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ABSTRACT OF THE DISSERTATION

Degree Three Cohomological Invariants
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by

Donald Joseph Laackman III

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Alexander Sergee Merkurjev, Chair

This dissertation is concerned with calculating the group of degree three cohomological

invariants of a reductive group over a field of arbitrary characteristic. We prove a formula

for the group of degree three cohomological invariants of a split reductive group G with

coefficients in Q/Z(2) over a field F of arbitrary characteristic. As an application, we then

use this to define the group of reductive invariants of split semisimple groups, and compute

these groups in all (almost) simple cases. We additionally prove the existence of a discrete

relative motivic complex for any reductive group, which could be used to compute the degree

two and three invariants of arbitrary reductive groups.
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CHAPTER 1

Introduction

If A is any sort of algebraic object, a great deal of data about A can be recovered from its

automorphism group Aut(A). If, in particular, A is an algebraic object defined over a field,

its automorphism group can have the structure of an algebraic group. In this case, there is

a correspondence between the twisted forms of A - those objects that become isomorphic to

A when passing to a field extension - and the Aut(A)-torsors; if you send a twisted form B

to the Aut(A)-torsor Iso(B,A), you get an bijection between the set of isomorphism classes

of twisted form as the set of isomorphism classes of Aut(A)-torsors.

One classic example of this correspondence is the relationship between torsors of the

Orthogonal group and nondegenerate quadratic forms; since if q is a nondegenerate quadratic

form of dimension n, then Aut(q) ' On, and the twisted forms of q are precisely the quadratic

forms of dimension n, so we can study all nondegenerate quadratic forms of dimension n by

studying On-torsors.

Another frequently studied case is that of PGLn; since PGLn ' Aut(Mn), the torsors of

PGLn classify the twisted forms of the algebra Mn, which are all central simple algebras of

degree n.

In order to take advantage of this correspondence, the concept of a cohomological invari-

ant is extremely useful.

Let G be a linear algebraic group over a field F . Consider a functor

G-torsors : FieldsF → Sets

from FieldsF , the category of field extensions of F , taking a field K to the set of isomor-
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phism classes of G-torsors over SpecK. Let

Φ : FieldsF → Abelian Groups

be some other functor. Then a Φ-invariant of G is a natural transformation

I : G-torsors→ Φ

with Φ viewed as going to Sets. The group of Φ-invariants of G is written Inv(G,Φ).

An Invariant I ∈ Inv(G,Φ) is normalized if I(E) = 0 for all trivial G-torsors E. The

normalized invariants, Inv(G,Φ)norm, form a subgroup, and

Inv(G,Φ) ' Φ(F )⊕ Inv(G,Φ)norm

An invariant is called a cohomological invariant if the functor Φ is Galois cohomology;

when Φ = Hn(−, A), then the standard notation is Inv(G,Φ) = Invn(G,A).

One class of examples of cohomological invariants are the Stiefel-Whitney classes, which

are invariants for the orthogonal group of a quadratic form in characteristic other than two

with values in Z/2Z; in dimension 1, this is the discriminant of the quadratic form, and in

dimension 2 it is the Hasse-Witt invariant.

Here, we will consider the cohomology functors Φ taking a field K/F to the Galois coho-

mology Hn(K,Q/Z(j)) and write Invn(G,Q/Z(j)) for this group of cohomological invariants

of G of degree n with coefficients in Q/Z(j). These are of particular interest because if a

group G has a non-constant unramified invariant with values in Q/Z(j), then the classifying

space BG is not stably rational; to date, no such examples have been found over algebraically

closed fields, and the study of these invariants is one of the most promising avenues of attack.

If G is connected, then Inv1(G,Q/Z(j))norm = 0. For reductive G, Inv2(G,Q/Z(1))norm =

Pic(G), the Picard group of G. [7]

The degree 2 cohomological invariants with coefficients in Q/Z(1), and Inv3(T,Q/Z(2))

where T is an algebraic torus, were computed by Merkurjev and Blinstein [2]. Inv3(G,Q/Z(2))
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was computed by Rost when G is simply connected [7] and by Merkurjev for G an arbitrary

semisimple group[18].

In this dissertation, we are interested in computing the group of degree three cohomologi-

cal invariants of reductive groups. The next chapter contains needed background, including a

discussion of torsors, classifying spaces, motivic cohomology, K−cohomology, and the struc-

ture of reductive groups. In the next chapter, we relate the degree 3 invariants of a split

reductive group G to the dual lattice T ∗ of a split maximal torus T ⊆ G and the dual lattice

of a particular finite group C; in particular, C∗ ' Pic(G), so we are building up the degree

three invariants out of the degree 1 invariants and the root data of G:

Theorem Let G be a split reductive group, T ⊂ G a split maximal torus, W the Weyl

group, and C the kernel of the universal cover of the commutator subgroup of G. Then there

is an exact sequence

0→ C∗ ⊗ F× → Inv3(G,Q/Z(2))norm → S2(T ∗)W/Dec(G)→ 0

where Dec(G) is the subgroup of decomposable elements in S2(T ∗)W .

In the last chapter, we discuss the relative motivic complex, which has applications both

in particular to computing cohomological invariants, and in general to relating the algebraic

and geometric structures of torsors of an algebraic group.
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CHAPTER 2

Preliminaries

2.1 Algebraic Groups

The following discussion of algebraic groups is informed by their presentation in [12] and

[28]. For a field F, let AlgF be the category of commuative F -algebras with F−algebra

homomorphisms as the morphisms.

Definition. A Hopf Algebra over F is a commutative F -algebra, with three extra F−algebra

homomorphisms,

c : A→ A⊗F A(comultiplication)

i : A→ A(co-inverse)

u : f → A(co-unit)

such that, if m : A⊗F A→ A is the multiplication of A, the following hold:

(1) The diagram

A A⊗F A

A⊗F A A⊗F A⊗F A

c

c c⊗Id

Id⊗c

commutes.

(2) The map

A
c−→ A⊗F A

u⊗Id−−−→ F ⊗F A = A

is equal to the identity map Id : A→ A.
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(3) The two compositions

A
c−→ A⊗F A

i⊗Id−−→ A⊗F A
m−→ A

A
u−→ F

·1−→ A

are the same map.

A Hopf algebra homomorphism f : A → B is an F−algebra homomorphism preserving

c, i, and u; so, (f ⊗ f) ◦ cA = cB ◦ f , f ◦ iA = iB ◦ f , and uA = uB ◦ f . The kernel of any

Hopf algebra homomorphism will be a Hopf ideal ; an ideal J of A such that

C(J) ⊆ J ⊗F (A) + A⊗F J, i(J) ⊆ J, u(J) = 0

These conditions mean that if J is a Hopf ideal of A, then the algebra A/J admits the

structure of a Hopf algebra, and there is a surjective Hopf algebra homomorphism A→ A/J

with kernel J . For example, the kernel of u : A → F is a Hopf ideal, and A/ker(u) = F is

the trivial Hopf algebra.

The additional homomorphisms associated to a Hopf algebra provide precisely the extra

structure needed so that when we consider the set of F−algebra homomorphisms from a

Hopf algebra A to an arbitrary F−algebra R, it is endowed with a natural group structure;

multiplication in the group is given via comultiplication as fg = mR ◦ (f ⊗F g) ◦ c, which is

associative by the first Hopf algebra axiom. The identity is precisely the unique composition

A
u−→ F → R, by the third Hopf algebra axiom. Lastly, f−1 = f ◦ c by the second Hopf

algebra axiom. Indeed, if A is merely an F -algebra with a comultiplication morphism c :

A→ A⊗F A, that is enough to endow HomAlgF
(A,R) with a binary operation, and if it is

a group with respect to that operation, A is guaranteed to be a Hopf algebra, with counit

and comultiplication uniquely defined.

Definition. An affine group scheme G over F is a functor G : AlgF → Groups that is

isomorphic to HomAlgF
(A,−) for some Hopf algebra A over F .
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By Yoneda’s lemma, if G is an affine group scheme, the Hopf algebra A is uniquely

determined up to isomorphism; we denote it as A = F [G]. They form one of two primary

pillars of the study of algebraic groups, alongside abelian varieties - Chevalley’s structure

theorem tells us that any algebraic group G over a perfect field has a unique normal closed

subgroup H such that H is an affine group, and G/H is an abelian variety.

A group scheme homomorphism ρ : G → H is just a natural transformation from G to

H; by Yoneda’s lemma, ρ is determined by the corresponding Hopf algebra homomorphism

ρ∗ : F [H] → F [G], defined such that, if ρR is the group homomorphism given by ρ from

G(R) to H(R), ρR(g) = g ◦ ρ∗. This means that the correspondence between Hopf algebras

and affine groups schemes is in fact an equivalence of categories.

Some important examples of affine group schemes include the trivial group 1(R) = 1,

represented by A = F , the additive group Ga(R) = R, represented by F [t], the multiplicative

group Gm(R) = R×, represented by F [t, t−1], and the general linear group GLn(R) =

GL(Rn), represented by F [tij,
1

detT
] where T is the matrix (tij). More generally, if A is a

unital associative F−algebra of dimension N , then GL1(A), defined as GL1(A)(R) = (AR)×,

is an affine group scheme. All of these examples are finitely generated as algebras; an affine

group scheme G is said to be algebraic if the F−algebra F [G] is finitely generated.

Note that, if L/F is a field extension, we can define a group scheme GL over L represented

by G[F ]⊗F L; since any L-algebra is also an F -algebra this will satisfy GL(R) = G(R), since

for any R ∈ AlgL,

GL(R) = HomAlgL
(F [G]⊗F L,R) = HomAlgF

(F [G], R) = G(R)

Whenever G is an affine group scheme, A = F [G], and we have a Hopf ideal J ⊂ A, the

affine group scheme H represented by A/J has a group scheme homomorphism ρ : H → G

induced by the natural map A → A/J ; for any R ∈ AlgF , ρR : H(R) → G(R) is injective,

and so we can identify H(R) with a subgroup in G(R). When this is the case, we call H

a closed subgroup of G, and ρ is a closed embedding. H is normal if, for every R ∈ AlgF ,

H(R) is normal in G(R).

This definition demonstrates the power of blending the two equivalent concepts of Hopf
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algebras and affine group schemes; we catalogue subgroups via their contravariant correspon-

dence with Hopf ideals, then check their normality based on the group of R-points.

The subgroup associated to the ideal ker(u) is always the trivial subgroup 1, since

F [G]/ker(u) ' F . Given any homomorphism f : G → H of group schemes, and sub-

group H ′ of H given by the Hopf ideal J ⊂ F [H], the inverse image f−1(H ′) is the functor

taking an F -algebra R to

f−1(H ′)(R) = {g ∈ G(R)|fR(g) ∈ H ′(R)}

is a subgroup of G associated to the Hopf ideal f ∗(J)F [G]; in the case where H ′ = 1, we

get the kernel of f , ker(f), associated to the hopf ideal f ∗(I)F [G], where I is the kernel of

the counit in F [H].

We call a group scheme homomorphism f surjective if the Hopf algebra homomorphism

f ∗ is injective; note that this doesn’t mean that the induced homomorphisms of groups

of points will be surjective; for example, the nth power homomorphism f : Gm → Gm is

surjective because f ∗ : F [t, t−1] → F [t, t−1] is given by f ∗(t) = tn, which is injective, but

fR : R× → R× is not, in general, surjective.

One very important class of affine group scheme homomorphisms are the characters.

Definition. A character of an affine group scheme G over F is a group scheme homomor-

phism χ : G→ Gm. The set of characters of G forms an abelian group, denoted G∗.

The character group of a group scheme G will be a much easier to work with object than

G as a whole, but we will see that it contains a great deal of the same information. Any

given character χ : G → Gm is uniquely determined by the element f = χ∗(t) ∈ F [G]×,

satisfying c(f) = f ⊗ f . The set of all elements of F [G]× which satisfy this condition form

a subgroup, called the subgroup of group-like elements, which is isomorphic to G∗.

This correspondence between affine group schemes and abelian groups in fact determines

a subcategory of the category of affine group schemes. If we first take an abstract abelian

group H, there is a Hopf algebra structure on the group algebra F < H > over F given by

c(h) = h ⊗ h, i(h) = h−1, and u(h) = 1. The group scheme represented by F < H > is
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called a diagonalizable group scheme, and is written Hdiag. The group-like elements of Hdiag

are precisely of the form h⊗ h for h ∈ H, so H∗diag is naturally isomorphic to H.

Take a separable closure Fsep of F , and let Γ = Gal(Fsep/F ). A group scheme G over

F is of multiplicative type if Gsep = GFsep is diagonalizable. If H is an abelian group with

a continuous Γ-action, then there is a corresponding group of multiplicative type; Hmult is

represented by the Hopf algebra of Γ-stable eleements in Fsep < H >; we can explicitly

compute Hmult by

Hmult(R) = HomΓ(H, (R⊗F Fsep)×).

(−)mult is an equivalence of categories between affine group schemes of multiplicative type

and abelian groups with continuous Γ-action; the functor going the other direction is simply

(−)∗, the character group.

Definition. An algebraic torus is an affine group scheme of multiplicative type Hmult, where

H is a free abelian group of finite rank; a torus is split if it is a diagonalizable group scheme.

Split tori are isomorphic to the group scheme of diagonal matrices in GLn(F ); for any

torus, Tsep is split over Fsep.

So, when we gain information about a group scheme based on its character group, we are

often really considering a sub-torus of the group scheme.

Thus far, we have worked generally, but going forward, there will be one more restriction

applied to our affine group schemes; they must be smooth, meaning, equivalently, that F [G]L

is reduced for any field extension L/F , or F [G]Fsep is reduced. A smooth group scheme is

called an algebraic group. In particular, GL1(A), is smooth for any central simple F -algebra

A, and Hmult is smooth if and only if H has no p−torsion with p = char(F ).

2.1.1 Linear Representations

If G is an affine group scheme and V is a vector space, a linear representation ρ of G

in V is a group scheme homomorphism ρ : G → GL(V ) = GL1(End(V )); then V is an

8



F [G]−comodule.

Definition. A linear algebraic group over F is an algebraic group which is a closed subgroup

of GLn for some value of n.

Equivalently, an algebraic group G is linear if it has a finite-dimensional faithful repre-

sentation, or if there is a surjective Hopf algebra homomorphism F [GLn]→ F [G]. Note that

all linear algebraic groups are affine, since they are closed subgroups of the affine general

linear groups.

Theorem 1. For any affine algebraic group G, there is a finite-dimensional faithful linear

representation; so affine algebraic groups are precisely linear algebraic groups. [28]

Proof. Let V be a finite-dimensional sub-comodule of F [G] containing a set of generators

for A as an F -algebra (this set is finite because we have assumed G to be an algebraic

group). Take a basis for V , {ei|1 ≤ ı ≤ n}, and write c(ei) =
∑

i ei ⊗ aij. We can

take r : F [X11, . . . , Xnn,
1

det
] → F [G] with r(Xij) = aij, since the vj form a basis; but

vj = (u ⊗ IdF [G])c(vj) =
∑

i u(vj)aij, so vij is in the image of r, so the image contains V ;

thus, it must be all of F [G]. So r is surjective, meaning that G→ GL(V ) is injective.

This means that any affine algebraic group can be thought of as a group of matrices (over

all extensions of the base field); however, the work building to this point was not wasted.

Such a representation is far from unique, and requires a number of choices to be made.

Having defined representations, it is natural to ask whether, as is the case for finite

groups, all representations of G are sums of irreducible representations. Consider a maximal

connected, normal, solvable subgroup R of G (which exists because the closure of the product

of any two normal solvable subgroups is also normal and solvable); this is the radical of G.

The subgroup U of R of unipotent elements is called the unipotent radical of G.

Definition. An algebraic group G is semisimple if its radical R is trivial; G is reductive if

its unipotent radical is trivial.
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The name reductive comes from the fact that, when char(F ) = 0, all representations are

sums of irreducibles if and only if G is reductive. This result comes from the fact that it

is true for tori in general, and for semisimple groups in the characteristic zero case, and a

reductive group is a product of a semisimple subgroup and a subtorus.

This result fails in characteristic p, but a more fundamental result carries through: the

classificiation of semisimple groups. Closely related to the classification of semisimple lie

algebras, the simple semisimple groups fall into four infinite families and five exceptional

types. Within a type, simple groups are distinguished by their root systems; in particular,

by T ∗ as a lattice sitting between the root and weight lattices.

2.1.2 Borel Subgroups

Aside from algebraic tori, there is one other particularly important class of subgroups that

we will consider.

Definition. A Borel subgroup B of an algebraic group G is a maximal closed and connected

solvable algebraic subgroup.

The classic example of a Borel subgroup is the subgroup of invertible upper triangular

matrices inside of GLn. If G is an algebraic group over an algebraically closed field, all

Borel subgroups are conjugate to one another. A Borel subgroup B contains a maximal

torus T ; B together with the normalizer of T generates all of G. There is a natural map

p : G/T → G/B.

Proposition 2. If G is a connected linear algebraic group, and H ≤ G is a closed subgroup,

then G/H is projective if and only if H contains a Borel subgroup (such subgroups are called

parabolic). [6]

10



2.2 Torsors

2.2.1 Galois Cohomology

Again, consider the profinite group Γ = Gal(Fsep/F ), the absolute Galois group of F . If G is

an algebraic group over F , Γ acts continuously on the discrete group G(Fsep), which means

we can define Galois cohomology as the group cohomology H i(F,G) = H i(Γ, G(Fsep)) for

i = 0, 1. Note H0(F,G) = G(Fsep)Γ = G(F ).

The first Galois cohomology set of an algebraic group often classifies a particular type of

algebra tied to that algebraic group. In order to achieve this, two tools are used.

First, let G be a group scheme over F , and ρ : G→ GL(W ) with W a finite dimensional

vector space. An element w′ ∈ Wsep is a twisted form of w ∈ W if w′ = ρsep(g)(w) for

some g ∈ G(Fsep). Let A(ρ, w) be the groupoid whose objects are the twisted ρ-forms of

w inside W , with maps w′ → w′′ corresponding to g ∈ G(F ) such that ρ(g)(w′) = w′′; so

over the separable closure this is a connected groupoid, but in general it may have multiple

isomorphism classes; the set of isomorphism classes is Isom(A(ρ, w)).

Let AutG(w) denote the stabilizer of w; it is a subgroup of G.

Proposition 3. If H1(F,G) = 1, there is a natural bijection of pointed sets

Isom(A(ρ, w)) ' H1(F,AutG(w))

which maps the isomorphism class of w to the base point of H1(F,AutG(w)). [25]

Proof. Let Ã(ρ, w) have the same objects as A(ρ, w), but with morphisms corresponding

instead to G(Fsep). Then Ã(ρ, w)Γ = A(ρ, w). At the same time, Ã(ρ, w) corresponds

to the left cosets of G(Fsep) modulo AutG(w). So, taking Galois cohomology, with C =

coker(AutG(w)→ G) we get

AutG(w)(Fsep)Γ G(Fsep)Γ CΓ H1(F,AutG(w)) H1(F,G) = 0

So, we get a pointed set bijection between CΓ/G(Fsep)Γ and H1(F,AutG(w)); but CΓ =

A(ρ, w), and G(Fsep)Γ = G(F ), so CΓ/G(Fsep)Γ = Isom(A(ρ, w)), giving the required bi-

jection, which can be explicitly defined on w′ ∈ A(ρ, w) by choosing g ∈ G(Fsep) sich that
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ρsep(w) = w′, and sending it to the 1-cocycle α with ασ = g−1 · σ(g); injectivity follows from

the cocycle condition, and surjectivity is a result of the assumption H1(F,G) = 0.

This proposition, while fairly specialized, finds diverse applications because a wide range

of algebraic groups have trivial first Galois cohomology.

Theorem 4. ( Hilbert’s Theorem 90) For any separable and associative F -algebra A,

H1(F,GL1(A)) = 1

In particular, H1(F,Gm) = 1.

Using proposition 2 and Hilbert’s Theorem 90, we can now classify multiple kinds of

algebras.

Let A be a finite dimensional algebra over F . Multiplication in A gives a linear w :

A ⊗ FA → A. Let W = HomF (A ⊗ A,A) and G = GL(A), the general linear group just

viewing A as an F -vector space. if ρ : G→ GL(W ) is given by

ρ(g)(φ)(x⊗ y) = g ◦ φ(g−1(x)⊗ g−1(y))

for g ∈ G, φ ∈ W , and x, y ∈ A. A linear map g ∈ G is an algebra automorphism of

A if and only if ρ(g)(w) = w, so the group scheme Autalg(A) is the same as AutG(w), and

a twisted ρ-form of w is an algebra structure A′ on the vector space A such that A′sep and

Asep are isomorphic Fsep-algebras. So, there is a bijectoin between H1(F,Autalg(A)) and the

set of F -isomorphism classes of F -algebras that become isomorphic to A when extending to

Fsep.

As a particular example, if A = Mn(F ), the matrix algebra of degree n, the twisted

forms of A are precisely the central simple F -algebras of degree n. Autalg(A) = PGLn,

so F -isomorphism classes of central simple F -algebras of degree n are counted by the first

PGLn Galois cohomology set.
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The concept of finding algebraic objects whose twisted forms are classified by a particular

algebraic group naturally leads to the concept of a torsor.

Definition. Let G be an algebraic group over a field F . Then a G-torsor over a scheme X

over F is a flat, surjective morphism π : P → X of schemes over F with a G-action on P

such that the map P ×F G→ P ×X P taking (p, g) to (p, g · p) is an isomorphism.

If F is algebraically closed, then all of the G-torsors over F are isomorphic to G →

Spec(F ). In general, there is an isomorphism of pointed sets from the set of isomorphism

classes G-torsors over a field extension K/F (with distinguished point the trivial torsor

G×F K → K) to the first Galois cohomology set H1(K,G) = H1(ΓK , G(Ksep)).

2.2.2 Classifying Varieties and Versal Torsors

In order to compute cohomological invariants, the following object is of great use.

Definition. Suppose G/F is an algebraic group; then a versal G-torsor is a G-torsor E → X

over a smooth F -variety X such that, for any field extension K/F where K is infinite, given

any G-torsor E ′ over K and nonempty subvariety U ⊆ X, there is a point x ∈ U(K) such

that E ′ ' Ex, the fiber of E over the point x. When we have this versal torsor, X is called a

classifying variety for G, while if Spec(K) → X is the generic point ξ, then Eξ → Spec(K)

is called a generic torsor.

One can thus study a particular versal G-torsor in order to obtain information about all

G-torsors over fields.

Proposition 5. Versal torsors exist.

Proof. Since an affine algebraic group is also a linear algebraic group, we can find a faithful

representation V of G; then take a G-equivariant open subset U ⊂ V , which has U → U/G

a G-torsor; this is a versal G-torsor. [2]
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In fact, for many cohomological questions, e.g. stable rationality, any one such classifying

variety is stably rational if and only if another is. Properties that hold universally for all

classifying varieties U/G (or for all with V at least some particular finite dimension) are

said to hold for the classifying space BG; cohomology groups of BG are precisely those

cohomology groups of U/G which are independent of our choice of classifying torsor.

2.3 H i+1(F,Q/Z(i))

The cohomology groups H i+1(F,Q/Z(i)) and H i+1(F,Z/nZ(i)) can be defined for any field

f , with d ≥ 0, n ≥ 1 [7, Appendix A].

First, we decompose them into the p-part for each prime, and assume for the moment

that p 6= char(F )

H i+1(F,Q/Z(i)) =
∐

p prime

H i+1(F,Qp/Zp(i))

H i+1(F,Z/nZ(i)) =
∐

p prime

H i+1(F,Z/pvp(n)Z(i))

The coefficients are Γ-modules; Z/pmZ(i) = (µpm)⊗d and Qp/Zp(i) = lim→mZ/pmZ(i).

with µpm being the group of pm-th roots of unity in F×sep; now, we can pull out the colimit

to see

H i+1(F,Qp/Zp(i)) = lim→mH
i+1(F,Z/pmZ(i))

So, for example,

H1(F,Qp/Zp(0)) = Homcont(Γ,Qp/Zp)

and

H2(F,Qp/Zp(1)) = Br(F ){p}
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For i ≤ 2, which are the only cases considered here, the group H i+1(F,Z/pmZ(i)) can be

identified with the subgroup of H i+1(F,Qp/Zp(i)) consisting of elements of order dividing

pm.

On the other hand, when p = char(F ), set

H i+1(F,Qp/Zp(i)) = H2(F,Kd(Fsep)){p}

where Kd is the dth Milnor K-group, to be defined shortly; but in particular, note that

this choice is connected to the norm residue homomorphism,

Kr(F )→ Hr(F,Z/pmZ(r))

With these definition, several computations can be made:

H1(F,Q/Z(0)) = Homcont(Γ,Q/Z)

H2(F,Q/Z(1)) = Br(F )

2.4 Cohomological Invariants

Let G be an algebraic group defined over a field F , and continue using H1(F,G) to de-

note the first Galois cohomology set of G, and for a field extension E/F , H1(E,G) =

H1(Gal(Esep/E), G(Esep)); these sets together give a functor from the category of field ex-

tensions over F to the category of sets,

H1(−, G) : Fields/F → Sets, E/F 7→ H1(E,G).

If there is another functor

H : Fields/F → Abelian Groups
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(allowed to be arbitrary, but for our purposes, this will eventually be H i+1(−,Q/Z(i)))

then we define

Definition. An invariant of G with values in H, also known as an H-invariant of G, is a

natural transformation (treating H as having values also in Sets)

a : H1(−, G)→ H

which is equivalent to a collection of functions aE : H1(E,G) → H(E) for every field

extension E/F such that for any field inclusion i : E → E ′ over F , the diagram

H1(E,G) H(E)

H1(E ′, G) H(E ′)

aE

H1(i,G) H(i)

aE′

is commutative.

The set of all invariants of G with values in H is an abelian group, a structure inher-

ited because H lands in the category Abelian Groups. If we have an algebraic group

homomorphism f : G→ G′, there is an induced group homomorphism,

φ∗ : Inv(G′, H)→ Inv(G,H)

which means that taking invariants with values in H is a contravariant functor from the

category of algebraic groups over F to Abelian Groups.

There are certain invariants which we usually will want to hold apart; given any h ∈

H(F ), there is an invariant ah defined for any x ∈ H1(E,G) as ahE(x) = H(i)(h) with

i : F → E the inclusion; this invariant, not depending on x, is called a constant invariant.

The set of constant invariants is a subgroup, Inv(G,H)const ⊆ Inv(G,H), and the set of

constant invariants is isomorphic to H(F ) via ah 7→ h.

On the other hand, an invariant with values inH is normalized if it takes the distinguished

element of the pointed set H1(F,G) to zero; note that the only constant, normalized invariant
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is the 0 invariant. Writing the subgroup of normalized invariants as Inv(G,H)norm, we get

that

Inv(G,H) = Inv(G,H)const ⊕ Inv(G,H)norm

2.4.1 Cohomological Invariants

In a certain sense, invariants are often relating something fundamentally algebraic (like the

first Galois cohomology set, describing the different algebraic structure that can converge

when reaching a separable closure) to something geometric - albeit usually still through

the lens of algebra. A particularly fruitful choice of such a geometric H is to let it be a

cohomology functor; if H i(E) = H i(E,M) for some cohomology with coefficients in M , then

we write Invi(G,M) for the group of invariants Inv(G,H i).

Example. Take H be a semisimple algebraic group over F , with C the kernel of the universal

cover H̃ → H. If ρ ∈ C∗, we have a diagram,

1 C G̃ G 1

1 Gm G′ G 1

ρ Id

With G′ the pushout of the two arrow from C. Taking cohomology of the bottom sequence,

note that the connecting map from degree 1 to degree 2 takes the set H1(E,G) to H2(E,Gm),

which means that we can get a group homomoprhism

C∗ → Inv2(G,Q/Z(1))

Example. A connected algebraic group S over F is special if H1(E, S) = 1 for every field

extension E/F . Given a special algebraic group S, it mist be the case that Inv(S,H)norm = 0

for every H. In particular, GLn, SLn, Sp2n and any product of them is special. Special

groups can be substituted in for GLn when defining classifying torsors; instead of a faithful

representation from G to GLn, we can instead take any injective ρ : G → S, and look

at S/ρ(G); the elements of H1(E,G) match up with the orbits of the action of S(E) on
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(S/ρ(G))(E).

2.5 K-Theory, Cycle Modules, and K-Cohomology

In order to compute the cohomological invariants, we will need to understand MilnorK−theory,

the generalization of Milnor K−theory to cycle modules, and K−cohomology.

2.5.1 Milnor K−theory

For a field F , the calculation of K-groups is notably easier than for rings in general; because

all modules over a field are free, K0(F ) = Z, and because F is already commutative, K1(F ) =

F×.

K2 is harder, but still straightforward; according to Matsumoto,

Theorem 6. For any field F ,

K2(F ) = F× ⊗Z F
×/ < a⊗ (1− a)|a 6= 0, 1 >

This inspired Milnor, leading to [5]

Definition. The nth Milnor K−group of a field F , Kn(F ), is defined as the nth graded piece

of the tensor ring

K·(F ) = T ·F×/(a⊗ (1− a))

The Milnor K−groups are sometimes written KM
n (F ), to distinguish them from the

Quillen K−groups, which are no longer isomorphic when n ≥ 3, but the Milnor K−groups

are more relevant to the problem at hand, so they receive the distinction of a lack of super-

script.

2.5.2 Cycle Modules

Rost’s cycle modules are a generalization of Milnor K-theory, introduced in [23].

18



Definition. A cycle module over a field F is a function on objects M : FieldsF → Abelian Groups

from the category of field extensions over F to the category of abelian groups, and a grading

M =
∐

nMn such that:

1. For any morphism φ : E → K in FieldsF , there is a degree 0 restriction homomorphism

φ∗ : M(E)→M(K).

2. If [K : E] is finite, then there is a degree 0 corestriction homomorphism φ∗ : M(K)→

M(E).

3. For every extension E/F , there is a left K∗(E)-module structure on M(E) respecting

the gradings of both K and M , in the sense that Kn(E) ·Mm(E) ⊆Mn+m(E).

4. For every extension E/F which has a discrete valuation ν that is trivial on F with

residue field κν, there is a degree −1 residue homomorphism δν : M(E)→M(κν).

Given any morphism Y → X of varieties over F , a cycle module over X can be restricted

to a cycle module over Y . In general, a cycle module M can be viewed as a collection of

functors

Mi : Fields/F → Abelian Groups.

This means we can take invariants of algebraic groups with values in cycle modules.

The central example of a cycle module is the Milnor K−groups Kn(E) for all field

extensions E/F ; they form a cycle module over Spec(F ). Another example, assuming p 6=

char(F), is the rule

E 7→ H i+1(E,Qp/Zp(i))

which we can call a cohomological cycle module; when F is characteristic p, there are no

longer residue homomorphisms, hence it is no longer a cycle module.

Cycle modules allow the definition of Chow groups with coefficients; if F (x) is the residue

field of a point x ∈ X, then denoting M(F (x)) as M(x), the ith homology of the complex

C ·(X,M)
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. . .→
∐

x∈X(i−1)

Md−i+1(F (x))→
∐

x∈X(i)

Md−i(F (x))→
∐

x∈X(i+1)

Md−i−1(F (x))→ . . .

is Ai(X,Mn), the Chow group with coefficients in Mn. This name comes from the fact

that, when X is smooth, and our cycle module M∗ = K∗ is Milnor’s K-ring, then the

group Ap(X,Kp) is precisely the Chow group CHp(X) of codimension p cycles on X modulo

rational equivalence. The one other case in which Chow groups with coefficients in K∗ are

straightforward to compute is A0(X,K1) = F [X]×, the group of invertible regular functions

on X. Going forward, we will use the fact that Chow groups with coefficients are functorial

and homotopy invariant.

2.6 K-cohomology of split tori and split simply connected alge-

braic groups

Let G be a connected algebraic group over F ; remember that the character group G∗ can be

expressed as the subgroup of “group like elements” inside F [G]×. Now, by [22, Theorem 3]

F [G]× = F× ⊕G× (2.1)

which means that every invertible regular function f on G such that f(1) = 1 is a

character of G. If Y is a trivial G−torsor over F (which means Y has an F−point), then

taking y ∈ Y (F ) and h ∈ F [Y ]×, if we define

f(g) = h(gy) · h(y)−1

Given any other y ∈ Y (F ), y′ = g′y for some g′ ∈ G(F ), and h(gy′) · h(y′)−1 =

h(gg′y) · h(g′y)−1 = h(gg′y) · h(y)−1 · h(y) · h(g′y)−1 = f(gg′) · f(g′)−1 = f(g)

So this rule gives us a homomorphism F [Y ]× → G∗, and so by 2.1, there is a split exact

sequence,
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1→ F× → F [Y ]× → G∗ → 0 (2.2)

Now, even if Y isn’t necessarily trivial, Ysep is, so we get a homomorphism Fsep[Ysep]× →

G∗sep, which is Galois-equivariant, and so taking the Galois invariant elements, we always get

a homomorphism F [Y ]× → G∗, and so by Hilbert’s Theorem 90,

Theorem 7. For every G-torsor Y over F , the sequence (2.2) is exact.

Corollary 8. If G is a semisimple group, F [Y ]× = F× for every G−torsor Y over F .

Because of their relatively elementary structure, it is straightforward to compute the

K−cohomology of split tori.

Note that A∗(X ×Gm, K∗) is a bimodule over A∗(X,K∗), and the projection f : X ×

Gm → Gm is an invertible regular function on X × Gm, meaning it gives an element of

A0(X ×Gm, K1) = F [X ×Gm]×.

Proposition 9. The right A∗(X,K∗)-module A∗(X ×Gm, K∗) is free, with basis {1, f}.

Proof. Take the closed embedding i : X → X × A1
F given by i(x) = (x, 0), and let j :

X ×Gm → X ×A1
F be the open embedding; then if we take the exact localization sequence,

· · · i∗−→ A∗(X × A1
F , K∗)

j∗−→ A∗(X ×Gm, K∗)
∂−→ A∗(X,K∗−1)

i∗−→ · · ·

the connecting homomorphism ∂ is split by left multiplication by f [23, Rule R3d],

so i∗ = 0; by homotopy invariance [23, Proposition 8.6], this means that the projection

p : X × A1
F → X induces an isomorphism p∗ : A∗(X,K∗) → A∗(X × A1

F , K∗), so the image

of j∗ is precisely 1 · A∗(X,K∗)

Since a split torus is a product of copies of Gm, and A∗(Spec(F ), K∗) = K∗(F ), induction

gives the following:

Corollary 10. Let f1, f2, . . . , fm be a basis for T ∗. Then
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• A0(T,K∗) is a free K∗(F )-module with basis consisting of the elements {fi1 , fi2 , . . . , fiq} ∈

Kq(F ) for each q = 0, 1, . . . ,m, and strictly increasing q−tuples of indices i1 < i2 <

· · · < iq.

• Ap(T,K∗) = 0 whenever p > 0

This completes our computation of the K-cohomology of split tori; now let’s consider the

K-cohomology of split simply connected groups.

Proposition 11. If Y is a torsor for a simply connected semisimple group, then the chow

groups CH1(Y ) and CH2(Y ) are always trivial.

This means that, since Ai(Y,Ki) = CH i(Y ), two of our groups are already computed.

However, note that the simply connected assumption is critical here; if the character group

of a maximal torus differs from the weight lattice, the Chow group will no longer be trivial.

Let G be a split simply connected semisiple group over F , and let T be a split maximal

torus in G; call X = G/T , the variety of cosets. Then we have a canonical map π : G→ X.

For any x ∈ X(E) over an extension E/F , the coset π−1x ⊂ G is a trivial T -torsor over E.

Then, if we consider the Rost spectral sequence [23, Sec. 8] associated to π, we have

Ep,q
1 =

∐
x∈X(p)

Aq(π−1x,Kn−p)⇒ Ap+q(G,Kn)

But since the terms are K−cohomology of a trivial T -torsor, Ep,q
1 = 0 whenever q > 0.

This means that, if Mn(x) = A0(π−1x,Kn) is a cycle module over X, we get an isomorphism

Ap(G,Kn) ' Ap(X,Mn).

Theorem 12. [6, Theorem 3.7]

Let G be a split simply connected group, T ⊂ G a split maximal torus, and define X =

G/T . For every n ≥ 0 there is a spectral sequence

Ep,q
1 = Kn−q ⊗ CHp+q(X)⊗ Λ−pT ∗ ⇒ Ap+q(G,Kn)
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This spectral sequence is trivial outside the triangle determined by p ≤ 0, p+ q ≥ 0, and

n ≥ q.

This spectral sequence allows computation of A1(G,K2).

Corollary 13. For any split simply connected group G, There is a homomorphism νG :

A1(G,K2)→ S2(T ∗) which factors through CH1(X)⊗T ∗, and which induces an isomorphism

on its image, S2(T ∗)W .

2.7 Cohomological invariants of algebraic groups

Cohomological invariants of an algebraic groupG with coefficients in Q/Z(i) can be computed

by computing motivic cohomology groups:

Theorem 14. [2, Theorem 4.1] Let X be a smooth variety over F ; then there is an exact

sequence

0→ CH2(X)→ H4(X,Z(2))→ H0
Zar(X,H3(Q/Z(2)))→ 0

We won’t define the motivic complex Z(2); rather, we’ll just use several properties that

it is known to have in order to compute cohomology with Z(2) coefficients in terms of K-

cohomology.

Theorem 15. [11, Theorem 1.1] Let G be a linear algebraic group over F (and if F is finite,

assume G is connected). Let E → X be a classifying G-torsor with E a G-rational variety

with a point over F . Then there is an isomorphism:

Invn(G,Q/Z(i)) ' H0
Zar(X,Hn(Q/Z(i)))bal

So, if we can understand the degree 4, weight 2 motivic cohomology of a classifying torsor

of an algebraic group, we can gain a similar level of understanding of its degree 3, weight 2

cohomological invariants.

23



Lemma 16. [2, ]

For an algebraic torus T , let U/T be a classifying torsor, and T ◦ be the dual torus of T

- a torus whose character group is the dual group of T ∗. There is an exact sequence:

0→ H1(F, T ◦)→ H
4
(U/T,Z(2))bal → S2(T ∗sep)

Γ → H2(F, T ◦)

In fact, we can remove H
4
(U/T,Z(2))bal from our reckoning altogether for tori, because

Tsep is split, meaning that its invariants are trivial.

Lemma 17. [2, Theorem 4.2]

For a torus T and classifying torsor U/T , with classifying space BT , there are isomor-

phisms

H
4
((U/T )sep,Z(2))bal ' CH2(BTsep) ' S2(T ∗sep)

Combining these facts, we get

Theorem 18. [2, Theorem 4.3] Let T be an algebraic torus over a field F . Then there is

an exact sequence

0→ CH2(BT )tors → H1(F, T ◦)→ Inv3(T,Q/Z(2))norm → S2(T ∗sep)
Γ/Dec→ H2(F, T ◦)

Where Dec is the subgroup of S2(T ∗sep)
Γ of decomposable elements, generated by the image

of the quadratic trace map Qtr : T Γ → S2(T )Γ

The same structure applies to computing the cohomological invariants of semisimple

groups. If G is simply connected, and Λw is its weight lattice, then H
4
(BG,Z(2)) = Q(G),

where Q(G) = (S2(Λw)W )Γ. This leads to

Theorem 19. [18, Theorem 3.9] Let G be a semisimple group over F . Let C be the kernel

of the universal cover of G. Then there is an exact sequence

0→ CH2(BG)tors → H1(F,C∗(1))→ Inv3(G,QZ(2))norm → Q(G)/Dec(G)→ H2(F,C∗(1)).

24



CHAPTER 3

Degree Three Cohomological Invariants of Split

Reductive Groups

By comparing cohomology groups of a connected, split reductive group G over a field F

with the cohomology of a split maximal torus T ⊆ G, a borel subgroup B of G containing

T , and the quotients of G by T and B, we can extend results on the invariants of split

semisimple groups to split reductive groups. Further notation used in this chapter are W

for the Weyl group of G, H = [G,G] the commutator subgroup of G, Q = G/H is a split

torus, π : H̃ → H a simply connected cover of H, C = Ker(π), Λw the weight lattice of H̃.

3.1 K-Cohomological Background

The kernel of the natural homomorphism T ∗ → Λw (which is 0 in the semisimple case)

are the characters in T ∗ which are trivial when restricting to H̃, so it is isomorphic to Q∗.

The cokernel of that natural map is isomorphic to the finite group C∗, just as it is in the

semisimple case.

We can relate directly to the semisimple case by considering the smooth projective variety

G/B, which is the flag variety for the simply connected group H̃. By [GMS, Part 2, Section

6], there is a natural isomorphism

Λw → CH1(G/B) (3.1)

This isomorphism extends to a ring homomorphism (with the intersection product on

the Chow Ring)
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S∗(Λw)→ CH∗(G/B) (3.2)

where S∗ is the symmetric ring.

The following proposition summarizes existing results on the K−cohomology of G and

quotients thereof.

Proposition 20. Let G be a split reductive group, and D either be a split maximal torus

T ⊆ G or a Borel subgroup of G containing T . Then if E → Y is a G-torsor over a smooth

variety Y ,

1. The pull-back homomorphism A∗(E/B,K∗) → A∗(E/T,K∗) induced by the natural

map E/T → E/B is a ring isomorphism.

2. For every smooth variety Z over F , the external product map gives an isomorphism

A∗(Z,K∗)⊗ CH∗(G/D)→ A∗(Z × (G/D), K∗)

3. There is a natural isomorphism Λw → CH1(G/D).

4. The kernel of the surjective homomorphism S2(Λw)→ CH2(G/D) is equal to the group

of W -invariant elements S2(Λw)W in S2(Λw), so CH2(G/D) ' S2(Λw)/S2(Λw)W .

Proof. 1. The fibers of E → E/B over a field K are B-torsors. B, as a Borel group, is a

special group, which means all B-torsors over all fields are trivial. Thus, these fibers,

being trivial B-torsors, are split and isomorphic to BK . This means that the fibers of

the natural morphism E/T → E/B over K are isomorphic to (B/T )K , and so they

are affine spaces over K. Then, by [EKM, Theorem 52.13], the Homotopy Invariance

Property of K-cohomology says that the pull-back homomorphism is an isomorphism.

2. By part (1), we can treat G/B and G/T the same when it comes to K-cohomology,

so we may as well assume D = B. In this case, G/B is a cellular variety, and so the

statement follows by [6, Proposition 3.7]

26



3. The proof of this is above.

4. This is Theorem 6.7 and Corollary 6.12 of [7, Part 2]

G/T has a natural W -action, which means that CH i(G/T ), and so by the proposition,

CH i(G/D), are naturally W -modules. Moreover, all the maps we have mentioned so far are

W -module homomorphisms.

Now, we can relate the K-cohomology of the base of a torsor to that of another variety.

Proposition 21. Let E → Y be a G-torsor with Y a smooth variety, D = B or D = T ,

and f : X = E/D → Y the induced morphism. Then

1. The natural homomorphism

A0(Y,K2)→ A0(X,K2)

is an isomorphism, and

2. There is a natural complex

0→ A1(Y,K2)→ A1(X,K2)→ Λw ⊗ F [Y ]× → 0

which is acyclic whenever the torsor E is trivial.

Proof. By proposition 2(1), we can just consider the case when D = B. Rost’s spectral

sequence for the morphism f provides an exact sequence

0→ A0(X,K2)→
∐

y∈Y (0)

A0(Xy, K2)→
∐

y∈Y (1)

A0(Xy, K1)

The fiber Xy is a projective homogeneous G-variety over the field F (y), which means that

the natural homomorphism Ki(F (y))→ A0(Xy, Ki) is an isomorphism by [26, Corollary 5.6].

It follows that A0(X,K2) ' A0(Y,K2). In the next degree, Rost’s spectral sequence for F

gives the exact sequence
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A1(Y,K2)→ A1(X,K2)→
∐

y∈Y (0)

A1(Xy, K2)→
∐

y∈Y (1)

A1(Xy, K1)

Because Xy is a projective homogeneous G-variety over F (y), then the group A1(Xy, Ki)

is canonically identified with a subgroup of CH i(G/B)⊗Ki−1(F (y)) = Λw⊗Ki−1(F (y)) when

i ≤ 2, which means that there is a natural map from the kernel of δ :
∐

y∈Y (0) A1(Xy, K2)→∐
y∈Y (1) A1(Xy, K1) to A0(Y,Λw ⊗ K1) = Λw ⊗ A0(Y,K1) = Λw ⊗ F [Y ]×, which gives our

desired map α : A1(X,K2)→ Λw ⊗ F [Y ]×.

If E is a trivial torsor, E ' Y ×G, so X ' Y × (G/D); so by Proposition 2, A1(X,K2) '

A1(Y,K2)⊕ (Λw ⊗ F [Y ]×).

Note that the projection of A1(X,K2) onto Λw ⊗ F [Y ]× above is equal to the map α.

3.1.1 Classifying Spaces

Let G be an algebraic group; the Chow ring CH∗(BG) of the classifying space of G was

defined by Totaro in [27], and extended to Chow rings with coefficients by Guillot in [9] as

follows. Fix an integer i ≥ 0 and choose a generically free representation V of G such that

there is a G−equivariant open subset U ⊂ V with the property codimV (V \ U) ≥ i + 1

and a versal G-torsor f : U → U/G. Then we define Ai(BG,K∗) := Ai(U/G,K∗), and the

definition is independent of the choice of V and U .

Because the fibers of U/T and U/B are affine spaces, the homotopy invariance property

implies that Ai(BB,Kj) ' Ai(BT,Kj), and then by the Kunneth formula, Ai(BT,Kj) '

Si(T ∗)⊗Kj−i(F ).

3.2 Motivic Cohomology of Weight at Most 2

In order to connect K-cohomology to cohomological invariants, we look at motivic cohomol-

ogy.
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Proposition 22. Let X be a smooth projective rational variety. Then the natural homo-

morphism

Hn(F,Q/Z(j))→ H0
Zar(X,Hn(Q/Z(j))) = Hn

nr(F (X),Q/Z(j))

is an isomorphism.

Proof. This statment is well known (see [4, Theorem 4.1.5]) without the p-primary compo-

nent of Q/Z(j) when char(F ) = p > 0; here is a proof that works in arbitrary cases.

Proceed by inducting on dim(X). Because H0
Zar(X,Hn(Q/Z(j))) is a birational invari-

ant, we can assume X = Pn−1 × P1. Take an element α ∈ H0
Zar(X,Hn(Q/Z(j))); pulling

back with respect to the morphism Pn−1
F (P1) → X, we get α ∈ H0

Zar(Pn−1
F (P1),H

n(Q/Z(j))) =

Hn(F (P1),Q/Z(j)) by the induction hypothesis. Then the result follows by [2, Proposition

5.1].

Because we have this, we can show that the corresponding etale sheaves are trivial.

Proposition 23. Let E → Y be a G-torsor and f : X = E/B → Y be the natural morphism;

then the etale sheaf associated with the presheaf on Y

Z 7→ H0
Zar(f

−1(Z),Hn(Q/Z(j)))

is trivial for n > 0.

Proof. Because the G-torsor f is locally trivial in the etale topology, we can assume that

the torsor E is trivial, so f−1(Z) ' Z × (G/B). Then, the pull-back homomorphism with

respect to the morphism (G/B)F (Z) → f−1(Z) is an injection:

H0
Zar(f

−1(Z),Hn(Q/Z(j)))→ H0
Zar((G/B)F (Z),Hn(Q/Z(j)))

Then by proposition 22, because G/B is a smooth, projective variety,
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H0
Zar((G/B)F (Z),Hn(Q/Z(j))) = Hn(F (Z),Q/Z(j)); but the etale sheaf associated with

the presheaf

Z 7→ Hn(F (Z),Q/Z(j))

is trivial for n > 0.

Now, for an arbitrary smooth variety X over F , consider the motivic complexes ZX(j) of

weight j=0, 1, and 2 in the category D+Shet(X). The complex ZX(0) is Z concentrated in

degree 0, and Z(1) = Gm[−1]. Note that we will write Hn,j(X) to mean Hn
et(X,Z(j)). Kahn

showed that H0,2(X) = 0, H1,2(X) = K3(F (X))ind, the cokernel of the map from Milnor K3

to Quillen K3; H2,2(X) = A0(X,K2), and H3,2(X) = A1(X,K2).

When E → Y is a G-torsor with Y a smooth variety, and f : X = E/D → Y is the

induced morphism, then we write Zf (2) for the cone of the natural morphism ZY (2) →

Rf∗(ZX(2)) in the category D+Shet(Y ). We can compute Hn(Zf (2)) for small values of n,

which connects ZX(2) and ZY (2).

Proposition 24. Let G be a split reductive algebraic group over F , D either a maximal

split torus T of G or a Borel subgroup B of G, and Λw the weight lattice of the commutator

subgroup of G; then if E → Y is a G-torsor with Y a smooth variety, and f : X = E/D → Y

is the induced morphism, then Hn(Zf (2)) = 0 for n ≤ 2, and H3(Zf (2)) = Λw⊗Gm. Further,

there is an exact sequence of etale sheaves on Y ,

0→ [S2(Λw)/S2(Λw)W ]⊗ ZY → H4(Zf (2))→ L→ 0

where L is the etale sheaf on Y associated to the presheaf

Z 7→ H0
Zar(f

−1(Z),H3(Q/Z(2)))

and L is trivial when D = B.
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Proof. The complex Z(2) is supported in degrees 1 and 2, so we immediately get triviality

for the cases of n < 0.

Zf (2) is defined via an exact triangle

ZY (2)→ Rf∗(ZX(2))→ Zf (2)→ ZY (2)[1] (3.3)

which gives an exact sequence in homology, and thus isomorphisms Rnf∗(ZX(2)) '

Hn(Zf (2)) for n ≥ 3. H1(ZY (2)) is the etale sheaf associated to the presheaf Z 7→ K3F (Z)ind,

and R1f∗(ZX(2)) is the etale sheaf associated to the presheaf Z 7→ K3F (f−1Z)ind. Now, as-

sume for the moment that the torsor E → Y is trivial; G/D is rational, so the natural

homomorphism K3F (Z)ind → K3F (f−1Z)ind is an isomorphism by [MS, Lemma 4.2], be-

cause the field extension F (f−1Z)/F (Z) is purely transcendental. Thus the morphism of

homology sheaves H1(ZY (2)) → R1f∗(ZX(2)) is an isomorphism, since our torsor is locally

trivial in the etale topology.

Now, consider n = 2. We have seen that H2(ZY (2)) is the etale sheaf associated to

the presheaf Z 7→ A0(Z,K2), and R2f∗(ZX(2)) is the etale sheaf associated to the presheaf

Z 7→ A0(f−1Z,K2). Now, we know A0(X,K2) ' A0(Y,K2), so that means H2(Zf (2)) = 0

when n ≤ 2.

For n = 3, we have seen that R3f∗(ZX(2)) ' Λw ⊗Gm, so H3(Z(2)) ' Λw ⊗Gm.

Finally, we take n = 4. Again, H4(Zf (2)) = R4f∗(ZX(2)); these are the etale sheaf on Y

associated to the presheaf Z 7→ H4,2(f−1Z).

We’ll compare it to a sheaf M on Y associated to the presheaf Z 7→ CH2(f−1Z). Let z be

a generic point of Z and L an algebraic closure of F (z). The fiber f−1(z) is split over L, which

means it is isomorphic to (G/D)L; then we get a morphism from M to the constant sheaf

[S2(Λw)/S2(Λw)W ]⊗ZY from the composition CH2(f−1Z)→ CH2(f−1(z))→ CH2(G/D)L.

This morphism is an isomorphism; assume E is trivial over Z, meaning f−1Z ' Z ×

(G/D); then CH2(f−1Z) ' CH2(Z)⊕ (CH1(Z)⊗CH1(G/D))⊕ (CH0(Z)⊗CH2(G/D));

projecting onto the last summand is precisely this morphism. But the sheaves associated to

the presheaves Z 7→ CH i(Z) are trivial for i > 0.
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Now, M is a subsheaf of H4(Zf (2)) by [11, Theorem 1.1], and the factor sheaf is the sheaf

associated to the presheaf Z 7→ H0
Zar(f

−1(Z),H3(Q/Z(2))), which we saw in Proposition 5

is trivial in the case D = B.

Theorem 25. Let G be a split reductive group over a field F , W its Weyl group, B a Borel

subgroup, E → Y a G-torsor with Y a smooth connected variety, and f : X = E/B → Y

the induced morphism. Then there are exact sequences of W -modules,

0→ A1(Y,K2)→ A1(X,K2)→ Λw ⊗ F [Y ]× → H4,2(Y )→ H4,2(X)→ H4(Y,Zf (2))

and

0→ Λw ⊗ CH1(Y )→ H4(Y,Zf (2))→ S2(Λw)/S2(Λw)W → Λw ⊗Br(Y )

Proof. Let D be either B or T , and g : E/D → Y the induced morphism; since Hn(Zg(2)) =

0 for n ≤ 2, and H3(Zg(2)) = Λw ⊗Gm, then we get an exact triangle in D+Shet(Y ),

Λw ⊗Gm[−3]→ τ≤4Zg(2)→ H4(Zg(2))[−4]→ Λw ⊗Gm[−2] (3.4)

where τ≤4 truncates above degree 4. Applying cohomology to this triangle, we get a

diagram with exact rows, and vertical maps induced by the morphism E/T → E/B:

0 Λw ⊗ CH1(Y ) H4(Y,Zf (2)) H0(Y,H4(Zf (2))) Λw ⊗Br(Y )

0 Λw ⊗ CH1(Y ) H4(Y,Zh(2)) H0(Y,H4(Zh(2))) Λw ⊗Br(Y )

Where f = g in the case D = B, and h = g in the case D = T . In this latter case, there

is a natural W -action on X such that h is W -equivariant (with W acting trivially on Y ),

so W acts on the complex Zh(2), and so the bottom sequence of the diagram is a sequence

of W -module homomorphisms. The third vertical map is injective by Proposition 24, and

thus by the 5-Lemma, all the vertical maps are injective; the top row is thus also a sequence

of W -equivariant homomorphisms. This gives the second sequence in the statement of the

theorem.
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Applying the cohomology functor to the defining exact triangle of Zg(2), and applying

the equalities derived so far, we again get the sequence

0 A1(Y,K2) A1(E/D,K2) Λw ⊗ F [Y ]×

H4,2(Y ) H4,2(E/D) H4(Y,Zg(2)) H5,2(Y )

When D = B, this gives the first exact sequence of the theorem; but if we compare the

sequences we get here for D = T and D = B via the morphism E/T → E/B, we get a

commutative diagram as above, and we already know the sequence for D = T is a sequence

of W -module homomorphisms; thus by the 5-Lemma, so is the sequence for D = B.

3.3 Cohomology of the classifying space

By approximating it via versal torsors, we can now compute the motivic cohomology of the

classifying space BG.

Theorem 26. Let G be a split reductive group over F , T ⊂ G a split maximal torus, and C

the kernel of the universal cover of the commutator subgroup of G. Then there is an exact

sequence

0 C∗ ⊗ F× H
4,2

(BG) S2(T ∗)W 0

Proof. Applying Theorem 7 to the group D = B and the versal G-torsors Un → Un/G for

all n, we get exact sequences of W -modules,

A1(Un/B,K2) Λw ⊗ F [Un/G]×

H4,2(Un/G) H4,2(Un/B) H4(Un/G,Zf (2))

Now, A1(Un/B,K2) = A1(BB,K2) = T ∗ ⊗ F×, and note F× ⊂ F [Un/G]× ⊂ F [Un]× =

F [V n]× = F× by the codimension requirements of U in V , so F [Un/G]× = F×. Thus, the

cokernel of the first homomorphism in the exact sequence above is isomorphic to C∗ ⊗ F×

since C× is the cokernel of the natural map T ∗ → Λw.
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Because B is special, every invariant of B is constant, so H
4,2

(BG) ' CH2(BB) '

S2(T ∗); taking the balanced elements in the exact sequence of cosimplicial groups above, we

get a sequence of W−module homomorphisms

0 C∗ ⊗ F× H
4,2

(BG) H
4,2

(BB) H4(U/G,Zf (2))

where f is the map f : U → U/G. This sequence is exact, since the first term is a

constant cosimplicial group.

W acts trivially on H
4,2

(BG); then if we take the W−invariant elements above, and use

the equality H
4,2

(BB) = S2(T ∗), we get the exact sequence

0 C∗ ⊗ F× H
4,2

(BG) S2(T ∗)W H4(U/G,Zf (2))W

and so if we can show that the last term is trivial, we have proven the theorem.

The second sequence in Theorem 25 is

0 Λw ⊗Q∗ H4(U/G,Zf (2)) S2(T ∗)/S2(T ∗)W

with Q∗ = G∗ = CH1(BG). Because W acts transitively on Λw and trivially on Q∗,

(Λw⊗Q∗)W = 0; since (S2(T ∗)/S2(T ∗)W )W = 0, we can conclude H4(U/G,Zf (2))W = 0.

3.4 Degree 3 Invariants

For a split reductive group G over F , and T ⊆ G a split maximal torus, we have the following

diagram

0

C∗ ⊗ F×

0 CH2(BG) H
4,2

(BG) Inv3(G,Q/Z(2))norm 0

S2(T ∗)W

0

γ
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The image of γ is the subgroup Dec(G) of “obvious” elements in S2(T ∗)W , generated by

all elements of either the form
∑

i<j xixj with {xi} the W−orbit of a character in T ∗, or xy

with x, y ∈ (T ∗)W = Q∗.

Theorem 27. Let G be a split reductive group, T ⊂ G a split maximal torus and C the kernel

of the universal cover of the commutator subgroup of G. Then there is an exact sequence

0 C∗ ⊗ F× Inv3(G,Q/Z(2))norm S2(T ∗)W/Dec(G) 0

Proof. Exactness at the middle and righthand terms follow by diagram chases. To show

that the first homomorphism is injective, let H be the commutator subgroup of G; then as

a semisimple group, we get that the composition

C∗ ⊗ F× Inv3(G,Q/Z(2)) Inv3(H,Q/Z(2))

is injective, which gives the injectivity of the first morphism.

We saw that the group of normalized Brauer invariants of G,

Inv2(G,Q/Z(1))norm = Inv(G,Br)norm

is isomorphic to Pic(G) = C∗; the first homomorphism in the exact sequence of the

theorem is given by the cup product, and its image consists of the decomposable invariants.

Writing Inv3(G,Q/Z(2))ind for the factor group of Inv3(G,Q/Z(2))norm by the subgroup

of decomposable invariants, we get a natural isomorphism

Inv3(G,Q/Z(2))ind ' S2(T ∗)W/Dec(G) (3.5)

3.5 Reductive Invariants

If G is a split reductive group, and H its commutator subgroup, we can consider the restric-

tion homomorphism
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Inv3(G,Q/Z(2))→ Inv3(H,Q/Z(2)).

We will also use the polar homomorphism,

pol : S2(Λw)→ Λw ⊗ Λw, xy 7→ x⊗ y + y ⊗ x

pol(S2(Λw)W ) is contained in Λw ⊗Λr; the embedding of Λr into Λw factors through T ∗.

If α is the composition

S2(Λw)W → (Λw ⊗ Λr)
W → (Λw ⊗ T ∗)W

and S is a split maximal torus of H contained in T , then there is a commutative diagram,

S2(S∗)W S∗ ⊗ S∗

S2(Λw)W (Λw ⊗ T ∗)W Λw ⊗ S∗ Λw ⊗ Λw

pol

α β

Then, if Q = G/H = T/S, then the kernel of the homomorphism Λw ⊗ T ∗ → Λw ⊗ S∗ is

Λw ⊗Q∗. Since (Λw ⊗Q∗)W = 0, β is injective, which gives the commutative diagram

S2(S∗)W

S2(Λw)W (S∗ ⊗ T ∗)W S∗ ⊗ S∗

(Λw ⊗ T ∗)W Λw ⊗ S∗

C∗ ⊗Q∗ C∗ ⊗ T ∗ C∗ ⊗ S∗

α

with vertical exact sequences; note that C∗ is both Λw/S
∗ and the character group of the

kernel C of a universal cover H̃ → H.

Lemma 28. An element u ∈ S2(S∗)W belongs to the image of S2(T ∗)W → S2(S∗)W if and

only if pol(u) belongs to the image of (S∗ ⊗ T ∗)W → S∗ ⊗ S∗.
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Proof. Let X be the kernel of the natural homomorphism S2(T ∗) → S2(S∗). Mapping via

the polar map and then pulling back, we get an exact sequence

0→ S2(Q∗)→ X → S∗ ⊗Q∗ → 0

Since W acts trivially on the first term, H1(W,S2(Q∗)) = 0. Thus H1(W,X) →

H1(W,S∗ ⊗Q∗) is injective, which gives the lemma by diagram chase.

Then, combining the lemma and the larger diagram, we get the following:

Proposition 29. The sequence

S2(T ∗)W → S2(S∗)W → C∗ ⊗Q∗

is exact.

The first homomorphism takes Dec(G) surjectively onto Dec(H); so the composition is

trivial. Then, applying the previous theorem, we get a homomorphism Inv3(H,Q/Z(2)) →

C∗ ⊗Q∗.

This gives

Theorem 30. Let G be a split reductive group, H ⊂ G the commutator subgroup, Q = G/H

and C the kernel of the unversal cover H̃ → H. Then the sequence

0→ Inv3(G,Q/Z(2))→ Inv3(H,Q/Z(2))→ C∗ ⊗Q∗

is exact.

From this theorem, we get

Corollary 31. If the commutator subgroup H is either simply connected or adjoint, then

the restriction homomorphism Inv3(G,Q/Z(2))→ Inv3(H,Q/Z(2)) is an isomorphism.

37



This comes because either H is simply connected, and thus C∗ = 0, or H is adjoint,

which means that the surjection T ∗ → S∗ is split by Λr → T ∗, which means that S2(T ∗)W →

S2(S∗)W is surjective.

Now, if we go the other direction and start with a split semisimple group H, and take G

a strict reductive envelope of H, then the image of the injective map

Inv3(G,Q/Z(2))ind → Inv3(H,Q/Z(2))ind

which we’ll call Inv3(H,Q/Z(2))red, is independent of the choice of G; this is the subgroup

of reductive indecomposable invariants of H.

We can make specific quantitative arguments about the group of reductive invariants

using the following proposition:

Proposition 32. Let q =
∑

j kjqj ∈ S2(S∗)W ⊆ S2(Λw)W with kj ∈ Z. Let I be the element

of Inv3(H,Q/Z(2))ind corresponding to q. Then I is a reductive indecomposable invariant if

and only if the order of wij in C∗ divides dijkj for all i and j.

Proof. The composition S2(S∗)W → C∗ ⊗Q∗ → C∗ ⊗ T ∗ factors into the composition

S2(S∗)W S2(Λw)W Λw ⊗ Λr C∗ ⊗ Λr C∗ ⊗ T ∗pol

Because Gis strict, Λr is a direct summand of T ∗, so the last map in this sequence is

injective; so the sequence

S2(T ∗)W S2(S∗)W C∗ ⊗ Λr
θ′

is exact. Thus, by theorem 30, I is reductive indecomposable if and only if q belongs to

the kernel of θ′; the polar form of qj is equal to

∑
i

dijwij ⊗ αij ∈ Λw ⊗ Λr

The roots αij form a Z-basis for Λr, so q belongs to the kernel of θ′ if and only if the

order of wij in C∗ divides dijkj for all i and j.
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The An−1 Case: the group G = GLn/µm is a strict envelope of H = SLn/µm. A G-torsor

over a field K corresponds to a central simple algebra A of degree n over K and exponent

dividing m. This means that every reductive indecomposable invariant of H is an invariant

of such an algebra. I claim such invariants are all trivial; the argument is by considering the

p−primary component of Inv3(H,Q/Z(2))red. Let r be the largest power of p dividing m.

The kernel of the natural homomorphism GLn/µr → GLn/µm is finite, and of degree prime

to p. Then, by [19, Proposition 7.1], the p-primary components of the groups of degree three

invariants of H and sLn/µr are isomorphic, so we can assume that m is a power of p.

If q is the canonical generator of S2(S∗)W , then if Inv3(H,Q/Z(2))red 6= 0, mq ∈ Dec(H).

But, if I is a reductive indecomposable invariant of H corrispoinding to a multiple kq of q,

k must be divisible by the order of the first fundamental weight in C∗ = Z/mZ, which is m;

so m divides k, so kq ∈ Dec(H), so I is trivial.

This means that any invariant ofA, being decomposable, is equal to [A]∪(x) ∈ H3(K,Q/Z(2))

for some x ∈ F×; so central simple algebras of fixed degree and exponent have no nontrivial

indecomposable degree three invariants.

The Dn Case: If H is the special orthogonal group O+
2n, then Inv3

ind(H,Q/Z(2)) = 0, so

we just need to consider H = HSpin2n, the half-spin group with n ≥ 4 even. In general,

Inv3(H,Q/Z(2))ind =


0 if n ≡ 2 modulo 4 or n = 4

2Zq/4Zq if n ≡ 4 modulo 8 and n 6= 4

Zq/4Zq if n ≡ 0 modulo 8

,

where q is the canonical generator of S2(Λw)W . The orders of the fundamental weights

in C∗ = Z/2Z are either 1 or 2; so by proposition 14, we get that

Inv3(H,Q/Z(2))red =


0 if n ≡ 2 modulo 4 or n = 4

2Zq/4Zq if n ≡ 0 modulo 4 and n > 4

.
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CHAPTER 4

The Relative Motivic Complex

In the previous chapter, we utilized the weight two relative motivic complex Zf (2) associated

to the map f : E/B → Y , where E → Y was a G-torsor and B was a split Borel subgroup

of G; this allowed us to compare the invariants of split reductive groups with the invariants

of semisimple groups. However, there is another relative motivic complex even more closely

tied to the motivic cohomology of G, and that is Zf (2) where f : X → Y is a G−torsor. This

complex is important because, if f : X → Y is a versal torsor, then there is an isomorphism

H3(Y,Zf (2))→ H
4
(Y,Z(2))bal (4.1)

but this latter cohomology group is precisely what is meant by H4(BG,Z(2)), which is

the cohomology group needed in order to compute Inv3(G,Q/Z(2))norm.

4.1 Motivation

When G is an arbitrary reductive group, the complex Zf (2) for a general G-torsor f : X → Y

still has not been computed. However, there is a conjectured value for the truncated complex

τ≤3Zf (2) which is appealing both because it specializes to the known results in the cases of

a torus G = T , of a semisimple group G = H, and as computed in the previous chapter, of

a split reductive group.

Further, when we restrict the torsors under consideration to just torsors f : X → K over

fields, the conjectured value indeed holds; this case, while it cannot be used to compute the

motivic cohomology of an arbitrary G-torsor (and thus the motivic cohomology of the classi-

fying space of G), is of independent interest. The lower-weight version, τ≤2Zf (1) was defined

40



by Borovoi and van Hamel in [3] in the case of algebraically closed fields of characteristic

zero; they called it the extended Picard complex, because its first cohomology is the Picard

group of X; its zeroth cohomology is Ksep[X]×/K×sep. These are each important Galois mod-

ules associated to X, and the extended Picard complex contains more information than the

two of them separately.

Definition. Let G be a reductive group with maximal torus T ; let Hsc be the simply connected

universal cover of H = [G,G], and Ssc the preimage of S = T ∩H in Hsc; it is a maximal

torus in Hsc. Then the complex N(G) of Galois modules is defined as the induced map

T ∗sep → (Hsc
sep)

∗

Note that the terms in this complex depend on our choice of T ; it turns out that, as a

complex in the derived category of Galois modules, N(G) is independent of that choice. I will

prove this by showing that N(G) is in fact the extended Picard complex, but one could prove

the independence directly, by constructing a quasi-isomorphism with the complex where the

Galois group permutes the fundamental weights by the action on the Dynkin diagram of G,

also known as the ∗−action. As a result, instead of writing (Hsc
sep)

∗, we can instead choose

the copy in which it is naturally isomorphic to the weight lattice Λw.

The complex N(G) is noteworthy, aside from our applications, because it succinctly

captures the combinatorial root datum of the group G; it is a natural thing to study if one

wants to understand the algebraic structure of G, and simultaneously, its cohomology groups

express information about the geometry of G.

There is one other complex of lattices that we need to consider in order to understand

the relative motivic complex.

Definition. Let G be a reductive group with maximal torus T ; let Hsc be the simply connected

universal cover of H = [G,G], and Ssc the preimage of S = T ∩H in Hsc; it is a maximal

torus in Hsc. Let Z = G/T = Hsc/Ssc; then S2((Ssc)∗)/S2((Ssc)∗)W ' CH2(Z); let α :

T ∗sep ⊗ (Sscsep)
∗ → CH2(Zsep) be the induced map.
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Then D(G) is the complex of Galois modules

Λ2(T ∗sep)→ ker(α)

obtained by truncating the sequence

Λ2(T ∗sep)→ T ∗sep ⊗ (Sscsep)
∗ → CH2(Z)

Again, this is a complex defined in terms of the combinatorial data of G, but now each

of the terms is two dimensional.

4.2 The Extended Picard Complex

While we cannot compute the extended Picard complex τ≤2Zf (1) for arbitrary G-torsors, we

can when it is f : X → Spec(F ). This method is new, and the computation is new outside

of the algebraically closed characteristic zero case.

4.3 Defining N(G)

Let G be a connected reductive group over F , and H = [G,G] its semisimple commutator

subgroup and Hsc the simply connected universal cover of H; then

ρ : Hsc → H → G

is known as Deligne’s homomorphism. Given a maximal torus T of G defined over F ,

let S := T ∩ H be the corresponding maximal torus of H, and let T sc := ρ−1(T ) be the

corresponding maximal torus of Hsc. Then ρ induces a complex

T scsep
ρ−→ Tsep

Taking Hom(−,Gm) of this complex, we get the complex N(Gsep) = [T ∗sep
ρ∗−→ (T scsep)

∗〉;

the individual terms depend on the choice of T , but the complex is determined in the derived

category of discrete Galois modules.
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For any smooth variety X over F , let ZX(1) be the motivic complex of consisting of the

étale sheaf over X Gm in degree 1.

For any i ≥ 0, the homology of the complex C•(X,Kd):

. . .→
∐

x∈X(i−1)

Kd−i+1(F (x))
δ−→

∐
x∈X(i)

Kd−i(F (x))
δ−→

∐
x∈X(i+1)

Kd−i−1(F (x))→ . . .

WhereX(i) is the codimension i points inX, is denotedAi(X,Kd), as in [23]; in particular,

when i = d, this is CH i(X).

C•(X,Kd) is a nontrivial in finitely many terms - specifically, when 0 ≤ i ≤ d. Ad-

ditionally, there is a natural complex morphism Kd(F ) → C•(X,Kd) induced by the map

Kd(F ) → Kd(F (X)); call the cone of this map C
•
(X,Kd). Homology of C

•
(X,Kd) differs

from that of C•(X,Kd) at degree 0; there, it is denoted A
0
(X,Kd).

Let f : X → Spec(F ) be a torsor for G; then define the weight 1 relative motivic complex

for f to be Zf (1), the cone of the natural morphism

ZF (1)→ Rf∗(ZX(1)) (4.2)

in the derived category of étale sheaves over F .

4.3.1 Cohomology of Zf (1)

Since there is an exact triangle

ZF (1)→ Rf∗(ZX(1))→ Zf (1)→ ZF (1)[1] (4.3)

and Z(1) = Gm[−1], we get Hi(Zf (1)) = 0 for i ≤ 0, and an exact sequence

0→ Gm,F → f∗(Gm,X)→ H1(Zf (1))→ 0 (4.4)

Thus, H(Zf (1)) is the etale sheaf associated with the presheaf U 7→ F [f−1U ]×/F [U ]×;

by a result of Sansuc [24], H1(Zf (1)) ' G∗.
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For q ≥ 2, the exact triangle gives isomorphsims Hq(Zf (1)) = Rqf∗(ZX(1)), so in partic-

ular H2(Zf (1)) ' Pic(G).

4.3.2 Comparing Zf (1) with C
•
(Xsep, K1)

Consider the diagram of categories of sheaves

Shet(X) ShΓ
zar(Xsep) Shet(F )

Shet(Xsep) Shzar(Xsep)

α

res

δ

β

γ

Where α and γ are change of site, res is restriction, β is the forgetful functor from

ShΓ
zar(Xsep), the ΓF -equivariant Zariski sheaves on Xsep to Zariski sheaves on Xsep, and δ is

the global section functor. Note that δα = f∗ with f : X → SpecF .

Passing to derived categories, we get

D+Shet(X) D+ShΓ
zar(Xsep) D+Shet(F )

D+Shet(Xsep) D+Shzar(Xsep)

Rα Rδ

Rβ

Rγ

Lemma 33. There is a morphism τ≤2RγZXsep(1) → K1,Xsep [−1] in the derived category of

Γ-equivariant Zariski sheaves over Xsep.

Proof: consider the object ZX(1) ∈ D+Shet(X). Restriction takes this to ZXsep(i) ∈

D+Shet(Xsep), and then to RγZXsep(i). By [11, 1.4], this has trivial cohomology in degree i+1

and cohomology Ki in degree i. So, there is a map of Zariski sheaves τ≤2RγZXsep(1)→ K1.

Commutativity of the above diagrams of categories, along with exactness of the forgetful

functor β, gives the equalities

β(HjRαZX(1)) = Hj(RβRαZX(1)) = Hj(RγRresZX(1)) = Hj(RγZXsep(1))

So, in particular β(H2RαZX(1)) = 0, means thatH2RαZX(1) = 0, and β(H1RαZX(1)) =

K1,Xsep means that H1RαZX(1) = K1,Xsep . Taken together, these proves the lemma.

Now, applying Rδ to this morphism, we get
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Rδ(τ≤i+1RαZX(i)) RδKi,Xsep [−i]

Rδ(RαZX(i))

Truncating this entire diagram at degree i+ 1, we get

τ≤i+1Rδ(τ≤i+1RαZX(i)) τ≤i+1RδKi,Xsep [−i]

τ≤i+1Rδ(RαZX(i))

The vertical map is an isomorphism in the derived category. To see this, first note that

the original map was an isomorphism on homology in degrees up through i + 1, and came

from a map of complexes, the first of which is 0 in degrees above i+ 1. Thus, after passing

through Rδ and then truncating at i+1, we get an isomorphism. On the other hand, Rδ(K1)

coincides with the Rost complex C(Xsep, K1) (see [21, §7]).

Theorem 34. The truncated relative motivic complex τ≤2Zf (1) is isomorphic in the derived

category to τ≤2C
•
(Xsep, K1)[−1]

Proof:

we have a diagram:

τ≤2ZF (1) Ki,Fsep [−1]

τ≤2Rf∗ZX(1) C•(Xsep, K1)[−1]

τ≤2Zf (1) C
•
(Xsep, K1)[−1]

The left column is the truncation of an exact triangle (since Zf (1) is defined as the cone

of the previous morphism), and the right column is an exact triangle. If we can show that

following the arrows from τ≤2ZF (1) to C
•
(Xsep, K1) is trivial, we’ll get the existence of a

morphism τ≤2ZF (1) → C
•
(Xsep, K1); but since the top horizontal map is an isomorphism,

the composition is trivial.

Now, we have a morphism τ≤2Rf∗ZX(1) → C
•
(Xsep, K1) that, when precomposed with

τ≤2ZF (1)→ τ≤2Rf∗ZX(1) is trivial. This means that there is some corresponding morphism
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βf : τ≤2Zf (1)→ C
•
(Xsep, K1). We still need to see that this morphism is unique; to do this,

take Hom(−, C•(Xsep, K1)) of the lefthand exact triangle. This gives us:

Hom(τ≤2ZF (1)[1], C
•
(Xsep, K1))→ Hom(τ≤2Zf (1), C

•
(Xsep, K1))→

Hom(τ≤2Rf∗ZX(1), C
•
(Xsep, K1))→ Hom(τ≤2ZF (1), C

•
(Xsep, K1))

So, if we show that Hom(τ≤2ZF (1)[1], C
•
(Xsep, K1)) = 0, our morphism βf : τ≤2Zf (1)→

C
•
(Xsep, K1) will be unique. To see this, note that C

•
(Xsep, K1) is concentrated in degrees

1 and 2.

Hom(τ≤2ZF (1)[1], C
•
(Xsep, K1)) is the set of maps maps from a complex concentrated in

degree 0 to a complex concentrated in degrees at least 1. It is a more general fact that any

morphism in a derived category A→ B where A is concentrated below B is trivial. This is

because such a morphism corresponds to a house, C → A a quasi-isomorphism, and C → B a

morphism of complexes. But, because C is quasi-isomorphic to A, the morphism τ≤i−1C → C

is also a quasi-isomorphism; composing we get a morphism of complexes τ≤i−1C → B that

is trivial, and quasi-isomorphic to the original morphism under consideration.

Finally, we need to see that this map is an isomorphism. Since the top morphism is an

isomorphism, and the next morphism induces isomorphism on homology, the five lemma tells

us that βf also induces isomorphism on homology, and so is a quasi-isomorphism.

So we have successfully identified the truncated relative motivic complex with the complex

of Galois modules N(G).

4.4 The Weight 2 Relative Motivic Complex

Again, we let f : X → Spec(F ) be a torsor for G; then define the weight 2 relative motivic

complex for f to be Zf (2), the cone of the natural morphism

ZF (2)→ Rf∗(ZX(2)) (4.5)
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in the derived category of étale sheaves over F .

Our computation of τ≤3Zf (2) will take advantage of Rost’s spectral sequence associated

to π : X → X/T , converging to Ai(X,Kn). We can assume that T is split, since we’re going

to be computing over a separable closure.

The first page of the spectral sequence is

Ep,q
1 =

∐
z∈Z(p) Aq(π−1(z), K2−p)⇒ Ap+q(G,K2)

Because the fibers are all isomorphic to a split torus, Ep,q
1 = 0 when q > 0. If we then

consider the cycle module M over Z defined by Mn(z) = A0(π−1z,Kn) for all z ∈ Z(K),

K/F a field extension, then we get from the spectral sequence that Ap(G,Kn) ∼= Ap(Z,Mn).

Now, this cycle module has a cycle module filtration 0 = M
(1)
2 ⊆ M

(0)
2 ⊆ M

(−1)
2 ⊆

M
(−2)
2 = M2 with factor cycle modules M

(p/p+1)
2

∼= Λ−p(T̂ )⊗K2+p.

Theorem 35. The complex C
·
(Xsep, K2) fits into an exact triangle

N(1)→ C
·
(Xsep, K2)→ D(G)→ N(1)[1]

Proof. From the filtration above, we get that C
·
(Xsep, K2) is quasi-isomorphic to U =

(M2(Fsep(Z))→
∐

z∈Z(1) M1Fsep(z)→
∐

z∈Z(2) M0Fsep(z))

M2(Fsep(Z)) ∼= A
0
(T,K2), which has a filtration F× ⊗ T ∗ ⊂ A

0
(T,K2)→ Λ2T ∗

M1Fsep(z) ∼= A0(T,K1), which has a filtration F× → F [T ]× → T ∗

M0Fsep(z) ∼= Z

Let V be the subcomplex of U that has V0 = F× ⊗ T ∗, and V1 = U1, V2 = U2; let W be

the Rost complex for Z; W is a subcomplex of V , with W2 = V2.

Given the inclusions W → V → U , we get an exact triangle,

V/W → U/W → U/V → V/W [1].

Note that U1 = V1 and U2 = W2; this means we can get a map from U to the cohomology

of the above exact triangle;
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H0(U/V )→ H1(V/W )→ H2(W )

Let δi be the morphism Wi → Wi+1 and di : Vi → di+1. Finally, note that V/W is the

two-term complex π : F (Z)× →
∐

z∈Z(1) T ∗.

Then we have a morphism U0 → U0/V0 = H0(U/V ), a morphism V1 → coker(π) =

H1(V/W ), and a morphism W2 → coker(δ1) = H2(W ) - the first and third of these are

maps from objects to cokernels of maps to them, while the second is the composition V1 →

V1/W1 → coker(π). So we have a complex map U → D, with D ∼= Λ2T ∗ → T ∗ ⊗ T sc∗ →

CH2(Z).

We also know what the kernels of these maps are; the kernel of U0 → U0/V0 is d−1
0 (W1)

and the kernel of V1 → coker(π) = H1(V/W ) is ker(δ1); finally,

d−1
0 (W1)→ ker(δ1) is quasi-isomorphic to ker(π)→ ker(δ1)/im(δ0), which is N ⊗ F×sep.

So, we get our exact triangle,

N ⊗ F× → C
·
(Xsep, K2)→ D(G)→ N ⊗ F×[1]

Theorem 36. The truncated relative motivic complex τ≤3Zf (2) associated to a G-torsor

f : X → Spec(F ), is quasi-isomorphic to the complex C
·
(Xsep, K2).

Proof. Proof:

we have a diagram:

τ≤3
ZF (2) K2,Fsep

τ≤3
Rf∗ZX(2) τ≤3

RδK2,Xsep

τ≤3
Zf (2) C

·
(Xsep, K2)

The right column is exact, and the left column is the truncation of an exact triangle

(since Zf (2) is defined as the cone of the previous morphism). If we can show that following

the arrows from τ≤3
ZF (2) to MRi is trivial, we’ll get the existence of a morphism τ≤3

ZF (2)→
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C
·
(Xsep, K2).

Z(2) is supported in degrees 1 and 2. H1(ZF (2)) ∼= R1f∗(ZX(2)), and H2(ZF (2)) ∼=

K2,Fsep , so the composition is trivial.

Now, we have a morphism τ≤3
Rf∗ZX(2) → C

·
(Xsep, K2) that, when precomposed with

τ≤3
ZF (2)→τ≤3

Rf∗ZX(2) is trivial. This means that there is some corresponding morphism

βf :τ≤3
Zf (2)→ C

·
(Xsep, K2). We still need to see that this morphism is unique; to do this,

take Hom(−C ·(Xsep, K2)) of the lefthand exact triangle. This gives us:

Hom(τ≤3
ZF (2)[1], C

·
(Xsep, K2))→ Hom(τ≤3Zf (2), C

·
(Xsep, K2))→

Hom(τ≤3
Rf∗ZX(2), C

·
(Xsep, K2))→ Hom(τ≤3ZF (2), C

·
(Xsep, K2))

So, if we show that Hom(τ≤3
ZF (2)[1], C

·
(Xsep, K2)) = 0, our morphism βf :τ≤3

Zf (2) →

C
·
(Xsep, K2) will be unique. To see this, note that C

·
(Xsep, K2) is concentrated in degrees 2

and 3.

When i = 2, Zf (2)can be represented by a complex represented in degrees 1 and 2, so

Zf (2)[1] is concentrated in degrees 0 and 1.

So, we have Hom(τ≤3
ZF (2)[1], C

·
(Xsep, K2)) as maps from a complex concentrated in

degrees at most 1 to a complex concentrated in degrees at least 2. It is a more general result

that any morphism in a derived category A→ B where A is concentrated below B is trivial.

This is because such a morphism corresponds to a house, C → A a quasi-isomorphism, and

C → B a morphism of complexes. But, because C is quasi-isomorphic to A, the morphism

τ≤1
C → C is also a quasi-isomorphism; composing we get a morphism of complexes τ≤1

C → B

that is trivial, and quasi-isomorphic to the original morphism under consideration.

Finally, we need to see that this map is an isomorphism. This follows because it induces

isomorphism on homology; in degrees higher than i+1, both have been truncated, and so are

trivial. In degrees below 2, C
·
(Xsep, K2) is trivial, while Zf (2) has trivial homology, because

the homology sheaves of ZF (2) and Rf∗ZX(2) are isomorphic. In degree 2, both complexes

have homology A
0
(X,K2) and in degree 3, both have homology A1(X,K2).
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4.5 Hypothetical Calculations

Using a conjectured exact triangle that the complex τ≤3Z fits inside, we can predict a rela-

tionship between CH2(BG), H
4
(BG,Z(2)), Inv3(G,Q/Z(2)), and the complexes N(G) and

D(G).

Conjecture 1. Let G be a reductive group, and let f : X → Y be an arbitrary G-torsor, and

Zf (1) the corresponding weight one relative motivic complex. Then the truncation τ≤2Zf (1)

fits into an exact triangle

T ∗sep → Λw → τ≤2Zf (1)[2]→ T ∗sep[1] (4.6)

When G = T is a torus, then Λw = 0; this implies that every normalized Brauer invariant

of T is linear, which is indeed the case. On the other hand, when G is semisimple, then

T ∗sep → Λw is injective, with cokernel C∗, which is equal to the group of normalized Brauer

invariants of G.

Let N(1) = N(G)⊗ Z(1); N(1) = [T ∗sep ⊗ F×sep[−1]→ Λw ⊗ F×sep[−1]].

Conjecture 2. Let G be a reductive group, and let f : X → Y be an arbitrary G-torsor, and

Zf (2) the corresponding weight two relative motivic complex. Then the truncation τ≤3Zf (2)

fits into an exact triangle

N(1)→ τ≤3Zf (2)[3]→ D(G)→ N(1)[1]. (4.7)

Again, we can see that this simplifies to the actual situation when G is either semisimple

or a torus; if G = T is a torus, then since Λw = 0, and D(G) = S2(T ∗sep), taking cohomology

would give us an exact sequence

0→ H1(Y, T ∗sep)→ H3(Y,Zf (2))→ S2(T ∗sep)
Γ → H2(Y, T ∗sep)
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which is precisely what happens. Specializing instead to the case of a semisimple group,

N(1) will be quasi-isomorphic to C∗(1), and we’ll get an exact sequence

0→ H1(Y,C∗(1))→ H3(Y,Zf (2))→ H0(Y,D)→ H2(Y,C∗(1))

which is an exact sequence that does in fact hold whenever f : X → Y is a torsor for a

semisimple group.

Given this evidence in favor of the conjectures, it is worth following the line of logic that

conjecture 2 provides toward a computation of the degree three cohomological invariants of

a reductive group.

In general, if V is a generically free representation of G with an open G-invariant sub-

scheme U ⊆ V and a G-torsor U → U/G with U(F ) 6= ∅, and V \U is of codimension at

least 3, then there is an exact sequence

0 CH2(Un/G) H
4
(Un/G,Z(2)) H

0

Zar(U
n/G,H3(Q/Z(2))) 0

for every n. The lefthand group is independent of n, so we can write it as CH2(BG), and

taking the balanced elements (those which agree on both projections pi : (U×U)/G→ U/G),

we get

0 CH2(BG) H
4
(Un/G,Z(2))bal H

0

Zar(U
n/G,H3(Q/Z(2)))bal 0

But the righthand groupH3(Q/Z(2))bal is canonically isomorphic to Inv3(G,Q/Z(2))norm,

so it is also independent of the choice of V , which means the middle term is as well, and

we can write H
4
(BG,Z(2)) for H

4
(Un/G,Z(2))bal. This gives the exact row of the following

diagram. Because H3(Y,Zf (2)) ' H
4
(Y,Z(2))bal whenever f : X → Y is a versal torsor, the

exact triangle for Zf (2) gives us the exact column of the following diagram.
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Theorem 37. If G is a reductive group, and conjecture 2 holds for any G-torsor, then there

is a commutative diagram of the form

0

H1(F,N(1))

0 CH2(BG) H
4
(BG,Z(2)) Inv3(G,Q/Z(2))norm 0

H1(F,D)

H2(F,N(1))
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