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Abstract

Free Probability, Planar Algebras, and the Multicolored Guionnet-Jones-Shlyakhtenko
Construction

by

Michael Aaron Hartglass

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Vaughan F.R. Jones, Chair

This dissertation consists of three papers I have written or helped write during my time at UC
Berkeley. The three papers all fall under the common theme of exploring connections between free
probability and planar algebras.

In Chapter 2, an amalgamated free product algebra, N (Γ), is constructed for any connected,
weighted, loopless graph Γ, and its isomorphism class can be nicely read off based on the weighting
data on the graph. This construction was heavily influenced by an algebra appearing in [GJS11], and
it is used, along with some standard embedding arguments, to show that the factors of Guionnet,
Jones, and Shlyakhtenko appearing in [GJS10] are isomorphic to L(F∞) when the planar algebra is
infinite depth.

Chapter 3 is the paper “Rigid C∗−tensor categories of bimodules over interpolated free group
factors” [BHP12] which was co-authored with Arnaud Brothier and David Penneys. In this paper,
we establish an unshaded planar algebra structure (with multiple colors of strings) which can be
used to model a countably generated rigid C∗−tensor category, C. We use this to construct a
category of bifinite bimodules over a II1 factor M0, and we show that this category is equivalent to
C. Finally, we use the work in Chapter 2 to show that the factor M0 is isomorphic to L(F∞).

Chapter 4 is a note regarding multishaded planar algebras. The problem studied consists of
placing the “Fuss-Catalan” potential on a specific kind of subfactor planar algebra Q, which is the
standard invariant for and inclusion N ⊂M with an intermediate subfactor P . This potential is best
understood by augmenting Q, forming a bigger multishaded planar algebra P . The isomorphism
classes of the algebras Mα associated to P will be computed explicitly. While the isomorphism class
of the von Neumann algebras N±k associated to Q are still not yet known, they will be shown to be
contained in a free group factors and contain a free group factors. This potential is shown to yield a
nice free product expression for the law of ∪, an element which plays a critical role in understanding
algebras that arise from this construction. Many of the ideas in this chapter influenced the work in
the Chapter 3.
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Chapter 1

Introduction

1.1 Subfactors and planar algebras

In [Jon83], Jones initiated the study of subfactor theory. The objects of interest are inclusions
M0 ⊂ M1 of finite index II1 factors M0 and M1. From this, he iterated the basic construction to
produce a tower of finite index II1 factors

M0 ⊂M1 ⊂ · · · ⊂Mn ⊂ · · · ,

and studied subfactors by examining their standard invariant. The standard invariant consists of
two sequences of finite dimensional vector spaces, Pn,+ = M ′

0 ∩Mn and Pn,− = M ′
1 ∩Mn [Jon83].

By 1995, the standard invariant became axiomatized by Ocneanu’s paragroups [Ocn88], and Popa’s
λ−lattices [Pop95]. Around the same time, Jones discovered that operations and objects in subfactor
theory (such as the Jones projections, traces, and conditional expectations) possess a very natural
planar structure. He used these observations to invent subfactor planar algebras. Before talking
about subfactor planar algebras, we will give a definition of a shaded planar tangle:

Definition 1.1.1. A shaded planar tangle, T consists of the following data:

(1) a rectangle D0(T ) ⊂ R2,

(2) Finitely many disjoint rectangles {Di : i ∈ I} in the interior of D0(T ) (I may be empty),

(3) Finitely many disjoint smooth arcs in D0(T ) called the strings of T which do not meet the
interior of any Di. The boundary points of a string of T (if it has any) lie in the boundaries of
the Di, and they meet these boundaries transversally (if they meet the boundaries at all).

(4) A choice of shading of the regions of T . Each region can be either shaded or unshaded, but an
unshaded region can only border a shaded region or vice versa. Notice that this means that the
number of strings intersecting any box must be even.

The boundaries of the strings divide the boundaries of the rectangles into intervals. For each
rectangle, there is a distinguished interval denoted ?. The intervals of Di(T ) are divided by the
marked points of Di(T ), i.e., the points at which the strings meet the boundary of Di(T ). Starting
at ?, the marked points on each rectangle are number clockwise.

If we have two planar tangles S, T satisfying the following boundary conditions:
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• some internal rectangle Di(S) agrees with D0(T ),

• the marked points of Di(S) agree with the marked points of D0(T ),

• the distinguished interval of Di(S) agrees with the distinguished interval of T , and

• the label from L of each marked point of Di(S) agrees with the label of each marked point
from D0(T ),

then we may compose S and T to get the planar tangle S ◦Di T by taking S union the interior of
D0(T ), removing the boundary of Di(S), and smoothing the strings.

An example of such a tangle is:

?

?

?

+ −
+

−

−

−

+
− −

−

where a + indicates an unshaded region and a − indicates a shaded region. Loosely speaking, a
shaded planar algebra consists of a family of vector spaces having which exhibit a natural action
by planar diagrams. In most definitions of planar algebras (such as [Jon]), the rectangles are taken
to be smoothly embedded subdisks in the plane, and the action of planar tangles is invariant under
an orientation preserving diffeomorphism. Therefore, one should picture the rectangles as having
their corners smoothed out. In future drawings, the ? on a box will be placed at the bottom-left of
a box unless otherwise indicated.

We now define a subfactor planar algebra.

Definition 1.1.2. A shaded planar algebra P comes equipped with the following data:

• a collection of vector spaces (P2n,+)n∈N and (P2n,−)n∈N

• an action of planar tangles by multilinear maps, i.e., for each planar (2n, ε) tangle T , whose
rectangles Di(T ) are (2ni, εi)-rectangles, there is a multilinear map

ZT :
∏
i∈I

P2ni,εi → P2n,ε

satisfying the following axioms:

Isotopy: If θ is an orientation preserving diffeomorphism of R2, then Zθ(T ) = ZT . That is, let T 0

be the interior of T , and let f ∈
∏

D⊂T 0 P2nD,εD . Then

Zθ(T )(fθ) = ZT (f)

where fθ(θ(D)) = f(D).

Naturality: For S, T composable tangles, Z(S ◦D T ) = Z(S) ◦D Z(T ), where the composition on the
right hand side is the composition of multilinear maps.
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Moreover, P is called a subfactor planar algebra if P is

• evaluable, i.e., dim(P2n,±) < ∞ for all n and P0,± ∼= C via the map that sends the empty
diagram to 1 ∈ C. Hence, by naturality, there is a scalar δ ∈ C such that any labeled diagram
containing a closed loop is equal to the same diagram without the closed loop multiplied by
δ.

• P is unital [Jon11]: Let S be a shaded planar 2n, ε tangle with no input disks. Then, there is
an element Z(S) ∈ P2n,ε so that the following holds:

Let T be a tangle with a nonempty set of internal disks such that S can be glued into the
internal disk DS of T . Then

Z(T ◦ S) = Z(T ) ◦ ZS.
Here (Z(T ) ◦ ZS)(f) = f̃ where

f̃(D) =

{
f(D) if D 6= DS

Z(S) if D = DS

• involutive, i.e. there is a map ∗ : P2n,± → P2n,± with ∗ ◦ ∗ = id which is compatible with the
reflection of tangles, i.e., if T is a planar tangle acting on x1, ..., xn, and ϕ is an orientation
reversing diffeomorphism of R2, then

Z(T )(f)∗ = Z(ϕ(T ))(f)

where f(ϕ(D)) = f(D)∗

• spherical, i.e., for all α ∈ Λ and all x ∈ P2n,±, we have

tr(x) = n

n

x

n

= n

n

x

n

.

• positive, i.e., the map 〈·, ·〉 : P2n,± × P2n,± → P0,± ∼= C given by

〈x, y〉 = x y∗2n

is a positive definite inner product. Hence δ > 0. It further follows from the work of Jones
[Jon83] that

δ ∈ {2 cos(π/n) : n = 3, 4, 5, ...} ∪ [2,∞)

Jones showed that the relative commutants P2n,+ = M ′
0 ∩Mn and P2n,− = M ′

1 ∩Mn+1 admit
the structure of a subfactor planar algebra. In Chapters 3 and 4, we will define notions of planar
algebras similar to the one presented above.

Remark 1.1.3. The spaces P2n,± as above are traditionally referred to as Pn,± in the literature.
We adopt this new numbering convention as we will be considering unshaded planar algebras in
Chapter 3 which can admit actions by planar tangles with odd numbers of strings.
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The positive definiteness assures that each P2n,± is a finite dimensional C∗ algebra where the
multiplication is given by

x · y =

n

y

n

x

n

and non-normalized trace Tr is given by

Tr(x) = n

n

x

n

.

Of critical importance is the study of minimal projections in these algebras via a principal graph, Γ
and dual principal graph Γ′. To begin, we consider the algebras P2n,+. Let p ∈ P2j,+ and q ∈ P2k,+.
We say that p and q are equivalent if there is a u ∈ Pj+k,+ satisfying

j

u

k

u∗

j

= p and

k

u∗

j

u

k

= q.

Notice that for equivalence of p and q to make sense, we must have k + j even. We then form Γ as
follows:

• The vertices v of Γ are in a one to one correspondence with equivalence classes [pv] of minimal
projections in the algebras P2n,+.

• There are n edges connecting v and w if the following condition is met: Suppose p ∈ P2j,+ is
a minimal projection equivalent to pv. Then the element

i(p) =
j

j

p

is a projection P2(j+1),+. The number n will be the maximum k such that there exist orthogonal

projections q1, ..., qk ∈ P2(j+1),+ which are equivalent to pw and satisfy
∑k

i=1 qi ≤ i(p). This
number is independent of the representative of pv. Also, if there are n edges connecting v to
w, then there are also n edges connecting w to v [Jon]. See Chapter 4 for an explanation of
this fact for the multishaded case.

It follows from this construction that Γ is a connected, unoriented, bipartite graph. If we weight
each vertex v by Tr(pv), then it follows that the weights satisfy the Perron-Frobenius condition, i.e.

δTr(pv) =
∑
w∼v

nv,w Tr(pw).
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We write w ∼ v if w is connected to v and we let nv,w be the number of edges connecting v and w.
We will mark the vertex corresponding to the empty diagram with a *.

By looking at the algebras P2n,−, one can similarly construct the dual principal graph of P . It
is straightforward to check that a 180◦ rotation is an anti ∗−isomorphism between P2n,+ and P2n,−
for n odd. It follows that the odd vertices of Γ and Γ′ are in bijective correspondence.

We say that P is finite depth is Γ is finite and infinite depth if Γ is infinite. Note that if Γ
is finite, then there are only finitely many odd vertices of Γ′. Since the algebras P2n,− are finite
dimensional for each n, it follows from the construction of the edges that Γ′ must be finite as well.

1.2 Free probability

Around the same time as the beginning of subfactor theory, Voiculescu developed an analogue of
probability called free probability(see the book [VDN92]). At the heart of free probability is the
concept of free independence, which we will now define

Definition 1.2.1. Let M be a von Neumann algebra with faithful normal state φ, and (Mι)ι∈I
a family of unital von Neumann subalgebras of M . Then we say that the algebras Mι are freely
independent (or free) if the following condition holds:

φ(xι1 · · ·xιn) = 0 whenever ι1 6= ι2 6= · · · 6= ιn and φ(xιj) = 0 for all j.

We say that elements (xι)ι∈I are free if the corresponding von Neumann algebras they generate are
free.

In the rest of the thesis, φ will always be assumed to be tracial. Given any collection (Mι)ι∈I
of von Neumann algebras with faithful states φι, one can form a von Neumann algebra M with
faithful state φ which is generated by isomorphic images of the Mι such that φ|Mι = φι and the
family (Mι)ι∈I is free. M is unique up to spatial isomorphism, and the state φ is uniquely determined
by the states φι. See [VDN92] for more details.

Voiculescu noticed strong parallels between commutative probability and free probability theory.
By realizing that the semicircular law should play the same role in free probability as the gaus-
sian law plays in commutative probability, he established a central limit theorem for additive free
convolution which mimics the central limit theorem in probability [VDN92]. Building on the proof
of Wigner’s semicircular law [Wig55], Voiculescu proved that a family of independent self adjoint
Gaussian random matrices converges in joint distribution to a free family of semicircular elements
[Voi91]. Therefore, one can think of free probability as a random matrix limit of commutative
probability.

1.3 Connection between subfactors and free probability

In the 1990’s, evidence started to surface that the combinatorial structure of free probability is
closely related to non-crossing diagrams. One of the key observations is that if x is a self adjoint
random variable having the semicircular law of radius 2 with respect to some state φ, then φ(x2n) =
Cn, the nth Catalan number. The Catalan numbers count many things including the numbers of
noncrossing pair partitions of an ordered set of 2n elements.
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It was shown by Speicher [Spe94] that additive free convolution of noncommutative random
variables is easily described in terms of free cumulants which are naturally defined according to
noncrossing partitions. A combinatorial proof of the free central limit theorem boils down to
counting noncrossing pair partitions in the large N limit (as opposed to all pair partitions for the
commutative central theorem) [Spe90]. An explicit use of planar diagrams in free probability and
random matrix theory with regards to second-order freeness was considered by Mingo, Speicher, and
others [MS06, MŚS07, CMŚS07]. Furthermore, Voiculescu’s theorem on the asymptotic freeness of
independent gaussian random matrices can be recast as a combinatorial proof involving counting
certain noncrossing partitions [NS06].

These observations helped lead Guionnet, Jones, and Shlyakhtenko (GJS) to find connections be-
tween subfactors, planar algebras, free probability, and random matrix theory [GJS10]. In [GJS10],
they constructed graded algebras Grn(P±) associated to a subfactor planar algebra P and endowed
them with a trace tr emanating from all Temperley-Lieb (planar) diagrams. They were able to
model tr by a random matrices associated to the principal graph, Γ of P and were able to construct
a Jones tower of factors M+

n = Gr(P2n,+)′′ whose standard invariant is P , thus recovering Popa’s
reconstruction theorem [Pop95]. It was also shown that in the case where P is finite depth (has a
finite principal graph), the factors M+

n are interpolated free group factors, whose parameter depends
on data in the planar algebra.

In Chapter 2, it will be shown that for infinite depth, the factors M+
n are all isomorphic to

L(F∞). In Chapter 3, we examine the GJS construction with regards to unshaded planar algebras,
and obtain a universality result regarding countably generated rigid C∗−tensor categories and
bimodules over L(F∞). In the final chapter, we will examine the situation when the trace involving
all Temperley-Lieb diagrams is replaced by the trace involving all Fuss-Catalan diagrams.

Planarity and freeness

The algebras Gr0(P) in the following chapters are presented as variations of the following idea: We
set

Gr0(P) =
∞⊕
n=0

Pn

with multiplication given by

x · y = x y

and trace, tr given by

tr(x) =

x

ΣTL

where
∑
TL is the sum of all planar string diagrams with no strings emanating out of the top of

the box or the sides. Assuming for the moment that tr is positive definite, we have the following
lemma:

Lemma 1.3.1. Suppose x1, ..., xn are elements in P with the following property: For every tangle,
T , with at least one string connecting two distinct internal disks D1 and D2, we have Z(T )(f) = 0
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whenever f(D1) = xε1i1 , f(D2) = xε2i2 with i1 6= i2 and εj is either nothing or a *. Then {x1, ..., xn}
are free in M0 = Gr0(P)′′.

Loosely speaking, this lemma says that whenever an xi is connected by at least one string to xj
for i 6= j, then xi and xj are free.

Proof. Suppose pj is a (non-commutative) polynomial in xij and x∗ij with tr(pj) = 0, and consider
the element p1 · · · pm for some m. Suppose further that ik 6= ik+1 for1 ≤ k ≤ m. We need to show
that tr(p1 · · · pm) = 0. By definition, we have:

tr(x) =

p1

ΣTL

· · · pm
.

By assumption on the variables xi, any element of TL which connects a summand of pi to a summand
of pi+1 gives a zero contribution. Therefore, by planarity, every contributing TL element must pair
some summand of a pj with itself. Summing over all of these partitions, and using tr(pj) = 0 for
all j gives the result.

The idea in the sections that follow is to find elements xi satisfying this property which generate
M0 in an appropriate sense. In practice, we will pass to an infinite amplification of M0 as it will be
more natural to find such elements there.
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Chapter 2

Free Product von Neumann Algebras
Associated to Graphs and the Guionnet,
Jones, Shlyakhtenko Construction in
Infinite Depth

2.1 Introduction

In [Jon83], Jones initiated the study of modern subfactor theory. Given a finite index II1 subfactor
M0 ⊂M1, one computes its standard invariant: two towers (M ′

0∩Mj : j ≥ 0) and (M ′
1∩Mj : j ≥ 1)

of finite dimensional von Neumann algebras [Jon83]. The standard invariant has been axiomatized
by Ocneanu’s paragroups [Ocn88], Popa’s λ−lattices [Pop95], and Jones’ subfactor planar algebras
[Jon03]. Popa showed that given a standard invariant P , we can reconstruct a II1 subfactor M0 ⊂
M1 whose standard invariant is P [Pop95]. Guionnet, Jones, and Shlyakhtenko [GJS10] give a
planar-algebraic proof of the above result. Moreover, if P is finite depth with loop paramater δ > 1,
they showed that Mk, the kth factor in the Jones tower, is isomorphic to L(F(1 + 2δ−2k(δ − 1)I))
where I is the global index of P [GJS11]. Kodiyalam and Sunder also obtained this formula when
P is depth 2 [KS09b, KS09a]. In this paper, we prove the following theorem:

Theorem. If P is infinite depth, then every factor in the construction of [GJS10] is isomorphic to
L(F∞).

Using this theorem, we recover a diagrammatic proof of a result of Popa and Shlyakhtenko for
P infinite depth [PS03]:

Corollary. Every infinite depth subfactor planar algebra is the standard invariant of N ⊂M where
N ,M∼= L(F∞).

Outline of the proof

To prove the above theorem, we will bootstrap the proof from [GJS11] of the finite-depth case to
the infinite-depth case using standard embedding tricks.
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The GJS Construction: We will recall the construction of Guionnet, Jones and Shlyakhtenko.
For more details, see [GJS10] and [GJS11], and Chapters 3 and 4. The placement of the ? below is
how the construction first appeared in [GJS10] and [GJS11]. The author has since found it more
convenient to place the ? at the bottom of the box. Let P = (Pn,±)n≥0 be a subfactor planar algebra
with loop parameter δ > 1. Set Grk(P+) =

⊕
n≥0 P

+
k,n where P+

k,n = P2k+2n,+ and an element of

P+
k,n is represented as

xk k
2n?

?

where the ? is always in an unshaded region and a thick string with a j next to it denotes j parallel
strings. If x ∈ P+

k,n and y ∈ P+
k,m then define a multiplication ∧k by

x ∧k y = xk
2n?

y k
2m?

?

which is an element in P+
k,m+n. One can endow Grk(P

+) with the following trace: if x ∈ P+
k,n then

tr(x) = δ−k ·
x

?

?∑
TL

k

where
∑
TL denotes the sum of all Temperely-Lieb diagrams, i.e. all planar pairings of the 2n

strings on top of x. This trace is positive definite, and one can form the von Neumann algebra Mk

which is the strong closure of Grk(P
+) acting on L2(Grk(P

+)) by left multiplication (under ∧k). It
is shown that Mk is a II1 factor. Moreover one can view x ∈Mk as an element in Mk+1 as follows:

xk k
?

?

.

With this identification, Mk is a von Neumann subalgebra of Mk+1 and M0 ⊂M1 ⊂ · · · ⊂Mk ⊂ · · ·
is a Jones tower of II1 factors with standard invariant P .

To identify the isomorphism type of the Mk, we look at the semi-finite algebra

V+ =
⊕

k+l+m even

P+
k,l,m
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where P+
k,l,m = Pk+l+m,+ and is spanned by boxes of the form

xk l

m

?

.

The element x above is identified with the following element of P+
k+2p,l+2q,m:

δ−(p+q)/2
xk l

m

?

...
...

p q
?

(2.1)

where there are p cups on the left and q cups on the right. In the future chapters, it is convenient
not to make such an identification, but this approach to the semifinite algebra was the original one
that appeared in [GJS11]. Under these identifications, V+ completes to a semifinite von Neumann
algebra, M+ where the multiplication is given by xk l

m

?

 ·
 yk′ l′

m′

?

 = δl,k′ xk

n

?

y l′
m′

l

?
?

where we have assumed that we have added enough cups as in diagram (3.1) so that l and k′ are
either the same or differ by 1. The trace on M+ is given by

Tr(x) =

x

?

?∑
TL

k

provided that the number of strings on the left and right of x have the same parity and is zero
otherwise. It is easy to check that the identification in diagram (3.1) respects both the trace and
multiplication.

The algebras M2k above are a compression of M+ by the projection p+
2k where for general n,

p+
n = n

?
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Similarly, we can consider a semifinite von Neumann algebra M− generated by the Pn,−’s (where
the ? is in a shaded region and on the bottom of the box), and if we define projections p−n , then
M2k+1 is the compression of M− by p−2k+1.

A diagrammatic argument shows that M+ is generated by

A+ =

(⋃
k,`

P+
k,`,0

)′′
and X = s− lim

k→∞ 2k

??

+
2k

?

where the limit above is in the strong operator topology. This element is an A+-valued semicircular
element in the sense of [Shl99] and is used in the calculation of the isomorphism class of the algebras
Mk

The finite depth case: Let Γ denote the principal graph of P with edge set E(Γ) and initial
vertex *. Let `∞(Γ) as the von Neumann algebra of bounded functions on the vertices of Γ and
endow `∞(Γ) with a trace tr such that tr(pv) = µv, where pv is the delta function at v and µv is
the entry corresponding to a fixed Perron-Frobenius eigenvector for Γ with µ∗ = 1. From [GJS11],
M0 = p∗N (Γ)p∗ whereN (Γ) is the von Neumann algebra generated by (`∞(Γ), tr) and `∞(Γ)-valued
semicircular elements {Xe : e ∈ E(Γ)} which are compressions of X by partial isometries in A+ and
are free with amalgamation over `∞(Γ). Each Xe is supported under pv + pw, where e connects v
and w, and we have Xe = pvXepw +pwXepv. Assuming that µv ≥ µw, the scalar-valued distribution
of X2

e in (pv + pw)N (Γ)(pv + pw) is free-Poisson with an atom of size µv−µw
µv+µw

at 0. Therefore,

vN(`∞(Γ), Xe) = L(Z)⊗M2(C)⊕ C⊕ `∞(Γ \ {v, w})

with pw = (1 ⊗ e1,1) ⊕ 0 ⊕ 0 and pv = (1 ⊗ e2,2) ⊕ 1 ⊕ 0, where {ei,j : 1 ≤ i, j ≤ 2} is a system of
matrix units for M2(C). If Γ is finite, Dykema’s formulas for computing certain amalgamated free
products [Dyk93, Dyk11] show that N (Γ) is an interpolated free group factor and the compression
formula gives the result for M0. Since M2n is a δ2n−amplification of M0, the result holds for M2n.
The factor M1 is a compression of N (Γ∗) with Γ∗ the dual principal graph of P . Applying the same
analysis to Γ∗ gives the formula for the M2n+1’s.

The infinite depth case: We similarly define N (Γ) for an arbitrary connected, loopless (not
necessarily bipartite) graph Γ. If Γ is finite, we show that N (Γ) ∼= L(Ft) ⊕ A where A is finite-
dimensional and abelian (A can possibly be {0}). Furthermore, if pΓ is the identity of L(Ft) and Γ′

is a finite graph containing Γ, then the inclusion pΓN (Γ)pΓ → pΓN (Γ′)pΓ is a standard embedding
of interpolated free group factors (see Definition 2.2.2 and Remark 2.2.3 below). Therefore, if P
is infinite depth with principal graph Γ, we write Γ as an increasing union of finite graphs Γk
where Γk is Γ truncated at depth k. Since standard embeddings are preserved by cut-downs, the
inclusion p∗N (Γk)p∗ → p∗N (Γk+1)p∗ is a standard embedding. As M0 is the inductive limit of the
p∗N (Γk)p∗’s, it is an interpolated free group factor where the parameter is the limit of the parameters
for the p∗N (Γk)p∗’s, which is ∞. Since the factors M2k are amplifications of M0, M2k

∼= L(F∞).
Applying the same analysis to Γ∗ (the dual principal graph of P) shows that M2k+1

∼= L(F∞).



CHAPTER 2. GJS IN INFINITE DEPTH 12

Organization: Section 2.2 covers some preliminary material on interpolated free group factors,
free dimension, and standard embeddings. Section 2.3 introduces N (Γ) and establishes both its
structure and how it includes into N (Γ′) for Γ a subgraph of Γ′. Section 2.4 provides the proof that
the factors Mk above are all isomorphic to L(F∞).

Acknowledgements: The author would like to thank Arnaud Brothier, Vaughan Jones, David
Penneys, and Dimitri Shlyakhtenko for their conversations and encouragement. The author was
supported by NSF Grant DMS-0856316 and DOD-DARPA grants HR0011-11-1-0001 and HR0011-
12-1-0009.

2.2 Preliminaries

Dykema [Dyk94] and Rădulescu [Răd94] independently developed interpolated free group factors
L(Ft) for 1 < t ≤ ∞. These coincide with the usual free group factors when t ∈ N ∪ {∞} and they
satisfy

L(Ft) ∗ L(Fs) = L(Fs+t) and L(Ft)γ = L(F(1 + γ−2(t− 1))),

where Mγ is the γ−amplification of the II1 factor M . It is known that either the interpolated free
group factors are all isomorphic or they are pairwise non-isomorphic [Dyk94, Răd94].

Notation 2.2.1. Throughout this paper, we will be concerned with finite von Neumann algebras
(M, tr) which can be written in the form

M =
p0

M0
γ0

⊕
⊕
j∈J

pj

L(Ftj)
γj

⊕
⊕
k∈K

qk

Mnk(C)
αk

whereM0 is a diffuse hyperfinite von Neumann algebra, L(Ftj) is an interpolated free group factor
with parameter tj, Mnk(C) is the algebra of nk × nk matrices over the scalars, and the sets J and
K are at most finite and countably infinite respectively. We use pj to denote the projection in
L(Ftj) corresponding to the identity of L(Ftj) and qk to denote a minimal projection in Mnk(C).
The projections pj and qk have traces γj and αk respectively. Let p0 be the identity in M0 with

trace γ0. We write
p,q

M2(C) to mean M2(C) with a choice of minimal orthogonal projections p and q.

If the interpolated free group factors turn out to be non-isomorphic, it is desirable to be able
to calculate which interpolated free group factors appear in amalgamated free products. To help
facilitate this calculation, Dykema defined the notion of free dimension. In general, one has

fdim(M1 ∗
D
M2) = fdim(M1) + fdim(M2)− fdim(D)

wheneverM1 andM2 are of the form of Notation 3.4.18 and D is finite dimensional [Dyk93, Dyk95,
Dyk11, DR11]. In general, for the algebra M in Notation 3.4.18, we have

fdim(M) = 1 +
∑
j∈J

γ2
j (tj − 1)−

∑
k∈K

α2
k.

Notice that this includes the special case fdim(L(Ft)) = t.
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Of course if the interpolated free group factors are isomorphic, then the free dimension is not
well defined; however, the only purpose of the free dimension is to determine the parameter of
interpolated free group factors which show up in amalgamated free products. Therefore all the
lemmas below will remain valid if all references to free dimension are removed.

Of critical importance will be the notion of a standard embedding of interpolated free group
factors [Dyk93]. This is a generalization of a mapping Fn → Fm for m > n sending the n generators
of Fn onto n of the m generators for Fm.

Definition 2.2.2. Let 1 < r < s and φ : L(Fr)→ L(Fs) be a von Neumann algebra homomorphism.
We say that φ is a standard embedding if there exist nonempty sets S ⊂ S ′, a family of projections
{ps′ : s′ ∈ S ′} with ps′ ∈ R (the hyperfinite II1 factor), a free family {Xs′ : s′ ∈ S ′} of semicircular
elements which are also free from R, and isomorphisms

α : L(Fr)→ (R ∪ {psXsps}s∈S)′′ and β : L(Fs)→ (R ∪ {ps′Xs′ps′}s′∈S′)′′

such that φ = β−1 ◦ ι ◦ α where ι : (R ∪ {psXsps}s∈S)′′ → (R ∪ {ps′Xs′ps′}s′∈S′)′′ is the canonical

inclusion. We will write A
s.e.
↪→ B to mean that the inclusion of A into B is a standard embedding.

Remark 2.2.3. Dykema in [Dyk93] and [Dyk95] shows the following useful properties of standard
embeddings which we will use extensively in this paper.

(1) If A is an interpolated free group factor, the canonical inclusion A → A ∗ M is a standard
embedding whenever M is of the form in Notation 3.4.18.

(2) A composite of standard embeddings is a standard embedding.

(3) If An = L(Fsn) with sn < sn+1 for all n and φn : An
s.e.
↪→ An+1, then the inductive limit of the

An with respect to φn is L(Fs) where s = lim
n→∞

sn.

(4) If t > s then φ : L(Fs)
s.e.
↪→ L(Ft) if and only if for any nonzero projection p ∈ L(Fs),

φ|pL(Fs)p : pL(Fs)p
s.e.
↪→ φ(p)L(Ft)φ(p).

Our work will rely heavily on the following two lemmas.

Lemma 2.2.4 ([DR11]). Let N = (
p

Mn(C)⊕B) ∗
D
C and M = (Mn(C)⊗ A⊕B) ∗

D
C where A, B

and C are finite von Neumann algebras and D is a finite dimensional abelian von Neumann algebra.
Let E be the trace-preserving conditional expectation of M onto D. Assume p lies under a minimal
projection in D and E|Mn(C)⊗A = E|Mn(C) ⊗ trA. Then pMp = pNp ∗ A and the central support of
p in M is the same as that in N .

Lemma 2.2.5 ([DR11]). Let N = (
p

Mm(C)
γ

⊕
q

Mn−m(C)
γ

⊕B)∗
D
C andM = (Mn(C)

γ

⊕B)∗
D
C with B,

C, D as in Lemma 2.2.4. Assume p and q sit under minimal projections in D and p is equivalent
to q in N . Then pMp = pNp ∗ L(Z) and the central support of p in M is the same as that in N .
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Note that if A, B and C are in the form in Notation 3.4.18, and if N is an interpolated free
group factor, then the proofs of the above lemmas in [DR11] show that pNp → pMp of Lemmas

2.2.4 and 2.2.5 are standard embeddings. This implies N s.e.
↪→M by Remark 2.2.3.

Also, we will use Dykema’s results for free products of finite-dimensional, abelian, von Neumann
algebras. More precisely, we will use the following theorem, which appears in [Dyk93]

Theorem 2.2.6. We have the following formulas for free products:

• Assume
1 ≥ α1 ≥ β1 ≥ β2 ≥ α2 ≥ 0 with α1 + α2 = 1 = β1 + β2.

Then (
p1

C
α1

⊕
p2

C
α2

)
∗
(
q1

C
β1

⊕
q2

C
β2

)
=

(
(M2(C)⊗ L(Z))

2α2

⊕
p1∧q1
C

α1−β1

⊕
p1∧q2
C

α1−β2

)
• Assume

1 ≥ α1 ≥ · · · ≥ αn ≥ 0 and 1 ≥ β1 ≥ · · · ≥ βm ≥ 0

with n,m ≥ 2, n+m ≥ 5, and
∑n

i=1 αi = 1 =
∑m

j=1 βj. Set B = {(i, j) : αi + βj > 1}. Then

(
p1

C
α1

⊕ · · · ⊕
pn

C
αn

)
∗
(
q1

C
α1

⊕ · · · ⊕
qm

C
βm

)
= L(Ft)⊕

 ⊕
(i,j)∈B

pi∧qj
C

αi+βj−1


where t is calculated using free dimension.

• Assume that A is either a diffuse hyperfinite finite von Neumann algebra or an interpolated free
group factor. Let αi and βj be as above, except that i+ j need not exceed 4 and

∑n
i=1 αi < 1.

Then (
A⊕

p1

C
α1

⊕ · · · ⊕
pn

C
αn

)
∗
(
q1

C
α1

⊕ · · · ⊕
qm

C
βm

)
= L(Ft)⊕

 ⊕
(i,j)∈B

pi∧qj
C

αi+βj−1


where t is calculated using free dimension.

2.3 A von Neumann algebra associated to a finite

connected graph

Let Γ be a connected, loopless, finite graph with edge set E(Γ) and vertex set V (Γ). Assume further
that each vertex v ∈ V (Γ) is weighted by a real constant γv > 0 with

∑
v∈Γ γv = 1 (the weighting

does not have to be the Perron-Frobenius weighting. Consider the abelian von Neumann algebra
(`∞(Γ), tr) where tr is defined as follows: Let pv be the indicator function on the vertex v. Then
tr(pv) will be γv. We construct a finite von Neumann algebra associated to Γ (also see [KS11]).

Definition 2.3.1. Let Γ be as above, e be an edge in Γ connecting the vertices v and w, and assume
γv ≥ γw. Define

Ae = M2(C)⊗ L(Z)
2γw

⊕
pev
C

γv−γw
⊕ `∞(Γ \ {v, w})
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where the trace on M2(C)⊗ L(Z) is trM2(C)⊗ trL(Z). Ae includes `∞(Γ) by setting

pw = 1⊗ e1,1 ⊕ 0⊕ 0 and

pv = 1⊗ e2,2 ⊕ 1⊕ 0.

Therefore, the trace preserving conditional expectation Ee : Ae → `∞(Γ) has the propertyEe|M2⊗L(Z) =
Ee|M2 ⊗ tr |L(Z). We define N (Γ), the von Neumann algebra associated to Γ, by

N (Γ) = ∗
`∞(Γ)

(Ae, Ee)e∈E(Γ).

Remark 2.3.2. If Γ is an infinite graph with a weighting that is not `1, then we can still define
N (Γ) as in 2.3.1 although it will be a semifinite algebra. Given e ∈ E(Γ) connecting vertices v and
w, the compressed algebra (pv +pw)Ae(pv +pw) is still finite, and if Ee : Ae → `∞(Γ) is the (tracial-
weight) preserving conditional expectation, then Ee is clearly normal on (pv + pw)Ae(pv + pw) and
is the identity on (1− pv − pw)Ae(1− pv − pw). Therefore one can take the algebraic free product
Q of (Ae)e∈E(Γ) with amalgamation over `∞(Γ) and represent it on L2(Q, Tr ◦ ∗

`∞(Γ)
Ee) to obtain

N (Γ).

Definition 2.3.3. Let v, w ∈ V (Γ) We write v ∼ w if v and w are connected by at least 1 edge in
Γ and denote nv,w be the number of edges joining v and w. We set αΓ

v =
∑

w∼v nv,wγw, and define
B(Γ) = {v ∈ V (Γ) : γv > αΓ

v}.

For the rest of this section, we assume Γ is finite. We show that N (Γ) is the direct sum of an
interpolated free group factor and a finite dimensional abelian algebra. More precisely, we prove
the following theorem, which has a direct analogy with Theorem 2.2.6:

Theorem 2.3.4. Let Γ and Γ′ be connected, finite, loopless, and weighted graphs with at least 2

edges. Then N (Γ) ∼=
pΓ

L(FtΓ) ⊕
⊕

v∈B(Γ)

rΓ
v

C
γv−αΓ

v

where rΓ
v ≤ pv and tΓ is such that this algebra has the

appropriate free dimension. Furthermore, if Γ is a subgraph of Γ′, then pΓN (Γ)pΓ s.e.
↪→ pΓN (Γ′)pΓ.

Notice that since we are assuming that all vertices have positive weight, it follows that pvp
Γ 6= 0

for all v ∈ Γ. We will prove Theorem 2.3.4 in a series of lemmas.

Lemma 2.3.5. Let Γ be a finite, connected, weighted, loopless graph with 2 edges. Then N (Γ) is
of the form in Theorem 2.3.4.

Proof. Set D = `∞(Γ). There are two overlying cases to consider. One where Γ has 2 vertices and
the other where Γ has 3 vertices.

Case 1: Assume that Γ has 2 vertices v, w and 2 edges e1 and e2 connecting v and w and
without loss of generality assume γv ≥ γw. We obtain the desired formula for N (Γ) by examining
the following sequence of inclusions:
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N0 =

(
pw

C
γw
⊕

pIv
C
γw
⊕ C

γv−γw

)
∗
D

(
pw

C
γw
⊕

qIv
C
γw
⊕ C

γv−γw

)
∩

N1 =

(
pw,pIv

M2(C)
γw

⊕ C
γv−γw

)
∗
D

(
pw

C
γw
⊕

qIv
C
γw
⊕ C

γv−γw

)
∩

N2 =

(
pw,pIv

M2(C)
γw

⊕ C
γv−γw

)
∗
D

(
pw,qIv

M2(C)
γw

⊕ C
γv−γw

)
∩

N3 =

(
M2(C)⊗ L(Z)

2γw

⊕ C
γv−γw

)
∗
D

(
pw

M2(C)
γw

⊕ C
γv−γw

)
∩

N (Γ) =

(
M2(C)⊗ L(Z)

2γw

⊕ C
γv−γw

)
∗
D

(
M2(C)⊗ L(Z)

2γw

⊕ C
γv−γw

)
,

where pv decomposes as (1⊗ e2,2)⊕ 1 in Ae1 and Ae2 with pIv = 1⊗ e2,2 in Ae1 and qIv = 1⊗ e2,2 in
Ae2 . From Lemma 2.2.4 and [Dyk93], we see that

pvN0pv =
pIv
C
γw
γv

⊕ C
γv−γw
γv

∗
qIv
C
γw
γv

⊕ C
γv−γw
γv

=


M2(C)⊗ L(Z)

2 γv−γw
γv

⊕
pIv∧qIv
C

2γw−γv
γv

if 2γw ≥ γv

M2(C)⊗ L(Z)
2γw
γv

⊕
(pv−pIv)∧(pv−qIv)

C
γv−2γw
γv

if γv > 2γw

where in the first algebra, the identity element copy of C is pIv ∧ qIv and and in the second algebra,
the identity of the copy of C is orthogonal to both pIv and qIv .

Case 1a: Assume 2γw ≥ γv. As pv ∧ qv is minimal and central in N0, we see that

N1 = M3(C)⊗ L(Z)
3(γv−γw)

⊕
pIv∧qIv
M2(C)
2γw−γv

.

By [Dyk93], the projections pIv and qIv are equivalent in N0, so it follows that pw is equivalent to qIv
in N1. Therefore by Lemma 2.2.5,

pwN2pw = pwN1pw ∗ L(Z) = (L(Z)
γv−γw
γw

⊕ C
2γw−γv
γw

) ∗ L(Z),

which is an interpolated free group factor L(Ft) by Theorem 2.2.6. As the central support of pw in
N2 is 1, it follows that N2 is also an interpolated free group factor L(Ft1). To finish up this case,
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we write

N2 ⊂ N3 =

(
M2(C)⊗ L(Z)

2γw

⊕ C
γv−γw

)
∗
D

(
pw

M2(C)
γw

⊕ C
γv−γw

)
and

N3 ⊂ N (Γ) =

(
M2(C)⊗ L(Z)

2γw

⊕ C
γv−γw

)
∗
D

(
M2(C)⊗ L(Z)

2γw

⊕ C
γv−γw

)
,

and use Lemma 2.2.4 twice, as well as the amplification formula for interpolated free group factors
to obtain that N (Γ) is an interpolated free group factor.

Case 1b: The case γv > 2γw for N0 is treated exactly the same as the first with only the caveat
that the central support of pw in N1 is a projection of trace 3γw, so N1, and thus N2, N3, and N (Γ),
have a minimal central projection of trace γv − 2γw.

Case 2: Next we consider the case where Γ has 3 vertices v1, v2, and v3 with weights γ1, γ2,
and γ3 respectively, where v2 is connected to v1 by e1 and to v3 by e2. There are two sub-cases to
consider. The first is when γ2 ≥ γ1 ≥ γ3, and the second is when γ1 > γ2 and γ1 ≥ γ3.

Case 2a: We examine the following sequence of inclusions:

N0 =

(
pv1
C
γ1

⊕
pI2
C
γ1

⊕
pII2
C

γ2−γ1

⊕
pv3
C
γ3

)
∗
D

(
pv1
C
γ1

⊕
qI2
C

γ2−γ3

⊕
qII2

C
γ3

⊕
pv3
C
γ3

)
∩

N1 =

(
pv1 ,p

I
2

M2(C)
γ1

⊕
pII2
C

γ2−γ1

⊕
pv3
C
γ3

)
∗
D

(
pv1
C
γ1

⊕
qI2
C

γ2−γ3

⊕
qII2 ,pv3

M2(C)
γ3

)
∩

N2 =

(
M2(C)⊗ L(Z)

2γ1

⊕
pII2
C

γ2−γ1

⊕
pv3
C
γ3

)
∗
D

(
pv1
C
γ1

⊕
qI2
C

γ2−γ3

⊕
qII2 ,pv3

M2(C)
γ3

)
∩

N (Γ) =

(
M2(C)⊗ L(Z)

γ1

⊕
pII2
C

γ2−γ1

⊕
pv3
C
γ3

)
∗
D

(
pv1
C
γ1

⊕
qI2
C

γ2−γ3

⊕M2(C)⊗ L(Z)
2γ3

)
,

where pv2 decomposes as 1 ⊗ e22 ⊕ 1 ⊕ 0 in Ae1 and 0 ⊕ 1 ⊕ 1 ⊗ e1,1 in Ae2 . We set pI2 and pII2 as
the summands of pv2 supported in the diffuse and atomic parts of Ae1 respectively and qI2 and qII2

as the summands of pv2 supported in the atomic and diffuse parts of Ae2 respectively. As above,

pv2N0pv2 =
pI2
C
γ1
γ2

⊕
pII2
C

γ2−γ1
γ2

∗
qI2
C

γ2−γ3
γ2

⊕
qII2

C
γ3
γ2

=


M2(C)⊗ L(Z)

2
γ2−γ1
γ2

⊕
pI2∧qI2
C

γ1−γ3
γ2

⊕
pI2∧qII2

C
γ1−γ2+γ3

γ2

if γ2 ≤ γ1 + γ3

M2(C)⊗ L(Z)
2
γ3
γ2

⊕
pI2∧qI2
C

γ1−γ3
γ2

⊕
pII2 ∧qI2
C

γ2−γ1−γ3
γ2

if γ2 > γ1 + γ3

.

Case 2a(i): Assume γ2 ≤ γ1 + γ3. Since the two new matrix units in N1 introduce equivalences

between pv1 and pI2 and between qII2 and pv3 respectively, we see that N1 has the same number of
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summands as pv2N0pv2 , but with suitable amplifications. Explicitly, we find that

N1 = M4(C)⊗ L(Z)
4(γ2−γ1)

⊕
pI2∧qI2
M2(C)
γ1−γ3

⊕
pI2∧qII2

M3(C)
γ1+γ3−γ2

where the central support of pv1 is the identity. By applying Lemma 2.2.4 and applying the same
reasoning as case 1, we see that N2 is an interpolated free group factor. Applying Lemma 2.2.4
again shows that N (Γ) is an interpolated free group factor.

Case 2a(ii): Assume γ2 > γ1 + γ3. This case is treated in the same way as above except that in

N1, qI2 ∧ pII2 with trace γ2 − γ3 − γ1 is minimal and central, so it is minimal and central in N (Γ).
Case 2b: Now let γ1 be the largest weight. First assume γ3 ≥ γ2. We consider the algebra

N1 =

(
pI1
C

γ1−γ2

⊕
pv2

M2(C)
γ2

⊕
pv3
C
γ3

)
∗
D

(
pv1
C
γ1

⊕
pv2

M2(C)
γ2

⊕
pI3
C

γ3−γ2

)
,

where the projections orthogonal to pv2 in each copy of M2(C) sit under pi and pIi ≤ pvi for i = 1

or 3. It follows that N1 =
pI1
C

γ1−γ2

⊕
pv2

M3(C)
γ2

⊕
pI3
C

γ3−γ2

, so tensoring each copy of M2(C) with L(Z) and

using the standard arguments as above show that

N (Γ) =
pI1
C

γ1−γ2

⊕ L(Ft)
3γ2

⊕
pI3
C

γ3−γ2

.

Finally, if γ2 > γ3 then we consider

N1 =

(
pI1
C

γ1−γ2

⊕
pv2

M2(C)
γ2

⊕
pv3
C
γ3

)
∗
D

(
pv1
C
γ1

⊕
pI2
C

γ2−γ3

⊕
pv3

M2(C)
γ3

)
=

pI1
C

γ1−γ2

⊕M3(C)
γ3

⊕M2(C)
γ2−γ3

,

where the central support of pv2 is 1− pI1. Therefore, tensoring each copy of M2(C) with L(Z) gives

N (Γ) =
pI1
C

γ1−γ2

⊕ L(Ft)
2γ2+γ3

as desired.

We now inductively assume that for some Γ, N (Γ) has the form as described in Theorem 2.3.4.

Lemma 2.3.6. Suppose Γ′ is a graph obtained from Γ by adding an edge e connecting two vertices
v and w of Γ (so that in particular Γ and Γ′ have the same underlying set of vertices with the same
weighting). Assume that

N (Γ) =
pΓ

L(FtΓ)⊕
⊕
v∈B(Γ)

rΓ
v

C
γv−αΓ

v

as in Theorem 2.3.4. Then

N (Γ′) =
pΓ′

L(FtΓ′ )⊕
⊕

v∈B(Γ′)

rΓ′
v

C
γv−αΓ′

v

where pΓ ≤ pΓ′, rΓ′
v ≤ rΓ

v , and pΓN (Γ)pΓ s.e.
↪→ pΓN (Γ′)pΓ.
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Proof. We use the convention that if the term
p

C
α

appears where α ≤ 0 then this term is identically

zero. All parts of the proof below are valid if this modification is made.
Set D = `∞(Γ′) = `∞(Γ) and let the new edge e connect v to w with γv ≥ γw. We examine the

following sequence of inclusions:

N (Γ) ⊂ N1 = N (Γ) ∗
D

(
pw

C
γw
⊕

(
n⊕
k=1

pv,k

C
γw/n
⊕

pIv
C

γv−γw

)
⊕ `∞(Γ \ {v, w})

)
∩

N2 = N (Γ) ∗
D

(
n⊕
k=1

pw,k

C
γw/n
⊕

(
n⊕
k=1

pv,k

C
γw/n
⊕

pIv
C

γv−γw

)
⊕ `∞(Γ \ {v, w})

)
∩

N3 = N (Γ) ∗
D

(
n⊕
k=1

pw,k,pv,k

M2(C)
γw/n

⊕
pIv
C

γv−γw
⊕ `∞(Γ \ {v, w})

)
∩

N (Γ′) = N (Γ) ∗
D

(
L(Z)⊗M2(C)⊕

pIv
C

γv−γw
⊕ `∞(Γ \ {v, w})

)
.

The projections pw,k are an orthogonal family with trace γw/n inAe whose sum is pw. The projection
pv decomposes as

∑n
k=1 pv,k + pIv with pIv supported in the atomic part of Ae and the pv,k are an

orthogonal family of projections with trace γw/n supported in the diffuse part of Ae. The positive

integer n is chosen large enough such that 1
n

+ γw−αΓ
w

γw
< 1 and γw

nγv
+ γv−αΓ

v

γv
< 1. From the induction

hypothesis,

pvN (Γ)pv =
pΓ
v

L(Ftv)⊕
rΓ
v

C
γv−αv
γv

, and pwN (Γ)pw =
pΓ
w

L(Ftw)⊕
rΓ
w

C
γw−αw
γw

,

with pΓ
u = pΓpu for any vertex u. From Lemma 2.2.4,

pvN1pv =

 pΓ
v

L(Ftv)⊕
rΓ
v

C
γv−αΓ

v
γv

 ∗( n⊕
k=1

pv,k

C
γw
nγv

⊕
pIv
C

γv−γw
γv

)
= L(Ftv,1)⊕

pIv∧rΓ
v

C
γv−αΓ′

v
γv

.

Lemma 2.2.4 applied to the inclusion(
pΓ
v

C ⊕
rΓ
v

C
γv−αv
γv

)
∗

(
n⊕
k=1

pv,k

C
γw
nγv

⊕
pIv
C

γv−γw
γv

)
→

(
pΓ
v

L(Ftv)⊕
rΓ
v

C
γv−αv
γv

)
∗

(
n⊕
k=1

pv,k

C
γw
nγv

⊕
pIv
C

γv−γw
γv

)
,

shows that the inclusion L(Ftv) = pΓ
vN (Γ)pΓ

v → pΓ
vN1p

Γ
v is equivalent to the canonical inclusion

L(Ftv)→ L(Ftv) ∗ pΓ
v

[(
p′v
C⊕ C

γv−αv
γv

)
∗

(
n⊕
k=1

pv,k

C
γw
nγv

⊕
pIv
C

γv−γw
γv

)]
pΓ
v
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so pΓ
vN (Γ)pΓ

v

s.e.
↪→ pΓ

vN1p
Γ
v . From Remark 2.2.3, pΓN (Γ)pΓ s.e.

↪→ pΓN1p
Γ as well.

By Lemma 2.2.4 we have

pwN2pw = L(Z/nZ) ∗ pwN1pw = L(Z/nZ) ∗

(
p
N1
w

L(Ftw)⊕
r
N1
w

C
γw

)
,

where pN1
w = pwp

N1 with pN1 the central support of pΓ in N1 (note pN1
w ≥ pΓ

w so rN1
w ≤ rΓ

w which
implies δw ≤ γw − αΓ

w). From these observations, it follows that pwN2pw is an interpolated free
group factor (since n was chosen such that γw

nγv
+ γv−αv

γv
< 1) and the arguments used in the

inclusion N (Γ) → N1 imply pN1
w N1p

N1
w

s.e.
↪→ pN1

w N2p
N1
w . Therefore pΓ

wN1p
Γ
w

s.e.
↪→ pΓ

wN2p
Γ
w so pΓN1p

Γ s.e.
↪→

pΓN2p
Γ. Also, observe that since the projections pv,k and pw,k lie in the interpolated free group

factor summand of N2, they are equivalent in N2. We now define algebras N2,j for j = 0, ..., n so
that

N2 = N2,0 ⊂ N2,1 ⊂ N2,2 ⊂ · · · ⊂ N2,n = N3 where

N2,j =

(
n⊕

k=j+1

pw,k

C
γw/n
⊕

j⊕
k=1

pw,k,pv,k

M2(C)
γw/n

⊕
n⊕

k=j+1

pv,k

C
γw/n
⊕

pIv
C

γv−γw
⊕ `∞(Γ \ {v, w})

)
∗
D
N (Γ).

Let pN2 be the central support of pΓ in N2. Applying Lemma 2.2.5 to the inclusion

pw,j+1N2,jpw,j+1 → pw,j+1N2,j+1pw,j+1 = pw,j+1N2,jpw,j+1 ∗ L(Z)

shows that this inclusion is a standard embedding, so it follows from Remark 2.2.3 that pN2N2,jp
N2

s.e.
↪→

pN2N2,j+1p
N2 , implying pΓN2,jp

Γ s.e.
↪→ pΓN2,j+1p

Γ for all j. Inductively,

N3 =

 pN2

L(Ft3)⊕
pIv∧rΓ

v

C
γv−αΓ′

v

⊕
u∈L(Γ)\{v,w}

rΓ
u

C
γu−αΓ′

u


and pΓN2p

Γ s.e.
↪→ pΓN3p

Γ. To finish, we look at the sequence of algebras

N3 = N3,0 ⊂ N3,1 ⊂ ... ⊂ N3,n = N (Γ′) where

N3,j =

(
j⊕

k=1

pw,k+qw,k

M2(C)⊗ L(Z)⊕
n⊕

k=j+1

pw,k,pv,k

M2(C)⊕
pIv
C

γv−γw

⊕
`∞(Γ \ {v, w})

)
∗
D
N (Γ).

Lemma 2.2.4 implies that the inclusion

pw,j+1N3,jpw,j+1 → pw,j+1N3,j+1pw,j+1 = pw,j+1N3,jpw,j+1 ∗ L(Z)

is a standard embedding, so by Remark 2.2.3, pN2N3,jp
N2

s.e.
↪→ pN2N3,j+1p

N2 and thus pΓN3,jp
Γ s.e.
↪→

pΓN3,j+1p
Γ. Therefore the inclusion pΓN3p

Γ → pΓN (Γ′)pΓ is standard since it is a composite of

standard embeddings. This impliesN (Γ′) has the desired formula and pΓN (Γ)pΓ s.e.
↪→ pΓN (Γ′)pΓ.

We again assume that N (Γ) is in the form of Theorem 2.3.4.
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Lemma 2.3.7. Let Γ′ be a weighted graph obtained from Γ by adding a vertex v and an edge

e connecting v to w ∈ V (Γ) woth weighting γv, and assume N (Γ) =
pΓ

L(FtΓ) ⊕
⊕

v∈B(Γ)

rΓ
v

C
γv−αΓ

v

with

notation as in Theorem 2.3.4. Then

N (Γ′) =
pΓ′

L(FtΓ′ )⊕
⊕

u∈B(Γ′)

rΓ′
u

C
γu−αΓ′

u

where pΓ ≤ pΓ′, rΓ′
u ≤ rΓ

u for all u, and pΓN (Γ)pΓ
s.e.
↪→ pΓN (Γ′)pΓ.

Notice that the natural inclusion N (Γ) → N (Γ′) is not unital, but the compressed inclusion
pΓN (Γ)pΓ → pΓN (Γ′)pΓ is.

Proof. Just as in the proof of Lemma 2.3.6, if the term
p

C
α

appears where α ≤ 0 then this term is

identically zero.
Set D = `∞(Γ′). We rescale all of the weights on Γ such that all of the weights on Γ′ sum to 1.

We have 2 cases: when γv > γw and when γw ≥ γv.
Case 1, γv > γw: We look at the following sequence of inclusions:

N (Γ)⊕
pv

C
γv
⊂ N1 =

(
N (Γ)⊕

pv

C
γv

)
∗
D

(
`∞(Γ′ \ {v, w})⊕

n⊕
k=1

pw,k

C
γw/n
⊕

(
n⊕
k=1

pv,k

C
γw/n
⊕

pIv
C

γv−γw

))
∩

N2 =

(
N (Γ)⊕

pv

C
γv

)
∗
D

(
`∞(Γ′ \ {v, w})⊕

n⊕
k=1

pw,k,pv,k

M2(C)
γw/n

⊕
pIv
C

γv−γw

)
∩

N (Γ′) =

(
N (Γ)⊕

pv

C
γv

)
∗
D

(
`∞(Γ′ \ {v, w})⊕ L(Z)⊗M2(C)

2γw

⊕
pIv
C

γv−γw

)
.

The projections pw,k are an orthogonal family with trace γw/n in Ae whose sum is pw. In Ae,
pv decomposes as

∑n
k=1 pv,k + pIv with pIv supported in the atomic part of Ae, and the pv,k are

an orthogonal family of projections with trace γw/n supported in the diffuse part of Ae. By the
inductive hypothesis,

pwN (Γ)pw =
pΓ
w

L(Ftw)
αΓ
w
γw

⊕
rΓ
w

C
γw−αΓ

w
γw

,

with pΓ
w = pwp

Γ. We choose n large enough such that 1
n

+ γw−αw
γw

< 1, i.e., so that pwN (Γ)pw ∗
L(Z/nZ) is an interpolated free group factor. From Lemma 2.2.4,

pwN1pw = pwN (Γ)pw ∗

(
n⊕
k=1

pw,k

C
1/n

)
=

(
p′w

L(Ftw)
αw
γw

⊕ C
γw−αw
γw

)
∗

(
n⊕
k=1

pw,k

C
1/n

)
,
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so it is an interpolated free group factor, and applying Lemma 2.2.4 again, we see that

pΓ
wN1p

Γ
w = pΓ

wN (Γ)pΓ
w ∗ pΓ

w

[(
pΓ
w

C
αw
γw

⊕
rΓ
w

C
γw−αw
γw

)
∗

(
n⊕
k=1

pw,k

C
1/n

)]
pΓ
w

with the inclusion pΓ
wN (Γ)pΓ

w → p′wN1p
′
w the canonical one. Therefore pΓ

wN (Γ)pΓ
w

s.e.
↪→ pΓ

wN1p
Γ
w, so it

follows that pΓN (Γ)pΓ s.e.
↪→ pΓN1p

Γ as well. It is clear that pIv will be a minimal central projection in

N2, and since the projections pv,k lie under the minimal projection pv ∈ N (Γ)⊕
pv

C
γv

, it follows that

N2 = L(Ft2)⊕
pIv
C

γv−γw
⊕

⊕
u∈B(Γ)\{w}

rΓ
u

C
γu−αΓ

u

,

where L(Ft2) is an amplification of pΓN1p
Γ. Hence pΓN1p

Γ = pΓN2p
Γ. As a final step, we tensor

each copy of M2(C) with L(Z) to obtain N (Γ′) and apply Lemma 2.2.4 and Remark 2.2.3 n times
as in the proof of Lemma 2.3.6 to conclude that

N (Γ′) = L(Ft3)⊕
pIv
C

γv−γw
⊕

⊕
u∈B(Γ)\{w}

rΓ
u

C
γu−αΓ′

u

and pΓN2p
Γ s.e.
↪→ pΓN (Γ′)pΓ. Therefore pΓN (Γ)pΓ s.e.

↪→ pΓN (Γ′)pΓ and N (Γ′) has the desired form.
Case 2, γw ≥ γv: We look at a sequence of inclusions similar to those in the previous case:

N (Γ)⊕
pv

C
γv
⊂ N1 =

(
N (Γ)⊕

pv

C
γv

)
∗
D

(
`∞(Γ′ \ {v, w})⊕

(
n⊕
k=1

pw,k

C
γv/n
⊕

pIw
C

γw−γv

)
⊕

n⊕
k=1

pv,k

C
γv/n

)
∩

N2 =

(
N (Γ)⊕

pv

C
γv

)
∗
D

(
`∞(Γ′ \ {v, w})⊕

n⊕
k=1

pw,k,pv,k

M2(C)
γv/n

⊕
pIw
C

γw−γv

)
∩

N (Γ′) =

(
N (Γ)⊕

pv

C
γv

)
∗
D

(
`∞(Γ′ \ {v, w})⊕ L(Z)⊗M2(C)

2γv

⊕
pIw
C

γw−γv

)
.

The projections pv,k are an orthogonal family with trace γv/n in Ae whose sum is pv. In Ae,
pw decomposes as

∑n
k=1 pw,k + pIw where pIw is supported in the atomic part of Ae, and the pw,k

are an orthogonal family of projections with trace γv/n supported in the diffuse part of Ae. We
choose n large enough so that γw−αw

γw
+ γv

nγw
< 1. Observe by the condition on n that pwN1pw =

p
N1
w

L(Ft′1) ⊕ C
γw−αw−γv

where the copy of C is orthogonal to each pw,k. Therefore as in the proof of

Lemma 2.3.6 pΓN (Γ)pΓ
s.e.
↪→ pΓN1pΓ. We next look at

N1 ⊂ N2 =

(
N (Γ)⊕

pv

C
γv

)
∗
D

(
`∞(Γ′ \ {v, w})⊕

n⊕
k=1

pw,k,pv,k

M2(C)
γv/n

⊕
pIv
C

γw−γv

)
.
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Since the pv,k lie under the minimal central projection pv ∈ N (Γ)⊕
pv

C
γv

, the arguments above imply

N2 = L(Ft2)⊕ C
γw−γv−αw

⊕
⊕

u∈L(Γ)\{w}

rΓ
u

C
γu−αu

and pΓN1p
Γ = pΓN2p

Γ. To finish, we tensor each copy of M2(C) with L(Z) and apply Lemma 2.2.4
and Remark 2.2.3 n times as in the end of the proof of Lemma 2.3.6 to obtain

N (Γ′) = L(Ft3)⊕ C
γw−γv−αw

⊕
⊕

u∈L(Γ)\{w}

rΓ
u

C
γu−αu

with the inclusion pΓN (Γ)pΓ → pΓN (Γ′)pΓ standard.

Proof of Theorem 2.3.4. Note that if Γ′ and Γ are connected, loopless, finite graphs, then Γ′ can be
constructed form Γ by considering the steps in Lemmas 2.3.6 and 2.3.7. Therefore, we can deduce
Theorem 2.3.4 by observing that the composite of standard embeddings is a standard embedding
and that standard embeddings are preserved by cut-downs by projections.

2.4 The GJS construction in infinite depth

Recall that the vertices on a principal graph for M0 ⊂M1 represent isomophism classes of irreducible
M0−M0 and M0−M1 subbimodules of tensor products of X =M0 L

2(M1)M1 and its dual, X∗ =M1

L2(M1)M0 . Assume Γ is the principal graph for an infinite-depth subfactor. If ∗ is the depth-0
vertex of Γ, then the factor M0 as in the introduction is isomorphic to p∗N (Γ)p∗. N (Γ) is now a
semifinite algebra where the weighting γ on `∞(Γ) corresponds to the bimodule dimension obtained
by identifying each vertex with an irreducible bimodule as above. Under this identification, γ∗ = 1
and δ · γv =

∑
w∼v nv,wγw where δ = [M1 : M0]1/2. To circumvent the difficulty of dealing with

a semifinite algebra, we realize that M0 is an inductive limit of the algebras p∗N (Γk)p∗ where Γk
is Γ truncated at depth k. To aid our computation of the isomorphism class of M0, we have the
following lemma, whose proof is a routine calculation and is identical to that in [GJS11].

Lemma 2.4.1. The free dimension of N (Γk) is

1 +
1

Tr(Fk)2

(
−
∑
v∈Γk

γ2
v +

∑
v∈Γk

∑
w∼v

nv,wγvγw

)

where w ∼ v means w is connected to v in Γk, Fk =
∑

u∈Γk
pu, and Tr is the trace on the semifinite

algebra N (Γ).

Theorem 2.4.2. Let P be an infinite depth subfactor planar algebra. Then the factor M0 in the
construction of [GJS10] is isomorphic to L(F∞).
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Proof. For a given k, we write

N (Γk) =
pk

L(Ftk)∑
γw

w 6∈B(Γk)

+
∑
α

Γk
v

v∈B(Γk)

⊕
⊕

v∈B(Γk)

p
Γk
v

C
γv−α

Γk
v

.

The free dimension of this algebra is

1 + (tk − 1)

(∑
w 6∈B(Γk) γw +

∑
v∈B(Γk) γv

Tr(Fk)

)2

−
∑

v∈B(Γk)(γv − αΓk
v )2

Tr(Fk)2
,

so by Lemma 2.4.1, we have the equation

(tk − 1)

 ∑
w 6∈B(Γk)

γw +
∑

v∈B(Γk)

αΓk
v

2

=
∑
u∈Γk

∑
w∼u

nu,wγuγw −
∑
u∈Γk

γ2
u +

∑
v∈B(Γk)

(γv − αΓk
v )2.

Observe that in Γk, the vertices up to depth k − 1 are connected to all of their neighbors in Γ, so
by the Perron-Frobenius condition and the fact that δ > 1, none of these vertices are in B(Γk). If
we let B′(Γk) be the vertices v at depth k with γv ≤

∑
w∼v nv,wγw, then the right hand side of the

above equality becomes

(δ − 1)
∑

v∈Γk−2

γ2
v +

∑
v∈Γk−1\Γk−2

γv

−γv +
∑

w 6∈B(Γk)
w∼v

nv,wγw +
∑

w∈B(Γk)
w∼v

αΓk
w


+

∑
v∈B′(Γk)

γv

(
−γv +

∑
w∼v

nv,wγw

)

where we have used αΓk
v =

∑
w∼v nv,wγw. This quantity majorizes (δ − 1)

∑
v∈Γk−2

γ2
v . Since the

bimodule dimensions of any irreducible sumbimodule of (X⊗M1 X
∗)⊗

n
M0 and (X⊗M1 X

∗)⊗
n
M0 ⊗M0 X

are bounded below by 1, γv ≥ 1 for all v ∈ Γ so we conclude that

(tk − 1)

 ∑
w 6∈L(Γk)

γw +
∑

v∈L(Γk)

αΓk
v

2

→∞

as k →∞. From the amplification formula, p∗N (Γk)p∗ = L(Ft′k) where

t′k = 1 + (tk − 1)

 ∑
w 6∈L(Γk)

γw +
∑

v∈L(Γk)

αΓk
v

2

.

Hence pΓkN (Γk)pΓk

s.e.
↪→ pΓkN (Γk+1)pΓk so by Remark 2.2.3, p∗N (Γk)p∗

s.e.
↪→ p∗N (Γk+1)p∗. As

p∗N (Γ)p∗ is the inductive limit of the p∗N (Γk)p∗, it follows that p∗N (Γ)p∗ = L(Ft) where t =
lim t′k =∞.
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Corollary 2.4.3. The factors Mk are isomorphic to L(F∞).

Proof. If k is even, then Mk is an amplification of M0 so it follows for Mk. If k is odd, then Mk

are cut-downs of N (Γ′) with Γ′ the dual principal graph of P . Applying the same analysis as in
Theorem 2.4.2 shows that Mk

∼= L(F∞).
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Chapter 3

Universality of L(F∞) for Rigid
C∗−Tensor Categories

3.1 Introduction

Jones initiated the modern theory of subfactors in his breakthrough paper [Jon83] in which he
classified the possible values for the index of a II1 subfactor to the range {4 cos2(π/n)|n ≥ 3}∪[4,∞],
and he found a subfactor of the hyperfinite II1-factor R for each allowed index.

A finite index subfactor N ⊂M is studied by analyzing its standard invariant, i.e., two rigid C∗-
tensor categories of N −N and M −M bimodules and the module categories of N −M and M −N
bimodules which arise from the Jones tower. The standard invariant has been axiomatized in three
similar ways, each emphasizing slightly different structure: Ocneanu’s paragroups [Ocn88, EK98],
Popa’s λ-lattices [Pop95], and Jones’ planar algebras [Jon].

In [Pop93, Pop95, Pop02], Popa starts with a λ-lattice A•,• = (Ai,j) and constructs a II1-
subfactor whose standard invariant is A•,•. Hence for each subfactor planar algebra P•, there is
some subfactor whose planar algebra is P•. However, the following question remains unanswered:

Question 3.1.1. For which subfactor planar algebras P is there a subfactor of R whose planar
algebra is P?

Using his reconstruction theorems, Popa gave a positive answer to Question 3.1.1 for (strongly)
amenable subfactor planar algebras [Pop94].

In [PS03], Popa and Shlyakhtenko were able to identify the factors in certain cases of Popa’s
reconstruction theorems. Using this, they gave a positive answer to Question 3.1.1 for L(F∞), i.e.,
every subfactor planar algebra arises as the standard invariant of some subfactor N ⊂M such that
N,M are both isomorphic to L(F∞). This theorem was reproduced by Hartglass [Har12] using the
reconstruction results of Guionnet-Jones-Shlyakhtenko-Walker (GJSW) [GJS10, JSW10, GJS11]
which produce subfactors of interpolated free group factors.

It is natural to extend these questions to rigid C∗-tensor categories, i.e.,

Question 3.1.2. For which rigid C∗-tensor categories C is there a category Cbim of bifnite bimodules
over R such that Cbim is equivalent to C?

As in the subfactor case, Hayashi and Yamagami gave a positive result for amenable rigid
C∗-tensor categories [HY00] (amenability for C∗-tensor categories was first studied by Hiai and
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Izumi [HI98]). Moreover, given a rigid C∗-tensor category C, Yamagami constructed a category of
bifite bimodules Cbim over an amalgamated free product II1-factor such that Cbim is equivalent to
C [Yam03]. However, one can show these factors have property Γ, so they are not interpolated free
group factors (we briefly sketch this in Appendix 3.5).

In this paper, we give a result analogous to Popa and Shlyakhtenko’s results for L(F∞) for
countably generated rigid C∗-tensor categories, which answers part of Question 9 in [Müg10, Section
6]. Recall that a rigid C∗-tensor category C is generated by a set of objects S if for every Y ∈ C,
there are X1, . . . , Xn ∈ S such that

C(X1 ⊗ · · · ⊗Xn, Y ) 6= (0),

i.e., Y is (isomorphic to) a sub-object of X1 ⊗ · · · ⊗Xn.

Theorem 3.1.3. Every countably generated rigid C∗-tensor category can be realized as a category
of bifinite bimodules over L(F∞).

Remark 3.1.4. Note that when C is finitely generated, we can prove Theorem 3.1.3 using [PS03]
by adapting the technique in [FR12, Theorem 4.1]. We provide a sketch of the proof in Appendix
3.5, where we also point out some difficulties of using the results of [PS03] when C is not finitely
generated (see also [Yam03, Section 4]).

Hence we choose to use planar algebra technology to prove Theorem 3.1.3 since it offers the
following advantages. First, the same construction works for both the finitely and infinitely gener-
ated cases. Second, planar diagrams arise naturally in the study of tensor categories, and a reader
familiar with the diagrams may benefit from a planar algebraic approach. Third, we get an elegant
description of the bimodules over L(F∞) directly from the planar algebra (see Section 3.3).

There are three steps to the proof of Theorem 3.1.3.

(1) Given a countably generated C∗-tensor category C, we get a factor planar algebra P such that
the C∗-tensor category Pro of projections of P is equivalent to C.
A factor planar algebra (called a fantastic planar algebra in [MP12]) is an unshaded, spherical,
evaluable C∗-planar algebra.

This step is well known to experts; we give most of the details in Section 3.2.

(2) Given a factor planar algebra P , we construct a II1-factor M and two rigid C∗-tensor categories
of bifinite bimodules over M :

• Bim, built entirely from P and obviously equivalent to Pro, and

• CF , formed using Connes’ fusion and linear operators.

These categories are defined in Definitions 3.3.23 and 3.3.25. We then show Bim ' CF in
Theorem 3.3.26.

We use results of GJSW to accomplish this step in Section 3.3. Along the way, we adapt
Brothier’s treatment [Bro12] of GJSW results [GJS10, JSW10] for unshaded planar algebras.

(3) We show M ∼= L(F∞).

This last step is similar to results of GJS [GJS11] and Chapter 2.
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One can use similar analysis as in the proof of Theorem 3.1.3 to prove the following theorem:

Theorem 3.1.5. Suppose that in addition, C has finitely many isomorphism classes of simple
objects, i.e., C is a unitary fusion category. Picking an object X ∈ C which generates C, then C can
be realized as a category of bifinite bimodules over L(Ft) with

t = 1 + dim(C)(dim(X ⊕X)− 1) = 1 + dim(C)(2 dim(X)− 1),

where dim(C) is the Frobenius-Perron dimension of C.

Remark 3.1.6. Note that a version of Theorem 3.1.5 can be obtained by using [FR12, Theorem
4.1] together with [GJS11]. If Z1, . . . , Zn are representatives for the simple objects in C and Y =⊕n

k=1 Zk, then one obtains the factor L(Fs) for

s = 1 + dim(C)(dim(Y )− 1),

which will be a different parameter than what we obtained in Theorem 3.1.5.

On the other end of the spectrum, one should also note that there has been interesting work
on rigid C∗-tensor categories of bimodules over II1-factors by Vaes, Falguières, and Raum [FV11,
FR12]. Given a rigid C∗-tensor category C which is either Rep(G) for G a compact quantum group
[FV11] or a unitary fusion category [FR12], they construct a II1-factor M whose category Bim(M)
of bifinite bimodules is exactly C (up to equivalence). Their results can be interpreted as rigidity
results in contrast to the universality of L(F∞) to rigid C∗-tensor categories.

Acknowledgements. We would like to thank Vaughan Jones, Scott Morrison, Noah Snyder, and
Stefaan Vaes for many helpful conversations. The majority of this work was completed at the 2012
NCGOA on Conformal field theory and von Neumann algebras at Vanderbilt University and the
2012 Subfactors in Maui conference. The authors would like to thank Dietmar Bisch, Vaughan
Jones, James Tener, and the other organizers for those opportunities. The authors were supported
by DOD-DARPA grants HR0011-11-1-0001 and HR0011-12-1-0009. Michael Hartglass and David
Penneys were also supported by NSF Grant DMS-0856316. Arnaud Brothier was also supported
by ERC Starting Grant VNALG-200749.

3.2 Tensor categories and planar algebras

We briefly recall how to go back and forth between rigid C∗-tensor categories and factor planar
algebras. The contents of this subsection are well known to experts. Our treatment follows [MPS10,
Jon11, Yam12, Gho11, Yam03, Müg10].

Notation 3.2.1. Categories will be denoted with the letter C unless otherwise specified. We write
X ∈ C to mean X is an object in C, and we write C(X → Y ) or C(X, Y ) for the set of morphisms
from X to Y in C.
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Factor planar algebras and principal graphs

We briefly recall the definition of an unshaded factor planar algebra where the strings are labelled.
For more details, see [Jon11].

Definition 3.2.2. Given a set L, the planar operad with string labels L, denoted PL, is the set of
all planar tangles whose strings are labelled by elements of L, e.g.,

a

b
b

c

c

a

d

d
b

c?

?

?

where a, b, c, d ∈ L.

A planar tangle T consists of the following data:

(1) a rectangle D0(T ) ⊂ R2,

(2) Finitely many disjoint rectangles D1(T ), . . . , Ds(T ) in the interior of D0(T ) (s may be zero),

(3) Finitely many disjoint smooth arcs in D0(T ) called the strings of T which do not meet the
interior of any D1(T ), . . . , Ds(T ). The boundary points of a string of T (if it has any) lie in
the boundaries of the Di(T ), and they meet these boundaries transversally (if they meet the
boundaries at all).

The boundaries of the strings divide the boundaries of the rectangles into intervals. For each
rectangle, there is a distinguished interval denoted ?. The intervals of Di(T ) are divided by the
marked points of Di(T ), i.e., the points at which the strings meet the boundary of Di(T ). Starting
at ?, the marked points on each rectangle are number clockwise.

Each string is labelled by an element from L, which induces a labeling on the marked points of
the Di(T ). Reading clockwise around the boundary of Di(T ) starting at ?, we get a word αi ∈ Λ,
the set of all finite words on L. We call Di(T ) an αi-rectangle, and we call such a planar tangle T
a planar α0-tangle.

If we have two planar tangles S, T satisfying the following boundary conditions:

• some internal rectangle Di(S) agrees with D0(T ),

• the marked points of Di(S) agree with the marked points of D0(T ),

• the distinguished interval of Di(S) agrees with the distinguished interval of T , and

• the label from L of each marked point of Di(S) agrees with the label of each marked point
from D0(T ),

then we may compose S and T to get the planar tangle S ◦i T by taking S union the interior of
D0(T ), removing the boundary of Di(S), and smoothing the strings.
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Remark 3.2.3. When we draw a planar tangle, we will often suppress the external rectangle,
which is assumed to be large. If we omit the ?, it is always assumed the ? is in the lower left corner.
Finally, if a1, . . . , ak ∈ L and α = a1 . . . ak ∈ Λ, we draw one string labelled α rather than k parallel
strings labelled a1, . . . , ak where we always read the strands from left to right and top to bottom.

For each word α = a1 · · · , an ∈ Λ, we write α = an · · · a1 for the word in the reverse order.

Definition 3.2.4. A planar algebra P with string labels L is

• a collection of vector spaces (Pα)α∈Λ (recall Λ is the set of finite words on L)

• an action of planar tangles by multilinear maps, i.e., for each planar α-tangle T , whose
rectangles D(T ) are αD-rectangles, there is a multilinear map

ZT :
∏
D⊂T0

PαD → Pα

satisfying the following axioms:

Isotopy: If θ is an orientation preserving diffeomorphism of R2, then Zθ(T ) = ZT . This means that

Zθ(T )(fθ) = ZT (f)

where fθ(θ(D)) = f(D).

Naturality: For S, T composable tangles, Z(S ◦D T ) = Z(S) ◦D Z(T ), where the composition on the
right hand side is the composition of multilinear maps.

Moreover, P is called a factor planar algebra if P is

• evaluable, i.e., dim(Pα) < ∞ for all α ∈ Λ and P∅ ∼= C via the map that sends the empty
diagram to 1 ∈ C. Hence, by naturally, to each a ∈ L, there is a scalar δa ∈ C such that any
labelled diagram containing a closed loop labelled a is equal to the same diagram without the
closed loop multiplied by δa. We use the notation δα = δa1 · · · δan if α = a1 · · · an.

• involutive, i.e., for each α ∈ Λ, there is a map ∗ : Pα → Pα with ∗◦∗ = id which is compatible
with the reflection of tangles, i.e., if T is a planar tangle labelled by α1, . . . , αs, then

T (α1, . . . , αn)∗ = T ∗(α∗1, . . . , α
∗
n)

where T ∗ is the reflection of T .

• unital [Jon11]: Let S be a shaded planar α0 tangle with no input disks. Then, there is an
element Z(S) ∈ Pα0 so that the following holds:

Let T be a tangle with a nonempty set of internal disks such that S can be glued into the
internal disk DS of T . Then

Z(T ◦ S) = Z(T ) ◦ ZS.
Here (Z(T ) ◦ ZS)(f) = f̃ where

f̃(D) =

{
f(D) if D 6= DS

Z(S) if D = DS
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• spherical, i.e., for all α ∈ Λ and all x ∈ Pαα, we have

tr(x) = α

α

x

α

= α

α

x

α

.

• positive, i.e., for every α ∈ Λ, the map 〈·, ·〉 : Pα × Pα → P∅ ∼= C given by

〈x, y〉 = x y∗
α

is a positive definite inner product. Hence for all a ∈ L, δa > 0.

Notation 3.2.5. For each α, β ∈ Λ, we write Pα→β to denote the box space Pαβ of elements of the
form

α

x

β

.

Remark 3.2.6. Note that for each α ∈ Λ, the multiplication tangle

α

α

α

makes Pα→α into an associative algebra. If P is a factor planar algebra, then the multiplication
tangle makes Pα→α a finite dimensional C∗-algebra.

Definition 3.2.7. Suppose P is a factor planar algebra. A projection in P is an element p ∈ Pα→α
satisfying p = p2 = p∗ where the multiplication is as in Remark 3.2.6. A projection p ∈ Pα→α
is called simple if it is a minimal projection in Pα→α. Since Pα→α is a finite dimensional C∗-
algebra, every projection is the sum of finitely many simple projections. This property is called
semi-simpicity.

Given a projection p ∈ Pα→α, the dual projection p ∈ Pα→α is obtained by

p = p

α α

α α

= p

α α

α α

.

Projections p ∈ Pα→α and q ∈ Pβ→β are isomorphic or equivalent, denoted p ' q, if there is a
u ∈ Pα→β such that

u∗u =

α

u

β

u∗

α

= p and uu∗ =

β

u∗

α

u

β

= q.
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Given a projection p ∈ Pα→α and a β ∈ Λ, we can form the projection

p⊗ idβ =

α

p

α

β ∈ Pαβ→αβ.

The principal graph of P with respect to β ∈ Λ, denoted Γβ, is the graph whose vertices are the
isomorphism classes of simple projections in P , and if p ∈ Pα→α and q ∈ Pαβ→αβ are simple
projections, then the vertices [p] and [q] are connected by dim(qPαβ→αβ(p⊗ idβ)) edges.

The principal graph of P , denoted Γ, is the push out of the Γb for b ∈ L over the isomorphism
classes of simple projections, i.e., the vertices are the same as before, and the edge set is the union
of the edge sets of the Γb for b ∈ L.

Since P is factor and L is countable, Γ has countably many vertices, although it may not be
locally finite. However, Γb is always locally finite for b ∈ L.

Given a vertex [p] of Γ, the number tr(p) is independent of the choice of representative of [p].
The vector (tr(p))[p]∈V (Γ) defines a Frobenius-Perron weight vector on the vertices of Γ satisfying
the following equation for each b ∈ L:

δb tr(p) =
∑

[q]∈V (Γb)

nb[p],[q] tr(q)

where nb[p],[q] is the number of edges connecting [p] and [q] in Γb.

Rigid C∗-tensor categories and fusion graphs

We briefly recall the definition of a rigid C∗-tensor category.

Definition 3.2.8. A rigid C∗-tensor category is a pivotal, spherical, positive/unitary, rigid, semisim-
ple, linear ( Vect-enriched) monoidal category such that End(1) ∼= C.

We now unravel this definition and state many properties that follow. The interested reader
should see [Yam03, Müg10] for more details. As we go through the properties, we will also go
through the well-known graphical calculus used for strict tensor categories. We will immediately
see that we get a factor planar algebra from a rigid C∗-tensor category.

We start with an abelian category C together with

• a bifunctor ⊗ : C × C → C which is associative up to a natural isomorphism (the pentagon
axiom is satisfied), and

• a unit object 1 ∈ C which is a left and right identity for ⊗ up to natural isomorphism (the
triangle identity is satisfied).

Remark 3.2.9. Recall that a tensor category is called strict if the above natural isomorphisms are
identities, i.e., for each X, Y, Z ∈ C, we have

(X ⊗ Y )⊗ Y = X(⊗(Y ⊗ Z) and

1⊗X = X = X ⊗ 1.
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Since each tensor category is equivalent to a strict tensor category by Theorem 7.2.1 in [ML98], our
tensor categories will be assumed to be strict unless otherwise stated. Note that even with all the
properties we want, we can still restrict our attention to strict categories.

First, since C is Vect-enriched, for each X, Y ∈ C, C(X → Y ) is a finite dimensional complex
vector space. The morphisms in C are drawn as boxes with strings emanating from the top and
bottom. The strings are labelled by the objects, and the diagram is read from top to bottom. For
example,

f =

X

f

Y

∈ C(X → Y ),

and the identity morphism idX is denoted by the horizontal strand labelled X. We compose mor-
phisms by vertical concatenation

X

f ◦ g
Z

=

X

g

Y

f

Z

∈ C(X → Z),

and we tensor morphisms by horizontal concatenation:

X1 ⊗ Y1

f1 ⊗ f2

X2 ⊗ Y2

=

X1

f1

Y1

X2

f2

Y2

∈ C(X1 ⊗X2 → Y1 ⊗ Y2).

Since C is rigid, for each X ∈ C, there is a dual or conjugate X ∈ C, and there is a natural

isomorphism X ∼= X. Along with the dual object, we have an evaluation map evX : X ⊗ X → 1
and a coevaluation map coevX : 1→ X ⊗X such that the diagram

X ⊗X ⊗X
1⊗evX

%%LLLLLLLLLLL

X

coevX ⊗1
99rrrrrrrrrrr

1⊗coevX %%LLLLLLLLLLL
idX // X

X ⊗X ⊗X
evX ⊗1

99rrrrrrrrrrr

commutes. The evaluation is denoted by a cap, and we a draw a cup for the coevaluation:

evX =
XX

1

and coevX =

X X

1
.
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The diagram above commuting is sometimes referred to as the zig-zag relation, since it is the
straightening of the kinked string:

X = X

X

X

= X

X

X

.

In general, we don’t draw a string connected to the trivial object 1 ∈ C. For each X, Y ∈ C, X ⊗ Y
is naturally isomorphic to Y ⊗X, and the diagram

X ⊗ Y ⊗ (X ⊗ Y )

��

evX⊗Y // 1

Y ⊗X ⊗X ⊗ Y
1⊗evX ⊗1 // Y ⊗ Y

evY

OO

commutes, and similarly for the coev’s. This diagram just means that we can write one cap labelled
X ⊗ Y and its dual instead of two separate caps labelled X and Y and their duals:

XX YY
=

X ⊗ YX ⊗ Y
,

and similarly for the cups.
The pivotality axiom in C requires that for all f ∈ C(X → Y ),

(evY ⊗ idX) ◦ (idY ⊗f ⊗ idX) ◦ (idY ⊗ coevX) = (idX ⊗ evY ) ◦ (idY ⊗f ⊗ idX) ◦ (coevX ⊗ idY ).

The equation above has an elegant representation in diagrams:

f

Y X

Y X

= f

X Y

X Y

.

For f ∈ C(X → Y ), the above diagram defines a dual map f ∈ C(Y → X), and f = f .
The evaluations and coevaluations together with pivotality allow us to define a left and right

trace on EndC(X):

trL(f) = evX ◦(idX ⊗f) ◦ coevX = X

X

f

X

∈ End(1) ∼= C and

trR(f) = evX ◦(f ⊗ idX) ◦ coevX = X

X

f

X

∈ End(1) ∼= C.

Similarly, for each X ∈ C, there are numbers dLX and dRX which are the left and right traces of the
identity morphism respectively, and dLX = dR

X
and dRX = dL

X
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Sphericality means that these two traces are equal, and we denote the common number by tr(f).
The sphericality allows us to perform isotopy on closed diagrams as if they were drawn on a sphere.
Hence dim(X) := dLX = dRX and dim(X) = dim(X) for all X ∈ C.

The positivity or unitarity of C means there is a contravariant functor ∗ : C → C which is the
identity on all objects, and on morphisms, it is anti-linear, involutive (∗ ◦ ∗ = idC), monoidal
((f ◦ g)∗ = g∗ ◦ f ∗ for composable f, g), and positive (f ∗ ◦ f = 0 implies f = 0). We require ∗ to be
compatible with the duality (f

∗
= f ∗) and with the evaluations and coevaluations (for all X ∈ C,

coevX = ev∗
X

). On diagrams, we perform ∗ by reflecting the diagram, keeping the labels on the
strings, and placing a ∗ on all morphisms.

For all X, Y ∈ C, we now have that C(X → Y ) is a Banach space with positive definite inner
product

〈f, g〉 = tr(g∗f) =

X

f

Y

g∗

X

X .

The inner product makes EndC(X) a finite dimensional C∗-algebra, so in particular, all projections
are sums of finitely many simple projections, and C is semi-simple, i.e., every exact sequence in C
splits. This also means that any object in C can be written as a finite direct sum of simple objects.
Recall that X ∈ C is simple if dim(EndC(X)) = 1. Thus if X, Y are non-isomorphic simple objects,
C(X, Y ) = (0). This means that for each simple X, Y, Z ∈ C, there are non-negative integers NZ

X,Y

such that X ⊗ Y =
⊕

Z∈C N
Z
X,YZ, i.e.,

NZ
X,Y = dim(C(X ⊗ Y → Z)).

Moreover, we have Frobenius reciprocity, i.e., for each X, Y, Z ∈ C, there are natural isomorphisms

C(X ⊗ Y → Z) ∼= C(X → Z ⊗ Y ) ∼= C(Y → X ⊗ Z)

which are implemented by the evaluation and coevaluation maps:

f

X Y

Z

↔ f

X
Y

YZ

↔ f

X

X

Y

Z

.

Hence, for all simple X, Y, Z ∈ C, we have NZ
X,Y = NX

Z,Y
= NY

X,Z
.

Definition 3.2.10. An object X ∈ C has a self-duality if there is an invertible ϕ ∈ C(X,X), which
must satisfy certain compatibility axioms. We would like this ϕ to allow us to define evaluation
and coevaluation maps X ⊗ X → 1 and 1 → X ⊗ X, i.e, they are adjoint to each other, satisfy
the zig-zag relation, and give a positive scalar for dim(X) when composed in the natural way. We
define these maps by

X

ϕ

X

X and

X

ϕ∗
X

X
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respectively. Since X is naturally isomorphic to X, ϕ is naturally in C(X,X). Therefore, the
compatibility requirements are that ϕ must satisfy ϕϕ∗ = idX and tr(ϕϕ∗) = dim(X). However, to
be able to draw these diagrams naively by just a cup and a cap without the label ϕ, we must have
that each of these maps is preserved by rotation:

X

ϕ

X

X XX =
X

ϕ

X

X =
X

ϕ

X

X =
X

ϕ

X

X

i.e., the Frobenius-Schur indicator [NS07] of the evaluation must be equal to +1. This tells us that
ϕ = ϕ, and ϕ is unitary (ϕ∗ϕ = idX and ϕϕ∗ = idX). A self-duality satisfying this extra axiom is
called a symmetric self-duality.

Assumption 3.2.11. We assume that our rigid C∗-tensor category C is countably generated, i.e.,
there is a countable set S of objects in C such that for each Y ∈ C, there are X1, . . . , Xn ∈ S such
that

C(X1 ⊗ · · · ⊗Xn, Y ) 6= (0),

i.e., Y is (isomorphic to) a sub-object of X1 ⊗ · · · ⊗Xn.
To perform the calculations needed to prove Theorem 3.1.3, we want the planar algebra P

associated to C in Definition 3.2.13 to be non-oriented, have a non-oriented fusion graph, and have
all loop parameters greater than 1.

Hence given a countable generating set S, we work with the generating set L =
{
X ⊕X

∣∣X ∈ S}.
Note that the objects in L are not simple, but they are symmetrically self-dual and have dimension
greater than 1.

Definition 3.2.12. The fusion graph of C with respect to Y ∈ C, denoted FC(Y ), is the oriented
graph whose vertices are the isomorphism classes of simple objects of C, and between simple objects
X,Z ∈ C, there are NZ

X,Y = dim(C(X ⊗ Y → Z)) oriented edges pointing from X to Z. Note that
if Y is self-dual, then by semi-simplicity, we have NZ

X,Y = NX
Z,Y , and we may ignore the orientation

of the edges.
The fusion graph of C with respect to L (with L as in Assumption 3.2.11), denoted FC(L), is

the push out of the FC(Y ) over the isomorphism classes of simple objects Y ∈ L, i.e., the vertices
are the same as before, and the edge set is the union of the edge sets of the FC(Y ) for Y ∈ L. If e
is an edge in FC(L) which comes from an edge in FC(Y ), then we color e by Y .

Since L is countable, FC(L) has countably many vertices, although it may not be locally finite.
However, FC(X) is always locally finite for X ∈ C.

Given a vertex [X] of FC(L), the number dim(X) is independent of the choice of representa-
tive of [X]. Again, we get a Frobenius-Perron weight vector on the vertices of FC(L), given by
(dim(X))[X]∈V (FC(L)), which satisfies the following equation for each Y ∈ L:

dim(X) dim(Y ) =
∑

[Z]∈V (FC(Y ))

NZ
X,Y dim(Z).

For convenience, we will identify words on L with their products, i.e., the word α = X1X2 . . . Xn

is identified with X1 ⊗X2 ⊗ · · · ⊗Xn.
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Definition 3.2.13. To get a factor planar algebra PA(C)•, for each word α on L, let PA(C)α =
C(α→ 1), whose elements are represented diagrammatically as

α

f

Frobenius reciprocity allows us to identify PA(C)α with C(β → γ) where α = βγ:

α

f =

β

f

γ

.

We may now interpret any planar tangle in PL labelled by morphisms of C as one morphism
in C in the usual way. First, isotope the tangle so that each string travels transversally to each
horizontal line, except at finitely many critical points. Then isotope the tangle so that each labelled
rectangle and each critical point occurs at a different vertical height, and read the diagram from
bottom to top to see what the morphism is. The zig-zag relation, Frobenius-reciprocity, pivotality,
and symmetric self-dualities of the objects in L ensure that the answer is well-defined.

From planar algebras to tensor categories

Given a factor planar algebra P , we obtain its C∗-tensor category Pro(P) of projections as described
in [MPS10]. We briefly recall the construction here.

Definition 3.2.14. Let Pro(P) (abbreviated Pro when P is understood) be the rigid C∗-tensor
category given as follows.

Objects: The objects of Pro are formal finite direct sums of projections in P , i.e., all p ∈ Pα→α satisfying
p = p2 = p∗ for all words α on L. The trivial object is the empty diagram.

Tensor: We tensor objects in Pro by horizontal concatenation; e.g., if p ∈ Pα→α and q ∈ Pβ→β, then
p⊗ q ∈ Pαβ→αβ is given by

αβ

p⊗ q
αβ

=

α

p

α

β

q

β

∈ Pαβ→αβ.

Note that the simple objects in Pro are the simple projections in P .

We extend the tensor product to direct sums of projections linearly.
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Morphisms: The morphisms in Pro are matrices of intertwiners between the projections. If p ∈ Pα→α and
q ∈ Pβ→β, then elements in Pro(p, q) = qPα→βp are all x ∈ Pα→β such that x = qxp, i.e.,

α

x

β

=

α

p

α

x

β

q

β

.

We compose morphisms by vertical concatenation of elements in the planar algebra. If we
have x ∈ Pro(p→ q) and y ∈ Pro(q → r), then the composite xy is given by

xy =

x

y

∈ Pro(p→ r).

Composition of matrices of morphisms occurs in the usual way.

Tensoring: We tensor morphisms by horizontal concatenation. If x ∈ Pro(p1 → q1) and y ∈ Pro(p2 → q2),
then the tensor product x⊗ y is given by

x⊗ y = x y .

The tensor product of matrices of intertwiners is the tensor product of matrices followed by
tensoring of morphisms.

Duality: The duality operation on objects and morphisms is rotation by π

p = p = p .

The evaluation and coevaluation maps are given by the caps and cups between the projections
in the obvious way.

Adjoint: The adjoint operation in Pro is the identity on objects. The adjoint of a 1-morphism is the
same as the adjoint operation in the planar algebra P . If x ∈ Pro(p → q) where p ∈ Pα→α
and q ∈ Pβ→β, then consider x ∈ Pα→β, take the adjoint, which is an element in Pβ→α, and
consider the result x∗ as an element in Pro(q → p).

For matrices of intertwiners, the adjoint is the ∗-transpose.
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Example 3.2.15. We copy the example from [MPS10] as it is highly instructional. If p, q ∈ Pα→α
are orthogonal, then if we define the matrix

u =
(
p q

)
∈ Pro(idα⊕ idα → idα),

we get an isomorphism p⊕ q = u∗u ' uu∗ = p+ q.

Remark 3.2.16. Note that Pro is strict. For any projection p ∈ Pα→α, p ⊗ 1Pro = 1Pro ⊗ p = p
since 1Pro is the empty diagram. For all projections p, q, r ∈ P ,

(p⊗ q)⊗ r = p q r = p⊗ (q ⊗ r).

The following theorem is well-known to experts, and one can easily work it out from the defini-
tions. See part (ii) of the remark on page 10 of [Yam12] for more details.

Theorem 3.2.17.

(1) Let C be a strict rigid C∗-tensor category. Then Pro(PA(C)•) is equivalent to C.

(2) Let P be a factor planar algebra. Then PA(Pro(P))•=P.

Corollary 3.2.18. Suppose that

• C = Pro(P) and P has a countable set of string labels L, or

• P = PA(C)• and C has countable generating set L of symmetrically self-dual objects.

Then we may identify the fusion graph Γ of P with the fusion graph FC(L) of C.

3.3 GJS results for factor planar algebras

Given a subfactor planar algebra P , GJSW constructed a subfactor N ⊂M whose planar algebra is
P [GJS10, JSW10]. Moreover, they identified the factors as interpolated free group factors [GJS11].

Suppose we have a factor planar algebra P with a countable set of string labels L such that for
each c ∈ L, δc > 1. (One can assume P is the factor planar algebra associated to a rigid C∗-tensor
category C with generating set L as in Assumption 3.2.11.) We mimic the construction of GJSW to
obtain a factor M0 and rigid C∗-tensor categories Bim and CF of bifinite bimodules over M0 such
that Pro is equivalent to Bim and CF .

Remark 3.3.1. Recall that when we suppress the ? of an input rectangle, it is assumed that ?
is in the lower-left corner. Recall that if a string is labelled by the word α ∈ Λ, it is read either
top to bottom or left to right.
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The graded algebras and their orthogonalized pictures

To start, we set Gr0(P ) =
⊕

α∈Λ Pα where Λ denotes the set of all finite sequences of colorings for
strings and endow Gr0(P) with a multiplication ∧ which satisfies

x ∧ y =

α

x

β

y

where x ∈ Pα and y ∈ Pβ. We endow Gr0(P ) with the following trace:

tr(x) =

x

ΣCTL
α (3.1)

where x ∈ Pα and
∑
CTL denotes the sum of all colored Temperely-Lieb diagrams, i.e. all planar

ways of pairing the colors on top of x in a way which respects the word α.

Lemma 3.3.2. The inner product on Gr0(P) given by 〈x, y〉 = tr(y∗x) is positive definite. Fur-
thermore, left and right multiplication by elements in Gr0(P) is bounded with respect to this inner
product

The proof of the above lemma will closely follow the orthogonalization approach in [JSW10].
To begin, we define a new algebraic structure ? on Gr0(P) defined as follows. Suppose x ∈ Pα and
y ∈ Pβ. Then by letting |α| denote the length of α, we have

x ? y =
∑
γ s.t.
α=α′γ
β=γβ′

x y
α′ β′

γ

where it is understood that if a string connects two different colors, then that term in the sum is
zero. We let F0(P) be the vector space Gr0(P) endowed with the multiplication ?. Given x in
F0(P), let x∅ denote the component of x in P∅ ∼= C. We define a trace trF on F0(P) by trF (x) = x∅.
Since P is a C∗-planar algebra, the sesquilinear form

〈x, y〉 = trF0(P)(x ? y
∗) = x y∗

is a positive definite inner product.
Set Epi(CTL) to be the set of colored Temperely-Lieb boxes with strings at the top and bottom

where any string touching the top of the box must be through. One can argue exactly as in section
5 of [JSW10] that the map Φ : Gr0(P)→ F0(P) given by

Φ(x) =
∑

E∈Epi(CTL)
x

E
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is a bijection with the property that Φ(x∧ y) = Φ(x) ?Φ(y), Φ(x∗) = Φ(x)∗ and tr(x) = trF (Φ(x)).
Hence ? is an associative multiplication, F0(P) and Gr0(P) are isomorphic as ∗-algebras, and the
inner product on Gr0(P) is positive definite.

We now prove that left multiplication by x ∈ F0(P) is bounded (this will closely follow arguments
in [Bro12]). We may assume x ∈ Pα for a fixed word α. For fixed words β and γ such that α = βγ,
the element

x∗ x
γ β γ

is positive in the finite dimensional C∗ algebra Pγ→γ, since for any y ∈ Pγ→γ,

〈x∗x · y, y〉Pγ→γ =

x∗ x

y∗ y

γ β

γ

γ

? ?

? ?

=

∥∥∥∥∥∥ x y

β γ

γ
∥∥∥∥∥∥

2

L2(F0(P))

≥ 0.

Given x and w with x ∈ Pα with α = βγ, x ? w is a sum of terms of the form

x w

β

γ

,

and we see that the 2-norm of the above diagram is

x∗ x

w∗ w

γ β γ

? ?

? ?

= tr(x∗xww∗) ≤ ‖x∗x‖Pγ→γ‖ww∗‖L2(F0(P)) (3.2)

where ‖·‖Pγ→γ is the operator norm in the C∗-algebra Pγ→γ. Hence using Equation (3.2) repeatedly,
we have

‖x ? w‖L2(F0(P )) ≤

∑
α=βγ

‖x‖Pγ→γ

 · ‖w‖L2(F0(P)),

and thus left multiplication is bounded on F0(P). The boundedness of right multiplication is similar.
Since the multiplication is bounded, we can represent F0(P) on L2(F0(P)) acting by left multi-

plication. We denote M0 = F0(P)′′. We also use M0 to denote Gr0(P)′′ acting on L2(Gr0(P)), but
it will be clear from context which picture we are using. Of course, from the discussion above, both
von Neumann algebras are isomorphic.

Given α ∈ Λ, we draw a blue string for a string labelled α. We will provide the α label only
when it is possible to confuse α and α.

We define the graded algebra Grα(P) =
⊕

β∈Λ Pαβα with multiplication ∧α by

x ∧α y = x y

β γ
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for x ∈ Pαβα and x ∈ Pαγα, and trace

tr(x) =
1

δα x

ΣCTL

β
αα

α

.

Note 3.3.3. Be warned that the multiplication ∧α in the GJSW diagrams when restricted to Pα→α
is in the opposite order with the multiplication in the introduction!

The inner product

〈·, ·〉Fα(P) =
α

makes Pαβα ⊥ Pαγα for β 6= γ. We get a trace on Fα(P) by trFα(P)(x) = 〈x, 1α〉Fα(P) where 1α the
the horizontal strand labelled α.

The multiplication ?α given by

x ?α y =
∑
κ s.t.
β=β′κ
γ=κγ′

x y

β′ γ′
κ

for x ∈ Pαβα and x ∈ Pαγα makes Fα(P ) isomorphic as a ∗-algebra to Grα(P), preserving the
inner product. The same techniques as above with heavier notation show that the inner product
on Fα(P) (hence Grα(P)) is positive definite and that left and right multiplication in Fα(P) (hence
Grα(P)) is bounded. We can therefore form the von Neumann algebra Mα = (Fα(P))′′ acting by
left multiplication on L2(Fα)(P) (or (Grα(P))′′ acting by left multiplication on L2(Grα)(P)). Again,
it will be clear from context which picture we are considering.

Factorality of Mα

In this section, we aim to prove the following theorem:

Theorem 3.3.4. The algebra Mα is a II1 factor. We have an embedding ια : M0 ↪→ Mα which is
the extension of the map F0(P)→ Fα(P) given by

ια

 x

 = x ,

and ια(M0)′ ∩Mα = P op
α→α
∼= Pα→α.

Throughout this subsection, we use the orthogonal picture Mα = (Fα(P))′′. Pick a specific
color, c ∈ L, which we will denote by the color green, and recall δc > 1. Let A be the abelian von
Neumann subalgebra of Mα generated by the cup element

∪α = .
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We will obtain the factorality of Mα be first examining L2(Mα) as an A− A bimodule.
To begin, assuming |γ| ≥ 2, we set

Vγ =

x ∈ Pαγα :

c

x =

c

x = 0

 ,

V = ⊕γ∈ΛVγ and V the A−A bimodule generated by V . For b ∈ L, let Vb be the A−A bimodule
generated by elements of the form

x

b

,

and let W be the A − A bimodule generated by Pα→α. We claim that we have the following
decomposition:

Lemma 3.3.5. As A− A bimodules, L2(Mα) = W ⊕ V ⊕
⊕
b∈L

Vb.

Proof. The proof is exactly the same as [Bro12] Proposition 2.1 except that we induct on the length
of a word in Λ as opposed to the number of strands of a single color.

Notice that we can decompose V further as V = Vcc ⊕ Vco ⊕ Voc ⊕ Voo. Here, Vcc consists of
elements in V whose leftmost and rightmost strings are colored c, Vco consists of elements of V
whose leftmost string is colored c and rightmost string is colored differently than c, Voc consists
of elements of V whose leftmost string is colored differently than c and whose rightmost string is
colored c, and Voo consists of the elements in V whose leftmost and rightmost strings are colored
other than c. We set Vcc the A − A bimodule generated by Vcc and we define Vco, Voc, and Voo
analogously.

Let (Vcc)n be the subspace of Vcc spanned by boxes with a word of length n on top and let {ζn,i}
be an orthonormal basis for (Vcc)n. It straightforward to see that the setζ l,rn,i = δ−(l+r)/2

c ζn,i

· · · · · ·
rl

: n, l, r ∈ N


is an orthonormal basis for Vcc. There are similar orthonormal bases for Vco, Voc and Voo. Let B
denote Vcc, Vco, Voc, Voo or Pαbα for b 6= c and let B denote Vcc, Vco, Voc, Voo, or Vb. Let π, ρ denote
the left, right representation of M0 on L2(M0) respectively. We have the following lemma whose
proof is straightforward:

Lemma 3.3.6. Let φ : B → `2(N)⊗B ⊗ `2(N) be defined on the orthonormal basis of B by

φ

δ−(l+r)/2
c v

· · · · · ·
rl

 = ξl ⊗ v ⊗ ξr

with v ∈ Bn, where {ξi|i ∈ N} is the usual orthonormal basis of `2(N). Then φ extends to a unitary
operator and we have the following representations of ∪α:
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• If B = Vcc, Vco, Voc or Voo then

φ · π
(
∪α − 1

δ
1/2
c

)
· φ∗ = x⊗ 1⊗ 1 where

x is s+ s∗ if the top leftmost color in for boxes in B is c and s+ s∗− δ−1/2
c eξ0 if the this color

differs from c. Similarly,

φ · ρ
(
∪α − 1

δ
1/2
c

)
· φ∗ = 1⊗ 1⊗ x where

x is s + s∗ if the top rightmost color in for boxes in B is c and s + s∗ − δ−1/2
c eξ0 if the this

color differs from c.

• If B = Vb and b 6= c then

φ · π
(
∪α − 1

δ
1/2
c

)
· φ∗ = (s+ s∗ − δ−1/2

c eξ0)⊗ 1⊗ 1 and

φ · ρ
(
∪α − 1

δ
1/2
c

)
· φ∗ = 1⊗ 1⊗ (s+ s∗ − δ−1/2

c eξ0).

• (See [Bro12]) If B = Vc then there is a unitary (which is not φ) v : Vc → `2(N )⊗L2(Pαcα)⊗
`2(N) such that

v · π
(
∪α − 1

δ
1/2
c

)
· v∗ = (s+ s∗)⊗ 1⊗ 1 and

v · ρ
(
∪α − 1

δ
1/2
c

)
· v∗ = 1⊗ 1⊗ (s+ s∗).

Here, s is the unilateral shift operator on `2(N) and eξ0 is the orthogonal projection in B(`2(N))
onto the one-dimensional space spanned by ξ0.

We now show that the operators s+ s∗ and s+ s∗− δ−1/2
c eξ0 are unitary equivalent in B(`2(N)).

We begin with the following lemma

Lemma 3.3.7. The spectra of s+ s∗ and y = s+ s∗ − δ−1/2
c eξ0 are the same.

Proof. Since the operators differ by a finite rank operator, by the Weyl-von Neumann Theorem (see
[Kat95] p.523), they have the same essential spectrum. The operator s+ s∗ has essential spectrum
[−2, 2] and since the complement of the essential spectrum in the spectrum is an isolated set of
eigenvalues, we just need to show that y has no eigenvalues outside of [−2, 2] since y is self adjoint
and must have real spectrum.

To this end, let λ > 2 and ξ =
∑

j xjξj. If ξ is an eigenvector of y with eigenvalue λ then we
have the equations

x1 =
(
λ+ δ−1/2

c

)
x0 and λxn+1 = xn + xn+2
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for n ≥ 0. The characteristic equation for this linear recurrence is x2 − λx+ 1 = 0 which has roots

l =
λ+
√
λ2 − 4

2
and r =

λ−
√
λ2 − 4

2
.

This implies the existence of constants C and D with xn = C · ln + D · rn for all n. Since the
sequence xn is `2, C = 0 meaning xn = x0 · rn for all n. However, this means x1 = (λ + 1/

√
δc)x0

and x1 = rx0 must both be satisfied. This can only happen if x0 = 0 since λ + 1/
√
δc > 1 and

r < 1. This implies ξ = 0.

Now let λ < −2. With l and r as above we must have xn = C · ln +D · rn. This time we must
have D = 0 and we obtain the equation xn = x0l

n. This gives us the two equations

x1 =
(
λ+ δ−1/2

c

)
x0 and x1 = lx0

which implies (λ− 1
2
(λ+

√
λ2 − 4) + δ

−1/2
c )x0 = 0. This forces x0 to be 0 since by the choice of λ,

λ− 1
2
(λ+

√
λ2 − 4) < −1 and |δ−1/2

c | < 1. Therefore ξ = 0 and y has no eigenvectors.

For any self-adjoint operator a ∈ B(H), we set σ(a) to be the spectrum of a. Given ξ ∈ H, a
Radon measure µξ on the real line is induced by the formula µξ(f) = 〈f(a)ξ, ξ〉 for any bounded
continuous f . We set Hac the Hilbert space of vectors ξ where µξ is absolutely continuous with
respect to the Lebesgue measure, Hsc the Hilbert space of vectors ξ where µξ is singular with
respect to the Lebesgue measure, and Hpp the Hilbert space of vectors ξ where µξ has purely atomic
measure. We define the absolutely continuous spectrum of a as the spectrum of a on Hac and denote
it as σac(a). We define σcc(a) and σpp(a) in a similar manner.

We say a has uniform multiplicity 1 if there is a measure µ on the spectrum of a and a unitary
w : H → L2(σ(a), µ) such that for any f ∈ L2(σ(a), µ), waw∗(f)(x) = xf(x). In this case σac(a),
σcc(a) and σpp(a) form a partition of σ(a). See [Kat95] for more details.

Lemma 3.3.8. y is unitary equivalent to s+ s∗.

Proof. We first show that y has uniform multiplicity 1. To this end, consider the following sequence
of polynomials:

p0(x) = 1

p1(x) = x+ δ−1/2
c

pn+2(x) = xpn+1 − pn(x) for n ≥ 0

By induction, it is straightforward to check that pn(y)(ξ0) = ξn and hence the map w :
H → L2(σ(a), µξ0) given by w(ξn) = pn is a unitary satisfying wyw∗(f)(x) = xf(x) for all
f ∈ L2(σ(a), µξ0). By the Kato-Rosenblum theorem (see [Kat95] p.540), if a and b are self ad-
joint operators and b is trace class then the absolutely continuous parts of b and a + b are unitary
equivalent. This implies that the absolutely continuous parts of y and s+ s∗ are unitary equivalent.
The absolutely continuous spectrum of s+ s∗ is [−2, 2] = σ(s+ s∗) so the same must hold for y. As
was discussed in the previous lemma, y has no spectral values outside [−2, 2] and from above, the
spectrum of y is partitioned into σac, σcc and σpp. Therefore σpp = σcc = ∅ and σac = σ showing the
unitary equivalence.
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Therefore by conjugating by a unitary, we may assume that L2(Mα) ∼= L2(A)⊕`2(N)⊗H⊗`2(N)

for some Hilbert spaceH where on the second summand, π
(
∪−1√
δc

)
acts as (s+s∗)⊗1⊗1 and ρ

(
∪−1√
δc

)
acts as 1 ⊗ 1 ⊗ (s + s∗). The lemmas below follow [JSW10] but we supply proofs for the readers’
convenience.

Lemma 3.3.9. A′ ∩Mα = AP op
α→α.

Proof. First, note that AP op
α→α ⊆ A′ ∩Mα in the obvious way

x = x = x

where we need the “op” since multiplication in the GJSW picture happens in the opposite order
(see Note 3.3.3).

If A′ ∩Mα were larger than AP op
α→α then by looking at the orthogonal compliment of AP op

α→α in
L2(Mα), there is a nonzero vector ξ ∈ `2(N)⊗ `2(N) with ((s+ s∗)⊗ 1)ξ = (1⊗ s+ s∗)ξ. Viewing
`2(N)⊗ `2(N) as the Hilbert Schmidt operators on `2(N) this means ξ(s+ s∗) = (s+ s∗)ξ which is
impossible since s+ s∗ has no eigenvalues.

We will realize M0 as a unital subalgebra of Mα via the map ια.

Lemma 3.3.10. M ′
0 ∩Mα = P op

α→α
∼= Pα→α as an algebra.

Proof. If x ∈M ′
0 ∩Mα then by Lemma 3.3.9, x ∈ AP op

α→α, so we write x as an `2 sum

x =
∞∑
n=0

1√
δnc
· xn ?

· · ·
n ,

where xn ∈ P op
α→α for all n. Consider the following elements of M0:

z = , ln =
1√
δnc

· · ·
n , and rn =

1√
δnc

· · ·
n .

By a direct diagrammatic computation, z ? x− x ? z is the orthogonal sum

∞∑
n=1

(xn +
1√
δc
· xn+1) ? (ln − rn).

For this to be zero, we must have xn+1 = −
√
δc · xn for n ≥ 1. Since the sum for x must be `2, this

implies xn = 0 for n ≥ 1, i.e., x ∈ P op
α→α.

Obviously the rotation by 180 degrees gives the isomorphism P op
α→α
∼= Pα→α.

Proof of Theorem 3.3.4. If x were in the center of Mα then we know that x ∈ P op
α→α. The element

x must commute with

,

giving the equation

x = x .

Joining the leftmost strings to the top implies that x is a scalar multiple of the identity.
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Jones’ Towers Associated to M0

If α and β are in Λ such that α = βγ with γ ∈ Λ then we have a unital, trace-preserving inclusion
ι : Mβ →Mα given by

ι(x) =

γ

β β
x .

When we write Mβ ⊂ Mα we mean that Mβ is included into Mα in the manner described above.
We have the following theorem:

Theorem 3.3.11. The following is a Jones’ tower of factors:

M0 ⊂Mα ⊂Mαα ⊂ · · · ⊂M(αα)nα ⊂M(αα)n+1 ⊂ · · · .

Moreover [Mα : M0] = δ2
α.

Proof. This proof closely follows Section 4 in [JSW10]. We will show that Mαα is the basic construc-
tion of M0 ⊂ Mα. The proof for higher steps in the tower is the same but with heavier notation.
To begin, set

e0 =
1

δα
∈ P op

αα→αα ⊂Mαα

then e0 is a projection. It is a straightforward diagrammatic computation to show that if x ∈ Mα

then e0xe0 = EM0(x) with EM0 the trace preserving conditional expectation.
We now claim that (Mα, e0)′′ is a II1 factor. Indeed, if y were in the center of (Mα, e0)′′ it would

have to commute with M0, implying that y ∈ Pαα→αα. The element y also has to commute with
Mα, in particular it has to commute with the element

α
.

This implies y must be of the form

y
αα

,

but commuting with e0 forces this diagram to be a scalar multiple of the identity.
One then observes that if z ∈ (Mα, e0)′′, then ze0 = (δα)2EMα(ze0)e0. This is done by realizing

that as a von Neumann algebra, (Mα, e0)′′ is generated by Mα and Mαe0Mα and hence one can
assume z is in either of these spaces. The equality then becomes a straightforward diagrammatic
check. From this, one can deduce that the map x 7→ δuxe0 from Mα to (Mα, e0)′′ is a surjective
isometry intertwining EM0 on L2(Mα) and left multiplication by e0. From this, we deduce that
(Mα, e0)′′ is the basic construction of M0 ⊂Mα and evaluating [Mα : M0] is a matter of calculating
the trace of e0.

The same arguments applied to Mα ⊂ Mαα implies that [Mαα : Mα] = (δα)2 hence [Mαα :
(Mα, e0)′′] = 1 i.e. Mαα = (Mα, e0)′′.

As an aside, since M ′
0 ∩Mβ = Pβ→β for any β, it follows that the sequence of vector spaces

P0, Pα→α, Pαα→αα, · · · forms a subfactor planar algebra.
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Some bifinite bimodules over M

Notation 3.3.12. We now use the notation M instead of M0 as it makes the rest of this section
easier on the eyes.

In this subsection and the next, we define a category Cbim of bifinite bimodules over M . To
begin, we use P to construct another von Neumann algebra Mα,β which contains the factors Mα

and Mβ as corners/cut-downs. Let Grα,β(P ) =
⊕

γ∈Λ Pαγβ. If x ∈ Pαγβ, we view x as

x

γ

.

where we now draw red strings for strings labelled β. There is a sesquilinear form 〈·, ·〉 on Grα,β(P )
given by

〈x, y〉 =
x y∗

∑
CTL

.

As a vector space, Grα,α(P) = Grα(P). For α 6= β, we form the ∗-algebra Gα,β which is generated
by the vector spaces Grα(P), Grβ(P), Grα,β(P) and Grβ,α(P), under the multiplication

x
κ

γ

θ ∧ x
ω

γ′

χ
= δω,θ x y∗

κ

γ

θ

γ′

χ
,

where κ, θ, ω, χ ∈ {α, β}. There is also a (non-normalized) trace on Gα,β given by

tr(x) =
x

ΣCTL

if x ∈ Grα(P) or Grβ(P), and is zero otherwise. Just as in the case for the algebras Grα(P) one
can show (by orthogonalizing) that the trace is positive definite and that multiplication is bounded.
Therefore, one can form the von Neumann algebraMα,β = G ′′α,β acting on L2(Gα,β) by left and right
multiplication. Set

pα =
α

and pβ =
β

.

We see that pγMα,βpγ = Mγ (with the non-normalized trace) for γ = {α, β} so L2(Mα,β) is
naturally an Mα⊕Mβ bimodule. Hence we may consider L2(Mα,β) as an M −M bimodule via the
embedding x 7→ ια(x)⊕ ιβ(x) ∈ Mα ⊕Mβ. Under this identification, we define Hα,β to be the the
M −M bimodule

Hα,β = pα ∧ L2(Mα,β) ∧ pβ.
As mentioned above, we can give Gα,β an orthogonalized inner product and multiplication exactly

as in Section 3.3. We use the notation Fα,β to denote the vector space Gα,β with the orthogonalized
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inner product and multiplication ?. The vector space pα ? L
2(Fα,β) ? pβ is naturally an M −M

bimodule which is isomorphic to pα ∧ L2(Mα,β) ∧ pβ. Our first lemma is proven by making use of
the orthogonal picture:

Lemma 3.3.13. The vector space of M −M central vectors of pα ?L
2(Fα,β) ?pβ is the vector space

Pα→β (rotating the GJS diagrams 90 degrees clockwise).

Proof. As in Section 3.3, we let A be the von Neumann subalgebra of M generated by ∪ and let
W be the A− A bimodule generated by Pα→β. With the same approach as 3.3, we see that as an
A− A bimodule, we have

Hα,β
∼= W

⊕(
`2(N)⊗H⊗ `2(N)

)
forH an auxiliary Hilbert space. The operator ∪ acts on the left of the second factor by (s+s∗)⊗1⊗1
and on the right by 1⊗1⊗(s+s∗). Therefore the proof of Lemma 3.3.9 applies here and we see that
the A−A central vectors of L2(Fα,β) are exactly W . To finish the proof, one repeats the argument
in Lemma 3.3.10.

Corollary 3.3.14. The vector space of M −M central vectors of pα ∧ L2(Fα,β) ∧ pβ is the vector
space Pα→β (rotating the GJS diagrams 90 degrees clockwise).

For the rest of this section, we use the non-orthogonalized picture for Hα,β. We first write down
some straightforward isomorphisms between these bimodules:

Lemma 3.3.15. Let α, β, γ ∈ Λ. Then as M −M bimodules, Hαβ,γ
∼= Hα,βγ.

Proof. The map

x
γ 7−→ x

γ

is a unitary operator intertwining the left and right M -actions.

Definition 3.3.16. By Lemma 3.3.15, we now define the bimodule Hα := Hα,∅ ∼= H∅,α. We draw
elements of Hα with strings emanating from the bottom instead of the sides

γ

x ,

and the left and right M -actions are given by the obvious diagrams. For ξ ∈ pα ∧Mα,∅ ∧ p∅ ∼=
p∅ ∧M∅,α ∧ pα and x, y ∈M ,

xξy = x ξ y .

The inner product on Hα is given by

〈x, y〉Hα =
y∗ x

∑
CTL

αα

(3.3)
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where y∗ is the rotation of y∗ by 180 degrees.

Our goal will now be to show that Hα ⊗M Hβ
∼= Hαβ. In diagrams:

↔

We will need the following lemma, whose purpose is to “close up” the space between the boxes.

Lemma 3.3.17. The α−cup element is positive and invertible in M .

Proof. We induct on the size of α. If |α| = 1 then it follows from [GJS10] that the operator is a
free-poisson element whose spectrum is supported away from 0 hence the lemma holds for this case.
Suppose that the lemma holds for some color pattern β and suppose α = βc for a fixed color c,
denoted by a green string. It follows that the element

x =

is positive invertible in Mc. Let z ∈M∅,c be the element

z =

Then the α−cup element has the form z∗∧x∧z ∈M∅,c so it immediately follows that it is positive.
Note that z∗ ∧ z is invertible so there is a positive constant kz so that 〈z∗ ∧ z ∧ ξ, ξ〉 ≥ kz‖ξ‖2

2 for
all ξ ∈ L2(M). Letting r be the positive square root of x, there is a strictly positive constant kr so
that for all η ∈ L2(Mc), 〈r ∧ η, r ∧ η〉 ≥ kr‖η‖2

2. Therefore, for all ξ ∈ L2(M),

〈z∗ ∧ x ∧ z ∧ ξ, ξ〉 = 〈r ∧ z ∧ ξ, r ∧ z ∧ ξ〉 ≥ kr〈z ∧ ξ, z ∧ ξ〉
= kr〈z∗ ∧ z ∧ ξ, ξ〉 ≥ krkz‖ξ‖2

2

implying invertibility.

Definition 3.3.18. Recall from [Con80, Bis97, Jon08] that given a bimodule MKM , a vector ξ ∈ K
is called right M -bounded if the map L(ξ)0 : M → K given by m 7→ ξm extends to a bounded
linear operator L(ξ) : L2(M)→ K. There is a similar definition of a left M -bounded vector, and if
K is bifinite, then the sets of left and right M -bounded vectors agree. For such a bimodule K, we
denote the set of left/right M -bounded vectors by D(K).

Example 3.3.19. For all α, β ∈ Λ, we have D(Hαβ) = D(Hα,β) = pα ∧Mα,β ∧ pβ.

Lemma 3.3.20. As M −M bimodules, the Connes’ fusion Hα ⊗M Hβ
∼= Hαβ.

Proof. By [Bis97], Hα ⊗M Hβ is the completion of the algebraic tensor product D(Hα) � D(Hβ)
(first modding out by vectors of length zero) under the semi-definite inner product given by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉Hα⊗MHβ = 〈〈ξ2|ξ1〉M · η1, η2〉Hβ
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where 〈ξ2|ξ1〉M is the unique element in M satisfying

〈ξ1x, ξ2〉Hα = tr(x〈ξ2|ξ1〉M) for all x ∈M.

We define a map u by the linear extension of

D(Hα)�D(Hβ) −→ Hα,β
∼= Hαβ by

ξ ⊗ η 7−→ ξ η .

Obviously the map u intertwines the left and right M -actions and is M -middle linear. We will show
it is isometric with dense range, and thus u has a unique extension to a M −M bilinear unitary
giving the desired isomorphism.

First, it is not hard to check directly that the M -valued inner product of the M -bounded vectors
ξ1, ξ2 ∈ D(Hα) is given by

〈ξ2|ξ1〉M = ξ1

α α

ξ∗2 .

Hence if

ζ =
n∑
i=1

ξi ⊗ ηi ∈ D(Hα)�D(Hβ),

we immediately have

‖ζ‖2
2 =

n∑
i,j=1

〈〈ξj|ξi〉M · ηi, ηj〉Hβ =
η∗j ξ∗j ξi ηi

∑
CTL

. (3.4)

Since

u(ζ) =
n∑
i=1

ξi ηi ,

we see that ‖u(ζ)‖2
2 is the same diagram as in (3.4). Hence u can be extended to be an isometry

on Hα ⊗M Hβ.
For the rest of this proof we will only use the ∧ multiplication, so to clean up notation we will

omit the ∧. We must show the image of u is dense in Hαβ. We may assume δα ≤ δβ, and the proof
is similar if δβ < δα. Set

w = .

Then w∗w is positive and invertible in M , so if v is the polar part of w, then v ∈ D(Hα) with
right support p∅ and left support e under pα. Choose partial isometries x1, ..., xn in Mα such that
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x1, ..., xn−1 have right support e and orthogonal left supports. Choose the partial isometry xn so
that its left support is 1−

∑n−1
i=1 xix

∗
i and its right support is under e.

Similarly, there is a partial isometry ṽ ∈ D(Hβ) whose right support is f ≤ pβ and whose left
support is p∅. Choose partial isometries y1, ..., yn ∈ Mβ such that y1, ..., yn−1 have left support f
and orthogonal right supports. Choose the partial isometry yn so its right support is orthogonal to∑n−1

i=1 y
∗
i yi and its left support is the right support of xnvṽ (we can do this since δα ≤ δβ).

It now follows that z =
∑n

i=1 xivṽyi is a partial isometry in D(Hαβ) with full left support pα.
Note that every element, r in D(Hαβ) is of the form zx for x ∈Mβ since we simply choose x = z∗r.
Since zx =

∑n
i=1(xiv) · (ṽyix) is in the image of u, we are finished.

Lemma 3.3.21. As an M −M bimodule, Hα is bifinite. Thus by Lemma 3.3.15, so is Hα,β.

Proof. By the proof of Lemma 3.3.20, there is a partial isometry v ∈ pα ∧Mα,∅ ∧ p∅ with right
support p∅. The argument at the end of Lemma 3.3.20 shows that every element of pα ∧Mα,∅ ∧ p∅
is of the form x ∧ v for x ∈ Mα. Therefore v is cyclic for the left action of Mα on Hα,∅ ∼= Hα, and
since [Mα : M ] <∞, dimM−(Hα) <∞. Similarly dim−M(Hα) <∞.

The categories Bim(P) and CF(P)

We now define two rigid C∗-tensor categories Bim(P) and CF(P) whose objects are bifinite M −M
bimodules. We show given a factor planar algebra P , we have equivalences Pro(P) ∼= Bim(P) ∼=
CF(P).

Definition 3.3.22. If p is a projection in Pα→α, we define Hp = H∅,α∧p, which is a bifinite M−M
bimodule. Note that elements of Hp are obtained from elements in Hα by putting a p on the bottom.
Thus the linear span of elements of the form

x

p

where x ∈ p∅ ∧M∅,α ∧ p forms a dense subset of Hp. Recall that elements of M act on the left and
right as in the non-orthogonal picture. These actions clearly do not affect the p on the bottom.

Definition 3.3.23. Let Bim(P) (abbreviated Bim) be the strict rigid C∗-tensor category defined
as follows.

Objects: The objects of Bim are finite direct sums of the bimodules Hp for the projections p ∈ Pα→α
for α ∈ Λ. Note that the unit object 1Bim = H∅ ∼= L2(M).

Tensor: For p ∈ Pα→α and q ∈ Pβ→β, we define Hp ⊗Bim Hq = Hp⊗q where p⊗ q is the tensor product
in P . The tensor product is extended to direct sums linearly.

Note that since the tensor product of projections in P is strict, so is the tensor product in
Bim.
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Morphisms: For p ∈ Pα→α and q ∈ Pβ→β, we define Bim(Hp → Hq) = qPα→βp and composition is the
usual composition in P . Morphisms between direct sums are matrices of such maps.

Tensoring: For xi ∈ Bim(Hpi → Hqi) = qiPαi→βipi for i = 1, 2, we define x1⊗Bim x2 as the tensor product
of morphisms in P . Similarly for matrices of such maps.

Duality: The dual of Hp is Hp. The evaluation map evHp : Hp ⊗Bim Hp → H∅ = 1Bim is given by the
α-cup with projections p, p on top:

pp

Of course, the coevalutation map 1Bim → Hp ⊗ Hp is given by the adjoint of evHp , which is
the α-cap with projections underneath:

pp .

One easily checks that the necessary relations hold.

The dual map is extended to direct sums linearly.

Adjoint: The adjoint map ∗ is the identity on all objects, and the adjoint of a morphism x ∈ Bim(Hp →
Hq) = qPα→βp is the adjoint in the planar algebra x∗ ∈ pPβ→αq = Bim(Hq → Hp). The adjoint
of a matrix of maps is the ∗-transpose of the matrix.

Theorem 3.3.24. The map Pro→ Bim by p 7→ Hp and the identity on morphisms is an equivalence
of categories.

Proof. Note that Pro(p → q) = qPα→βp = Bim(Hp → Hq). One now checks that the described
map is an additive, monoidal, dual-preserving, ∗-preserving, fully faithful, essentially surjective
functor.

Definition 3.3.25. Let CF(P) (abbreviated CF , which stands for Connes’ fusion) be the rigid
C∗-tensor category defined as follows.

Objects: The objects of CF are finite direct sums of the bimodules Hp as in Bim.

Tensor: For bimodules K,L ∈ CF , we define K ⊗CF L = K ⊗M L, the Connes’ fusion of II1-factor
bimodules.

The associator aCF is defined by restricting to M -bounded vectors as in [Bis97].

Morphisms: CF(K → L) is the set of M−M bilinear maps K → L. Composition is the usual composition
of linear maps.

Tensoring: For M − M bilinear maps ϕi : Ki → Li for i = 1, 2, we define ϕ1 ⊗M ϕ2 by the Connes’
fusion of intertwiners. If we have M -bounded vectors ξi ∈ Ki for i = 1, 2, then the map
ξ1 ⊗ ξ2 7→ ϕ1(ξ1)⊗ ϕ2(ξ2) is clearly M -middle linear and bounded, so it extends to a unique
M −M bilinear map.
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Duality: The dual of K is the contragredient bimodule K =
{
ξ
∣∣ξ ∈ K} where λξ + η = λξ + η for all

λ ∈ C and η, ξ ∈ K, and the action is given by aξb = b∗ξa∗. The evaluation map

evK : K ⊗M K −→ H∅ = L2(M) = 1CF

is the unique extension of the map ξ ⊗ η 7→ 〈ξ|η〉M where ξ, η are M -bounded vectors in
K. The coevaluation map coevK is the unique map in CF(1 → K ⊗M K) corresponding to
idK ∈ CF(K → K) under the natural isomorphism given by Frobenius reciprocity. For an
explicit formula, just pick an orthonormal left M -basis {ζ} ⊂ K (e.g., see [Con80, Pen12]),
and we have that

coevK(1M) =
∑
ζ

ζ ⊗ ζ

is M -central and independent of the choice of {ζ}. The zig-zag relation is now given by∑
ζ

ζ〈ζ|ξ〉M = ξ

for all M -bounded ξ ∈ K.

Adjoint: The adjoint map ∗ is the identity on all objects and on a morphism x ∈ CF(K → L) is the
adjoint linear operator x∗ ∈ CF(L→ K).

Note CF is a rigid C∗-tensor category by well known properties of Connes’ fusion (e.g., see
[Bis97, Pen12]). It is now our task to prove the following theorem:

Theorem 3.3.26. Define a map Φ: Bim → CF as follows. First, Φ is the identity on objects.
Second, for a morphism x ∈ qPα→βp, we get an M −M bimodule map Φx : Hp → Hq by

ξ

p

7−→

ξ

p

x

∈ Hq, (3.5)

Finally, Φ is applied entry-wise to matrices over such morphisms.
The map Φ is an equivalence of categories Bim ' CF .

In the lemmas below, unless otherwise stated, p, q are projections in Pα→α, Pβ→β respectively.

Remark 3.3.27. Note that composition of the bimodule maps given by Equation (3.5) corresponds
to the usual composition in P , i.e., if we have x ∈ qPα→βp and y ∈ rPβ→γq, then Φy ◦ Φx =
Φyx : Hp → Hq, where

α

yx

γ

=

α

x

β

y

γ

.
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It is obvious that Φp = idHp , so Φ is a functor.

Lemma 3.3.28. For p, q projections in P, the maps

φp,q : Hp ⊗M Hq → Hp ⊗Bim Hq = Hp⊗q

(where p⊗ q is the tensor product in P) given by the unique extension of

ξ

p

⊗
η

q

7−→
ξ

p

η

q

for ξ ∈ D(Hp) and η ∈ D(Hq), are M −M bilinear isomorphisms which satisfy associativity, i.e.,
the following diagram commutes:

(Hp ⊗M Hq)⊗M Hr
aCF //

φp,q⊗M idHr
��

Hp ⊗M (Hq ⊗M Hr)

idHp ⊗Mφq,r
��

(Hp ⊗Bim Hq)⊗M Hr

φp⊗q,r
��

Hp ⊗M (Hq ⊗Bim Hr)

φp,q⊗r
��

(Hp ⊗Bim Hq)⊗Bim Hr
= // Hp ⊗Bim (Hq ⊗Bim Hr).

Proof. As in the proof of Lemma 3.3.20, the map for ξ ∈ D(Hp), η ∈ D(Hq) is an isometry in-
tertwining the left and right M actions. Since the linear span of elements of the form x ∧ y with
x ∈ D(Hα,∅) and y ∈ D(H∅,β) is equal to D(Hα,β) ∼= D(Hαβ) by the proof of Lemma 3.3.20, the
above map is also surjective.

Associativity follows from looking at M -bounded vectors (see [Bis97]).

Lemma 3.3.29. As complex vector spaces,

CF(Hp → Hq) ∼= q(Pα→β)p = Bim(Hp → Hq).

Moreover, the composition of maps ϕ ∈ CF(Hp → Hq) and ψ ∈ CF(Hq → Hr) corresponds to the
composition in Bim.

Proof. Recall that an element x ∈ q(Pα→β)p = Bim(Hp → Hq) gives a map Φx ∈ CF(Hp → Hq) as
in Equation (3.5), and composition of morphisms is exactly multiplication in P by Remark 3.3.27.
Note further that Bim(Hp → Hq) and CF(Hp → Hq) are finite dimensional, so it remains to show
they have the same dimension.

By Frobenius reciprocity, we have a natural isomorphism

HomM−M(Hp → Hq) ∼= HomM−M(1→ Hp ⊗Hq),

and the latter space is naturally identified with the M −M central vectors in Hp ⊗Hq. Note that

Hp ⊗M Hq
∼= Hp ⊗M Hq

∼= Hp⊗q ∼= p ∧Hα,β ∧ q.
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From Corollary 3.3.14, the set of central vectors in p ∧Hα,β ∧ q is q(Pα→β)p

p ∧α Hα,β ∧β q 3 x qp ←→

p

x

q

∈ q(Pα→β)p,

proving dim(CF(Hp → Hq)) = dim(Bim(Hp → Hq)).

Lemma 3.3.30. If x ∈ Bim(Hp → Hq) = qPα→βp and Φx ∈ CF(Hp → Hq) is as in Equation (3.5),
then Φ∗x = Φx∗.

Proof. By Equation (3.3), if ξ ∈ D(Hp) and η ∈ D(Hq), then

〈Φxξ, η〉Hq =

∑
CTL

η∗ ξ

q p

x

=

∑
CTL

η∗ ξ

q p

x

= 〈ξ,Φx∗η〉Hp

where x is the 180 degree rotation of x.

For the next lemma, recall that the conjugate Hilbert space of K, is the set of formal symbols{
ξ
∣∣ξ ∈ Hp

}
such that λξ + η = λξ + η for all λ ∈ C and η, ξ ∈ Hp, together with left and right

M -actions given by xξy = y∗ξx∗ for x, y ∈M .

Lemma 3.3.31. For p ∈ Pα→α, define ψp : Hp → Hp (where p is the dual projection of p in P) by
the unique extension of the map

x

p

7−→
x∗

p

for ξ ∈ D(Hp) (the blue strand on the left is labelled α). Then ψp is an M−M bilinear isomorphism
such that the following diagrams commute:

Hp ⊗M Hq
ψp⊗Mψq //

φp,q

��

Hp ⊗M Hq

∼= // Hq ⊗M Hp

φq,p
��

Hp⊗q
= // Hq⊗p

ψp⊗q // Hq⊗p
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and

Hp
ψp //

=

��

Hp

ψp
��

Hp
∼= // Hp.

where we just write ∼= for the obvious isomorphism.

Proof. That ψp is a well-defined M − M bilinear isomorphism is trivial. Commutativity of the
diagrams follows by looking at M -bounded vectors.

Lemma 3.3.32. For p ∈ Pα→α, ΦevBim
Hp

= evCFHp and ΦcoevBim
Hp

= coevCFHp . Hence Φ preserves the rigid

structure, and Φx = Φx ∈ CF(Hq → Hp) for all x ∈ Bim(Hp → Hq).

Proof. In diagrams, evCFHp is given for M -bounded vectors by

evCFHp (x⊗ y) =

x

p

⊗
y

p

7−→
p p

x y

= 〈x|y〉M .

Hence using the isomorphism

Hp ⊗M Hp

ψp⊗M idHp // Hp ⊗M Hp
φp,p // Hp⊗p

from Lemmas 3.3.28 and 3.3.31, we have that evCFHp = ΦevBim
Hp

. Since Φ is ∗-preserving by Lemma

3.3.30, we must have that ΦcoevBim
Hp

= coevCFHp . Thus

coevCFHp (1M) = pp .

It is now easy to check that Φx = Φx ∈ CF(Hq → Hp) for all x ∈ Bim(Hp → Hq).

Proof of Theorem 3.3.26. We must show Φ is additive, monoidal, dual-preserving, ∗-preserving,
fully faithful, and essentially surjective.

Additivity on objects and essentially surjective come for free, since the objects are the same.
Additivity on morphisms and fully faithful follows from Lemma 3.3.29. Monoidal follows from
Lemma 3.3.28, ∗-preserving follows from Lemmas 3.3.29 and 3.3.30, and dual-preserving follows
from Lemmas 3.3.31 and 3.3.32. Note that the results of the previous five lemmas extend in the
obvious ways to direct sums by looking at matrices over the maps Hp → Hq.
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3.4 The isomorphism class of M

We now determine the isomorphism class of the II1-factor M from Section 3.3.

Assumption 3.4.1. Note that if our rigid C∗-tensor category C is countably generated, then the
isomorphism classes of objects of C form a countable set. Let S consist of a set of representatives
for the isomorphism classes of objects in C, and let L =

{
X ⊕X

∣∣X ∈ S} as in Assumption 3.2.11.
Again, the objects in L are not simple, and all have dimension greater than 1. In particular, FC(L)
is not locally finite, and each vertex has self loops, since objects of the form 2⊕X ⊕X are in L.

With this assumption, we prove in Section 3.4 that M ∼= L(F∞). In the case that C has finitely
many isomorphism classes of simple objects, i.e., C is a unitary fusion category, we can find a single
object X that generates C. We explain in Remark 3.4.27 that if we choose L = {X ⊕ X}, then
M ∼= L(Ft) with

t = 1 + dim(C)(2 dim(X)− 1),

similar to the result in [GJS11].
To begin, we describe in the next two sections a semifinite algebra associated to P . Many of the

ideas in these two sections mirror [GJS11], except that the semifinite algebra makes all box-spaces
orthogonal. One also must be more careful since the fusion graph FC(L) is not bipartite.

A semifinte algebra associated to P
Set G∞ =

⊕
α,β∈Λ

Grα,β(P). We endow G∞ with the multiplication

x
κ

γ

θ ∧ x
ω

γ′

χ
= δω,θ x y∗

κ

γ

θ

γ′

χ
,

where κ, θ, ω, χ ∈ Λ. There is a (semifinite) trace, Tr on G∞ given by

Tr(x) =
x

ΣCTL

for x ∈ Grα, and Tr(x) = 0 for x ∈ Grα,β with α 6= β.

Definition 3.4.2. As in Section 3.3, one argues (by once again orthogonalizing) that Tr is positive
definite on G∞ and multiplication is bounded on L2(G∞). Therefore, we form the (semifinite) von
Neumann algebra M∞ = G ′′∞ acting on L2(G∞,Tr).

We also use the von Neumann subalgebra A∞ ⊂ M∞ which is generated by all boxes in G∞
with no strings on top.

As in Section 3.3, let

pα = .
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It is easy to see that pα ∧M∞ ∧ pα = Mα so that all factors in the various Jones towers in Section
3.3 appear as cut-downs/corners ofM∞. We now record some lemmas about the structure ofM∞
and A∞.

Lemma 3.4.3. M∞ is a II∞ factor.

Proof. Note that p∅ ∧M∞ ∧ p∅ = M is a II1 factor and the trace of 1 = 1M∞ =
∑

α∈Λ pα (with
convergence of the orthogonal sum in the strong operator topology) is infinite, so we only need to
show that M∞ is a factor. To do so, we show that the central support of p∅ in M∞ is 1, which is
enough since p∅ ∧M∞ ∧ p∅ is a factor. We let

wα = ,

and we let vα be the polar part of wα. As was discussed in the proof of Lemma 3.3.20, vα induces
an equivalence of projections between p∅ and e ≤ pα. Let z be the central support of p∅ (and e).
Since pα ∧M∞ ∧ pα is a factor, the central support of e must lie above pα, so z ≥ pα. Since this
holds for all α ∈ Λ, we have z ≥ 1. Hence z = 1, and we are finished.

Corollary 3.4.4. The factor Mα is a δα-amplification of M .

Corollary 3.4.5. The algebras Mα,β are II1 factors.

Proof. Mα,β is the compression of M∞ by the finite projection pα + pβ.

Lemma 3.4.6. We have a direct sum decomposition

A∞ =
⊕

v∈V (FC(L))

Av

where the sum is over all vertices v in the fusion graph FC(L), and each Av is a type I∞ factor. If
p is a minimal projection in Pα→α whose equivalence class represents the vertex v, then p ≤ 1Av .

Proof. For each vertex v, choose a minimal projection pv ∈ Pαv→αv whose equivalence class corre-
sponds to the vertex v. We first see that

pv ∧ A∞ ∧ pv = pαvPαv→αvpαv
∼= C

so A∞ has minimal projections. Letting p ∈ Pα→α and q ∈ Pβ→β, then the observation that
p ∧ A∞ ∧ q = qPα→βp implies p is equivalent to q in the planar algebra sense if and only if p is
equivalent to q in A∞. Let 1v be the central support of pv. Then by construction, Av = 1v∧A∞∧1v
is a type I factor which must be type I∞ since there are infinitely many mutually orthogonal
projections equivalent to pv in P . It is easy to see that by construction, if v 6= w then 1v ∧ 1w = 0,
which implies that

A∞ =
⊕

v∈V (FC(L))

Av ⊕ B

for some von Neumann algebra B.
We claim that B = {0}. Indeed we know that pα can be written as an orthogonal sum of

projections equivalent to some of the pw’s. Since 1 =
∑

α∈Λ pα, this implies
∑

v 1v = 1, and thus
B = {0}.
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Remark 3.4.7. For the rest of this section, all multiplication will be the ∧ multiplication in the
GJS picture. Hence for the rest of this section, we just write xy for x ∧ y for convenience.

We now show that we can obtainM∞ from a base “building block” A∞ and various free “corner
elements.” Fixing a color c, which we again represent by the color green, we define

Xc =
∑
α∈Λ
|α|∈2N

+ .

Remark 3.4.8. We note that this sum defines a bounded operator. Indeed, the individual terms
in the sum are supported under the mutually orthogonal family of projections {pcα + pα : |α| ∈ 2N}
and each term in the sum has operator norm∥∥∥ +

∥∥∥1/2

∞
=
∥∥∥ +

∥∥∥1/2

∞
.

We also note the simple fact that for |α| even, pcαXcpα is the corner diagram

,

so each term in the sum defining Xc appears in the von Neumann algebra W ∗(A∞, Xc). We only
sum over α with |α| even as it makes computations involving freeness in Section 3.4 much easier.

The Xc elements give us a very nice way of obtaining M∞ from A∞.

Lemma 3.4.9. M∞ ∼= W ∗(A∞, {Xc : c ∈ L}).

Proof. Every element in G∞ is a linear combination of elements of the following form:

x

α β

.

The above diagram is x ∈ A∞ multiplied on the left and right by diagrams of the form

γ

and their adjoints. This diagram is a product of diagrams of the form

,

so we only need to check that the above diagram is in W ∗(A∞, {Xc : c ∈ L}) when |α| is odd. This
is easy since it can be written as the product

· .
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There is a Tr-preserving conditional expectation E :M∞ → A∞ given by

E(x) =
x

ΣCTL

,

and E induces normal completely positive maps (ηc,c = ηc)c∈L on A∞ satisfying

ηc(y) = E(XcyXc) = yXc Xc
.

For b 6= a, we have trivial “off-diagonal” maps ηa,b on A∞ satisfying ηa,b(y) = E(XayXb) = 0.
This gives a straightforward diagrammatic procedure for evaluating E(y0Xc1y1Xc2 · · ·Xcnyn) for
yi ∈ A∞. First, write the word y0Xc1y1Xc2 · · ·Xcnyn as

Xc1
y0 y1 · · · Xcn

yn−1 yn .

Then sum over all planar ways to connect the strings on top. Whenever we see a term of the form

yXci Xcj
,

we replace it with ηci,cj(y). It is straightforward to check that E and the ηci,cj satisfy the following
recurrence relation:

E(y0Xc1y1Xc2 · · · yn−1Xcnyn)

=
n∑
k=2

y0 · ηc1,ck(E(y1Xc2 · · ·Xck−1
yk−1)) · E(ykXck+1

...Xcnyn). (3.6)

Also, by definition of ηci,cj , it follows that the map on A∞ ⊗ B(H) given by (yi,j) 7→ (ηci,cj(yi,j)) is
normal and completely positive. This, combined with Recurrence (3.6) implies that the elements
(Xc)c∈L form an A∞-valued semicircular family with covariance (ηci,cj) as in [Shl99]. Since ηci,cj = 0
for ci 6= cj, the family (Xc)c∈L is free with amalgamation over A∞ with respect to E [Shl99]. We
record what we have established above in the following lemma.

Lemma 3.4.10. M∞ = W ∗(A∞, {Xc : c ∈ L}), and the elements (Xc)c∈L form an A∞-valued
semicircular family with covariance (ηci,cj) and are free with amalgamation over A∞.

M as an amalgamated free product

By compressing the algebra A∞ by the projection 1e =
∑
|α|∈2N pα, Lemma 3.4.6 implies that if we

set Ae = W ∗((Pβ→α)α,β∈2N) then

Ae =
⊕

v∈V (FC(L))

Bv.
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Bv is a type I∞ factor which is a cut-down of Av by 1e. Note that every vertex in v ∈ V (FC(L))
appears in the direct sum because every vertex possesses at least one self-loop.

Similarly, if one sets 1o =
∑
|α|∈(1+2N) pα and Ao = 1oA∞1o, then we have

Ao =
⊕

v∈V (FC(L))

Cv

where Cv is a type I∞ factor which is a cut-down of Av by 1o.
For each vertex v ∈ FC(L), we choose a minimal projection pv ∈ Ae whose equivalence class is

represented by v with p∅ the empty diagram. If x ∈ Ae, it follows that

ηc(x) = x

so that ηc(pv) is a finite projection in Ao, and each ηc acts as a (non-unital) W ∗ algebra homo-
morphism from Ae into Ao. Set Q =

∑
v pv. Then there is a family of partial isometries (Vi)i∈I

satisfying V ∗i Vi = Q and
∑

i∈I ViV
∗
i = 1Ae . Note that

∑
c∈L ηc(Q) defines a projection in Ao since

ηa(Q) ⊥ ηb(Q) for a 6= b. We examine the compression of M∞ by T = Q+
∑

c∈L ηc(Q).

Lemma 3.4.11. TM∞T = W ∗(TA∞T, (TXcT )x∈L)

Proof. By the choices of the partial isometries Vi, we know that if we let Wi =
∑

c∈L ηc(Vi) then∑
i∈I(Vi +Wi)(Vi +Wi)

∗ = 1, so

TM∞T = W ∗ (TA∞T, {(Vi +Wi)
∗Xc (Vj +Wj) : i, j ∈ I c ∈ L})

The relation y · Xc = Xcηc(y) for any y ∈ Ae is a straightforward diagrammatic check. Applying
this relation to each (Vi +Wi)

∗Xc (Vj +Wj) gives TXcT .

Since
∑

i∈IWiW
∗
i = 1Ao , it follows that if v ∈ V (FC(L)) then there is a minimal projection

qv ∈ Ao whose equivalence class represents v and sits under 1Ao · T . Note that this means that for
all v, qv and pv are orthogonal minimal projections that sit under 1v. We will next examine the
cut-down of TM∞T by F =

∑
v pv + qv.

Suppose the vertices v and w are distinct and connected in FC(L) and let C(e) be the color of
an edge connecting v and w. Let e1, ..., ek be the (necessarily finite) collection of edges connecting
v and w with C(ei) = c. We let uvei be a collection of partial isometries such that

(uvei)
∗uvej = δijqv and

k∑
i=1

uvei(u
v
ei

)∗ = ηc(pw) · 1v

Let rv ∈ FA∞F be a partial isometry satisfying rvr
∗
v = pv and r∗vrv = qv and rw ∈ FA∞F be

a partial isometry satisfying rwr
∗
w = pw and r∗wrw = qw. The elements defined can be described

diagrammatically as follows:

pv = pv
αv αv , pw = pw

αw αw , qv = qv
βv βv , qw = qw

βw βw ,

uvei = uveiαw βv , rv = rv
αv βv , rw = rw

αw βw .
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Set xi to be the following diagram:

xi = uveiαw βv

We have the following lemma about the left and right supports of xi:

Lemma 3.4.12. The left support of xi is pw and the right support of xi lies under the projection
1w · ic(qv) where we have for z ∈ Pγ→χ

ic(z) = z
γ χ .

Furthermore if i 6= j then the right supports of xi and xj are orthogonal.

Proof. Note that xix
∗
i is the diagram

(uvei)
∗uveiαw βv αw .

For any γ ∈ Λ, let Φ : P op
γc→γc → P op

γ→γ be the trace preserving conditional expectation where P op
γ→γ

includes unitally into P op
γc→γc via ic. The above diagram is a scalar multiple of Φ(uvei · (u

v
ei

)∗). As
uvei · (u

v
ei

)∗ lies under ηc(pw) = ic(pw) it follows that this diagram is a scalar multiple of pw, proving
the claim about the left support. As left and right supports are equivalent projections, it follows
that the right support of xi lies under 1w. We note that Φ(x∗ixi) = k(uvei)

∗uvei = kqv for some scalar
k, implying that the right support of xi must lie under ic(qv). Finally, if i 6= j then xix

∗
j is a constant

multiple of Φ(uvei · (u
v
ej

)∗). We know this must be a scalar multiple of pw, but that scalar must be
zero as uvei · (u

v
ej

)∗ has trace zero. This proves the orthogonality of the right supports of the xi.

Let fi be the right support of xi. As ic(pv) · 1w can be written as a sum of k orthogonal
projections equivalent to pw, we conclude that

∑k
i=1 fi = ic(pv) · 1w. We also recognize that ic(rv)

is a partial isometry with left support ic(qv) and right support ic(pv). We consider the elements
yi = r∗w · xi · ic(r∗v) which diagrammatically look like

yi = r∗w uve r∗vβw αw βv αv

note that the left support of yi is qw. From Lemma 3.4.12, the right supports of the yi are orthogonal
and sum up to ic(pv) · 1w. As qw is minimal in A∞, it follows that yi is a scalar multiple of a partial
isometry. We define the partial isometry uwe by the equation (uwei)

∗ = l · yi with l an appropriate

constant. It follows that (uwei)
∗uwej = δijqw and

∑k
i=1 u

w
ei

(uwei)
∗ = ηc(pv) · 1w.

One can manipulate the diagram above to show that the relation

(uve)
∗ = (l)−1 · r∗v uwe r∗wβv αv βw αw

holds. This discussion thus proves the following useful lemma:
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Lemma 3.4.13. Let e1, . . . , ek be all of the edges of color c in the fusion graph connecting distinct
vertices v and w. Then one can find partial isometries {uvei : 1 ≤ i ≤ k} and {uwei : 1 ≤ i ≤ k} in
Ao satisfying

(uvei)
∗uvej = δijqv,

k∑
i=1

uvei(u
v
ei

)∗ = ηc(pw) · 1v

(uwei)
∗uwej = δijqw,

k∑
i=1

uwei(u
w
ei

)∗ = ηc(pv) · 1w

and the relations

(uve)
∗ = (l)−1 · r∗v uwe r∗wβv αv βw αw and (uwe )∗ = l · r∗w uve r∗vβw αw βv αv

for some nonzero constant l.

We now turn our attention over to the edges e which are loops. Suppose v is a vertex and ei, ..., ek
represent all of the loops of color c connecting v to itself. As above, we can find partial isometries
uvei with right support qv and orthogonal left supports under 1v · ic(pv), however for reasons that
will become apparent later we desire a stronger property about these partial isometries.

Lemma 3.4.14. There exists a set of partial isometries {uvei : 1 ≤ i ≤ k} satisfying

(uvei)
∗uvej = δijqv,

k∑
i=1

uvei(u
v
ei

)∗ = ηc(pv) · 1v,

and the following relation:

(uve)
∗ = k · r∗v uve r∗vβv αv βv αv

for k a unimodular constant.

Proof. Let u1 ∈ A∞ be a partial isometry with right support qv and left support under 1v · ic(pv).
Consider the operator y1 satisfying

y∗1 = u∗1βv αv + r∗v u1 r∗vβv αv βv αv .

If this is zero, then by setting k = −1, we have produced a partial isometry satisfying the appropriate
diagrammatic relation. If not, then y∗1 has left support qv and right support under 1v · ic(pv) so it
is a scalar multiple of a partial isometry. The operator y∗1 is also fixed under the map

x 7→ r∗v x∗ r∗vβv αv βv αv

so a scalar multiple of y1 satisfies the appropriate diagrammatic relation and is a partial isometry.
In either case, we have produced a partial isometry uve1 satisfying the diagrammatic relation. To
produce another partial isometry uve2 with right support qv, left support orthogonal to that of uve1 ,
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and satisfying the diagrammatic relation, we pick a partial isometry u2 with right support qv and
left support orthogonal to that of uve1 . By Lemma 3.4.12 and the discussion afterwards, the right
supports of

r∗v u2 r∗vβv αv βv αv and k · r∗v uve1 r∗vβv αv βv αv = (uve1)∗

are orthogonal so it follows that by considering the element

y∗2 = u∗2βv αv + r∗v u2 r∗vβv αv βv αv .

and arguing as in the beginning of the proof, we produce the desired element uve2 . Iterating this
procedure produces the set {uvei : 1 ≤ i ≤ k}.

We therefore assume in the rest of the section that our partial isometries satisfy the relations in
either Lemma 3.4.13 or Lemma 3.4.14. The identity

∑
v

∑
e∼v u

v
e(u

v
e)
∗ =

∑
c∈L ηc(Q) follows by the

choices of the partial isometries uve . We therefore have the following lemma:

Lemma 3.4.15. For each edge e of the fusion graph FC(L)), we define operators Ye as follows:
If C(e) = c and e connects distinct vertices v and w then Ye = pvXcu

w
e + (uwe )∗Xvpv + pwXcu

v
e +

(uve)
∗Xcpw and if e connects the vertex v to itself then Ye = pvXcu

v
e + (uve)

∗Xcpv. Then we have
FM∞F = W ∗(FA∞F, (Ye)e∈E)

Proof. First note that by compressing by the appropriate elements, of FA∞F , each term in the
sums defining Ye is in W ∗(FA∞F, (Ye)e∈E(FC(L))). The identity∑

v∈V (FC(L))

∑
e:s(e)=v
C(e)=c

= pvXcu
t(e)
e (ut(e)e )∗ = TXcT

implies that words in TXcT (compressed on either end by F ) can be approximated by words in
pvXcu

w
e and their adjoints so by Lemma 3.4.11 we are done.

Lemma 3.4.16. If v and w are distinct vertices connected by an edge e with C(e) = c then
rv(u

v
e)
∗Xcpwrw and pvXc(u

w
e ) are nonzero scalar multiples of each other.

If f is a loop at v then rv(u
v
f )
∗Xcpvrv and pvXc(u

v
f ) are nonzero scalar multiples of each other.

Proof. First observe that
pvXcu

w
e = Xcηc(pv)u

w
e = Xcu

w
e .

and rv(u
v
e)
∗Xcpwrw = rv(u

e
v)
∗Xcrw. The element rv(u

e
v)
∗Xcrw is represented diagrammatically as

rv (uve)
∗ rw

αv βv
αw

βw

which can be rewritten as

αv βv
αw

βwrv (uve)
∗ rw = k ·Xc · uwe

for an appropriate constant k 6= 0, proving the first statement. The proof of the second statement
uses the exact same diagrammatic argument.
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We now examine the algebras

Me = W ∗(FA∞F, Ye) = W ∗(FA∞F, pvXcu
w
e + (uwe )∗Xcpv)

where the last equality follows from Lemma 3.4.16. First assume v and w are distinct and Tr(pv) ≤
Tr(pw) = Tr(qw). One can show, using exactly the same techniques as in [GJS10] and [GJS11] (see

the appendix) that (uwe )∗XcpvXcu
w
e is a free Poisson element with an atom of size Tr(pw)−Tr(pv)

Tr(pw)
at

0 in the compressed algebra pvM∞pv. Also, pvXcu
w
e (uwe )∗Xcpv is a free poisson element with no

atoms in the compressed algebra qvM∞qv. Using the polar part of pvXcu
w
e as well as the partial

isometries rv and rw and Lemma 3.4.16, we see that

(1v + 1w)FMeF (1v + 1w) = (L(Z)⊗M4(C))
⊕ p′v ,q

′
v

M2(C)
Tr(pv)−Tr(pw)

where the notation means that the copy of M2(C) has two orthogonal minimal projections p′v and
q′v such that p′v ≤ pv and q′v ≤ qv and Tr(p′v) = Tr(pv)− Tr(pw).

If e is a loop at v then using the partial isometry rv and Lemma 3.4.16, we see that

1v · FMeF · 1v = L(Z)⊗M2(C).

For simplicity, we set Xe = pvXcu
w
e + (uwe )∗Xcpv so that Me = W ∗(FM∞F,Xe).

Lemma 3.4.17. The algebras (Me)e∈E(FC(L)) are free with amalgamation over FA∞F .

Proof. From [Shl99] the elements Xe are FA∞F semicircular, so to show freeness we need only to
show that if e 6= e′, E(XeyXe′) = 0 for all y ∈ FA∞F . This can only be nonzero if e and e′ have
the came color, so we assume C(e) = c = C(e′). Also, this expectation can be nonzero only if e and
e′ share a common vertex, v.

We first assume that e and e′ are not loops. Assume e connects v and w and e′ connects v
and w′. We see that E(XepvXe′) = (uwe )∗ic(pv)u

w′

e′ = (uwe )∗uw
′

e′ which is zero since uwe and uw
′

e′ have
orthogonal left supports if w = w′ and is clearly zero if w 6= w′. For E(XeqwXe′) to be nonzero,
we need w = w′. Assuming this, we get pvΦ(uwe · qw · (uw

′

e′ )
∗)pv. As was discussed in the proof of

Lemma 3.4.12,
Φ(uwe · qw · (uw

′

e′ )
∗) = Φ(uwe (uw

′

e′ )
∗) = 0

since uwe and uw
′

e′ have orthogonal left supports. It is also straightforward to check that the only
elements y in FA∞F where XeyXe′ 6= 0 are of the form y = a · pv + b · qw.

We now assume that e is a loop at v and e′ is an arbitrary edge connected to v. The discussion
in the previous paragraph implies that E(XepXe′) = 0 for any projection p ∈ FA∞F ; however, we
also have to consider E(Xer

∗
vXe′). This is the following diagram:

pv uve r∗v pv uve′αv αv βv αv αv β′v = rv r∗v uve r∗v uve′αv βv αv βv αv β′v ,

where β′v = βv if e′ is also a loop at v. By our choice of uev, this diagram is a scalar multiple of
rv · (uve)∗uve′ which is 0. Similarly, E(Xer

∗
vXe′) = 0 and we are done.
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Note that we have
FM∞F = ∗

FA∞F
(Me)e∈E(FC(L)).

The algebra FA∞F has the decomposition

FA∞F =
⊕

v∈FC(L)

pv ,qv

M2(C).

Recall that Q =
∑

v pv. Thus Q is an abelian projection with central support 1 in FA∞F . Therefore
(see for example [Dyk11] or [PS03])

QM∞Q = ∗
QA∞Q

(QMeQ)e∈E(FC(L)).

The algebra QA∞Q is simply `∞(V (FC(L))), the bounded functions on the vertices of FC(L). If e
connects two distinct vertices v and w with Tr(pv) ≥ Tr(pw) then

QMeQ = L(Z)⊗M2(C)
⊕ p′v

C
⊕

`∞(V (FC(L)) \ {v, w})

and if e is a loop at v then

QMeQ = L(Z)
⊕

`∞(V (FC(L)) \ {v}).

In the next section, we will use the free product expression for QM∞Q to determine the iso-
morphism class of M = p∅(QM∞Q)p∅.

von Neumann algebras associated to graphs

The following notation will be useful in this section:

Notation 3.4.18. Throughout this section, we will be concerned with finite von Neumann algebras
(N , tr) which can be written in the form

N =
p0

N0
γ0

⊕
⊕
j∈J

pj

L(Ftj)
γj

⊕
⊕
k∈K

qk
Mnk
αk

where N0 is a diffuse hyperfinite von Neumann algebra, L(Ftj) is an interpolated free group factor
with parameter tj, Mnk is the algebra of nk × nk matrices over the scalars, and the sets J and
K are at most finite and countably infinite respectively. We use pj to denote the projection in
L(Ftj) corresponding to the identity of L(Ftj) and qk to denote a minimal projection in Mnk . The
projections pj and qk have traces γj and αk respectively. Let p0 be the identity in N0 with trace γ0.

We write
p,q

M2 to mean M2 with a choice of minimal orthogonal projections p and q.

We begin by letting Γ be a connected weighted graph with weighting γ. Let `∞(Γ) be the
bounded functions on the vertices of Γ and let pv be the delta function at v. We endow `∞(Γ) with
a trace Tr satisfying Tr(pv) = γv. As in [Har12] we now describe how to use the edges to associate
a free product von Neumann algebra N (Γ) to Γ.
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Definition 3.4.19. Let e be an edge in Γ. We define algebras Ne as follows: If e connects two
distinct edges v and w with γv ≥ γw then

Ne = M2(C)⊗ L(Z)
2γw

⊕
pev
C

γv−γw
⊕ `∞(Γ \ {v, w}).

If e is a loop at the vertex v then

Ne =
pv

L(Z)
γv

⊕ `∞(Γ \ {v}).

If e connects two different vertices then the trace onM2(C)⊗ L(Z)
2γw

⊕
pev
C

γv−γw
is given by trM2 ⊗ trL(Z) + trC.

Ne includes `∞ Γ by letting pw = e1,1 ⊗ 1 and pv = e2,2 ⊗ 1 + pev so that pev ≤ pv. If e is a loop that
Ne then Ne includes `∞(Γ) in the obvious way.

Let Ee be the Tr−preserving conditional expectation from Ne to `∞(Γ). We define N (Γ) =
∗

`∞(Γ)
(Ne, Ee)e∈E(Γ).

Note that if Γ has no loops then this definition of N (Γ) is the same as M(Γ) in [Har12]. Also
observe that QM∞Q in section 3.4 is N (FC(L)). We now define some notation which will be useful
in determining the isomorphism class of N (Γ).

Definition 3.4.20. We write v ∼ w if v and w are connected by at least 1 edge in Γ and denote
nv,w be the number of edges joining v and w. We set αΓ

v =
∑

w∼v nv,wγw, and define B(Γ) = {v ∈
V (Γ) : γv > αΓ

v}. Note that if there is a loop, e, at v then v 6∈ B(Γ).

Assume for the moment that Γ ⊂ Γ′ are finite, connected, weighted graphs with at least two
edges (so that N (Γ) and N (Γ′) are finite von Neumann algebras). There is a natural inclusion
N (Γ) → N (Γ′) which will not be unital if Γ′ has a larger vertex set. We will prove the following
theorem, which is along the same lines as [Har12].

Theorem 3.4.21. N (Γ) has the form

N (Γ) ∼=
pΓ

L(FtΓ)⊕
⊕
v∈B(Γ)

rΓ
v

C
γv−αΓ

v

where rΓ
v ≤ pv and tΓ is such that this algebra has the appropriate free dimension. If Γ is a

proper subgraph of Γ′ then the unital inclusion pΓN (Γ)pΓ → pΓN (Γ′)pΓ is a standard embedding of
interpolated free group factors.

See [Dyk93] and [Dyk11] for a discussion of free dimension and rules for computing it. Also we
refer the reader to [Dyk93] for the definition of a standard embedding of interpolated free group
factors. Whenever A and B are interpolated free group factors and A is unitally included into B

then we write A
s.e.
↪→ B to indicate that the inclusion of A into B is a standard embedding. In this

section, we will extensively use the following properties of standard embeddings which can be found
in [Dyk93] and [Dyk95].
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(1) If A is an interpolated free group factor, the canonical inclusion A → A ∗ N is a standard
embedding whenever N is of the form in Notation 3.4.18.

(2) A composite of standard embeddings is a standard embedding.

(3) If An = L(Fsn) with sn < sn+1 for all n and φn : An
s.e.
↪→ An+1, then the inductive limit of the

An with respect to the φn is L(Fs) where s = lim
n→∞

sn.

(4) If t > s then φ : L(Fs)
s.e.
↪→ L(Ft) if and only if for any nonzero projection p ∈ L(Fs),

φ|pL(Fs)p : pL(Fs)p
s.e.
↪→ φ(p)L(Ft)φ(p).

Theorem 3.4.21 was proved in [Har12] in the case that Γ contained no loops, so we only to need
to modify the arguments there to incorporate what happens when Γ contains loops. We will prove
Theorem 3.4.21 by inducting on the number of edges in the graph. We divide this into two lemmas.

Lemma 3.4.22. Suppose Γ is a connected graph with 2 edges, one of which is a loop. Then N (Γ)
is of the form in Theorem 3.4.21.

Proof. There are two cases to consider. The first when Γ has one vertex with two loops and the
other when Γ has two vertices, w and w with a loop at v and an edge connecting v to w.

Case 1: Assume Γ has one vertex with two loops. It follows immediately from the definition of N (Γ)
that N (Γ) = L(F2) which is in agreement with Theorem 3.4.21.

Case 2: Assume Γ has two vertices w and w with a loop, e, at v and an edge, f , connecting v to w.
There are two subcases to consider: when γv ≥ γw and γv < γw.

Case 2a: Assume γv ≥ γw and set D = `∞(Γ). N (Γ) has the form

N (Γ) =

(
pv

L(Z)
γv

⊕
pw

C
γw

)
∗
D

(
M2 ⊗ L(Z)

2γw

⊕
pfv
C

γv−γw

)
.

Note that the central support of pv is 1 in Nf . By [DR11],

pvN (Γ)pv = L(Z) ∗ pvNfpv = L(Z) ∗

(
L(Z)
γw

⊕
pvf

C
γv−γw

)

which is an interpolated free group factor L(Ft) for some appropriate t. By amplifying, it follows
that N (Γ) is an interpolated free group factor, in agreement with Theorem 3.4.21.

Case 2b: Assume γv < γw. We note that the central support of pv in Nf is 1− pfw and following the
same algorithm as in Case 2a gives

pvN (Γ)pv = L(Z) ∗ pvNfpv = L(Z) ∗ L(Z) = L(F2),

so by amplifying, N (Γ) = L(Ft)⊕
pfw
C
γw

for appropriate t. This agrees with Theorem 3.4.21.
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Lemma 3.4.23. Suppose Γ ⊂ Γ′ are finite weighted graphs and assume N (Γ) is of the form in
Theorem 3.4.21. In addition, suppose Γ′ is obtained from Γ by one of the following three operations:

(1) Γ and Γ′ have the same edge set and Γ′ is obtained from Γ be adding a loop e at a vertex v,

(2) Γ and Γ′ have the same edge set and Γ′ is obtained from Γ be adding an edge e between two
distinct vertices v and w, or

(3) Γ′ is obtained from Γ be adding a vertex v and an edge e connecting w ∈ V (Γ) to v.

Then N (Γ′) is also of the form in Theorem 3.4.21 and pΓN (Γ)pΓ s.e.
↪→ pΓN (Γ′)pΓ.

Proof. The steps in proving the lemma assuming operations (2) or (3) are exactly the same as in
[Har12], so we only need to assume that Γ′ is obtained from Γ via operation (1). Set D = `∞(Γ) =
`∞(Γ′). We have N (Γ′) = Ne ∗

D
N (Γ) and by assumption,

pvN (Γ)pv =
pΓ
v

L(Ft)⊕
rΓ
v

C

where rΓ
v can possibly be zero but pΓ

v = pv · pΓ 6= 0. By [DR11],

pvN (Γ′)pv = L(Z) ∗ pvN (Γ)pv = L(Z) ∗

(
pΓ
v

L(Ft)⊕
rΓ
v

C

)

which is an interpolated free group factor. By amplification, it follows that N (Γ′) is of the form in
Theorem 3.4.21. By [Dyk93], The inclusion pΓ

vN (Γ)pΓ
v → pΓ

vN (Γ′)pΓ
v is equivalent to the inclusion

L(Ft)→ L(Ft) ∗ pΓ
v

(
L(Z) ∗

(
pΓ
v

C ⊕
rΓ
v

C

))
pΓ
v

which is a standard embedding. As pΓ
v ≤ pΓ it follows that pΓN (Γ)pΓ s.e.

↪→ pΓN (Γ′)pΓ.

We notice that Theorem 3.4.21 follows from Lemmas 3.4.22 and 3.4.23. Indeed, if Γ ⊂ Γ′ are
finite, connected, weighted graphs then Γ′ can be obtained from Γ by applying operations (1), (2),
and (3) above. Also, the composite of standard embeddings is a standard embedding and standard
embeddings are preserved by cut-downs.

Before determining the isomorphism M ∼= L(F∞) we note the following lemma whose proof is a
straightforward induction exercise using the algorithms in [DR11].

Lemma 3.4.24. Suppose Γ consists of a vertex v connected to vertices w1 through wk by a total of
n edges. Assume further that γv ≤ γwi for all i. Then pvN (Γ)pv = L(Ft) where t ≥ n.

Theorem 3.4.25. M ∼= L(F∞).
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Proof. Let Γ denote FC(L) so that M ∼= p∅N (Γ)p∅. We build up Γ by an increasing union of
finite connected subgraphs Γk, each of which contain the vertex * so that M is the inductive
limit of the algebras p∅N (Γk)p∅. All vertices in Γk must have weight larger than 1 since for p
an irreducible projection in P , p ⊗ p must have a subprojection equivalent to the trivial one.
It follows that for k sufficiently large, p∅N (Γk)p∅ is an interpolated free group factor and since

p∅N (Γk)p∅
s.e.
↪→ p∅N (Γk+1)p∅ we know that M = p∅N (Γ)p∅ must be an interpolated free group

factor. Let Γ̃n be the subgraph of Γn whose vertices are * and v1, ..., vk which are connected
to ∗ in Γk and whose edges are exactly the edges connecting ∗ to each vi to * in Γn. Assuming
there are kn such vertices, we see from Lemma 3.4.24 that p∅N (Γ̃n)p∅ = L(Frn) for rn ≥ kn. Since

either p∅N (Γ̃n)p∅ = p∅N (Γn)p∅ or p∅N (Γ̃n)p∅
s.e.
↪→ p∅N (Γn)p∅ it follows that p∅N (Γn)p∅ = L(Ftn)

for tn ≥ rn. There are infinitely many edges emanating from ∗. Therefore kn and hence tn can be
arbitrarily large so it follows that M = L(Ft) where t = limn tn =∞.

Corollary 3.4.26. Mα
∼= L(F∞) for all α ∈ Λ.

Proof. Mα is an amplification of M .

Remark 3.4.27. With a bit more careful analysis, using the techniques in [Har12], one can show
that if C has infinitely many simple objects then the factor M is L(F∞) no matter the choice of the
generating set S (using L = S ⊕ S). When C has finitely many simple objects, then we can find
t finite with M ∼= L(Ft). To do this, we can find a single object X which generates C, and we let
L = {X ⊕X}. Applying the analysis in Section 3.4 shows that M is a cutdown of N (FC(X ⊕X)).
Keeping track of the free dimension yields the isomorphism M ∼= L(F(1 + dim(C)(2 dim(X)− 1))).

3.5 Appendix

The factors in [Yam03] have property Γ

First, we sketch the proof that the factors in [Yam03] have property Γ, and thus are not interpolated
free group factors. We use some notation from [Yam03].

Sketch of proof. Let C be a countably generated rigid C∗-tensor category. Let S be the set of
isomorphism classes of simple objects. Let {es|s ∈ S} be a family of non-zero, pairwise orthogonal
projections in the hyperfinite II1 factor R. Consider the von Neumann algebras

A =
⊕
s∈S

esRes and B =
⊕
s,t∈S

C(s, t)⊗esRet.

Note that we have a unital, connected inclusion A ⊂ B. The factors considered in [Yam03] are of
the form

N = (Q⊗A) ∗A B,
where Q is an arbitrary finite von Neumann algebra. To show that N admits a non-trivial central
sequence, it suffices to find a sequence in A which commutes asymptotically with B. Let x = (xn)
be a central sequence of R. One can check that the sequence (yn) given by

yn =
⊕
s∈S

esxnes ∈ A
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has the desired property. Hence N has property Γ and is not isomorphic to an interpolated free
group factor.

Proofs using λ-lattices

We now sketch a proof of Theorem 3.1.3 using the techniques of [PS03] in the case where the rigid
C∗-tensor category C is finitely generated. This sketch closely follows [FR12, Theorem 4.1].

Sketch of proof. Suppose S = {X1, . . . , Xr} generates C. First, set

X = X1 ⊕X1 ⊕ · · · ⊕Xr ⊕Xr

which is a symmetrically self-dual object in C. Setting

Pn,+ = EndC(X ⊗X ⊗ · · · ⊗X±)

Pn,− = EndC(X ⊗X ⊗ · · · ⊗X±)

where X± = X,X depending on the parity of n, P is a subfactor planar algebra. (This follows
by results similar to those in Section 3.2). A subfactor planar algebra is naturally a λ-lattice
[Pop95, Jon], and thus [PS03] gives us a subfactor N ⊂ M where N,M are both isomorphic to
L(F∞) and whose subfactor planar algebra is isomorphic to P . The result now follows by a modified
version of Theorem 3.2.17.

Difficulties arise when trying to adapt an approach along these lines for C not finitely generated.
One wants to define an inductive limit Popa system and use [PS03] to get an inclusion of factors
isomorphic to L(F∞) which remembers C.

One hope is to look at finitely generated subcategories of C as follows. Set

Y r = X1 ⊕X1 ⊕ · · · ⊕Xr ⊕Xr,

and define Zr inductively by setting Z1 = Y 1 and Zr = Zr−1⊗Y r. Now for all r, we have subfactor
planar algebras Pr given by

P r
n,+ = EndC(Z

r ⊗ Zr ⊗ · · · ⊗ Zr,±)

P r
n,− = EndC(Zr ⊗ Zr ⊗ · · · ⊗ Zr,±).

Again, using [PS03], we get an inclusion N r ⊂ M r where both factors are isomorphic to L(F∞),
and the associated category of N r −N r bimodules is equivalent to the subcategory of C generated
by X1, X1, . . . , Xr, Xr.

One problem with this approach is that while P r
n,± includes unitally into P r+1

n,± , the inductive
limit planar algebra P∞ has infinite dimensional n-box spaces, i.e., dim(P∞n,±) =∞ for all n. Hence
we cannot directly use [PS03] to get a subfactor. Another problem is that the inclusion P r

• ↪→ Pr+1

does not induce an inclusion of N r into N r+1 nor an inclusion M r into M r+1. Hence we do not get
an inductive limit subfactor N∞ ⊂M∞.

Of course, one can try other approaches along these lines, but so far, the authors have not
succeeded in finding an inductive limit inclusion.
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The law of the element pvXeu
w
e (uwe )∗Xepv

We will adapt the technique in [GJS10] to compute the law of R = pvXeu
w
e (uwe )∗Xepv. A similar

computation will compute the law of (uwe )∗XepvXeu
w
e . To begin, we set rw = uwe (uwe )∗ and notice

that this element diagrammatically looks like

pv pvrw

Let φ be the moment generating function of R i.e. φ(z) =
∑∞

z=0
Tr(Rn)
Tr(pv)

zn. Set αe = Tr(rw)
Tr(pv)

= Tr(pw)
Tr(pv)

≥
1. Using the recurrence relation 3.6, and the fact that

E

(
rw

)
= αepv,

we see that for n ≥ 1,

E(Rn) = αeE(Rn−1)+

(
n−2∑
k=1

E(Rk)E(Rn−1−k)

)
+E(Rn−1) = (αe−1)E(Rn−1)+

n−1∑
k=0

E(Rk)E(Rn−1−k)

Multiplying both sides by zn and summing gives the equation

φ− 1 = (αe − 1)zφ+ zφ2

which implies

φ(z) =
−((αe − 1)z − 1) +

√
((αe − 1)z − 1)2 − 4z

2z
where the branch of the square root will be momentarily determined. Let µ be the measure sup-
ported on the spectrum of R in pvM∞pv satisfying∫

xndµ(x) = Tr(Rn)/Tr(pv).

ale let Gµ(z) = z−1φ(z−1) be its Cauchy transform. It follows that

Gµ(z) =
−((αe − 1)− z) +

√
((αe − 1)− z)2 − 4z

2z
.

The Cauchy transform of µ also has the form

Gµ(z) =

∫
R

dµ(x)

z − x
and it is straightforward to check that =(G(z)) < 0 whenever =(z) > 0, and limz→∞ zGµ(z) = 1
non-tangentially to the real axis. We therefore choose the branch of the square root so that the
algebraic expression for Gµ(x) satisfies these two conditions. The measure µ is recovered by writing
z = x+ iy and computing limy↓0− 1

π
=(Gµ(z)) [VDN92]. Doing so gives

dµ(x) =

√
−((αe − 1)− x)2 + 4x

2πx
· χ[
√
αe−1,

√
αe+1]dx

with χI the indicator function of the Lebesgue measurable set I. This is the distribution of a free
Poisson element [NS06].
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Chapter 4

The GJS Construction for Fuss Catalan
and N − P −M Planar Algebras

4.1 Introduction

The work of Chapter 3 was heavily influenced by a problem presented to the author by Vaughan
Jones. The problem is as follows: Given a subfactor planar algebra, Q, one can consider the algebras
Gr±k (Q) as defined in the previous chapters and place the following “toy potential” on Q:

tr(x) =

x

∑
V

where V is a rotationally invariant set of elements in Q. If one is fortunate, tr is positive definite
on Q and left multiplication is bounded on L2(Gr(Q)). To this end, it is an interesting problem is
to study the von Neumann algebras, N±k (= Gr±k (Q)′′) associated to Q and V .

The case that will be considered here is the case where Q contains is the standard invariant for
a subfactor N ⊂M that contains an intermediate subfactor, P . As such, it follows that Q contains
the Fuss Catalan planar algebra as a sub planar algebra [BJ97]. Therefore, we can consider the
following potential on Gr+

0 (Q):

tr(x) =

x

∑
FC

where
∑
FC represents the sum of all Fuss Catalan diagrams. Recall that Fuss Catalan diagrams

are planar two-colored string diagrams satisfying the following condition: If the colors of the strings
are a and b, then the colors of strings intersecting the boundary form the pattern, aabbaabbaabb...

To attack this problem, it is most natural to introduce a new planar algebra, P which will be
called an N −P −M planar algebra. A pleasing feature of this planar algebra is that the boundary
conditions of the input disks can be taken to be any word in aa and bb. The planar algebra Q will
be realized as a subalgebra of P by replacing each strand with an a strand next to a b strand so that
the pattern formed by the input disks in the Q−tangles is of the form aabbaabbaabb.... Whenever
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Q is itself the Fuss Catalan planar algebra, we can take P to be generated the set of all string
diagrams having boundary conditions any word in aa and bb.

The purpose of the N −P −M planar algebra is that it gives one a natural way to decouple the
strings a and b and treat them as free generators in an appropriate sense (see Section 4.5 for how this
is done). We form algebras Mα for α a suitable word in a and b which are the N−P −M analogues
of the algebras N±k , and will use a semifinite algebra as in Chapter 3 to find the isomorphism class
of the algebras Mα. More precisely, we will prove the following theorem:

Theorem 4.1.1. Mα is a II1 factor and is isomorphic to L(F(1 + 2Iδα(δa + δb − 2))) for P finite
depth. Here, δα is defined as in Chapter 3, and I =

∑
v∈ΓNN

µ(v)2 with µ the Perron Frobenius

weighting on the principal graphs on P.

This formula has some interest, because it contains information about the inclusions N ⊂ P
and P ⊂ M (δa and δb respectively) as well as the larger inclusion N ⊂ M (the global index I).
Just as in the case for the GJS algebras, we will also prove the following theorem:

Theorem 4.1.2. Mα
∼= L(F∞) when P is infinite depth.

In addition to understanding the algebraic structure of the Nk, we will make use of the semifinite
algebra to show that the law of ∪ ∈ N+

0 has a nice expression in terms of known laws.
Unfortunately, the author has not yet been able to identify the isomorphism classes of the

algebras N±k , however the semifinite algebra will show that there is evidence that the algebras N±k
are free group factors:

Theorem 4.1.3. The von Neumann algebras, N±k , are each contained in a free group factor and
contain a free group factor.

4.2 N − P −M planar algebras

The object that is at the heart of all of these computations is an N − P −M planar algebra which
can be thought of an augmentation of such a Q as above. Given parameters a and b, we denote
W as the set of finite words on aa and bb. We define what it means for a planar tangle to be an
N − P −M tangle:

Definition 4.2.1. A planar tangle is said to be an N − P −M tangle if its regions are shaded by
three colors, N , P , and M such that the following conditions are met:

• A region colored N only borders a region colored P

• A region colored M only borders a region colored P

• A region colored P can border a region colored N or M but not P .

We will denote the set of N − P −M tangles as the N − P −M planar operad. As in the
previous chapters, all tangles will be drawn so that the internal and external disks are rectangles.
In order for smooth isotopy to make sense, the rectangles have their corners smoothed out.

Any string serving as the boundary string of a region colored N will be called an a string and
any string bordering a region colored M will be called a b string. We note that the conditions on
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the regions show that if α is a word in a and b, then α serves as a word of strings intersecting a
disk if and only if α ∈ ∆ where ∆ is the set

∆ = {awb : w ∈ W} ∪ {bwa : w ∈ W} ∪ {awa : w ∈ W} ∪ {bwb : w ∈ W} ∪W

The following notation will be useful:

Notation 4.2.2. We denote ∆Q to be the set of all words in ∆ where the shading before the first
letter is Q (for Q = N, P, or M). If α ∈ ∆, we define s(α) to be the first letter of the word α.
Whenever a word is mentioned, part of the data is its initial region (hence the choice of region
between every pair of letters), not just its letters. If a tangle, T , has boundary condition α on its
outer disk, we will call T a planar α tangle. Any internal rectangle with boundary condition α will
be called an α rectangle.

We remark that just as for shaded planar algebras, there is a natural gluing operation. Namely,
if we have two planar tangles S, T satisfying the following boundary condition:

• Some internal rectangle DS of S has boundary data which agrees with T , i.e. the shadings
along the boundaries of T and DS agree when counting clockwise from the marked point.

then we may compose S and T to get the planar tangle S ◦DS T by taking S union the interior of
T , removing the boundary of DS, and smoothing the strings.

As in the previous chapter, given α ∈ ∆, we let α be α read in the opposite order. When a
string appears with a label α, then the string is meant to be a band of strings having colors ordered
by the word α. As in the previous chapter, the strings are read in the order of top to bottom and
left to right. Also, unless otherwise marked, all marked regions of rectangles will be assumed to
be on the bottom-left corner of the box. In addition, whenever there is a box written without a
tangle, it is assumed that the box is placed in a larger tangle whose boundary data agrees with the
boundary data for the box and whose marked region is the same as the marked region of the box.

We now define an N − P −M planar algebra:

Definition 4.2.3. An N − P −M planar algebra consists of the following data:

• Given parameters a and b as above, there is a finite dimensional complex vector space Pα for
every nonempty word, α ∈ ∆. There are three vector spaces PN∅ , PP∅ , and PM∅ in the case
when α is empty. These are one dimensional complex vector spaces.

• an action of planar tangles by multilinear maps, i.e., for each planar α tangle T , whose
rectangles Di(T ) are αi rectangles, there is a multilinear map

ZT :
∏
i∈I

Pαi → Pα

satisfying the following axioms:

Isotopy: If θ is an orientation preserving diffeomorphism of R2, then Zθ(T ) = ZT . That is, let T 0

be the interior of T , and let f ∈
∏

D⊂T 0 PαD . Then

Zθ(T )(fθ) = ZT (f)

where fθ(θ(D)) = f(D).
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Naturality: For S, T composable tangles, Z(S ◦D T ) = Z(S) ◦D Z(T ), where the composition on the
right hand side is the composition of multilinear maps.

• P is unital [Jon11]: Let S be an N−P−M tangle with no input disks and boundary condition
α ∈ ∆. Then, there is an element Z(S) ∈ Pα so that the following holds:

Let S be a tangle a nonempty set of internal disks such that S can be glued into the internal
disk DS of T . Then

Z(T ◦ S) = Z(T ) ◦ ZS.

Here (Z(T ) ◦ ZS)(f) = f̃ where

f̃(D) =

{
f(D) if D 6= DS

Z(S) if D = DS

This condition allows isotopy classes of of such an S to be elements of Pα. This action
allows us to identify the empty diagrams (shaded N , P , and M) with the scalar 1 ∈ C. We
make this assumption in the rest of this chapter. The naturality axiom, combined with this
identification, forces closed strings with parameters a and b to be replaced by scalars δa and
δb respectively.

• There is a conjugate linear involution, ∗ : Pα → Pα. It is compatible with reflection of tangles
i.e., if T is a tangle which is produced by an orientation reversing diffeomorphism, ϕ, of T ,
then we have

(ZT (f))∗ = ZT (f)

where f(ϕ(D)) = f(D)∗.

• Each Pα comes equipped with the positive definite sesquilinear form:

〈x, y〉 = x y∗
α

• P is spherical, i.e. for all α ∈ ∆ and all x ∈ Pαα, we have

tr(x) = α

α

x

α

= α

α

x

α

.

This says that we can think of our planar tangles as living in a sphere instead of a plane.

Remark 4.2.4. In viewing the action of a tangle, the letter Z will often be omitted.

A-priori, it is not clear that an N − P −M planar algebra should exist. The following example
shows that this is the case. For the rest of this paper, an a string will be colored blue and a b string
will be colored red.
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Example 4.2.5. Let δa, δb ∈ {2 cos(π/n) : n = 3, 4, 5, ...} ∪ [2,∞) and define Pα by

Pα = span{planar string diagrams with with boundary condition α}

i.e., Pα is the C−linear span of isotopy classes of α tangles with no input disks and no loops. For
example,

Pabba = span

{
, ,

}
.

The action of N − P −M tangles is as follows: All string diagrams are inserted into the necessary
input disks. The result of this operation is a new string diagram with except with some loops.
These loops are replaced with a parameter δa or δb, depending on the color of a loop. The adjoint
operation is the conjugate linear extension of reflection of diagrams.

It is straightforward to check that P satisfies all of the axioms of an N −P −M planar algebra
except positive definiteness. Given α ∈ ∆, we form the word α′ which is a word of colors that can
appear in a Fuss Catalan diagram, and is obtained from α by inserting the right combination of aa′s
or bb′s between letters in α. For example, if α = aaabbaabbbba, then α′ = a(bb)aabbaabb(aa)bba. We
then define a map φ : Pα → Pα′ which is given by inserting a cup of the appropriate color whenever
that color has been inserted into α, and then dividing by δma · δnb . Here, aa was inserted m times
and bb was inserted n times. For example,

φ

(
x

)
=

1

δ2
aδb
· x .

This map is easily seen to be preserve the desired sesquilinear form, and we know that this form is
positive semidefinite on the Fuss Catalan algebras, with positive definiteness in the case δa, δb ≥ 2,
from [BJ97]. Therefore, after taking a quotient in the case that δa or δb is less than 2, this example
produces an N − P −M planar algebra.

By unitality, this planar algebra is represented in every N − P −M planar algebra.

Principal graphs of N − P −M planar algebras

We first remark that if αα ∈ ∆, then the axioms of an N − P −M planar algebra show that Pαα
is a finite dimensional C∗ algebra with multiplication given by

x · y = x y
? ?

α α α
.

Let p ∈ Pαα and q ∈ Pγγ be projections. Then we say p is equivalent to q if there is a u ∈ Pαγ so
that

α

u

γ

u∗

α

= p and

γ

u∗

α

u

γ

= q.
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To an N − P −M planar algebra P , there are three principal graphs associated to P , ΓN , ΓP ,

and ΓM . We will call ΓQ the Q−principal graph of P . Each ΓQ has three sets of vertices, ΓNQ , ΓPQ
and ΓMQ . They are described by the following procedure:

The vertices v ∈ ΓQ2

Q1
correspond to equivalence classes of minimal projections pv in the finite-

dimensional C∗ algebra Pαα for some α depending on v where αα ∈ ∆Q1 and αα ∈ ∆Q2 . There are
a−colored edges connecting the vertices ΓNQ to the vertices ΓPQ as well as b−colored edges connecting

the the vertices ΓPQ to ΓMQ . The a−colored edges are created as follows:
Suppose v ∈ ΓNQ and w ∈ ΓPQ, let p ∈ Pββ be equivalent to pv. It follows that the element

ia(p) = p
ββ

?

is a projection in Pβaaβ. We draw n a−colored edges between v and w if n is the maximal number
such that there exist orthogonal projections q1, ..., qn ∈ Pβaaβ which are each equivalent to pw and
satisfy

∑n
i=1 qi ≤ ia(p). We can also get edges from w to v in a similar manner. In principle,

the construction of the a−edges leads to oriented edges, however, the presence of the Jones basic
construction shows that the edges can be unoriented. More precisely, consider the projection

e =
1

δa

? β ∈ Pβaaaaβ,

and z be its central support. We note that Pββ unitally includes into Pβaaaaβ by applying the
map ia twice. It is also a straightforward check to see that the mapping Pββ → Pβaaaaβ given by
x 7→ ia(ia(x))e is an isometry, and eia(y)e = ia(EPββ(y))e for y ∈ Pβaaβ. Therefore, from [JS97]
it follows zPβaaaaβz is isomorphic to the basic construction of Pββ in Pβaaβ. If A, B, and C are
finite dimensional C∗ algebras with C the basic construction of A in B, then the Bratteli diagram
of B ⊂ C is the reflection of that of A ⊂ B [JS97]. Therefore, if there are n a−colored edges from
v to w, then there are n a−colored edges from w to v.

There is an analogous way to determine the b−colored edges that go between ΓPQ and ΓMQ .

We also note that if p ∈ Pαα is a minimal projection corresponding to a vertex v ∈ ΓQ2

Q1
, then

the mapping in Example 4.2.5 shows that p is equivalent to a minimal projection in Pw where
w = abbaabbaa..., aabbaabb..., bbaabbaa... or baabbaa.... In particular, if Q is as in the introduction,
then we have established the following proposition once it is shown that we can consider Q inside
an augmentation P .

Lemma 4.2.6. Let Γ and Γ′ be the principal and dual principal graphs of Q respectively. Then
there are one-to-one correspondences between the following sets of vertices:

Γ+ ↔ ΓNN , Γ− ↔ ΓMN , Γ′+ ↔ ΓMM , and Γ′− ↔ ΓNM

Also observe that rotation by 180◦ is an anti-isomorphism of each Pγ. This induces a one-to-one

correspondence ΓQ2

Q1
↔ ΓQ1

Q2
. Finally, if the vertices of the principal graphs ΓQ are weighted according

to the traces of their corresponding projections, then it follows by the definition of principal graph
that the graph with vertices ΓNQ and ΓPQ is bipartite with Perron Frobenius eigenvalue δa. Also, the
graph with vertices ΓPQ and ΓMQ is bipartite with Perron Frobenius eigenvalue δb.
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4.3 N − P −M planar algebras from intermediate

subfactors

The goal of this section is to see that such aQ as above can be faithfully realized inside an N−P−M
planar algebra P . Much of this section was influenced from discussions with David Penneys and
Noah Snyder, and many of the proofs of the following theorems are taken from them. We will first
describe how such an algebra arises from an inclusion N ⊂ P ⊂ M of finite index II1 factors. To
start, we consider the following bifinite bimodules:

NL
2(P )P and PL

2(M)M

and their duals (contragredients)

PL
2(P )N and ML

2(M)P .

Let α ∈ ∆. Since part of the prescribed data for α is a choice of initial shading, we note that the
shading of α, i.e. the shading between any two letters on α is uniquely determined. Assume that
the shading of α is the sequence Q1 · · ·Qk for Qi = N, P or M . We define Zα to be the following:

Zα = Q1L
2(Q1)Q1∩Q2 ⊗

Q1∩Q2

Q1∩Q2L
2(Q2)Q2∩Q3 · · · ⊗

Qk−1∩Qk
Qk−1∩QkL

2(Qk)Qk∩Q1 ⊗
Qk∩Q1

L2(Q1)Qk∩Q1 .

and we set Pα = HomQ1−Q1(L2(Q1), Zα) (Notice that Qi ∩ Qi+1 is necessarily N , P , or M). We
note from [Bis97, Con80] that this can be identified with the Q1 −Q1 central vectors of Zα.

To help understand the planar structure, we let

N(= M0) ⊂M(= M1) ⊂M2 ⊂ · · · ⊂Mn ⊂ · · ·

be the Jones tower for N ⊂ M , where Mn is generated by Mn−1 and en−1. Here, en−1 is the
orthogonal projection from L2(Mn−1) onto L2(Mn−2). We will define eP to be the orthogonal
projection from L2(M) onto L2(P ). We will also let B = {bi}ni=1 be an orthonormal Pimsner Popa
basis for M over N where n− 1 is the largest integer which is bounded above by the index [M : N ].
The bi are elements in M satisfying the following equivalent conditions:

x =
n∑
i=1

EN(xbi)b
∗
i ∀x ∈M

x =
n∑
i=1

biEN(b∗ix) ∀x ∈M

1 =
n∑
i=1

bie1b
∗
i ,

as well as EN(bib
∗
j) = δi,j if i ≤ n− 1 and EN(bnb

∗
n) is a projection of trace [M : N ]− (n− 1) in M .

If we let eP be the orthogonal projection from L2(M) onto L2(P ) and {ci}mi=1 be an orthonormal
Pimsner-Popa basis of P over N . Then we have the following lemma.

Lemma 4.3.1. eP =
∑m

i=1 cie1c
∗
i .
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Proof. We compute the 2-norm of eP −
∑m

i=1 cie1c
∗
i . Doing so gives:

‖ep −
m∑
i=1

cie1c
∗
i ‖2

2 = tr(eP )− 2
m∑
i=1

tr(cie1c
∗
i eP ) +

m∑
i,j=1

tr(cie1c
∗
i cje1c

∗
j).

Since eP commutes with the elements ci, the term in the middle becomes 2
∑m

i=1 tr(cie1c
∗
i ). Using

e1c
∗
i cje1 = EN(c∗i cje1), and orthonormality of the basis, the last term becomes

∑m
i=1 tr(cie1c

∗
i ).

Therefore, we get:

‖ep −
m∑
i=1

cie1c
∗
i ‖2

2 = tr(eP )−
m∑
i=1

tr(cie1c
∗
i )

= tr(eP )− [M : N ]−1

m∑
i=1

tr(cic
∗
i )

= [M : P ]−1 − [M : N ]−1[P : N ] = 0

as desired.

We will now show the bimodules Zα can be isometrically embedded in L2(Mn) for some n. As
some notation, we will let δQ = [M : Q]1/2 for Q = N, P, or M . We also set EQ

1 = δQeQ, and

vQn = EnEn−1 · · ·E2E
Q
1 .

Theorem 4.3.2. The map φ : Zα →Mk given by

φ(x1 ⊗
Q1∩Q2

x2 ⊗
Q2∩Q3

· · · ⊗
Qk−1∩Qk

xk) = x1v
Q1∩Q2

1 x2v
Q2∩Q3

2 · · · vQk−1∩Qk
k−1 xk

is an isometry.

Proof. Note that the map is well defined as vQr commutes with Q. We proceed by induction on k.
The result is clearly true for k = 1, so assume that it holds for k− 1. Using the previous lemma as
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well as the relation EiEj = EjEi for |i− j| ≥ 2, we have:〈
x1v

Q1∩Q2

1 x2v
Q2∩Q3

2 · · · vQk−1∩Qk
k−1 xk, y1v

Q1∩Q2

1 y2v
Q2∩Q3

2 · · · vQk−1∩Qk
k−1 yk

〉
Mk

= trMk

(
y∗k(v

Qk−1∩Qk
k−1 )∗ · · · (vQ2∩Q3

2 )∗y∗2(vQ1∩Q2

1 )∗y∗1x1v
Q1∩Q2

1 x2v
Q2∩Q3

2 · · · vQk−1∩Qk
k−1 xk

)
= δ2

Q trMk

(
y∗k(v

Qk−1∩Qk
k−1 )∗ · · · y∗2EQ1∩Q2(y∗1x1)eQ1∩Q2x2 · · · vQk−1∩Qk

k−1 xk

)
= δ2

Q trMk

(
y∗k(v

Qk−1∩Qk
k−2 )∗Ek−1 · · · y∗2EQ1∩Q2(y∗1x1)eQ1∩Q2x2 · · ·Ek−1v

Qk−1∩Qk
k−2 xk

)
=

δ2
Q

[M : N ]1/2
·

trMk

(
y∗k(v

Qk−1∩Qk
k−2 )∗ · · · y∗2EQ1∩Q2(y∗1x1)Ek−1 · · ·E2

m∑
i=1

(biE1b
∗
1)E2 · · ·Ek−1x2 · · · vQk−1∩Qk

k−2 xk

)

=
δ2
Q[Q1 ∩Q2 : N ]

[M : N ]1/2
· trMk

(
y∗k(v

Qk−1∩Qk
k−2 )∗ · · · y∗2EQ1∩Q2(y∗1x1)Ek−1x2 · · · vQk−1∩Qk

k−2 xk

)
= trMn−1

(
y∗k(v

Qk−1∩Qk
k−2 )∗ · · · y∗2EQ1∩Q2(y∗1x1)x2 · · · vQk−1∩Qk

k−2 xk

)
=

〈
EQ1∩Q2(y∗1x1)x2 ⊗

Q2∩Q3

· · · ⊗
Qk−1∩Qk

xk, y2 ⊗
Q2∩Q3

· · · ⊗
Qk−1∩Qk

yk

〉
=

〈
x1 ⊗

Q1∩Q2

x2 ⊗
Q2∩Q3

· · · ⊗
Qk−1∩Qk

xk, y1 ⊗
Q1∩Q2

y2 ⊗
Q2∩Q3

· · · ⊗
Qk−1∩Qk

yk

〉

as desired.

The map φ above is clearly a bimodule map, so central vectors get mapped into N ′ ∩ L2(Mk).
Since N ′ ∩ L2(Mk) = N ′ ∩Mk is finite dimensional, it follows that each Pα is finite dimensional.

Action of N − P −M tangles on Pα

We now describe how the N − P −M planar operad acts on the various Pα. Given an N − P −M
tangle T , we isotope it so that it is in standard form. This means:

1. All of the input and output disks are rectangles and all strings (that are not closed loops)
emanate from the top of the rectangles.

2. All the input disks are in different horizontal bands and all maxima and minima of strings
are at different vertical levels, and not in the horizontal bands defined by the input disks.

3. The starred intervals of the input disks are all at the bottom-left corner. When we have a
diagram of this form, the ? is omitted.

One then positions an imaginary horizontal line at the bottom of the tangle, T , and then slides
it to the top. One starts with the central vector 1Q ∈ L2(Q) whenever the bottom of the box is
shaded Q. The central vector gets altered as the line crosses either an input box, a maximum on
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a string, or a minimum on a string. When the line reaches the top, you get the central vector
produced by the action of the tangle.

Suppose the horizontal line passes through the ith rectangle (with respect to the isotopy) in the
mth
i region which is shaded Qmi (reading left to right along the line), and suppose that the vector

vi has been assigned to the box. We simply insert vi into the mth
i slot, i.e.∑

j

xj1 ⊗ · · · ⊗ xjmi ⊗ · · · ⊗ xn 7→
∑
j

xj1 ⊗ · · · ⊗ xjmivi ⊗ · · · ⊗ xn

=
∑
j

xj1 ⊗ · · · ⊗ vixjmi ⊗ · · · ⊗ xn

Now suppose the horizontal line passes through a minimum, and suppose Y ⊂ X with X, Y ∈
{N,P,M} and X and Y resemble the regions on either side of the minimum. Let BX,Y be a
Pimsner-Popa basis for X over Y . Then we have the diagrammatic rules:

Y

X

→ Y

X

x 7→ 1

[X : Y ]1/2

∑
b∈BX,Y

xb⊗
Y

1Y ⊗
Y
b∗ =

∑
b∈BX,Y

b⊗
Y

1⊗
Y
b∗x

X

Y

→ X

Y

x 7→ x⊗
Y

1X ⊗
Y

1Y = 1Y ⊗
Y

1X ⊗
Y
x

Whenever a dotted line passes over a maximum, the following rules apply:

X

Y →
X

Y
y1 ⊗

Y
x⊗
Y
y2 7→ [X : Y ]1/2y1EY (x)y2

Y

X →
Y

X
x1 ⊗

Y
y ⊗
Y
x2 7→ x1yx2

Here is an example of a tangle acting on y1 ⊗
Y
x⊗
Y
y2:

Y

X

(y1 ⊗
Y
x⊗
Y
y2) =

1

[X : Y ]1/2
·
∑

b∈BX,Y

by1x⊗
Y
y2 ⊗

Y
b∗

Note also that our rules dictate that a loop with an X on one side and Y on the other counts for
a factor [X : Y ]1/2. As [M : P ] and [P : N ] are the only two such indices that will appear, we will
let δa = [P : N ]1/2 and δb = [M : P ]1/2.

It is a straightforward check to see that each of these maps preserves central vectors. Each map
is also locally a bimodule map, hence the action of T will also preserve invariant elements.

Checking that T is well defined up to isotopy involves checking the same (finite number of)
relations as in [Jon]. For example, checking

X

Y = Y X
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boils down to checking the relation x =
∑

b∈BX,Y EY (xb)b∗, which always holds. The key to checking
that the action of T is defined up to isotopy is to show that rotation by 2π is the identity.

Let x =
∑

j x
j
1 ⊗
Q1∩Q2

xj2 · · · ⊗
Qn∩Q1

xjn+1 ∈ Pα, and let T be the tangle which is rotation by one-click

clockwise, namely

T = .

where there are n− 1 strings that are not bent. By definition, we have:

Z(T )(x) =


1

[Qn:Q1]1/2

∑
b∈B(Qn,Q1)

∑
j b ⊗

Q1

x1 ⊗
Q1∩Q2

x2 · · · ⊗
Qn−1∩Qn

xnxn+1b
∗ if Q1 ⊂ Qn

[Q1 : Qn]1/2
∑

j 1 ⊗
Qn
x1 ⊗

Q1∩Q2

x2 · · · ⊗
Qn−1∩Qn

xnEQn(xn+1) if Qn ⊂ Q1

To help our computations, we define the following left and right creation operators, Lx and Rx for
x ∈ Q. These are given by:

Lx : Zα → L2(Q) ⊗
Q∩Q1

Zα such that Lx(x1 ⊗ · · · ⊗ xn+1) = x⊗ x1 ⊗ · · · ⊗ xn+1

Rx : Zα → Zα ⊗
Q∩Q1

L2(Q) such that Rx(x1 ⊗ · · · ⊗ xn+1) = x1 ⊗ · · · ⊗ xn+1 ⊗ x

It follows from the definition of the bimodule tensor product that

L∗x(x0 ⊗ x1 ⊗ · · · ⊗ xn+1) = EQ∩Q1(x∗x0)x1 ⊗ · · · ⊗ xn+1 and

R∗x(⊗x1 ⊗ · · · ⊗ xn+1 ⊗ y) = x1 ⊗ · · · ⊗ xn ⊗ xn+1EQ1∩Q0(yx∗)

Therefore, we have the following formulae the rotation tangle, T :

Z(T )(x) =

{
1

[Qn:Q1]1/2

∑
b∈B LbR

∗
b(x) if Q1 ⊂ Qn

[Q1 : Qn]1/2L1R
∗
1(x) if Qn ⊂ Q1

From Burns’ rotation trick [Bur03] we have the following lemma which is similar to lemmas that
appear in [JP11]:

Lemma 4.3.3. Let ρ(α) be the word formed when the words in α are cyclically permuted clockwise
by one, and let y = y1 ⊗ · · · ⊗ yn ⊗ yn+1 ∈ Zρ(α). Then

• 〈T (x), y〉 =
1

[Qn : Q1]1/2
〈x, y2 ⊗ · · · ⊗ yn+1 ⊗ y1〉 if Q1 ⊂ Qn

• 〈T (x), y〉 = [Q1 : Qn]1/2〈x, y2 ⊗ · · · ⊗ yn+1 ⊗ y1〉 if Qn ⊂ Q1
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Proof. For the first case, using that x is central, we have

〈T (x), y〉 =
1

[Qn : Q1]1/2
〈
∑
b∈B

LbR
∗
b(x), y〉 =

∑
b∈B

1

[Qn : Q1]1/2
〈x,RbL

∗
b(y)〉

=
1

[Qn : Q1]1/2

∑
b∈B

〈x,EQ1(b∗y1)y2 ⊗ y3 ⊗ · · · ⊗ yn+1 ⊗ b〉

=
1

[Qn : Q1]1/2

∑
b∈B

〈(EQ1(b∗y1))∗x, y2 ⊗ y3 ⊗ · · · ⊗ yn+1 ⊗ b〉

=
1

[Qn : Q1]1/2

∑
b∈B

〈x(EQ1(b∗y1))∗, y2 ⊗ y3 ⊗ · · · ⊗ yn+1 ⊗ b〉

=
1

[Qn : Q1]1/2

∑
b∈B

〈x, y2 ⊗ y3 ⊗ · · · ⊗ yn+1 ⊗ bEQ1(b∗y1)〉

=
1

[Qn : Q1]1/2
〈x, y2 ⊗ · · · ⊗ yn+1 ⊗ y1〉.

For the second case, we have

〈T (x), y〉 = [Q1 : Qn]1/2〈L1R
∗
1(x), y〉 = [Q1 : Qn]1/2〈x,R1L

∗
1(y)〉

= [Q1 : Qn]1/2〈x,EQ1(y1)y2 ⊗ · · · ⊗ yn+1 ⊗ 1〉
= [Q1 : Qn]1/2〈x, y1y2 ⊗ · · · ⊗ yn+1 ⊗ 1〉
= [Q1 : Qn]1/2〈y∗1x, y2 ⊗ · · · ⊗ yn+1 ⊗ 1〉
= [Q1 : Qn]1/2〈xy∗1, y2 ⊗ · · · ⊗ yn+1 ⊗ 1〉
= [Q1 : Qn]1/2〈x, y2 ⊗ · · · ⊗ yn+1 ⊗ y1〉

as desired.

Corollary 4.3.4. Rotation by 2π is the identity.

Proof. The nature of the shading dictates that all index factors cancel when applying the 2π rota-
tion. The rest follows from the previous lemma.

One can now continue as in [Jon].

Realizing Q inside P
Suppose Q is a planar algebra containing the Fuss-Catalan algebra, so that Q is the planar algebra
for a finite index inclusion N ⊂M with intermediate subfactor P . We note that Q2n,+ is the space
of N −N central vectors of

(NL
2(M)N)

⊗
N

n

= (NL
2(M)M ⊗

M
ML

2(M)N)
⊗
N

n

.

and Q2n,− is the space of M −M central vectors of (ML
2(M)N ⊗

N
NL

2(M)M)
⊗
M

n

. Since

NL
2(M)M =N L2(P )P ⊗

P
PL

2(M)M ,
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it follows that
Q2n,+ = P(abba)n/2 and Q2n,− = P(baab)n/2 .

Furthermore, a tangle S that acts on Q can be made into an N−P −M tangle S ′ by replacing each
string with an a string cabled to a b string. This is done so that the shaded regions in S become
the M−regions in S ′ and the unshaded regions in S become the N−regions in S ′. Notice that this
implies that the strings along any disk in S ′ read (clockwise from the marked region) as abbaabbaa...
or baabbaabb.... It directly follows from the definitions that if x1, ..., xn are in Q and S is as above,
then Z(S)(f) = Z(S ′)(f) where the left hand side denotes the action of a shaded tangle and the
right hand side denotes the action of an N − P −M tangle.

Definition 4.3.5. IfQ is the planar algebra of an inclusionN ⊂M of finite index II1 factors with an
intermediate subfactor, P , then we define the P constructed as above as the P−augmentation of Q.

4.4 The GJS construction for the
∑
FC potential

Suppose Q is a subfactor planar algebra containing a copy of the Fuss Catalan planar algebra. For
each k ≥ 0, we study the graded algebra Gr±k (Q) as above, and place the following trace on Gr±k (Q):

tr(x) =
1

(δaδb)k
x

∑
FC

k

.

where the shading on the upper left corner is ± (therefore, the shading in the starred region depends
on k).

As in Section 4.3, we realize Q inside an augmentation, P , and we consider the algebras Grα(P)
where αα ∈ ∆. If α 6= ∅ then the shading after the last letter of α is uniquely determined and hence
we can write,

Grα(P) = ⊕(β:αβα∈∆)Pαβα.
Grα(P) is endowed with a multiplication ∧ given by

x ∧ y = x yα α α
β γ

and normalized trace

tr(x) =
1

δα
· x

ΣCTL

β
αα

α

where, as in Chapter 3,
∑
CTL is the sum of all colored Temperley-Lieb diagrams. In the case

where α = ∅, then we have three such algebras, one for each shading N , P , and M . We therefore
form graded algebras GrN0 , GrP0 and GrM0 where

GrQ0 =
⊕

(β:β∈∆Q)

Pβ.
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Using the graded algebras associated to P , we see that we have the following trace preserving
inclusions:

Gr+
2k(Q) ⊂ Grabba···abba(P)

Gr+
2k+1(Q) ⊂ Grabba···baab(P)

Gr−2k(Q) ⊂ Grbaab···baab(P)

Gr−2k+1(Q) ⊂ Grbaab···abba(P).

One advantage to working in the N − P −M planar algebra P is that the map Φ : Grα(P)→
Grα(P) given by

Φ(x) =
∑

E∈Epi(CTL)
x

E

as in Section 3.3 of the previous chapter is a well defined trace preserving isomorphism between
Grα(P) with the

∑
CTL trace and Grα(P) with the orthogonalized trace. Therefore, we have

proven the following lemma:

Lemma 4.4.1. The potential
∑
CTL gives a positive definite trace on Grα(P).

Furthermore, by considering either the a or b ∪ element, the same analysis as in Section 3.3 of
the previous chapter proves the following theorem:

Theorem 4.4.2. Left (and right) multiplication of elements of Grα(P) on L2(Grα(P)) is bounded
and the associated von Neumann algebra, Mk = Grα(P)′′ is a II1 factor.

We note that if γ and β are words in a and b such that ββ ∈ ∆ and βγβγ ∈ ∆ then we have a
unital inclusion of Mγ into Mβγ given the extension of

x 7→
γ

β β
x .

We therefore have the following theorem, whose proof is exactly the same as in Section 3.3 of the
previous chapter.

Theorem 4.4.3. The following is a Jones’ tower of II1 factors:

MQ
0 ⊂Mα ⊂Mαα ⊂ · · · ⊂M(αα)n ⊂Mα(αα)n .

Furthermore, [Mα : MQ
0 ] = δα, and the Jones projection for MQ

0 ⊂Mα is

e0 =
1

δα
α α
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4.5 A semifinite algebra associated to P
As in section 3.4 of the previous chapter, we will realize the isomorphism class of all of the Mα

by examining realizing them as “corners” of a semifinite algebra. To begin, we consider the set
semifinite algebra GrQ∞ for Q = N, P, M . As a vector space,

GrQ∞ =
⊕
α,γ,β

αγβ∈∆, α∈∆Q

Pαγβ.

Pictorially, we realize elements in GrQ∞ as linear combinations of boxes of the form

w
α

β
γ

where the bottom (starred) region is shaded Q (thus the top left corner varies in shading). GrQ∞
comes endowed with the following multiplication:

x
κ

γ

θ ∧ x
ω

γ′

χ
= δω,θ x y∗

κ

γ

θ

γ′

χ

and semifinite trace, Tr, which is given by:

Tr(x) =
x

ΣCTL

αα

α

if x ∈ Gr(Pα) and is zero otherwise. Just as in the analysis of Section 3.4 from the previous chapter,
we see that GrQ∞ completes to a II∞ factor, MQ

∞ when being represented on L2(GrQ∞).
Also of importance will be the von Neumann subalgebra AQ∞ ⊂ MQ

∞ which is generated by all
boxes in GQ∞ with no strings on top. Notice that there is a normal, faithful, Tr-preserving conditional
expectation E :MQ

∞ → AQ∞ given by

E(x) =
x

ΣCTL

.

Furthermore, we have the following lemma, whose proof is identical to that of Lemma 3.4.6 of the
previous chapter:

Lemma 4.5.1. AQ∞ =
⊕

v∈ΓQ
Av where ΓQ is the Q−principal graph of P and each Av is a type

I∞ factor.
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We now aim to figure out the isomorphism class of the algebras Mα. For the remainder of the
section, we will assume for simplicity that Q = N and hence we will be finding the isomorphism
class of Mα such that s(α) = N . The other two cases will follow a similar analysis. We first define
elements Xa and Xb as follows:

Xa =
∑
α

α,α∈∆N

a
α +

a
α and Xb =

∑
β

β∈∆P β∈N,s(β)=a

b
β +

b
β .

As in Section 3.4 of the previous chapter, Xa and Xb are sums of orthogonally supported operators,
and each summand has uniformly bounded operator norm. Therefore, Xa, Xb ∈MN

∞. Furthermore,
we have the following lemma:

Lemma 4.5.2. MN
∞ is generated as a von Neumann algebra by (AN∞, Xa, Xb).

Proof. As in the proof of Lemma 3.4.9 from Chapter 3, all that needs to be shown is that the
following diagrams lie in the von Neumann algebra generated by (AN∞, Xa, Xb):

α
N and β

P

If s(α) = a, then the exact same method as in the proof of Lemma 3.4.9 from Chapter 3 shows that
this element is in the algebra. if s(α) = b, the following multiplication produces the diagram:

1

δa
· α · · α .

A similar argument works for the element

β
P .

Much as in the previous chapter, we also have the following lemma:

Lemma 4.5.3. Xa and Xb are free with amalgamation over AN∞ with respect to the conditional
expectation, E.

We now define maps ηa and ηb on AN∞ as follows:

ηc(y) = E(XcyXc)

for c = a or b. Notice that by definition of E, ηc is a completely positive map of ANI into itself.
Furthermore it is a straightforward inductive check to note that the formula

E(y0Xcy1Xc · · · yn−1Xcyn)

=
n∑
k=2

y0 · ηc(E(y1Xc · · ·Xcyk−1)) · E(ykXc...Xcyn),
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as in Section 3.4 of the previous chapter holds. Pictorially, there are nice expressions for ηc(w) for
various choices of w. To begin, for i = 1, 2, let αi be a word with αi ∈ ∆N , βi be a word with
s(βi) = a and βi ∈ ∆P , and γi be a word such that γi ∈ ∆M . Furthermore, suppose x ∈ Pα1α2 ,
y ∈ Pβ1β2

and z ∈ Pγ1γ2 . We then have the following easily verifiable formulae:

ηa(x) = x
α1 α2 ηa(y) = yβ1 β2 ηa(z) = 0

ηb(x) = 0 ηb(y) = yβ1 β2 ηb(z) = z
γ1 γ2

With the pictures above, the following useful lemma is easily verified:

Lemma 4.5.4. Let αi be a word with s(αi) = N and βi be a word with s(βi) = P for i = 1 or 2.
In addition, suppose x ∈ Pα1α2 and y ∈ Pβ1β2

. We have the following formulae:

x ·Xa = Xa · ηa(x) and y ·Xb = Xb · ηb(y).

This lemma will be used to help describe certain compressions of MN
∞.

A suitable compression of MN
∞

To begin, it will be useful to define three projections in AN∞

1ANN =
∑
α∈∆N

α 1ANPa
=
∑
α∈∆N

a
α 1ANMa

=
∑
α∈∆N

α .

Note that 1ANN + 1ANPa
+ 1ANMa

is the smallest projection dominating the support projections of Xa

and Xb.
Our goal, much as in Section 3.4 of the previous chapter, is to better understand what hap-

pens when MN
∞ is compressed by certain projections. To begin our study, we consider ΓN , the

N−principal graph of P . For each vertex, v, at the N −N level of the graph, we choose a minimal
projection pv ∈ A∞, and for the vertex, ∗, we choose the empty N−shaded diagram. Notice that
for each v we can choose pv ∈ Pαα for α ∈ ∆N .

By the definition of the principal graph, we know that there exists a countable index set, I and
partial isometries (Vi)i∈I ⊂ AN∞ such that

ViV
∗
i =

∑
v∈ΓNN

pv ∀i and
∑
i∈I

V ∗i Vi = 1ANN .

This necessarily implies that∑
i∈I

ηa(Vi)
∗ηa(Vi) = 1ANPa

and
∑
i∈I

ηb(ηa(Vi))
∗ηb(ηa(Vi)) = 1ANMa

We define R1 by the following formula:

R1 =
∑
v∈ΓNN

(pv + ηa(pv) + ηb(ηa(pv))).
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If we set Zi = Vi + ηa(Vi) + ηb(ηa(Vi)) then

ZiZ
∗
i = R1 and

∑
i∈I

Z∗i Zi = 1ANN + 1ANPa
+ 1ANMa

.

We have the following lemma regarding compression of MN
∞ by R1.

Lemma 4.5.5. As a von Neumann algebra, R1MN
∞R

1 is generated by R1ANI R1, R1XaR
1, and

R1XbR
1.

Proof. Note that
∑

i,j∈I Z
∗
iXcZj = Xc for c = a or b by repeated applications of Lemma 4.5.4.

Therefore, every word involving Xa or Xb and elements x ∈ A∞ (whose ending letters are supported
under R1) can be replaced by sums of words involving terms of the form R1XcR

1 and R1xR1 by
inserting the relation ∑

i∈I

Z∗i Zi = 1ANN + 1ANPa
+ 1ANMa

.

between every letter of the word.

We now investigate the action of compressing R1MN
∞R

1 by subprojections of R1. To begin, for
each vertex w ∈ ΓPN , let pw be a minimal projection in ANI corresponding to the vertex w such
that pw ≤

∑
v∈V ηa(pv). For each edge e connecting a vertex in ΓNN to a vertex in ΓPN , we let s(e)

and t(e) be the vertices in ΓNN and ΓPN respectively which e connects. We define partial isometries
ωe ∈ R1AN∞R1 such that

ω∗eωe′ = δe,e′pt(e) and
∑
s(e)=v

ωeω
∗
e = ηa(pv).

Once the pw have been chosen, for each vertex u ∈ ΓMN , choose a minimal projection pu corresponding
to u such that pu ≤

∑
w∈ΓPN

ηb(pw).

For each edge, f , connecting the N − P vertices to the N −M vertices, s(f) and t(f) be the
vertices in ΓPN and ΓMN respectively which f connects. We define partial isometries νf satisfying:

ν∗fνf ′ = δf,f ′pt(f) and
∑
s(f)=w

νfν
∗
f = ηa(pw)

We now define operators Xe
a X

f
b by the formulae

Xe
a = ps(e)Xaωe + ω∗eXaps(e) and Xf

b = ps(f)Xbνf + ν∗eXb.

We have the following lemma, whose proof is the same as the arguments of Section 3.4 of Chapter
3, except easier as there are no loops on the principal graph and only one minimal projection for
each vertex.

Lemma 4.5.6. Set R =
∑

v∈Γ pv. Then RMN
∞R is generated by RAN∞R and the elements Xe

a X
f
b

for all e and f , and each of the elements are free with amalgamation over RAN∞R with respect to
E.
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Note that the algebra RAN∞R is simply the bounded functions on the vertices of Γ, and the ele-
ment ps(e)Xaωe has left support under ps(e) and right support under pt(e). Furthermore, if Tr(ps(e)) ≥
Tr(pt(e)) then the analysis in the appendix of Chapter 3 shows that (ps(e)Xaωe)

∗ps(e)Xaωe is a free
poisson element with absolutely continuous spectrum in pt(e)MN

∞pt(e). If Tr(ps(e)) ≤ Tr(pt(e)), then
ps(e)Xaωe(ps(e)Xaωe)

∗ is a free poisson element with absolutely continuous spectrum in ps(e)M∞
N ps(e).

Analogous statements hold for the elements ps(f)Xbνf .

An amalgamated free product representation for RM∞
NR

The work of the previous section shows that

RMN
∞R = N (ΓN)

with N (Γ) as in the previous two chapters. We use this to obtain a formula for M0 when ΓN is
finite. Let g be an edge in ΓN connecting v and w with Tr(pv) ≥ Tr(pw). The basic rules for
computing free dimension show that

fdim(RMeR) = 1−
(Tr(pv)− Tr(pw))2 −

∑
u6=v,w Tr(pu)

2

Tr(R)2
= 1−

∑
u∈Γ Tr(pv)

2 − 2 Tr(pv) Tr(pw)

Tr(R)2
.

Using the additivity of free dimension, as well as

fdim(`∞(Γ)) = 1−
∑

u∈Γ Tr(pv)
2

Tr(R)2
,

we obtain

fdim(RMN
∞R) = 1 +

−
∑

u∈Γ Tr(pv)
2 + 2

∑
g∈E(ΓN ) Tr(ps(g)) Tr(pt(g))

Tr(R)2

= 1 +

∑
u∈γ Tr(pu)

∑
v∼u(Tr(pv)− Tr(pu))

Tr(R)2
.

Using the Perron-Frobenius condition, this becomes

fdim(RMN
∞R) = 1 +

2I((δa − 1) + (δb − 1))

Tr(R)2

Where I =
∑

v∈ΓNN
tr(pv)

2(=
∑

w∈ΓPN
tr(pw)2 =

∑
u∈ΓMN

tr(pu)
2). Therefore, RMN

∞R is an interpo-

lated free group factor with the above parameter. The compression formula for free group factors
proves the following lemma

Lemma 4.5.7. MN
0
∼= L(Ft) where t = 1 + 2I(δa + δb − 2).

This gives us the following corollary:

Corollary 4.5.8. The factors Mα have the formula

Mα
∼= L(F(1 + 2Iδ−2

α (δa + δb − 2)))
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Proof. If s(α) = N , then it follows from the semifinte algebraMN
∞ that Mα is a δα amplification of

MN
0 . If the shading is different, apply similar analysis to the semifinite algebrasMP

∞ andMM
∞ .

We now handle the case where P is infinite depth:

Lemma 4.5.9. If P is infinite-depth, then MN
0
∼= L(F∞), and hence Mα

∼= L(F∞) for all α

Proof. Let Γk be the graph of ΓN truncated up to depth k as in the proof of Theorem 2.4.2 in
Chapter 2. As in that proof, we let

B(Γk) = {v ∈ Γk; Tr(pv) >
∑

w∼v∈Γk

nv,w Tr(pw)}

where nv,w is the number of edges that connect v and w. We note that by the Perron Frobenius
condition, no vertices in Γk−1 are in B(Γk). Following the proof of Theorem 2.4.2 in Chapter 2
step-by-step, we arrive at the formula

fdim(MN
0 ) ≥ 1 + (δa − 1)

∑
v∈Γk−2 and

v∈ΓNN∪ΓPN

Tr(pv)
2 + (δb − 1)

∑ ∑
v∈Γk−2 and

v∈ΓPN∪ΓMN

Tr(pv)
2

which gets arbitrarily large as k does. The standard embedding arguments of Chapter 2 show that
MN

0
∼= L(F∞). We arrive at the result for the other Mα’s either by amplification or by examining

M(ΓP ) or M(ΓM).

We can use this result to give a complete diagrammatic reproof of the universality result of Popa
and Shlyakhtenko regarding the universality of L(F∞) in subfactor theory.

Lemma 4.5.10 ([PS03]). Every subfactor planar algebra P ′ is the standard invariant for a finite-
index inclusion N ⊂M with N ∼= L(F∞) ∼=M.

Proof. A diagrammatic proof of this fact for P ′ infinite depth was done is Chapter 2. If P ′ is finite
depth, let P ′ be the planar algebra for a finite index inclusion N ′ ⊂ P ′ of II1 factors. Let B ⊂ C
be a finite index inclusion of II1 factors with principal graph A∞. We consider the inclusions

N ′ ⊗B(= N) ⊂ P ′ ⊗B(= P ) ⊂ P ′ ⊗ C(= M).

Let Q be the planar algebra for N ⊂ M , and P the augmentation of Q for N ⊂ P ⊂ M . We note
that P ′ is also the planar algebra for N ⊂ P , and the planar subalgebra of P generated by words
whose only color is a is P ′. From Theorem 4.4.3, it follows that the standard invariant of MN

∅ ⊂Ma

is P ′ and from the above calculation, MN
∅
∼= L(F∞) ∼= Ma

Note that Rădulescu provided the original construction of N ⊂ M both isomorphic to L(F∞)
having standard invariant P ′ for P ′ finite depth. [Răd94].
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The law of ∪ ∈ N+
0

One pleasing feature of the semifinite algebra constructed above is that is gives one a transparent
way to find equations of the spectrum of the element ∪ ∈ N0. This corresponds to the double-cup
element

∈MN
∅

Picturing ∪ as living in MN
I , we note that Tr(∪n) = Tr(xn) where x is the element

x = = ·

which is supported by
1a =

Note that x is expressed as a product of free elements 1aMN
∞1a. Let y be the element

y =

and r be the element
r = .

We know that ∪a is distributed as a free-poisson element, and its moment generating function is

M∪a(z) =
−((δa − 1)z − 1) +

√
((δa − 1)z − 1)2 − 4z

2z
.

In the algebra 1aMN
∞1a with normalized trace, τ , we must have τ(yn) = Tr(∪n)/δa for n ≥ 1 and

τ(y0) = 1. Therefore, the moment generating function of y is

My(z) = M∪a(z)δa +
δa − 1

δa
.

The tool we will use to calculate the moments of x is Voiculescu’s S−transform [VDN92]. From
[VDN92], it is known that is Ss and St are the S− transforms for free elements s and t in a tracial
von Neumann algebra, then

Sst(z) = Ss1/2ts1/2(z) = Ss(z)St(z).

Furthermore, to compute the S−transform of an element s, one finds formal power series ψs, χs
and Ss satisfying:

ψs(z) = Ms(z)− 1 χs(ψs(z)) = z = ψs(χs(z)) and Ss(z) =
(z + 1)χs(z)

z

These formulas produce the following expression for the S−transform of x:

Sx(z) =
(z + 1)2(z − 1)(δaz − 1)

((δb − 1)z + δb)((δa − 1)z + 1)
,
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which can be inverted to give the Cauchy transform of x. We know that the law of a single-colored
∪ (as in [GJS10]) is absolutely continuous with respect to Lebesgue measure and is supported away
from the origin. Therefore, the law of y contains an atom of at the origin of measure δa−1

δa
at the

origin and is absolutely continuous away from the origin. It follows that the law of y1/2ry1/2 has an
atom of measure δa−1

δa
at the origin and is absolutely continuous away from the origin. Furthermore,

the spectral projection corresponding to {0} for y1/2ry1/2 must be the same as the spectral projection
corresponding to {0} for y. From this, we use the polar part of

to conclude that ∪ ∈ N+
0 has law absolutely continuous to Lebesgue measure and supported away

from the origin.

Nk contains a free group factor

Recall that N±k = Gr±k (Q)′′. We will use the moment calculation of ∪ above as well as similar
elements arising in the semifinite algebra to find a free group factor contained in N±k . To simplify
matters, we note that we need only consider the case where Q is Fuss Catalan, as any such planar
algebra will contain the Fuss Catalan planar algebra.

By the usual amplification tricks, we need need only show that N+
0 contains a free group factor.

We embedQ into its augmentation P as in Example 4.2.5, which produces an embedding Gr+
∞(Q) ↪→

GrN∞(P) where Gr+
∞(Q) is realized as the subalgebra of GrN∞(P) generated by the Fuss Catalan

diagrams. Let N∞ = Gr+
∞(Q). We have the following lemma:

Lemma 4.5.11. Let pab be the following diagram

pab =

and set

x = and y = f (2) .

with f (2) the second Jones-Wenzl idempotent in Temperely Lieb. Then x and y are free in pabMN
∞pab.

Proof. From [BJ97], the projections

p0 = p1 = p2 = p3 = f (2) and p4 = f (2) .

are inequivalent minimal projections in P , and there exists exactly one edge ei which goes between
the vertices representing pi−1 and pi. Therefore, by choosing p0, p2, and p4, to line up with our
choices of minimal projections lying under Q, It follows that

x = p2X
e2
b X

e1
a X

e1
a X

e2
b p2 and y = p2X

e3
b X

e4
a X

e4
a X

e3
b p2

so x and y are free with amalgamation over AN∞. Since pab = p2 is minimal in AN∞, the result
follows.
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Proof of Theorem 4.1.3. Clearly, N+
0 ⊂MN

∅ so N0 is contained in an interpolated free group factor.
Conversely, we know that pabNN

∞pab contains a copy of W ∗(x) ∗W ∗(y). Since the law of ∪ ∈ Nk
has no atoms, it follows that

W ∗(x) =
q

L(Z)
1

⊕ C
δaδb−1

where q is equivalent to p0 via the polar part of

.

It follows from the arguments in Chapter 2 that

q(W ∗(x) ∗W ∗(y))q = L(Z) ∗ q
((

q

C
1
⊕ C

δaδb−1

)
∗W ∗(y)

)
q

which is an interpolated free group factor. By the equivalence of q and p0 in NN
∞ , and the identity

N+
0 = p0NN

∞p0, it follows that N+
0 contains an interpolated free group factor.

Unfortunately, at this point, the author is unable to determine the isomorphism class of the N±k .
While it is straightforward to show that a suitable compression of the algebra NN

∞ is generated by
products of the form Xe

aX
f
b , terms of the form

Xe1
a X

f
b and Xe2

a X
f
b

appear with e1 6= e2. The very nature of NN
∞ makes it difficult to “decouple” this into a free family

which still lies in NN
∞ .
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