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ABSTRACT OF THE DISSERTATION

Design and Performance of a Smartphone-based Cosmic Ray Observatory

By

Jeffrey R. Swaney, Jr.

Doctor of Philosophy in Physics

University of California, Irvine, 2021

Professor Daniel O. Whiteson, Chair

This dissertation examines the feasibility of appropriating the global network of smart-

phones as an observatory for ultra-high-energy cosmic rays. An application and cloud-

based data-acquisition system are first proposed for such an observatory, in which

heterogenous devices self-calibrate and server feedback optimizes individual device

triggers. Methods of monitoring and manually controlling this network are also exam-

ined. Detection efficiencies for cosmic muons, MeV-scale gamma rays, and 120 GeV

protons are then measured for this trigger, with which a Monte Carlo pixel model is

fine-tuned. Extending this model to cosmic ray showers, the effective area of the obser-

vatory for super-GZK primaries is shown to equal that of the Pierre Auger Observatory

with a global participation rate under 0.1%, far below initial estimates presented in

Ref. [83]. A vastly improved sensitivity to photons and more precise modeling of elec-

trons are primarily responsible for this discrepancy, though more refined models of the

combinatorial background may yet lead to more stringent requirements.
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Prologue

An Unconventional Cosmic Ray

Detector

“Crayfis: the app that turns your phone into a cosmic ray detector. No joke.”

These words, emblazoned in 34-pt font across the main page of crayfis.io, are typ-

ically the science enthusiast’s first experience of the project. By its very nature, a

crowdsourced experiment such as Crayfis requires this sort of enthusiastic tone—a

message which was amplified on the usual popular-science media outlets in 2014 [1–6].

Such an introduction, however, may also leave a negative impression of popular-science

clickbait, and the scientific community has often responded to Crayfis as such: as a

clever idea that excites the public, but is lacking in nuance and is probably unable to

deliver on its lofty promises. Indeed, the claim that smartphones may play a role in

the future of cosmic ray physics requires some explanation. Such is the objective of

this Prologue: to make this claim intelligible in the simplest possible terms before a

more thorough review is attempted in Chapter 1.

Though the concept of Crayfis, a cosmic ray detector built with a network of

smartphones, is novel to a degree, conducting citizen science with smartphones is

certainly not unprecedented. In fields ranging from orinthology [7] to hydrology [8],

smartphone apps predating Crayfis have been used to crowdsource fieldwork, par-

1

crayfis.io


ticularly in remote areas. Other apps have enlisted users as computers, solving clas-

sification problems that, at least at the time, was beyond the capabilities of AI [9].

Even the concept of using smartphones as a distributed detector array predated Cray-

fis slightly, though in the context of meteorology using smartphone barometers [10].

Rather, Crayfis’s novelty lies in extending this concept to the smartphone camera as

a particle detector. The billions of smartphones scattered throughout the world had

the necessary components—a silicon pixel detector (camera), location services, and

Wi-Fi—to be employed as a global observatory. The only missing element was the

software.

Crayfis became a bold idea in need of an application. Clearly, smartphones would

not be able to outcompete existing scientific detectors in their own domains—this ex-

periment would need to leverage its unique worldwide scale in a way that conventional

experiments could not. The search for ultra-high-energy cosmic rays (UHECRs) fit

this description perfectly: the incredibly small flux of these particles—1 per km2 per

century—necessitates detector arrays of enormous size. The Pierre Auger observatory

in Argentina, for example, spans roughly the area of the state of Rhode Island. Natu-

rally, Crayfis could far exceed this benchmark: Los Angeles county alone quadruples

this surface area. The experiment’s success, however, depended on the density of will-

ing users and how well the typical smartphone CMOS can function as a cosmic ray

detector.

Achieving a usable detection efficiency requires an app that fully utilizes each

smartphone’s capabilities. To a greater extent than silicon detectors used in high-

energy physics, the hardware requires creative software to work properly for this pur-

pose, as the standard camera pipeline was not designed with a cosmic ray trigger

in mind. Hence, there has been an especially wide gap between theory and practice

for this unconventional experiment, and after 6 years of development, a design has

emerged with great promise for reconstructing UHECR showers. This challenge was

also concurrently undertaken by DECO [11–13] and others [14] with a focus on public

outreach and later by the CREDO collaboration [15], with encouraging preliminary
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results in particle classification and phenomenology of exotic multi-shower events.

This thesis will explore these dimensions of the developing Crayfis experiment.

In Part I, the theoretical dimensions of the experiment will be examined: first the

science of UHECR showers and how a grid of smartphones might hope to detect them,

followed by the physics and computer science underlying smartphone cameras. Part

II will then delve into the infrastructure of Crayfis: a set of efficiency measurements

with the initial beta version of the app will demonstrate the need for an improved

trigger, and modifications to the Android app and backend will be discussed. In

Part III, these advances will be used to calculate particle detection efficiencies, which

will then be compared to simulation and applied to existing shower reconstruction

models. These results, after 6 years of progress, will demonstrate a significantly more

capable Crayfis. Now, a better response can be formulated to the skeptics’ perpetual

question: isn’t this an unserious experiment meant to facilitate public outreach? As a

functional cosmic ray observatory, isn’t this wishful thinking? A joke?

Not in the least.
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Part I

Theoretical Background
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Chapter 1

The Search for UHECRs

Cosmic rays were discovered in 1911-12, so named as to distinguish them from the

equally mysterious “X-rays” emitted from certain minerals [16]. At the time, it would

have been hard to predict which of these new phenomena would still contain unsolved

mysteries over 100 years later. Nonetheless, though our knowledge of cosmic rays is

yet incomplete, much has been learned of their origins and composition over the past

century.

While some advances were made in the 1920s and early 1930s—the discovery of the

muon in 1936 as a constituent of cosmic rays at sea level, for instance—our knowledge

of cosmic rays was accelerated by two breakthroughs: the development of Geiger

counters and coincidence circuits, and the resulting discovery of extensive air showers in

1938 [17]. By observing the distribution of particles produced in these showers, Pierre

Auger and his contemporaries extended the tail of the cosmic ray energy spectrum from

10 GeV to 1015 eV; in the subsequent 80 years, more sophisticated detector arrays have

added another 5 orders of magnitude to this figure. While the spectrum, composition,

and origins of cosmic rays below 1018 eV are now fairly well understood [18], at the

extreme end of the tail, a number of open questions remain. This chapter will briefly

review what is known about UHECRs—defined as those with energies above 1018 eV—

and the observatories currently studying them. The theoretical capabilities of a new

Crayfis observatory will then be positioned in this context.
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1.1 Extensive air showers

Extensive air showers (EASs), distributed cascades of secondaries from cosmic rays

scattering off the Earth’s atmosphere, are the bedrock of our knowledge of UHE-

CRs. While the cosmic ray spectrum has been probed by other means—balloon- and

satellite-borne experiments, for example, have measured cosmic primaries with great

precision below 1015 eV [19–30, 32]—the incredibly low flux of UHECRs (1 per km2

per century for E > 1020 eV) makes an expansive observatory practically necessary.

Distributed detectors covering vast areas, such as those to be discussed in Section 1.2,

leverage the scales of these showers to counterbalance their minuscule flux. The funda-

mental challenge in such an experiment is then to accurately reconstruct these showers

and glimpse the primary particles initiating them.

Reconstructing a cosmic ray primary—its energy, mass composition, and angle—

from the observables of the EAS is naturally the purview of simulation. The software

package CORSIKA [33] is the standard tool for bridging this gap; nonetheless, a

number of lesser-known simulations are employed for specialized analyses, and exhibit

strong agreement despite their slightly different approaches [34,35]. Yet, this approach

suffers from a fundamental weakness: any EAS reconstruction will suffer systematic

bias from the hadronic models employed in the simulation.

For UHECRs, the effective models are all extrapolated: the highest energy cur-

rently probed by the LHC is 13 TeV, corresponding to a fixed-target energy of 1017 eV,

well below the highest-energy cosmic rays. Though this systematic uncertainty lim-

its UHECR experiments, put conversely, the hadronic models tuned by the LHC are

instrumental in more accurate shower reconstruction [36, 37]; to cite a prominent ex-

ample, such fine-tuning demonstrated that the observed “knee” in the power law spec-

trum at ∼ 1015.5 eV is intrinsic to the cosmic ray primaries themselves, rather than

an artifact of a deficient hadronic model [38–41]. The upcoming FASER experiment

may likewise further enhance such shower simulations through more precise muon and

neutrino cross sections in the forward direction [42]. However, the reverse can also be

true to a limited degree: in principle, reconstruction of EASs can be used to probe
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energy scales up to 100 TeV [43,44].

1.2 Detection methods

In currently operating observatories, EASs are profiled by two main classes of detec-

tors: surface detectors (SDs) and fluorescence detectors (FDs). The former, through

hundreds of evenly-spaced detector stations, measure the lateral density of secondary

particles at the earth’s surface. The latter use much smaller arrays of telescopes to

measure the isotropic nitrogen fluorescence produced by a shower, thereby serving as

a calorimeter with access to a shower’s longitudinal development profile. The two

currently-operating UHECR observatories, the Telescope Array (TA) and the Pierre

Auger Observatory, use both of these methods in conjunction, discussed below.

1.2.1 The Pierre Auger Observatory

Figure 1.1: A map of the Pierre Auger Observatory, with 1660 SD elements marked in
red, and the four FD enclosures, each with 6 telescopes occupying a 30° field of view,
labelled in yellow. The green lines mark the divisions between telescope views. From
Ref. [45].

The Pierre Auger observatory is located in Mendoza, Argentina, and utilizes a

hybrid SD-FD approach over a 3000 km2 surface area; see Figure 1.1. The SD is

composed of 1600 water Cherenkov detectors. Each station consists of a tank 3.6 m
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in diameter filled with 12 000 L of ultra-pure water, with three photomultiplier tubes

(PMTs) detecting Cherenkov radiation from relativistic charged particles [45]. These

detectors are also sensitive to high-energy photons produced in an EAS, as these con-

vert to electron-positron pairs in the water volume. This array operates continuously,

and has a perfect detection efficiency for UHECRs above 3× 1018 eV.

Four stations on the perimeter of the observatory constitute the FD, each with

6 telescopes spanning 30° vertically and horizontally [45]. As mentioned above, inte-

grating the energy deposited along the longitudinal axis provides a calorimetric mea-

surement of an EAS, and the atmospheric slant depth at which the energy deposition

is greatest (Xmax), a useful indicator of mass composition, is also readily available.

However, the FD can only operate on dark nights with good weather, restricting its

duty cycle to 15% [45].

The virtue of Auger, however, lies in hybrid design: the two detectors working

in conjunction can achieve precision and accuracy well beyond that of each individual

detector. As a second view of the same EAS events with independent uncertainties, the

FD is partly intended to train the continuously-operating SD. By providing essential

calorimetric data, the FD can set the energy scale of events seen by the SD, constraining

the systematic bias from extrapolated hadronic models [45]. Likewise, the longitudinal

profiles of the FD, when combined with the SD’s lateral profiles at ground level, allow

for a more precise view of a shower’s development in both dimensions. For a detailed

analysis of the resolution this attains, see Ref. [46].

1.2.2 The Telescope Array

The Telescope Array, located near Delta, Utah, uses the same hybrid SD-FD approach

as Auger, but with important differences in the detectors themselves. As shown in

Figure 1.2, the SD is composed of 507 SD stations on a square grid, spaced 1.2 km

apart with a total surface area of 700 km2 [47]. Unlike Auger, these detectors are

plastic scintillation counters, so chosen as to be sensitive not just to muons, but also

the electromagnetic component of the showers (e± and γ), which constitute 90% of the
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Figure 1.2: A map of the Telescope Array. The 507 SD stations are positioned on a
rectangular grid and divided into three subarrays, each controlled by a communication
tower (shown as triangles). The three FD stations, shown here as stars, are located
slightly beyond the perimeter on nearby hills. From Ref. [47].

energy deposited by 1020 eV primaries [47]. Consequently, this array achieves 100%

efficiency for primaries with energies above 1019 eV. The FD consists of three stations

surrounding the SD, each containing between 12 and 14 telescopes and spanning a

total field of view of 30° vertically and 108° horizontally [48]. Like Auger, the duty

cycle of the FD is quite low—on the order of 10% [49]. However, the FD at TA has a

slight advantage in terms of stereo-fluorescence measurements (combining the profiles

of two FD stations) for energies below 1018.5 eV [50, 51]. In order to increase the rate

of data collection, a larger, more sparse extension (TA×4) is planned, quadrupling the

effective area [52].

1.3 Current advances from TA and Auger

Fifteen years into Auger’s operation and twelve years into TA’s, substantial progress

has been made in answering the lingering questions about UHECRs. Below, several

of these are discussed in brief.
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1.3.1 Energy spectrum and mass composition

Figure 1.3: The all-particle spectrum from EAS reconstruction, compiled by [53] from
[54–64]. The vertical axis has been multiplied by E2.6 to better display the features of
this steep power-law spectrum.

While the astounding energy scale of UHECRs was the initial impetus behind the

study of cosmic rays, the shape of energy spectrum is itself rich with significance. As

Figure 1.3 shows, this spectrum is well-approximated by a piecewise power law which

steepens twice—first at the “knee” at 1015.5 eV and again at 1017 eV—then flattens at

the 1018.5 eV “ankle” before steeply declining near 1019.5 eV. For each of these features,

two possibilities exist: either they reflect an astrophysical process or a deficiency in

our hadronic models. For an example of the latter, it was speculated that the knee

could be the result of “invisible particles,” such as gravitons, light supersymmetric

particles, or neutrinos, consuming part of the primary’s energy without fluorescing

[65]—a hypothesis later excluded by the LHC [37].

Assuming the hadronic models are not at fault, there are reasonable explanations

for the notable features at UHECR energy scales: the ankle and final cutoff. The latter,

in fact, was hypothesized long before it was confirmed by TA and Auger. The Greisen-

Zatsepin-Kuzmin (GZK) effect predicted that protons above 5× 1019 eV would interact
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with photons in the cosmic microwave background (CMB), producing pions through

the ∆ resonance [66, 67]; hence, any super-GZK cosmic rays are either from nearby

sources (< 100 Mpc) or are composed of heavier nuclei. Indeed, results from Auger

have suggested a trend towards heavier nuclei past the ankle [68], as shown in Fig-

ure 1.4, though this conclusion rests on measurements of Xmax with ample systematic

uncertainty. These heavy nuclei, however, are not exempted from such suppression:

similar theoretical cutoffs have been shown to constrain heavier elements from He to

Fe, though at slightly higher energies [69].

Figure 1.4: Preliminary measurements of atomic mass A vs. energy of primary cosmic
rays at Auger. Top plots measure mean atomic mass at each energy, while bottom
plots measure variance of lnA. The three columns correspond to different hadronic
models used in simulation. From Ref. [67].

Suppression of the super-GZK proton flux is clearly evidenced in measurements

from both Auger and TA, as shown in Figure 1.5a; however, these two experiments

yield inconsistent spectral shapes for this suppression. The spectra for TA and Auger

can be made to agree through the ankle (Fig. 1.5b) by globally rescaling the energies by

5.2%, reflecting systematic uncertainties in their respective FDs; sampling only from

the common declination band of the two observatories further extends this agreement

to the GZK cutoff [70]. Disagreements in the shape of this suppression, however,

require non-linear shifts in energies above 1019 eV to resolve, at a rate of 10% per
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decade [71,72]. To date, no explanation has been found for proposed nonlinearities of

this scale.

Figure 1.5: A comparison of the UHECR energy spectra for Auger and TA, where the
vertical axis is multiplied by E3 to better display changes to the power law. Left: the
proper energy scales of TA and Auger are used. Right: Auger is rescaled by +5.2%
and TA by -5.2% to achieve optimal agreement up to the ankle. From Ref. [69].

Meanwhile, the ankle is typically explained by one of two astrophysical processes.

It is often attributed to an extragalactic population of protons overtaking the galactic

flux, which at this energy scale is dominated by heavier nuclei due to galactic con-

finement [73]. This hypothesis is supported by the mass composition in Figure 1.4, in

which the spectrum becomes lighter around the ankle before rapidly increasing in mass

at the GZK limit. Another explanation is proposed in Ref. [74], where extragalactic

protons lose energy to CMB photopion interactions (as in the GZK effect), accumulat-

ing at the ankle. Ultimately, a more precise mass composition will distinguish between

these.

1.3.2 Anisotropy

Though the energy spectrum and mass composition are both rich with astrophysical

phenomena, these only touch upon what is perhaps the most interesting question raised

by UHECRs: what kind of process is capable of accelerating particles to 1020 eV?

To more directly pursue this question, a number of anisotropy searches have been

performed, on scales both large (through multipole expansion) and small (through

correlation with possible sources).
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Figure 1.6: A preliminary significance map of directional UHECR flux, for energies
above 5.7× 1019 eV, from the Telescope Array (2008-2019). The color axis is in units of
1σ, and the galactic and supergalactic planes are shown as solid lines. From Ref. [82].

Small-scale anisotropy searches have seen moderate success: starburst galaxies

(SBGs) and, to a lesser extent, active galactic nuclei (AGNs) have been implicated as

a source of UHECRs by Auger. Centaurus A, one of the closest AGNs (< 4 Mpc), was

proposed as a possible UHECR source as early as 1996 [75], and Auger has observed

an increasingly significant excess throughout its operation [76–80], most recently at

3.9σ [80]. However, more general tests of local anisotropy have been performed [79,80],

using catalogs of nearby sources from Fermi -LAT. Among these, the greatest deviation

from isotropy was found in SBGs, reaching a significance of 4.5σ [80].

On an intermediate scale, TA detected a “hotspot” of UHECRs found near Ursa

Major in 2014, shown in Figure 1.6. This excess of UHECRs above 5.7× 1019 eV,

roughly 20° in width, amounted to a 3.4σ significance above isotropy [81]; however, it

was far less pronounced in the following six years, decreasing the 11-year significance

to 2.9σ [82]. As this event is in the northern sky, it is unfortunately out of Auger’s

field of view for an independent confirmation.

1.4 CRAYFIS: a novel observatory

TA and Auger have greatly refined our understanding of UHECRs, yet an abundance

of questions—of which those discussed above are a small sample—still remain. To

contribute to this body of knowledge, Crayfis proposes to utilize the existing grid of

13



smartphones, which lie dormant for most of the night, as an SD requiring no expensive

infrastructure or dedicated land use. In order to utilize this pre-existing grid, the only

necessary components are an app to manage the data-acquisition (DAQ) and a server

to receive the data over Wi-Fi. The architecture of the experiment, much improved

through years of beta-testing, is discussed in Part II. Here, its theoretical performance

relative to TA and Auger is considered, as well as global phenomena that Crayfis

might be able to observe.

1.4.1 Shower reconstruction

As an SD, Crayfis’s sensitivity can be evaluated separately for each constituent par-

ticle of EASs. While cosmic ray showers produce a wide variety of particle species,

the the vast majority of the flux at the earth’s surface is composed of muons, elec-

trons and positrons, photons, neutrons, and neutrinos—the charged hadron flux falls

sharply with atmospheric depth. Of these, neutrons and neutrinos stand a poor chance

of detection in a thin layer of silicon. Sensitivity to the three remaining sectors is

parametrized by the detector cross sections Aiεi, signifying the rate of particle detec-

tions divided by the flux, for i = {µ, γ, e}. For historical reasons, the notation is broken

into per-particle efficiencies εi and acceptances Ai, though these are less precisely de-

fined, as will be discussed in Chapter 6. Combined with the local density of users,

the detector cross sections for muons, photons, and electrons determine Crayfis’s

sensitivity to EASs at a given energy and angle of incidence.

Following Ref. [83], the lateral density of the muonic and electromagnetic compo-

nents of an EAS is approximately:

ρi(Ni, r, s) =
Ni

2πr2M

(
r

rM

)s−2(
1 +

r

rM

)s−4.5(
Γ(4.5− s)

Γ(s)Γ(4.5− 2s)

)
(1.1)

where s is the shower age (scaled from 0 at first interaction to 1 at the shower max-

imum), rM is the Moliére radius, and Ni is the total number of particles of species i

in the shower, determined by CORSIKA. In the presence of an air shower with total
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particle counts ~N , a phone a distance r from the shower’s center at the earth’s surface

will trigger, on average,

λ( ~N, r, s) = η +
∑
i

Aiεiρi(Ni, r, s) (1.2)

times, where η is rate of noise per frame, including both electronic noise and back-

ground radiation. Such a phone will register no candidates with probability P0( ~N, r, s) =

e−λ(
~N,r,s) and at least one candidate with probability P1( ~N, r, s) = 1 − P0( ~N, r, s).

Then, for the simplest shower reconstruction (i.e. neglecting trigger multiplicities),

the likelihood can be constructed as:

L(E, ~x0, θ, φ) =
∏
i

P1(~xi − ~x0)
∏
j

P0(~xj − ~x0) (1.3)

from which the a Bayesian estimate of the shower parameters can be obtained.

To translate this into a reconstruction efficiency, a limit of at least five phones

with coincident triggers is imposed, based on initial estimates of the combinatorial

background. As Figure 1.7 makes explicit, at a fixed primary energy and noise rate

η, Crayfis’s resolving power is dependent upon two unknowns: the detector cross

sections Aiεi and the density of active users, each of which can directly compensate

for deficiencies in the other. Figure 1.8 converts this shower efficiency into an effective

area (that is, the integral of local per-shower efficiency across the detector) with Auger

as a benchmark. This quantity is a more direct measurement of a detector’s ability to

accrue significance; under the more optimistic scenarios, Crayfis could at least rival

Auger at detecting UHECRs near the GZK limit.

However, the curves in Figure 1.7 ignore the potentially significant contributions

from electrons and positrons. Though the e± flux may indeed be attenuated by the

overburden in a typical home, the GeV-scale e± flux from UHECR showers exceeds that

of muons by nearly an order of magnitude [83]. At this energy scale, the electron range

in carbon (a major component of the wood and asphalt comprising these structures)

is nearly a meter [84]; consequently, Crayfis’s e± sensitivity may be quite significant.
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Figure 1.7: Left: the mean number of phone triggers per shower is plotted against
primary energy, Aiεi for muons and photons, and user density. Right: the shower
reconstruction efficiency of Crayfis under the same six choices of parameters. A
histogram of global population density is superimposed in blue. From Ref. [83].

Figure 1.8: The effective area of the Crayfis observatory, determined by the same
parameters as in Figure 1.7. The left plot quantifies the global effective area, while
the right examines that of high-density metros, in which more targeted user adoption
campaigns are possible. From Ref. [83].

.
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1.4.2 Sensitivity to global phenomena

While reconstruction of individual UHECR showers, the primary focus of TA and

Auger, was the motivation behind the Crayfis observatory, Crayfis’s massive scale

presents an opportunity for detecting hypothesized global phenomena beyond these

observatories’ capabilities. One well-known example, the Gerasimova-Zatsepin (GZ)

effect [85], has been studied in detail in relation to Crayfis [86]. In this mechanism,

a UHECR nucleus is split by solar photons, producing two daughter nuclei which

the solar magnetic field then separates. If both daughter nuclei arrive at the earth,

nearly-simultaneous showers separated by thousands of kilometers would result.

Such an event has never been observed to date, and with the initial efficiency ef-

ficiency estimates from Ref. [83], Crayfis would be able to distinguish such events

only under unrealistic user adoption scenarios, or if the rate of such events was much

higher than predicted. The approximate time to accruing significance for the GZ effect

is shown in Figure 1.9. However, even a more realistic shower reconstruction efficiency

may prove sufficient for detecting a UHECR ”burst”, in which a wavefront of UHECR

particles and nuclei arrive simultaneously. A number of mechanisms have been pro-

posed for such events, including relativistic dust-grains [87–90], pair-production from

ultra-high-energy gamma rays [91–95], super-GZK neutrinos [96–99], extra-dimensions

and localized gravity [100], and a collection of exotic particle scenarios [101–114]. The

phenomenology of such scenarios will be left to later work.

As this last section has shown, the potential of Crayfis, which extends to phe-

nomena undetectable by conventional cosmic ray observatories, is strongly constrained

by the per-particle cross sections Aiεi of the individual detectors. While greater user

adoption can compensate for a limited efficiency, the number of devices is still finite.

To approach this pivotal question, the design of the detectors—the CMOS sensors

within smartphone cameras—must first be explored.
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Figure 1.9: The Crayfis sensitivity to GZ-effect double showers under two scenarios:
the upper bound of 100% worldwide adoption (Scenario ”U”) and a more pragmatic 106

active phones operating nightly. Minimum observation time for 3σ and 5σ significance
are plotted against the ”Boost factor”, i.e. a hypothetical factor by which the true
GZ-effect rate exceeds the predicted value. From Ref. [86].
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Chapter 2

Image Sensors

The missing piece in Crayfis ’s sensitivity, the detection cross sections Aiεi for muons,

photons, and electrons, requires an understanding of both the hardware and software

underlying modern smartphone cameras. The insight that began Crayfis—that these

cameras, as CMOS active pixel sensors, resemble the well-studied detectors used in

high-energy physics—is true to a certain extent. However, accounting for the different

design in a sensor meant for photography, and how this affects its efficiency, is the key

to determining Crayfis ’s viability.

2.1 Photodiode theory

Each pixel is, at the simplest level, a silicon photodiode with several transistors man-

aging readout. A photodiode is, as its name suggests, a p–n junction that can convert

energy from an incoming particle—particularly a photon in the visible range—into a

measurable current. Figure 2.1 demonstrates this process. At the junction, holes in

the valence band of the p-layer recombine with electrons in the conduction band of

the n-layer, creating a net charge on each side. This creates an electric field vary-

ing roughly linearly with distance to the junction and pointing towards the p-layer.

This area with nonzero field is known as the “depletion zone”, as it contains a greatly

reduced majority carrier count.

When a particle deposits energy into the silicon, electrons are excited into the con-
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Figure 2.1: A diagram of the p–n junction in a photodiode. Incident light excites
electrons into the conduction band, which are swept by the electric field of the depletion
zone into the n-layer. The opposite will occur with holes, although these are not always
collected. From Ref. [115].

duction band, creating mobile electron-hole pairs. The electrons diffuse throughout

the silicon until they either recombine with a hole or are swept into the potential

well made by the depletion zone field. At readout, the cathode and anode are electri-

cally connected, generating a measurable photocurrent from these captured electrons.

However, electron-hole pairs are also spontaneously generated—at a rate growing ex-

ponentially with temperature according to Arrhenius’ Law—leading to an additional

dark current. This and the roughly Gaussian noise from the readout response are the

two major sources of noise in CMOS pixel detectors.

2.2 Pixel engineering

Figure 2.2 below shows a typical cross section of the pixel array in a modern smart-

phone camera. Each pixel is supplied with a micro-lens and a color filter on the

opposite side of the potential well and readout architecture, known as a “backside-

illuminated” (BSI) configuration. In early CMOS image sensors, the transistors were

fabricated on the same side as the lens and color filter (“frontside-illuminated”, or

FSI) but this design interferes with the transmission of light to the active pixel region.

Since 2009, when Sony patented a method to cheaply manufacture BSI sensors, BSI

has been the industry standard [116].

Meanwhile, the dimensions of these pixels have followed an even more rapidly
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Figure 2.2: A cross section of the active sensor region in an ISOCELL S5K3P3 sensor
manifesting the BSI architecture, taken by electron microscopy. The micro-lenses,
color filter array (CFA), and readout architecture are also visible. For reference, the
pixel pitch is 1.12 µm. From Ref. [117].

changing standard. The number of “megapixels” in a smartphone camera has been a

profitable marketing tool over the last decade, and sensor manufacturers have heavily

invested in fitting more pixels into a constant sensor area while maintaining image

quality. Figure 2.4 shows some of the consequences of this trend: a decrease in pixel

pitch will also decrease the full well capacity (FWC) of the photodiode, limiting the

dynamic range, unless the pixel thickness is increased proportionately [118].

However, longer and narrower pixels do not necessarily produce sharper images.

Such a geometrical shift would increase crosstalk between pixels without additional

measures to limit diffusion; advances in deep trench isolation (DTI) have thus been

instrumental in the shift to sub-micron pixels [117, 118]. DTI separates individual

pixels with an oxide layer (e.g. SiO2 [119]), and can be fabricated in one of two ways:

extending from the transistor-side (“front”, or F-DTI) or from the lens-side (“back”,

or B-DTI). These variants are both common in smartphone CMOS sensors today.

However, as the electric field is strongest near the transistors, B-DTI provides more

protection against crosstalk per unit-length [120]. It is therefore common for F-DTI

structures to extend to the opposite end of the pixel for full isolation at the cost of

reducing the well width and capacity.

For practical purposes, it is worth briefly discussing the main manufacturers of

smartphone CMOS sensors: Samsung and Sony. These two corporations have domi-

nated the industry since the advent of smartphones, and Omnivision is only recently
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Figure 2.3: Active silicon thickness (orange) and pixel pitch (blue) for devices between
2009-2019. While pixel thickness remained roughly constant for devices up to the
1.12 µm generation, more recent sensors boasting sub-micron pixels have extended the
pixel thickness to increase FWC. From Ref. [118].

Figure 2.4: An illustration of F-DTI (top) and B-DTI (bottom). From Ref. [120].
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breaking into the field as a minor third supplier. For many phone models—Samsung’s

included—similar sensors from Sony’s “Exmor” line and Samsung’s “ISOCELL” line

are used interchangeably, often with identical pixel pitches and resolution. Yet al-

though these sensor varieties are designed to be similar, they are certainly not iden-

tical. As a particularly visible example, Sony and Samsung have diverged in their

approaches to reducing crosstalk for smaller pixels: while Sony has continued the

use of B-DTI, Samsung has instead migrated to full-depth F-DTI beginning with the

1.0 µm generation [117]. This difference is shown in Figure 2.5.

Figure 2.5: Diverging approaches in Samsung and Sony to reduce crosstalk in smaller,
thicker pixels. Sony has continued to use B-DTI, while Samsung has gravitated towards
full-depth F-DTI with a vertical transfer gate (VTG) to compensate for reduced well
size. From Ref. [121].

Finally, it is worth mentioning how this design differs from the silicon pixels used

in high-energy physics. The primary difference is size: pixels in the CMS detector,

for example, measure 150 µm in pitch and 250 µm in thickness [122]. Since camera

pixels are designed to absorb photons in the visible range, the extra stopping power

provided 250 µm of silicon is wholly unnecessary. As Figure 2.6 shows, this limits the

spectral information that smartphone pixels are able to convey. While a proposed

Crayfis array might have a viable detection efficiency for different particle species,

distinguishing between these species will likely be difficult, if not impossible.
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Figure 2.6: Energy deposited by gammas of various energies (roughly indicated by
color) in silicon surface barrier detectors of thickness: (top) 315 µm, (middle) 36.4 µm,
and (bottom) 8.8 µm. Distinct Compton edges can be seen in the thickest detector,
which fade in the lower plots as fewer electrons are fully absorbed in the sensitive
region. The last of these most closely approximates the pixels in a smartphone CMOS
and loses almost all spectral information. From Ref. [123].
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2.3 Digital processing and PDAF pixels

As mentioned in Section 2.1, each pixel will produce a photocurrent which is the basis

of the values reported by the camera. This current is digitized and packaged into an

image buffer by the following process:

1. A gain in digital numbers (DNs) per electron is applied, as determined by the

programmable ISO setting.

2. Black-level subtraction is performed to compensate for dark current. The mag-

nitude of this correction is determined by “dark pixels” which are masked from

visible light, typically located along the edge of the physical sensor [125]. Oc-

casionally, the black level is set at a nonzero value to show the full range of

responses, both above and below the mean dark current.

3. The result is digitized. In smartphone cameras, DNs are usually given 10-bit

precision.

In a CMOS sensor, this digitization process is executed in parallel through the per-pixel

micro-transistors shown in Figure 2.2. In contrast to charge-coupled devices (CCDs),

in which pixel readout occurs serially outside of the physical sensor, the CMOS design

permits higher frame rates and eliminates charge-smearing in overexposed frames. As

this approach requires greater numbers of amplifiers and analog-to-digital converters

per device, CMOS sensors sacrifice uniformity in the pixel response and are more

vulnerable to fixed-pattern noise. [124]

However, additional steps are often added to this processing pipeline. While the

considerations thus far have been general to all silicon pixel detectors, building an ef-

fective camera can require a more intricate design. Autofocus is one such complication

to this simple model which extends even to the level of hardware.

Figure 2.7 illustrates the operative principle behind this design. By definition, an

object is in focus when light from a single point on the object will converge on a

single point on the sensor; thus, if a given pixel is exposed to an in-focus point source,
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Figure 2.7: An illustration of PDAF function and design. Description in text. From
Ref. [126].

the relative exposures from, e.g., left-entering and right-entering light should be a

well-defined ratio depending on the lens geometry and pixel position. By measuring

this ratio across the sensor, the camera can determine which parts of the image are

in focus and how to adjust the lens accordingly. The directionality of incident light

can be determined through clever engineering: since by design, the micro-lens maps

the angles of incoming photons to specific regions of the pixel, the simplest method

to create a ”left-facing” or ”right-facing” pixel is through a partial mask [117]. By

comparing the responses of nearby left-masked and right-masked pixels (Figure 2.7b),

the autofocus can be quickly and accurately adjusted. A masked pixel, however, will

receive only half of the exposure of a regular pixel, creating a low signal-to-noise ratio in

dark conditions; hence, such “phase-detection autofocus” (PDAF) pixels are sparsely

distributed. Rather than report the true pixel value of PDAF pixels, a sensor may

instead interpolate the value from nearby pixels.

This initial design was first observed in smartphones in 2014 [127], but in later gen-

erations, more creative PDAF approaches were developed without the use of masking.

A common strategy is to instead use two or more photodiodes per pixel (2PD PDAF),

often across the entire sensor, to measure both the total light exposure and its di-

rectional components [127]; see Figure 2.8b. However, this approach requires a larger

pixel size and thus a lower image resolution—a difficult compromise in a market driven

by megapixels. Nonetheless, the fundamental insight—that PDAF could be accom-

plished with multiple photodiodes per micro-lens—could be exploited without this
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Figure 2.8: The three most common PDAF approaches as seen by scanning electron
microscopy: (left) pixel masking, (center) dual-photodiode pixels, and (right) a 2×1
on-chip-lens. Images from Refs. [118,127].

drawback by instead interspersing larger micro-lenses, covering several pixels simulta-

neously, across the sensor [127]. This third approach, on-chip-lens (OCL) PDAF, is

shown in Figure 2.8c.

2.4 Color-space processing

This culmination of the digitization process is a RAW-format image. RAW is an

uncommon format intended for professional photographers, as the color information,

white balance, etc. are present only in the image metadata; while RAW is ideal for

Crayfis in principle, it is therefore not always supported by the camera APIs. How-

ever, even when RAW is available, it is not necessarily optimal in practice. Due to their

high resolution and bit-depth, RAW images are expensive to process for both memory

and CPU. This cost is augmented by inefficiencies in the Android pipeline, which un-

derstandably was not built for computationally-intensive tasks on RAW-format video

buffers.

Consequently, while RAW-format data in Crayfis is possible, the standard video

buffers are required for higher frame rates or lower CPU loads. Counterintuitively,

this is accomplished by greatly extending the camera pipeline; see Figure 2.9. After

the RAW values have been computed, the camera converts RAW values to 8-bit RGB

tuples. As mentioned in Section 2.2, each pixel is equipped with a color filter: typically,

this follows a Bayer pattern shown in Figure 2.10. The camera first applies color-
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Figure 2.9: The color correction pipeline in Android phones. From Ref. [129].

specific gains to each pixel as part of a white-balancing algorithm. Next, demosaicing

occurs: each pixel infers the other two colors from its neighbors. The simplest such

algorithm is bilinear interpolation—averaging values from the 8 nearest neighbors—

but more sophisticated and even nonlocal means may be used [125]. Finally, a linear

transformation is applied to this tuple, mapping the native RGB space from the specific

color filters to a standard RGB space (sRGB) used by displays [125].

Figure 2.10: An illustration of a Bayer filter. From Ref. [128].

In order to reduce video size, an additional manipulation known as chroma sub-

sampling is applied. As the human eye is more able to detect sharp differences in

brightness rather than color, the color information can be presented at lower resolu-

tion with minimal reduction in perceived video quality [125]. Accordingly, the RGB

signal is broken into luminance (Y’) and chrominance (UV) pieces through the follow-
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ing linear transformation:
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and the U and V components are subsampled through one of several algorithms. These

buffers can be easily accessed and manipulated in Android, and the Y’ components

can stand as a rough substitute for RAW values.

Lastly, downsampling takes place if necessary to further reduce the CPU load. The

resolution is decreased through a combination of three processes: cropping, binning,

and decimation. The frame is first cropped to reach the desired aspect ratio: either

4:3 or 16:9. The visible pixels at the lower resolution are then constructed from sets of

physical pixels, typically no more than 2×2 in dimension, which are averaged together

in each color coordinate. The remainder of pixels are ignored.

2.5 Image enhancement

Even beyond the color-space pipeline, many digital effects may be used to enhance

an image, most often to the detriment of the signal. As of Android 10.0, there are

about 11 different “modes” in the camera2 API [129] which introduce distinct digital

effects to the pipeline: “edge mode”, “noise reduction mode”, “distortion correction

mode”, etc. Fortunately, many of these can typically be disabled on newer phones.

Here, several of the more important effects will be discussed.

Firstly tonemapping or gamma correction is a method of lending high dynamic

range to an image by abandoning the linearity of the pixel response. This often takes

the form Vout = Vin, where the input and output are normalized to the interval [0, 1].

While this can often be disabled, linearity is not a guarantee is not guaranteed in YUV

buffers, even well-below saturation.
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Figure 2.11: An image (a) before and (b) after lens-shading corrections, which digitally
increase the brightness in the artificially dark corners. From Ref. [130].

Secondly, lens-shading is a method of digitally correcting for vignetting, that is, the

natural decrease in brightness as distance from the aperture increases (Figure 2.11).

Geometrically, the intensity of light passing through a small aperture coplanar to the

sensor scales as cos4 θ, where θ is the angle between the pixel and the center of the

sensor as measured from the aperture [125]. In practice, however, lens-shading values

are typically calibrated by proprietary algorithms using image data. In some devices,

these gains are coupled to the ISO gain, thereby appearing even at the RAW level.

Finally, hot-pixel correction is a mask for defective pixels that gravitate towards

large values, often saturation. Certain types of hot-pixel correction may be helpful to

Crayfis, but non-saturating hot pixels will frequently be overlooked in these algo-

rithms. Both hot pixels and lens shading will be discussed in detail in Section 3.4.

The latter half of this chapter has shown that, although the response and noise

of a typical pixel may be constrained by its physical construction, the detection effi-

ciencies of cosmic ray secondaries are equally dependent on the software. Achieving a

performance in line with the physical capabilities of the sensor requires both a precise

handling of the camera APIs and a sophisticated and efficient trigger. Part II examines

this element of the Crayfis experiment, from which the physical performance will be

quantified in Part III.
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Part II

Constructing the CRAYFIS

Network
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Chapter 3

The Android App

While CMOS sensors are the core of the Crayfis experiment, smartphone cameras

are more than a slab of sensitive silicon. As the last chapter examined in detail, each

frame is produced with multiple layers of digital processing. Intelligently querying the

camera, efficiently accessing the buffers, and appropriately triggering the pixels are

all necessary to harness the CMOS’s full capabilities—and are no trivial matter. This

chapter will explore the progression of the Crayfis app as it struggled through several

efficiency tests and was subsequently enhanced on multiple fronts.

3.1 The initial release

By early 2015, the main features of the app were present, and a version was prepared for

beta-testing. The app continually queried the sensor APIs for the timestamp, location,

and orientation, and the back camera buffer for particle hits. When a hit was found,

these components were bundled together and serialized using Google Protocol Buffers,

and periodically, these events were uploaded to crayfis.io with the trigger settings

that generated them.

In order to limit the data volume, the app saved single pixels rather than entire

frames using nearly the simplest algorithm possible, outlined in Figure 3.1. The vari-

ables thresh1 and thresh2 characterize the level 1 and 2 triggers (“L1” and “L2”),

determining the fractions of frames and pixels, respectively, that are saved. The former
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1 int [] frameBuffer; // obtained from the camera API

2 int thresh1 , thresh2; // calibrated separately

3

4 int max = 0;

5 for ( int i=0; i < frameBuffer.length; i++) {

6 i f (frameBuffer[i] > max) {

7 max = frameBuffer[i];

8 }

9 }

10

11 i f (max <= thresh1) return;
12

13 for ( int i=0; i < frameBuffer.length; i++) {

14 i f (frameBuffer[i] > thresh2) {

15 savePixel(i);

16 }

17 }

Figure 3.1: Pseudocode for the DAQ trigger (2015 app)

was calibrated by the app to achieve the desired trigger rate—a hard-coded 1 frame

per second—while the L2 threshold was set to thresh1-1.

Pixels passing this trigger were grouped with the corresponding sensor data and

frame metadata and added to a queue of “Events.” Every two minutes, these in turn

would be assembled into an ExposureBlock, a set of Events with identical exposure

and trigger settings, and would be uploaded to the server if Wi-Fi was available or

cached otherwise; after this, the trigger thresholds would be recalibrated. This hier-

archy is outlined below, with data structures in boldface:

ExposureBlock

– Run ID (associates with hardware, software information)

– Start/End time

– DAQ State (CALIBRATION/DATA)

– Sensor resolution

– Trigger configuration

– Dropped frames (e.g. due to CPU latency)

– Event(s)

– Timestamp

– GNSS latitude, longitude, altitude, precision

– Mean, variance of all pixel values

– Phone orientation vector

– Pixel(s)
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– Pixel coordinates (x, y)

– 8-bit brightness value

– Average value of adjacent pixels

This design for the DAQ was complemented with UI features and stabilized in late 2015

after a year of beta testing; yet, it remained unknown whether cosmic ray secondaries

would trigger with a reasonable efficiency. Though an abundance of particle tracks

were found in this beta testing period, it was unclear what fraction derived from

cosmic rays rather than terrestrial radiation or pixel noise. Several experiments were

devised to this end, and the results, while initially discouraging, set a clear course

leading to a far more capable Crayfis app.

3.2 Early tests, early problems

To distinguish between cosmic ray secondaries and noise in the Crayfis app, three

general approaches exist:

1. Tag particles with an independent, high-efficiency detector and measure the rate

of coincidences.

2. Vary the flux and compare results. This can be done by taking data at different

altitudes, either higher in the atmosphere (in an airplane or balloon) or below-

ground.

3. Expose phones to a particle emitter (e.g. a beam or radioactive sample), from

which the background can be subtracted, and the response to cosmic ray secon-

daries can be extrapolated.

The third method was the first to be attempted, using radioactive sources to es-

timate the photon efficiency [83]. The activities of three gamma-emitters— 226Ra,

137Cs, and 60Co—were first measured with high-precision gamma spectroscopy; these

sources were then kept at constant distance from a single phone in a wax assembly,

producing a significant sensor response; see Figure 3.2. By comparing the number of
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Figure 3.2: The response of a Samsung Galaxy S3 to three radioactive sources, each
placed a fixed distance from the sensor, and with no source. From Ref. [83].

observed particle tracks to the computed gamma flux given an active sensor area of

2× 10−5 m2, a range of (2.5− 25)× 10−9 m2 was found for Aγεγ. These figures were

likely an overestimate, as the 226Ra activity was a factor of 3 higher than reported due

to human error, and shielding from the lens alone may have been insufficient to block

high-energy beta radiation, especially from the 226Ra source. Within this Aγεγ range,

contributions from photons were essentially negligible for shower reconstruction under

realistic levels of user adoption.

The reasons for this disappointing efficiency became more clear when the muon

sensitivity was measured with the first of the three methods above. To identify cosmic

muons, a hodoscope was constructed with three scintillator panels, and a Samsung

Galaxy S4 running the Crayfis app was placed between the top two; see Figure 3.3.

By comparing the times at which the scintillators and Crayfis app recorded muon

candidates, and by computing the fraction of muons traveling through the scintillators

which would also pass through the CMOS, the efficiency of the Crayfis trigger could

in principle be reconstructed.

When the three scintillators registered a coincidence, an LED would blink into

the camera 250 ms later, thereby consolidating the phone triggers and scintillator tags

onto a single clock. These LED flashes could be distinguished from ordinary muon

candidates registered by the app through the number of pixels in each event: while

some longer particle tracks tracks were found in the sensor response, events with over
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Figure 3.3: An image of the 2015 muon hodoscope construction, with a Galaxy S4
suspended between three scintillators.

35 excited pixels were derived exclusively from LED signals (Figure 3.4b). However,

when the sensor area illuminated by the LED spanned across the position of the

rolling shutter, the same LED flash would appear in consecutive frames, requiring

consolidation of these LED timestamps.

The sample of muon candidates in the Crayfis app was substantially less clean,

however. When LED flashes were removed, the vast majority of triggered events came

from a small number of hot pixels (Figure 3.4a). Though these could be removed offline

for data analysis, the damage to the Crayfis trigger was not entirely mitigated,

as these these hot pixels significantly inflated the app’s L1 thresholds, potentially

excluding muon tracks. Attempts to override the device’s calibration and manually

reduce the thresholds were no more successful: the surplus of hot pixel events was a

burden on the CPU, leading to skipped frames.
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Figure 3.4: Two-dimensional histograms, in pixel coordinates, of events with (left) less
than 10 pixels above threshold, and (right) greater than 35 pixels above threshold. The
former is composed almost entirely of hot pixels, while the latter shows the various
positions of the LED as adjustments were made.
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Table 3.1: Efficiency loss from downsampling in a Galaxy S4, assuming a 2×2 binning
scheme.

Downsampling losses
Resolution Dimensions Physical pixels used % ignored

Full 4224×3176 13.4M 0
1080p 1920×1080 8.3M 38
720p 1280×720 3.7M 73

Medium 640×480 1.2M 91
Low 320×240 300K 98

Even beyond hot pixels, however, the Crayfis trigger still fared poorly. The

majority of triggered pixels were located along the edges of the sensor; due to lens-

shading enhancement, the muon signal competed against digitally augmented noise.

A mask was consequently applied to this border: the triggering region was restricted

to the middle 80% of pixels in both x and y, reducing the efficiency by 36% outright.

However, the most significant deficiency in the Crayfis trigger was camera reso-

lution. The Galaxy S4, running comfortably at low resolution (320×240) would map

each visible pixel to a grid of physical pixels roughly 12×12 in size. This does not, how-

ever, imply that all 144 physical pixels would be used in computing each pixel value.

While the Galaxy S4 sensor has some degree of binning [131], many of these pixels

may also be skipped: as shown in Table 3.1, at least 98% percent of physical pixels

will be ignored in a 2×2 binning scheme. However, larger bins would not necessarily

be an improvement, as this would greatly dilute the signal.

After 44 days of running under this configuration, the results were consistent with

zero efficiency. A histogram of all possible pairs of ∆t = tLED− tµ was constructed, us-

ing LED timestamps both before and after each muon candidate and a bin size equal to

the frame duration. The bin counts for negative, unphysical ∆t were then subtracted

from those of positive ∆t, thereby removing the combinatorial background from spu-

rious phone-scintillator coincidences; see Figure 3.5. No statistically significant excess

was found in bins 3-4 as anticipated (at 15 FPS, the LED delay was 3.75 frames);

instead, only 20 phone-scintillator pairs were observed, compared to a possible 3500

at perfect efficiency.
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Figure 3.5: Difference between bin counts N+ −N− for ∆t± = ±(tLED − tµ).

These measurements were consequently attempted with a higher resolution, as in-

creasing to 720p or 1080p would reduce the fraction of ignored pixels (again assuming

a 2×2 binning scheme), to 72% or 38%, respectively. However, at these higher res-

olutions, the phone would overheat, cease charging, and the battery would quickly

die.

3.3 Streamlining the app

Clearly, the app was in need of three major modifications:

• A drastically reduced burden on the CPU, allowing for high-resolution streaming

and more sophisticated trigger algorithms, such as:

• Online hot pixel masking, and

• Spatially dependent thresholds to correct for lens shading.

Decreasing the CPU consumed by the app was the first obstacle to be overcome if

Crayfis was to be salvaged. Although a few poorly designed segments of code led to

inefficiencies, over 90% of the CPU load resulted from two design choices: disabling
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sleep mode to keep the DAQ running, and triggering frames through a simple loop

over frame buffers.

The app was first refactored into separate background (DAQ) and foreground (UI)

components, allowing the DAQ to continue after the phone entered sleep mode. This

eliminated the burden of both the Crayfis UI and system foreground processes dur-

ing nightly runs. To assure that, as a background process, the DAQ would not run

indefinitely and consume the user’s battery, frames were additionally screened for a

flat camera orientation: multiple consecutive fails would stop the DAQ if the UI was

inactive.

Frame processing was likewise made far more efficient by employing the GPU

through Android’s Renderscript APIs. By design, the GPU is optimized for asyn-

chronous operations across large arrays, and was able to perform the same trigger

operations far more efficiently than the Java layer. In particular, Renderscript fea-

tured a highly-optimized method for constructing histograms of frame buffers, which

reduced processing time for the L1 trigger by two orders of magnitude while simulta-

neously providing more detailed data. However, Renderscript is specifically designed

for asynchronous, element-wise computation such as array-to-array mappings. Several

operations during calibration fell outside this domain; here, native OpenCV [133] was

substituted to improve efficiency.

To evaluate these improvements, battery temperature was queried with the other

sensor fields. With this vastly improved pipeline, a number of phones in the 2012-

2014 generation—which previously would exceed 45℃ at 1080p and 30 FPS—instead

reached a plateau at 35-37℃. As a safeguard, a shutoff/cooldown mechanism was

implemented for temperatures above 41℃. With this reduced CPU load, the app could

devote more processing power to masking hot pixels, correcting for lens-shading, and

ultimately decreasing thresholds over the majority of the sensor.
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Figure 3.6: Temperature fluctuations in a Samsung Galaxy S6 using a grid of scale-
factors for triggering. A plateau is observed in the same temperature band as was
observed with a flat trigger.

3.4 A more sophisticated trigger

In both hot pixel and lens-shading corrections, three distinct steps were required:

• A short online calibration

• Implementation of the calibration in the trigger,

• Server-side adjustments to these calibrations with larger sets of uploaded data.

For the second of these, a common solution was found for both calibrations. By

multiplying each frame buffer by a calibrated grid of scale-factors, trigger rates in the

high-gain edges could be dampened, while individual hot pixels could be suppressed

entirely. As Renderscript is optimized for such operations, this advanced triggering

produced very little impact on the run temperature; see Figure 3.6.

3.4.1 Lens-shading corrections

To calibrate this grid for lens-shading, a simple model is employed. All pixels are

assumed to have identical analog noise distributions X, which are modified by spatially

dependent digital gains λi, normalized such that min
i
λi = 1. These gains, and the

corresponding corrections wi = λ−1i , can be found by measuring the relative responses

of each pixel in dark conditions. To first order, the gain factors are proportional to
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the responses:

E(λiX) = λiE(X) ∝ w−1i . (3.1)

However, as the pixel responses are digitized; the computed mean of each pixel is in

fact E(bλiXc), for which the equality above does not hold. Particularly when the

computed means were low, this simple algorithm did not adequately correct for lens-

shading.

To enhance this approach, a functional form of λiX is assumed, from which the

relationship between λiE(X) and E(bλiXc) can be inferred. Denoting the probability

density function of the undigitized noise λiX as fi(x), the mean of the truncated

responses becomes:

E(bλiXc) =
∞∑
n=0

∫ n+1

n

dxnfi(x) =
∞∑
n=1

∫ ∞
n

dx fi(x) . (3.2)

This is in general difficult to evaluate; however, with a convenient assumption that

X ∼ Exp(1/µ), (3.2) can be simplified, yielding:

E(bλiXc) =
1

e
1
λiµ − 1

, (3.3)

which, inverted, provides a closed-form correction for lens-shading:

(λiµ)−1 = log(1 + E(bλiXc)−1) ∝ wi . (3.4)

To justify that this is not overly sensitive to the arbitrary choice of noise model, this

result is numerically evaluated for other models as well. As mentioned in Chapter 2,

pixel noise is the sum of two independent contributions—Poisson-distributed dark

current and Gaussian readout noise—both amplified by a gain factor. Gaussian noise

models with σ2 = gµ are therefore used to approximate a continuous analog of the

Poisson distribution, with an applied gain g in pixel values per electron. The results

are plotted in Figure 3.7 for g−1 = {1, 4, 16} alongside the exponential result. As
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expected, the curves converge when the measured means are large, but display quite

different behavior near the origin. In this limit, the exponential model falls between

the Gaussian models with gains of 1 and 1
4
, and hence should perform reasonably well

for gains on the order of a few electrons per 8-bit pixel value. In the sample of phones

used for testing, the camera APIs typically reported gains within this range for RAW

buffers near the maximum analog ISO.
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Figure 3.7: E(bXc) vs. E(X) for exponential noise and Gaussian noise with three
different variances.

Scale-factors were computed by applying (3.4) to downsampled blocks and applying

bicubic interpolation to the results. The resulting pixel triggers were more well-divided

across the sensors of most test phones used, with the exception of the yet unquenched

hot pixels. Whereas flat L1 thresholds on a typical Galaxy S4 oscillated between 9–10,

the scaling algorithm reduced the effective thresholds to a range of 3–6 (see Figure 3.8)

across the majority of the sensor while maintaining the same trigger rate.

3.4.2 Hot-pixel masking

While rigorous statistical methods such as a Kolmogorov-Smirnov test were first con-

sidered for the masking algorithm, many hot pixels fired too infrequently for these

metrics to attain significance without a prohibitively large sample size. Rather, a

more practical approach was needed: pixels firing at relatively high values above a

1As the highest pixel values could be caused by cosmic rays or terrestrial radiation, the second-
highest value was more robust.
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Figure 3.8: Effective L1 thresholds on unscaled digital pixel values (shown on color
axis) in a Samsung Galaxy S4 using the calibration scheme above.

certain frequency were the intended targets. The second highest value1 each pixel

attains over a set of calibration frames proved to be a simple but effective metric for

hot pixel classification; outliers in this distribution are accordingly masked. An ini-

tial calibration attempt, sampling 5000 frames and masking 0.01% of pixels, identified

the most prominent hot pixels and decreased the thresholds as expected; however,

the trigger rate was then determined by 20–30 less-frequent hot pixels in place of the

most active 2 or 3. A more intensive calibration with 50,000 frames and 0.2% of pixels

masked decreased the thresholds further, but likewise produced a sensor response dom-

inated by a small subset of pixels, many of which had not once exceeded the trigger

thresholds in the calibration data.

For a deeper cleansing, a far larger sample size was required, one more suited to

the server. The on-device calibration would only serve as a first-pass. Consequently,

these cuts were not unduly aggressive: the hot pixel tail was bound by a threshold of

< 0.2% of pixels per bin, correlating the number of pixels masked to the kurtosis of the

distribution. To prevent excessive cuts in irregular data, this threshold is restricted

such that no more than 1% of total pixels are masked. Figure 3.9 illustrates these cuts

in a Samsung Galaxy S7.

3.4.3 Calibration data

These calibrations were vital metadata that needed to be preserved, but the full grid of

scale-factors could occupy several megabytes—with a million phones in active use, each
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Figure 3.9: Left: a histogram of second highest pixel values in a Samsung Galaxy S7,
used in hot-pixel calibration, with differential and integral thresholds. Right: resulting
distribution of highest pixel values per frame, used to calibrate the L1 trigger. No lens-
shading calibrations are applied in either plot.

submitting one grid per day, the experiment would reach the petabyte scale far more

quickly than desired. As the calibration for hot pixels was particularly time-intensive—

spanning 50,000 frames—repeated on-device calibrations would also unnecessarily limit

Crayfis’s duty cycle. Several modifications were therefore necessary.

First, the frequency of on-device calibrations was reduced. As changes to the

underlying lens-shading pattern are unlikely, and hot pixels are mostly stable on the

order of weeks, calibrations could be cached in device storage and reused with minimal

reduction in data quality. These cached results are considered valid for two weeks, after

which they are discarded.

Given the smoothness of the lens-shading pattern, downsampling and compression

also were effective in minimizing data volume. By downsampling the lens-shading cor-

rections, re-normalizing the values as 8-bit integers, and compressing the resulting grid

as a JPEG, the total size of a typical lens-shading calibration was reduced to less than

a kilobyte with no more than a 0.5% loss in precision. To keep the metadata consistent

between the phones and the server, the app draws its lens-shading corrections from

the same JPEG buffer which is sent to the server. Likewise, the locations of masked

pixels are stored in a sparse format, from which the full grid of scale-factors can be

reconstructed.

All of these models and algorithms, however, only amounted to a successful imple-
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mentation of the first item at the beginning of the section: a reasonable initial guess

from a relatively small sample of frames. To further enhance the lens-shading correc-

tions and to check the emergence of new hot pixels, a feedback loop on the server was

necessary. This next step is presented in the following chapter.

3.5 Other additions

The modifications described above addressed the main problems presented in Sec-

tion 3.2, but as the app was being modified, a number of other improvements were

made. These included not just enhancements to the DAQ, but to the user experience

as well.

First, the camera pipeline was migrated to the upgraded camera2 API, granting

manual control over latency between exposures (which previously, may have been

substantial) and over more of the digital processing discussed in Section 2.5. This API

also provided direct access to firmware-level frame timestamps, which are significantly

more accurate than those reported by application threads when the CPU is under

stress.

Two new datatypes characterizing the sensor response were also added to the Pro-

tocol Buffers. The descriptively named ZeroBiasSquare was the output of a new

trigger, which periodically saved 10×10 blocks of pixels at random locations; from this

data, the spatial noise dependence could be quantified on both large and small scales.

A new L2 trigger algorithm (ByteBlock) was also implemented which, rather than

saving the mean of the surrounding pixel values, instead saves the individual values

themselves. Because only the 8-bit values of surrounding pixels are saved and not

their coordinates (which are determined by the order in which these values are saved),

this algorithm yields more useful data than the default trigger without a significant

increase in data volume.

Several other features were added to make the app as convenient to the users (and

consequently, to the experimenters) as possible. To assure regular, high-quality data
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with minimal user interaction, the user is prompted upon loading the app for the first

time to schedule daily data-taking intervals, such that when the phone is charging in

between certain hours of the night, the app will automatically start. Then, rather than

assume the rear camera is covered, the app uses the gravity sensor to select whichever

sensor is facedown. If it is determined that the phone is not lying flat, the user will be

prompted to reposition the phone. If this fails after several attempts (such as when

the phone is being actively used apart from the Crayfis UI), the app will reattempt

several minutes later if the phone is still charging; otherwise, the app will quit. This

assures that the Crayfis app does not interfere with the user’s phone use and does

not unnecessarily discharge the battery, both of which are essential to a positive user

experience and acquiring a large user base.

Lastly, a cryptographic hash was instantiated to verify the data received by the

server, computed with a salt appended to the uploaded request body. This prevents

malicious data from contaminating the experiment: without the salt, an attacker is

unable to create passable data that the server will accept. With this safeguard, the

app can be safely open-sourced, allowing for the public to participate as developers as

well as users in accord with the democratizing spirit of Crayfis.
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Chapter 4

The CRAYFIS backend

For Crayfis, the processing pipeline does not stop once the data is uploaded—a vast

architecture exists beneath crayfis.io that at least equals that of the Android app.

This was not, however, strictly necessary—the data could have simply been deposited

in the cloud and retrieved by a local cluster for analysis—but some initial benefits

steered the experiment in this direction. At first, it was realized that a Crayfis

website was useful for user engagement and could be employed to manage beta-testers

and distribute the app. Once the website was established, it was natural to use it as

an endpoint for data submission: this would allow blacklisting of spurious data and

tracking of user statistics. Then, if the users could be associated with their data, a

UI could be built around user scores, data tracking, and leaderboards, supplying users

with abundant incentives to run the app.

All of these features were available in 2015 as beta testing was underway. The

insight missing at that time, though, was that the megabytes of data collected by

the server from each phone could be used to enhance the quality of the DAQ. A

mechanism had already been developed for passing commands to the app—adjusting

the resolution or frame rate, for example—for remote debugging; this feature needed

only to be automated and grown to a much larger scale.
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4.1 Web app components

Before these modifications can be discussed, a sketch of the web app will prove useful—

an illustration is also provided in Figure 4.1 below.

Site (Django)
protobuf

JSON

HTTP DAQ Server(s)

Web Server(s)

crayon

pixmap

live-plots

live-stats

subscribe

Elasticsearchuser content

admin site

HTML

cache

streams

pub/sub

Redis

PostgreSQL

app data

feedback

map

temp

Archiver
(to AWS)

monitoring panel

stats

Figure 4.1: A schematic of the current web app infrastructure.

The web app is composed of the Crayfis website, three databases (Redis, Post-

greSQL, and Elasticsearch), five types of “crayon” (CRAYfis ONline) worker nodes,

and the “Archiver,” a node routing data beyond the web app into offline data storage.

These components are containerized through Docker and run in a self-scaling and self-

healing Kubernetes ecosystem on the Amazon Web Services (AWS) cloud, a design

discussed in Section 4.4.

At the simplest level, the web app receives data from the Android app, sends this

data to long-term storage (discussed in Section 4.5), and processes the data to gener-

ate user content on the website and adjustments to each phone’s DAQ settings. The

three databases assist with this flow in different ways. PostgreSQL stores structured

experimental metadata, linking each run to a particular user. By design, it can effi-

ciently process simple queries, such as the statistics populating each user’s personal

dashboard. Elasticsearch handles much of the same data but is capable of more so-

phisticated queries, which will be discussed in Section 4.3. Redis, by contrast, stores
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unstructured data and occupies several diverse roles in the web app ecosystem. Most

prominently, uploaded application data is channeled through the web app via two

Redis Streams: queue-like objects that support load balancing between copies of the

same worker node. One Stream leads to offline storage through the Archiver, while

the other routes data into the five crayon workers for online processing.

The crayon workers can be divided into three groups. The first two in Figure 4.1,

crayon-pixmap and crayon-temp, are feedback loops discussed in the next section,

which compute adjustments to particular devices and store the results in Redis. The

next two, crayon-live-plots and crayon-live-stats, are responsible for generating

figures on the website—the former by caching serialized plot data in Redis and the

latter by populating Elasticsearch. Finally, crayon-subscribe is not tied into the

Redis Stream, but instead uses Redis’s publish/subscribe feature to create a detailed

live-monitoring interface on the admin site for devices of interest.

4.2 Server-side trigger corrections

As discussed, the main goal of the web app development was a feedback loop to

modify the existing calibrations in Redis based on incoming app data. This required

two elements: an algorithm for computing corrections and an interface for the phone

to retrieve the results.

4.2.1 Adjustments with crayon-pixmap

A new worker node, crayon-pixmap, accomplished the first of these by tracking the

spatial distribution of triggered pixels. Trigger rates for each device are recorded in

sparse matrices with the necessary single-pixel precision for hot-pixel masking; how-

ever, as more pixels are triggered over months of data-taking, a sparse format becomes

increasingly memory-intensive. To avoid wasting memory on pixels with normal trig-

ger rates, a rolling average is maintained when the number of ExposureBlocks exceeds

250. Explicitly, if a set of k new ExposureBlocks with trigger occupancies n(x, y) is

49



added to the existing sparse matrix Ni(x, y), the updated matrix Ni+k(x, y) is given

by:

Ni+k(x, y) =
250

250 + k
(Ni(x, y) + n(x, y)) . (4.1)

Values below 0.01 are then purged to limit the number of nonzero entries. Pixels with

trigger rates above a certain threshold are then masked; currently this limit stands at

15 per 250 ExposureBlocks, or 1 trigger in 60,000 frames.

Adjustments to lens-shading calibrations required a slightly different approach.

These are evaluated based on the uniformity of the spatial distribution of triggers,1

though the digitization of the pixel response makes a perfectly uniform distribution

impossible for non-trivial lens-shading. As the underlying lens-shading calibrations are

downsampled from the total sensor resolution, a histogram with the same downsam-

pled dimensions was sufficient to compute the needed correction—a sparse matrix and

the rolling-average approach were therefore unnecessary. However, as a downsampled

histogram was vulnerable to bias from a cluster of pixels triggered by a single particle,

bin counts are incremented by no more than 1 per frame.

Evaluating the uniformity of the trigger distribution also required a nuanced ap-

proach. For a sizeable histogram, a standard χ2 test would require a large sample of

triggers to achieve significance—at least a week of runtime between iterations. While

this is tolerable for fine-tuning the result, more significant faults with the initial cali-

bration require faster interventions. Instead, this statistical distance can be computed

more rapidly by noting that each trigger count in the histogram follows a Poisson dis-

tribution with rate λ(x, y); hence, if the response were spatially uniform, these rates

would be identical:

λ(x, y) = λ =
Ntriggers

Nbins

. (4.2)

Therefore, the distribution of triggers per bin—specifically, its statistical distance from

1In fact, perfectly correcting for lens-shading may not produce a uniform response due to spatially-
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a Poisson distribution—can also be used as a measure of spatial uniformity.

The simplest statistic to measure this distance is the variance-mean ratio of the

distribution of trigger occupancies. As is well-known, a Poisson distribution has a

variance equal to its mean; however, when there is variability in the means λ(x, y)

being sampled, this will produce a wider distribution than a standard Poisson. As

demonstrated by Figure 4.2, when the λ(x, y) are considered as rates and µ = λ∆t,

the variance-mean ratio will increase over time; hence, this ratio can be used to quantify

the statistical significance of the non-uniformity.
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Figure 4.2: 10,000 Poisson rates λi are drawn drawn from a distribution Λ ∼ N(λ, σ2
λ).

For various values of ∆t, a single sample Ni is drawn from each of 10,000 Poisson
distribution with means λi∆t. The resulting variance-mean ratio σ2

N/µN is plotted
against runtime for three values of σλ.

This insight is implemented as follows: when the variance-mean ratio for the dis-

tribution of trigger occupancies exceeds a threshold (currently σ2/µ > 1.8), the trigger

non-uniformity is significant enough to apply a correction. Then (4.2) is used to find

λ, the mean trigger count per bin, and the corresponding Poisson CDF is used to

calculate p-values for each individual bin count. These p-values in turn determine

the adjustments to the lens-shading calibrations w(x, y) via a logit (inverse logistic)

response function:

∆w(x, y) =
α√
N

log(p(x, y)−1 − 1) (4.3)

dependent thermal noise. In this case, the pixels with higher signal-to-noise ratios would be under-
represented, which is most likely undesirable for Crayfis.
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where α sets the rate of convergence and N is the total number of triggers in the

histogram. This function has the desirable property that corrections approach positive

and negative infinity as the p-value approaches 0 and 1, respectively; furthermore, as

the trigger response becomes more uniform, larger amounts of data will be required to

trigger a correction, and thus the N−1/2 dependence will lead to smaller adjustments.

To avoid overcorrection, the magnitude of |∆w| is limited to 32 when scaled to a

[0, 255] range; conversely, as a check against undercorrection for smaller sample sizes,

∆w is set to 1 for empty bins. Then, in order to renormalize the results, an offset is

applied such that at least 5% of the resulting calibrations w(x, y) are saturated at 255.

However, one more critical feature was needed. Because the L1 thresholds were

calibrated to reduce the trigger rate below a fixed target, a single hot pixel, firing at

a constant value above this target rate, could set the threshold without once being

triggered.2 Consequently, such a hot pixel would never appear to crayon-pixmap,

and so could never be masked. To make such below-threshold hot pixels visible to the

server, a modified L1 trigger was introduced in the Android app. This trigger oscillates

between two adjacent threshold values so as to achieve the target pass rate, thereby

overcoming such quantization barriers.

Figure 4.3 shows the stages of the calibration process for two physical devices

streaming at 1080p. Each plot shows the positions of roughly 20,000 triggers with

no masking or scaling (top), using the first-pass results from the devices (middle),

and after server-side refinements from 7 days of continuous running (bottom), while

not accepting any further refinements. The first-pass calibrations performed relatively

poorly in these particular phones, slightly over-correcting for lens-shading and, as

a consequence of the order of calibrations, leaving many less-active hot pixels in the

center of the sensor. The final round of plots shows a nearly uniform sensor response—

remarkably so, given the significant quantization effects inherent to low pixel values.

This does not guarantee, however, that any of these methods are optimal, or will

necessarily converge on all device models, present and future. This would require

2While this scenario may seem contrived, it can be particularly troublesome in RAW buffers where
a single hot pixel saturates in every frame, pushing the thresholds up to saturation as well.
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Figure 4.3: The results of the crayon-pixmap algorithm on two phones, shown in the
left and right columns. Each image is a histogram of triggered pixel positions, with
axes in 1080p pixel coordinates. Description in text.
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both a larger set of beta testers and a more appropriate architecture for analyzing

larger offline datasets. Nonetheless, an emulator was designed to test the algorithm’s

robustness on non-trivial lens-shading patterns, such as in Figure 4.4. A realistic

design was used to generate sample data: the assigned lens-shading pattern and hot-

pixel locations determined the emulator’s spatial PDF as a function of threshold; then,

as in the production app, a threshold was selected to achieve a target trigger rate. In

all cases tested, crayon-pixmap converged on a near-uniform solution within several

days of simulated runtime.
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Figure 4.4: An example lens-shading pattern tested through an emulator. This pattern

is given explicitly by: λ(x, y) = 1 + 1
3

∣∣∣ xy100
− e−x2/3

∣∣∣, where x and y are scaled to the

ranges [−16, 16] and [−9, 9], respectively.

4.2.2 Persistence of pixel calibrations

As mentioned in Section 3.4, each device generates initial estimates of the hot-pixel and

lens-shading corrections, and the results are saved to the phone’s memory for future

access. For the server to edit these calibrations, however, it was appropriate for the

primary copy to be held by the server (specifically Redis) instead. The Android app

was modified to use the server as a first recourse for loading lens-shading corrections

and hot pixels; only if this failed (e.g. from connectivity issues), would the phone need

to use its own copy of these calibrations. Then, if neither of these attempts succeeded

(e.g. because no data exists for a particular camera or resolution) a device would

compute these calibrations manually.

To implement this strategy, a new server endpoint was constructed to which a

phone would post its unique identifier, the camera in use, and the sensor resolution,
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and the server would respond with a serialized set of calibrations. This simplified the

process of updating calibrations: rather than attempting to post new values to a phone

directly, the server would update its values internally and notify the phone that new

calibrations are available. If the identifiers for the phone’s calibrations and for those of

the new update differed, the phone would simply pull the new version from the server

endpoint. This design ensured that missed updates would be handled gracefully, and

that devices would never need to update and recalibrate unnecessarily.

4.2.3 Temperature management

A second feedback loop was instantiated on a new crayon-temp node to regulate each

phone’s pixel processing rate, i.e., the frame rate multiplied by the sensor resolution.

Though the Crayfis app would ideally sample frames at the maximum resolution

and frame rate, this inevitably overheats the phone as discussed in Chapter 3. High

battery temperatures should trigger a response which lowers the resolution, frame rate,

or both. As the relative priority of the frame rate and resolution, as well as the range

of acceptable temperatures, is primarily determined by the phone model, the server

was found more suitable for this task.

The crayon-temp process saves battery temperature statistics in the Redis database

for the most recent 250 ExposureBlocks of each device. If the temperature exceeds

41℃ on a particular phone or the time-average exceeds 37℃, the phone is instructed

to lower the pixel processing rate. Conversely, if the average temperature decreases

below 35℃, the pixel processing rate is increased. Because the relative importance

of time resolution and pixel resolution is yet unknown, currently the resolution alone

is adjusted and the frame rate is kept constant; by implementing this algorithm on

the server, however, these priorities can easily be tailored to each phone model, both

manually and automatically.

To test this algorithm, a temperature feature was added to the emulator. For

a given emulated device, the relationship between the pixel-processing rate r and

plateau temperature T0(r) was first constructed using a power model with randomly
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selected parameters in a realistic parameter space. Over the course of an emulated

ExposureBlock, the change in device temperature is given by:

∆T = k(T − T0(r)) + n (4.4)

where k sets the rate of the temperature convergence and n is a normally-distributed

noise component with zero mean. On all emulated devices, the generated temperatures

quickly reached a resolution with inside the requested range—a result replicated on

several physical devices.

4.3 Managing the experiment

To develop these feedback loops, a number of useful tools for the experiment were

generated as by-products: most notably, a monitoring application built into admin

interface of crayfis.io. Though a monitoring site had previously been constructed for

the experiments of Section 3.2, it existed outside the scope of the web app. Integrating

these two applications was not only instrumental for developing feedback loops, but

made a number of new features possible as well.

The new monitoring interface was powered by a new “crayon-subscribe” worker.

With this tool, experimenters could subscribe to specific devices—whether real phones

or emulated devices on a test cluster—by entering their unique device identifiers into

a form or by searching for devices on the main website with an admin account. Data

submitted by these devices would thereafter be cached in Redis, from which detailed

graphs of performance metrics could be created on the admin site; see Figure 4.5.

Moreover, integration with the web infrastructure opened up a wealth of new po-

tential for the monitoring app. In particular, linking the monitoring interface with

Elasticsearch allowed both mass subscriptions with targeted queries and mass feed-

back to certain device classes. This was implemented through an “ElasticCommand”

application, which allowed, for example, all phones of a specific model or region, or

a set of phones exhibiting unusual behavior, to be collectively monitored and manip-
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Figure 4.5: A partial view of the monitoring panel for a particular device. Recorded
metrics include average pixel values, battery temperature, and thresholds vs. time, as
well as histograms of pixel values and hit coordinates.

ulated remotely. Moreover, this interface can be used to optimize and standardize

performance: for instance, when the lens-shading pattern of a particular phone model

is well-known through controlled laboratory testing, the computed corrections can be

directly applied to all phones of that model, bypassing the standard online calibration

entirely. This principle can also be extended to optimizing frame rates, resolutions,

trigger rates, ISO gain, and even the camera buffer settings particular to a specific

model.

PostgreSQL also proved useful in conjunction with this new tool. As the primary

store of experiment metadata—records of user- and device-level interaction with the

web app—it was a natural choice for an ElasticCommand logbook, in which every

device modification made through the admin website would automatically be stored.

4.4 Kubernetes and cluster management

With this new infrastructure made production-ready, the cloud architecture was also

revisited during its implementation. The web app was migrated to Kubernetes, a
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Figure 4.6: An illustration of a Kubernetes cluster. Each node is able to run several
pods, each of which is managed by a master deployment controller. Images from [132].

cluster management platform designed by Google with a host of advantages. In a

Kubernetes cluster, each node is able to run several pods, units with their own private

IP addresses containing one or more containerized applications or volumes (see Fig-

ure 4.6). This allowed the entire web app—the three databases, five crayon workers,

and two load-balancing website containers—to run on just three physical nodes for

beta-testing. Furthermore, one of these (the master node) runs as a deployment con-

troller, intelligently scaling the application with surges in traffic and restarting pods if

they are terminated. Such a cluster is thus able to operate in a cost-efficient way with

very minimal oversight.

Most of the cluster design was trivial: the individual containers were exposed to

the correct ports, connected to the proper AWS credentials, and backed with under-

lying Elastic Block Store (EBS) volumes on AWS. However, several other additions

were prudent. A high-level cluster management interface was implemented: operations

such as deploying new additions, updating credentials, and restoring databases from

AWS volumes in the event of a crash were made as simple as possible for future exper-

imenters. As a further measure, redundancy in the data was achieved by scheduling

periodic snapshots of the EBS volumes on the AWS cloud. These snapshots were de-

signed to not be tagged as part of the cluster, thereby remaining safe from accidental

cluster deletion.
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4.5 Long-term data storage

While Kubernetes had many advantages, it unfortunately prevented the data from

being offloaded in the same way as the initial cluster. Before this migration, the data

was temporarily stored on the website servers’ file systems and moved onto a local

machine, nicknamed “craydata”. Kubernetes, however, was not compatible with this

simple design. The cluster publicly exposed the website containers as a single Service

containing a public IP address differing from the pods’ private addresses; retrieving

the data directly from the pods was thus no longer possible.

As it was difficult to pull the data from the web servers’ containers, the alternative

was to offload the data to a more accessible location. An additional worker node, the

“Archiver”, was built for this task. The long-term storage branch of the web app was

routed through a Redis Stream into the Archiver, which would hourly pull new files

from this Stream, package them into a compressed archive, and upload them to AWS’s

Simple Storage Service (S3). From here, craydata could then synchronize these files

from the cloud for offline analysis.

The data record was thus made accessible and redundant, but also expensive to

maintain on a petabyte scale. Instead of accruing costs of $0.021 per GB-month on S3,

each month the data are migrated into S3 Glacier, a cheaper storage solution ($0.004

per GB-month) designed for infrequent access. However, to assure that the data

records on S3 Glacier and in local storage are identical, this migration is performed

with care; regularly migrating data across AWS could leave gaps in craydata’s data

store, especially if craydata should for any reason go offline. Rather than copy the

data directly over AWS, craydata instead queries S3 for files matching those in its

filesystem, and only these are subsequently uploaded to S3 Glacier. With this assur-

ance, the corresponding files on S3 can then safely be deleted.

While a number of needed improvements have been discussed in this chapter and

the last, the DAQ enhancements are the focal point to which these all converge. With-
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out a successful trigger—one which achieves a reasonably high detection efficiency—

there is no experiment to manage, no devices to correct, and no data to properly

store. The viability of Crayfis, greatly improved though it may be, depends upon a

best-case measurement of the sensor response, undertaken in Part III.
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Part III

CMOS Efficiency Measurements
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Chapter 5

Hodoscope Revisited

In Part I, this work presented the motivation for a smartphone array to detect UHECR

showers and tied its hypothetical performance to two key metrics: the user density

and the sensitivity to muons, electrons, and photons, parametrized by the detector

cross sections Aiεi. Part II then explored the design of such a detector to maximize

the efficiency. Now, the fundamental question for Crayfis can be revisited: with

reasonable user adoption, will this detector be able to contribute to our knowledge of

UHECR physics?

As mentioned in Chapter 3, there are three main strategies for distinguishing cos-

mic rays from noise on a smartphone, and this chapter presents a refined attempt at

the first: tagging muon coincidences with an independent second detector. The advan-

tage of this approach is that it is the most direct: rather than extrapolate the cosmic

ray muon efficiency from a pixel model fit to other data (e.g. radioactive sources or

beam spills), the muon efficiency is measured with the cosmic ray flux itself. Though

some systematic adjustment may nonetheless be warranted—for instance, to correct

for the hodoscope’s finite angular acceptance—such corrections are comparatively mi-

nor. However, the rate of data-collection is rather slow—a single beam spill might

generate the same particle count as a full year of cosmic ray muons on a smartphone

camera—hence, this method has a more limited potential for modelling the sensor.

To supplement this deficiency, a beam test was performed, albeit with disappointing

62



results, as will be discussed in Chapter 7.

This chapter explores the design and results of this more refined version of the

hodoscope experiment in Section 3.2. The calibrations and DAQ for both the phones

and scintillators will be detailed, and the efficiency as a function of threshold value

will be presented for several different phone models. These results are supplemented

with a fit to a Geant4 pixel model in Chapter 8.

5.1 Experimental Design

5.1.1 Hardware

A construction of two phones between three scintillators was employed for this exper-

iment, illustrated in Figure 5.1 below.

Scintillator A
Phone 1

Scintillator B
Phone 2

Scintillator C

Figure 5.1: A diagram of the hodoscope construction.

A coincidence in two scintillators serves as a tag, indicating the passage of a muon,

which can be used to probe the response of the smartphone CMOS sensor between

them. The strategy of the experiment is to assemble a set of cosmic muons tagged via

coincidences in adjacent scintillators; from this nearly-pure sample, the muon efficiency

of the CMOS sensors can be measured as a function of a threshold on the per-pixel

response. Though only a single phone between two scintillators was necessary, this

configuration allowed for more efficient running and for a valuable geometrical cross-

check: the outermost scintillators (A and C) can also be used to tag muons, though

with a significantly lower acceptance.

The hodoscope detectors are composed of LYSO scintillators measuring, in mil-

limeters, 16×14×8, attached to PMTs via rectangular waveguides. To shield against
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light contamination, each scintillator, waveguide, and PMT were wrapped in multiple

layers of aluminum foil and secured with foil tape; shown below in Figure 5.2.

Figure 5.2: A photograph of the foil-wrapped PMT, waveguide, and scintillator.

To support these detectors and to aid in their alignment, 3D-printed modules

were designed for both the phones and the PMT assemblies, illustrated in Figure 5.3.

Square pegs and holes anchor these modules in a way that minimizes the gaps between

sensors, thus maximizing the solid angle sampled; 1.2 mm-thick walls above and below

each component were the only spacing required. To more accurately align both phones

and scintillators within the modules, clear plastic was used for the 3D prints and holes

were added at the intended sensor positions; the foil on the scintillators and electrical

tape on the cameras provided sufficient shielding from light.

Three phone models were selected to run in the hodoscope. Two models, the

ISOCELL-variant Galaxy S6 and the Exmor-variant Galaxy S7, were chosen because

their pixel geometries were made publicly available through electron microscopy images

(Figure 5.4), allowing for more precise pixel modelling in Geant4. The advertised

pixel pitches of each sensor set the scale for these images, from which the depth of the

pixels and dimensions of the DTI structures could be easily ascertained. As shown, the

S6 has a pixel pitch of 1.12 µm and B-DTI extending roughly halfway into a 2.6 µm-

deep substrate, while the S7 has a pixel pitch of 1.4 µm, a depth of 2.9 µm, and 1.9 µm

Figure 5.3: Illustrations of 3D-printed modules for (left) the PMT-scintillator assembly
and (right) an example phone: the Samsung Galaxy S6.
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Figure 5.4: Images of active pixels for (left) the ISOCELL S5K2P2 [134], found in the
Galaxy S6, and (right) the Sony IMX260 in the Galaxy S7 [117].

B-DTI. According to Figure 2.3, these pixel depths are fairly typical of the 2015–2016

generation; however, the S7’s larger, dual-photodiode pixels were a novelty at the time,

attaining more widespread adoption over the following years.

The LG V20 was selected as the remaining device model. Although their exact

pixel geometry is unknown, these phones were used in the beam test in Chapter 7 due

to their manual control over lens-shading and powerful CPUs. One of these phones—

containing the Sony IMX298 sensor—was used in both the hodoscope and the beam

test, while the other used the ISOCELL-equivalent S5K2P7.

5.1.2 The FishStand app

Several compounding issues made Crayfis app suboptimal for the phone DAQ despite

its many improvements. Most importantly, the app was unnecessarily bulky: the

polished UI, gravity sensors, location services, and data quality checks were no longer

needed in this context and could be dispensed with, reserving more of the CPU for

frame processing. The production app was also inflexible: the frame pipeline and server

interface were designed for a simple online calibration under dark conditions, followed

by pixel triggering, with no user input. Here, a more precise calibration by hand was

preferable, though incorporating this functionality would require radically reinventing

the state machine. Instead, a streamlined version of the app was preferable—one which

would utilize the advances of the production app while keeping the structure as flexible

as possible.
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This “FishStand” app (“Crayfis test-stand”) contained a camera architecture

similar to that of the Crayfis app, though RAW-format images at low frame rates

were preferred in this context. The frame processing, however, was kept perfectly

flexible, allowing vastly different types of measurements to be consolidated under a

single app. These “Analyses”—experiments in FishStand’s repertoire—include:

• PixelStats : A dedicated calibration run which keeps running statistics for each

pixel, and from which offline calibrations can be performed.

• Cosmics : A run similar to the Crayfis production app, which saves bright

individual pixels and their neighbors.

• TriggeredImage: A design specifically for the beam test in Chapter 7, which

saves full RAW frames to file when large numbers of bright pixels are present.

These three were linked by a common method of configuring runs, common camera

architecture, and a common backend.

Unlike the production app, FishStand is configured and calibrated entirely by hand,

giving the experimenters full manual control of each experiment. Instead of import-

ing the ExposureBlock structure from the production app, premised on periodic and

automatic recalibrations, the fundamental unit of FishStand data is a run: an unin-

terrupted camera stream with a fixed set of parameters. Each run is associated with

a corresponding configuration file, containing the number of frames to sample (or to

run indefinitely), the camera exposure time, ISO gain setting, compression level for

the output, and a host of other settings proper to each Analysis. An simple and

secure backend for FishStand was also developed: rather than routing traffic through

a separate endpoint at crayfis.io, the data is directly uploaded to S3, where it is

copied to craydata for offline analysis and live-monitoring.

5.1.3 Hodoscope readout

The PMT output was directed to an Arduino micro-controller, which functioned as

a remotely adjustable discriminator. Its two primary roles, to set the three PMT
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Figure 5.5: A circuit diagram of the Arduino discriminator for a single PMT, divided
into input (red), thresholding (blue), and output (black).

thresholds and to register and record triggers, were both driven oven a serial connection

by a Raspberry Pi computer.

The focal point of the discriminator circuit (Figure 5.5) is the comparator IC chip,

which outputs either HIGH (5V) or LOW (GND) depending on the relative magnitudes

of the PMT signal (red) and threshold voltage (blue). The former is a combination

of the ∼4V DC component set by the labelled resistors and the high-frequency AC

component of the raw PMT pulses, while the latter is supplied by a PWM signal

passing through an integrator circuit. With a large value of τ = RC, the threshold

voltage is essentially constant, with a magnitude determined by the PWM duty cycle.

As the raw PMT pulses are negative, a trigger occurs when the PMT signal drops

below the threshold voltage, changing the discriminator output from HIGH to LOW.

A more restrictive threshold thus corresponds to a lower voltage and lower duty cycle.

A more typical threshold scale—with higher values being more restrictive—was thus

defined as T = 255−TDC , where TDC is the 8-bit duty cycle value set by the Arduino.

The 4V baseline shifts the zero-point of the voltage scale to approximately 52.

The Arduino communicates the resulting PMT triggers to the Raspberry Pi, which

saves the Arduino’s microsecond timestamps to file. To relate the Arduino microsecond

clock (which cycles back to zero after roughly an hour) to the Raspberry Pi wall clock,

a dummy “heartbeat” channel on the Arduino is triggered by the Raspberry Pi at
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fixed intervals. By matching the corresponding heartbeat timestamps on the Arduino

and Raspberry Pi, the conversion between the two clocks was in principle established.

Offline, the hodoscope trigger times are converted to Raspberry Pi wall clock time via

linear interpolation.

5.2 Calibration

5.2.1 Lens-shading and system gain

As in the production app, corrections for both lens-shading gains and hot pixels were

necessary to optimize the FishStand trigger; here, a more rigorous calibration was

made possible by the PixelStats Analysis. Whereas the Crayfis app extracts these

calibrations from dark frames without user input, the FishStand app could employ

more exact techniques using controlled light exposures.

The pixel gains are measured using a standard approach for image sensors: through

a well-understood relationship between the mean and variance of the pixel response

known as the photon transfer curve [135–137]. As mentioned in Section 2.1, pho-

tons incident upon a pixel excite electrons into the conduction band, which then drift

into the depletion region and are stored on a capacitor. The overall efficiency of this

process—the absorption of photons and diffusion of electrons—is known as the quan-

tum efficiency η = ne/np, and can reach 90% for some visible wavelengths in modern

image sensors [138]. The resulting charge, including a contribution from the dark cur-

rent, is modified by an adjustable readout amplifier and then digitized, creating an

overall gain K in DNs per electron. This process is outlined in Figure 5.6.

In the simple case where the range of digitized values is unbounded (either by

saturation above or the zero point below), this process follows straightforward Poisson

statistics. For a single pixel under a particular exposure, the mean digitized count µy

is given by:

µy = K(µe + µd) = Kµe + µy,black (5.1)
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Figure 5.6: A schematic of the process of photon capture and conversion to digital
values, taken from Ref. [137].

where µe and µd are the mean number of photoelectrons and dark current electrons

per image, respectively, and µy,black is the black level, which is subtracted by the device

either before or after quantization. Likewise, the variance is given by:

σ2
y = σ2

q +K2(σ2
e + σ2

d)

= σ2
q +K2(µe + µd)

(5.2)

where σ2
q is the variance induced by digitization and readout. Combining these two

equations yields a linear relationship between the mean and variance of the digitized

response:

σ2
y = (σ2

q +K2µd) +K(µy − µy,black) . (5.3)

However, near either the zero point or saturation, the variance sharply drops due

to the restricted range of counts; see Figure 5.7. By collecting pixel data under light

exposures well within these limits, the overall gain K can be found by linear regression.

Due to the applied lens-shading gains, however, K is not constant, but instead

varies spatially—typically with a radial symmetry. This dependence is parametrized

as:

K(r) = K0λ(r) (5.4)
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Figure 5.7: A fit of the gain K from the photon transfer curve of a typical image
sensor. The origin has been shifted to the mean and variance under dark conditions.
From Ref. [135].

where λ(r) has been normalized such that min
r
λ(r) = 1. Scale-factors w(r) in the

range [0, 1] can then be found such that, as in Section 3.4:

w(r) = λ(r)−1 . (5.5)

Pixels calibrated by these scale-factors will then share a common system gain of K0,

from which digitized pixel values are converted into numbers of readout electrons. This

both establishes a common scale between the various sensors and allows for meaningful

modelling of the physical response in Geant4.

Lens-shading corrections could be disabled on the V20s, and hence wV20(r) = 1.

To find w(r) for the S6s and S7s, one phone of each model received varying degrees of

exposure in runs of 5000 frames each. Their rear cameras were secured several inches

away from a vertically-oriented white sheet of paper, while the lab was illuminated

by constant artificial lighting (slightly biased towards longer visible wavelengths) and

kept isolated from any additional light sources, natural or artificial. To modulate the

exposure, varying thicknesses of white and colored paper were taped over the lenses,
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constructed in such a way that the means of nearby red, green, and blue channels were

comparable. The PixelStats Analysis recorded the sample means and variances of

each pixel, from which the per-pixel gains were calculated by linear regression as in

(5.3); see Figure 5.8. When points were sampled from a strict range of pixel means,

sufficiently far from both the zero point and saturation, the linear fit described the

data well, with R2 > 0.985 for over 99% of pixels.
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Figure 5.8: Linear regressions of the photon transfer curve for one of the Galaxy S6s.
Top: the linear regression is shown for three randomly chosen pixels. Bottom: the
spatial dependence of the fitted gain (left) and the R2 value (right) are plotted against
pixel coordinates.

The smoothness and clear radial symmetry of λ(r) were then used to further con-

strain the error. First, the fitted gains were grouped into 4×4 blocks and downsampled

according to the median of each block, excluding pixels with low R2 values and PDAF

pixels. These downsampled gains were then plotted against radius, and a piecewise

linear fit of λ(r) was performed; see Figure 5.9a. Identical λ(r) curves were found be-

tween different phones of the same model, and this identity held up to a normalization

factor when the ISO gain was adjusted. Figure 5.9b shows the resampled system gain

K(r).

However, while smoothing the fitted gains was appropriate for estimating the lens-
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Figure 5.9: A fit of K(r) on the Galaxy S7. Left: individual pixel gains are fit to
a piecewise linear function; a naive sec4 θ function, the appropriate correction for a
lens-less aperture, is also shown. Right: this fit is then re-presented as a function of x
and y across the sensor.

shading pattern, this erased any small-scale variation due to, e.g., PDAF pixels or

additional gains specific to each color channel. To properly measure the system gain

K0, the photon transfer curves for each phone were linearized by dividing the pixel

means by λ(r) and the variances by λ(r)2; see Figure 5.10. Linear fits were found for

each Bayer channel with a Hough transformation,1 from which K0 could be read as the

slope according to (5.3). The per-channel gains were indistinguishable in the V20 and

S7, whereas a slight discrepancy was found in the S6, attributable to small (< 10%)

non-linearities in the photon transfer curve. These were presumably a reflection of

slightly non-linear readout.

5.2.2 Hot-pixel masking

With the pixel gains calculated, cuts for the online hot-pixel mask could ensue. It

is worthwhile to first explore the goal of these cuts: while some pixels are grossly

defective and attain values near saturation on nearly every frame, a large number of

pixels are only marginally more noisy than the rest. More aggressive cuts can enable

running at lower trigger thresholds (i.e. while keeping the trigger rate constant), but

at the cost of removing viable pixels.

Finding an appropriate degree of hot-pixel masking is thus inextricably related to

1This approach excluded outliers such as the PDAF curves and the saturation tail

72



Figure 5.10: Photon transfer curves for (top four) the ISOCELL-sensor LG V20 and
(bottom four) a Galaxy S6, illustrated with two-dimensional histograms. The former
has no lens-shading gains, while lens-shading corrections have been applied to both the
mean and the variance of the latter. Each data point is a sample mean and variance
for a single pixel with the appropriate location in the Bayer filter pattern. Two runs
with different light exposures are superimposed to show a larger range.
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Figure 5.11: Sample variance vs. mean for a random subset of pixels, with second-
highest value on the color axis, before (left) and after (right) preliminary cuts on the
ISOCELL-sensor V20. The scale of the x and y axes are different in the two plots
while the color axis remains constant.

the desired trigger rate and trigger threshold. Although the S6, for example, could save

10–15 pixels per frame without overheating, such a trigger rate is unusable without

significant offline cuts: with a 100% frame pass rate, comparing frame and hodoscope

timestamps becomes meaningless. Rather, a corresponding pixel trigger rate below 1

per frame is necessary to measure frame-hodoscope coincidences; still, this does not

preclude using higher trigger rates for the online trigger, provided more aggressive cuts

are then applied offline.

The objective of online hot-pixel cuts, then, is to mask enough pixels to run without

overheating at a target threshold, at which the trigger rate can be further reduced by

a factor of 10 offline. The PixelStats Analysis was first used under dark conditions to

cut extreme outliers in mean, variance, and second-highest value, shown in Figure 5.11.

The following iterative procedure was then undertaken for more exhaustive cuts:

1. FishStand Cosmics was run in dark conditions for 50,000 frames.

2. Any pixels that triggered more than N times were masked, where N > 10 is cho-

sen by hand from the shape of the pixel frequency distribution (see Figure 5.12a).

3. If less than 10 triggers per frame remained (i.e. 500,000 total), the threshold was

lowered, and another iteration ensued with Step 1.

4. If a further cut of N = 10 would lower the rate below 1 trigger per frame, another
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Figure 5.12: An iteration of hot-pixel masking in a Galaxy S6. Left: the occupancy
of each pixel from a 50,000 frame run is compiled into a histogram, from which a
hand-picked cutoff is imposed to mask hot pixels. Right: the trigger rate is plotted
against threshold in green (for comparison, rates of triggers on unscaled pixel values
are plotted in black, and in blue with hot pixel cuts). If either a lower threshold would
produce a rate under 10 triggers per frame or an occupancy cut of N = 10 would
reduce the rate below 1 trigger per frame, another iteration is required.

iteration would begin with step 1. Otherwise, the threshold was considered

sufficiently low for the online trigger.

While the particular value of N in step 2 for a given iteration is somewhat arbitrary,

less aggressive cuts would simply require more iterations to reach the same goal thresh-

old and rate; for 5–10 iterations. Larger values of N were preferred as the threshold

approached its target value to minimize unnecessarily aggressive online cuts. More-

over, for most phones, additional iterations were performed beyond the nominal goal

threshold to provide a buffer for more aggressive offline cuts. This procedure is graph-

ically detailed in Figure 5.12.

Offline cuts then aimed to mask 1% of the total pixels for each sensor, which greatly

reduced thresholds without substantially reducing the efficiency. With this degree of

masking, the online thresholds attained trigger rates well above 1 trigger per frame,

necessitating more restrictive offline thresholds.
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5.2.3 Hodoscope thresholds

The PMTs likewise required an appropriate choice of trigger thresholds. In this cali-

bration, the three scintillators were stacked vertically with minimal separation between

them, aligned precisely by their cases. The efficiency of the middle PMT—the frac-

tion of top-bottom coincidences in which the middle PMT also triggered—was then

computed, shown in Figure 5.13. Importantly, this measurement quantified the scin-

tillator efficiency of only muons passing through both the top and bottom surfaces of

the middle scintillator; the omnidirectional efficiency—also including muons entering

or exiting through the sides—is treated in Section 5.3.3.
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Figure 5.13: Vertical efficiency estimates vs. middle PMT threshold, for PMT A (left)
and B (right). The middle-PMT trigger rate in plotted in red, neglecting the small
combinatorial noise.

The permutations ABC, BAC, and ACB were used to calibrate all three PMTs,

with only the threshold of the middle PMT varying. As expected, a plateau of ε ≈ 1

was found in each ordering, with a sharp decline beginning around thresholds of 67

in A and 69-70 in B and B and C. Thresholds of 62 for A and 64 for B and C were

selected for hodoscope operation, below which the electronic noise in the Arduino

became significant. As suggested by the higher trigger rates in Figure 5.13, these

lower thresholds attained greater omnidirectional efficiencies than those at the edge of

the plateau, and hence expanded the solid angle of the hodoscope.

The difference in these curves was primarily caused by a slowly shifting supply

voltage, to which the PMTs are incredibly sensitive, rather than inherent differences

in the PMTs or scintillators. It was observed that all three curves shifted progres-
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sively leftward over the months of the hodoscope’s operation, and the order of plateau

thresholds—B and C, followed further below by A—also corresponded to the chrono-

logical order in which these samples were taken. The consequences of this shift will be

discussed in Section 5.4.

5.2.4 Clock synchronization

To compare the timestamps generated by the phone and hodoscope, it was first nec-

essary to synchronize their respective clocks. The FishStand app draws from the

nanosecond timestamps associated with each frame buffer, which precisely measure

intervals, but do not accurately report the wall clock time. This generates a nearly

constant drift, which can be calibrated with a linear adjustment.

To compute the drift correction, all possible pairs of phone triggers and hodoscope

coincidences are used to populate a plot of tphone − thodo vs. thodo. Under a more

restrictive offline threshold, a band of phone-hodoscope coincidences is clearly visible;

see Figure 5.14a.

Figure 5.14: The drift correction procedure for the hodoscope, from the ISOCELL-
equipped V20. Left: nearby phone triggers are found for each hodoscope coincidence,
and the time differences between such pairs are plotted against the hodoscope times-
tamps. Right: the linear fit for the clearly visible band is computed through a Hough
transform, from which the gold lines in the left plot are drawn.

A Hough transformation is then applied to find the corresponding linear fit. Writing
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the fit as:

y = a+ bx ,

each data point (x0, y0) can be associated with a line in parameter space:

a = −x0b+ y0 .

In a true linear relationship without uncertainty, all such lines would intersect at the

true value of (a, b).

However, the uncertainty induced by the finite frame duration—appearing as the

band width in Figure 5.14a—required a non-standard treatment. As the actual muon

hits are equally likely to occur at any time within a frame, the values of ∆t should be

uniformly distributed within this band: a simple best-fit line was therefore unsuitable

for this situation. Thus, each data point was instead mapped to a band in parameter

space rather than a line, with a width along the a-axis equal to the frame duration. An

accumulator grid was used to find the point of intersection of these parameter-space

bands; see Figure 5.14b. The inverse transformation maps this point to the region

bounded by gold lines in Figure 5.14a.

The resulting trigger timestamps could then be associated with hodoscope tags.

A histogram of the corrected ∆t was first constructed to visualize the quality of the

calibration: the result, shown in Figure 5.15, reasonably approximates the expected

uniform distribution. Frames were then tagged if the nearest hodoscope timestamp

thodo satisfied:

|tphone − thodo| < τ/2

for a coincidence window τ . To avoid selection bias, the value of τ was fixed at 120% of

the frame duration; this histogram confirmed that such a window would be sufficiently

wide.
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Figure 5.15: A histogram of tphone − thodo after drift corrections have been applied,
with the expected combinatorial background in red.

5.3 Statistical analysis

In order to extract the efficiency from the hodoscope data, this efficiency must first

be defined in rigorous statistical language proper to the experiment. A combination

of muons, background radiation, and electronic noise may trigger the phone; some of

these muons trigger the hodoscope while others do not; some will furthermore create

secondaries, which will trigger distant regions of the sensor. To navigate through the

myriad possibilities, a basic unit of analysis will first be defined: an event will hence

refer to an independent cause of excited pixel values. In this framework, secondaries

created by a particle scattering on the phone glass are thus still part of a single event.

As such, events, regardless of their source, constitute a Poisson process. With the

following notation:

µ = the event is a muon

H = the event (a particle) creates a coincidence in the hodoscope

C = the event (a particle) is incident upon the CMOS

T = the event triggers the phone (i.e. excites a pixel above the chosen threshold)
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the efficiency takes the form:

ε = P (T | µ ∩ C) . (5.6)

To characterize this efficiency using phone-hodoscope coincidences, two assump-

tions are employed:

1. Hodoscope coincidences are exclusively caused by muons passing through the

hodoscope.

2. Differences in the angles, energies, etc. of this population of muons do not bias

the efficiency estimate.

The former is handled as a systematic in Section 5.3.3, while the impact of the latter—

at least, the angular cutoff imposed by the hodoscope—is visible in the results of

Section 5.4, particularly Figure 5.25. Under these conditions, the efficiency can instead

be written as:

ε = P (T | µ ∩ C ∩H) = P (T | C ∩H) . (5.7)

Using the definition of conditional probabilities and the fact that T ⊂ C, this becomes:

ε =
P (T |H)

α
(5.8)

where α = P (C |H) is the geometrical acceptance of the hodoscope. This acceptance

can be calculated by Monte Carlo given the construction of the hodoscope, while the

numerator is determined entirely by the observed coincidence rates.
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5.3.1 Geometry-independent efficiency

The numerator εα can be recast in terms of counts, that is:

P (T |H) = εα =
NT∩H

NH

. (5.9)

Although the total number of hodoscope coincidences NH is easy to quantify, finding

NT∩H—that is, the number of muons triggering both the hodoscope and the sensor—

requires a careful treatment of the combinatorial background.

As mentioned in Section 5.2.4, frames are tagged when |tphone − thodo| < τ/2 for a

given coincidence window τ . When τ is larger than the frame duration, two (or more)

adjacent frames may be tagged by the same hodoscope hit, introducing a statistical

dependence in their outcomes; this is most evident in the zero-noise, perfect efficiency

case, where exactly one of the two frames will be triggered. Rather than treat these

statistical dependencies, each hodoscope coincidence will instead define a ”block” of

tagged frames; by treating these independent blocks rather than the individual, de-

pendent frames comprising them, simple binomial statistics can be recovered. This,

however, requires that all blocks are disjoint—that is, no frame is tagged by more

than one hodoscope coincidence. To avoid this additional complexity, blocks sharing a

frame with any other block are discarded. This procedure is illustrated in Figure 5.16.

Because each block is by construction independent, blocks with the same number

of frames n should have identical probabilities pn of at least one frame being triggered.

Considering both signal and noise, the probability of a block containing at least one

triggered frame is given by:

pn = 1− (1− εα)(1− η)n . (5.10)

Here εα and η are, respectively, the probabilities that a muon triggering the hodoscope

also triggers the phone, and that a single frame is triggered by any other kind of event.

If Bn is the total number of blocks with n frames, then the number of those blocks
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Figure 5.16: Assembly of frames into blocks from three hodoscope coincidences, shown
in red, blue, and green. Coincidence windows (here, roughly 2.6 frame lengths) are
applied to the timestamps at the start of each frame. As the red and blue blocks share
a frame, neither are used in the analysis.

which are triggered follows the binomial distribution:

Bn,T ∼ Binom(Bn, pn) , (5.11)

and so pn can be estimated as:

p̂n =
Bn,T

Bn

σ̂2
pn =

p̂n(1− p̂n)

Bn

.

(5.12)

The untagged frames (explicitly, frames further than some threshold τ/2 from the

nearest hodoscope timestamp) can then be used to quantify η. As the block formalism

was introduced to handle the statistical dependence introduced by tagging, no such

treatment is necessary here: under the assumption that all events are Poisson and

thus independent, individual untagged frames will follow simple binomial statistics.
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Denoting the numbers of triggered and total untagged as U and UT , respectively, the

requisite probability is, similarly to (5.12):

η̂ =
UT
U

σ̂2
η =

η̂(1− η̂)

U
.

(5.13)

With this measurement of η, (5.10) can be solved for the desired quantity εα. As

each value of n will yield a different estimate, a weighted average for all values of n is

computed with the block counts Bn as weights. This yields the main result:

ε̂α = 1− 1

Btot

∑
n

Bn(1− p̂n)

(1− η̂)n
(5.14)

σ̂2
εα =

1

B2
tot

[∑
n

p̂n
Bn(1− p̂n)

(
Bn(1− p̂n)

(1− η̂)n

)2

+
η̂

U(1− η̂)

(∑
n

nBn(1− p̂n)

(1− η̂)n

)2
 (5.15)

where Btot =
∑

nBn.

A toy Monte Carlo was constructed to verify eqs. (5.14) and (5.15). Trigger and

hodoscope timestamps were first generated according to Poisson statistics with a pre-

defined εα, hodoscope rate, and noise rate. Signal and noise timestamps were then

associated with frames, and information about their multiplicities was destroyed. The

analysis was applied to these hodoscope timestamps and frame triggers—first by tag-

ging frames according to a chosen value of τ , and then by computing a test statistic

for εα. The distributions of these test statistics are shown in Figure 5.17 with 100,000

samples of 106 frames for various values of εα, λhodo, λnoise, and τ .

Yet on larger time scales, triggers are not truly Poisson-distributed. The phones

exhibit day-night temperature shifts, which in turn creates cyclical variations in the

thermal noise. Nonetheless, this algorithm is relatively insensitive to a time-varying
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Figure 5.17: Efficiency estimates (time units in multiples of tF ) for:

(a) εα = 0.8, λhodo = 0.005, λnoise = 0.05, τ = 1.2

(b) εα = 0.3, λhodo = 0.02, λnoise = 0.2, τ = 1.2

(c) εα = 0.01, λhodo = 0.02, λnoise = 0.1, τ = 5

The left plots are histograms of efficiency values reconstructed from Monte Carlo simu-
lations, and the right plots show the pull distribution of these efficiency measurements
overlaid with a standard normal curve.
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Figure 5.18: Illustrations of the geometric Monte Carlo, with particles generated from
scintillator A (left), and the CMOS (right).

Poisson rate: repeating the simulations in Figure 5.17, but removing all noise in the

first half of the runtime, biases the efficiency downward by only a few percent. The

impact of far more smaller shifts in the rate (< 20%) during the experiment will

therefore be left as a systematic uncertainty.

5.3.2 Geometrical acceptance

In order to calculate the geometric acceptance α in (5.8), muons were simulated passing

through two rectangular scintillators with an infinitesimally thin CMOS between them.

These virtual particles were generated uniformly on planes bisecting each of the three

surfaces with a directional intensity:

I(θ) = I0 cosn θ (5.16)

where a range of n = 2.0 ± 0.1 is considered, as described below. A threshold on the

muon path length through the scintillator volumes was used for counting hits: a value

of L = 3.7 ± 0.3 mm was fit to the observed coincidence rates assuming n = 2. Both

the values of n and L are described in the following section.

Ray-tracing was then used to compute the relevant acceptances. Through Bayes’

theorem, the value of α = P (CMOS | A ∩ B) was obtained from the probabilities

P (A∩B |CMOS) and P (B |A), requiring the left and right geometries in Figure 5.18,

respectively.

To set the CMOS position, a representative device of each model was disassembled
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to find the location of the CMOS chip within the phone. By comparing the dimensions

of the individual modules to those of the total assembly, the average gap size between

the modules was found to be 0.4 mm. These gaps were included in the geometry and

a 0.4 mm uncertainty was also assigned to all distances within the simulation.

To propagate these uncertainties to the computed geometric acceptance, each sim-

ulation was repeated 100 times with independent Gaussian displacements in the mea-

sured quantities: the phone and scintillator positions and the path length threshold

L. The value and uncertainty of the acceptance were estimated from the mean and

standard deviation of these trials. To estimate the additional uncertainty from the

zenith angle distribution, this analysis was then repeated for n = 1.9 and n = 2.1,

requiring separate fits for L.

As a final consideration, lens-shading gains in the S6s and S7s produced lower

saturation levels in photo-electrons at the outer edges of the sensor; consequently, the

highest thresholds in these devices sampled only a small fraction of the sensor area.

This dependence was absorbed into α, which was scaled by the fraction of the pixels

with saturation levels below each threshold.

5.3.3 Hodoscope systematics

Several systematic uncertainties are inherent to the hodoscope response. These include

the rates of non-muonic coincidences, either from electronic noise or other cosmic ray

secondaries; the omnidirectional efficiency, determined by muons entering or exiting

the sides of the scintillators; and the zenith angle distribution, characterized by n

in (5.16). Non-muonic coincidences bias the calculation of εα, premised on a pure

population of tagged muons, while the others influence the geometrical acceptance α.

By isolating the three scintillators and counting two-PMT coincidences, the rate of

electronic coincidences was found to be negligible: in 6 hours of running with the lowest

viable thresholds, only a single coincidence was registered among the three possible

PMT pairs.

The hodoscope efficiency to muons only partially traversing the scintillators was
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Figure 5.19: Coincidence rates (corrected for combinatorial background) for PMTs
B and C vs. bias voltage. Centers of the scintillators are separated by 9.6 mm and
43.4 mm, plotted on the left and right axes, respectively. PMT thresholds are restricted
to the plateau in Figure 5.13.

measured by varying the PMT thresholds and separations between the scintillators,

both of which modify the relative abundance of these muon tags. Figure 5.19 shows

the dependence of the observed coincidence rates on these two variables. Notably,

coincidence rates fall more sharply in the near geometry: a greater fraction of these

tags are due to partially-traversing muons, which are disproportionately excluded by

higher thresholds.

This systematic was parametrized in the toy Monte Carlo by a threshold L on the

muon path length through each scintillator. To relate L to the coincidence rates in

Figure 5.19, the ratio of far-geometry and near-geometry rates was determined by the

Monte Carlo for 0 ≤ L ≤ 6 mm (the LYSO crystal height), negating the dependence

on the unknown flux; see Figure 5.20a. The inverse mapping was then applied to the

ratios of the curves in Figure 5.19, producing estimates of L, shown in Figure 5.20b.

A linear fit was found between the bias voltage and L (shown on a non-linear axis),

from which L = 3.7± 0.3 mm was obtained for a threshold of 64.

This analysis, however, is dependent upon the value of n in (5.16). As the simulated

ratios for n = 2 encompass the range of experimental values, the standard zenith angle

dependence of cosmic muons is supported in the hodoscope response. For compari-

son, the same simulation was performed with an isotropic source (n = 0), which was
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Figure 5.20: The conversion of the rates in Figure 5.19 to effective path length thresh-
olds. Description in text.
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Figure 5.21: A revision of Figure 5.20b, with the second vertical axis instead gener-
ated from a population of isotropic particles. Because no overlap exists between the
experimental and MC-generated ratios, no fit between the two could be constructed.

clearly excluded by the data; see Figure 5.21. The anticipated proportional relation-

ship between the bias voltage and effective path length threshold was also evidenced

by the data.2 The L-intercept was roughly 0.7 mm, a reasonable fit when geometric

and electronic systematics are considered.

With an established relationship between L and the threshold voltage, a third

systematic could be estimated: the rate of coincidences caused by non-muonic cosmic

ray secondaries. As muons have greater penetrating power than the “soft” component

2While the errorbars admittedly appear to be quite large for the fit, the one-sided p-value for the
χ2 statistic was a moderate 0.05. When the same analysis was applied on several slices of the data,
no apparent overfitting was present.

88



61 62 63 64 65 66 67 68 69
PWM threshold

110

120

130

140

150

160

170

180

J 1
[H

z/
m

2 ]

Accepted muon flux
Far (unshielded)
Near (unshielded)
Near (shielded)

180 200 220 240 260 280 300 320
Threshold voltage [mV]

Figure 5.22: Estimated flux vs. PMT threshold voltage. By construction, the flux
values for the near and far geometries are very close relative to the random error
involved. The blue band represents the range of experimental muon flux values at sea
level in Table 3.12 of Ref. [139], excluding those with energy cutoffs above 0.4 GeV.

of the cosmic ray flux—high-energy photons, electrons, and positrons typically blocked

by lead shielding—this would be observed as an excess flux above well-established

values. To measure the muon flux from the observed hodoscope rates, the Monte

Carlo was used with the fitted values of L to find the acceptances of both the the near

and far geometries as a function of threshold voltage. The resulting flux values are

presented in the blue and orange datasets in Figure 5.22.

As the experiment was performed at an altitude of only 119 m, the discrepancy with

other experiments at sea level suggests a significant non-muonic component. The soft

component of cosmic ray secondaries is characterized by a similar angular dependence

to muons at sea level—hence the excellent agreement with n = 2 in Figure 5.20—and

can constitute up to 30–40% to the total flux [139], in agreement with the observed

excess. For a purer set of muon tags, a lead brick measuring 8”×4”×2” was suspended

several millimeters above the scintillators, with the 4” side extending vertically, pro-

ducing the green dataset in Figure 5.22 within the accepted range.

Lastly, the value of n, quantifying the zenith angle distribution, was determined

from Figure 5.23. As the observed flux with shielding was still at the upper edge of
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Figure 5.23: The exponent n in the zenith angle distribution vs. minimum muon
momentum sampled, taken from Figure 3.60 in Ref. [139].

the range of accepted values, the muon momentum cutoff is expected to be among the

lowest of the values cited in Ref. [139]. Consequently, the value of n was estimated at

2.0± 0.1.

5.4 Results

With the lead brick above PMT A as before, the three pairs of phones were run in

the hodoscope for roughly two weeks each, at which point the geometric uncertainty

became dominant; see Table 5.1. Following the analysis in Section 5.3, the efficiency

was calculated for each threshold at which a significant population of frames (> 20%)

were not triggered; below this level, the higher random error and systematic error from

time-dependent thermal noise made the resulting estimates unreliable.

The resulting efficiencies are plotted in Figures 5.24 to 5.26, and several values are

listed in Table 5.2. Importantly, the errors across each curve are highly correlated:

as the threshold increases, smaller subsets of the same dataset are used. Systematic

errors in α, moreover, scale each curve as a whole and dominate the total uncertainty.
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Table 5.1: Estimates of the uncertainty in muon efficiency for an S7 smartphone for var-
ious thresholds on Ne, the number of photoelectrons collected. Statistical uncertainty
(Eq. (5.15)) and systematic uncertainty due to experimental alignment, partially-
traversing muons, and the zenith-angle distribution (Eq. (5.16)) are provided.

Uncertainty in efficiency
Contribution Ne = 20 Ne = 50 Ne = 100

Statistical .039 .023 .019
Exper. alignment .041 .034 .020

Partial trav. muons .022 .018 .011
Zenith angle distr. .025 .021 .012

Total .067 .051 .033

Table 5.2: Measured efficiencies for several phone models, as a function of a threshold
on the number of photo-electrons. The first column is the minimum viable threshold,
also given, below which the sensor noise and corresponding uncertainties rapidly in-
crease. Uncertainties include all statistical and systematic uncertainties, dominated
by the uncertainty on the geometric acceptance. For the two S6s and S7s, the average
values of the (nearly identical) means and uncertainties are provided.

Selected efficiencies
Phone Min threshold Ne = 50 Ne = 100

S6 .74± .07 @ 43e .72± .06 .47± .04
S7 .87± .07 @ 20e .70± .05 .43± .03

V20 ISOCELL .73± .06 @ 33e .69± .05 .44± .03
V20 Exmor .27± .02 @ 21e .19± .02 .14± .01

As a check on the systematic uncertainty, the efficiencies of the two S6 and S7 de-

vices are plotted together in Figure 5.24. An agreement within 1σ is observed3 across

nearly the entire range of sampled thresholds, confirming the degree of precision with

which the phones were aligned and the uniformity within sensors of the same model.

Furthermore, this demonstrates that the differences between the scintillator-PMT

modules, even under slightly different thresholds, were not ultimately large enough

to substantially influence the results: the magnitude of this effect is manifestly in-

significant compared with other sources of error.

Since the V20s have two different sensors, however, the systematics are instead

checked by computing efficiency curves for all three pairs of scintillators using the

appropriate acceptances; Figure 5.25 shows these curves for the ISOCELL and Exmor

sensor, respectively. Unlike in Figure 5.24, these three curves should not necessarily be

3Again, this level of agreement is caused by the the lack of independence within each curve.
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identical, as including the far scintillator in coincidences greatly restricts the solid angle

sampled by the hodoscope. Instead, the two far-geometry curves are closely aligned for

both phones, while diverging from the curve derived from the adjacent scintillators: a

pattern also seen in analogous graphs for the S6s and S7s. This divergence is small for

the Samsung sensor (and the Galaxy S6 and S7, not pictured), while the Sony sensor

shows a more substantial (> 2σ) gap near the lowest thresholds.

Even beyond this gap, the efficiencies from this last sensor appear to be an anomaly,

with the far-geometry efficiency a factor of 5 lower than the other three phones. In

Chapter 7, a possible explanation for this poor performance will be explored. These

other three, however, show excellent agreement despite their slightly differing pixel

designs; see Figure 5.26). The relationship of this curve to the pixel geometry will be

further explored in Chapter 8.

5.5 Discussion

For all but the LG V20 with the Sony sensor, the values of Aµεµ at the lowest feasible

thresholds are within the range considered by Ref. [83], falling between (1.4 – 2.0) ×

10−5 m−2, when the minimal acceptance Aµ = ACMOS is considered. Given that the

optimistic bound in Ref. [83] was twice the area of the largest sensor, such an efficiency

would not be observable in this experiment. However, this physical limitation does

not necessarily exclude such higher values: secondaries generated when muons pass

through nearby shielding—roofs, walls, etc.—may also contribute to the acceptance.

Extrapolating the true Aµεµ from the ”strict” ACMOSεµ is attempted in Chapter 8.

Furthermore, these efficiencies depend both on RAW buffers being sampled, and on

unrealistically low thresholds being used. While the lowest thresholds here—triggering

just under a rate of 1 per frame—can be used to measure the sensor response, such

rates would produce unreasonably high combinatorial noise for reconstructing show-

ers. Fortunately, the background noise drops rapidly past these nominal thresholds,

suggesting that a more realistic trigger might perform nearly as well.
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Figure 5.24: Efficiency vs. threshold as for the Samsung Galaxy S6 (left) and Samsung
Galaxy S7 (right). The vertical scales are fixed, the horizontal scales in electrons are
different in the two plots due to the different sensor gains.
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Figure 5.25: Efficiency vs. threshold for the LG V20, equipped with a Samsung sensor
(left) and Sony sensor (right). Curves are shown using coincidences and corresponding
acceptances from all three pairs of scintillators.
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Figure 5.26: Agreement between efficiencies in Figures 5.24 and 5.25. The top S6 and
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The combinatorial noise is also a function of the timing resolution, which was kept

exceptionally low to comfortably stream RAW frames rather than downsampled YUV.

A standard video speed of 30 FPS would be preferable for shower reconstruction, but

would potentially cost a large fraction of the efficiency; further studies are needed to

discern the relationship between efficiency and downsampling. However, the results

suggest that higher frame rates, higher efficiencies, and a less noisy trigger are not

mutually exclusive: the S7 performed the best of all three models, potentially due to its

shorter frames incurring smaller dark currents. Beyond the scope of this dissertation,

finding the optimal balance between the efficiency and shower noise will be the next

logical step in quantifying Crayfis’s performance.
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Chapter 6

Radioactive Source Tests

The successes of the previous chapter could be extended to other equally valuable

measurements of the sensor response with the completed FishStand app; modifying

its structure for other experiments while using the same calibrations was a straightfor-

ward endeavor. The third method for distinguishing signal from noise in Chapter 3—

exposing the phones to a particle emitter of known composition—was consequently

attempted under two different approaches. In this chapter, the photon efficiency mea-

surements from Ref. [83] are repeated with the many advances of the FishStand app,

and in the next, a set of phones are exposed to 120 GeV protons in the MTest beamline

at the Fermi National Accelerator Laboratory (FNAL).

6.1 Statistical analysis

The measurement ofAµεµ of the previous chapter assumed straight muon paths through

the scintillators and CMOS, with energy being deposited primarily through soft colli-

sions [151]. Under this model, the acceptance Aµ was taken to be equal to the active

sensor area ACMOS, and the efficiency εµ could be understood as the fraction of muons

passing through the sensor which produced a detectable pixel response. Though some

hard-scattered electrons from the scintillators or plastic also may have contributed to

the CMOS response, this minor systematic was absorbed into the efficiency. Such a

treatment was not a defect in the analysis, however: electrons scattered from walls or
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ceilings contribute to Crayfis’s shower sensitivity, and can rightfully be included in

the device efficiency.

For high-energy photons, which deposit energy in the CMOS indirectly through

Coulomb-scattered or pair-produced electrons, this simple picture is no longer ade-

quate. As this scattering can occur within the sensor itself, the lens glass, or other

intervening materials, the acceptance Aγ may be substantially larger than ACMOS, and

εγ quantifies the CMOS efficiency to scattered electrons rather than to incident pho-

tons. As many such electrons may be scattered by a single photon, some ambiguity

arises in the definitions of Aγ and εγ. Instead, the full detector cross section Aγεγ is

taken as fundamental, defined as the rate of photon detections divided by the pho-

ton flux. This quantity accordingly depends on the material between the radioactive

sources and the CMOS.

For a radioactive point source, the detector cross section is given by:

Aγεγ =
4πd2

Rγ

(λsrc − λbg) (6.1)

where d is the separation between the source and the sensor, λsrc and λbg are the rate

of detections with and without a source present, respectively, and Rγ is the source

activity. As a single photon may produce multiple secondaries, the multiplicity of

tracks in a frame cannot be used as a proxy for the number of photon detections;

instead, the approximately1 Poisson rate of triggered frames is used to reconstruct λsrc

and λbg.

The rates of triggered frames and detected events (photons or background) are

related by:

Ti
Ni

= 1− e−λitF (6.2)

where tF is the frame duration, λi = {λsrc, λbg} for runs with and without a source

1As two photons are emitted per 60Co decay, this rate does not strictly follow Poisson statistics.
However, the probability of detecting both photons in a single frame is negligible given the small
sensor area.
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present, respectively, and Ti and Ni are the number of triggered and total frames in

the corresponding run. By inverting this relationship and inserting λsrc and λbg into

(6.1), the detector cross section can be measured directly in terms of frame statistics:

Aεγ =
4πd2

RγtF
log

(
1− Tbg/Nbg

1− Tsrc/Nsrc

)
. (6.3)

To employ (6.3), the photon activity Rγ and distance d must be precisely known.

The activities of the three sources from Ref. [83], 226Ra, 137Cs, and 60Co, were obtained

from previous gamma spectroscopy measurements adjusted for 6.6 years of decay. Rγ

was then computed from each activity using both X-ray and gamma-ray lines. Due to

the varying beta spectra of the three sources, however, differing degrees of shielding

were included in the geometry, which influenced the value and precision of d.

6.2 Shielding and geometry

A proper measurement of the photon efficiency requires ample shielding for the beta

radiation produced by these sources. As the photon efficiency is expected to be much

lower than that of MeV-scale electrons, even a small amount of penetrating beta

radiation could substantially bias the result.

For 60Co, this effect was essentially negligible: the primary beta line is at 318 keV—

which the lens glass alone would be sufficient to stop—while all other lines compose

approximately 0.1% of decays. 137Cs and 226Ra, however, both contain prominent beta

lines with energies above 1 MeV; for instance, 214Bi, a daughter isotope of 226Ra, emits

a 3.3 MeV beta in 18% of decays. Especially for 226Ra, screening out beta radiation

entirely would inevitably block a considerable number of X-rays and gammas as well.

Consequently, two measurements of the detector cross section were performed:

a moderately-shielded measurement analogous to the experimental configuration in

Ref. [83] and a heavily-shielded measurement for comparison with the Monte Carlo

pixel model in Chapter 8. In the first approach, holes were drilled through 2” wax

bricks to secure the sources on one face and to align the phones on the opposite
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Figure 6.1: Measurements of the detector cross section, normalized by the sensor area,
versus trigger thresholds for 60Co (left), 137Cs (center), and 226Ra (right). Thresholds
are provided in terms of collected electrons using the gains calculated in Section 5.2.1.
Measurements with wax/epoxy shielding are indicated by solid lines, and lead shielding
by dashed lines.

face; empty space within the brick was then filled with an epoxy to shield against

beta radiation. In the second approach, 1/2” of lead shielding was instead used to

fully screen out betas for 137Cs and 226Ra, though with a less precise alignment. The

activity of the 226Ra was sufficiently high that the wax and lead shielding could be

stacked, generating a smaller relative uncertainty in d while maintaining trigger rates

well above background.

6.3 Detector cross section measurements

One model of each phone from the hodoscope experiment was exposed to each of the

three sources, the results of which are presented in Figure 6.1. As in Section 5.4,

Aγεγ is computed at each threshold value, producing curves with many of the same

features and caveats as previously discussed. To better compare the responses of

different phones, the detector cross section is normalized by the sensor areas, yielding

the unitless naive efficiency plotted above. Varying saturation levels (in electrons)

from lens-shading in the S6 and S7 were handled using the same first-order scaling as

in Section 5.4. The total error is dominated by the uncertainty in d, though systematic

errors in Rγ are the least precisely quantified and may be larger than assumed here.
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The values of Aγεγ with wax shielding fall between (0.6 – 1.6)×10−7 m−2, an order

of magnitude above the previous measurements. Noticeably in all three plots, the S7

curve falls more steeply than the other two, which are in near-perfect agreement. This

pattern is more pronounced where some beta contamination is suspected, and can

also be seen, albeit to a lesser degree, in the muon efficiencies in Figure 5.26. Such

a discrepancy is not entirely surprising given the differing sensor designs: both the

S6 and V20 feature 16 MP sensors (albeit with different aspect ratios) with a 1.12 µm

pixel pitch, while the S7 increases both the individual pixel size and overall sensor

area.

6.4 Extrapolation to cosmic-ray gammas

These photon efficiencies—though valuable in their own right—would not directly

translate to an Aγεγ value for Crayfis even without the complications from beta-

radiation. Though the wax-shielded detector cross sections for the three sources in

Figure 6.1 are within an order of magnitude, significant discrepancies arise from their

different photon spectra, which are in turn far different from the photon spectrum of

UHECR showers. The spectral lines for the simple decay chains of 60Co and 137Cs are

presented in Table 6.1, while the more complex spectrum of 226Ra is shown graphically

in Figure 6.2; to broadly simplify, the 60Co spectrum is exclusively composed of MeV-

scale photons, 137Cs features a single prominent gamma line at 662 keV with substantial

X-ray activity, and 226Ra encompasses a broad photon spectrum from tens of keVs to

several MeVs. Conversely, the photon spectrum in UHECR showers (in this case,

generated through bremsstrahlung) extends many orders of magnitude, with a broad

peak between 1–50 MeV as shown in Figure 6.3. As MeV-scale photons, both in 60Co

and the Pb-filtered 226Ra spectrum, produce steeper efficiency curves, the response is

undoubtedly sensitive to the photon energy. Further increasing the energy scale by a

factor of 10 or 100 may yield a significantly different Aγεγ, for better or for worse.

However, this is not the only complication in extending these values of Aγεγ to
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Table 6.1: Significant lines in the photon spectra (gamma and X-ray) of 60Co and
137Cs, taken from Ref. [140].

Prominent spectral lines
Isotope E [keV] Prob. per decay [%]
60Co 1173.2 >99.9
60Co 1332.5 >99.9
137Cs 661.7 85.1
137Cs 32.2 3.76
137Cs 31.8 2.04

Figure 6.2: Photon spectrum for 226Ra as seen in a high-purity germanium (HPGe) de-
tector. Prominent lines are marked according to the daughter isotope which generated
them: primarily 214Pb and 214Bi. From Ref. [141]

Figure 6.3: Simulated UHECR spectra for the three main secondary components at
sea level, from Ref. [83].
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Crayfis. As the photons produced by the radioactive sources can only generate sub-

MeV secondaries, the lens glass alone will shield out almost all such electrons generated

outside the glass. This ensures that only photons incident on the lens glass are capable

of triggering a sensor response, and furthermore, that a slightly thicker lens would not

significantly affect the detector cross section. Cosmic-ray photons, however, can scatter

electrons at much higher energies and with much greater penetrating depths, allowing

electrons generated in the overburden to trigger the sensor. As the distance between

this overburden and the sensor will typically be several meters for a Crayfis detector,

secondaries created by a single photon (e.g. through multiple Compton scatters) may

spread an area much larger than the sensor, increasing the acceptance relative to

the sensor size. Such effects will be considered quantitatively in Chapter 8 through

simulation.
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Chapter 7

MTest beam exposure

As a final characterization of the sensor, phones were exposed to the MTest beam at the

Fermilab National Accelerator Laboratory (FNAL). Although the primary beam was

composed of 120 GeV protons rather than a prevalent constituent of cosmic ray showers

at sea level, the incredibly high flux—200,000 per 4.2 s spill—generated far higher

statistics than either of the previous experiments with which models of the sensor

response could be fine-tuned. Unfortunately, the resulting efficiency characterized an

unusual digital filter rather than the physical response of the sensor.

7.1 Experimental design

In the tests discussed in Section 3.2, the initial Crayfis app exhibited two primary

flaws: a low resolution and an excessively restrictive online pixel trigger. The Fish-

Stand app had already resolved the former: with efficient triggering in RenderScript,

FishStand could comfortably process full-resolution RAW buffers, albeit at a low frame

rate. To eliminate the latter concern entirely, it was decided to save entire RAW buffers

captured during a spill rather than individual pixels, preserving the full sensor response

for offline analysis. The remainder of the experiment was designed around this choice.

First, a suitable phone model was chosen. In the 1 min period between spills,

a phone could typically process and upload 3–4 RAW buffers to the AWS backend;

to keep pace with the beam without dropping frames, a frame rate below 1 Hz was
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Figure 7.1: A rendering of the phone case used in the beam test at FNAL. The grids
along the faces and the ticks on the turntable were designed for manual repositioning
guided by the laser alignment system, but a motion table was secured for this purpose
instead.

therefore required. Of the three models calibrated for the hodoscope, only the LG

V20 had this capability, and the lack of lens-shading on this model was an additional

advantage. However, without sufficient knowledge at the time, the Sony IMX298

variant was chosen.

In order to extract an efficiency from the sensor response, a tracker was also needed.

Although a silicon telescope was held at the Fermilab Test Beam Facility (FTBF) for

this purpose, its capabilities were suboptimal for this particular design. With such

long frame exposures, fluxes on the order of 50,000 particles per frame were expected,

leaving only 10–20 microns between incident particles on each buffer; in this regime,

the telescope’s 5 µm spatial resolution was significant, while its nanosecond precision

was gratuitous for such a low frame rate. Instead, several phones aligned normally to

the beamline were used as a tracker—by construction, possessing the desired spatial

resolution—from which the efficiency of each sensor plane could be measured. A case,

shown in Figure 7.1, aligned five LG V20s to roughly 0.2 mm precision, with the phones

themselves inverted to allow access to their charging ports. A motion table was then

used to align this case to within 1◦ of the beamline.
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7.2 Trigger algorithms and calibrations

Two separate triggers were required for this experiment: an online trigger to select

frames exposed to beam spills and an offline trigger to identify hits in the uploaded

RAW frames. The first of these took the form of an additional Analysis in the

FishStand app, designed to identify, compress, and upload frames during a beam spill.

Because the beam would presumably excite a small fraction (< 1%) of pixels above

background, frames were triggered when the mean of the brightest n pixels (denoted

as qn) exceeded some threshold T , where both n and T were be fine-tuned during the

beam runs. Such fine-tuning was made possible by two features: remotely adjustable

configuration files stored on S3 and a log of qn values for each frame, both above and

below the trigger threshold. The latter proved useful both as a monitoring tool and a

source of metadata.

No hot-pixel masking was used in the frame trigger, as it was expected that the

beam signal would overwhelm any contribution from hot pixels; however, this assump-

tion was undermined by the lackluster pixel response on the IMX298-equipped V20s.

The spills at peak intensity were indeed easy to distinguish, but capturing frames

in the rising and falling tails required a precisely calibrated threshold. Hence, while

n = 487 (i.e. .003% of the total pixels) was used for the entire experiment, T was con-

tinually adjusted with the background levels, which were very sensitive to hot pixels

and temperature fluctuations.

In order to locate particle hits offline, a simple threshold at 80 DN (roughly 15 e−)

was first applied. At this threshold, a tolerable O(10) triggers were expected per frame

due to background noise, a rate confirmed through additional frames saved between

spills. This low rate was made possible by aggressive hot-pixel cuts: PixelStats was

run in dark conditions both before and after the beam test, and cuts on the second

brightest values for each pixel excluded slightly over 1% of each sensor. An occupancy

cut was then performed on the offline pixel triggers, removing any remaining over-

represented pixels in the beam data; see Figure 7.2.

These excited pixels were then grouped into clusters, with which a proper analysis

104



0 20 40 60 80 100 120 140
Total number of triggers

102

103

104

105

106

107

Nu
m

be
r o

f p
ix

el
s

Threshold

Figure 7.2: Pixel occupancies after cuts on second brightest values for dark frames.
An additional cut removed the tail past 12 counts out of roughly 17,000 beam-exposed
frames.

of particle hits could be performed. The DBSCAN algorithm [142] was used to con-

nect pixels within a certain Euclidean distance, forming extended chains; a number

of these stretched hundreds or even thousands of pixels in straight tracks across the

sensor. To appropriately set the distance threshold for this clustering algorithm, the

spectra (maximum pixel values per cluster) resulting from integer thresholds from 0

(no clustering) to 9 were compared in Figure 7.3. A significant drop is seen between

black (no clustering) and purple (clustering adjacent pixels), indicating that large

numbers of excited pixels were accompanied by others nearby. However, the spectral

differences fade quickly as the clustering threshold increases past 2 (blue), demonstrat-

ing particles incident on the sensor very rarely create disjoint regions 3 or more pixels

apart.1 Accordingly, this clustering algorithm was applied with a threshold of 3. For

a more straightforward analysis, these clusters were later considered as points, using

the location of the brightest pixel in each cluster.

However, the tenfold drop in the spectrum above a per-cluster maximum pixel re-

sponse of ∼100 DN required an explanation. When the same clustering algorithm was

implemented with pixel thresholds above this cutoff, no analogous feature was present;

hence, this was not an artifact of the thresholding or clustering by themselves. Fur-

thermore, the spatial profile of the clusters above and below this value were identical,

1This excludes secondaries created in the lens which strike a separate region of the sensor, which
could conceivably be very common. Rather, this analysis is restricted to pixels excited by a single
particle leaving tracks in the silicon.
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Figure 7.3: The maximum pixel response per cluster for Euclidean distance thresholds
between 0-15 in a particular run. Spectra for all other runs are virtually identical.

suggesting that the excess events were not caused by noise or hot pixels. This feature

was also observed on all frames throughout the various beam runs. This irregularity

appears to be a true feature of the pixel response, a possible explanation of which will

be offered in Section 7.5.

7.3 Alignment

To locate tracks with the five sensor planes, it was first necessary to reconstruct the

alignment of the frames, both in time and in space. While the efficiency analysis

(to be discussed in Section 7.4) only requires that the relative ordering of frames is

discovered, the spatial alignment must be precise to the scale of a single pixel.

7.3.1 Timestamp synchronization

The Android API contains two different types of timestamps: nanosecond timestamps,

which precisely measure time differences but do not have a defined zero point, and mil-

lisecond timestamps, which measure the wall clock time but with less precision. These

two were blended into a hybrid measurement in the FishStand app: the first frame

of a run was assigned the millisecond timestamp at capture, and subsequent frames

used this initial measurement as a fixed point to which nanosecond time differences are

added. For calibrating drift, this preserved the precision of the nanosecond timestamps
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while providing a reasonable reference point to align the various clocks. Due to the

continual threshold adjustments, however, this design functioned poorly; because the

reference timestamp would be recalculated with each new run, and each new threshold

adjustment created a new run, hundreds of new runs—and hundreds of independent

offsets—were generated per phone throughout the experiment.

To calibrate the many separate run clocks for each phone, the beam intensity as

a function of time was used as a common reference. The trigger statistic qn was by

design a suitable indicator of the beam flux: sharp rises in pixel activity could be

associated with the beginning of a spill, while sharp declines corresponded to its end.

Due the slowly fluctuating background levels, ∆qn between adjacent frames proved to

be a more effective discriminator for beam activity than the magnitude of qn alone:

in Figure 7.4, ∆qn is plotted against frame timestamps in an interval encompassing

several spills, from which the spill times can easily be identified. Spills were then

identified by pairs of ∆qn values, the first positive and the second negative, in nearby

frames satisfying |∆qn| > 30. The full duration of each spill was then established by

incrementally applying a lower ∆qn threshold of 6 to frames at the beginning and end

of each discovered interval.

However, these timestamps were only as precise as the (considerable) frame du-

ration. For a more refined estimate of the spill times, a “midpoint” was derived for

each spill by weighting the timestamps by the corresponding background-subtracted qn

values. With these more precise spill timestamps, spills could be more finely matched

across phone clocks.

However, using the spill times as a reference requires that a spill on one phone can

be matched with the same spill on the others. To assure that the frame timestamps

had not drifted further than the spill interval of 1 min, the timestamps were compared

to the corresponding upload times on the AWS backend—the one common reference

clock shared between all phones. Delays between capture (phone clock) and upload

(AWS clock) were found to be roughly 20 ± 10 s, where the error encompasses both

the timestamp drift and varying upload rates. As the drift was much smaller than
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than the beam interval, spills found on one clock could rightly be associated with the

spills on the others with the nearest reported times.

In the absence of a true standard clock, these timestamps were compared to one of

the phone clocks (hereafter denoted as the “reference phone”), which experienced the

least downtime during the experiment. A roughly linear drift, shown in Figure 7.5,

was found between the estimated spill times, with some variation across runs. In the

final night, two of the phones were rebooted, and thus separate fits were performed.

As discussed, residuals from this drift fit were primarily caused by the hundreds of

different offsets calculated with each new run. Conceptually, this can be written as:

ti = tspill + ri + δti

tref = tspill + rref + δtref ,

(7.1)

and so:

∆ti,ref = (ri − rref) + (δti − δtref) (7.2)

where tspill is the true spill time, ti is the drift-corrected spill time measured by phone i

(or the reference phone), and ri and δti are the run offset and random error associated

with ti.

To correct for the run offsets, the residuals ∆ti,ref of the fits from Figure 7.5 were

computed and grouped by the run number on the reference phone; see Figure 7.6a. For

each run, the mean of all ∆ti,ref , including all values of i, is denoted by gold horizontal

lines. As E(δti− δtref) = 0 and E(ri− rref) = 0, averaging ∆ti,ref across multiple spills

and phones should reasonably estimate the run offsets specific to the reference phone.

Any remaining residuals were attributed to the run clocks of the other four phones,

one of which is shown in Figure 7.6b.

Though still inexact, this degree of precision was sufficient for reconstructing the

spatial alignment. However, more exact timestamp corrections were required for the

efficiency measurements, which at least preserved the ordering of frames in different
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phones. For each spill, the number of two-sensor particle tracks were computed for all

possible pairs of frames (discussed below) and compared to combinatorial noise. The

run offsets were then further adjusted so that excess numbers of tracks were found

only in frames overlapping in time.

7.3.2 Spatial alignment

With the clocks reasonably well synchronized, the spatial alignments of the five phones

could be reconstructed. Fundamentally, this entailed transforming the pixel coordi-

nates from one sensor to another such that a significant number of corresponding hits

could be found between the two. This process requires two essential steps: finding an

appropriate parametrization for the transformation, and the computing the best fit.

Parametrization

As the divergence of the beam is small, and thus small phone displacements in the

longitudinal direction are insignificant, the most general transformation relating sensor

planes is a transverse translation coupled with a three-dimensional rotation. However,

as only the phones’ relative positions are relevant for reconstructing tracks, several of

these degrees of freedom are unnecessary: it is therefore beneficial to reparametrize

these transformations in a more useful form.

This general transformation from the sensor to the lab frame can be written in

terms of Eulerian angles as:

xl = (xs + xs,0)(cosψ cos θ cosφ− sinψ sinφ)

−(ys + ys,0)(sinψ cos θ cosφ− cosψ sinφ)

yl = (xs + xs,0)(cosψ cos θ sinφ+ sinψ cosφ)

−(ys + ys,0)(sinψ cos θ sinφ+ cosψ cosφ)

(7.3)

where (x0, y0) is the spatial translation in the sensor frame, and the lab frame is

centered and perfectly normal to the (nominal) beamline. Since the angular alignment
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Figure 7.4: Values of ∆qn for adjacent frames. An interference pattern can be observed
from the beam frequency and the frame rate.
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Figure 7.5: Differences in spill times recorded by the reference phone and the other
four, plotted against time. The phone plotted in orange had a faulty charging port,
and was consequently inactive for most of the experiment.
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Figure 7.6: Corrections for run offsets, for the reference phone (top) using the residuals
for for the other four combined, and the other four individually (one of which is shown
at bottom), based on any residuals remaining from this first step. Horizontal lines
denote a single run, and are positioned vertically at the computed offset. Colors
shown are the same as in Figure 7.5.
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of the phones is fairly precise in the transverse direction, ψ ≈ −φ. Writing this as

ψ = −φ + δ and redefining the translations in terms of the lab frame, this becomes,

in matrix notation:

xl
yl

 =

xl,0
yl,0

+

cosφ − sinφ

sinφ cosφ


cos θ 0

0 1


 cosφ sinφ

− sinφ cosφ


cos δ − sin δ

sin δ cos δ


xs
ys

 . (7.4)

The rightmost of these four matrix transformations is a rotation in the lab space,

whereas the others compress the sensor coordinates about some axis. The transforma-

tions in φ and θ can be reorganized as:

cosφ − sinφ

sinφ cosφ


cos θ 0

0 1


 cosφ sinφ

− sinφ cosφ

 = 1− v · vT (7.5)

for v = (cosφ, sinφ). While the spatial offset xl,0 may be quite large relative to the

pixel scale, the precision of the alignment assures that δ ≈ 0 and v ≈ 0. Consequently,

a grid search in this parameter space is much simpler than with Eulerian angles, in

which θ and φ are unconstrained.

Moreover, in the approximation that the beam divergence is negligible, the two-

dimensional (i.e. transverse) lab coordinates for each particle hit will be identical on all

five sensors. Therefore, these hits can be evaluated in the sensor frame of the reference

phone, rather than in the lab frame, with no loss of information. Practically, this entails

a forward transformation to the lab frame, followed by an inverse transformation to

the desired sensor frame. To first order, this can be reparametrized as:

x′ = x0 +R(δ)(1− U)x (7.6)

where R is the 2-dimensional rotation matrix, and

U =

 ux uxy

uxy uy


absorbs the two off-plane transformations previously represented by v. Hence, only 6

111



parameters are needed to characterize the alignment.

Computation

To find these transformation parameters between pairs of phones, an objective func-

tion was devised to score the goodness of fit across the parameter space. Several

considerations were included in this choice. First, for any pair of frames on different

sensors, their corresponding time intervals will only overlap partially; thus, even with

perfect sensor efficiency, only a fraction of hits will have a partner on the opposite

sensor. An ideal objective function would therefore gain from closely aligned pairs of

hits, while not suffering substantially from unpaired hits. Second, the standard for a

”good” or ”bad” fit for a pair of hits will vary according to the degree of precision of

the alignment. An initial coarse alignment would benefit from a more lenient standard,

while more precise refinements would gain from more stringent requirements. Hence,

an adjustable length scale would also be advantageous.

To incorporate these elements, the degree of closeness between a pair of hits is first

quantified. For uncorrelated and uniformly distributed sets of points A and B on the

same coordinate system, the distance between any point in A to its nearest neighbor

in B will follow the cumulative distribution function:

F (r) = 1− e−πρBr2 (7.7)

where ρB is the local density of points in B. From this distribution, an appropriate

objective function can be written as follows:

Lα(xA,xB) = α−1
∑
A

max
{
eπρBr

2
min − (1− α), 0

}
. (7.8)

For each cluster in sensor A, the CDF is first computed given the nearest cluster in

B. The resulting p-value is then compared to a threshold 1−α: clusters with p-values

above α are ignored, while those with exceptionally close neighbors in B contribute

towards the total. Naturally then, the value of α can be fine-tuned to the specific
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Figure 7.7: The alignment process for pairs of phones. Left: a grid search is first
performed in x and y using a larger value of α = 0.1, from which the region of interest
can be located. Middle: successive grid searches are performed with higher resolutions,
and including δ. Right: when the scale in parameter space is small enough so that
the objective function is well-behaved, Nelder-Mead optimization is used to precisely
locate the best fit in all six variables, using a larger sample of frames and α values
around 0.01. (x, y, δ) tuples of successive iterations are indicated by markers decreasing
in size.

stage of the calibration.

Using a combination of grid searches and Nelder-Mead optimization (Figure 7.7),

best fits were found between the reference phone and the other four. As Figure 7.8

shows, the reconstructed alignment was exceptionally precise. The observed variation

was characteristic of an angular alignment of the case to the beamline within 0.5◦

and an alignment of phones within the case to 0.2 mm. The former was roughly the

precision of the angular motion table on which the case was situated, and the latter

was the approximate layer size of the 3D-printer used to create the case; hence, such

an alignment was not unreasonable. This approach was further verified through robust

Monte Carlo simulations, in which the alignment was typically reconstructed to single-

pixel precision.

7.4 Statistical Analysis

7.4.1 Formalism

In the simplest approach, efficiency can be measured as probability that a particle

tagged on two sensors T = {T1, T2} will likewise be found on a sensor S between them.2

2Though more sophisticated methods are possible involving more than three sensor planes, sys-
tematic uncertainty increases significantly with the number of sensor planes in the approach used
here, and the minimal case will therefore be treated exclusively.
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Figure 7.8: The positioning of the sensors as seen from the beamline in a typical run,
in units of the pixel pitch (1.12 µm). Due to phones’ positioning within the case, the x
axis was oriented vertically in the lab; thus, this display is rotated 90°from the actual
lab view.

Assuming a particle’s probability of triggering a particular sensor is independent of all

other sensors, the efficiency can be written as:

ε = P (S | T ) =
NS∩T

NT

. (7.9)

When a track is found on T1 and T2, however, the exact frame on S corresponding to

this particle is not typically known; due to the unsynchronized phone clocks, each hit

may potentially be found in one of two frames. Both the numerator and denominator in

(7.9) must therefore be construed as sums over all possible sets of overlapping frames.

Tracks between the three sensor planes are constructed through spatial coincidence

windows, i.e., two hits are considered a track when |∆x| ≤ cx and |∆y| ≤ cy, for

values of (cx, cy) calibrated to each pair of sensors.3 Three-sensor tracks are then

assembled from pairs of two-sensor tracks sharing a common hit on the middle sensor.

This preference given to the middle sensor is not arbitrary: due to the finite beam

divergence, larger coincidence windows are needed as the physical distance between

phones increases. Computing from the middle sensor therefore yields less combinatorial

noise and smaller uncertainties.

To compute the combinatorial background—the expected number of false tracks

from the distribution of hits—the simplest case is first considered: that of the two-

3As all tracks satisfying these proximity requirements are counted, a single hit may be included
in several tracks. Yet, rather than being a defect, this substantially simplifies noise calculations.
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sensor coincidence count Q2. If there are N1 and N2 uncorrelated, uniformly dis-

tributed hits on two frames, F1 and F2, N1N2 possible “tracks” can be drawn between

them; however, only a small fraction will be within the coincidence window, selected

with area C = (2cx + 1)(2cy + 1). Since each the N1N2 tracks has a probability C/A

of being counted, where A is the area of intersection between the two sensors relative

to the beamline, the mean number of coincidences found will therefore be:

E(Q2) = N1N2CA
−1 . (No true tracks)

For the case of a nonuniform distribution of hits P (x) on both sensors, it can be shown

that the factor of A−1 is replaced by
∫
A
P (x)2 dA.

If correlated hits—true tracks—are then introduced, where N12 hits out of both

N1 and N2 will by construction be counted as coincidences, the total number of coin-

cidences becomes:

E(Q2) = N12 + (N1N2 −N12)C

∫
A

P (x)2 dA . (7.10)

As C
∫
A
P (x)2dA� 1, the number of true tracks can be estimated from the observed

coincidence count q2 as:

N12 = q2 −N1N2C

∫
A

P (x)2 dA . (7.11)

Extending this to three-sensor coincidences, combinatorial noise may be caused by

three unrelated hits, or more likely, by real two-sensor tracks with a spurious hit on

the third. The corresponding background correction becomes:

N123 = q3 − (N1N23C1 +N2N13C13 +N3N12C3)

∫
A

P (x)2dA

−N1N2N3C1C3

∫
A

P (x)3 dA

(7.12)

where Nij is calculated from (7.11), and C1 and C3 are the areas of the coincidence

windows between the middle and outer sensors. C13, meanwhile, quantifies the prob-
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ability of a real track through F1 and F3 being matched with an unrelated hit on F2.

Using ri = xi − x2, this is calculated as:

C13 =

∫
C1

dr 1
∫
C3

dr 3 P (r 1 | r 3) (7.13)

where P (r i | r 3) is the probability that if a hit is found at r 3 on F3, a hit will likewise

be found at r 1 on F1, averaged over all values of x2.

7.4.2 Intermediates and systematics

Several key elements in the previous section are non-trivial to extract from the data.

In particular,
∫
P (x)2 dA and

∫
P (x)3 dA must be calculated from the observed beam

profile, and the coincidence windows (cxi, cyi) require a careful calibration—from which

the rather opaque Eq. (7.13) must be applied. Additionally, the analysis neglects that

two or more particle hits may be clustered into one, for which a correction to first-order

is proposed.

Beam profile

In order to calculate
∫
A
P (x)k dA, two-dimensional histograms of the hit occupancy—

that is, a non-normalized P (x)—were first constructed for each phone, using only

the overlapping area of each sensor; see Figure 7.9a. Since the hits per bin will be

approximately Poisson-distributed,4 an unbiased estimator for the mean number of

hits squared in a particular bin is:

E(N2 −N) = E(N2)− E(N)

= E((N − N̄)2) + E(N)2 − E(N)

= σ2
N + E(N)2 − N̄

= E(N)2 .

(7.14)

4Since only a single hit per pixel can be recorded per frame, the distribution is actually binomial,
but these distributions converge as the number of frames approaches infinity.
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For higher order terms, it can likewise be shown that E
(∏n−1

i=0 (N − i)
)

= E(N)n. The

integral can then be calculated by normalizing this statistic and computed the sum of

the entire grid.

However, the accuracy of this measurement is dependent upon the chosen binning

size. Small bins become overly sensitive to hot pixels—both cuts on normal pixels

with high trigger counts and mild hot pixels which escaped these cuts will distort this

statistic—while larger bin sizes will more poorly capture the curvature of the profile.

For each phone, then, the calculated
∫
A
P (x)k dA is evaluated as a function of chosen

bin size in Figure 7.9b. To present this in more relatable units, the reciprocal of this

integral (i.e. the effective overlap area) is instead plotted. A bin size of 8 on the edge

of the plateau was selected for subsequent analysis.
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Figure 7.9: Measurement of
∫
A
P (x)k dA. Spatial histograms of hits were first con-

structed for each phone (at left, the phone furthest upstream is shown). The bottom
and right edges are excluded, as this region in physical space is not sampled by one of
the other sensors. This profile is used to estimate the

∫
A
P (x)k dA (right) as a function

of the bin width; specifically, each mark n on the horizontal axis corresponds to bins
of dimension n× n.

Several features are noteworthy in Figure 7.9. A larger variation is present in the

per-device curves than was found in simulated data, and the curves, from darkest to

lightest, fall in order the phones were positioned from upstream to downstream. Like-

wise, the total hits per spill also monotonically increases with distance downstream.

Both of these trends are presumably due to scattered secondaries, which decrease the

sharpness of the beam profile.
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Coincidence windows

To estimate the spatial spread between corresponding hits on different sensors, the

sensors were evaluated in pairs: for each event on the first sensor, all nearby hits on

the second (using both co-temporal frames, if they were recorded) were added to a two-

dimensional histogram, and the combinatorial background from (7.11) was subtracted

from the resulting counts. This is displayed for a typical run in Figure 7.10. The shape

of these excesses mirror the observed beam profile, and their length scales correspond

to the physical distance between the each pair of phones.

Figure 7.10: Histograms of relative spacing between hits on different sensors, corrected
for background. The spread increases from adjacent phones (left) to phones two (mid-
dle) and three (right) spaces apart in the case. The pixel pitch was used as the bin
size, although the transformed coordinates were no longer integer values.

From these plots, coincidence windows were chosen encompassing the entire excess

for each pair of sensors; for the plots in Figure 7.10, for example, windows of dimension

9×7, 19×11, and 23×13 were selected. Moreover, these histograms, when normalized,

provide the probability P (r i | r j) needed in (7.13). By integrating over the appropriate

limits set by the choice of coincidence windows, this last remaining term in (7.12) could

be computed.

Clustering corrections

Finally, a correction was devised for the effects of clustering, which may combine two

nearby particle hits into one. As the analysis above assumes that all hits correspond

to only one particle, both the number of two-sensor and three-sensor tracks in (7.11)

and (7.12) will be underestimated. Consequently, a relationship between the number
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of clusters n and the true number of triggered particles N is sought, from which N(n)

can be applied in these formulae.

The inverse n(N) is first approached by considering N particles sequentially trig-

gering a sensor. According to (7.7), the ith hit has a probability

pi = e−πρi−1L
2

(7.15)

of not being clustered with any of the previous hits, where L is the clustering threshold

and, assuming a uniform spatial distribution, the previous density of hits ρi−1 is simply

(i− 1)/A. This additional hit will either increment the current number of clusters by

1 (with probability pi) or leave it unchanged;5 after N hits, the number of clusters can

therefore be written as a sum of Bernoulli random variables with probabilities pi:

n =
N∑
i=1

Xi (7.16)

for which the expected value (i.e. n(N)) is:

E(n) =
N∑
i=1

pi

=
N∑
i=1

e−(i−1)πL
2/A

=
1− e−NπL2/A

1− e−πL2/A
.

(7.17)

Inverting this yields the desired quantity:

N = − A

πL2
log
(

1− n
(

1− e−πL2/A
))

. (7.18)

With a toy Monte Carlo, this formula was shown to be accurate to within a few percent

for the range of hit densities observed in this experiment. To correct for a nonuniform

beam profile, A−1 is again replaced by
∫
A
P (x)k dA.

5While there is a small probability that a hit will “bridge” two other clusters and decrease the
total number of clusters, this outcome is not considered here.
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7.4.3 Verification with Monte Carlo

To verify that these methods accurately reproduce the particle efficiency, the analysis

was applied to simulated data. In this Monte Carlo, particles were ray-traced through

four sensor planes, and pixels intersecting with these particle trajectories were saved

with a fixed efficiency and assigned digital response values from a uniform distribution.

The particles were assigned a Gaussian beam profile with a flux, spot size, and diver-

gence configured to the observed beam parameters. Moreover, the sensor planes were

given fully general displacements and rotations with a slightly poorer alignment than

was measured experimentally. Hits were grouped into frames by a realistic buffering

system, and clustered with the same threshold used in Section 7.2.

However, several noteworthy features of the experiment were not replicated in

the simulation. While a small drift was applied to the timestamps, the process of

correcting run offsets was bypassed. No hot pixels were included in the simulation,

nor were scattered secondaries. As one last point of departure, hits were created as

single excited pixels rather than extended clusters.

As the full analysis was time-intensive, trials were performed individually rather

than in aggregate through a pull distribution; an example trial is shown in Figure 7.11.

In this particular simulation, the spatial alignment algorithms in Section 7.3.2 were

first applied to a set of 300 spills with an efficiency of ε = 0.2 at the lowest threshold.

Using the analysis of this section, curves of efficiency vs. threshold were constructed

for four permutations of (T1, S, T2), shown in Figure 7.11a. As a uniform distribution

of triggered pixel values was used, the true efficiency decreases linearly with the applied

threshold, clearly reflected in the efficiency reconstruction. Averaging over the four

curves, the accuracy was roughly within 1% of the true value, as shown in Figure 7.11b.

Systematic error derives principally from the clustering of particle hits; when clustering

was excluded from the simulation, the accuracy improved by an order of magnitude.

Although the clustering correction proposed in the previous section shifts the result in

the correct direction, the magnitude of this correction is far too small.
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Figure 7.11: Computed efficiency vs. threshold for simulated data (left), and fractional
error from the true efficiency curve (right). The labels denote which of the four sensors
were used in each curve, in the format T1-S-T2, with sensor 1 being the furthest
upstream.

7.5 Results and discussion

Four runs were analyzed, lasting several hours each with different beam profiles and

intensities. Since the computed values of
∫
A
P (x)k dA were a significant source of sys-

tematic error, efficiency measurements were restricted to sets of 3 adjacent phones,

under which the coincidence windows and the combinatorial background were min-

imized. As one of the phones was offline for most of the experiment, only seven

such datasets out of a possible 12 were available over these four runs, presented in

Figure 7.12 below. The computed efficiencies were comparable to the far-geometry

configurations in Figure 5.25b, with a similar ankle in the power law spectrum at

roughly the same threshold.

This confirms the results of Chapter 5 for this particular sensor, the Sony IMX298.

As the hodoscope results showed, this is not a general feature of smartphone sensors

or of the physical device, but a particular feature of this sensor model. As the IMX298

and its twin, the Samsung S5K2P7, are identical in pixel pitch and likely pixel depth

while displaying vastly different responses (Figure 5.25), the physical pixels are unlikely

to be at fault for this unusually low efficiency. Rather, the camera software is most

likely responsible.

An unusual form of digital processing can can be inferred from the IMX298 pixel

statistics plotted in Figure 7.13. Here the per-pixel variance and mean are plotted a
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Figure 7.12: Efficiency vs. threshold for four beam runs, arranged in (nonlinear) order
of intensity by color, with red corresponding to the highest flux. In the terminology of
Section 7.4.3, the phone configurations 1-2-3 (dotted), 2-3-4 (solid), and 3-4-5 (dashed)
are presented where available. The displayed uncertainties reflect only the random
error observed among spills, ignoring the systematic error from

∫
A
P (x)k dA.

run in dark conditions, with the second brightest value in the run on the color axis.

While a number of notable features are present in this plot, the clearly visible loop

on the right is the most unexpected. Typically in such plots, a long tail of hot pixels

extends to the right, ending at saturation; here the tail is bent into a counterclockwise

loop instead.

This is likely caused by the dynamic masking of hot pixels in the IMX298 [143]. If a

hot pixel reads out a high value, but is instead masked by the camera and replaced with

a low value, this single measurement would increase the pixel’s variance rather than

its mean (i). However, when many of these replacements occur, the mean is eventually

pulled lower while the variance stays high (ii). For the most active pixels, the majority

of measurements are suppressed, decreasing the variance as well as the mean, until

at the far end of the spectrum, every value is masked (iii). This interpretation is

supported by the second maximum statistic, which increases along the loop until the

cluster marked at (iii). If such an algorithm also targeted solitary bright pixels created

by incident protons or muons, the IMX298 would naturally perform poorly in the beam
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Figure 7.13: Sample variance vs. mean for a dark run of the Sony IMX298. Description
of labels in text.

and hodoscope experiments.

Such an explanation is supported by several features of the experimental data. In

Figure 5.25b, muons tagged by scintillators AC and BC—entering at narrower zenith

angles, and thus exciting fewer pixels—exhibited significantly lower efficiencies than

those tagged by AB. Likewise, slicing the spectrum in Figure 7.3 (i.e. with the selected

distance threshold of 3) by the number of pixels per cluster reveals that this sharp

decline is present specifically among solitary pixels, although clusters of 2 experience a

smaller dip at the same cutoff;6 see Figure 7.14. While a larger decline would naturally

would naturally be expected in solitary pixels—events with large energy depositions

would be more likely to excite neighboring pixels through electron drift or by delta

rays—the sharpness in the 1-pixel spectrum and discontinuity in the 2-pixel spectrum

clearly suggest a digital effect. As this decomposition shows, the ankle features in

Figures 5.25 and 7.12 are formed by the population of 2-pixel clusters overtaking the

suppressed tail of solitary pixels.

The variation among these efficiency curves—much larger than the systematic er-

rors observed in the simulation—likewise merits discussion. This variation is caused,

at least in part, by systematic error in
∫
A
P (x) dA discussed in Section 7.4.3, which

6Under the interpretation provided here, this feature may be caused by, e.g., would-be clusters of
three in which the brightest pixel was masked. The left shoulder of the 2- and 3-pixel distributions
is simply due to combinatorics, as the maximum pixel value per cluster is plotted.
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Figure 7.14: Histograms of the highest pixel values in clusters of 1, 2, and 3 pixels,
excluding hot pixels, in the spills labelled “Run 1” in Figure 7.12.

the simulation fails to fully consider. Beam runs with lower flux—and hence lower

combinatorial noise—are less exposed to this error, and would therefore be more accu-

rate. However, in light of the dynamic masking discussed above, another explanation

is possible: if the masking algorithm relies on nearby pixel values, or on the average

pixel response of the sensor as a whole, a higher beam flux might lead to fewer tracks

being masked. Such a dependence on flux is indeed observed in Figure 7.12. In either

scenario, the lower curves would more accurately reflect the phones’ sensitivity to more

common doses of radiation.

While the case of the IMX298 demonstrates that innovative camera firmware can

drastically reduce the efficiency, the trend (for Android, at least) has always been

towards more manual camera control. During the development of the Crayfis app,

features such as RAW buffer access, customizable lens-shading patterns, hot-pixel

masking, and even some control over hot-pixel and black-level algorithms have been

added to the developer’s toolkit. While not all devices support each of the camera

options afforded by the Android platform, in general, newer devices tend to be more

flexible. Thus, it can be expected that such sensors limited by digital effects will be

less prevalent in the future.
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Chapter 8

Modelling the Response

With precise efficiency measurements for muons and photons, the shower efficiency of

Crayfis could be estimated to a limited degree. However, such an estimate would

suffer from several systematic biases, some of which have been previously discussed.

First, the photons from the radioactive sources were on the order of 1 MeV, far below

typical photon energies produced by UHECR showers. Second, the muon efficiency

found in Chapter 5 does not incorporate the full acceptance of secondary electrons

being scattered from the overburden in a typical home; while electrons below several

hundred keV will be stopped by the lens, GeV-scale muons can certainly scatter elec-

trons above this cutoff. Third, the e± component of the showers has thus far been

entirely neglected due to its limited range, though GeV-scale electrons are numerous

and capable of penetrating through a typical roof. Finally, these results were obtained

for only four sensor models, all of which were designed in the years 2015-2016; ac-

cording to Figure 2.3, more recent smartphone sensors typically contain longer and

narrower pixels. All of these effects can be quantified through careful modelling. Be-

yond such extrapolation, however, simply tethering the calculated efficiencies to the

known pixel structure would be a strong confirmation of the results.

Though a large body of literature exists on Monte Carlo simulations of pixel

sensors, these typically treat either visible photons and dark noise an image sen-

sor [144–146], or ionizing radiation on significantly larger pixels in a dedicated particle
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detector [147–149]. In both cases, the exact geometry and doping profiles of the p–n

junction are often known, allowing for a precise simulation of the electric field and

of the resultant photocurrent. By contrast, the hybrid case of ionizing radiation on

an image sensor is considered here, where the n-well size is considerable relative to

the p-substrate. In addition, the fine details of the geometry are not known, and so

a general model is instead sought to replicate a broad class of image sensors. To this

end, a simulation in Geant4 was developed, incorporating the basic elements of pixel

design from Chapter 2 and the experimental designs of Chapters 5 and 6. The details

of the simulation and the fit to experimental data are first presented, followed by the

consequences of recent trends in sensor design.

8.1 Building the simulation

Five fundamental processes connect the emission of a particle to a digitized sensor

response. These are, in order:

1. Propagation through shielding

2. Energy deposition in the sensitive silicon region

3. Conversion of this energy to numbers of electron-hole pairs

4. Diffusion of electrons to collection regions, with some recombination

5. Digitization of the resulting photocurrents.

This last step has already been characterized to first-order by the gains found in

Section 5.2.1; the remaining four are the key elements of this simulation.

8.1.1 Particle propagation

In brief, the simulation consists of particles traversing through layers of shielding

toward an array of identical pixels with a surface area comparable to the physical

sensors. The two experiments required different approaches to particle generation; see
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Figure 8.1: An illustration of the geometries of the muon hodoscope simulation (left)
and the radioactive source simulation (right). The silicon sensor has been enlarged
for illustration at right, while its position can be deduced from the convergence of
muon tracks at left. Glass is shaded in light blue, plastic in green, wax in white, and
aluminum in red.

Figure 8.1.

To model the hodoscope experiment, µ± primaries are constructed on a plane

beyond layers of glass and plastic shielding with trajectories targeting a randomized

point on the central pixel of the array. These muons are supplied with the same

cos3 θ sin θ zenith angle distribution discussed in Section 5.3.2 and energies from the

PARMA/EXPACS model [150] with the proper latitude and altitude. An energy

cutoff at 100 MeV—the approximate low edge of the minimum ionizing region shown

in Figure 8.2—is imposed to account for the lead shielding, and the angular distribution

is likewise cut at 40◦, approximating the solid angle of the hodoscope. To incorporate

electrons scattered from the LYSO scintillators and 3D-printed modules, 1 cm of PLA

plastic was added as a zeroth-order approximation; reassuringly, this produced no

discernible effect on the resulting efficiency.

By contrast, the radioactive source tests generate particles from an isotropic point

source behind layers of wax and lead shielding, mirroring each of the lower-bound

measurements in Chapter 6. To simulate backscattering from the casing of the sources

and from the body of the phone, additional thin layers of aluminum are positioned on

both ends of the simulation geometry, and the full 4π solid angle is simulated. Discrete

photon spectra for each source are taken from Ref. [141], using both X-ray and gamma

lines.
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Figure 8.2: −dE
dx

for muons in various substances in the minimum ionizing region,
taken from Ref. [151].

To propagate these secondaries, the standard Geant4 physics packages were used

except for the electromagnetic interactions, which required a more careful approach.

To accurately model the propagation of low-energy secondaries, the Livermore physics

models [152] are used below 100 MeV; likewise, Geant4’s silicon-specific electromag-

netic models [152,153] are employed within the sensor volume in their verified energy

domains—down to 16.7 eV for electrons. To adequately track particles on the scale

of individual pixels, secondaries with ranges above 100 nm were propagated by the

simulation.

8.1.2 Pixel construction and diffusion

Each individual pixel is modelled as a rectangular block of silicon with two regions: a

depletion region and the diffusion region comprising the remainder of the pixel. In the

diffusion region, excited electrons are free to traverse into neighboring pixels, whereas

it is assumed that the fields in the depletion region keep conduction-band electrons

contained. Reflecting the near-universal BSI design (Section 2.2), the diffusion region

is adjacent to the camera lens: downstream for the hodoscope and upstream for the

radioactive sources.

When a particle deposits energy in a pixel, this is first converted into a number of
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electron-hole pairs. As part of this energy excites vibrational modes of the silicon, the

effective ionization energy of 3.7 eV/e− [154, 155] is used to compute electron counts

rather than the band gap of 1.12 eV. The resulting electron count is then rounded to

an integer value, and the remainder contributes to the energy deposited in the ionizing

particle’s next step. If the energy was deposited in the depletion region, the electrons

are automatically associated with that pixel; in the diffusion region, however, the

electrons are randomly assigned positions along the particle step, and are propagated

individually to the depletion regions of nearby pixels.

This diffusion algorithm is illustrated in Figure 8.3. Each electron follows a three-

dimensional random walk until reaching the depletion region of one of the pixels. Those

passing either the simulated DTI structures or the far edge of the diffusion region are

instead reflected across the boundary. In principle, recombination occurs with a fixed

probability after each step; however, as the diffusion length of epitaxial silicon is on

the order of centimeters [156], an essentially infinite 100 µm is used. In a real sensor,

most recombination is caused by Shockley-Read-Hall traps in the silicon lattice [156]

which cannot be modelled with a simple recombination probability per step. A more

sophisticated treatment of recombination is left for future refinements.

G L A S S 

D E P L E T I O N

γ
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TI

DTI-depl. gap

Figure 8.3: An illustration of the random walk and pixel geometry used for electron
diffusion. Two electrons created in the same simulation step are shown arriving at
the depletion regions of two different pixels. Inter-pixel diffusion is limited to the gap
between the DTI and depletion zone, also labelled.
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8.2 Experimental agreement

This model was compared to the sensor muon response (Chapter 5) and photon re-

sponse (Chapter 6) through two features: the detection efficiency and the diffusion

of electrons in the conduction band to nearby pixels. In both cases, simulated data

was generated with the S7 pixel dimensions found in Figure 5.4: a 2.9 µm pixel depth,

1.4 µm pixel pitch, and DTI extending 1.9 µm into the pixel from the lens-side (i.e.,

B-DTI). The relative thicknesses of the diffusion and depletion regions, determining

the size of the DTI-depletion gap where electrons can diffuse across pixel boundaries

(see Figure 8.3), is fit to the data.

8.2.1 Inter-pixel diffusion

To quantify inter-pixel diffusion and to fit the DTI-depletion gap length, the maxi-

mum pixel response in each frame is compared to number of electrons collected in the

surrounding 4-, 8-, and 20-pixel regions; see Figure 8.4 below.

Figure 8.4: The three regions (gray) around the maximum pixel of each frame (black)
used for quantifying pixel diffusion.

Figure 8.5 plots the ratio of electrons collected in each of these three regions N{4,8,20}

to those collected by the central (brightest) pixel Nmax. Histograms of these ratios are

drawn from the S7 137Cs data and the corresponding best-fit simulation data, though

the agreement is similar for 60Co and 226Ra, and for the other phones. Muons are not

considered here due to the low signal-to-noise ratio in the hodoscope data.

The data in Figure 8.5 include adjustments for noise and saturation inherent to

physical devices. To minimize these effects, a cut of 150 ≤ Nmax < 900 was applied to

both experimental and simulated datasets: the low limit increased the signal-to-noise
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Figure 8.5: Normalized histograms of the ratio Ni/Nmax for i = 4 (top), i = 8 (center),
and i = 20 (bottom) for the simulated and experimental 137Cs data.
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ratio in the experimental data, while the high limit removed events near saturation.1

Any remnants of noise in the experimental data were then quantified through a sample

of dark frames with no radioactive exposure. Dark currents were added to simulated

pixels from this sample of dark frames; likewise, rates of background events such as

cosmic muons have been removed from the experimental distributions in Figure 8.5.

The simulated data in Figure 8.5 also incorporate a best fit of the DTI-depletion

gap, which almost exclusively determines the extent of inter-pixel diffusion. With

a fixed 2.9 µm pixel thickness and 1.9 µm-long DTI, this gap is constrained below

1.0 µm, the limiting case where the depletion region is infinitesimally thin. Several

DTI-depletion gap lengths were simulated by varying the relative size of the depletion

and diffusion regions, and as Figures 8.6 and 8.7 show, the data strongly prefer that this

gap be close to nonexistent (< 20 nm). Though the true depletion depth is proprietary,

publicly available sensor specifications such as Ref. [157] suggest that such a result—

that the depletion region extends past the DTI—is to be expected. Figure 8.5 was

accordingly generated with a nonexistent gap, eliminating all inter-pixel diffusion for

conduction-band electrons. The spread in these plots is due exclusively to free electrons

traversing pixel boundaries, such as those Compton-scattered by the photon primaries.

As Figure 8.5 shows, the model captures the trends of the experimental data, with

the notable exception of the leftmost bins in each plot. Instead, excesses of solitary

bright pixels are found, increasing with the number of adjacent pixels included in

the ratio. As this part of the distribution is sensitive to dark currents on the order of

single electrons, small black-level offsets, and hot-pixel masks, the observed divergence

is unsurprising.

8.2.2 Sensor efficiency

Having fit the depletion region thickness in the previous section, the detection efficiency

is likewise modelled. As in Section 6.3, naive efficiencies are computed by normalizing

Aγεγ by the sensor area. As shown in Figure 8.8, the 60Co and 226Ra efficiencies were

1Due to lens-shading effects, small numbers of pixels on the edges of the sensor nonetheless reached
saturation within this range and were removed from the analysis.
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Figure 8.6: Agreement with experimental 226Ra data in simulations with three different
depletion-DTI gap lengths; to better resolve the leftmost edge, logarithmic bins are
used unlike in Figure 8.3. The middle 8-pixel region from Figure 8.4 is used for
illustration.

accurately reproduced by the model, while the model 137Cs curve was lower than the

experimental data by roughly 30%. Significant disagreement is likewise found in the

muon efficiency, though just as in the photon curves, the simulation becomes more

accurate at higher thresholds. As the agreement found in 60Co and 226Ra was only

achieved through the silicon-specific models in Geant4—currently applicable only

to electrons, protons, and heavy ions—a more precise model of muon propagation in

silicon may be necessary to properly simulate the muon response.

As the source efficiencies—especially for 226Ra—are pulled downward by X-rays and

low-energy gamma rays which fail to penetrate the wax or lead shielding, Figure 8.8

can be a misleading characterization of the absolute sensor efficiency. As an alternate

vantage point, Figure 8.9 plots the simulated efficiency as a function of photon energy,

from which the spectral components of these sources can be untangled. This may yield

some insight into the poorer 137Cs agreement. In both the 60Co and lead-shielded 226Ra,

the sensor response is dominated by MeV-range photons, which are near an efficiency

plateau; meanwhile the 662 keV line from 137Cs is located at a steeper part of the

curve, and therefore may be more sensitive to inaccuracies in the scattering models

used. Alternately, a systematic error in the 137Cs activity may explain the observed
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Figure 8.7: Reduced χ2 statistic of fits in Figure 8.6, including all three regions in
Figure 8.4 and an additional gap length of 20 nm.

discrepancy.

8.3 Simulated CRAYFIS sensitivity

While this agreement is worthwhile in its own right, a reasonable pixel model can also

provide a benchmark for Crayfis’s shower reconstruction efficiency. This requires two

forms of extrapolation: modified particle spectra for UHECR showers (including the

addition of electrons, which have so far been indirectly measured through Compton

scattering), and modified sensors, incorporating recent design trends.

8.3.1 Extrapolated particle efficiencies

The three phone models used in Chapters 5 and 6 were typical of their generation

(2015-2016), and their similar design naturally yielded similar results. In recent years,

however, three diverging trends in sensor design have emerged. In many new models,

the pixel pitch has continued to decrease (most recently, down to 0.7 µm [158]) as

noted by Figure 2.3, while in others, the greater optical noise of smaller pixels [159]

has prompted a return the same 12 MP, 1.4 µm dual-photodiode design of the Galaxy

S7 [160, 161]. Meanwhile, a branch of both Sony and Samsung sensors have featured
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Figure 8.8: Comparison of experimental data and simulated efficiencies for 60Co (top
left), 137Cs (top right), 226Ra, (bottom left), and muons (bottom right, with a modified
scale).

drastically larger surface areas: as one very recent example, the IMX700 on the Huawei

P40 Series [162] measures 74 mm2 with a 1.22 µm pixel pitch, roughly triple the size

of those studied in the last few chapters. Samsung has even attempted to consolidate

the first and third trends, with the ISOCELL HM3 offering 108 MP on a 69 mm2

sensor with a 0.8 µm pixel pitch [163]. It is particularly the sub-micron pixels in which

Figure 2.3 had noted an increasing pixel depth; the pixel depths of the other two

classes of sensors are not yet publicly available. Yet given the long history of pixel

depths between 2.5–3 µm, it is reasonable to expect this trend will continue.

While the efficiency of the 12 MP, dual-photodiode sensors is likely similar to that of

the Galaxy S7, the implications of these other two trends—denoted here as shrinking-
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Figure 8.9: Simulated efficiency as a function of photon energy for four thresholds.
Photons were generated at normal incidence to the sensor with shielding from only
the 2 mm lens.

pixel (SP) and growing-sensor (GS)—can be studied with this simulation. Figure 8.10

shows the predicted effective areas for muons, gammas, and electrons for example SP,

GS, and combination SP/GS sensors, juxtaposed to the S7-like “classic design” (CD).

The energy distributions are drawn from a CORSIKA simulation of 1019 eV UHECR

showers, and 5 cm of dense wood is included as shielding: roughly the equivalent over-

burden of a roof with asphalt shingles and a second-story hardwood floor. Particles

are generated uniformly along a large plane behind this shielding layer. The same

zenith angle distribution is used as in Figure 8.1a; however, the azimuthal angle and

vertex position are both independently sampled from uniform distributions, and par-

ticle trajectories are no longer constrained to target the sensor. The trigger levels in

electrons—a function of the thermal and readout noise—has been assumed to remain

the same.2

The SP curve diverges from the CD by no more than 15%, with the greatest losses

observed in thresholds slightly above 100 e−; however, as the model diverges from

experimental data at the lowest thresholds, it is uncertain whether the SP design per-

forms even more poorly as thresholds continue to decrease. Importantly though, these

efficiencies are predicated on triggering bright individual pixel values. In this metric,

2A greater number of pixels requires stricter thresholds to keep a constant trigger rate, but also
allows hot-pixel masking in finer regions of the sensor. It is not obvious which effect will dominate.
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Figure 8.10: Plots of Aε for muons (left), electrons and positrons (middle), and gammas
(right, with modified scale) for various sensor trends. The CD sensor is identical to the
IMX260 on the Galaxy S7, while the SP sensor has a modified pixel pitch of 0.8 µm
and a pixel depth of 3.8 µm. The GS trend simply scales the areas by a factor of 3.

the thicker substrate in an SP sensor does not compensate for the more distributed

tracks produced by a thinner pixel pitch. With an appropriate convolutional filter

incorporated into the trigger, however, the SP trend may yet yield higher efficiencies

than the CD standard.

One last trend is worthy of mention here: the inclusion of multiple rear cameras

per device. By this design, a user can choose from a wide selection of sensors to

optimize each photograph given the subject (e.g. landscape vs. portrait) and light

levels. The effect is similar for Crayfis: this provides flexibility to choose between

several specialized sensors in order to optimize performance. In particular, if the GS

trend is particularly advantageous for low-light photography and becomes common in

phones with two or three rear cameras, this may vastly improve Crayfis’s shower

reconstruction capabilities.

8.3.2 Shower reconstruction efficiency

Finally, these efficiencies are used to quantify Crayfis’s power to resolve UHECR

showers. The lateral densities of muons, photons, and electrons at sea level are fit

to CORSIKA simulations using the NKG model [164], as in Ref. [86]. With “opti-

mistic” and “pessimistic” per-phone detection efficiencies drawn from Figure 8.11 (see
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Table 8.1: Benchmark Aε values used to evaluate Crayfis’s sensitivity. “Optimistic”
and “pessimistic” values are drawn from Figure 8.11, incorporating the simulation’s
overestimate of the muon efficiency and underestimate of the photon efficiency. These
are compared to the original estimates from Ref. [83].

Selected Aε benchmarks
Benchmark Aµεµ [mm2] Aγεγ [mm2] Aeεe [mm2] Duty cycle
Optimistic 30 2 24 0.33
Pessimistic 12 1 8 0.33

Upper, original 50 .01 0 1
Lower, original 10 .001 0 1

Table 8.1), these particle densities are converted to trigger probabilities as a function

of distance from the shower core.

Figure 8.11 shows the resulting distribution of triggers per shower. The optimistic

efficiencies are plotted in purple, and the pessimistic in yellow, for primary energies of

1018, 1019, 1020, and 1021 eV, shaded from dark to light. For each of these energies,

showers from 4 He, 16O, and 56Fe nuclei were simulated, and the width of the bands

correspond to the span of this mass range. For reference, the gray band marks 1% of

the population density of Los Angeles, with the right edge corresponding to the urban

core, and the left end to the outlying areas. In Figure 8.11b, a threshold of 5 triggers

per shower is used for direct comparison with Ref. [83]. Though a combinatorial

background (and requisite threshold) can be calculated from the noise and frame rates

from Chapters 5 and 6, the low timing resolution of RAW streaming is likely suboptimal

for a real CRAYFIS observatory. Balancing frame rate and resolution is left for future

work.

These results show more optimistic detection efficiencies than even the upper bound

in Ref. [83]. This is largely due to the much higher photon efficiency, attained partly

by improvements to the app, and partly by extrapolating to higher photon energies

and including scattering from the overburden. When combined with the addition of

electrons, the resulting detection efficiencies are no longer primarily determined by

the muonic component—instead, photon and electron detections outnumber those of

muons by an order of magnitude, as shown in Figure 8.12.

Figure 8.11 assumes, however, that data-taking phones are uniformly spread through-
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Figure 8.11: The average number of phones triggered per shower (top) and the prob-
ability of at least five phones being triggered (bottom) as a function of user density.
Description in text.

139



Optimistic Pessimistic Upper, orig. Lower, orig.
0

1

2

3

4

5

6

7

M
ea

n 
ph

on
e 

tri
gg

er
s

±

e ±

Figure 8.12: Cumulative (stacked) abundances of muon, photon, and electron triggers
per shower under the four Aε benchmarks from Table 8.1, excluding differences in duty
cycle. Values are generated from 1020 eV He primaries with a user density of 30 km−2.

out the area of each shower. In a real Crayfis observatory, phones would instead be

clustered; in an urban core, for example, public and commercial spaces would be de-

void of detectors at night, while multi-story residential buildings would contain a much

higher density of phones than the city as a whole. Even in lower-density single-family

homes, it is likely that if one device is running the Crayfis app, other members of the

household would install it as well. Though the average number of triggered phones per

shower would remain unchanged by this fine structure in the detector distribution, the

curves in Figure 8.11b would exhibit gentler slopes, and 1018 eV showers would have

a more reasonable probability of being detected even with at the benchmark Los An-

geles density shown. Ref. [83] demonstrates these general trends of device clustering,

though a more precise modelling of these effects will be left for future refinements.

Lastly, the total effective area of the Crayfis observatory was computed from

these device efficiency estimates through a Monte Carlo simulation. For each primary

energy and mass, 109 showers were generated across the earth’s surface with a uniform

spatial distribution. A map of global population from 2020 [165] with a resolution of 1

arc-minute was combined with the lateral shower densities to compute each shower’s

detection efficiency, assuming a 100% global participation rate. These detection effi-

ciencies were adjusted for lower levels of user adoption using binomial statistics, and

the resulting effective areas were multiplied by the duty cycles listed in Table 8.1.

140



Even assuming such a reduced duty cycle, the efficiency estimates presented in this

chapter exceed those of Ref. [83] by a substantial margin, as Figures 8.13 and 8.14

show. With the efficiencies in the pessimistic scenario, the benchmark area of Auger

can be matched with roughly a tenth of the global number of users quoted in Ref. [83]

for 1020 eV UHECRs.3 This adjusted goal—5.8M nightly users—can likely be further

reduced as suggested in Ref. [83] with a targeted campaign in large metropolitan areas.

With even modest levels of adoption, this novel approach to UHECR detection may

vastly improve the global sensitivity to super-GZK events.

3Part of this difference is due to discrepancies in the lateral density models, Monte Carlo approach,
and current global population.
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Figure 8.13: The effective area of the Crayfis experiment as a function of global user
adoption and UHECR energy. The colored bands represent the same parameters as
their counterparts in Figure 8.11.
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Epilogue

The Future of CRAYFIS

In the prologue, it was stated that the gap between theory and practice for Cray-

fis was particularly wide, and this thesis has made significant strides to bridge this

gap. Through the improvements to the app discussed in Part II, the Crayfis trigger

attained substantially-improved trigger efficiencies for photons and a high muon effi-

ciency as well. Then, through careful modelling, the sensitivity of a Crayfis network

to cosmic ray secondaries was found to greatly exceed the original estimates from

Ref. [83]. However, several obstacles remain before these results can be considered

representative of a real Crayfis observatory.

The efficiencies measured in Part II were attained by lowering the thresholds to

allow trigger rates well above initial projections. This in turn leads to higher combi-

natorial noise than what Ref. [83] considered, upon which assumption the detection

threshold of five phones per shower in Figure 8.11 was predicated. Though Part III

has shown that moderately higher thresholds are not fatal to the efficiency, balanc-

ing the combinatorial noise with detection efficiency is one of the primary remaining

challenges for the Crayfis experiment.

There are three primary paths to achieve such a balance. First, the online trigger

noise can be reduced, e.g. through lower trigger rates or higher fractions of masked

pixels. Both of these measures would marginally decrease the trigger efficiency; hence,

further studies are needed to optimize these trigger parameters. Second, the timing
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resolution of triggers could be improved by increasing the frame rate while keeping

the trigger rate constant. The frame rates used in the FishStand app in Part III

were held at 2 and 7 FPS, though the production Crayfis app can attain 30 FPS

at modest temperatures with YUV buffers downsampled to 1080p. It is yet unknown

to what degree that more modest downsampling would degrade the efficiency, and

similar efficiency studies with YUV data are essential to finding an optimal frame rate

and resolution. Lastly, noise can be reduced through an offline classifier, such as was

explored in Ref. [13].

With these last steps extending the efficiencies of Part III to the context of shower-

detection, Crayfis will at last be ready to reach a global scale. As suggested by

Figure 8.11, the density of active users is of vital importance in making the Crayfis ex-

periment viable. A targeted marketing campaign to densely-populated communities—

urban cores and large college campuses, for example—would grow the experiment

sufficiently to begin cataloguing UHECR showers. At that stage, Crayfis’s future

will depend on enthusiastic base of users, scientists, and even volunteer developers

even more so than optimized triggers, but for now, this work constitutes a large step

forward towards a fully-realized Crayfis observatory.
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