. We trained the final model for 50K iterations.

3.3.1 Qualitative results

In Figures 3.3, 3.4, and 3.5, we provide qualitative comparisons of the competing methods
on the three aforementioned datasets. We observe that both Cityscapes-5K and ADE-Indoor
are very challenging for the state-of-the-art ProGAN and BigGAN models, likely due to the
complexity of the data and small number of training instances. Even at a resolution of
128× 128 on the ADE-Indoor dataset, BigGAN suffers from mode collapse, as illustrated in
Figure 3.5. In contrast, SB-GAN significantly improves the structure of the scene distribution
and provides samples of higher quality. On Cityscapes-25K, the performance improvement
of SB-GAN is more modest due to the large number of training images available. It is worth
emphasizing that in this case only 3K ground truth segmentations are available to train SB-
GAN. Compared to BigGAN, images synthesized by SB-GAN are sharper and contain more

2Configuration as in https://github.com/google/compare_gan/blob/master/example_configs/
biggan_imagenet128.gin

https://github.com/google/compare_gan/blob/master/example_configs/biggan_imagenet128.gin
https://github.com/google/compare_gan/blob/master/example_configs/biggan_imagenet128.gin

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 34

Ground Truth
Segmentation

SB-GAN

SPADE

Ground Truth
Segmentation

SB-GAN

SPADE

Figure 3.6: The effect of SB-GAN on improving the performance of the state-of-the-art
semantic image synthesis model (SPADE) on ground truth segmentations of Cityscapes-
25K validation set. For SB-GAN, we train the entire model end-to-end, extract the trained
SPADE sub-network, and synthesize samples conditioned on the ground truth labels.

structural details (e.g., one can zoom-in on the synthesized cars). In Figures 3.11, 3.12, 3.13,
and 3.14, we show additional synthetic results from our proposed SB-GAN model including
both the synthesized segmentations and their corresponding synthesized images from the
Cityscapes-25K and ADE-Indoor datasets.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 35

3.3.2 Quantitative evaluation

To provide a thorough empirical evaluation of the proposed approach, we generate sam-
ples for each dataset and report the FID scores of the resulting images (averaged across 5
sets of generated samples). We evaluate SB-GAN both before and after end-to-end fine-
tuning, and compare our method to two strong baselines, ProGAN (Karras et al., 2017b)
and BigGAN (Brock et al., 2019).

The results are detailed in Tables 3.1 and 3.2. First, in the low-data regime, even without
fine-tuning, our Semantic Bottleneck GAN produces higher quality samples and significantly
outperforms the baselines on Cityscapes-5K and ADE-Indoor. The advantage of our pro-
posed method is even more striking on smaller datasets. While competing methods are
unable to learn a high-quality model of the underlying distribution without having access to
a large number of samples, SB-GAN is less sensitive to the number of training data points.
Secondly, we observe that by jointly training the two components, SB-GAN produces state-
of-the-art results across all three datasets.

We were not able to successfully train BigGAN at a resolution of 256 × 512 due to
instability observed during training and mode collapse. Table 3.2 shows the results for a
lower-resolution setting, for which we were able to successfully train BigGAN. We report
the results before the training collapses. BigGAN is, to a certain extent, able to capture the
distribution of Cityscapes-25K, but fails completely on ADE-Indoor. Interestingly, BigGAN
fails to capture the distribution of Cityscapes-5K even at 128× 128 resolution.

Generating by conditioning on real segmentations To independently assess the im-
pact of end-to-end training on the conditional image synthesis sub-network, we evaluate the
quality of generated samples when conditioning on ground truth validation segmentations
from each dataset. Comparisons to the baseline network SPADE (Park et al., 2019) are
provided in Table 3.3 and Figures 3.6 and 3.7. We observe that the image synthesis com-
ponent of SB-GAN consistently outperforms SPADE across all three datasets, indicating
that fine-tuning on data sampled from the segmentation generator improves the conditional
image generator.

Table 3.3: FID of the synthesized samples when conditioned on the ground truth labels. For
SB-GAN, we train the entire model end-to-end and extract the trained SPADE.

SPADE SB-GAN

Cityscapes-5k 72.12 60.39
Cityscapes-25k 60.83 54.13
ADE-Indoor 50.30 48.15

Fine-tuning ablation study To dissect the effect of end-to-end training, we perform a
study on different components of SB-GAN. In particular, we consider three settings: (1) SB-
GAN before end-to-end fine-tuning, (2) fine-tuning only the semantic bottleneck synthesis

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 36

component, (3) fine-tuning only the conditional image synthesis component, and (4) fine-
tuning all jointly. The results on the Cityscapes-5K dataset (resolution 128 × 256) are
reported in Table 5.2. Finally, the impact of fine-tuning on the quality of samples can be
observed in Figures 3.8 and 3.9.

Table 3.4: Ablation study of various components of SB-GAN. We report FID scores of SB-
GAN before fine-tuning, fine-tuning only the semantic bottleneck synthesis component, fine-
tuning only the image synthesis component, and full end-to-end fine-tuning. Experiments
are performed on the Cityscapes-5K dataset at a resolution of 128× 256.

No FT FT SB FT SPADE FT Both

70.15 66.22 63.04 58.67

3.3.3 Perceptual evaluation

We used Amazon Mechanical Turk (AMT) to assess the performance of each method on
each dataset using ∼600 pairs of (synthesized images, human evaluators) with a total of 200
unique synthesized images. For each image, evaluators were asked to assign a score between
1 to 4 to each image, indicating low-to-high quality images, respectively. The results are
summarized in Table 3.5 and are consistent with our FID-based evaluations.
Table 3.5: Average perceptual evaluation scores when each evaluators has selected a quality
score in the range of 1 (terrible quality) to 4 (high quality) for each image.

ProGAN BigGAN SB-GAN

Cityscapes-5k 2.08 - 2.48
Cityscapes-25k 2.53 2.27 2.61
ade-indoor 2.35 1.96 2.49

3.4 Related Work
Generative Adversarial Networks (GANs) Training GANs is notoriously hard and
recent efforts focused on improving neural architectures (Wang & Gupta, 2016; Karras et
al., 2017b; Zhang et al., 2019; Chen et al., 2019a), loss functions (Arjovsky et al., 2017),
regularization (Gulrajani et al., 2017a; Miyato et al., 2018), large-scale training (Brock et al.,
2019), self-supervision (Chen et al., 2019b), and sampling (Brock et al., 2019; Azadi et al.,
2019a). Improving the performance of GANs by disentangling structure and style has been
studied by Wang & Gupta (2016) where structure is represented by a surface normal map and
style is the texture mapped onto the structure. Another compelling approach which enables

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 37

generation of high-resolution images is based on progressive training: a model is trained
to first synthesize lower-resolution images (e.g. 8 × 8), then the resolution is gradually
increased until the desired resolution is achieved (Karras et al., 2017b). Recently, Brock
et al. (2019) showed that GANs significantly benefit from large-scale training, both in terms
of model size and batch size. We note that these models are able to synthesize high-quality
images in settings where objects are very prominent and centrally placed or follow some
well-defined structure, as the corresponding distribution is easier to capture. In contrast,
when the scenes are more complex and the amount of data is limited, the task becomes
extremely challenging for these state-of-the-art models. We aim to improve the performance
in the context of complex scenes and a small number of training examples by disentangling
the image generation problem into learning the structure represented by semantic layouts
and filling in the RGB details using a semantic image synthesis model. A similar idea was
proposed by a concurrent work (Volokitin et al., 2020) with substantial differences in the
model and results.

GANs on discrete domains GANs for discrete domains have been investigated in several
works (Yu et al., 2017b; Lin et al., 2017a; Bojchevski et al., 2018; Lu et al., 2018). Train-
ing in this domain is even more challenging as the samples from discrete distributions are
not differentiable with respect to the network parameters. This problem can be somewhat
alleviated by using the Gumbel-softmax distribution, which is a continuous approximation
to a multinomial distribution parameterized in terms of the softmax function (Kusner &
Hernández-Lobato, 2016). We will show how to apply a similar principle to learn the distri-
bution of discrete segmentation masks.

Conditional image synthesis In conditional image synthesis one aims to generate images
by conditioning on an input which can be provided in the form of an image (Isola et al.,
2017b; Zhu et al., 2017b; Azadi et al., 2018; Azadi et al., 2019c; Liu et al., 2017), a text
phrase (Reed et al., 2016b; Zhang et al., 2017b; Qiao et al., 2019; Ashual & Wolf, 2019;
Hong et al., 2018), a scene graph (Johnson et al., 2018; Ashual & Wolf, 2019), a class label,
or a semantic layout (Odena et al., 2017; Chen & Koltun, 2017; Wang et al., 2018; Park
et al., 2019). These conditional GAN methods learn a mapping that translates samples from
the source distribution into samples from the target domain.

The text-to-image synthesis models proposed in (Hong et al., 2018; Li et al., 2019) de-
compose the synthesis task into multiple steps. Given the text description, a semantic layout
is constructed by generating object bounding boxes and refining each box by estimating ob-
ject shapes. Then, an image is synthesized conditionally on the generated semantic layout
from the first step. Our work shares the same high-level idea of decomposing the image
generation problem into the semantic layout synthesis and the conditional semantic-layout-
to-image synthesis. However, we note that the above approaches, as opposed to ours, are
conditional and require supervision in the form of textual descriptions. Secondly, they are
sequential in nature and synthesize masks of a few different objects (e.g. person, elephant),
but not a fully fine-grained semantic map (e.g. missing sky, grass, etc.). In stark contrast,

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 38

our approach unconditionally synthesizes the full semantic layout of the entire scene from a
noise input in an end-to-end network design. Due to the above distinctions, their segmen-
tation synthesis models differ significantly from ours in terms of architecture and design as
shown in Figure 3.10.

3.5 Discussion
We proposed an end-to-end Semantic Bottleneck GAN model that synthesizes semantic

layouts from scratch, and then generates photo-realistic scenes conditioned on the synthe-
sized layouts. Through extensive quantitative and qualitative evaluations, we showed that
this novel end-to-end training pipeline significantly outperforms the state-of-the-art mod-
els in unconditional synthesis of complex scenes. In addition, Semantic Bottleneck GAN
strongly improves the performance of the state-of-the-art semantic image synthesis model in
synthesizing photo-realistic images from ground truth segmentations. As a future work, one
could explore novel ways to train GANs with discrete outputs, especially to deal with the
non-differentiable nature of the generated outputs.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 39

Ground Truth
Segmentation

SB-GAN

SPADE

Ground Truth
Segmentation

SB-GAN

SPADE

Figure 3.7: The effect of SB-GAN on improving the performance of the state-of-the-art
semantic image synthesis model (SPADE) on ground truth segmentations of ADE-Indoor
validation set. For SB-GAN, we train the entire model end-to-end, extract the trained
SPADE sub-network, and synthesize samples conditioned on the ground truth labels.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 40

Synthesized Segmentations Synthesized Images
SB-GAN w/o FT SB-GAN SB-GAN w/o FT SB-GAN

Figure 3.8: The effect of fine-tuning on the baseline setup for the Cityscapes-25K dataset. We
observe improvements in both the global structure of the segmentations and the performance
of semantic image synthesis, resulting in images of higher quality.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 41

Synthesized Segmentations Synthesized Images

SB-GAN w/o FT SB-GAN SB-GAN w/o FT SB-GAN

Figure 3.9: The effect of fine-tuning (FT) on the baseline setup for ADE-Indoor dataset.
Analogously to the results on Cityscapes-25K, we observe improvements in both the global
structure of the segmentations and the performance of semantic image synthesis.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 42

Input Sentence

s Sequential
Bounding Box

Generator

person

chair

elephant

elephant

Binary Mask
Synthesis

Zi

Conditional
Image Synthesis

(a) Semantic Bottleneck GAN
unconditional synthesis of complex scenes

(b) Hierarchical text-to-image synthesis by inferring semantic layouts
in Hong et al., 2018, Li et al., 2019.

Z ...

...

...

Z

Z

...

Conditional
Image Synthesis

Segmentation Layout
Synthesis

4x8

256x512

Figure 3.10: Architectural differences between our unconditional semantic bottleneck syn-
thesis network and the conditional semantic layout synthesis network in Hong et al. (2018)
and Li et al. (2019). (a) Schematic of our unconditional Semantic Bottleneck GAN. We
progressively train an adversarial segmentation synthesis network to generate realistic seg-
mentation maps from scratch, then synthesize a photo-realistic image using a conditional
image synthesis network. End-to-end coupling of these two components results in state-of-
the-art unconditional synthesis of complex scenes. For more detail about our conditional
image synthesis network, one can refer to Section 3.2.2. (b) Schematic of the hierarchical
text-to-image synthesis models inferring a semantic layout (Hong et al., 2018; Li et al., 2019).
From an encoding of the input sentence, object bounding boxes are generated sequentially
using an auto-regressive decoder, and are refined by a synthesized binary shape mask in the
next step. The final image is synthesized given the constructed semantic layout and the text
description. Note that whereas (b) conditionally generates masks only for objects, our model
(a) unconditionally generates segmentation maps for the entire scene.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 43

Synthesized Images Synthesized Segmentations

Figure 3.11: Segmentations and their corresponding images synthesized by SB-GAN trained
on the Cityscapes-25K dataset.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 44

Synthesized Images Synthesized Segmentations

Figure 3.12: Segmentations and their corresponding images synthesized by SB-GAN trained
on the Cityscapes-25K dataset.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 45

Synthesized Images Synthesized Segmentations Synthesized Images Synthesized Segmentations

Figure 3.13: Segmentations and their corresponding images synthesized by SB-GAN trained
on the ADE-Indoor dataset.

CHAPTER 3. UNCONDITIONAL SYNTHESIS OF COMPLEX SCENES 46

Synthesized Images Synthesized Segmentations Synthesized Images Synthesized Segmentations

Figure 3.14: Segmentations and their corresponding images synthesized by SB-GAN trained
on the ADE-Indoor dataset.

47

Chapter 4

Image-Conditional Binary Composition

4.1 Introduction
Conditional Generative Adversarial Networks (cGANs) have emerged as a powerful method

for generating images conditioned on a given input. The input cue could be in the form of an
image (Isola et al., 2017a; Zhu et al., 2017a; Liu et al., 2017; Azadi et al., 2017b; Wang et al.,
2017a; Pathak et al., 2016), a text phrase (Zhang et al., 2017a; Reed et al., 2016b; Reed
et al., 2016a; Johnson et al., 2018) or a class label layout (Mirza & Osindero, 2014; Odena
et al., 2016; Antoniou et al., 2017). The goal in most of these GAN instances is to learn a
mapping that translates a given sample from the source distribution to generate a sample
from the output distribution. This primarily involves transforming either a single object of
interest (apples to oranges, horses to zebras, label to image, etc.) or changing the style and
texture of the input image (day to night, etc.). However, these direct transformations do not
capture the fact that a natural image is a 2D projection of a composition of multiple objects
interacting in a 3D visual world. In this chapter, we explore the role of compositionality
in GAN frameworks and propose a new method which learns a function that maps images
of different objects sampled from their marginal distributions (e.g., chair and table) into a
combined sample (table-chair) that captures the joint distribution of object pairs. Here, we
specifically focus on the composition of a pair of objects. 1

Modeling compositionality in natural images is a challenging problem due to the complex
interactions among different objects with respect to relative scaling, spatial layout, occlusion
or viewpoint transformation. Recent work using spatial transformer networks (Jaderberg et
al., 2015) within a GAN framework (Lin et al., 2018) decomposes this problem by operating
in a geometric warp parameter space to find a geometric modification for a foreground object.
However, this approach is only limited to a fixed background and does not consider more
complex interactions in the real world.

We consider the task of composing two input object images into a joint image that
1This chapter is based on joint work done with Deepak Pathak, Sayna Ebrahimi, and Trevor Dar-

rell (Azadi et al., 2019c; Azadi et al., 2019b) published at IJCV 2020.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 48

+

Figure 4.1: Binary Composition examples. Top Row : The first object or the background
image,Middle Row : The second object or the foreground image, Bottom Row : The generated
composite image.

captures their realistic interactions. For instance, given an image of a chair and an image
of a table, our formulation is able to generate an image containing the same chair-table pair
arranged in a realistic manner. To the best of our knowledge, this is the first work that
addresses the problem of generating a composed image from two given inputs using a GAN,
trainable under paired and unpaired scenarios. In an unpaired training setup, one does
not have access to the paired examples of the same object instances with their combined
compositional image. For instance, to generate the joint image from the image of a given table
and a chair, we might not have any example of that particular chair beside that particular
table while we might have images of other chairs and other tables together.

Our key insight is to leverage the idea that a successful composite image of two objects
should not only be realistic in appearance but can also be decomposed back into individ-
ual objects. Hence, we use decomposition as a supervisory signal to train composition,
thereby enforcing a self-consistency constraint (Zhu et al., 2017a) through a composition-
by-decomposition (CoDe) network. Moreover, we use this self-consistent CoDe network for
an example-specific meta refinement (ESMR) approach at test time to generate sharper and
more accurate composite images: We fine-tune the weights of the composition network on
each given test example by the self-supervision provided from the decomposition network.

Through qualitative and quantitative experiments, we evaluate our compositional GAN
approach in two training scenarios: (a) paired: when we have access to paired examples of
individual object images with their corresponding composed image, (b) unpaired: when we
have a dataset from the joint distribution without being paired with any of the images from
the marginal distributions.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 49

(b) Test Time: Decomposition for Example-Specific Meta Refinement

 X X X X

 Y

 Cc
G

dec
G

 X

 Y

 L1

 L1

 X

 Y

 Cc
G

dec
G

 X

 Y

 L1

 L1

(a) Training Time: Decomposition As a Supervisory Signal

̂
̂

̂
̂

̂

̂

 Y Y Y

Figure 4.2: (a) The CoDe training network includes the composition network getting a
self-consistent supervisory signal from the decomposition network. This network is trained
on all training images, (b) ESMR: At test time, the weights of the trained composition
and decomposition networks are fine-tuned given only one test example of X and one test
example of Y . The decomposition network provides the self-supervision required for updating
the weights of the composition network at test time. The layers of the composition generator
are presented in pink and the decomposition generator in yellow.

4.2 Background: Conditional GAN
We briefly review the conditional Generative Adversarial Networks before discussing our

compositional setup. Given a random noise vector z, GANs generate images c of a specific
distribution using a generator G which is trained adversarially with respect to a discriminator
D. While the generator tries to produce realistic images, the discriminator opposes the
generator by learning to distinguish between real and fake images. In conditional GAN
models (cGANs), an auxiliary information x is fed into the model, in the form of an image
or a label, alongside the noise vector, i.e., {x, z} → c (Goodfellow, 2016; Mirza & Osindero,
2014). The objective of cGANs would be therefore an adversarial loss function formulated
as

LcGAN(G,D) = Ex,c∼pdata(x,c)[logD(x, c)] + Ex∼pdata(x),z∼pz(z)[1− logD(x,G(x, z))],

where G, D minimize and maximize this objective, respectively.
The convergence of the above GAN objective and consequently the quality of the gener-

ated images would be improved if an L1 loss penalizing deviation of the generated images
from their ground-truth is added. Thus, the generator’s objective function would be sum-
marized as

G∗ = arg min
G

max
D
LcGAN(G,D) + λEx,c∼pdata(x,c),z∼pz(z)[‖c−G(x, z)‖1]

4.3 Compositional GAN
Conditional GANs, discussed in Section 4.2, have been applied to several image trans-

lation problems such as day to night, horse to zebra, and sketch to portraint (Isola et al.,

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 50

2017a; Zhu et al., 2017a). However, the composition problem is more challenging than just
translating images from one domain to another because the model additionally needs to
handle the relative scaling, spatial layout, occlusion, and viewpoint transformation of the
individual objects to generate a realistic composite image. Here, we propose Compositional
GAN for generating a composite image given two individual object images.

Let x be an image containing the first object, y be an image of the second object and
c be the image from their joint distribution. During training, we are given datasets X =
{x1, · · · , xn} and Y = {y1, · · · , yn} from the marginal distribution of the two objects, and
C = {c1, · · · , cn} from their joint distribution containing both objects. We further assume
that the segmentation masks of objects are available for both individual images in X, Y as
well as the composite images in C. Our binary compositional GAN model is conditioned
on two input images (x, y) to generate an image from the target distribution pdata(c). The
goal is to ensure that the generated composite image ĉ contains the objects in x, y with the
same color, texture, and structure while also looking realistic with respect to set C. Note
that instead of learning a generative model of all possible compositions, our aim is to learn
a mode of the distribution.

Since the conditional GANs are not adequate for transforming objects spatially, we ex-
plicitly model the scale and shift transformations by translating the object images (x, y) to
(xT , yT) based on a relative Spatial Transformer Network (STN) (Jaderberg et al., 2015).
Moreover, in specific domains where a viewpoint transformation of the first object relative
to the second one is required, we propose a Relative Appearance Flow Network (RAFN).
Details of our relative STN and RAFN are provided in Sections 4.4.1, 4.4.2.

4.3.1 Supervising composition by decomposition

The central idea of our approach is to supervise the composition of two images (xT , yT) via
a self-consistency loss function ensuring that the generated composite image, ĉ, can further be
decomposed back into the respective individual object images. The composition is performed
using a conditional GAN, (Gc, Dc), that takes the two RGB images (xT , yT) concatenated
channel-wise as the input to generate the corresponding composite output, ĉ, with the two
input images appropriately composed. This generated image will then be fed into a another
conditional GAN, (Gdec, Ddec), to be decomposed back into its constituent objects, (x̂T , ŷT)
using a self-consistency L1 loss function. Both the composition and decomposition networks
are conditional GAN models with the generators following an encoder-decoder design similar
to (Isola et al., 2017a). The schematic of our self-consistent Composition-by-Decomposition
(CoDe) network is illustrated in Figure 4.2-(a).

In addition to the decomposition network, the generated composite image will be given to
a mask prediction network, GM

dec, that predicts the probability of each pixel in the composite
image to belong to each of the input objects or background. The argmax of these probabilities
over object ids results in the estimated masks of the two objects as M̂x and M̂y. The two
decomposition generators Gdec and GM

dec share their weights in their encoder network but are
different in the decoder. A GAN loss with a gradient penalty (Gulrajani et al., 2017b) is
applied on top of the generated images ĉ, x̂T , ŷT to make them look realistic in addition to

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 51

 Y

 X

 Cc
G

dec
G

 Y

 X

 L1

 L1

dec
G

 M

 M

Y

X

 X

 Y

 Cc
G

dec
G

 L1

 M X

 M Y

 L1

 Y

 X

 Cc
G

dec
G

 Y

 X

 L1

 L1

(a) Training Time

Mask Prediction Generator w/ Updating Weights

Mask Prediction Generator w/ Freezed weights

Composition Generator w/ Updating Weights

Decomposition Generator w/ Updating Weights

(d) Test Time

̂
̂

̂

̂

̂

̂
̂

̂

̂
̂

̂

M

M

 Y

 X

STN

T

T

T

T

T

T

T

T

T

T

 Y

 X

f

G

f
G

y

x

s

s

 Inpainting Networks
 (Unpaired Training)

 Y

 X

STN

 X

 Y

STN

STN w/ Updating Weights

STN w/ Freezed Weights

Inpainting y Generator w/ Freezed Weights

Inpainting x Generator w/ Freezed Weights

 X r

 Ymask

 RAFNG

 RAFN
 (Paired Training)

 X r

 Ymask

 RAFNG

 RAFN

Relative Appearance Flow Network w/ Freezed weights

f
Gx

f
Gx

 X

 Y

STN

T

T
f

Gy

f
Gy

 L1

 L1

X

Y

Xs

Ys

 (c) Expanded View of Inpainting Networks + STN
(Unpaired Training)

 (b) Toy Example of a Real Composite
Image and its Segmentation Masks

Figure 4.3: Schematic of our binary compositional GAN model at training and test times:
(a) Our training model includes the inpainting networks (for unpaired data), RAFN (for
paired data), the relative STN model, and the CoDe and mask prediction networks. Xs

and Ys stand for the respective object segments of real composite images in an unpaired
training setup. Xr indicates the input image in an arbitrary viewpoint different from its
corresponding composite image, and Ymask is the binary segmentation mask of the object
images in Y encoding the target viewpoint, (b) A toy example of a real composite image C,
its object cutouts CX and CY , and their segmentation masks, (c) We convert an unpaired
training data to a paired setup by inpainting the object segment cutouts of the real composite
image. The inpainted segments and their cropped variants at the center of the image are
then used for training STN, (d) At test time, we fine-tune the weights of the CoDe network
given only one test example from the X domain and one test example from the Y domain.
The weights of the mask prediction network and STN are not updated on test examples.
Each of the above modules is represented by a different color, and repeating the same module
in different parts of this diagram is for the illustration purpose.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 52

multiple L1 loss functions penalizing deviation of the generated images from their ground-
truth. Further details of our training model are provided in Section 4.4.4.
Extension to Unpaired Data: We train our Compositional GAN framework in two sce-
narios: (1) when inputs-output are paired in the training set, i.e., each composite image in C
has corresponding individual object images in X, Y , and (2) when training data is unpaired,
i.e., images in C do not correspond to images in X and Y . We convert the unpaired data to
a paired one by cutting out the respective object segments from each composite image in C
to get the corresponding paired individual object images. Although these new object cutouts
would be paired with the composite image, they are incomplete and not amodal because of
occlusion in the composite image. Hence, we synthesize the missing part of these individ-
ual object cutouts using self-supervised inpainting networks (Pathak et al., 2016) which are
trained on object images from X and Y , described in Section 4.4.3.

4.3.2 Example-Specific Meta-Refinement (ESMR)

The compositional GAN model not only should learn to compose two object with each
other, but it also needs to preserve the color, texture and other properties of the individual
objects in the composite image. While our framework is able to handle the former, it
suffers at times to preserve color and texture of held-out objects at test time. We propose
to handle this issue by performing per-example refinement at test time. Since our training
algorithm gets supervision by decomposing the composite image back into individual objects,
we can use the same supervisory signal to refine the generated composite image ĉ for unseen
test examples as well. Hence, we continue to optimize the network parameters using the
decomposition of the generated image back into the two test objects to remove artifacts
and generate sharper results. This example-specific meta-refinement (ESMR), depicted in
Figure 4.2-(b), improves the quality of the composite image at inference.

Given the segmentation masks of the input object images, we again ignore background for
simplicity. We freeze the weights of the relative STN, RAFN, and GM

dec, while only refining
the weights of the CoDe layers. A GAN loss is applied on the outputs of the generators
given the real samples from our training set. The objective function for our ESMR approach
would be thus summarized as

L(G) = λ(‖x̂T − xT‖1 + ‖M̂x � ĉ− M̂x � xT‖1
+ ‖ŷT − yT‖1 + ‖M̂y � ĉ− M̂y � yT‖1)
+ [LcGAN(Gc, Dc) + LcGAN(Gdec, Ddec)],

where x̂T , ŷT are the generated decomposed images, and xT , yT are the transposed inputs.
Moreover, M̂x and M̂y indicate the object masks predicted by the mask decomposition net-
work given the generated composite image ĉ as discussed in Section 4.3.1. Here, the decom-
position and mask prediction networks reinforce each other in generating sharper outputs
and predicting more accurate segmentation masks. The mask prediction loss (i.e., second

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 53

and fourth L1 loss terms) provides an extra supervision for occlusion ordering of the two ob-
jects in the composite image during meta-refinement optimization at inference. We quantify
it through an ablation study in Section 5.5 where eliminating the mask prediction network
results in an incorrect occlusion ordering. On the other hand, ignoring the self-consistency
L1 loss from the decomposition network (i.e., first and third loss terms) results in a compos-
ite image with the object shapes deviated from their corresponding inputs, as shown in the
ablation study.

4.4 Implementation Details
In this section, we provide more details on the components of our training network

including the relative STN, RAFN, inpainting, and our full end-to-end model.

4.4.1 Relative spatial transformer network

Given the segmentation masks of the objects for images in sets X, Y , and C, we crop and
scale all input objects to be at the center of the image in all training images. To relatively
translate the center-oriented input objects, (x, y), to an appropriate spatial layout, we train
our variant of the spatial transformer network (STN) (Jaderberg et al., 2015). This Relative
STN simultaneously takes the two RGB images concatenated channel-wise and translates
them relatively to each other to (xT , yT) based on their spatial relation encoded in the
training composite images, as represented in Figure 4.4.

6

128

8

122

8

61 57

10 10

28

30

24

30

12 8

30

4

30

120

32 12

1
,

2

128

3 3

Sampler

Localization net

 Grid
generator

Figure 4.4: Relative Spatial Transformer Network: First input with three RGB channels
(e.g., image of a chair) concatenated channel-wise with the second RGB image (e.g., image
of a table). The network generates two transformed images each with three RGB channels.
The orange feature maps are the outputs of the conv2d layer (represented along with their
corresponding number of channels and dimensions), and the yellow maps are the outputs of
the max-pool2d followed by a ReLU. The blue layers also represent fully connected layers.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 54

4.4.2 Relative Appearance Flow Network (RAFN)

In specific domains where the relative viewpoint of the objects should be changed ac-
cordingly to generate a natural composite image, we introduce our relative appearance flow
network orthogonal to our main CoDe pipeline. Irrespective of the paired or unpaired train-
ing data, we propose a relative encoder-decoder appearance flow network, GRAFN, based on
the AFN model introduced in (Zhou et al., 2016). The AFN model of (Zhou et al., 2016) uses
an explicit rotating angle parameter for synthesizing images in their target view. However,
our RAFN model synthesizes a new viewpoint of the first object, x, given the viewpoint of
the second one, y, encoded in its binary mask. Our RAFN is trained on a set of images in X
with arbitrary azimuth angles α ∈ {−180◦,−170◦, · · · , 180◦} along with their target images
with arbitrary new azimuth angles θ ∈ {−180◦,−170◦, · · · , 180◦} and a set of foreground
masks of images in Y in the same target viewpoints. The architecture of our RAFN is
illustrated in Figure 4.5, and its loss function is formulated as

L(GRAFN) = LL1(GRAFN) + λLBCE(GM
RAFN) (4.1)

= E(x,y)[‖x−GRAFN(M fg
y , x

r)‖1] + λEx[M̂ fg
x logM fg

x + (1− M̂ fg
x) log(1−M fg

x)]

Here, GRAFN is the encoder-decoder network predicting the appearance flow vectors,
which after a bilinear sampling step generates the synthesized view. Also, GM

RAFN is an
encoder-decoder mask prediction network sharing the weights of its encoder with GRAFN,
while its decoder is designed for predicting the foreground masks of the synthesized images.
Moreover, x is the ground-truth image for the first object in the target viewpoint while xr
indicates the input image in an arbitrary view. The predicted foreground mask of RAFN is
represneted by M̂ fg

x , while M fg
x , M fg

y are the ground-truth segmentation masks for objects in
x, y, respectively.

4.4.3 Inpainting network

As discussed in Section 4.3.1, when paired training data is not available, we generate a
synthetic paired data from the composite images via inpainting. This happens in two steps.
First, we train GAN-based inpainting networks, Gx

f and Gy
f , for each of the individual object

domain X and Y respectively. These inpainting networks can be trained in a self-supervised
manner (Pathak et al., 2016). For instance, to train Gx

f , we apply a random binary mask on
an image x from X to zero out the pixel values inside the applied mask region. Given the
masked image and the original image x, we train a conditional GAN, (Gx

f , D
x
f), to fill in the

masked regions of the image. Another cGAN network, (Gy
f , D

y
f), would be trained similarly

to fill in the masked regions of images in Y . Instead of random binary masks, one can also
use randomly sampled object masks from images in Y to zero out pixel values of images in
X and vice-versa. The loss function for each inpainting network would be:

L(Gf) = LL1(Gf) + λLcGAN(Gf, Df) (4.2)

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 55

4
16 32

64
128 256 512

128
64

32
16

8 4 4

2 16
32 64

128
128

64

128 256

32 16
8

512

4

x3

1 16
32 64

128
128

64

128 256

32 16
8

512

4

x3

Bilinear Sampling

Figure 4.5: Relative Appearance Flow Network: Input is an image of a chair with three
RGB channels concatenated channel-wise with the table foreground mask. Output is the
appearance flow for synthesizing a new viewpoint of the chair. All layers are convolutional.

In the second step, we use the trained inpainting network Gx
f and Gy

f to generate synthetic
paired data from composite images. We sample an image from the composite set C, and
generate two object cutouts using the segmentation mask. These cutouts are then cropped
and centered, as shown in Figure 4.3b-4.3c, to generate Xs and Ys. We then use our pre-
trained inpainting networks from step one to fill in Xs and Ys. The inpainted images are
treated as synthetic paired object images corresponding to C.

Finally when training the CoDe model with this synthetically generated paired data,
we add an additional L1 loss on STN (see Figure 4.3c) to penalize the deviation of the
inpainted cropped segments from the inpainted non-cropped segments both paired with the
same composite image. Using inpainted segments instead of the occluded ones to be paired
with the real composite image in C reinforces the CoDe model in learning object occlusions
and spatial layouts more accurately, as shown in Figure 4.6.

4.4.4 Full model

An schematic of our full network, G, is represented in Figure 4.3 and the objective
function is composed of:

• Pixel-reconstruction L1-loss functions on the outputs of the composition generator,

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 56

decomposition generator, and the relative STN model:

LL1(Gc) = E(x,y,c)

[
‖c− ĉ‖1

]
,

LL1(Gdec) = E(x,y)

[
‖(xT , yT)−Gdec(ĉ)‖1

]
,

LL1(STN) = E(x,y)

[
‖(xc, yc)− (xT , yT)‖

]
,

where (xT , yT) = STN(x, y) and ĉ = Gc(x
T , yT). Moreover, (xc, yc) are the ground-

truth transposed input objects corresponding to the composite image, c, in the paired
scenario (or equivalently, the inpainted object segments of c in the unpaired case). Also,
LL1(Gdec) indicates the self-consistency constraint penalizing deviation of decomposed
images from their corresponding inputs,

• A cross-entropy mask prediction loss as LCE(GM
dec) to assign a label to each pixel of the

generated composite image, ĉ, corresponding with the {x, y, background} classes,

• Conditional GAN loss functions for both the composition and decomposition networks:

LcGAN(Gc, Dc) = E(x,y,c)

[
logDc(x

T , yT , c)
]

+ E(x,y)

[
1− logDc(x

T , yT , ĉ)
]
,

LcGAN(Gdec, Ddec) = E(x,y)

[
logDdec(ĉ, x

c) + logDdec(ĉ, y
c)
]

(4.3)
+ E(x,y)

[
(1− logDdec(ĉ, x̂

T)) + (1− logDdec(ĉ, ŷ
T))
]
.

We also added the gradient penalty introduced by (Gulrajani et al., 2017b) to improve
the convergence of the GAN loss functions. In summary, the objective for the full end-to-end
model is

L(G) = λ1[LL1(Gc) + LL1(Gdec) + LL1(STN)]

+ λ2LCE(GM
dec) + λ3[LcGAN(Gc, Dc) + LcGAN(Gdec, Ddec)]

4.5 Experiments
In this section, we study the performance of our compositional GAN model in both the

paired and unpaired training regimes through multiple qualitative and quantitative experi-
ments on synthetic and real data sets. We will present: (1) images generated directly from
the composition network, ĉ, before and after the ESMR step, (2) images generated directly
based on the predicted segmentation masks as ĉs = M̂x � xT + M̂y � yT . In all of our ex-
periments, the training hyper-parameters are λ1 = 100, λ2 = 50, λ3 = 1, and the inference
λ = 100. Furthermore, similar to (Isola et al., 2017a), we ignore random noise as the input
to the generator, and dropout is the only source of randomness in the network.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 57

X

Y

XRAFN

NN

Cbefore

Cafter

Cs
after

^

^

^

Paired
Training

NoInpaint

Unpaired
Training Cbefore

Cafter

Cs
after

^

^

^

(a) (b)

ST-GAN

Figure 4.6: Test results on (a) the chair-table and (b) the basket-bottle composition tasks
trained with either paired or unpaired data. In the chair-table examples, we use XRAFN as
the input to all models.“NN” stands for the nearest neighbor image in the paired training set,
and “NoInpaint” shows the results of the unpaired model without the inpainting network. In
both paired and unpaired cases, ĉbefore and ĉafter show outputs of the generator before and
after ESMR, respectively. Also, ĉafter

s represents summation of masked transposed inputs
after the ESMR step.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 58

4.5.1 Synthetic data sets

In this section, we use the Shapenet dataset (Chang et al., 2015) and study two compo-
sition tasks: (1) a chair next to a table, (2) a bottle in a basket. On the chair-table data set,
we deal with all four composition challenges, i.e., spatial layout, relative scaling, occlusion,
and viewpoint transformation. In the basket-bottle experiment, the main challenge is to
predict the correct occluding pixels as well as the relative scaling of the two objects.

Composing a chair with a table: We manually made a collection of 1K composite
images from Shapenet chairs and tables to use as the real joint set, C, in the paired and
unpaired training schemes. Chairs and tables in the input-output sets can pose in random
azimuth angles in the range [−180◦, 180◦] at steps of 10◦. As discussed in section 4.4.2, given
the segmentation mask of an arbitrary table in a random viewpoint and an input chair, our
relative appearance flow network synthesizes the chair in the viewpoint consistent with the
table. The synthesized test chairs as XRAFN are presented in the third row of Figure 4.6-a.

Composing a bottle with a basket: We manually composed Shapenet bottles with
baskets to prepare a training set of 100 joint examples and trained the model both with and
without the paired data.

4.5.1.1 Ablation study and baselines

To study the role of different components of our network, we visualize the predicted
outputs at different steps in Figure 4.6. Trained with either paired or unpaired data, we
illustrate output of the generator before and after the ESMR step discussed in section 4.3.2,
as ĉbefore and ĉafter, respectively. The ESMR step sharpens the synthesized images at test time
and removes the artifacts generated by the model. Given generated images after being refined
and their segmentation masks predicted by our pre-trained mask decomposition network, we
also represent outputs as the direct summation of the segments, ĉafter

s . Our results from the
model trained with unpaired data are comparable with those from paired data. Moreover,
we depict the performance of the model without our inpainting network in the ninth row,
where occlusions are not correct in multiple examples. More test examples are illustrated
in Figure 4.12 and a few failure test examples in Figure 4.11 for both paired and unpaired
training models.

In addition, to make sure that our network does not memorize its training samples and
can be generalized for each new input test example, we find the nearest neighbor composite
example in the training set based on the features of its constituent objects extracted from
a pre-trained VGG19 network (Simonyan & Zisserman, 2014). The nearest neighbor exam-
ples for each test case are shown in the fourth row of Figure 4.6. We further repeat the
experiments with each component of the model removed at a time to study their effect on
the final composite image. The qualitative results are illustrated in Figure 5.4. The first
and second columns show bottle and basket images concatenated channel-wise as the input
of the network. In the third column, there is no pixel reconstruction loss on the composite
image resulting in a wrong color and defective occlusion. The fourth column shows a faulty

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 59

Input Pix2Pix CycleGAN No Mask Loss No GAN Paired UnpairedNo DecompositionNo C Reconst

Figure 4.7: (a) Ablation Study: output of our compositional GAN model without the com-
ponent specified on top of each column. Input is the channel-wise concatenation of the bottle
and basket shown in the first two columns, (b) Baselines: As the input (9th column), each
bottle is added to the basket after being scaled and translated with constant parameters.
The Pix2Pix and CycleGAN outputs are shown in the last two columns.

occlusion ordering of the two objects when the cross-entropy mask loss is eliminated during
training. Moreover, as shown in the fifth column, removing the GAN loss in training and
inference generates lower quality outputs with a different color compared with the input
image. As illustrated in the sixth column, training the network without the decomposition
generator and the self-consistency L1 loss function results in the deviation of the bottle shape
from its corresponding input. The results before ESMR in both paired and unpaired cases
are shown in the seventh and ninth columns followed by the full model results represented
in the eighth and tenth columns, respectively.

Our compositional GAN pipeline can address the challenging problem of generating a
realistic composite image by learning the spatial layout, relative scaling, occlusion, and
viewpoint of the two object images. However, the conditional GAN models such as Cycle-
GAN (Zhu et al., 2017a) and Pix2Pix (Isola et al., 2017a) address the image translation
problem from one domain to another by only changing the appearance of the input image.
Here, we compare our model with these two networks in the basket-bottle composition task.
We use the mean scaling and translation parameters of our training set to place the bottle
and basket examples in one RGB input image, illustrated in the ninth column of Figure 5.4.
The Pix2Pix network includes a ResNet generator trained on our paired training data with
an adversarial loss added with an L1 loss regularizer. Since the scaling and layout of the
objects in the input image are different from the corresponding target composite image,

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 60

Table 4.1: AMT user evaluation comparing components of our model on the synthetic
datasets. 2nd column: number of test images, 3rd column: % preferences to after vs. before
refinement, 4th column: % preferences to paired training vs. unpaired.

Inputs # test after-vs-before paired-vs-
images refinement unpaired

Chair-Table 90 71.3% 57%
Basket-Bottle 45 64.2% 57%

ResNet model works better than a U-Net with skip connections. However, it still generates
unrealistic images as presented in the tenth column of Figure 5.4. We followed the same
approach to train the CycleGAN model on the unpaired data and represent the results in
the last column of Figure 5.4. Our qualitative results confirm the difficulty of learning the
transformation between samples from the input distribution and the real composite domain
for the Pix2Pix or CycleGAN networks.

4.5.1.2 User evaluations

We conducted an Amazon Mechanical Turk (AMT) evaluation (Zhang et al., 2016) to
compare the performance of our algorithm in different scenarios including training with and
without paired data and before and after ESMR. Results from 60 evaluators are summarized
in Table 4.1, revealing that even without paired examples during training, our compositional
GAN model performs comparably well. In addition, the benefit of the ESMR module in
generating higher-quality images is clear from the table.

4.5.2 Real data sets

In this section, we use two real datasets to show our model performs equally well when
one object is fixed and the other one is relatively scaled and linearly transformed to generate
a composed image: (1) a pair of sunglasses to be aligned with a face, (2) a car to be added to
a street scene. The problem here is thus similar to the case studies of ST-GAN (Lin et al.,
2018) with a background and foreground object.

Composing a face with sunglasses: Here, we used the CelebA dataset (Liu et al.,
2015) and cropped the images to 128 × 128 pixels. We hand-crafted 180 composite images
of celebrity faces from the training split aligned with sunglasses downloaded from the web.
In the unpaired scenario, the training set of individual faces in X contains 6K images from
the CelebA training split, distinct from the faces in our composite set. As the baseline,
we trained ST-GAN (Lin et al., 2018) with 10K celebrity faces of the celebA dataset with
eyeglasses.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 61

Face Input

Paired Training
 (Ours)

Unpaired Training
 (Ours)

ST-GAN

Glasses Input

Street Scene
 Input

C (Ours)

ST-GAN

Cars Input

after̂

C (Ours)after̂
s

(a) (b)

Figure 4.8: (a) Test examples for the face-sunglasses composition task. Top two rows : input
sunglasses and face images, 3rd and 4th rows : the output of our compositional GAN for the
paired and unpaired models, respectively, Last row : images generated by the ST-GAN (Lin
et al., 2018) model, (b) Test examples for the street scene-car composition task. Top two
rows : input cars and street scenes, 3rd and 4th rows : the output of our compositional
GAN after the meta-refinement approach. Here, ĉafter shows the output of the composition
generator and ĉafter

s represents the summation of the masked transposed inputs, Last row :
images generated by ST-GAN.

Composing a street scene with a car: We used the Cityscapes dataset (Cordts et al.,
2016b) and extracted two sets of non-overla- pping street scenes from the training set to be
used as domains X and C in our compositional setup. In addition, we extracted a set of
car images for domain Y using the instance segmentation masks available in the Cityscapes
dataset and scaled them to be in a fixed size range. For the scenes collected as our real
composite images in set C, we used the available segmentation mask of one of the cars in the
scene as the mask of the foreground object. We manually filtered the real samples that do
not include any cars larger than a specific dimension. We also flipped images in all three sets
for data augmentation. Overall, we have 500 composite images in set C, 1100 cars images
in set Y , and 1500 street scenes in set X, all down-scaled to 128× 256 pixels. To train the
ST-GAN model as a baseline, we used 1600 Cityscapes street scenes as the real composite
images.

4.5.2.1 Qualitative analysis and baselines

In Figure 4.8, we compare the performance of our model with ST-GAN (Lin et al., 2018),
which assumes images of faces (or street
scenes) as a fixed background and warps the glasses (or the cars) in a geometric warp
parameter space. Our results in the paired and unpaired cases, shown in Figure 4.8, look
more realistic in terms of the scale and location of the foreground objects. More examples
are presented in Figures 4.13 and 4.14. In the street scene-car composition, we do not have
any paired data and can only evaluate the unpaired model.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 62

Table 4.2: AMT user evaluation comparing our model with ST-GAN on the real datasets.
2nd column: number of test images, 3rd and 4th columns: % preferences respectively to
paired and upaired training vs. ST-GAN.

Inputs # test paired-vs- unpaired-vs-
images ST-GAN ST-GAN

Face-Sunglasses 75 84% 73%
Street Scene-Car 80 - 61%

4.5.2.2 User evaluations

To confirm our qualitative observations, we asked 60 evaluators to score our model predic-
tions versus ST-GAN, with the results summarized in Table 4.2. This experiment confirms
the superiority of our network to the state-of-the-art model in composing a background image
with a foreground.

4.5.3 Generalization to unseen categories

Here, we study the generalization of our model to the composition of unseen (but similar)
categories. To this aim, we use a model trained on the bottle-basket composition task and
feed it new pairs of can-basket images at test time. The results are illustrated in Figure 4.9.
These qualitative examples confirm that the model effectively understands the 3D geometry
of the composition problem without explicitly training for it and is able to generalize from
bottles to cans.

Can Inputs

Basket Inputs

Cafter^

Figure 4.9: Generalization of the compositional GAN model trained on bottle-basket exam-
ples to a similar unseen category of cans to be composed with baskets. The first two rows
indicate the new test examples, and the last row show the generated composite images.

4.5.4 Extension to adding more objects

In this section, we extend our binary compositional GAN model to iteratively compose
more objects through a qualitative study on the street scene-car composition task. Fig-

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 63

Y2

Cs
after

^

X1

Y1

Cs
after

^

X2

Figure 4.10: Test examples for an iterative extension of the street scenes-cars composition
task to more than two objects. The first two rows show the input street and the input
car images in the first iteration. The 3rd row illustrates the output of our compositional
generator, used as the street scene inputs for the next iteration to be composed with the
cars shown in the 4th row. The 5th row indicates the final generated composite image of the
two cars added to the street scenes iteratively.

ure 4.10 illustrates the output of our compositional generator after an iterative composition
of two cars with street scenes. Final results seem to be qualitatively plausible suggesting
that a trained binary model generalizes iteratively to add more objects.

4.6 Related Work
Image composition is a challenging problem in computer graphics where objects from

different images are to be overlaid in one single image. The appearance and geometric dif-
ferences between these objects are the obstacles that can result in non-realistic composed
images. (Zhu et al., 2015) addressed the composition problem by training a discriminator
that could distinguish realistic composite images from synthetic ones. (Tsai et al., 2017)
developed an end-to-end deep CNN for image harmonization to automatically capture the
context and semantic information of the composite image. This model outperformed its
precedents (Sunkavalli et al., 2010; Xue et al., 2012) which transferred statistics of hand-
crafted features to harmonize the foreground and the background in the composite image.
Recently, (Lin et al., 2018) used spatial transformer networks as a generator by performing
geometric corrections to warp a masked object to adapt to a fixed background image. More-
over, (Johnson et al., 2018) computed a scene layout from given scene graphs which revealed
explicit reasoning about relationships between objects and converted the layout to an output

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 64

image. In the image-conditional composition problem which we address, each object should
be rotated, scaled, and translated while partially occluding the other object to generate a
realistic composite image.

4.7 Discussion
In this chapter, we proposed a novel Compositional GAN model addressing the problem

of object composition in conditional image generation. Our model captures the relative
affine and viewpoint transformations needed to be applied to each input object (in addition
to the pixels occlusion ordering) to generate a realistic joint image. We used a decomposition
network as a supervisory signal to improve the task of composition both at training and test
times. We evaluated our compositional GAN through multiple qualitative experiments and
user evaluations for two cases of paired versus unpaired training data on synthetic and real
data sets. This work can be extended toward modeling photometric effects (e.g., lighting)
in addition to generating images composed of multiple (more than two) and/or non-rigid
objects.

X Y Cafter^
Paired Training

X Y Cafter^
Unpaired Training

Figure 4.11: Failure test cases for both the paired and unpaired models on the chair-table
composition task.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 65

X Y XRAFN NN Cbefore Cafter Cs
after^ ^ ^

Paired Training

NoInpaint Cbefore Cafter Cs
after^ ^ ^

Unpaired Training

(a)

(b)

Figure 4.12: Test results on (a) the chair-table and (b) bottle-basket composition tasks
trained with either paired or unpaired data. “NN” stands for the nearest neighbor image in
the paired training set, and “NoInpaint” shows the results of the unpaired model without
the inpainting network. In both paired and unpaired cases, ĉbefore and ĉafter show outputs
of the generator before and after the ESMR approach, respectively. Also, ĉafter

s represents
summation of masked transposed inputs after ESMR.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 66

Glasses Faces
Paired
(Ours)

Unpaired
(Ours) ST-GAN Glasses Faces

Paired
(Ours)

Unpaired
(Ours) ST-GAN

Figure 4.13: Test examples for the face-sunglasses composition task. First two columns
show the input sunglasses and face images, 3rd and 4th columns show the output of our
compositional GAN for the paired and unpaired models, respectively. Last column shows
images generated by the ST-GAN (Lin et al., 2018) model.

CHAPTER 4. IMAGE-CONDITIONAL BINARY COMPOSITION 67

Cars Street Scenes Cbefore^ Cafter
^

Csafter
^

ST-GAN NN

Figure 4.14: Test examples for the street scenes-cars composition task. First two columns
show the input car and street images, 3rd and 4th columns show the output of our compo-
sitional generator before and after the inference meta-refinement step, respectively. The 5th
column shows our model’s output by directly adding the masked inputs. The 6th and 7th
columns correspond with images generated by the ST-GAN (Lin et al., 2018) model and the
nearest neighbor training images.

68

Chapter 5

Discriminator Rejection Sampling

5.1 Introduction
The GAN training procedure is a two-player differentiable game, and the game dynamics

are largely what distinguishes the study of GANs from the study of other generative models.
These game dynamics have well-known and heavily studied stability issues. Addressing these
issues is an active area of research (Mao et al., 2017b; Arjovsky et al., 2017; Gulrajani et al.,
2017c; Odena et al., 2018; Li et al., 2017a).

However, we are interested in studying something different: Instead of trying to improve
the training procedure, we (temporarily) accept its flaws and attempt to improve the quality
of trained generators by post-processing their samples using information from the trained
discriminator. It’s well known that (under certain very strict assumptions) the equilibrium
of this training procedure is reached when sampling from the generator is identical to sam-
pling from the target distribution and the discriminator always outputs 1/2. However, these
assumptions don’t hold in practice. In particular, GANs as presently trained don’t learn to
reproduce the target distribution (Arora & Zhang, 2017). Moreover, trained GAN discrimi-
nators aren’t just identically 1/2 — they can even be used to perform chess-type skill ratings
of other trained generators (Olsson et al., 2018).

We ask if the information retained in the weights of the discriminator at the end of the
training procedure can be used to “improve” the generator. At face value, this might seem
unlikely. After all, if there is useful information left in the discriminator, why doesn’t it
find its way into the generator via the training procedure? Further reflection reveals that
there are many possible reasons. First, the assumptions made in various analyses of the
training procedure surely don’t hold in practice (e.g. the discriminator and generator have
finite capacity and are optimized in parameter space rather than density-space). Second,
due to the concrete realization of the discriminator and the generator as neural networks, it
may be that it is harder for the generator to model a given distribution than it is for the
discriminator to tell that this distribution is not being modeled precisely. Finally, we may
simply not train GANs long enough in practice for computational reasons.

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 69

In this chapter, we focus on using the discriminator as part of a probabilistic rejection
sampling scheme 1. In particular, we make the following contributions:

• We propose a rejection sampling scheme using the GAN discriminator to approximately
correct errors in the GAN generator distribution.

• We show that under quite strict assumptions, this scheme allows us to recover the data
distribution exactly.

• We then examine where those strict assumptions break down and design a practical
algorithm – called DRS – that takes this into account.

• We conduct experiments demonstrating the effectiveness of DRS. First, as a baseline,
we train an improved version of the Self-Attention GAN, improving its performance
from the best published Inception Score of 52.52 up to 62.36, and from a Fréchet
Inception Distance of 18.65 down to 14.79. We then show that DRS yields further
improvement over this baseline, increasing the Inception Score to 76.08 and decreasing
the Fréchet Inception Distance to 13.75.

5.2 Background

5.2.1 Evaluation metrics: Inception Score (IS) and Fréchet
Inception Distance (FID)

The two most popular techniques for evaluating GANs on image synthesis tasks are
the Inception Score and the Fréchet Inception Distance. The Inception Score (Salimans et
al., 2016) is given by exp(ExKL(p(y|x)||p(y))), where p(y|x) is the output of a pre-trained
Inception classifier (Szegedy et al., 2014). This measures the ability of the GAN to generate
samples that the pre-trained classifier confidently assigns to a particular class, and also
the ability of the GAN to generate samples from all classes. The Fréchet Inception Distance
(FID) (Heusel et al., 2017), is computed by passing samples through an Inception network to
yield “semantic embeddings”, after which the Fréchet distance is computed between Gaussians
with moments given by these embeddings.

5.2.2 Self-Attention GAN

We use a Self-Attention GAN (SAGAN) (Zhang et al., 2019) in our experiments. We
do so because SAGAN is considered state of the art on the ImageNet conditional-image-
synthesis task (in which images are synthesized conditioned on class identity). SAGAN
differs from a vanilla GAN in the following ways: First, it uses large residual networks (He

1This chapter is based on joint work done with Catherine Olsson, Trevor Darrell, Ian Goodfellow, and
Augustus Odena (Azadi et al., 2019a) presented at ICLR 2019.

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 70

Data: generator G and discriminator D
Result: Filtered samples from G
D∗ ← KeepTraining(D)
M̄ ← BurnIn(G, D∗)
samples ← ∅
while |samples| < N do
x ← GetSample(G)
ratio ← eD̃

∗(x)

M̄ ← Maximum(M̄ , ratio)
p ← σ(F̂ (x, M̄, ε, γ))
ψ ← RandomUniform(0,1)
if ψ ≤ p then
Append(X, samples)

end
end

Figure 5.1: Left: For a uniform proposal distribution and Gaussian target distribution,
the blue points are the result of rejection sampling and the red points are the result of
naively throwing out samples for which the density ratio (pd(x)/pg(x)) is below a threshold.
The naive method underrepresents the density of the tails. Right: the DRS algorithm.
KeepTraining continues training using early stopping on the validation set. BurnIn computes
a large number of density ratios to estimate their maximum. D̃∗ is the logit of D∗. F̂ is as
in Equation 5.7. M̄ is an empirical estimate of the true maximum M .

et al., 2016) instead of normal convolutional layers. Second, it uses spectral normalization
(Miyato et al., 2018) in the generator and the discriminator and a much lower learning rate
for the generator than is conventional (Heusel et al., 2017). Third, SAGAN makes use of
self-attention layers (Wang et al., 2017b), in order to better model long range dependencies
in natural images. Finally, this whole model is trained using a special hinge version of the
adversarial loss (Lim & Ye, 2017; Miyato & Koyama, 2018; Tran et al., 2017):

LD = −E(x,y)∼pdata [min(0,−1 +D(x, y))]− Ez∼pz ,y∼pdata [min(0,−1−D(G(z), y))]

LG = −Ez∼pz ,y∼pdata [D(G(z), y))] (5.1)

5.2.3 Rejection Sampling

Rejection sampling is a method for sampling from a target distribution pd(x) which may
be hard to sample from directly. Samples are instead drawn from a proposal distribution
pg(x), which is easier to sample from, and which is chosen such that there exists a finite value
M such that Mpg(x) > pd(x) for ∀x ∈ domain(pd(x)). A given sample y drawn from pg is

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 71

kept with acceptance probability pd(y)/Mpg(y), and rejected otherwise. See the blue points
in Figure 5.1 (Left) for a visualization. Ideally, pg(x) should be close to pd(x), otherwise
many samples will be rejected, reducing the efficiency of the algorithm (MacKay, 2003).

In Section 5.3, we explain how to apply this rejection sampling algorithm to the GAN
framework: in brief, we draw samples from the trained generator, pg(x), and then reject some
of those samples using the discriminator to attain a closer approximation to the true data
distribution, pd(x). An independent rejection sampling approach was proposed by (Grover
et al., 2018) in the latent space of variational autoencoders for improving samples from the
variational posterior.

5.3 Rejection sampling for GANs
In this section we introduce our proposed rejection sampling scheme for GANs (which

we call Discriminator Rejection Sampling, or DRS). We’ll first derive an idealized version of
the algorithm that will rely on assumptions that don’t necessarily hold in realistic settings.
We’ll then discuss the various ways in which these assumptions might break down. Finally,
we’ll describe the modifications we made to the idealized version in order to overcome these
challenges.

5.3.1 Rejection sampling for GANs: the idealized version

Suppose that we have a GAN and our generator has been trained to the point that pg and
pd have the same support. That is, for all x ∈ X, pg(x) 6= 0 if and only if pd(x) 6= 0. If desired,
we can make pd and pg have support everywhere in X if we add low-variance Gaussian noise
to the observations. Now further suppose that we have some way to compute pd(x)/pg(x).
Then, if M = maxx pd(x)/pg(x), then Mpg(x) > pd(x) for all x, so we can perform rejection
sampling with pg as the proposal distribution and pd as the target distribution as long as
we can evaluate the quantity pd(x)/Mpg(x)2. In this case, we can exactly sample from pd
(Casella et al., 2004), though we may have to reject many samples to do so.

But how can we evaluate pd(x)/Mpg(x)? pg is defined only implicitly. One thing we can
do is to borrow an analysis from the original GAN paper (Goodfellow et al., 2014), which
assumes that we can optimize the discriminator in the space of density functions rather
than via changing its parameters. If we make this assumption, as well as the assumption
that the discriminator is defined by a sigmoid applied to some function of x and trained
with a cross-entropy loss, then by Proposition 1 of that paper, we have that, for any fixed
generator and in particular for the generator G that we have when we stop training, training

2Why go through all this trouble when we could instead just pick some threshold T and throw out x when
D∗(x) < T? This doesn’t allow us to recover pd in general. If, for example, there is x′ s.t. pg(x′) > pd(x

′) > 0,
we still want some probability of observing x′. See the red points in Figure 5.1 (Left) for a visual explanation.

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 72

the discriminator to completely minimize its own loss yields

D∗(x) =
pd(x)

pd(x) + pg(x)
(5.2)

We will discuss the validity of these assumptions later, but for now consider that this allows
us to solve for pd(x)/pg(x) as follows: As noted above, we can assume the discriminator is
defined as:

D(x) = σ(x) =
1

1 + e−D̃(x)
, (5.3)

where D(x) is the final discriminator output after the sigmoid, and D̃(x) is the logit. Thus,

D∗(x) =
1

1 + e−D̃∗(x)
=

pd(x)

pd(x) + pg(x)

1 + e−D̃
∗(x) =

pd(x) + pg(x)

pd(x)

pd(x) + pd(x)e−D̃
∗(x) = pd(x) + pg(x)

pd(x)e−D̃
∗(x) = pg(x)

pd(x)

pg(x)
= eD̃

∗(x) (5.4)

Now suppose one last thing, which is that we can tractably computeM = maxx pd(x)/pg(x).
We would find that M = pd(x

∗)/pg(x
∗) = eD̃

∗(x∗) for some (not necessarily unique) x∗.
Given all these assumptions, we can now perform rejection sampling as promised. If we
define D̃∗M := D̃∗(x∗), then for any input x, the acceptance probability pd(x)/Mpg(x) can
be written as eD̃∗(x)−D̃∗M ∈ [0, 1]. To decide whether to keep any particular example, we can
just draw a random number ψ uniformly from [0, 1] and accept the sample if ψ < eD̃

∗(x)−D̃∗M .

5.3.2 Discriminator Rejection Sampling: the practical scheme

As we hinted at, the above analysis has a number of practical issues. In particular:

1. Since we can’t actually perform optimization over density functions, we can’t actually
compute D∗. Thus, our acceptance probability won’t necessarily be proportional to
pd(x)/pg(x).

2. At least on large datasets, it’s quite obvious that the supports of pg and pd are not the
same. If the support of pg and pd has a low volume intersection, we may not even want
to compute D∗, because then pd(x)/pg(x) would just evaluate to 0 most places.

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 73

3. The analysis yielding the formula forD∗ also assumes that we can draw infinite samples
from pd, which is not true in practice. If we actually optimized D all the way given a
finite data-set, it would give nonzero results on a set of measure 0.

4. In general it won’t be tractable to compute M .

5. Rejection sampling is known to have too low an acceptance probability when the target
distribution is high dimensional (MacKay, 2003).

This section describes the Discriminator Rejection Sampling (DRS) procedure, which is
an adjustment of the idealized procedure, meant to address the above issues.

On the difficulty of actually computing D∗: Given that items 2 and 3 suggest we may
not want to compute D∗ exactly, we should perhaps not be too concerned with item 1, which
suggests that we can’t. The best argument we can make that it is OK to approximate D∗
is that doing so seems to be successful empirically. We speculate that training a regularized
D with SGD gives a final result that is further from D∗ but perhaps is less over-fit to the
finite sample from pd used for training. We also hypothesize that the D we end up with
will distinguish between “good” and “bad” samples, even if those samples would both have
zero density under the true pd. We qualitatively evaluate this hypothesis in Figures 5.5
and 5.6. We suspect that more could be done theoretically to quantify the effect of this
approximation, but we leave this to future work.

On the difficulty of actually computing M : It’s nontrivial to compute M , at the very
least because we can’t compute D∗. In practice, we get around this issue by estimating M
from samples. We first run an estimation phase, in which 10,000 samples are used to estimate
D̃∗M . We then use this estimate in the sampling phase. Throughout the sampling phase we
update our estimate of D̃∗M if a larger value is found. It’s true that this will result in slight
overestimates of the acceptance probability for samples that were processed before a new
maximum was found, but we choose not to worry about this too much, since we don’t find
that we have to increase the maximum very often in the sampling phase, and the increase is
very small when it does happen.

Dealing with acceptance probabilities that are too low: Item 5 suggests that we
may end up with acceptance probabilities that are too low to be useful when performing this
technique on realistic data-sets. If D̃∗M is very large, the acceptance probability eD̃∗(x)−D̃∗M
will be close to zero, and almost all samples will be rejected, which is undesirable. One simple
way to avoid this problem is to compute some F (x) such that the acceptance probability
can be written as follows:

1

1 + e−F (x)
= eD̃

∗(x)−D̃∗M (5.5)

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 74

Figure 5.2: (A) Histogram of the sigmoid inputs, F̂ (x) (left plot), and acceptance probabil-
ities, σ(F̂ (x)) (center plot), on 20K fake samples before (purple) and after (green) adding
the constant γ to all F (x). Before adding gamma, 98.9% of the samples had an acceptance
probability < 1e-4. (B) Histogram of maxj p(yj|xi) from a pre-trained Inception network
where p(yj|xi) is the predicted probability of sample xi belonging to the yj category (from
1, 000 ImageNet categories). The green bars correspond to 25, 000 accepted samples and the
red bars correspond to 25, 000 rejected samples. The rejected images are less recognizable
as belonging to a distinct class.

If we solve for F (x) in the above equation we can then perform the following rearrange-
ment:

F (x) = D̃∗(x)− log(eD̃
∗
M − eD̃∗(x)) (5.6)

= D̃∗(x)− log(
eD̃
∗
M

eD̃
∗
M

eD̃
∗
M − eD̃

∗
M

eD̃
∗
M

eD̃
∗(x)) = D̃∗(x)− D̃∗M − log(1− eD̃∗(x)−D̃∗M)

In practice, we instead compute

F̂ (x) = D̃∗(x)− D̃∗M − log(1− eD̃∗(x)−D̃∗M−ε)− γ (5.7)

where ε is a small constant added for numerical stability and γ is a hyperparameter
modulating overall acceptance probability. For very positive γ, all samples will be rejected.
For very negative γ, all samples will be accepted. See Figure 5.2 for an analysis of the effect
of adding γ. A summary of our proposed algorithm is presented in Figure 5.1 (Right).

5.4 Experiments
In this section we justify the modifications made to the idealized algorithm. We do this

by conducting two experiments in which we show that (according to popular measures of
how well a GAN has learned the target distribution) Discriminator Rejection Sampling yields
improvements for actual GANs. We start with a toy example that yields insight into how
DRS can help, after which we demonstrate DRS on the ImageNet dataset (Russakovsky
et al., 2015).

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 75

Figure 5.3: Real samples from 25 2D-Gaussian Distributions (left) as well as fake samples
generated from a trained GAN model without (middle) and with DRS (right). Results are
computed as an average over five models randomly initialized and trained independently.

5.4.1 Mixture of 25 Gaussians

We investigate the impact of DRS on a low-dimensional synthetic data set consisting of
a mixture of twenty-five 2D isotropic Gaussian distributions (each with standard deviation
of 0.05) arranged in a grid (Dumoulin et al., 2016; Srivastava et al., 2017; Lin et al., 2017b).
We train a GAN model where the generator and discriminator are neural networks with four
fully connected layers with ReLu activations. The prior is a 2D Gaussian with mean of 0 and
standard deviation of 1 and the GAN is trained using the standard loss function. We generate
10,000 samples from the generator with and without DRS. The target distribution and both
sets of generated samples are depicted in Figure 5.3. Here, we have set γ dynamically for
each batch, to the 95th percentile of F̂ (x) for all x in the batch.

To measure performance, we assign each generated sample to its closest mixture com-
ponent. As in Srivastava et al. (2017), we define a sample as “high quality” if it is within
four standard deviations of its assigned mixture component. As shown in Table 5.1, DRS
increases the fraction of high-quality samples from 70% to 90%. As in Dumoulin et al. (2016)
and Srivastava et al. (2017) we call a mode “recovered” if at least one high-quality sample
was assigned to it. Table 5.1 shows that DRS does not reduce the number of recovered
modes – that is, it does not trade off quality for mode coverage. It does reduce the standard
deviation of the high-quality samples slightly, but this is a good thing in this case (since the
standard deviation of the target Gaussian distribution is 0.05). It also confirms that DRS
does not accept samples only near the center of each Gaussian but near the tails as well. An
ablation study of our proposed algorithm is presented in Appendix 5.5.

5.5 Ablation Study
We have evaluated four different rejection sampling schemes on the mixture-of-Gaussians

dataset, represented in Figure 5.4:

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 76

Table 5.1: Results with and without DRS on 10,000 generated samples from a model of a
2D grid of Gaussian components.

of recovered modes % “high quality” std of “high quality” samples

Without DRS 24.8± 0.4 70± 9 0.11± 0.01
With DRS 24.8± 0.4 90± 2 0.10± 0.01

1. Always reject samples falling below a hard threshold and DO NOT train the Discrim-
inator to “convergence”.

2. Always reject samples falling below a hard threshold and train the Discriminator to
convergence.

3. Use probabilistic sampling as in eq 8 and DO NOT train the Discriminator to conver-
gence.

4. Our original DRS algorithm, in which we use probabilistic sampling and train the
Discriminator to convergence.

In (1) and (2), we were careful to set the hard threshold so that the actual acceptance
rate was the same as in (3) and (4). Broadly speaking, (4) performs best, (3) performs OK
but yields less good samples than (4), (2) yields the same number of good samples as (3),
but completely fails to sample from 5 of the 25 modes. (1) actually yields the most good
samples for the modes it hits, but it only hits 4 modes!

These results show that both continuing to train D so that it can approximate D∗ and
performing sampling as in equation 5.7, which we have already motivated theoretically, is
helpful in practice. For each method, we provide the number of samples within 1, 2, 3 and
4 standard deviations and the number of modes hit in Table 5.2. For reference, we also
compute these statistics for the ground truth distribution and the unfiltered samples from
GAN.

5.5.1 ImageNet Dataset

Since it is presently the state-of-the-art model on the conditional ImageNet synthesis task,
we have reimplemented the Self-Attention GAN (Zhang et al., 2019) as a baseline. After
reproducing the results reported by Zhang et al. (2019) (with the learning rate of 1e−4),
we fine-tuned a trained SAGAN with a much lower learning rate (1e−7) for both generator
and discriminator. This improved both the Inception Score and FID significantly as can be
seen in the Improved-SAGAN column in Table 5.3. Plots of Inception score and FID during
training are given in Figure 5.6(A).

Since SAGAN uses a hinge loss and DRS requires a sigmoid output, we added a fully-
connected layer “on top of” the trained discriminator and trained it to distinguish real images

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 77

Table 5.2: Ablation study on 10,000 generated samples from a 2D grid of Gaussian compo-
nents. The third to sixth columns represent % of high-quality samples within x standard
deviations. “No FT” stands for the discriminator not being trained to convergence.

% in % in % in % in
of recovered modes “1 std” “2 std” “3 std” “4 std”

Ground Truth 25 39.3 86.6 98.9 99.9
Vanilla GAN 25 27.3 53.1 66.2 75.6
Threshold (No FT) 4 38.5 92.6 99.4 99.8
Threshold 20 34.8 70.2 83.6 89.3
DRS (No FT) 25 31.5 60.2 73.6 81.2
DRS 25 35.3 65.8 81.8 89.8

Ground Truth Threshold (No FT) DRS (No FT)

DRSThresholdVanilla GAN

Figure 5.4: Different models generating 10,000 samples from a 2D grid of Gaussian compo-
nents.“No FT” stands for the discriminator not being trained to convergence.

from fake ones using the binary cross-entropy loss. We trained this extra layer with 10,000
generated samples from the model and 10,000 examples from ImageNet.

We then generated 50,000 samples from normal SAGAN and Improved SAGAN with
and without DRS, repeating the sampling process 4 times. We set γ dynamically to the
80th percentile of the F (x) values in each batch. The averages of Inception Score and FID

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 78

Table 5.3: Results with and without DRS on 50K ImageNet samples. Low FID and high IS
are better.

SAGAN Improved-SAGAN

IS FID IS FID

Without DRS 52.34± 0.45 18.21± 0.14 62.36± 0.35 14.79± 0.06
With DRS 61.44± 0.09 17.14± 0.09 76.08± 0.30 13.57± 0.13

over these four trials are presented in Table 5.3. Both scores were substantially improved for
both models, indicating that DRS can indeed be useful in realistic settings involving large
data-sets and sophisticated GAN variants.

Qualitative Analysis of ImageNet results: From a pool of 50,000 samples, we visualize
the “best” and the “worst” 100 samples based on their acceptance probabilities. Figure 5.5
shows that the subjective visual quality of samples with high acceptance probability is con-
siderably better. Figure 5.2(B) also shows that the accepted images are on average more
recognizable as belonging to a distinct class.

We also study the behavior of the discriminator in another way. We choose an Ima-
geNet category randomly, then generate samples from that category until we have found two
images G(z1), G(z2) such that G(z1) appears visually realistic and G(z2) appears visually
unrealistic. Here, z1 and z2 are the input latent vectors. We then generate many images by
interpolating in latent space between the two images according to z = αz1 + (1− α)z2 with
α ∈ {0, 0.1, 0.2, . . . , 1}. In Figure 5.6, the first and last columns correspond with α = 1 and
α = 0, respectively. The color bar in the figure represents the acceptance probability as-
signed to each sample. In general, acceptance probabilities decrease from left to right. There
is no reason to expect a priori that the acceptance probability should decrease monotonically
as a function of the interpolated z, so it says something interesting about the discriminator
that most rows basically follow this pattern.

In addition, we represent Inception score as a function of acceptance rate in Figure 5.7-
left. Different acceptance rates are achieved by changing γ from the 0th percentile of F (x)
(acceptance rate = 100%) to its 90th percentile (acceptance rate = 14%). Decreasing the
acceptance rate filters more non-realistic samples and increases the final Inception score.
After an specific rate, rejecting more samples does not gain any benefit in collecting a better
pool of samples.

Moreover, Figure 5.7-right shows the correlation between the acceptance probabilities
that DRS assigns to the synthesized samples and the recognizability of those samples from
the view-point of a pre-trained Inception network. The latter is measured by computing
maxj p(yj|xi) which is the probability of sample xi belonging to the category yj from the 1,000
ImageNet classes. As expected, there is a large mass of the recognizable images accepted with
high acceptance probabilities on the top right corner. The small mass of images which cannot

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 79

Figure 5.5: Synthesized images with the highest (left) and lowest (right) acceptance proba-
bility scores.

be easily classified into one of the 1,000 categories while having high acceptance probability
scores (the top left corner of the graph) can be due to the non-optimal GAN discriminator
in practice. Therefore, we expect that improving the discriminator performance boosts the
final inception score even more substantially.

5.6 Nearest Neighbors from ImageNet
To confirm that our Discriminator Rejection Sampling is not duplicating the training

samples, we show the nearest neighbor of a few visually-realistic generated samples in the
ImageNet training data in Figures 5.8-5.15. The nearest neighbors are found based on their
fc7 features from the pre-trained VGG16 model.

5.7 Discussion
We have proposed a rejection sampling scheme using the GAN discriminator to approx-

imately correct errors in the GAN generator distribution. We’ve shown that under strict
assumptions, we can recover the data distribution exactly. We’ve also examined where those
assumptions break down and designed a practical algorithm (Discriminator Rejection Sam-
pling) to address that. Finally, we have demonstrated the efficacy of this algorithm on a
mixture of Gaussians and on the state-of-the-art SAGAN model.

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 80

Figure 5.6: (A) Inception Score and FID during ImageNet training, computed on 50,000
samples. (B) Each row shows images synthesized by interpolating in latent space. The color
bar above each row represents the acceptance probabilities for each sample: red for high
and white for low. Subjective visual quality of samples with high acceptance probability
is considerably better: objects are more coherent and more recognizable as belonging to a
specific class. There are fewer indistinct textures, and fewer scenes without recognizable
objects.

Opportunities for future work include the following:

• There’s no reason that our scheme can only be applied to GAN generators. It seems
worth investigating whether rejection sampling can improve e.g. VAE decoders. This
seems like it might help, because VAEs may have trouble with “spreading mass around”
too much.

• In one ideal case, the critic used for rejection sampling would be a human. Can we
use better proxies for the human visual system to improve rejection sampling’s effect
on image synthesis models?

• It would be interesting to theoretically characterize the efficacy of rejection sampling
under the breakdown-of-assumptions that we have described earlier. For instance, if
one can’t recover D∗ but can train some other critic that has bounded divergence from
D∗, how does the efficacy depend on this bound?

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 81

Figure 5.7: Inception Score versus the rate of accepting samples on average (left), and the
acceptance probability assigned to each sample xi by DRS versus the maximum probability of
belonging to one of the 1K categories based on a pre-trained Inception network, maxj p(yj|xi)
(right).

Figure 5.8: Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 82

Figure 5.9: Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features

Figure 5.10: Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 83

Figure 5.11: Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features

Figure 5.12: Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 84

Figure 5.13: Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features

Figure 5.14: Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features

CHAPTER 5. DISCRIMINATOR REJECTION SAMPLING 85

Figure 5.15: Nearest neighbors of the top left generated image in ImageNet training set in
terms of VGG16 fc7 features

86

Chapter 6

Discussions

In this thesis, we explored learning the manifold of visual data in multiple structural and
compositional domains using Generative Adversarial Networks. Leveraging the structure
shared between different elements of each domain, we were able to improve the performance
of the state of the art methods in image synthesis. In Chapter 2, we considered text as
a visual data and proposed a model for font synthesis and style transfer when only a few
characters of a font are provided. The consistent structure of each character across different
fonts (such as “A” in the English alphabet) and correlation between specific characters (such
as “C" and “G") are the essential factors we considered to design our proposed network. In
Chapters 3 and 4, we focused on complex natural scenes and composing a pair of objects
into a convincing layout, respectively. In Chapter 5, we investigated the defective contents
that can be generated by a trained GAN and proposed a practical method to reject these
samples to improve the generator distribution.

Below, we discuss the existing challenges and possible future directions for visual content
creation.

Image manipulation There are still several challenges remained unresolved in image
editing and compositing. For instance, an automatic approach to modify a human gesture
while interacting with an object or performing a specific task is missing from the existing
content creation tools. Assume you have the picture of a person walking in a park in a
summer day and you intend to transfer the same image to a winter rainy day. Although
the existing image-to-image translation models (Zhu et al., 2017b; Isola et al., 2017b) are
capable of transferring the style and color scheme of the image, they cannot change the pose
of the walking person to hold an umbrella to keep off the rain-drops.

Structural domain shift One advantage of a content creative system is transferring
images from one domain associated with a big corpus of visual data to a target domain
with a limited set of descriptive images (Hoffman et al., 2018). Although these models
have made enhancements in closing the gap between the two domains in terms of their
appearance, they cannot change the content of images in the source domain in favor of the

CHAPTER 6. DISCUSSIONS 87

target domain. As an example, consider the domain differences between two street scene
datasets, one containing streets with multiple vehicles and the other containing streets with
sidewalks and pedestrians. It is still very challenging to add pedestrians to or change the
number of vehicles in a scene from the first domain such that it gets closer to the target
domain content-wise.

Novel composition of objects or attributes Assume we have a dataset containing
different types of birds where each bird category is biased to a specific living environment.
For example, birds with open wings and a large body size always appear in the sky while
all birds with long thin beaks swim in the water. Can we have a model that composes these
different attributes and generates a new type of bird with open wings while swimming in
the water? Training a model that generalizes beyond what it has observed in the training
domain to apply an unseen composition of objects and attributes could help us remove the
existing biases in the datasets and further improve the performance of the computer vision
systems relying on them.

Content creation as a threat What we have seen so far are all good uses of content
creation, but we should note that content creation can be also seen as a threat. With the
enhancements made in content creative systems in specific domains like human faces (Karras
et al., 2019) and the emergence of DeepFakes 1, it has been a challenge to rely on what we
see on the web. Recent studies (Wang et al., 2020) have shown that content creation is
not a big problem for now and CNN-generated images have common artifacts that can be
easily detected by a simple classifier. However, we should note that content creation will be
a big problem soon where GANs and detectors can be adversaries for each other playing a
cat-and-mouse game. Therefore, robust and explainable detectors would be required to be
able to trust the extensive collection of visual data accessible online.

1https://github.com/deepfakes/faceswap

88

Appendix A

My Earlier Works in Computer Vision

I started my Ph.D. being amazed by the insight that computer vision provides into key
real-world challenges when demand for visual recognition system is higher than ever before.
Autonomous driving cars require reliable pedestrian, road, and object detectors. Companies
and consumers need person and scene recognition for autonomous photo organization to cope
with the explosion of personal photos. Next generation personal robotics demands accurate
recognition of basic objects for interaction in a home or office environment. Combination
of computer vision and deep learning provides us powerful tools to mimic human ability in
recognizing and detecting people and scenes with which we have daily interactions. However,
it still remains a challenge to reliably recognize and localize all objects in any arbitrary
environment or real-time applications. Training deep convolutional neural networks heavily
relies on precisely labeled data sets while many of the available real world data sets contain
mislabeled samples. These errors substantially hinder the learning of a very accurate model
to recognize objects. In the first two years of my Ph.D., I developed algorithms based on
contextual image-level or object-level correlations existing in the data sets to recognize and
localize objects more accurately and efficiently.

Noisy supervision in visual systems Learning a deep convolutional model capable of
producing robust image representations in presence of noisy supervision is promising due
to the availability of millions of online images with user-supplied tags. We proposed a
novel auxiliary image regularizer (AIR) to address this issue of deception of training annota-
tions (Azadi et al., 2015). Intuitively, our proposed regularizer exploits the mutual context
information among training images and automatically retrieves useful auxiliary examples to
collaboratively facilitate the training of the classification model. The AIR regularizer can be
deemed as seeking some “nearest neighbors” within the training examples to regularize the
fitting of a deep CNN model to noisy samples and improve its classification performance in
the presence of noise.

Using regularization is a common practice to enhance robustness of the models. However,
an effective regularizer for training a deep CNN model was absent especially for handling a
learning problem with faulty labels. Our proposed auxiliary image regularizer was among

APPENDIX A. MY EARLIER WORKS IN COMPUTER VISION 89

the first to introduce an effective regularizer for deep CNN models to handle label noise. We
used a group sparse norm to automatically select auxiliary images by constructing groups of
input image features. Imposing such group sparsity regularization on the classifier response
enables it to actively select the relevant and useful features, which gives higher learning
weights to the informative groups in the classification task and forces the weights of irrelevant
or noisy groups toward zero. The activated auxiliary images implicitly provide the guiding
information for training deep models.

Besides taking benefit from auxiliary image-level information to vaccinate a classification
model from noisy labels disruption, object-level correlations in the scenes seems to be the
next clue for the enhancement of visual recognition systems. But how should we consider
and formulate these interactions for a more challenging problem as object detection?

Label- and instance-level relations Object detection is still more complicated than
image classification as it aims at both localizing and classifying objects. Accurate localiza-
tion of objects in each image requires both well-processed candidate object locations and
selected refined boxes with precise locations. Looking at the object detection problem as a
summarization and representation task, the set of all predicted bounding boxes per image
should be as informative and non-repetitive as possible. To improve location and category
specifications of final detected bounding boxes per image, we proposed a novel end-to-end
network taking care of both spatial layout and category-level analogy between object pro-
posals without increasing the number of network parameters (Azadi et al., 2017a).

We formulated the discriminative and contextual information as well as mutual relation
between boxes into a Determinantal Point Process (DPP) loss function that can be employed
on top of any deep network architecture for object detection. Applying our diversity-ignited
loss layer reinforces the model to find more accurate object instances with minimum overlap
with each other and thus boosts performance of the network in both localizing and classifying
objects compared with the state-of-the-art models (Ren et al., 2015). The unified training
and inference detection scheme of our proposed model makes it integrable into any system
that requires a detection component.

Switch gears to visual content creation While object recognition systems rely on exist-
ing data sets and their erroneously labeled samples to recognize object instances, generative
networks are capable to pass through a reverse path by generating arbitrary images given
their instance ids or an input text (Ramesh et al., 2021). These two opposite directions
can be complementary to each other if designed appropriately. The feedback coming from
generated samples through a generative network can enhance the performance of an object
recognition system and at the same time, the observation from instance-level learning can
enrich image generation. I was fascinated by the fundamental changes that GANs introduced
in data generation and anticipated a bright horizon for its impact on the field as well as its
creative applications, thus, it became the focus of my thesis as described in Chapters 1 to 6.

90

Bibliography

1. Antoniou, A., Storkey, A. & Edwards, H. Data Augmentation Generative Adversarial
Networks. arXiv preprint arXiv:1711.04340 (2017).

2. Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein Generative Adversarial Networks
(2017).

3. Arora, S. & Zhang, Y. Do GANs actually learn the distribution? An empirical study.
CoRR abs/1706.08224. arXiv: 1706.08224. http://arxiv.org/abs/1706.08224
(2017).

4. Ashual, O. & Wolf, L. Specifying object attributes and relations in interactive scene
generation in ICCV (2019).

5. Azadi, S., Feng, J. & Darrell, T. Learning detection with diverse proposals in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (2017),
7149–7157.

6. Azadi, S., Feng, J., Jegelka, S. & Darrell, T. Auxiliary image regularization for deep
cnns with noisy labels. arXiv preprint arXiv:1511.07069 (2015).

7. Azadi, S., Olsson, C., Darrell, T., Goodfellow, I. & Odena, A. Discriminator Rejection
Sampling. arXiv preprint arXiv:1810.06758 (2019).

8. Azadi, S., Pathak, D., Ebrahimi, S. & Darrell, T. Compositional GAN (Extended
Abstract): Learning Image-Conditional Binary Composition (2019).

9. Azadi, S., Pathak, D., Ebrahimi, S. & Darrell, T. Compositional GAN: Learning
Image-Conditional Binary Composition. arXiv preprint arXiv:1807.07560 (2019).

10. Azadi, S. et al. Multi-Content GAN for Few-Shot Font Style Transfer. arXiv preprint
arXiv:1712.00516 (2017).

11. Azadi, S. et al. Multi-Content GAN for Few-Shot Font Style Transfer. CVPR (2018).

12. Azadi, S. et al. Semantic bottleneck scene generation. arXiv preprint arXiv:1911.11357
(2019).

13. Baluja, S. Learning Typographic Style. arXiv preprint arXiv:1603.04000 (2016).

14. Bojchevski, A., Shchur, O., Zügner, D. & Günnemann, S. Netgan: Generating graphs
via random walks. arXiv preprint arXiv:1803.00816 (2018).

https://arxiv.org/abs/1706.08224
http://arxiv.org/abs/1706.08224

BIBLIOGRAPHY 91

15. Brock, A., Donahue, J. & Simonyan, K. Large scale gan training for high fidelity
natural image synthesis (2019).

16. Campbell, N. D. & Kautz, J. Learning a manifold of fonts. ACM Transactions on
Graphics (TOG) 33, 91 (2014).

17. Casella, G., Robert, C. P., Wells, M. T., et al. in A Festschrift for Herman Rubin
342–347 (Institute of Mathematical Statistics, 2004).

18. Chang, A. X. et al. ShapeNet: An Information-Rich 3D Model Repository tech. rep.
arXiv:1512.03012 [cs.GR] (Stanford University — Princeton University — Toyota
Technological Institute at Chicago, 2015).

19. Chang, J. & Gu, Y. Chinese Typography Transfer. arXiv preprint arXiv:1707.04904
(2017).

20. Chen, Q. & Koltun, V. Photographic image synthesis with cascaded refinement net-
works in ICCV (2017).

21. Chen, T., Lucic, M., Houlsby, N. & Gelly, S. On Self Modulation for Generative Ad-
versarial Networks in ICLR (2019).

22. Chen, T., Zhai, X., Ritter, M., Lucic, M. & Houlsby, N. Self-Supervised GANs via
Auxiliary Rotation Loss in CVPR (2019).

23. Chen, X. et al. InfoGAN: interpretable representation learning by information maxi-
mizing Generative Adversarial Nets in NIPS (2016).

24. Cordts, M. et al. The Cityscapes dataset for semantic urban scene understanding in
CVPR (2016).

25. Cordts, M. et al. The Cityscapes Dataset for Semantic Urban Scene Understanding in
CVPR (2016).

26. Dai, A., Qi, C. R. & Nießner, M. Shape Completion using 3D-Encoder-Predictor CNNs
and Shape Synthesis. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE
(2017).

27. Denton, E. L., Chintala, S., Szlam, A. & Fergus, R. Deep Generative Image Models
using a Laplacian Pyramid of Adversarial Networks in NIPS (2015).

28. Dumoulin, V. et al. Adversarially Learned Inference. ArXiv e-prints. arXiv: 1606.
00704 [stat.ML] (June 2016).

29. Flynn, J., Neulander, I., Philbin, J. & Snavely, N. DeepStereo: Learning to Predict New
Views From the World’s Imagery in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016). http://www.cv-foundation.org/openaccess/
content_cvpr_2016/html/Flynn_DeepStereo_Learning_to_CVPR_2016_paper.
html.

30. Gatys, L. A., Ecker, A. S. & Bethge, M. Image style transfer using convolutional neural
networks in CVPR (2016), 2414–2423.

https://arxiv.org/abs/1606.00704
https://arxiv.org/abs/1606.00704
http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Flynn_DeepStereo_Learning_to_CVPR_2016_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Flynn_DeepStereo_Learning_to_CVPR_2016_paper.html
http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Flynn_DeepStereo_Learning_to_CVPR_2016_paper.html

BIBLIOGRAPHY 92

31. Goodfellow, I. J. et al. Generative Adversarial Networks. ArXiv e-prints. arXiv: 1406.
2661 [stat.ML] (June 2014).

32. Goodfellow, I. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160 (2016).

33. Goodfellow, I. et al. Generative adversarial nets in NIPS (2014).

34. Goodfellow, I. et al. Generative adversarial nets in NeurIPS (2014).

35. Grover, A., Gummadi, R., Lazaro-Gredilla, M., Schuurmans, D. & Ermon, S. Varia-
tional Rejection Sampling in Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics 84 (2018).

36. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved
training of Wasserstein GANs in NeurIPS (2017).

37. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved
training of wasserstein gans in NIPS (2017).

38. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved
Training of Wasserstein GANs. CoRR abs/1704.00028. arXiv: 1704.00028. http:
//arxiv.org/abs/1704.00028 (2017).

39. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition in
Proceedings of the IEEE conference on computer vision and pattern recognition (2016),
770–778.

40. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter, S. GANs Trained
by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. ArXiv e-
prints. arXiv: 1706.08500 [cs.LG] (June 2017).

41. Heusel, M. et al. GANs trained by a two time-scale update rule converge to a Nash
equilibrium in NeurIPS (2017).

42. Hoffman, J. et al. Cycada: Cycle-consistent adversarial domain adaptation in Inter-
national conference on machine learning (2018), 1989–1998.

43. Hong, S., Yang, D., Choi, J. & Lee, H. Inferring semantic layout for hierarchical text-
to-image synthesis in CVPR (2018).

44. Huang, H., Kalogerakis, E. & Marlin, B. Analysis and synthesis of 3D shape families
via deep-learned generative models of surfaces. Computer Graphics Forum 34 (2015).

45. Huang, X. & Belongie, S. Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization. arXiv preprint arXiv:1703.06868 (2017).

46. Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with condi-
tional adversarial networks. arXiv preprint arXiv:1611.07004 (2016).

47. Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with condi-
tional adversarial networks in CVPR (2017).

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1706.08500

BIBLIOGRAPHY 93

48. Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with condi-
tional adversarial networks in CVPR (2017).

49. Jaderberg, M., Simonyan, K., Zisserman, A., et al. Spatial transformer networks in
NIPS (2015).

50. Jang, E., Gu, S. & Poole, B. Categorical reparameterization with Gumbel-softmax in
ICLR (2017).

51. Johnson, J., Alahi, A. & Fei-Fei, L. Perceptual losses for real-time style transfer and
super-resolution in ECCV (2016).

52. Johnson, J., Gupta, A. & Fei-Fei, L. Image Generation from Scene Graphs. CVPR
(2018).

53. Kalantari, N. K., Wang, T.-C. & Ramamoorthi, R. Learning-Based View Synthesis
for Light Field Cameras. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia 2016) 35 (2016).

54. Kalogerakis, E., Chaudhuri, S., Koller, D. & Koltun, V. A Probabilistic Model of
Component-Based Shape Synthesis. ACM Transactions on Graphics 31 (2012).

55. Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017).

56. Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive growing of GANs for improved
quality, stability, and variation in ICLR (2017).

57. Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative
adversarial networks in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2019), 4401–4410.

58. Karras, T. et al. Analyzing and improving the image quality of stylegan in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020),
8110–8119.

59. Kulkarni, T. D., Whitney, W. F., Kohli, P. & Tenenbaum, J.Deep convolutional inverse
graphics network in Advances in Neural Information Processing Systems (2015), 2539–
2547.

60. Kusner, M. J. & Hernández-Lobato, J. M. Gans for sequences of discrete elements
with the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051 (2016).

61. Li, C. &Wand, M. Combining Markov random fields and convolutional neural networks
for image synthesis in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2016), 2479–2486.

62. Li, C. & Wand, M. Precomputed real-time texture synthesis with Markovian generative
adversarial networks in European Conference on Computer Vision (2016), 702–716.

63. Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y. & Póczos, B. MMD GAN: Towards
deeper understanding of moment matching network in Advances in Neural Information
Processing Systems (2017), 2203–2213.

BIBLIOGRAPHY 94

64. Li, W. et al. Object-driven text-to-image synthesis via adversarial training in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (2019),
12174–12182.

65. Li, Y. et al.Universal Style Transfer via Feature Transforms. arXiv preprint arXiv:1705.08086
(2017).

66. Lian, Z., Zhao, B. & Xiao, J. Automatic generation of large-scale handwriting fonts
via style learning in SIGGRAPH ASIA 2016 Technical Briefs (2016), 12.

67. Liao, J., Yao, Y., Yuan, L., Hua, G. & Kang, S. B. Visual Attribute Transfer through
Deep Image Analogy. arXiv preprint arXiv:1705.01088 (2017).

68. Lim, J. H. & Ye, J. C. Geometric gan. arXiv preprint arXiv:1705.02894 (2017).

69. Lin, C.-H., Yumer, E., Wang, O., Shechtman, E. & Lucey, S. ST-GAN: Spatial Trans-
former Generative Adversarial Networks for Image Compositing. arXiv preprint arXiv:1803.01837
(2018).

70. Lin, K., Li, D., He, X., Zhang, Z. & Sun, M.-T. Adversarial ranking for language
generation in NeurIPS (2017).

71. Lin, Z., Khetan, A., Fanti, G. & Oh, S. PacGAN: The power of two samples in gen-
erative adversarial networks. arXiv preprint arXiv:1712.04086 (2017).

72. Liu, M.-Y., Breuel, T. & Kautz, J. Unsupervised image-to-image translation networks
in NIPS (2017).

73. Liu, M.-Y. & Tuzel, O. Coupled generative adversarial networks in Advances in neural
information processing systems (2016), 469–477.

74. Liu, Z., Luo, P., Wang, X. & Tang, X. Deep Learning Face Attributes in the Wild in
ICCV (2015).

75. Lu, S., Zhu, Y., Zhang, W., Wang, J. & Yu, Y. Neural text generation: past, present
and beyond (2018).

76. Lucic, M., Kurach, K., Michalski, M., Gelly, S. & Bousquet, O. Are GANs Created
Equal? A Large-scale Study in NeurIPS (2018).

77. Lucic, M. et al. High-Fidelity Image Generation With Fewer Labels in ICML (2019).

78. Lun, Z., Kalogerakis, E., Wang, R. & Sheffer, A. Functionality Preserving Shape Style
Transfer. ACM Transactions on Graphics 35 (2016).

79. Lyu, P. et al. Auto-Encoder Guided GAN for Chinese Calligraphy Synthesis. arXiv
preprint arXiv:1706.08789 (2017).

80. MacKay, D. J. Information theory, inference and learning algorithms (Cambridge uni-
versity press, 2003).

81. Maddison, C. J., Mnih, A. & Teh, Y. W. The concrete distribution: A continuous
relaxation of discrete random variables in ICLR (2016).

BIBLIOGRAPHY 95

82. Mao, X. et al. Least squares generative adversarial networks in ICCV (2017).

83. Mao, X. et al. Least squares generative adversarial networks in Computer Vision
(ICCV), 2017 IEEE International Conference on (2017), 2813–2821.

84. Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014).

85. Miyato, T. & Koyama, M. cGANs with Projection Discriminator. ArXiv e-prints.
arXiv: 1802.05637 (Feb. 2018).

86. Miyato, T., Kataoka, T., Koyama, M. & Yoshida, Y. Spectral normalization for gen-
erative adversarial networks. ICLR (2018).

87. Odena, A. et al. Is Generator Conditioning Causally Related to GAN Performance?
ArXiv e-prints. arXiv: 1802.08768 [stat.ML] (Feb. 2018).

88. Odena, A., Olah, C. & Shlens, J. Conditional image synthesis with auxiliary classifier
gans. arXiv preprint arXiv:1610.09585 (2016).

89. Odena, A., Olah, C. & Shlens, J. Conditional image synthesis with auxiliary classifier
gans in ICML (2017).

90. Olsson, C., Bhupatiraju, S., Brown, T., Odena, A. & Goodfellow, I. Skill Rating for
Generative Models. ArXiv e-prints. arXiv: 1808.04888 [stat.ML] (Aug. 2018).

91. Park, E., Yang, J., Yumer, E., Ceylan, D. & Berg, A. C. Transformation-grounded im-
age generation network for novel 3D view synthesis. arXiv preprint arXiv:1703.02921
(2017).

92. Park, T., Liu, M.-Y., Wang, T.-C. & Zhu, J.-Y. Semantic image synthesis with spatially-
adaptive normalization in CVPR (2019).

93. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T. & Efros, A. Context Encoders:
Feature Learning by Inpainting in CVPR (2016).

94. Phan, H. Q., Fu, H. & Chan, A. B. Flexyfont: Learning transferring rules for flexible
typeface synthesis in Computer Graphics Forum 34 (2015), 245–256.

95. Qiao, T., Zhang, J., Xu, D. & Tao, D.MirrorGAN: Learning Text-to-image Generation
by Redescription in CVPR (2019).

96. Radford, A., Metz, L. & Chintala, S. Unsupervised representation learning with deep
convolutional generative adversarial networks in ICLR (2016).

97. Ramesh, A. et al. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092
(2021).

98. Reed, S. et al. Generative Adversarial Text-to-Image Synthesis in ICML (2016).

99. Reed, S. E. et al. Learning what and where to draw in NIPS (2016).

100. Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object de-
tection with region proposal networks in NIPS (2015).

https://arxiv.org/abs/1802.05637
https://arxiv.org/abs/1802.08768
https://arxiv.org/abs/1808.04888

BIBLIOGRAPHY 96

101. Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV) 115, 211–252 (2015).

102. Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O. & Gelly, S. Assessing Generative
Models via Precision and Recall in NeurIPS (2018).

103. Salimans, T. et al. Improved Techniques for Training GANs. ArXiv e-prints. arXiv:
1606.03498 [cs.LG] (June 2016).

104. Salimans, T. et al. Improved techniques for training gans in NIPS (2016).

105. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014).

106. Srivastava, A., Valkoz, L., Russell, C., Gutmann, M. U. & Sutton, C. VEEGAN:
Reducing mode collapse in GANs using implicit variational learning in Advances in
Neural Information Processing Systems (2017), 3308–3318.

107. Sung, M., Kim, V. G., Angst, R. & Guibas, L. Data-driven Structural Priors for Shape
Completion. Transactions on Graphics (Proc. of SIGGRAPH Asia) (2015).

108. Sunkavalli, K., Johnson, M. K., Matusik, W. & Pfister, H. Multi-scale image harmo-
nization in ACM Transactions on Graphics (TOG) (2010).

109. Suveeranont, R. & Igarashi, T. Example-Based Automatic Font Generation. in Smart
Graphics (2010), 127–138.

110. Szegedy, C. et al. Going Deeper with Convolutions. CoRR abs/1409.4842. http:
//arxiv.org/abs/1409.4842 (2014).

111. Tenenbaum, J. B. & Freeman, W. T. Separating style and content in Advances in
neural information processing systems (1997), 662–668.

112. Tran, D., Ranganath, R. & Blei, D. M. Hierarchical Implicit Models and Likelihood-
Free Variational Inference. ArXiv e-prints. arXiv: 1702.08896 [stat.ML] (Feb. 2017).

113. Tran, L., Yin, X. & Liu, X. Disentangled representation learning gan for pose-invariant
face recognition in CVPR 4 (2017), 7.

114. Tsai, Y.-H. et al. Deep image harmonization in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017).

115. Upchurch, P., Snavely, N. & Bala, K. From A to Z: supervised transfer of style and con-
tent using deep neural network generators. arXiv preprint arXiv:1603.02003 (2016).

116. Volokitin, A., Konukoglu, E. & Van Gool, L. Decomposing Image Generation into Lay-
out Prediction and Conditional Synthesis in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (2020), 372–373.

117. Wang, S.-Y., Wang, O., Zhang, R., Owens, A. & Efros, A. A. CNN-generated images
are surprisingly easy to spot... for now in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2020), 8695–8704.

https://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1702.08896

BIBLIOGRAPHY 97

118. Wang, T.-C. et al. High-Resolution Image Synthesis and Semantic Manipulation with
Conditional GANs. arXiv preprint arXiv:1711.11585 (2017).

119. Wang, T.-C. et al. High-resolution image synthesis and semantic manipulation with
conditional gans in CVPR (2018).

120. Wang, X., Girshick, R., Gupta, A. & He, K. Non-local neural networks (2017).
121. Wang, X. & Gupta, A. Generative Image Modeling using Style and Structure Adver-

sarial Networks. ECCV (2016).
122. Xue, S., Agarwala, A., Dorsey, J. & Rushmeier, H. Understanding and improving the

realism of image composites. ACM Transactions on Graphics (TOG) (2012).
123. Yang, J., Kannan, A., Batra, D. & Parikh, D. LR-GAN: Layered recursive generative

adversarial networks for image generation. arXiv preprint arXiv:1703.01560 (2017).
124. Yang, S., Liu, J., Lian, Z. & Guo, Z. Awesome Typography: Statistics-Based Text

Effects Transfer. arXiv preprint arXiv:1611.09026 (2016).
125. Yu, F., Koltun, V. & Funkhouser, T. Dilated Residual Networks in CVPR (2017).
126. Yu, L., Zhang, W., Wang, J. & Yu, Y. Seqgan: Sequence generative adversarial nets

with policy gradient in AAAI (2017).
127. Zhang, H., Goodfellow, I., Metaxas, D. & Odena, A. Self-attention generative adver-

sarial networks in ICML (2019).
128. Zhang, H. et al. Stackgan: Text to photo-realistic image synthesis with stacked gener-

ative adversarial networks in ICCV (2017).
129. Zhang, H. et al. Stackgan: Text to photo-realistic image synthesis with stacked gener-

ative adversarial networks in ICCV (2017).
130. Zhang, R., Isola, P. & Efros, A. A. Colorful Image Colorization in ECCV (2016).
131. Zhao, B., Wu, X., Cheng, Z.-Q., Liu, H. & Feng, J. Multi-View Image Generation from

a Single-View. arXiv preprint arXiv:1704.04886 (2017).
132. Zhou, B., Wang, W. & Chen, Z. Easy generation of personal Chinese handwritten fonts

in Multimedia and Expo (ICME), 2011 IEEE International Conference on (2011), 1–6.
133. Zhou, B. et al. Scene parsing through ade20k dataset in CVPR (2017).
134. Zhou, T., Tulsiani, S., Sun, W., Malik, J. & Efros, A. A. View synthesis by appearance

flow in ECCV (2016).
135. Zhu, J.-Y., Krahenbuhl, P., Shechtman, E. & Efros, A. A. Learning a discriminative

model for the perception of realism in composite images in ICCV (2015).
136. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired Image-to-Image Translation

using Cycle-Consistent Adversarial Networks in ICCV (2017).
137. Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired Image-to-Image Translation

using Cycle-Consistent Adversarial Networks in ICCV (2017).

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Thesis Goal and Contributions

	Few-Shot Glyph Synthesis and Font Style Transfer
	Introduction
	Multi-Content GAN Architecture
	Conditional Generative Adversarial Networks
	Glyph Network
	Ornamentation Network
	End-to-End Network

	Font Dataset
	Experiments and Results
	Image Translation Baseline
	Ablation Study
	Automatic Learning of Correlations between Contents
	Number of Observed Letters
	Perceptual Evaluation
	Ground Truth Glyph Ornamentation
	Generalization on Synthetic Color Font Dataset

	Related Work
	Discussion

	Unconditional Synthesis of Complex Scenes
	Introduction
	Semantic Bottleneck GAN (SB-GAN)
	Semantic bottleneck synthesis
	Semantic image synthesis
	End-to-end framework

	Experiments and Results
	Qualitative results
	Quantitative evaluation
	Perceptual evaluation

	Related Work
	Discussion

	Image-Conditional Binary Composition
	Introduction
	Background: Conditional GAN
	Compositional GAN
	Supervising composition by decomposition
	Example-Specific Meta-Refinement (ESMR)

	Implementation Details
	Relative spatial transformer network
	Relative Appearance Flow Network (RAFN)
	Inpainting network
	Full model

	Experiments
	Synthetic data sets
	Ablation study and baselines
	User evaluations

	Real data sets
	Qualitative analysis and baselines
	User evaluations

	Generalization to unseen categories
	Extension to adding more objects

	Related Work
	Discussion

	Discriminator Rejection Sampling
	Introduction
	Background
	Evaluation metrics: Inception Score (IS) and Fréchet Inception Distance (FID)
	Self-Attention GAN
	Rejection Sampling

	Rejection sampling for GANs
	Rejection sampling for GANs: the idealized version
	Discriminator Rejection Sampling: the practical scheme

	Experiments
	Mixture of 25 Gaussians

	Ablation Study
	ImageNet Dataset

	Nearest Neighbors from ImageNet
	Discussion

	Discussions
	My Earlier Works in Computer Vision
	Bibliography

