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Abstract

The assembly of amyloidogenic peptides and proteins such as the β-amyloid peptide (Aβ), α-

synuclein, huntingtin, tau, and islet amyloid polypeptide (IAPP) into amyloid fibrils and oligomers 

is directly linked to amyloid diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s 

diseases, frontotemporal dementias, and type II diabetes. Although amyloid oligomers have 

emerged as especially important in amyloid diseases, high-resolution structures of the oligomers 

formed by full-length amyloidogenic peptides and proteins have remained elusive. Investigations 

of oligomers assembled from fragments or stabilized β-hairpin segments of amyloidogenic 

peptides and proteins have allowed investigators to illuminate some of the structural, biophysical, 

and biological properties of amyloid oligomers. Here, we summarize recent advances in the 

application of these peptide model systems to investigate and understand the structures, biological 

properties, and biophysical properties of amyloid oligomers.

INTRODUCTION

The assembly and aggregation of peptides and proteins into fibrils and oligomers is 

a hallmark of amyloid diseases.[1–4] Amyloid diseases are diverse in their prevalence, 

presentation, and symptoms, encompassing neurodegenerative diseases, such as Alzheimer’s 

disease, Parkinson’s disease, Huntington’s disease, and Creutzfeldt-Jakob disease, as well as 

other diseases, such as type II diabetes and transthyretin amyloidosis.[4–8] Amyloid fibrils 

are common molecular assemblies associated with amyloid diseases, and are characterized 

by their insolubility, affinity for Congo red dye and thioflavin T (ThT), cross-β X-ray 

diffraction pattern, and extended networks of in-register parallel β-sheets.[9–14] The 

biophysical and structural properties of amyloid fibrils and their roles in disease have been 

studied extensively (Figure 1A–E).[15–18] Yet, as investigations into amyloid fibrils have 

proceeded over the last four decades, evidence has increasingly pointed toward amyloid 

oligomers as the damaging species responsible for disease progression.

Some of the initial evidence for the presence of amyloid oligomers arose from solution-

phase biophysical characterization of amyloid plaques isolated from Alzheimer’s disease 

brains.[19,20] These early studies reported the presence of soluble assemblies of the β-

amyloid peptide, Aβ, in addition to insoluble fibrils. The formation of these Aβ assemblies 

and their relevance to disease pathology was supported by subsequent in vitro studies, which 

confirmed their assembly and neurotoxicity, and ultimately led to the formalization of the 
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hypothesis that amyloid oligomers are causative agents in the neurodegeneration associated 

with Alzheimer’s disease.[21–29]

Oligomers of Aβ are soluble and heterogeneous — varying significantly in their structure, 

stability, and stoichiometry. Antiparallel β-sheets and β-hairpins are thought to be building 

blocks of many amyloid oligomers. Amyloid oligomers vary vastly in size, comprising as 

few as two or three, or as many as dozens or more molecules. Many of these features have 

been observed for oligomers formed by other amyloidogenic peptides and proteins, such as 

α-synuclein, polyglutamine, islet amyloid polypeptide (IAPP), and tau.[4,30–33]

Only one atomic-resolution structure of an oligomer formed by the full-length sequence 

of Aβ42 has been reported thus far (Figure 1F).[34] Carulla and co-workers reported 

the NMR-based structure of an Aβ42 tetramer and provided additional evidence for its 

assembly into an octamer. The tetramer is a six-stranded antiparallel β-sheet comprising two 

β-hairpins of Aβ42 surrounding two antiparallel β-strands of Aβ42. Although the disease 

relevance of this oligomer has not yet been established, the tetramer represents the first 

high-resolution structure of an oligomer of full-length Aβ. In light of the large number of 

unique amyloid fibril structures reported and deposited in the Protein Data Bank (PDB), the 

lack of other high-resolution structures of amyloid oligomers represents an immense gap in 

our understanding of amyloid diseases.[15–18]

Peptide model systems derived from the sequences of amyloidogenic peptides and proteins 

have emerged as useful tools to investigate amyloid oligomers and bridge this gap in 

our understanding. These peptides are designed to mimic the biological and biophysical 

properties of native amyloid oligomers. Unlike native amyloid oligomers, the oligomers 

formed by these peptide model systems often have the added benefits of increased 

homogeneity and stability, facilitating high-resolution characterization of many of the 

oligomers that form. This review highlights recent investigations of peptide model systems 

that have helped advance our knowledge of amyloid oligomers.

THE FRAGMENT-BASED APPROACH

X-ray crystallographic investigations of short fragments of amyloidogenic peptides and 

proteins provide one strategy for studying the molecular interactions governing fibril and 

oligomer assembly at high resolution. Eisenberg and co-workers reported several high-

resolution structures of fibril-forming peptides that are derived from amyloidogenic peptides 

and proteins.[35–37] Using this fragment-based approach, Eisenberg and co-workers 

determined the X-ray crystallographic structures of two oligomers composed of eleven-

residue peptide fragments derived from αB crystallin and superoxide dismutase 1 (SOD1) 

(Figure 1G, H).[38–40] The αB crystallin fragment assembles into a cylindrical barrel 

composed of six antiparallel β-strands, termed a cylindrin by the investigators (Figure 1G). 

The SOD1 fragment assembles into a corkscrew-like arrangement of antiparallel β-strands 

(Figure 1H). Surewicz and co-workers determined the structure of a hexamer composed of 

disulfide-linked antiparallel β-strands comprising two six-residue peptide fragments derived 

from human prion protein (Figure 1I). [41] Intermolecular hydrogen bonding between 
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antiparallel β-strands and the close packing of hydrophobic residues are common features 

that stabilize each of these oligomers.

These fragment-based models are significant, because oligomers of full-length 

amyloidogenic peptides and proteins are thought to be composed of antiparallel β-sheets and 

β-hairpins. [42–45] Structures of oligomers assembled from the fragments of amyloidogenic 

peptides and proteins can serve as models for naturally occurring disease-relevant oligomers 

formed by full-length amyloidogenic peptides and proteins. Oligomers of full-length 

amyloidogenic peptides and proteins have not yet yielded to X-ray crystallography or 

CryoEM. Although CryoEM has emerged as a powerful tool in the structural biology 

of amyloid fibrils (Figure 1B–E), thus far the oligomers of full-length amyloidogenic 

peptides and proteins have proven too small or too heterogenous for structural elucidation by 

CryoEM.[15–18,46,47]

STABILIZED β-HAIRPINS

β-Hairpins are building blocks of some of the oligomers formed by amyloidogenic peptides 

and proteins.[34,48,49] Model systems consisting of stabilized β-hairpins are valuable tools 

for studying amyloid oligomers, because they provide control of secondary and tertiary 

structure while allowing quaternary structure to form through self-assembly. Härd and co-

workers demonstrated that three different amyloidogenic peptides and proteins can form 

β-hairpins and determined the structures of these β-hairpins. In 2008, Härd, Hoyer, and 

co-workers elucidated the NMR structure of a β-hairpin formed by Aβ40 by using an 

affibody to sequester and stabilize the β-hairpin (Figure 2A).[42] In this β-hairpin, residues 

17–23 and 30–36 of Aβ hydrogen bond to form an antiparallel β-sheet, while the intervening 

residues, 24–29, form a loop (Figure 2B). The remaining N- and C- terminal residues 

are unstructured. Härd and co-workers also used affibodies to stabilize and determine the 

structures of β-hairpins formed by α-synuclein and IAPP.[43,44]

In further studies, Härd and co-workers investigated the biological, biophysical, and 

structural properties of oligomers formed by a covalently stabilized analogue of the Aβ 
β-hairpin that they previously reported.[45] In this analogue, Ala21 and Ala30 are mutated 

to cysteines to enable formation of a disulfide bridge (Figure 2C). Oligomers formed by 

this disulfide-stabilized Aβ β-hairpin mimicked some of the characteristics of oligomers of 

unmodified Aβ — morphology by transmission electron microscopy (TEM), assembly by 

size-exclusion chromatography (SEC) and SDS-PAGE, and cytotoxicity toward neuronally 

derived SH-SY5Y cells. These oligomers were also recognized by oligomer-specific 

antibodies used to recognize native Aβ oligomers isolated from the brains of Alzheimer’s 

patients and transgenic mice. These findings are significant, because they demonstrate that 

conformationally stabilized β-hairpin monomers of Aβ can assemble to form oligomers 

that recapitulate the properties of biologically relevant Aβ oligomers. Solid-state NMR 

spectroscopy revealed that a disulfide-stabilized β-hairpin comprising Aβ16–42 forms a 

barrel-shaped hexamer (Figure 2D). [49] In this oligomer, a hydrophobic core forms at 

one end of the assembly by the packing of hydrophobic residues from the central and 

C- terminal regions of Aβ. Intermolecular antiparallel β-sheets form between Aβ34–36 and 

Aβ39–42 at one end of the barrel; the β-hairpin loops of each monomer comprise the other 

Samdin et al. Page 3

Curr Opin Chem Biol. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



end of the barrel. This series of investigations of Aβ β-hairpins illustrates how stabilized 

β-hairpin peptides can be used to model and study the properties and structures of amyloid 

oligomers.[40,43,46]

Our laboratory has developed macrocyclic β-hairpin peptides as model systems to learn 

about the structure, and biological and biophysical properties of the oligomers formed by 

full-length amyloidogenic peptides and proteins. [50] The macrocyclic β-hairpin peptides 

consist of two peptide β-strands from the amyloidogenic peptide or protein that are 

constrained to a macrocycle by a δ-linked ornithine (δOrn) turn unit and linked by a 

loop or a second δOrn turn unit (Figure 2E–G).[51] An N-methyl group on one of the 

β-strands prevents uncontrolled aggregation, and thus facilitates oligomer formation. X-ray 

crystallographic studies of macrocyclic β-hairpin peptides derived from sequences such as 

Aβ, β2-microglobulin, and α-synuclein have revealed the formation of dimers and trimers 

that further assemble to form tetramers, hexamers, octamers, nonamers, and dodecamers 

(Figure 3).[51–60] Wetzel and co-workers have developed β-hairpin model systems of 

polyglutamine derived peptides to better understand the role of polyglutamine folding and 

aggregation in Huntington’s disease using D-Pro-Gly turn units and N-methyl amino acids.

[61]

In our initial investigations of Aβ oligomers, we prepared and studied macrocyclic β-hairpin 

peptides derived from Aβ17–36. In 2014, we reported a macrocyclic β-hairpin peptide 

containing Aβ17–23 and Aβ30–36.[51] X-ray crystallography revealed that this peptide 

assembles into trimers that further assemble to form a sandwich-like hexamer and a 

ball-shaped dodecamer (Figure 2E & Figure 3A–C). X-ray crystallographic studies of 

a homologous macrocyclic β-hairpin, incorporating the Aβ24–29 loop, revealed that the 

peptide assembles to form trimers that further assemble into ball-shaped dodecamers, and 

five dodecamers further assemble to form an annular pore (Figure 2G & Figure 3G–I).[52] 

In subsequent studies, we covalently stabilized the trimers formed by the macrocyclic 

β-hairpin peptide containing Aβ17–23 and Aβ30–36 with disulfide-bridges (Figure 2H).[53] 

These covalently stabilized trimers assemble in solution, forming hexamers and dodecamers 

by SEC and SDS-PAGE. The covalent trimers are toxic to SH-SY5Y cells and are 

recognized by the amyloid oligomer-specific antibody All, suggesting that they may 

recapitulate the topology of Aβ oligomers occurring in the Alzheimer’s brain.[62] X-ray 

crystallography revealed that the trimers form a hexamer, a dodecamer, and an annular 

pore comprising six dodecamers (Figure 3D–F). Recently, we found that incorporation of 

a cyclohexylalanine residue in place of a phenylalanine residue promotes folding of Aβ 
derived macrocyclic β-hairpins, further stabilizes trimers formed by the β-hairpins, and 

promotes formation of hexamers and dodecamers (Figure 3J–L).[56] We are now using 

antibodies generated against these synthetic Aβ oligomer mimics to probe biogenic Aβ 
oligomers from brain tissue.

We have also studied macrocyclic β-hairpin peptides derived from Aβ16–36, in which the 

β-strands adopt a different alignment than the β-hairpin peptides derived from Aβ17–36. 

These studies have revealed the assembly of toxic oligomers in both the crystal state 

and in solution, without the need for covalent stabilization through disulfide bridges.[57] 

A macrocyclic β-hairpin containing Aβ16–22 and Aβ30–36 assembles to form dimers and 
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trimers that further assemble into hexamers that can be observed in SDS-PAGE and by 

X-ray crystallography (Figure 2E & Figure 3M–O). A related macrocyclic β-hairpin peptide 

containing Aβ16–22 and Aβ30–36 assembles in the crystal state to form trimers that further 

assemble into a dodecamer (Figure 2E & Figure 3P–Q).[58]

Current efforts in our laboratory seek to incorporate more residues from full-length Aβ40 

or Aβ42 into our macrocyclic β-hairpin model systems, to better reflect oligomers formed 

by full-length Aβ. We recently incorporated Aβ1–14 as an N-terminally extended “tail” 

to the hexamer-forming macrocycle comprising Aβ16–22 and Aβ30–36 (Figure 2F). In 

studying a series of homologs bearing N-terminal tails, we found that residues from the 

N-terminus of Aβ do not disrupt oligomer assembly and likely form an unstructured tail 

(Figure 3R).[59] X-ray crystallographic studies of a macrocyclic β-hairpin peptide from 

Aβ16–36 that incorporates the Aβ23–29 loop revealed the assembly of parallel and antiparallel 

β-sheet dimers that further assemble to form a sandwich-like tetramer and a twisted β-sheet 

tetramer, with the latter packing to form an octamer (Figure 2G & Figure 3S–W).[60]

Collectively, our studies of β-hairpin peptides derived from Aβ16–36, Aβ17–36, and other 

amyloidogenic peptides and proteins have provided a multitude of distinct oligomer 

structures and revealed the unique ways in which β-hairpins can assemble to form compact 

oligomers stabilized by edge-to-edge hydrogen bonding and hydrophobic packing. Other 

laboratories have also reported various structures of Aβ fibrils, oligomers, and monomer 

formed by β-hairpins with different β-strand alignments.[32,40,45,46,59] We believe our 

structures reflect some of the immense variation and heterogeneity in the structures 

of endogenous amyloid oligomers, because many behave like oligomers of full-length 

amyloidogenic peptides and proteins in biological and biophysical experiments.

COMPUTATIONAL TOOLS FOR STUDYING AMYLOID OLIGOMERS AND 

FIBRILS

Molecular modeling can provide valuable insights into amyloid oligomer formation and 

structure by allowing the visualization, interpretation, and prediction of the conformations, 

motions, and interactions of the peptides and proteins involved.[4] These simulations allow 

observation of that which cannot be examined directly through experimentation and can 

complement experimental studies to provide deeper insights. For example, residues that 

had to be excluded from the peptide model systems to facilitate characterization by X-ray 

crystallography can be restored for study in molecular dynamics simulations. Okuno and 

co-workers thus used dissipative particle dynamics to restore Aβ9–16 and Aβ37–42 to a 

dodecamer-forming macrocyclic β-hairpin peptide comprising Aβ17–36 (Figure 3H).[52,64] 

The simulations revealed that residues Aβ37–42 can pack to form a stabilizing hydrophobic 

core in the central cavity of the dodecamer. Our laboratory has similarly made use of 

replica-exchange molecular dynamics simulations to probe whether residues absent from the 

design of our macrocyclic β-hairpin peptides can be accommodated by the structures of the 

oligomers that form.[51,55,57,60]

The protein force fields used in molecular dynamics and other forms of molecular modeling 

were not developed for amyloid oligomers and have limited ability to accurately model the 
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conformation, folding, and size of amyloidogenic peptides and proteins.[65–68] Shaw and 

coworkers used experimental NMR and SAXS data from amyloid oligomers to improve 

parameters for torsion angles, and protein and water van der Waals interactions, to produce 

a force field, a99SB-disp, that more accurately simulates disordered proteins such as Aβ40.

[69]

Improved algorithms for simulating the conformations of intrinsically disordered proteins 

and intrinsically disordered regions also promise to provide enhanced insights into amyloid 

oligomer formation. Recently, Petersson and co-workers reported the PyRosetta-based 

algorithms AbinitioVO and FastFloppyTail, which allow for the accurate prediction of 

protein structure across a wide array of folds and degrees of order.[70] We anticipate that 

improvements in force fields and algorithms for predicting conformational ensembles will 

cross-fertilize other studies that use peptide model systems and full-length peptides and 

proteins and thus contribute to a better understanding of amyloid oligomers.

Molecular docking simulations have guided the development of ligands that bind amyloid 

oligomers that may ultimately lead to new imaging probes or drugs for Alzheimer’s 

disease or other amyloid diseases. Thus, X-ray crystallographic structures of trimers and 

hexamers formed by macrocyclic β-hairpin peptides comprising Aβ17–36 (Figure 3A, B, D, 

G), have been used as targets for docking studies of triphenylmethane dyes, fluorescent 

probes, and therapeutic ligands for Aβ oligomers.[71–74] Docking simulations of the 

triphenylmethane dye, crystal violet, with the structure of our covalently-stabilized trimer 

derived from Aβ17–36 (Figure 3D) produced a model for molecular recognition that guided 

structure-activity relationship studies. [71] Our laboratory is currently using the results of 

these computational and experimental studies to develop novel chemical probes for biogenic 

Aβ oligomers.

Computational tools are also valuable in identifying amyloidogenic regions of peptides and 

proteins by identifying features that drive aggregation and assembly, such as hydrophobicity, 

β-sheet character, a prevalence of aromatic residues, and low-charge content.[75] A number 

of algorithms, computational tools, and databases have been developed to assess these 

characteristics for a given peptide or protein sequence.[76] Tools such as TANGO, WALTZ-

DB 2.0, and Cordax assess and quantify the aggregation potential of a given sequence.[77–

79] Results from this type of primary sequence analysis can supplement and direct structure 

activity relationship studies of amyloid fibrils and oligomers.[36–38,75] These tools further 

our understanding of the ever-growing “amyloidome,” which extends beyond disease and 

underlies many normal cellular, bacterial, and fungal processes.[81]

CONCLUSION

The amyloid state of peptides and proteins is an active and fascinating frontier of peptide 

and protein science for chemical and structural biologists alike. The ever-growing ties 

between amyloidogenic peptides and proteins and cellular function and disease inspires 

curiosity, and the resistance of these peptides and proteins to characterization using 

conventional techniques and tools drives innovation. Until the high-resolution observation 

of oligomers of full-length amyloidogenic peptides and proteins becomes widely feasible, 
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peptide model systems that approximate and mimic endogenous oligomers will remain one 

of the best tools for dissecting their structural, biological, and biophysical properties. The 

growing understanding of amyloid oligomers provided by these studies will further our 

knowledge of amyloid diseases and bolster efforts to develop diagnostics and drugs.
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Figure 1. 
Structures of fibrils and oligomers formed by amyloidogenic peptides. A. Fibril-like 

assembly of αB crystallin95–100; X-ray crystallographic structure. B-E. Fibril-like 

assemblies of Aβ1–40, IAPP13–37, TDP-43311–360, and hPRP170–229; Cryo-EM structures. 

F. Tetramer and octamer formed by Aβ1–42; NMR structure and NMR-based model. 

G-I. Oligomers of αB crystallin90–100, SOD128–38, and hPRP177–182 crosslinked with 

hPRP211–216; X-ray crystallographic structures.
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Figure 2. 
A. NMR structure of an Aβ40 β-hairpin stabilized by an affibody. B. Alignment of the Aβ40 

β-hairpin. C. Disulfide stabilization of the Aβ40 β-hairpin. D. NMR-based model of a barrel-

shaped hexamer formed by a disulfide stabilized Aβ16–40 β-hairpin. E-H. Macrocyclic 

β-hairpins and disulfide-stabilized β-hairpins derived from amyloidogenic peptides and 

proteins.
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Figure 3. 
X-ray crystallographic structures of oligomers formed by macrocyclic β-hairpin peptides 

derived from Aβ, β2-microglobulin, and α-synuclein. A-L. Trimers, hexamers, dodecamers, 

and annular pores formed by macrocyclic β-hairpin peptides derived from Aβ17–36. M-W. 
Dimers, trimers, tetramers, hexamers, octamer, and dodecamer derived from Aβ16–36. X-Z. 
Hexamer, octamer, and dodecamer derived from β2-microglobulin. AA-CC. Trimers and 

nonamer derived from α-synuclein.
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