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ABSTRACT OF THE DISSERTATION

Parameter Analysis on Variants of Kernel Regression over Graphs

By

Yue Zhao

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2023

Professor Ender Ayanoglu, Chair

The dissertation focuses on understanding parameter influences on variants of kernel regres-

sion models over graphs. Graphs are used to represent complex systems where components

in the system are modeled as nodes, and relationships among the components are denoted as

edges connecting nodes. Kernel regression models can be used to solve graph-related prob-

lems such as graph signal reconstruction and prediction. In the graph signal reconstruction

problem, a common case is to predict an unknown attribute of a node using known values

of the same attribute from other nodes and the network structure. In the graph prediction

problem, a common case is to predict a graph signal over the network based on historical

graph signals. The essence of the two problems is to model the input-output relationship,

and the kernel-based regression model with an iterative solution is a simple yet possibly pow-

erful solution. The dissertation will first show an application of the kernel regression model

on the graph signal reconstruction problem over multi-layer graphs. The graph signal recon-

struction problem aims to estimate unknown nodal values based on known nodal values and

the multi-layer network structure. Viewing the mapping from the local network structure of

a node to the nodal value as a function in a Reproducing Kernel Hilbert Space (RKHS), a

regression model based on multiple kernels is built and a minimization problem is format-

ted. With the gradient descent algorithm, it is easy to find the solution to the minimization

problem iteratively. In this application of the kernel-based regression model, the predicting

xii



ability of the model is verified. It is also seen from the application that the single-kernel

models are used as building blocks of a multi-kernel model and that the performance is de-

pendent on the hyper-parameter settings on the single-kernel regression models. To achieve

better performance with less computational cost by selecting suitable hyper-parameters for

the model, the dissertation then presents an analysis framework to analyze the influence of

the hyper-parameters on the predictions of single-kernel regression models. Noting that due

to the iterative nature of the model solution, it is hard to figure out the influence of the

hyper-parameters directly. So, the main idea of the proposed framework is to express the

model prediction as a weighted sum of the training observations, and then to analyze the the

influence of parameters on the observation weights. With the framework, it is found that

the weights of the parameters are scaled kernel values of the input for prediction and inputs

for training observations. This verifies that the kernel performs as a similarity measure and

shows that the scaling factor for kernel values is related to the time difference between the

two inputs of the kernel. The framework helps better understand the impact of the hyper-

parameters and hints at suitable selections of those parameters. After that, the framework

is generalized to do parameter analysis for an iterative solution of a kernel regression model

dealing with the graph signal prediction problem where the input is agnostic. In the gener-

alized framework, the solution acquired from the batch gradient descent algorithm can be

analyzed, making the solution acquired from the gradient descent algorithm a special case.

xiii



Chapter 1

Introduction

Complex systems can be abstracted by graphs [1] which consist of nodes and edges. In those

graphs, nodes represent agents while edges denote a relationship among the set of agents.

For example, the citation network of a set of papers in the field of machine learning can be

abstracted as a graph where papers are modeled as nodes and an edge from one node to

another means that one paper cites the other paper [2]. With the ability of recording rela-

tional data, the graph structure is widely used in analyzing climate change [3, 4], pandemic

evolution [5, 6], transportation conjunction [7, 8], power systems [9], and brain activity [10],

to name a few.

It is very often that nodes carry features about themselves. For instance, in the aforemen-

tioned citation network [2], each paper is categorized into one of the seven predefined topics.

For analytical simplicity, researchers usually use a scalar to record a feature for a node.

Gathering feature values for all nodes in the network, we can form the information in a

vector whose elements are indexed by nodes. The resulting vector is called a graph signal.

To better analyze and make use of graph signals, more and more effort is put in the field of

graph signal processing (GSP) [11, 12, 13, 14].
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There are many practical topics related with GSP, such as graph signal compression, graph

signal reconstruction [15, 16], graph signal interpolation [17], and graph signal estimation.

Analogous to conventional signal processing tools, researchers interested in GSP have come

up with GSP tools such as graph Fourier transform and graph filtering. The main concept

is to utilize the graph structure, extracting “dominant” information and making use of it.

However, most works studying such GSP tools are constrained to consider linear transfor-

mations [18]. To cope with the nonlinearity residing in signals over graphs, one way is to

design non-linear graph filters [19]. Another way to consider the nonlinearity is to apply

kernel methods on graphs [20, 21, 22]. Nonlinear algorithms usually outperform their linear

counterparts, however, their computational costs also grow faster with more known nodes,

making them less practical for large networks.

Fortunately, [23] discovers that for shift-invariant kernels, the kernel value can be approxi-

mated using random features drawn from the Fourier transform of the kernel. Thanks to this

discovery, kernel-based models could have efficient solutions. In this dissertation, we study

kernel-based regression models related to graphs with random Fourier features (KRG-RFF)

since they are simple yet powerful with proper configuration. Prior to the detailed parame-

ter analysis framework for KRG-RFF, we will first go over basic backgrounds related with

KRG-RFF, then, we will present an application of KRG-RFF to show the predicting ability

of KRG-RFF models.

1.1 Notations

Vectors are denoted by bold lowercase characters, and matrices are denoted by bold upper-

case characters. Sets are denoted in a calligraphic font. The (m,n)-th (m-th) element in

an M × N matrix A (M × 1 column vector or 1 ×M row vector a) is denoted by [A]m,n

(am) where 1 ≤ m ≤ M and 1 ≤ n ≤ N . The symbol 1K represents the vector with a

2



length of K whose elements are all 1. Similarly, 0M×N represents the matrix with size of

M ×N whose elements are all 0. The operation diag (a) generates a diagonal matrix whose

(i, i)-th element is equal to [a]i. And the operation vec (A) generates a column vector by

stacking columns of A. The maximum (minimum) element in vector a is represented by

max (a) (min (a)), while max
a

J (a) (min
a
J (a)) represents the maximum (minimum) value

of the objective function J (a) for all applicable a. The symbol (·)⊤ denotes the transpose

operation. The l1 norm, l2 norm, and Frobenius norm are denoted by ∥ · ∥1, ∥ · ∥2, and ∥ · ∥F ,

respectively. The notation | · | represents the absolute value for a number, or the cardinality

of a set. The (conditional) expectation is denoted by E[·] (E[·|given variable]), and the (con-

ditional) variance is denoted by V[·] (V[·|given variable]). The Fourier transform is denoted

by F . The normal distribution is denoted by N and the uniform distribution is denoted by

U . For convenience in reading, all notations are summarized in Table 1.1.

1.2 KRG-RFF

In this section, we first review basic concepts of graph structure, graph signal, and smooth-

ness. Then we refer to the original KRG algorithm in its first proposed form with a closed-

form solution. After that, random Fourier feature (RFF) approximation is reviewed, paving

the way to KRG-RFF at the end of the section.

1.2.1 Graph Structure

Consider a weighted, undirected graph G = {N , E ,W} where N is the set of nodes with

|N | = K, E is the set of edges, and W contains weights for all edges. The graph structure

can be expressed in the form of the adjacency matrix A of size K ×K. More specifically,

3



Table 1.1: Notations and their meanings.

Notation Meaning
a a vector
A a matrix
S a set

[a]m m-th element of a
[A]m,n (m,n)-th element of A
[1]K all-one vector with length K

[0]M×N all-zero matrix with size M ×N
diag (a) the diagonal matrix with a at its diagonal
vec (A) the vectorization of A
max(a) the maximum element in a
max

a
J(a) the maximum value for J(a)

min(a) the minimum element in a
min
a
J(a) the minimum value for J(a)

(·)⊤ the transpose operation
∥ · ∥1 the l1 norm
∥ · ∥2 the l2 norm
∥ · ∥F the Frobenius norm
| · | the absolute value or the cardinality

E[·] (E[·|given variable]) (conditional) expectation
V[·] (V[·|given variable]) (conditional) variance

F{f} the Fourier transform of the function f
N (a, b) the normal distribution with mean a and variance b
U(a, b) the uniform distribution over the interval (a, b)

elements of A are defined as

[A]k,l =


wk,l if (vk, vl) ∈ E

0 otherwise

where vk, vl ∈ N and wk,l is the weight on the edge (vk, vl). Since we are interested in

undirected graphs, we have A⊤ = A. Furthermore, we focus on simple graphs that contain

no self-loops and have non-negative weights. That is, the diagonal elements of A are all

zeros, and [A]k,l ≥ 0,∀k, l ∈ {1, 2, · · · , K}. Note that unweighted graphs can be viewed as

a special case of weighted graphs where all edge weights are equal to 1.
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1.2.2 Graph Signal & Smoothness

In some cases, we are interested in node feature values in terms of some aspect. Suppose the

feature value of node vk is tk, then we can get t = [t1, t2, · · · , tK ]⊤ which is called a graph

signal. In practice, a property is commonly observed that connected nodes tend to have

closer feature values [24]. That means graph signals are supported by underlying structures.

When using the relevant structure, this property of a graph signal can be quantified as

smoothness [24] which is defined as

smoothnessA(t) =
1

2

∑
k,l∈{1,··· ,K}

[A]k,l (tk − tl)2 . (1.1)

The right-hand side of (1.1) shows that the smoothness value is small only when the nodal

value difference for nodes connected by large-weight edges is small. A small smoothness value

implies the graph signal is smooth over the graph structure. By defining L = diag (A1)−A,

we can rewrite (1.1) as

smoothnessL(t) = t⊤Lt.

Note that L is the well-known combinatorial graph Laplacian matrix [14]. It plays an im-

portant role in GSP tools such as the graph Fourier transform [17], graph filtering [25], and

community detection [26].

1.2.3 KRG

The kernel-based regression model over graphs (KRG) predicts graph signals out of agnostic

inputs. Denote the input by x and the output by y = [y1, · · · , yK ]⊤. Note that the output

y is a graph signal whereas the input x is not necessarily a graph signal. The input x can

be any vector that is helpful in predicting y. The KRG-RFF model assumes input-output

5



pairs (x, yk) , ∀k ∈ {1, · · · , K} originate from a reproducing kernel Hilbert space (RKHS)

[27]. With the representer theorem [28], the input-output relationship can be expressed as

y =
N∑
n=1

Ψnκ (xn,x) = W⊤ϕ (x) (1.2)

where κ is a pre-selected kernel with the kernel trick [29] κ (xm,xn) = ϕ (xm)
⊤ ϕ (xn), ϕ (·)

denotes the transformation from the input space to the feature space of the kernel κ, and

xn is the input at time n. The total number of input-output pairs (xn, tn) used for training

is denoted by N . Then, the goal is to minimize the following objective function [30]

C (W) =
N∑
n=1

∥tn − yn∥22 + α tr
(
W⊤W

)
+ β

N∑
n=1

y⊤
nLyn (1.3)

where α > 0 and β > 0 are pre-selected parameters based on applications. The first term on

the right-hand side of (1.3) is the total squared error between graph signal predictions and

their ground truth. The second term restricts the absolute values of elements in the model

parameter W from being excessively large. The third term is the total smoothness value

of all predicted graph signals, enforcing predictions to be smooth graph signals over known

graph structure L. Authors of [30] provide a closed-form solution as

vec (Φ) = (G+C)−1 vec (T) (1.4)

by defining

T = [t1, · · · , tN ]⊤

Φ = [ϕ (x1) , · · · , ϕ (xN)]⊤

K =Φ⊤Φ

G =IK ⊗ (K+ αIN)

6



C =βL⊗K

where IK is the identity matrix with size K ×K and ⊗ denotes the Kronecker product [31].

1.2.4 RFF Approximation

For a shift-invariant kernel, we have κ (xm,xn) = κ (xm − xn,0). For simplicity, we de-

note the shift-invariant kernel κ (xm − xn,0) by κ (xm − xn). With proper normalization

such that κ (x− x) = κ (0) = 1, authors of [23] found the random Fourier feature (RFF)

approximation as

κ (xm,xn) = κ (xm − xn) = z⊤ (xm) z (xn) (1.5)

where z : RK −→ RD is a nonlinear mapping with the form

z (x) =

(
D

2

)− 1
2 [

cos
(
v⊤
1 x+ b1

)
, · · · , cos

(
v⊤
Dx+ bD

)]⊤
(1.6)

where {vd}Dd=1 are random features (RFs) drawn from p(v) = F{κ(xm−xn)}
2π

and {bd}Dd=1 are

drawn from U(0, 2π).

1.2.5 KRG-RFF

The solution in (1.4) needs the inversion of an NK × NK matrix whose computational

cost could become prohibitively high for large networks or abundant historical observations.

KRG-RFF [32] assumes the input-output relationship in (1.2), but limits the kernel to be

shift-invariant. Then, the RFF approximation could be applied, and the system model
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becomes

y =
N∑
n=1

Ψnκ (xn,x) =
N∑
n=1

Ψnz
⊤ (xn) z (x) = H⊤z (x) (1.7)

by defining z(·) in (1.6) and denoting H⊤ =
∑N

n=1 Ψnz
⊤ (xn). The objective function is

C (H) =
N∑
n=1

∥tn − yn∥22 + α tr
(
H⊤H

)
+ β

N∑
n=1

y⊤
nLyn. (1.8)

The function in (1.8) is convex and thus can be solved via methods like gradient descent.

Authors of [32] propose a batch-based gradient descent algorithm in which H is initialized

as 0D×K and updated as

Hn+1 = (1− µα)Hn +
µ

Nb

Z⊤
n (En − βYnL) (1.9)

if n is a multiple of δ, and otherwise

Hn+1 = Hn. (1.10)

In (1.9) and (1.10), δ controls how frequently H is updated. The parameters µ and Nb are

the learning rate and the batch size, respectively. And, Zn, Tn, Yn, and En are defined as

Zn = [z (xn−Nb+1) , z (xn−Nb+2) , · · · , z (xn)]⊤ (1.11)

Tn = [tn−Nb+1, · · · , tn]⊤

Yn =ZnHn

En =Tn −Yn.
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1.3 An Example: Multi-Layer Gradraker

This section presents an application of a graph-adaptive random-feature- and multi-kernel-

based learning approach, abbreviated Gradraker [33]. Gradraker is a kind of KRG-RFF

algorithm. It was proposed to perform graph signal reconstruction on single-layer graphs.

In practice, due to reasons like privacy concerns, it is possible that not all values for nodes

in a network are accessible. Gradraker is a solution to the problem of predicting unknown

nodal values using nodes whose values are known and the network structure. Notice that

Gradraker is originally expected to work on single-layer graphs, however, there are chances

in reality that more than one aspect of node attributes are available and thus a multi-layer

graph is generated. Details of Gradraker can be found in [33] and will be reviewed in Chapter

2. Here, we will show examples of how Gradraker could be extended to multi-layer cases to

show potential usages of KRG-RFF algorithms.

1.3.1 Experts Combination

Suppose we have an L-layer graph. Each layer has the same set of vertices but with different

connections, and thus there are different adjacency matrices Al, l ∈ {1, ..., L} with the same

size N×N . For each layer, using single-layer Gradraker (Gradraker in its originally proposed

form), we could get a prediction, denoted as f̂l for the l-th layer. If we view individual layer

predictions as Experts and final prediction as the Learner, the problem will be a prediction

game with expert advice in [34]. With the Aggregating Algorithm (AA), we can combine

predictions of those experts, i.e., layer predictions, by introducing βl as the layer weight

which is updated as

βt+1 = βt exp(η
′′
tLt(f̂l(al,n), xn))

9



and normalized as

β̄l = βl/
L∑
j=1

βj

for l = 1, ..., L where η′′t is the preselected learning rate for layer weights at time t, L is the

used loss function, al,n is the adjacency vector of node vn in l-th layer and xn is the ground

truth for vn. Then, the final prediction is acquired as f̂(vn) =
∑L

l=1 βlf̂l(al,n), vn ∈ V .

We can also combine the single-layer single-kernel predictions from the same kernel with the

AA algorithm first to get a kernel prediction. Viewing kernel predictions as experts, we can

apply the AA algorithm again to get the final result. Notice that the mathematical model

behind this is exactly the same as the one illustrated in the last paragraph. We call these two

combination methods with experts “Experts Combination” whose graphical illustrations are

shown in Fig. 1.1 and Fig. 1.2. In the two figures, the first column denotes different layers of

the multi-layer graph and the second column denotes the single-layer single-kernel Gradraker

(submodel) predictions. Depending on different combining orders, the third column denotes

layer predictions or kernel predictions.

1.3.2 Long Vector Combination

The original single-layer single-kernel Gradraker is based on f̂ = θ⊤z(a), and the single-layer

multi-kernel Gradraker can be written as f̂ =
∑P

p=1 ω̄pθ
⊤
p zp(a) where P is the number of

kernels in the kernel dictionary. Since both ωp and θp are trainable, we view ωpθ
⊤
p as a

whole, and denote it as θrev,p. Then we get

f̂(a) =
P∑
p=1

θ⊤
rev,pzp(a) = ζ⊤zrev(a) (1.12)

10



Figure 1.1: A graphic illustration of one the the Experts Combination method, the layer-first
combination.

Figure 1.2: A graphic illustration of one the the Experts Combination method, the kernel-
first combination.

11



Algorithm 1 Long Vector Combination based on Gradraker

1: Input: Kernels κp, p = 1, ..., P , step size η > 0 and number of RFs D, L-layer graph
adjacency matrices and labels of known nodes

2: Initialization: υ1 = 0 and P sets of RFs {ξp,i}Di=1

3: Training:
4: for t = 1, ..., T do
5: zrevised(vnt) = [];
6: for l = 1, ..., L do
7: for p = 1, ..., P do
8: Obtain the adjacency vector al,nt of node vnt and construct zp(al,nt) via (??);
9: Update zrevised(vnt) such that zrevised(vnt) = [zrevised(vnt); zp(al,nt)];
10: end for
11: end for
12: Predict f̂(vnt) = ζ⊤

t zrevised(vnt) and get loss Lt(f̂(vnt)) via (1.18);
13: Update υt+1 via (1.17);
14: end for
15: Inference:
16: zrevised(vnew) = [];
17: for l = 1, ..., L do
18: for p = 1, ..., P do
19: Obtain the adjacency vector al,new of node vnew and construct zp(al,new) via (??);
20: Update zrevised(vnew) such that zrevised(vnew) = [zrevised(vnew); zp(al,new)];
21: end for
22: end for
23: Predict f̂(vnew) = υ⊤

T+1zrevised(vnew);
24: If ynew is available, update υT+1 via (1.17).

where

zrev(a) = [z1(a), ..., zP (a)]
⊤ (1.13)

which is of size (2D × P )× 1. Note that ζ is a trainable parameter.

Then the multi-layer multi-kernel Gradraker can be represented as f̂(vn) =
∑L

l=1 βlζ
⊤
l zrev(al,n).

Similarly, we view βlζ
⊤
l as a whole since βl and ζ⊤

l are trainable, and denote it as ζ⊤
rev,l. Then

we get

f̂(vn) =
L∑
l=1

ζ⊤
rev,lzrev(al,n) = υ⊤zrevised(vn) (1.14)

12



where

zrevised(vn) = [zrev(a1,n), ..., zrev(aL,n)]
⊤ (1.15)

which is of size (2D×P ×L)× 1. Note that υ is a trainable parameter. Then, the problem

is to solve

argmin
υ

1

N

N∑
i=1

C(υ⊤zrevised(vi), xi) + µ∥υ∥2 (1.16)

which can also be dealt with online gradient descent as follows

υt+1 = υt − ηt∇υLt
(
υ⊤zrevised(v), x

)
(1.17)

where

Lt
(
υ⊤zrevised(v, x)

)
= C

(
υ⊤zrevised(v), x

)
+ µ∥θ∥2. (1.18)

We call the resulting multi-layer Gradraker variant “Long Vector Combination” and provide

a graphic illustration in Fig. 1.3. The algorithm is summarized in Algorithm 1. If we start

from the multi-layer single-kernel Gradraker, we will still reach at the same algorithm.

1.3.3 Simulation Results

The simulation results of the two multi-layer Gradraker variations together with a layer-aware

kernel-based algorithm published in [35] on a temperature dataset of the weather stations in

Switzerland during 1961-1990 [36] and 1981-2010 [37] is shown in Fig. 1.4 . The temperature

dataset contains average monthly temperature from 93 weather stations during 1961-1990

and average temperature from 91 weather stations during 1981-2010 in Switzerland. We
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Figure 1.3: A graphic illustration of the Long Vector Combination method.

take the overlap of these two sets of stations and get 83 available stations. Information from

1961-1990 is used for training, while information from 1980-2010 is used for testing. The

network structure of the 83 stations is created using the GL-SigRep algorithm in [24]. The

generated network is randomly divided into 5 disjoint subgraphs, each being a single layer.

In the experiment, M nodes are randomly selected as knowns while the rest is for testing.

Normalized Mean Square Error for tested nodes (Generalization NMSE) is calculated via

Generalization NMSE= ∥y−ypred∥2/∥y∥2, where y is the true value and ypred is the predic-

tion. The kernel dictionary consisting of 3 Gaussian kernels with σ2
1 = 1, σ2

2 = 5, σ2
3 = 10 are

used for two variants, and hyperparameters for the referenced algorithm are tuned through

trial and error. The parameter D is set to be 100, and the Generalization NMSE is calcu-

lated over 100 repeated experiments. Fig. 1.4 shows the (averaged) Generalization NMSE

curve with respect to the number of known nodes (M) for the temperature datasets. It is

seen that both the multi-layer Gradraker variants beat the referenced algorithm which is

14
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Figure 1.4: Performance on Switzerland stations’ temperature dataset.

graphical-kernel-based. The predicting ability of KRG-RFF models is powerful with proper

configuration.

1.4 Contributions

A Gradraker model consists of several single-kernel Gradraker (SKG) models which share

the input of the Gradraker model. Each component SKG submodel outputs an estimation

which is then used for acquiring the final estimation of the Gradraker model via an aggre-

gation algorithm. That is, SKG models are building blocks of Gradraker-based algorithms

and Gradraker performance is highly influenced by the best performance among all the
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components.

Noticing that the computational cost grows linearly with the number of component single-

layer single-kernel Gradraker submodels, when inappropriate submodels are inside, compu-

tational complexity grows beyond what is needed with appropriate submodels. So, distin-

guishing suitable submodels helps achieve the best performance with the lowest cost, and

understanding SKG performance in a detailed manner is of great importance for future

studies. In this dissertation, the contributions are:

• Establishing a parameter analysis framework to understand influences of hyper param-

eters in KRG-RFF models;

• Using Gaussian kernel on a KRG-RFF algorithm, the Gradraker algorithm, as an

example to understand the influence of kernel parameters based on the established

framework;

• Proposing suitable configurations for learning rates and kernel parameters in KRG-

RFF models.

The rest of the dissertation is organized as follows. Chapter 2 introduces a simple version of

the parameter analysis framework using Gaussian kernel in a sequentially trained KRG-RFF

model with scalar outputs. Influence of the Gaussian kernel variance will be discussed in

detail and a method of finding a suitable Gaussian variance is proposed. Then, in Chapter 3,

the simple framework will be extended to deal with batch-based KRG-RFF learning models

with vector outputs. Based on the framework, influences of hyper parameters, such as batch

size and learning rates, are discussed. Corresponding simulations are provided in respective

chapters. The dissertation will be concluded in Chapter 4.
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Chapter 2

Analysis for Gaussian Variance

This chapter discusses a special kind of a simple yet possibly powerful algorithm, called single-

kernel Gradraker (SKG), which is an adaptive learning method predicting unknown nodal

values in a network using known nodal values and the network structure. We aim to find out

how to configure the special kind of the model in applying the algorithm. To be more specific,

we focus on SKG with a Gaussian kernel and specify how to find a suitable variance for the

kernel. To do so, we introduce two variables with which we are able to set up requirements

on the variance of the Gaussian kernel to achieve (near-) optimal performance and can better

understand how SKG works. Simulation results on real datasets are provided. The rest of

the chapter is organized as follows. Section 2.1 provides a brief review of the interested

algorithm, Gradraker, and Section 2.2 gives a review of SKG. Mathematical tools will be

introduced in Section 2.3 followed by the impact analysis of different Gaussian kernels and

an algorithm to find a suitable Gaussian kernel for a given training set in Section 2.4. Section

2.5 shows simulation results to verify properties of introduced variables and effectiveness of

the proposed algorithm. Discussions are provided in Section 2.6.
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2.1 Introduction

Shen et al. [33] propose a simple yet possibly powerful algorithm called graph-adaptive

learning method using random feature approximation with multiple kernels, abbreviated as

Gradraker. The algorithm takes connection information of a node as input and trains a model

to output the corresponding nodal value under supervised learning. Since only vector addi-

tions and multiplications are needed, acquiring predictions is convenient and updating the

model parameters online becomes possible, which makes the Gradraker algorithm promising

to large dynamic networks. What is more, the usage of different kernels or their mixtures

might also extend usable applications. Additionally, the Gradraker algorithm reserves nodal

privacy to some extent thanks to the incorporation of the random feature approximation

[23]. So, the algorithm or its variants are applicable for an extensive set of scenarios, e.g.,

traffic dynamic estimation, account anomaly detection in social software, recommendation

systems, etc. The authors of [33] have shown the impressive performance of the algorithm

in terms of Normalized Mean Square Error (NMSE) and its low complexity. Authors of [38]

propose a similar algorithm, Graph Kernel Least Mean Squares-Random Fourier Features

(GKLMS-RFF), which contains the same model but takes graph-filtered nodal value time

sequence of a node as input, instead of the adjacency vector of a node, and provide the con-

vergence condition. Gradraker is extended to exploit multi-hop information for estimation in

[38]. We also showed the potential of the Gradraker algorithm to be applied on multi-layer

graphs in Section 1.3.

There are few papers guiding how to configure the model in Gradraker-like algorithms,

especially in a theoretical view. We aim to fill this gap. The purpose of doing so is not

only to have guidance in configuration, but also to have a better understanding on the pros

and cons of the algorithm, recognizing its applicable situations and possibly giving hints on

the design of its variants. We choose the Single-Kernel Gradraker (SKG) algorithm as the

entry point. A Gradraker model consists of several SKG models which share the input of the

18



Gradraker model. Each component SKG model outputs an estimation which is then used for

acquiring the final estimation of the Gradraker model via an aggregation algorithm. That is,

SKG models are building blocks of Gradraker-based algorithms and Gradraker performance

is highly influenced by the best performance among all the components. Thus, understanding

SKG performance in a detailed manner is of great importance for future studies.

To achieve the best performance for an SKG model, there are a few hyperparameters, i.e.,

the loss function, the learning rate, the number of repeated times for training, the number of

random features, and the Gaussian kernel variance, which should be properly chosen. The

loss function is selected based on applications. For instance, Least Squares (LS) loss function

is usually applied in regression problems. A suitable value of the learning rate is proposed

in [39] and we will discuss it in detial in the following chapter. The number of repeated

times for training can be found by techniques like monitoring validation loss during training

and stopping training when the validation loss does not improve [40] as done in the field

of machine learning. The number of random features does not play a major role affecting

the model performance once it is sufficiently large. Thus, we will focus on the problem of

choosing a suitable kernel for a training set for there is no discussion on it prior to our

paper to the best of our knowledge. The study of choosing a suitable kernel is not trivial.

Gradraker is proposed using a kernel dictionary with multiple kernels, letting the algorithm

choose suitable ones. However, the computational cost grows linearly with the size of the

dictionary. What is worse, if the kernel dictionary does not contain any suitable kernel,

the performance would be bad, and adding more kernels blindly to the dictionary may not

be beneficial. So, distinguishing suitable kernels helps achieve the best performance with

the lowest cost. Among many kinds of shift-invariant kernels [23], e.g., Gaussian kernels,

Laplacian kernels, and Cauchy kernels, we will focus on Gaussian kernels. Noting that the

kernel being used models how similarity changes with difference, and that the laws of large

numbers indicate wide application of the Gaussian distribution, it is intuitive to use Gaussian

kernels in most situations [33, 41, 38]. For this reason, in this chapter, we will discuss SKG
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with a Gaussian kernel in detail.

2.2 Review: Steps When Applying SKG

The basic sequence of steps applying SKG is preparing the training set, building up and

initializing the model, training sequentially, and performing prediction (updating trainable

parameters if available).

2.2.1 Preparing a Training Set

Let there be a set of sampled nodes V = {vn}Nn=1 with known nodal values {yn}Nn=1, a set

of referencing nodes Vr = {vr,m}Mm=1, and a description of connection between the two sets

of nodes. Note that nodal values of referenced nodes do not play a role. As we mentioned

earlier, the description of connection can be in the form of a matrix A, of sizeM×N , whose

element [A]m,n is 0 if the sampled node vn is not connected with the referencing node vr,m,

or 1 if the two nodes are connected in the case of unweighted graphs, or the weight over the

edge connecting the two nodes in the case of weighted graphs. Note that a column of A

reports the description of connection between the corresponding sampled node and all the

referencing nodes. So, we call the description vector adjacency vector of the sampled node.

Denote the adjacency vector of the sampled node vn as an with size M × 1. Combining with

the nodal value yn of vn, we get the pair (an, yn) for vn, and the set of pairs {(an, yn)}Nn=1 is

called the training set.

The sampled node set V and the referencing node set Vr are not necessarily the same. In

[33], V = Vr, and thus the N adjacency vectors can be formatted in an adjacency matrix of

size N ×N . In our paper, we generalize applicable scenarios such that Vr can be any set of

nodes, without the need to modify the Gradraker algorithm.
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2.2.2 Building Up the Model and Initialization

The model takes an adjacency vector an of vn ∈ V as input. The first part of the SKG model

is for acquiring a nonlinear transform z(an) of the input an through a nonlinear mapping

z : RM×1 7→ R2D×1. Specifically,

z(an) =[sin(ξ⊤1 an), sin(ξ
⊤
2 an), ..., sin(ξ

⊤
Dan),

cos(ξ⊤1 an), cos(ξ
⊤
2 an), ..., cos(ξ

⊤
Dan)]

⊤/
√
D (2.1)

where {ξi}Di=1 are random features [23] drawn from a distribution which is the Fourier trans-

form of the kernel κ in SKG. Note we have to manually choose κ. Recall that we will focus

on Gaussian kernels in the paper, then the problem is reduced to choosing a variance σ2 for

the Gaussian kernel. Once the kernel is chosen, the following claim is helpful to generate

{ξi}Di=1.

Claim 2.1. Supposing a Gaussian kernel κ with variance of σ2, i.e., κ(x1,x2) = e−
∥x1−x2∥

2

2σ2 ,

random features {ξi}Di=1 should be drawn from the Gaussian distribution N (0, σ−2I) when

using the random feature approximation for κ [23, 33].

Proof. Since the value of a Gaussian kernel relates with the difference of its input vectors,

let us have κ(x) = e−
∥x∥2

2σ2 where x = [x1, ..., xN ]
⊤, and the Fourier transform ρf(f) can be

written as in [42]

ρf(f) =

∫
Rn

κ(x)e−j2πf
⊤xdx

where f = [f1, f2, ..., fN ]
⊤, and f⊤x denotes the inner product of f and x, i.e., f⊤x =

∑N
i=1 fixi.

Since x ∈ Rn, ∥x∥2 =
∑N

i=1 x
2
i , then

ρf(f) =

∫ ∞

−∞
...

∫ ∞

−∞
e−

∑N
i=1 x2i
2σ2 e−j2π

∑N
i=1 fixidx1...dxN
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=
N∏
i=1

∫ ∞

−∞
e−

x2i
2σ2 e−j2πfixidxi

which can be seen as the product of the Fourier transform for the one-dimensional Gaussian

kernels in every dimension. Notice that the product implies independence among dimensions.

It is a well-known Fourier transform pair that

e−πx
2 F . T .←→ e−πf

2

.

Notice the Fourier transform of g(x), F{g(x)} = G(f) =
∫∞
−∞ g(x)e−j2πfxdx. According to

the time scaling property of Fourier transform, i.e., g(ax)
F . T .←→ 1

|a|G(
f
a
) where g(x)

F . T .←→ G(f),

we have

e−
x2

2σ2
F . T .←→

√
2πσe−2π2σ2f2 =

1

( 1
2πσ

)
√
2π
e
− f2

2( 1
2πσ )2 .

That is, f ∼ N (0, ( 1
2πσ

)2). For ξ = 2πf , it is ξ ∼ N (0, σ−2). Because when X is a random

variable and Y = aX + b where a and b are both constants, the probability density function

(PDF) of Y is pY (y) =
1
|a|pX(

y−b
a
) where pX(x) denotes the PDF of X.

Similarly, all elements in ξ have Gaussian distribution N (0, σ−2), that is, ξ ∼ N (0, σ−2IN).■

According to Claim 2.1, random features {ξi}Di=1 should follow N (0, σ−2I). Note that D

is also preselected and that random features are fixed during training and predicting phases

once they are chosen.

Then, z(an) goes through the second part of the model, which is linear, and provides a

prediction as

f̂n = θ⊤z(an) (2.2)
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where f̂n denotes the prediction. The column vector θ whose size is 2D × 1 is the trainable

parameter.

Prior to the training phase, the trainable parameter is initialized as θ0 = 0. Since θ is

updated every time, we will use θt to denote the θ value at the end of time (iteration) t.

2.2.3 Sequential Training

The parameter θ is updated by the gradient descent algorithm, i.e., θt, 1 ≤ t ≤ T where T

denotes the training duration is updated via

θt = θt−1 − η∇θLt (2.3)

where ∇θLt is the gradient of the loss function L with respect to θ at time t and η is the

preselected learning rate. Noting that LS loss is used, we have L(ytrue, f̂) = (ytrue − f̂)2.

Then, the gradient at time t which is employed in (2.3) is

∇θLt = −2(ynt − f̂nt)z(ant) (2.4)

where ynt , f̂nt , and ant are the true nodal value, the prediction, and the adjacency vector of

the node used at time t, respectively. Note that ant is not any specific adjacency vector but

random because there is no assumed order for sampled nodes being processed. For notational

simplicity, we will use at, f̂t, and yt instead of ant , f̂nt , and ynt from now on.

In [33] and other papers about kernel-based predicting methods, sometimes an overfitting-

controlling term is summed with the squared difference (ypred− ytrue)2 in calculating the loss

L(ypred, ytrue). However, the overfitting-controlling term does not greatly affect the level of

best performance of SKG achieved on a graph signal, so we ignore it in our analysis.
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During the training phase, we process a sampled node at a time, i.e., getting its adjacency

vector which is then put through the model to get a prediction, and updating the model.

The process is repeated until all sampled nodes are processed. It is possible for the training

set to be used multiple times during the training phase, and the number of times the training

set is repeatedly used is called the number of epochs, denoted by E. The parameter E is

also preselected. The training duration is T = EN .

2.2.4 Predicting

When the adjacency vector a′ of a tested node v′ to the set of referencing nodes is known,

we can use the well-trained model to predict the nodal value. To that end, we first acquire

the nonlinear transform z(a′) via (2.1), and then get a prediction via (2.2). If its true value

can be known, the trainable parameter θ of the model can be updated via (2.3).

2.3 Mathematical Tools

A convincing way to illustrate the influence of σ2 on predictions is to express predictions

explicitly in terms of σ2. It is a hard problem due to the training process. Alternatively, we

express predictions as weighted averages of observations, where the influence of σ2 on the

weights is easier to show. To do so, we have to introduce two variables. One is used as weights

of observations in predictions, called contribution weight. The other one, called similarity

measure, is an intermediate variable in finding contribution weights. In this section, we

give definitions of the two variables, and state their properties; preparing for analysis on

how prediction behaves under different σ2 in the next section. We introduce the similarity

measure Bi,j first as it is basic to the definition of the contribution weight Fi,j.
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2.3.1 Similarity Measure

The definition of the similarity measure Bi,j for the pair of nodes seen at time i and j,

1 ≤ i < j ≤ T + 1, is

Bi,j ≜ 2ηz⊤(ai)z(aj) (2.5)

where ai and aj are the adjacency vectors of nodes used at time i and time j. As its

name suggests, Bi,j can be seen as a similarity measure between ai and aj recalling that

κ(ai, aj) ≈ z⊤(ai)z(aj) [33], and that a kernel function is a form of similarity measure.

Note that Bi,j is a random number. Its randomness comes from both the random features

{ξi}Di=1 and ai and aj because adjacency vectors vary among different datasets. Even for

a given dataset, ai and aj cannot be determined because of the random sampling for the

sampled nodes. Considering the uniform distribution of when a specific node is processed

within an epoch, the distribution of Bi,j is identical for all qualified pairs of i and j. We

keep the indices to denote the time when the adjacency vectors are processed.

Since weights of observations in predictions build on similarity measures Bi,j, studying prop-

erties of Bi,j not only helps understanding how σ2 changes Bi,j, but also paves a path to the

impact of σ2 on observations weights. So, we illustrate two properties of Bi,j, exponential

approximation and positive average, in the following.

Substituting (2.1) into (2.5), we have

Bi,j =
2η

D

D∑
k=1

[sin(ξ⊤k ai) sin(ξ
⊤
k aj) + cos(ξ⊤k ai) cos(ξ

⊤
k aj)]

=2η

∑D
k=1 cos[ξ

⊤
k (ai − aj)]

D

=2η

∑D
k=1 cos[ξ

⊤
k di,j]

D
(2.6)
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where di,j = ai− aj. It is shown in (2.6) that Bi,j is actually the sample average of D terms

of cos(Ck,i,j) where Ck,i,j = ξ⊤k di,j multiplied by a scalar 2η. Whereas, di,j is a random

vector with respect to different training data and the random processing order of sampled

nodes, {ξk}Dk=1 are related to model configuration. We will focus on how Bi,j changes with

respect to {ξk}Dk=1 (viewing ai and aj as given for now). Recalling from Claim 2.1 that

elements of ξk, k = 1, ..., D are independently and identically distributed (i.i.d.) Gaussian

random numbers with variance σ−2, we know that Ck,i,j follows N (0, ∥di,j∥2/σ2) for a given

di,j. Notice {Ck,i,j}Dk=1 are i.i.d. because of i.i.d. {ξk}Dk=1. Supposing D is sufficiently large,

we can follow the weak law of large numbers and get

Bi,j
∼= 2ηE[cos(Ck,i,j)|di,j]. (2.7)

Note Bi,j is a random number but varies in a small range given di,j and a sufficiently large D.

The following claim can be useful to get the explicit expression of the conditional expectation.

Claim 2.2. Suppose X is a Gaussian random number such that X ∼ N (0, σ2
X). Then, we

have

E[cos(X)] = e−
σ2
X
2 , (2.8)

and

V[cos(X)] =
1

2
(e−σ

2
X − 1)2. (2.9)

Proof. The characteristic function [43] of the random variable X is

E[ejυX ] ≡ ψ(jυ) =

∫ ∞

−∞
ejυxp(x)dx = F{p(x)}
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where υ is real, j =
√
−1, F denotes Fourier transform, and p(x) = 1

σX
√
2π
e
− x2

2σ2
X . According

to Claim 2.1, it is clear that

p(x) =
1

σX
√
2π
e
− x2

2σ2
X

F .T .←→ ψ(jυ) = e−
σ2
Xυ2

2 .

Thus,

E[ejX ] = ψ(jυ)|υ=1 = e−
σ2
X
2 .

On the other hand, according to Euler’s Equation, ejX = cos(X) + j sin(X), we have

E[ejX ] = E[cos(X) + j sin(X)] = E[cos(X)] + jE[sin(X)].

Since Gaussian PDFs with zero mean is an even function while sin(·) is odd, i.e., E[sin(X)] =

0 and

E[cos(X)] = E[ejX ] = e−
σ2
X
2 .

Similarly,

E[cos(2X)] = E[ej2X ] = ψ(jυ)|υ=2 = e−2σ2
X .

Then,

V[ejX ] =E
[
cos2(X)

]
− (E [cos(X)])2 =

1

2
E [cos(2X)] +

1

2
− (E [cos(X)])2

=
1

2

(
e−σ

2
X − 1

)2
■
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Exponential Approximation

Substituting (2.8) into (2.7), we get the exponential approximation

Bi,j
∼= 2ηE[cos(Ck,i,j)|di,j] = 2ηe−

∥di,j∥
2

2σ2 (2.10)

when D is sufficiently large.

The equality in (2.10) is the same expression as the random feature approximation [23, 33],

but in reverse order. Recall that for a Gaussian kernel κ(ai, aj) = e−
∥ai−aj∥

2

2σ2 , its mathematical

expression of the random feature approximation is κ(ai, aj) = e−
∥ai−aj∥

2

2σ2 ≈ z⊤(ai)z(aj) where

z(·) is defined in (2.1). If we replace Bi,j and di,j in (2.10) with the definition in (2.5) and

ai − aj, respectively, we get 2ηz⊤(ai)z(aj) ∼= 2ηe−
∥ai−aj∥

2

2σ2 which is the same as the random

feature approximation. The equality in (2.10) explicitly shows how σ2 affects Bi,j.

Positive Average

Taking expectation for (2.6), we get

E [Bi,j] = 2ηE [E [cos (Ck,i,j) |di,j]] . (2.11)

In (2.11), E [Bi,j] is with respect to the joint distribution of {ξk}Dk=1 and di,j. On the right

hand side, the inner expectation is with respect to the conditional distribution of {ξk}Dk=1

given di,j while the outer expectation is with respect to the distribution of di,j. Recall

that when di,j is given and D is sufficiently large, Bi,j varies within a small range and can

be approximated via (2.10). For a real dataset, di,j is usually not deterministic but has a
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distribution under random sampling without replacement, and thus Bi,j may greatly vary

with different di,j values. From Claim 2.2, it is known that 0 < E [cos (Ck,i,j) |di,j] ≤ 1 for

any di,j, where the equality holds when ∥di,j∥2 = 0. So, for real datasets where nonzero di,j

exists, we get from (2.11) that 0 < E [Bi,j] < 2η.

2.3.2 Contribution Weight

As we mentioned before, we aim to express a prediction of SKG in terms of observations.

We are able to do so via contribution weights introduced in the following. The definition of

the contribution weights Fi,j for the pair of nodes seen at time i and j, 1 ≤ i < j ≤ T +1 is

Fi,j ≜


Bi,j, for i = j − 1,

Bi,j −
∑j−1

k=i+1Bi,kFk,j, for 1 ≤ i < j − 1,

(2.12)

and undefined otherwise. Because of the randomness in Bp,q, i ≤ p ≤ q ≤ j, Fi,j is also a

random number. The definition in (2.12) indicates that Fi,j is affected by σ2 indirectly via

Bi,j.

We show two useful properties for Fi,j, weighting and conformity with Bi,j.

Weighting Property

Firstly, the following claim shows {Fi,j}j−1
i=1 are used as coefficients of previously seen nodal

values in prediction.

Claim 2.3. Assume we are applying SKG on a training set. During the training phase, at
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time t, 1 < t ≤ T , we have

f̂t =
t−1∑
i=1

yiFi,t (2.13)

where f̂t denotes the prediction at time t, yi denotes the true nodal value at training time i,

and {Fi,t}t−1
i=1 are defined as in (2.12).

Proof. First we prove for the trainable parameter θ at time t that

θt = 2η
t∑
i=1

eiz(ai)

where ei is the predicting error at time i, ei = yi − f̂i. Note that the square loss is

L(ypred, ytrue) = (ytrue − ypred)2 in our case, the loss at time t is

L(yt,θ⊤
t−1z(at)) = (ft − θ⊤

t−1z(at))
2.

Then the gradient of the loss function with respect to θt−1, i.e., gt, is

gt = ∇θt−1L(yt,θ⊤
t−1z(at)) = −2(ft − θ⊤

t−1z(at))z(at) = −2etz(at)

which uses

∇x(x
⊤a) = ∇x(a

⊤x) = [
∂(a⊤x)

∂x1
,
∂(a⊤x)

∂x2
, ...,

∂(a⊤x)

∂xN
]⊤ = [a1, a2, ..., aN ]

⊤ = a

where a = [a1, a2, ..., aN ]
⊤ and x = [x1, x2, ..., xN ]

⊤. Denote η as the learning rate, then

θt = θt−1 − ηgt = θt−1 + 2ηetz(at).
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Tracing back to θ0, θt can be rewritten in terms of θ0 as

θt = θt−1 + 2ηetz(at) = θt−2 + 2ηet−1z(at−1) + 2ηetz(at)

= θ0 + 2η
t∑
i=1

[eiz(ai)].

Together with the initialization θ0 = 0, we get

θt = 2η
t∑
i=1

[eiz(ai)].

Then the prediction at time t, f̂t, can be expressed as

f̂t = θ⊤
t−1z(at) = 2η

t−1∑
i=1

[eiz
⊤(ai)z(at)] =

t−1∑
i=1

eiBi,t

which uses the definition of Bi,j in (2.5). Now we are prepared to prove the claimed equality.

First, check the claimed equality for t = 2, 3, 4. It should be

f̂2 =y1B1,2 = y1F1,2

f̂3 =y2B2,3 + y1(B1,3 −B1,2B2,3) = y2F2,3 + y1F1,3

f̂4 =y3B3,4 + y2(B2,4 −B2,3B2,4) + y1[B1,4 −B1,3B3,4 −B1,2(B2,4 −B2,3B3,4)]

=y3F3,4 + y2F2,4 + y1F1,4

from which the equality holds. Suppose there exists t ≥ 4 such that

f̂k =
k−1∑
i=1

yiFi,k
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where

Fi,k =


Bi,k, if i = k − 1,

Bi,k −
∑k−1

j=i+1Bi,jFj,k, if 1 ≤ i < k − 1.

holds for all integers k ∈ {2, 3, ..., t}. Then,

f̂t+1 =
t∑
i=1

eiBi,t+1 =
t∑
i=1

(yi − f̂i)Bi,t+1.

For f̂1 = 0, we have

f̂t+1 =
t∑
i=1

yiBi,t+1 −
t∑
i=2

f̂iBi,t+1

=
t∑
i=1

yiBi,t+1 −
t∑
i=2

i−1∑
j=1

yjFj,iBi,t+1 =
t∑
i=1

yiBi,t+1 −
t−1∑
j=1

t∑
i=j+1

yjFj,iBi,t+1

= ytBt,t+1 +
t−1∑
i=1

yi(Bi,t+1 −
t∑

j=i+1

Fi,jBj,t+1)

= ytBt,t+1 +
t−1∑
i=1

yiF̃i,t+1

which shows the coefficient of yt here is Bt,t+1. Since the coefficient of yt in calculating f̂t+1

is Ft,t+1 according to definition of Fi,j in (2.12), the last equality justifies Ft,t+1 = Bt,t+1.

Besides, the coefficient for yt−1 is

F̃t−1,t+1 = Bt−1,t+1 − Ft−1,tBt,t+1 = Bt−1,t+1 −Bt−1,tFt,t+1 = Ft−1,t+1.

Coefficients for yi, i = 1, ..., t− 2 are

F̃i,t+1 =Bi,t+1 −
t∑

j=i+1

Fi,jBj,t+1
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Figure 2.1: Index variables used for the double-summation term in the Proof of Claim 2.3
.

=Bi,t+1 − [Bi,i+1Bi+1,t+1 +
t∑

j=i+2

(Bi,j −
j−1∑
l=i+1

Bi,lFl,j)Bj,t+1]

=Bi,t+1 − (Bi,i+1Bi+1,t+1 +
t∑

j=i+2

Bi,jBj,t+1 −
t∑

j=i+2

j−1∑
l=i+1

Bi,lFl,jBj,t+1).

With the order change of indices for the double summation term in the last equation, (see
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Fig. 2.1 for reference) we will get

F̃i,t+1 =Bi,t+1 − (
t−1∑
j=i+1

Bi,jBj,t+1 +Bi,tBt,t+1 −
t−1∑
l=i+1

t∑
j=l+1

Bi,lFl,jBj,t+1)

=Bi,t+1 − [Bi,tBt,t+1 +
t−1∑
j=i+1

Bi,j(Bj,t+1 −
t∑

l=j+1

Fj,lBl,t+1)]

=Bi,t+1 − (Bi,tFt,t+1 +
t−1∑
j=i+1

Bi,jFj,t+1) = Fi,t+1

where

Fi,t+1 =


Bi,t+1, for i = t,

Bi,t+1 −
∑t

j=i+1Bi,jFj,t+1, for 1 ≤ i < t.

Note that we are considering the training phase, t is upper-bounded by T where T denotes

the training duration. ■

Although Claim 2.3 mentions the training phase only, it is easy to extend (2.13) to the

predicting (testing) phase. If the nodal value for a tested node is known somehow, the node

will work as a sampled node and the SKG model can be trained further in which case (2.13)

works fine for the tested node directly. If a tested node comes without a true nodal value,

it will have no impact on the model, and all such nodes share exactly the same model in

which case all these nodes can be seen as the node at time T + 1. In practice, tested nodes

with and without known nodal values may be mixed, however, only those with known nodal

values will affect the model and later predictions. So, without loss of generality, we will only

consider the case where nodal values for tested nodes are unknown. Then, the prediction for
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a tested node can be expressed as

f̂T+1 =
T∑
i=1

yiFi,T+1 (2.14)

where f̂T+1 represents the prediction of the tested node. Note that at the time, we only

show a prediction is a weighted summation of observations. Based on the following claim,

we could step further and show a prediction can be a weighted average of observations using

Fi,T+1.

Claim 2.4. According to the definition in (2.12), we can get the expectation of the sum of

Fi,T+1 with all qualified i, i.e., 1 ≤ i ≤ T , as

E

[
T∑
i=1

Fi,T+1

]
= 1− (1− b)T

where b = E[Bi,j] and 1 ≤ i < j ≤ T + 1.

Proof. Using Fi,j’s definition, its expectation is

E[Fi,j] = E[Bi,j −
j−i−1∑
k=1

Bi,j−kFj−k,j] = E[Bi,j]−
j−i−1∑
k=1

E[Bi,j−kFj−k,j]

when 1 ≤ i < j ≤ T + 1 where T is the training duration. Note that Bi,j−k and Fj−k,j are

uncorrelated when 1 ≤ k ≤ j − i − 1 and the distribution of Bi,j, 1 ≤ i < j ≤ T + 1 is

independent of its indices i and j when an is considered following the same distribution for

1 ≤ n ≤ T + 1. Denote E[Bi,j] = b, we get

E[Fi,j] = b

(
1−

j−i−1∑
k=1

E[Fj−k,j]

)
.
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It can be verified that

E[Fj−1,j] = E[Bj−1,j] = b (2.15)

which justifies the claimed equality for i = j − 1, 1 < j ≤ T + 1. Suppose there exists

1 ≤ t ≤ T − 1 such that the claimed equality holds for i = j − l, l < j ≤ T + 1 when

1 ≤ l ≤ t, then for i = j − (t+ 1), t+ 1 < j ≤ T + 1 we have

E[Fj−t−1,j] = b

(
1−

t∑
k=1

E[Fj−k,j]

)
= b

(
1− b[1− (1− b)t]

1− (1− b)

)
= b(1− b)t

Then, substituting t = T , we get the expectation of the sum of Fi,T+1 with all qualified i,

i.e., 1 ≤ i ≤ T , as

E

[
T∑
i=1

Fi,T+1

]
=

T∑
i=1

E[Fi,T+1] =
T∑
i=1

b(1− b)T−i = 1− (1− b)T .

■

It has been confirmed by the positive average property of Bi,j in Section 2.3.1 that 0 < b < 2η.

For most cases where η ≪ 1, we get

lim
T→∞

E

[
T∑
i=1

Fi,T+1

]
= 1. (2.16)

In practice, the training duration T is usually more than hundreds which is sufficient to get

E
[∑T

i=1 Fi,T+1

]
≈ 1. The small variance of the summation is observed from experiments

such that the summation is close to 1. Thus, using (2.16) together with Claim 2.3, we can

draw a conclusion that, when T is suitable, the SKG prediction for a tested node is actually

a weighted average of all previously seen nodal values, and how much contribution that the

nodal value seen at time i makes to the prediction is determined by the Contribution Weight
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Fi,T+1. We call this the weighting property of Fi,T+1.

Conformity Between Bi,j and Fi,j

It can be observed from simulations that although Fi,j for any 1 < j ≤ T +1 increases about

exponentially when 1 ≤ i < j, Fi,j tends to be greater when Bi,j is obviously larger than

E [Bi,j]. Due to the recursive definition of Fi,j, the direct derivation between Bi,j and Fi,j

becomes complex. So, we explain the conformity between Bi,j and Fi,j using induction.

For j > 1, because Fj−1,j = Bj−1,j, there is no question that Bj−1,j and Fj−1,j will be both

large or small.

For j > 2, we see

Fj−2,j = Bj−2,j −Bj−2,j−1Fj−1,j = Bj−2,j −Bj−2,j−1Bj−1,j

= Bj−2,j

(
1− Bj−2.j−1Bj−1,j

Bj−2,j

)
.

Assuming a sufficiently large D, we consider the exponential approximation of Bi,j and get

Bj−2,j−1Bj−1,j

Bj−2,j

≈ 2ηe−
∥dj−2,j−1∥

2

2σ2 · 2ηe−
∥dj−1,j∥

2

2σ2

2ηe−
∥dj−2,j∥2

2σ2

= 2ηe−
∥dj−2,j−1∥

2+∥dj−1,j∥
2−∥dj−2,j∥

2

2σ2 .

From Triangle Inequality, we know that ∥dj−2,j−1∥2 + ∥dj−1,j∥2 − ∥dj−2,j∥2 ≥ 0, so

0 <
Bj−2,j−1Bj−1,j

Bj−2,j

≤ 2η.

Set α2 =
Bj−2,j−1Bj−1,j

Bj−2,j
, we can express Fj−2,j as

Fj−2,j = Bj−2,j(1− α2) (2.17)
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where 0 < α2 ≪ 1 since the learning rate η is usually a small number. Noting that α2

depends on the difference between j and j−2 which is 2 but not on j, we denote the fraction

to be α2. From (2.17), we see that Fj−2,j and Bj−2,j would also be both large or small

although there exists the factor 1− α2.

For i, j satisfying i = j − 3, j > 3, we get

Fj−3,j = Bj−3,j[1− α3,2(1− α2)− α3,1] (2.18)

where α3,2 =
Bj−3,j−2Bj−2,j

Bj−3,j
and α3,1 =

Bj−3,j−1Bj−1,j

Bj−3,j
, and thus 0 < α3,1, α3,2 ≪ 1. For α2, α3,1

and α3,2 all being small positive numbers, it is reasonable to have the following

1− α3,2(1− α2)− α3,1 = 1− α3,1 − α3,2(1− α2) ≈ (1− α3,2)(1− α2). (2.19)

The approximation is valid because α3,1 and α2 are small positive numbers. It would be an

equality instead when α3,1 = α2. Similarly, (1− α3,2)(1− α2) can be considered as a square

term because α3,2 and α2 are small positive numbers. In other words, we could choose α3 to

satisfy

1− α3,2(1− α2)− α3,1 = (1− α3)
2 (2.20)

and α3 is close to α2, α3,1 and α3,2. For example, in an experiment with η = 0.05, it is

possible to see α2 = 0.08, α3,1 = 0.06, and α3,2 = 0.1. Then, we should choose α3 = 0.079

which is around α2, α3,1 and α3,2 to satisfy (2.20). Substituting (2.20) back to (2.18), we

would get

Fj−3,j = Bj−3,j(1− α3)
2 (2.21)

which implies that Bj−3,j and Fj−3,j are related with a factor (1− α3)
2.
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Using mathematical induction we get the mathematical expression for the conformity prop-

erty between Bi,j and Fi,j for 1 ≤ i < j ≤ T + 1,

Fi,j = Bi,j(1− αj−i)j−i−1 (2.22)

where αj−i is a small positive number.

The conformity property between Bi,j and Fi,j considers an exponential term, implying that

when j− i is small, it is easier to observe Fi,j and Bi,j to be large or small at the same time.

However, when j − i is large, one observes small Fi,j values no matter what Bi,j is.

2.4 Gaussian Variance for a Graph

2.4.1 Impact of σ2 on Predictions

We illustrate how prediction changes when σ2 increases. Based on different behavior of

Bi,T+1, Fi,T+1, we divide the possible range of σ2, (0,+∞), into four parts, i.e., the Chaos

Range, the Extending Range, the Disturbing Range, and the Averaging Range, as shown in

Fig. 2.2. We can see from the figure that the applicable interval of σ2 is divided into four

parts, i.e., the chaos range, the extending range, the disturbing range, and the averaging

range, from left to right. The boundaries are denoted by σ2
ce, σ

2
ed, and σ

2
ea, respectively.

Chaos Range

In this range, σ2 is so small that Bi,T+1 is close to 0 when ai ̸= aT+1.

Following the conformity property, Fi,T+1 keeps pace with Bi,j. Note that in this case, αT+1−i

values are generally close to 0. Take α2 ≈ 2ηe−
∥dj−2,j−1∥

2+∥dj−1,j∥
2−∥dj−2,j∥

2

2σ2 as an example.
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Figure 2.2: A typical GNMSE curve with respect to σ2.

Because of the small σ2 value, the exponent is a large negative number when the numerator

of the exponent is nonzero. The small αT+1−i values make the exponential term in (2.22)

decay slowly with decreasing i from T , resulting in Fi,T+1 following Bi,T+1 closely. Like

Bi,T+1, Fi,T+1 takes positive or negative values. Whereas positive Fi,T+1 values are viewed as

weights of previously-seen nodal values contributing to the prediction, negative Fi,T+1 values

play a disturbing role. Specifically, negative Fi,T+1 values cancel out positive Fi,T+1 with

similar absolute values, resulting in taking nodal value difference instead of nodal values

into consideration for predicting. Thus, we can find a minimum range which negative Fi,T+1

values fall in, and together with its positive counterpart, we get a symmetric range around

0 which we call the noise range. When Fi,T+1 takes value in the noise range, we say the

corresponding nodes acquire an insignificant weight and do not contribute to the prediction.
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Figure 2.3: A simplified spacial illustration of sampled nodes and a tested node based on
∥di,T+1∥2.

Since most of Fi,T+1 values fall into the noise range when σ2 is in the Chaos Range, the

output is less predictable.

Extending Range

When σ2 is in this range, Bi,T+1 values with small ∥di,T+1∥2 are significantly greater than 0

whereas Bi,T+1 values with large ∥di,T+1∥2 are still close to 0.

Considering the conformity between Bi,j and Fi,j, it is expected that Fi,T+1 values for those

small ∥di,T+1∥2 are significantly larger than 0 while Fi,T+1 values for large ∥di,T+1∥2 are close

to 0. Due to the variation in Bi,T+1, the noise range still exists. However, there are Fi,T+1
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values falling out of the noise range. Let us call Bi,T+1 whose corresponding Fi,T+1 falls

outside the noise range the chosen Bi,T+1. With the exponential approximation of Bi,j, we

can find corresponding ∥di,T+1∥2 for chosen Bi,T+1 and have the maximum as the efficient

distance. Fig. 2.3 shows a simplified spatial distribution for sampled nodes and a tested

node. In the figure, the orange node represents the tested node and the others are sampled

nodes. A circle is centered at the tested node with the radius equal to the efficient distance.

The different lightness of green nodes implies different weights. With the efficient distance as

the radius, the circle centered at the tested node divides the sampled nodes into two groups.

Then, we rewrite the prediction as

f̂T+1 =
∑

Fi,T+1 is significant

yiFi,T+1 +
∑

Fi,T+1 is insignificant

yiFi,T+1. (2.23)

Sampled nodes inside the circle contribute to the first summation in (2.23) with chosen Bi,T+1

and significant Fi,T+1. Sampled nodes outside the circle are assigned insignificant weights

that fall into the noise range, so their nodal values contribute to the second summation

which is less predictable. Clearly, if the sampled nodes inside the circle have nodal values

close to that of the tested node, and if the second summation in (2.23) is not dominant, the

prediction would be close to its ground truth.

When σ2 is increased within the Extending Range, the efficient distance grows. That is, the

circle is extending to include more sampled nodes. This brings two benefits. First, more

nodes are taken into consideration, instead of just a few nodes. Note that sampled nodes

inside the circle have significant influence on prediction. When the circle includes only a

few nodes all of which happen to have dissimilar nodal values with the tested node, the

prediction would not be ideal. Enlarging the circle by increasing σ2 within the Extending

Range is helpful to include more sampled nodes, lowering weights of nodes with dissimilar

nodal values. Second, fewer nodes take part into the less predictable part when the efficient

distance grows. As a result, the performance of the SKG model gets better as σ2 increases
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within the Extending Range.

Disturbing Range

In this range, Bi,T+1 for all ∥di,T+1∥2 becomes significantly larger than 0 but Bi,T+1 with

small ∥di,T+1∥2 are significantly greater than Bi,T+1 with large ∥di,T+1∥2. Notice that it is

the relative value not the absolute value of Bi,T+1 that carries information of similarity in

adjacency vectors.

We can calculate an efficient distance using chosen Bi,T+1 values and draw a circle as in Fig.

2.3. However, the circle loses its role as a boundary. In fact, the circle includes most, if

not all, of sampled nodes. Not all nodes inside the circle are assigned significant weights.

Sampled nodes with higher Bi,T+1 still tend to get higher weights, but other sampled nodes

would get significant weights if they show up at later times. Take the last sampled node

in training as an example. It is assigned weight FT,T+1 = BT,T+1 which is significantly

greater than 0. That is, the last nodal value is considered in prediction regardless of whether

the node is spatially close to the tested node or not. In other words, predictions consider

closeness in time in addition to similarity among adjacent vectors.

When σ2 is increased within the Disturbing Range, Bi,T+1 values generally grow and predic-

tions are focusing more and more on proximity of time. If the recent nodes do not happen

to have similar nodal values with the tested node, the prediction will be far from its ground

truth.

Averaging Range

In this range, σ2 is so large that Bi,T+1 are close to 2η for all ∥di,T+1∥2.

Note that αT+1−i values are close to 2η in this case. For example, if we look at α2 we have
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α2 ≈ 2ηe−
∥dj−2,j−1∥

2+∥dj−1,j∥
2−∥dj−2,j∥

2

2σ2 ≈ 2η. Consequently, Fi,T+1 is close to an exponential

function with the base 1− 2η as i goes from 1 to T .

Because of the exponential shape of Fi,T+1 with respect to i, it is unsurprising that only recent

nodes are taken into consideration in predicting. Besides, it is the same set of sampled nodes

that take significant weights in calculation for different tested nodes, and {Fi,T+1}Ti=1 are

similar for different tested nodes. Thus, it is anticipated that outputs of the model are

about the same for all tested nodes.

2.4.2 How to Choose a σ2

For clarity, let us denote the boundary between the Chaos Range and the Extending Range

by σ2
ce, the boundary between the Extending Range and the Disturbing Range by σ2

ed, and

the boundary between the Disturbing Range and the Averaging Range by σ2
da. From the

analysis in Section 2.4.1, we conclude that the performance is bad in the Chaos Range, gets

better in the Extending Range, might get worse in the Disturbing Range, and is bad in

the Averaging Range. As predictions in the Disturbing Range consider more proximity of

time instead of network topology than in the Extending Range, we choose the boundary

between the Extending Range and the Disturbing Range σ2
ed as a suitable σ2 (cases where

performance gets the best in the Disturbing Range are discussed in Section 2.6.2). Using Fig.

2.3 as an illustration, the radius of the circle achieves its maximum while not including nodes

with dissimilar adjacency vectors on this boundary. Intuitively speaking, what happens at

σ2
ed is Bi,T+1 values for large ∥di,T+1∥2 are “just significantly greater than 0.”

We should find the largest possible ∥di,T+1∥2 value. However, we cannot know the distribu-

tion of ∥di,T+1∥2 when we configure the SKG model. So, we use the largest value of ∥di,j∥2

among all pairs of sampled nodes, denoted by ∥d∥2max, instead. We also need to give a con-

crete math expression for “significantly greater than 0.” Recall that Fi,T+1 is considered as
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significant if it falls out of the noise range. Following the conformity property between Bi,j

and Fi,j, Fi,T+1 is likely to fall out of the noise range when Bi,T+1 falls out of the noise range.

Then, Bi,T+1 is significant when it is greater than the upper bound of the noise range.

It can be observed that the noise range exists for different σ2 values. The existence is

(partly) due to the variation of Bi,T+1 for 1 ≤ i ≤ T . For example, in an extreme case where

Bi,T+1 = 2η for 1 ≤ i ≤ T , Fi,T+1 is an exact exponential function with respect to i and the

noise range vanishes. Detailed analysis on the noise range is left for future study. Although

the noise range changes with Bi,T+1 variation, the change is limited. So, we can calculate

the noise range in the Chaos Range which is easier to derive and use it for all σ2. Recall in

the Chaos Range, Fi,T+1 values closely follow corresponding Bi,T+1 values. From (2.9), it is

known that

V[Bi,j|di,j] =
(2η)2

2D

(
e−

∥di,j∥
2

σ2 − 1
)2

which is a decreasing function with respect to ∥di,j∥2. That is, V[Bi,T+1] which is an upper

bound of V[Fi,T+1] is upper-bounded by V[Bi,T+1|0] ≤ (2η)2

2D
. Then, the upper bound of the

noise range noiseup can be approximated by the standard deviation as

noiseup ≈
√

(2η)2

2D
=

1√
2D
× 2η. (2.24)

For a more precise noise range at the boundary between the Extending Range and the

Disturbing Range, please follow Algorithm 3.

Once making sure noiseup and ∥d∥2max, we can apply the exponential approximation of Bi,T+1

and get

2ηe
− ∥d∥2max

2σ2
ed = noiseup
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which is equivalent to

σ2
ed = −

∥d∥2max
2 ln noiseup

2η

. (2.25)

The steps of how to choose a suitable σ2 are summarized in Algorithm 2. We would like to

mention that, although (2.24) and (2.25) indicate that D affects calculated σ2
ed, the best σ2

is not influenced by D theoretically as long as D is sufficiently large. Note that D cannot

be arbitrarily small for the validity of the random feature approximation. The proposed

σ2 is close to the optimal one, but not exactly the same. In this case, (2.24) provides an

approximation of noiseup and we also provide Algorithm 3 to mitigate the impact of D on

the proposed σ2.

Algorithm 2 Choosing σ2 for the Gaussian Kernel in SKG

Input: adjacency vectors for all sampled nodes, and the number of the random features

D.

Get noiseup via (2.24) (alternatively, for a more precise noise range, use Algorithm 3);

Get ∥di,j∥2 for all pairs of sampled nodes and record the maximum value;

Get a σ2 value via (2.25);

Algorithm 3 Finding a More Precise Noise Range

Run a simulation with σ2 found with noiseup in (2.24);

Get Fi,T+1 via (2.12) for 1 ≤ i ≤ T and record its minimum;

Using the absolute value of the minimum as the new noiseup, the new noise range is

[−noiseup, noiseup];

We can have similar definitions for the boundary between the Chaos Range and the Extend-

ing Range σ2
ce and the boundary between the Disturbing Range and the Averaging Range

σ2
da, which are used in later simulations. The boundary σ2

ce should be such that Bi,T+1 for
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the smallest nonzero ∥di,T+1∥2 is greater than noiseup. With the exponential property, we

get

2ηe
−

∥d∥2min,nonzero

2σ2
ce = noiseup

where ∥d∥2min,nonzero denotes the smallest nonzero ∥di,T+1∥2, or equivalently,

σ2
ce = −

∥d∥2min,nonzero
2 ln noiseup

2η

. (2.26)

The boundary σ2
da should result in Bi,T+1 for the largest ∥di,T+1∥2 to be close to 2η. That

is, σ2
da satisfies

2ηe
− ∥d∥2max

2σ2
da = 2η(1− closeness)

or equivalently,

σ2
da = −

∥d∥2max
2 ln(1− closeness)

. (2.27)

where closeness should be chosen as a small value which indicates how much the value is

expected to be close to 2η. For example, closeness has to be within (0, 0.5) to imply the

value is closer to 2η than 0. The choice is somewhat arbitrary as long as it indicates nearness

to 2η.

2.5 Simulations

In this section, we provide simulation results confirming some properties of Bi,j and Fi,j, and

show the performance of the proposed algorithm on four real datasets.

47



2.5.1 Performance Measure for SKG

When talking about the performance of SKG, we follow [33] and use generalization normal-

ized mean squared error (GNMSE) as the metric. GNMSE is defined as

GNMSE =
∥ytrue − ypred∥2

∥ytrue∥2
(2.28)

where ypred and ytrue are vectors whose elements are the predicted and the true nodal

values for all tested nodes, respectively. In addition, we will use normalized true values and

predictions to calculate GNMSE.

2.5.2 Real Datasets

We use four real datasets, the Temperature-Jan dataset, the Cora-Con dataset, the Email-

EU-Core dataset, and the Wikipedia-Math-Daily dataset.

The Temperature-Jan Dataset

The Temperature-Jan dataset is a part of the Temperature dataset which is used in Section

1.3. Recall that the Temperature dataset contains the average monthly temperature infor-

mation of 83 weather stations in Switzerland. Note that the Temperature dataset does not

contain any graph. It has altitude information of the stations. We used the altitude infor-

mation to create two graphs. The first graph was created in the same way as authors of [24]

created their ground truth graph based on the altitudes of stations. That is, an edge exists

between a pair of nodes only when the altitude difference between the corresponding sta-

tions is less than 300 meters. The second graph is the same except that weights of connected

nodes are not 1 but follow e−∆/300 where ∆ corresponds to the absolute value of the altitude
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difference between a pair of connected nodes. The Temperature-Jan dataset contains the

monthly average temperature information of all the 83 stations in January during 1961-1990,

and the created graph of the 83 stations during the same period. Note that the first graph is

unweighted whereas the second one is weighted. The temperature for the stations is viewed

as nodal values.

The Cora-Con Dataset

The Cora-Con dataset is part of the Cora dataset. The Cora dataset [2] contains a citation

network of 2708 scientific papers each of which is categorized as one of seven topics in the

field of machine learning. We view the papers as nodes. Note that the citation network is

an unweighted directed graph where edges can point from a citing paper to a cited paper.

Then, the (column) adjacency vector of a node is actually an indicator vector of whether

the paper cites a list of papers. We assign an integer from {1, 2, ..., 7} representing paper

classes as nodal values. The Cora dataset contains 486 papers with no citing. That is, these

nodes have the adjacency vector of 0. But they carry different nodal values. To avoid these

nodes confusing the SKG model, we create the Cora-Con dataset by excluding the 486 nodes,

remaining 2222 nodes and the related network.

The Email-EU-Core Dataset

The Email-EU-Core dataset [44] contains email communication among 1005 members in a

European research institution. Every member belongs to one of 42 departments. We view

the members as nodes and assign an integer from {1, 2, ..., 42} representing their membership

as their nodal values. The communication network is unweighted and directed.
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The Wikipedia-Math-Daily Dataset

TheWikipedia-Math-Daily dataset is part of theWikipedia-Math dataset [45]. TheWikipedia-

Math dataset contains a weighted link network among 1068 Wikipedia pages about Mathe-

matics topics. The web pages are viewed as nodes and the network is directed. Weights on

the links denote relevance. The dataset also contains daily visits for those pages between

2019 and 2021 March, 731 days in total. The daily visits on any day can be used as ground

truth. The Wikipedia-Math-Daily contains the directed weighted network and daily visits

on March 16th, 2019.

2.5.3 Exponential Approximation of Bi,j

The exponential approximation property is one of the core assumptions for other properties

of Bi,j and Fi,j. We aim to compare the exponential approximation with practical distri-

butions of Bi,j. The Temperature-Jan dataset is used where 40% of total nodes (33 nodes)

are randomly selected as sampled nodes. Referencing nodes are the sampled nodes. The

parameter D is 200. The learning rate η is set to 0.1. The Gaussian variance σ2 is set to 10.

Following the SKG algorithm and the definition of Bi,j in (2.5), Bi,j values for all pairs

of sampled nodes are calculated. We select Bi,j values with ∥di,j∥2 = 15 as an example

and get their distribution. There are 21 qualified pairs of nodes and the corresponding

similarity measure take values within (0.085, 0.105). The sample mean is 0.0976, and the

sample variance is 5.80 × 10−5. Recall that the exponential approximation in (2.10) states

that Bi,j can be approximated as 2ηe−
∥di,j∥

2

2σ2 = 0.094 when ∥di,j∥2 = 15. Comparing with

the potential range (0, 0.2] for Bi,j with no ∥di,j∥2 constraints, we could say the exponential

approximation is valid.
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2.5.4 Conformity Property and the Impact of σ2

The conformity property is at the core of the analysis of the impact of σ2. We show Bi,j and

Fi,j behavior with σ
2 in different ranges using the Temperature-Jan dataset. Again, 40% of

total nodes are randomly chosen as sampled nodes which are also referencing nodes. The

parameters are D = 200, η = 0.1, and E = 3.

We first make sure the boundaries between adjacent ranges. Checking with the Temperature-

Jan dataset, we know ∥d∥2min,nonzero = 1, and ∥d∥2max = 27. With noiseup in (2.24) and

closeness = 0.1, we get σ2
ce = 0.22, σ2

ed = 5.87, and σ2
da = 135. Fig. 2.4 shows examples of

Bi,T+1 and Fi,T+1 with σ2 in different ranges. The conformity between Bi,j and Fi,j can be

observed from the figures. Additionally, Fig. 2.5 displays an example of αT+1−i values when

σ2 is in its Disturbing Range.

Given detailed look, it is seen from Fig. 2.4(a) that when σ2 is in its Chaos Range, Bi,T+1

values are around 0, and so do Fi,T+1 values. Fig. 2.4(b) verifies that when σ2 is in its

Extending Range, positive and negative values of Bi,T+1 become unbalanced, and some Fi,T+1

values are greatly larger than 0. TheBi,T+1 values are greater than 0 in Fig. 2.4(c), and Fi,T+1

for the penultimate node are relatively large although its Bi,T+1 is close to min{Bi,T+1}Ti=1.

In Fig. 2.4(d), Bi,T+1 values are all close to 2η, and Fi,T+1 is roughly an exponential function

with respect to i.

Fig. 2.6 plots predictions for the tested nodes under different σ2 as well as their true nodal

values. Predictions with σ2 = 0.1 have the greatest error whereas predictions with σ2 = 300

are almost the same. In summary, as σ2 grows, predictions tend to get closer to their ground

truth, while σ2 grows furthermore than needed, predictions are roughly the same for different

tested nodes for the Temperature-Jan dataset.
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Figure 2.4: Values of Bi,T+1 and Fi,T+1 for a tested node in the Temperature-Jan dataset
with different σ2 values. (a) σ2 = 0.1. (b) σ2 = 2. (c) σ2 = 10. (d) σ2 = 300.

2.5.5 Performance of the Proposed Algorithm

To show the performance of the proposed algorithm, we compare the theoretical σ2
ed value

from Algorithm 2 with the best σ2 found by simulations using the three real datasets. In

each dataset, 40% of total nodes are randomly selected as the sampled nodes which are also

referencing nodes. The noiseup in (2.24) of Fi,j is used. Simulation results will be denoted

in blue solid curves and their corresponding proposed σ2
ed will be denoted in red dotted line.

For unweighted graph in the Temperature-Jan dataset, the value of ∥d∥2max is found to be 27,
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Figure 2.5: Values of αT+1−i for a tested node in the Temperature-Jan dataset with σ2 = 10.

and the theoretical result is σ2
ed = 5.86. For the weighted graph, the value of ∥d∥2max is found

to be 12.49 resulting in the theoretical result σ2
ed = 2.08. When finding the relationships

between GNMSE and σ2 by simulations, we set E = 3, D = 200, and η = 0.1. The results

are shown in Fig. 2.7a and Fig. 2.7b, respectively. Note that the shown values of GNMSE

are averaged over 50 repeated experiments.

For the Cora-Con dataset, the value of ∥d∥2max is found out to be 8, resulting a theoretical

value σ2
ed = 1.05. For simulations, we set E = 3, D = M = 888, and η = 0.05. The results

are shown in Fig. 2.7c noting that the shown values of GNMSE are averaged over 30 repeated

experiments. The GNMSE curve is not as smooth as in the previous case since fewer repeated

experiments are carried out due to the larger network size and higher computational cost.
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Figure 2.6: True nodal values and predicted values when σ2 = 0.1, σ2 = 2, σ2 = 10, and
σ2 = 300 for tested nodes in the Temperature-Jan dataset.

For the Email-EU-Core dataset, the value of ∥d∥2max is found out to be 107, resulting a

theoretical value σ2
ed = 15.29. For simulations, we set E = 3, D = M = 403, and η = 0.05.

The results are shown in Fig. 2.7d. The shown values of GNMSE are averaged over 50

repeated experiments.

For the Wikipedia-Math-Daily dataset, the value of ∥d∥2max is found out to be 671 followed

by a theoretical value σ2
ed = 95.67. For simulations, we set E = 3, D = 500, and η = 0.03.

The comparison between the simulation result and the theoretical value is shown in Fig.

2.7e. The shown values of GNMSE are averaged over 50 repeated experiments.
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2.6 Discussions

2.6.1 Complexity of the Proposed Algorithm

The majority of computational source for the proposed algorithm is used for calculating

∥di,T+1∥2 for all pairs of sampled nodes. For a training set containing N sampled nodes, it

would take N(N − 1)/2 vector additions and inner products. Finding the largest ∥di,T+1∥2

value can be done along with its calculation, and takes minor computational resource and

memory resource.

2.6.2 Performance of the Proposed Algorithm

Impact From Dataset Statistics

It is noticed that the proposed algorithm finds the best σ2 in terms of GNMSE for the

Temperature-Jan dataset, whereas for the other three datasets, the best σ2 is slightly larger

than what is found via the proposed algorithm. That is partly because similar adjacency

vectors leading to similar nodal values is not guaranteed in later datasets. We take the

comparison between the Temperature-Jan dataset and the Cora-Con dataset as an example.

Let us first understand the relationship between similarity in nodal values and similarity in

adjacency vectors in the two datasets. We use ∥di,j∥2 to show dissimilarity of adjacency

vectors and |yi − yj| to show dissimilarity of nodal values for a pair of nodes. Notice the

smaller the values, the more the similarity. Fig. 2.8 and Fig. 2.9 show |yi−yj| versus ∥di,j∥2

for the two datasets, respectively.

In Fig. 2.8, the horizontal axis takes discrete values because the graph is unweighted, and

the vertical axis takes continuous values because the nodal values, i.e., temperature for the
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stations, take continuous values. More importantly, it is seen that when ∥di,j∥2 is small,

the nodal value difference is also small. For instance, when ∥di,j∥2 = 5 for a pair of nodes,

|yi − yj| may take a value within [0, 0.35]. Whereas, for a pair of nodes with ∥di,j∥2 = 15,

the nodal value difference is likely to be greater than 0.3 and could be up to 1. (The

behavior for ∥di,j∥2 ≥ 15 corresponds to the fact that stations with higher altitudes have

smaller temperature difference. Although such stations may largely vary in altitudes and

thus adjacency vectors, they have relatively low temperature.) This property of the dataset

is due to the fact that connected nodes have closer altitudes. Since connected nodes tend to

have similar adjacency vectors in the graph, considering correlation between altitudes and

temperature, it is expected that similar adjacency vectors tend to have closer nodal values

(temperature).

In Fig. 2.9, the horizontal axis takes discrete values. The vertical axis also takes discrete

values because the nodal labels in the dataset represent categories. It is seen that |yi − yj|

takes large values with nonnegligible probability even when ∥di,j∥2 = 0. Recalling that

the graph indicates citing behavior among papers, such a relationship between nodal values

and adjacency vectors implies that the category of a citing paper is weakly correlated with

the categories of the cited papers. That is, it is possible that two papers citing the same

reference belong to different classes, and that two papers with different citing patterns are

categorically the same. From the SKG model perspective, similarity in adjacency vectors

may not lead to similarity in nodal values in the Cora-Con dataset.

Now we explain how such a relation between adjacency vectors and nodal values impacts the

choice of best σ2. Recall at the boundary between the Extending Range and the Disturbing

Range, the efficient distance shown in Fig. 2.3 divides sampled nodes based on similarity in

adjacency vectors, and the prediction can be considered as a weighted average of the inner

nodes. For the Temperature-Jan dataset, the inner nodes have small nodal value difference

from the tested node, and thus the prediction would be close. Whereas, for the Cora-Con
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dataset, the predictions are precise for some tested nodes while they have large errors for

the rest. However, these large errors can be reduced in the Disturbing Range. Recall at

this range, predictions are weighted averages over all sampled nodes. Large errors at the

boundary σ2
ed will become less in the Disturbing Range, but meanwhile, small errors may

increase. Since GNMSE penalizes more on larger error, GNMSE performance could get

better in the Disturbing Range than at σ2
ed for the Cora-Con dataset.

In summary, for datasets where similar adjacency vectors lead to dissimilar nodal values

with nonnegligible probability, the resulting σ2
ed of the proposed algorithm is smaller than

the best σ2 which is in the Disturbing Range in terms of GNMSE.

Impact From Other Hyperparameters

We would like to note that our analysis applies for ideal cases where the number of random

features D is sufficiently large and the learning rate η and the number of epochs E are

properly chosen.

If D is not large enough, the validity of the exponential approximation of Bi,j would weaken,

leading to larger GNMSE values. The impact from D applies to all σ2 such that the chosen

D does not affect the best σ2 theoretically. Our proposed algorithm provides σ2 which is

near-optimal, σ2
ed is affected by D without Algorithm 3. However, the impact of D decays

as D increases due to the log(·) function in the denominator of (2.25). In practice, D is

usually more than tens or hundreds and thus the impact of D on σ2
ed is limited.

The parameters η and E should be jointly chosen such that
∑EN

i=1 Fi,EN+1 ≈ 1. Note that η

cannot be very large to avoid parameter explosion. When η becomes smaller, E should be

increased accordingly. In this case, our analysis applies and σ2
ed is close to optimum. If E is

not sufficient either, σ2
ed would not be ideal because the weighting property of Fi,j is invalid.

In this case, the best σ2 should be much larger than σ2
ed to mitigate the biased sum of the
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contribution weights.

2.6.3 Similarity Transfer of SKG

We refer the reader to Figs. 2.7a–2.7d. Note that GNMSE values vary considerably among

the three datasets. Thus, it is believed that SKG has better performance on some datasets

than others. This can be understood via the weighting property together with the char-

acteristic of a dataset. With σ2
ed, predictions are weighted averages of a group of nodes.

The weights are acquired from adjacency vectors and applied for nodal values. If similar

adjacency vectors do not lead to similar nodal values, predictions would have large errors.

If similar adjacency vectors lead to dissimilar nodal values with nonnegligible probability

in a dataset, the SKG performance would be less ideal on the dataset. This is clear when

comparing SKG performance between Temperature-Jan dataset on which GNMSE could be

lower than 0.05 and the Cora-Con dataset on which GNMSE values are above 0.35. From

the comparison, we concluded that SKG with a Gaussian kernel assumes that similarity of

adjacency vectors leads to similarity of nodal values.

2.6.4 Extension of the Analysis

We used SKG with a Gaussian kernel to illustrate our analysis framework based on similarity

measures and contribution weights. The analysis framework is not constrained in the cases

of Gaussian kernels. In fact, it is applicable to all shift-invariant kernels [23]. Specifically

speaking, as we mentioned before, the exponential approximation is the same expression

as the random feature approximation but in a reverse order. So, any shift-invariant kernel

that has a Fourier transform can easily build its similarity measure. In what follows, the

proposed properties of contribution weights apply no matter what kernel is used because

they are built only on the similarity measure. How to find a suitable kernel parameter based
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on the framework is discussed in the following chapter.

Additionally, our analysis framework can be helpful for other algorithms which have a (shift-

invariant-)kernel-based learning model. The framework is generalized to be applicable on

general KRG-RFF models in the following chapter.
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Figure 2.7: The GNMSE values with respect to the Gaussian kernel variance σ2 for different
datasets and graphs. (a) For the Temperature-Jan dataset with the unweighted graph. (b)
For the Temperature-Jan dataset with the weighted graph. (c) For the Cora-Con dataset.
(d) For the Email-EU-Core dataset. (e) For the Wiki-Math-Daily dataset.
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Figure 2.8: Scatter plot of the relationship between norm square of adjacency vector differ-
ence ∥di,j∥2 and absolute difference between nodal values |yi − yj| for all pairs of sampled
nodes in the Temperature-Jan dataset.
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Figure 2.9: Scatter plot of the relationship between norm square of adjacency vector differ-
ence ∥di,j∥2 and absolute difference between nodal values |yi − yj| for all pairs of sampled
nodes in the Cora-Con dataset.
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Chapter 3

A General Framework

Kernel-based regression over graphs with random Fourier features (KRG-RFF) is an existing

simple yet powerful algorithm that can perform graph signal prediction when the input signal

is not limited to a graph signal. This chapter aims to deal with the configuration problem

for KRG-RFF models to achieve (sub-)optimal performance given a dataset. Specifically,

we extend the aforementioned parameter analysis framework and establish a generalized

framework which expresses model predictions as weighted sums of training observations.

With the new framework, we can get an understanding of the influences from the hyper

parameters in the KRG-RFF model by studying how those parameters affect the observation

weights. Based on this understanding of parameter influence, we propose corresponding

methods to find suitable values for different parameters. Simulation results on real datasets

are provided to confirm the validity of our understanding of the model parameters and to

show the performance of the proposed parameters.
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3.1 Introduction

Graph signals can change with time and other inputs, and thus, graph signal prediction

[46, 47, 48, 30, 32] has been a topic in GSP. To solve the prediction problem, authors

in [46, 47, 48] establish models using historical graph signal observations and the graph

structure. That is, both the input and the output for the models are graph signals. On the

contrary, models in [30, 32] can take more general inputs while enforcing the output to be a

graph signal. More specifically, to model a nonlinear relationship between the input and the

output for scenarios where the input is agnostic, i.e., the input is not limited to graph signals,

authors of [30] incorporate kernels in a regression model on graphs and propose the kernel

regression method over graphs (KRG). However, as the number of training input-output pairs

and the network size increase, the computational burden becomes prohibitive. To deal with

the scaling issue of the KRG algorithm, [32] proposes an iterative method, kernel regression

over graphs with random Fourier features (KRG-RFF), by applying random Fourier feature

(RFF) approximation [23] for shift-invariant kernels.

As seen in the Gradraker case, the KRG-RFF performance is usually affected by the hyper

parameters of the model which should be chosen prior to the iterative training and will

be fixed when the model is being used. Authors of [32] provide convergence ranges for

learning rates in the first-order sense and the second order sense, and show in simulations

the influence of the batch size and the number of random Fourier features (RFFs). The

convergence analysis on a model using the graph kernel least mean squares based on random

Fourier features (GKLMS-RFF which is similar to KRG-RFF) with respect to learning rates

can be observed in [49]. The influence of the Gaussian kernel on graph-based adaptive

learning using random feature approximation with multiple kernels (Gradraker) models [33]

is presented in our previous work [50]. Those works include analysis for some parameters

theoretically or via simulation. But they do not focus on the kernel-based learning model

with RFF approximation and perform parameter analysis systematically. We aim to establish

64



a framework to understand influences from all parameters in those learning models. To do

so, we will extend the work in Chapter 2 [50]. The work establishes an analyzing framework

based on two intermediate variables. In the framework, the influence of the Gaussian kernel

variance on predictions can be understood via investigating the influence of the Gaussian

variance on the two intermediate variables. In this chapter, we will generalize the two

intermediate variables. In addition, we will introduce a third variable to specifically deal

with the batch training in KRG-RFF. With understandings of parameter influences on model

performance, we are able to find suitable values for different hyper parameters.

The KRG-RFF model has been reviewed in Section 1.2. Comparing the mathematical ex-

pressions for general KRG-RFF models and those for Gradraker models, we could find that

although their inputs and outputs have different physical meanings, their mathematical forms

are intrinsically the same. Thus, the generalized framework with three intermediate variables

is illustrated in Section 3.2. Understandings of influences from different hyper parameters

are presented in Section 3.3 based on the proposed framework. Simulation results on real

datasets are provided in Section 3.4.

3.2 Mathematical Tools

To achieve a better performance by choosing suitable parameters configuring the KRG-RFF

model, parameter analysis is inevitable. However, due to the recursion nature of the training

process, it is hard to rewrite model prediction errors with respect to model parameters

directly. So, we manage to rewrite model predictions as weighted sum of training observations

and study the influence of parameters on weights of observations.

The two variables in the previous chapter, the contribution weights and the similarity mea-

sure, are generalized in this chapter to analyze KRG-RFF models. Recall that the contri-
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bution weights are the actual weights of training observations for predictions in the training

phase, and the similarity measure is an intermediate variable needed for the definition of

contribution weights. In addition, a third variable, the tailored RF, is introduced to deal

with the batch-based optimization in KRF-RFF models specifically.

We would like to note that, although the KRG-RFF model can be updated when the model

is in use as long as the ground truth is available, for simplicity in analysis, we assume that

there exists a time instance N such that inputs that come before and at N are with ground

truth and inputs that come after N are without ground truth. That is, N is the training

duration and also the threshold for the training and the predicting phases. Inputs used in

the predicting phase are all viewed as inputs at N + 1 without updating the model. The

analysis for this basic case can be easily extended to more general cases.

In addition, for simplicity in the analysis, we set the factor β of the smoothness term to

be small enough that the smoothness term can be ignored. This is a valid assumption for

noiseless cases. Because, in noiseless cases, according to the objective function in (1.8),

observations are ground truth and thus smoothness term introduces bias when β is large.

For the following analysis, β is set to be 0.

3.2.1 Similarity Measure

For training time instances m and n such that Nb ≤ n < m ≤ N , we define the similarity

measure

Bm,n =
µ

Nb

ZmZ
⊤
n . (3.1)
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Substituting (1.11) in (3.1), we get

Bm,n =
µ

Nb


z⊤ (xm−Nb+1)

...

z⊤ (xm)

 [z (xn−Nb+1) , · · · , z (xn)]

as an Nb-by-Nb matrix whose (i, j)-th element is

[Bm,n]i,j =
µ

Nb

z⊤ (xm−Nb+i) z (xn−Nb+j) ≈
µ

Nb

κ (xm−Nb+i,xn−Nb+j)

where the approximation holds when the number of RFs D is sufficiently large. Different

elements in a B matrix consider inputs at different time instances in a batch, but all elements

are approximations of kernel values with the same factor µ
Nb
. Recalling that kernels are used

for measuring similarity between inputs, B matrices are inherently used as a similarity

measure.

When the batch size Nb is 1, the B variable is reduced to a scalar

Bm,n =
µ

Nb

z⊤ (xm) z (xn)

which is the same as the definition of the similarity measure in Chapter 2.

3.2.2 Contribution Weight

The contribution weight has definition only at time instances being multiples of the refreshing

period δ.

Let γ and l be positive integers such that Nb ≤ lδ < γδ ≤ N , we define the contribution
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weight F as

Fγδ,lδ = Bγδ,lδ (3.2)

for γ = l + 1, and

Fγδ,lδ = (1− µα)γ−l−1Bγδ,lδ −
γ−1∑
k=l+1

(1− µα)γ−k−1Bγδ,kδFkδ,lδ (3.3)

for γ > l + 1.

Like B matrices, F matrices are also of size Nb × Nb. The definition of F matrices retains

the recursion nature of the training process. We will use the following properties to gain a

concrete idea of F matrices.

Weighting Property

Recalling that the smoothness term in (1.8) is ignored, the following claim shows F matrices

are used as weights of batch observations for prediction during the training phase.

Claim 3.1. Let γ be a positive integer such that Nb ≤ γδ ≤ N . Given definitions in (3.1),

(3.2), and (3.3), we can rewrite predictions during training phase Yγδ in terms of historical

batch observations Tlδ, l = γ0, · · · , γ − 1 as

Yγδ =

γ−1∑
l=γ0

Fγδ,lδTlδ (3.4)

where γ0 is the least integer such that γ0δ ≥ Nb.

Proof. Please refer to the proof of Claim 3.2 first.

Letting γ0 be the least integer such that γ0δ ≥ Nb, the prediction at the training time
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instance γδ is

Yγδ =ZγδHγδ = Zγδ

(γ−1)δ∑
l=γ0

Gγδ,lδTlδ =

(γ−1)δ∑
l=γ0

ZγδGγδ,lδTlδ

where the second equality follows Claim 3.2. Recalling the featuring property of G, i.e,

ZγδGγδ,lδ = Fγδ,lδ, we have Yγδ =
∑(γ−1)δ

l=γ0
Fγδ,lδTlδ. ■

Claim 3.1 shows batch prediction Yγδ during the training phase is actually the weighted

sum of previous batch observations Tlδ, l = γ0, · · · , γ − 1 where F matrices are the weights.

This is called the weighting property of F matrices.

Notice that (3.4) applies on the training phase only. Because, during the training phase, the

model takes multiple inputs at a time; whereas during the predicting phase, we focus on how

the model works given an input. Still, (3.4) gives insights on prediction in the predicting

phase since predictions during the training and predicting phases are essentially the same.

More specifically, the expression of predictions yN+1 during the predicting phase can be

generalized from yγδ which is the last row of Yγδ acquired via (3.4).

Conformity Property with B Matrices

Due to the recursion definition of F matrices, it is hard to get closed-form expressions for

F. Fortunately, we find B matrices and F matrices with the same indices behave similarly

to some extent. We illustrate the phenomenon through induction in the following.

For l = γ − 1, we have

Fγδ,lδ = Fγδ,(γ−1)δ = Bγδ,(γ−1)δ.
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For l = γ − 2, with F(γ−1)δ,(γ−2)δ = B(γ−1)δ,(γ−2)δ, we have

Fγδ,lδ = Fγδ,(γ−2)δ = (1− µα)Bγδ,(γ−2)δ −Bγδ,(γ−1)δB(γ−1)δ,(γ−2)δ

whose (i, j)-th element is

[
Fγδ,(γ−2)δ

]
i,j

=(1− µα)
[
Bγδ,(γ−2)δ

]
i,j
−

Nb∑
k=1

[
Bγδ,(γ−1)δ

]
i,k

[
B(γ−1)δ,(γ−2)δ

]
k,j

=(1− µα)
[
Bγδ,(γ−2)δ

]
i,j
·

[
1−

Nb∑
k=1

[
Bγδ,(γ−1)δ

]
i,k

[
B(γ−1)δ,(γ−2)δ

]
k,j

(1− µα)
[
Bγδ,(γ−2)δ

]
i,j

]
.

(3.5)

When the number of RF D is sufficiently large, we consider the RFF approximation in (1.5)

and get the following for the fractions in the summation

[
Bγδ,(γ−1)δ

]
i,k

[
B(γ−1)δ,(γ−2)δ

]
k,j

(1− µα)
[
Bγδ,(γ−2)δ

]
i,j

≈
µ
Nb
ξγ,i,γ−1,k

µ
Nb
ξγ−1,k,γ−2,j

(1− µα) µ
Nb
ξγ,i,γ−2,j

=
1

Nb

µ

1− µα
ξγ,i,γ−1,kξγ−1,k,γ−2,j

ξγ,i,γ−2,j

(3.6)

with small approximation errors. Note that we use

ξγ,i,γ−1,k = κ
(
xγδ−Nb+i,x(γ−1)δ−Nb+k

)
for notational simplicity. Substituting the fraction approximation in (3.6) to (3.5), we get

[
Fγδ,(γ−2)δ

]
i,j
≈ (1− µα) (1− a2,γ,i,j)

[
Bγδ,(γ−2)δ

]
i,j

(3.7)

where

a2,γ,i,j =
µ

1− µα
· 1

Nb

Nb∑
k=1

ξγ,i,γ−1,kξγ−1,k,γ−2,j

ξγ,i,γ−2,j

.
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Notice that the sample-averaged fraction a is with respect to the batch index γ, the element

position (i, j), and the time difference which is 2 in this case.

The approximation in (3.7) implies elements in Fγδ,(γ−2)δ can be large or small according to

elements in Bγδ,(γ−2)δ in the same position. That is called the conformity property between

Fγδ,(γ−2)δ and Bγδ,(γ−2)δ.

For l = γ − 3, with F(γ−2)δ,(γ−3)δ = B(γ−2)δ,(γ−3)δ and (3.7), we get (i, j)-th element in

Fγδ,(γ−3)δ as

[
Fγδ,(γ−3)δ

]
i,j
≈(1− µα)2

[
Bγδ,(γ−3)δ

]
i,j

− (1− µα)
Nb∑
k=1

[
Bγδ,(γ−2)δ

]
i,k

[
B(γ−2)δ,(γ−3)δ

]
k,j

− (1− µα)
Nb∑
k=1

(1− a2,γ−1,k,j) pk

where pk =
[
Bγδ,(γ−1)δ

]
i,k

[
B(γ−1)δ,(γ−3)δ

]
k,j

Taking (1− µα)2
[
Bγδ,(γ−3)δ

]
i,j

out of each term,

we have

[
Fγδ,(γ−3)δ

]
i,j
≈(1− µα)2

[
Bγδ,(γ−3)δ

]
i,j

· 1

Nb

Nb∑
k=1

[1− a3,γ,i,j,k,γ−2 − (1− a2,γ−1,k,j) a3,γ,i,j,k,γ−1]

where

a3,γ,i,j,k,γ−2 =
µ

1− µα
ξγ,i,γ−2,kξγ−2,k,γ−3,j

ξγ,i,γ−3,j

a3,γ,i,j,k,γ−1 =
µ

1− µα
ξγ,i,γ−1,kξγ−1,k,γ−3,j

ξγ,i,γ−3,j

.

Notice that a3,γ,i,j,k,γ−2, a2,γ−1,k,j, and a3,γ,i,j,k,γ−1 are mathematically the same. So, they are
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in the same order and we can use

1− a3,γ,i,j,k,γ−2 − (1− a2,γ−1,k,j) a3,γ,i,j,k,γ−1 = (1− a3,γ,i,j,k)2

where a3,γ,i,j,k is in the same order as a3,γ,i,j,k,γ−2, a2,γ−1,k,j, and a3,γ,i,j,k,γ−1. Then, we can

rewrite
[
Fγδ,(γ−3)δ

]
i,j

as

[
Fγδ,(γ−3)δ

]
i,j
≈ (1− µα)2 (1− a3,γ,i,j)2

[
Bγδ,(γ−3)δ

]
i,j

(3.8)

via the notation

(1− a3,γ,i,j)2 =
1

Nb

Nb∑
k=1

[1− a3,γ,i,j,k]2

where a3,γ,i,j is in the same order as a3,γ,i,j,k, k = 1, · · · , Nb.

The approximation in (3.8) is called the conformity property between Fγδ,(γ−3)δ andBγδ,(γ−3)δ.

Similarly, it is not hard to conclude

[Fγδ,lδ]i,j ≈ [((1− µα) (1− aγ−l,γ,i,j)]γ−l−1 [Bγδ,lδ]i,j

which is the mathematical form of conformity property between corresponding F and B

matrices.

The conformity property delivers a better idea of what F matrices are. Specifically, when

the batch indices difference γ − l is small, elements in F will be large if the corresponding

elements in the respective B are large, and hence the corresponding training observations

would be heavily weighted; otherwise they are lightly weighted. When the difference γ − l

is large, the corresponding graph signals are weighted lightly no matter what. In essence, F

matrices display that the model transfers similarity in inputs to similarity in predictions.
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When the batch size Nb is 1 and the parameter α is 0, the F variable is reduced to a scalar

which is exactly the contribution weight introduced in [50].

3.2.3 Tailored RF

Recall that (3.4) inClaim 3.1 applies on the training phase only because we focus on how the

model works given an input during the testing phase whereas (3.4) outputs Nb predictions at

a time. Although we could generalize the last row of Y to get prediction expressions for the

predicting phase, we find a more convincing way to generate required prediction expressions.

That is, we rewrite the trainable parameter H of the model. To do so, we introduce a new

variable, the tailored RF, G.

Like F matrices, G has definition only at time instances being multiples of the refreshing

period δ. Let γ and l be positive integers such that Nb ≤ lδ < γδ ≤ N , we define the tailored

RF G as

Gγδ,lδ =
µ

Nb

Z⊤
(γ−1)δ (3.9)

for l = γ − 1 and

Gγδ,lδ = (1− µα)γ−l−1 µ

Nb

Z⊤
lδ −

γ−1∑
k=l+1

(1− µα)γ−k−1 µ

Nb

Z⊤
kδFkδ,lδ (3.10)

for l < γ − 1.

Notice that G matrices are of size D × Nb. We can see from (3.9) clearly that G matrices

are essentially some form of RF matrices Z.
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Weighting Property

The following claim shows G matrices are used as weights of observations in the trainable

parameter H of the model.

Claim 3.2. Let γ be a positive integer and Nb ≤ γδ ≤ N . Given definitions in (3.1), (3.2),

(3.3), (3.9), and (3.10), we can rewrite the model parameter Hγδ in terms of historical

observations Tlγ, l = γ0, · · · , γ − 1 as

Hγδ =

γ−1∑
l=γ0

Gγδ,lδTlδ (3.11)

where γ0 is the least integer such that γ0δ ≥ Nb.

Proof. We use Mathematical Induction to prove the claim. Denoting γ0 the least integer such

that γ0δ ≥ Nb, we initialize the trainable parameter Hγ0δ = 0D×K . Then, the prediction

at n = γ0δ is Yγ0δ = Zγ0δHγ0δ = 0K×1 followed by Eγ0δ = Tγ0δ − Yγ0δ = Tγ0δ. As a

consequence, in the following time instance, H is updated and we get

Hγ0δ+1 = (1− µα)Hγ0δ+1 +
µ

Nb

Z⊤
γ0δ

(Eγ0δ) =
µ

Nb

Z⊤
γ0δ

Tγ0δ

with the small β term to be ignored.

Notice that the model parameter will not change until (γ0 +1)δ. For n = (γ0 +1)δ, we have

H(γ0+1)δ =
µ

Nb

Z⊤
γ0δ

Tγ0δ

from which we can get the prediction

Y(γ0+1)δ = Z(γ0+1)δH(γ0+1)δ =
µ

Nb

Z(γ0+1)δZ
⊤
γ0δ

Tγ0δ = B(γ0+1)δ,γ0δTγ0δ = F(γ0+1)δ,γ0δTγ0δ
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considering definitions in (3.1) for B, and (3.2) and (3.3) for F. Then,

H(γ0+1)δ+1 =(1− µα) µ
Nb

Z⊤
γ0δ

Tγ0δ +
µ

Nb

Z⊤
(γ0+1)δ

(
T(γ0+1)δ − F(γ0+1)δ,γ0δTγ0δ

)
=
µ

Nb

Z⊤
(γ0+1)δT(γ0+1)δ +

[
(1− µα) µ

Nb

Z⊤
γ0δ
− µ

Nb

Z⊤
(γ0+1)δF(γ0+1)δ,γ0δ

]
Tγ0δ.

The model parameter H will remain still till n = (γ0 + 2)δ. At this time instance, we have

H(γ0+2)δ+1 =
µ

Nb

Z⊤
(γ0+1)δT(γ0+1)δ +

[
(1− µα) µ

Nb

Z⊤
γ0δ
− µ

Nb

Z⊤
(γ0+1)δF(γ0+1)δ,γ0δ

]
Tγ0δ.

By checking the expressions for Hγ0δ, H(γ0+1)δ, and H(γ0+2)δ, we find the claimed statement

holds true for the three. Now, assume ∃γ1 such that for γ0 ≤ γ ≤ γ1, Hγδ =
∑γ−1

l=γ0
Gγδ,lδTlδ

with Gγδ,lδ defined in (3.9) and (3.10), Bγδ,lδ defined in (3.1), and Fγδ,lδ defined in (3.2) and

(3.3), respectively, for γ0 ≤ l < γ ≤ γ1. Then, we would get

Hγ1δ+1 =(1− µα)
γ1−1∑
l=γ0

Gγ1δ,lδTlδ +
µ

Nb

Z⊤
γ1δ

(
Tγ1δ − Zγ1δ

γ1−1∑
l=γ0

Gγ1δ,lδTlδ

)
.

Noticing that Zγ1δGγ1δ,lδ = Fγ1δ,lδ, we can rewrite Hγ1δ+1 as

Hγ1δ+1 =
µ

Nb

Z⊤
γ1δ

Tγ1δ +

γ1−1∑
l=γ0

[
(1− µα)Gγ1δ,lδ −

µ

Nb

Z⊤
γ1δ

Fγ1δ,lδ

]
Tlδ.

Since H will remain unchanged till n = (γ1 + 1)δ, we have

H(γ1+1)δ =

γ1∑
l=γ0

G(γ1+1)δ,lδTlδ

by denoting G(γ1+1)δ,γ1δ =
µ
Nb
Z⊤
γ1δ

and

G(γ1+1)δ,lδ =(1− µα)Gγ1δ,lδ −
µ

Nb

Z⊤
γ1δ

Fγ1δ,lδ
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=(1− µα)γ1+1−l−1 µ

Nb

Z⊤
lδ −

γ1−1∑
k=l+1

(1− µα)γ1+1−k−1 µ

Nb

Z⊤
kδFkδ,lδ −

µ

Nb

Z⊤
γ1δ

Fγ1δ,lδ

=(1− µα)γ1+1−l−1 µ

Nb

Z⊤
lδ −

γ1∑
k=l+1

(1− µα)γ1+1−k−1 µ

Nb

Z⊤
kδFkδ,lδ

which proves the claimed statement holds true for γ1 + 1 using definitions of Bγδ,lδ in (3.1)

and Fγδ,lδ in (3.2) and (3.3) for γ0 ≤ l < γ ≤ γ1 + 1. ■

According to Claim 3.2, we see that the model H can be seen as weighted sum of previous

observations where G matrices play weights. That is called the weighting property of G.

Although (3.11) is for the training phase, it can be easily extended to the predicting phase.

Denoting γN the largest integer such that γNδ ≤ N , we have the well-trained model

HN+1 =

γN∑
l=γ0

G(γN+1)δ,lδTlδ (3.12)

where we have used the fact that HN+1 is the same as the hypothetical H(γN+1)δ.

Featuring Property

In fact, G matrices have a strong relationship with F matrices. We can easily verify that,

for Nb ≤ lδ < γδ ≤ N , ZγδGγδ,lδ = Fγδ,lδ. This is called the featuring property of G.

The featuring property implies that, like F matrices, ZγδGγδ,lδ also has the weighting prop-

erty and the conformity property.

3.2.4 Rewriting Predictions

Since the prediction expression during the training phase has been provided in (3.4), we

focus on the prediction expression during the predicting phase now. According to (1.7), we
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get wanted predictions as

y = H⊤
N+1z (x) =

γN∑
l=γ0

T⊤
lδ

(
G⊤

(γN+1)δ,lδz (x)
)
. (3.13)

with (3.12) substituted. According to the featuring property of G,
(
G⊤

(γN+1)δ,lδz (x)
)⊤

is

mathematically a row of F. Thus, elements of G⊤
(γN+1)δ,lδz (x) have the conformity property

as

[
G⊤

(γN+1)δ,lδz (x)
]
i
≈ [(1− µα) (1− aγN+1−l,i)]

γN−l [Blδ]i

where

[Blδ]i =
µ

Nb

z⊤ (xlδ−Nb+i) z (x)

and aγN+1−l,i is in the same order as µ
1−µα ·

1
Nb

∑Nb

k=1
ξγ,i,l,kξl,k

ξγ,i
with ξl,k = κ (xlδ−Nb+k,x) and

Nb ≤ lδ < γδ ≤ N . So, (3.13) can be further expressed as

y ≈
γN∑
l=γ0

Nb∑
i=1

[(1− µα) (1− aγN+1−l,i)]
γN−l µ

Nb

ξl,itlδ−Nb+i. (3.14)

It is seen that the prediction in the predicting phase is actually a weighted sum of graph

signal observations seen in the training phase, with weights being the kernel value under

different scaling. The approximation in (3.14) plays a central role in finding influences of

hyper parameters in the model.
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3.3 Parameter Analysis

3.3.1 Nb and δ

According to (3.14), we know that a model prediction is a weighted sum of training obser-

vations with weights being scaled kernel values. The kernel value measures how similar a

training input and tested input are. The scaled factors of the kernel values are related with

batch indices difference γN − l. With suitable learning rates and kernels, the exponential

term in front of the kernel value attenuates the kernel value. Mathematically, the batch size

Nb is the number of observations (part of) whose kernel values are attenuated by exponential

terms with the same power. The refreshing period δ controls how often the model updates

its trainable parameter. The influence of the batch size Nb and the refreshing period δ on

observation weights should be considered jointly.

When Nb > δ, we can infer that some observations are over-weighted than others. Take Fig.

3.1 as an example. Fig. 3.1 shows 10 training observations with Nb = 4 and δ = 3. Note

that the observations are parts of a training process. In the figure, weights of observations

in Batch 1 are their kernel values without attenuation, weights of observations in Batch 2

are kernel values scaled by exponential with power of 1. Observation No. 4 is considered

in both Batch No. 1 and Batch No. 2, and Observation No. 7 is considered in both Batch

No. 2 and Batch No. 3. The weight of Observation No. 4 in the final prediction is the sum

of its weights in Batches No. 1 and No. 2. Whereas, others, such as Observations No. 2,

No. 3, No. 6, No. 7 and so on, are considered only once. That makes Observations No. 4

and No. 7 to tend to have higher weights than those considered only once. That is what

we call weighting disorder. However, when Nb is a multiple of δ, other than the first few

observations in the first few batches and the last few observations in the last few batches, the

other observations are considered multiple times equally. For example, we have 1000 training

observations and we set Nb = 10 and δ = 1. Then, Observations No. 1 and No. 1000 are
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Figure 3.1: An example of Nb = 4 and δ = 3, δ < Nb, for 10 training input-output pairs.

considered once; Observations No. 2 and No. 999 are considered twice; Observations No. 3

and No. 998 are considered three times; ...; Observations No. 9 and No. 992 are considered

nine times; Observations No. 10, No. 11, No. 12, ..., No. 990, and No. 991 are all considered

ten times. These make the weighting disorder effect less severe.

When Nb = δ, the weighting disorder effect is gone and all observations are considered only

once. As a result, all training observations are taken into account based on how close their

inputs and the tested input are. Although that sounds making more sense than the case

of Nb > δ, setting Nb = δ may not perform better than setting Nb > δ. Because setting

Nb > δ gives a possibility to put higher weights on more similar observations than setting

Nb = δ. But the possibility depends on the training sequence and setting Nb > δ leads to

higher computational cost.

When Nb < δ, we can foresee that some examples are actually ignored by the model.
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3.3.2 Kernels

Shift-Invariant Kernels

According to [32], the kernel used in the KRG-RFF model has to be shift-invariant. Authors

of [23] provide 3 shift-invariant kernels, i.e., Gaussian kernel, Laplace kernel, and Cauchy

kernel. For a Gaussian kernel

κ (x1,x2) = e−
∥x1−x2∥

2
2

2σ2 , (3.15)

the random features should be drawn from N (0, σ−∈I) and the proof can be found in [50].

The following claims show how to generate random features for a Laplace kernel and a

Cauchy kernel.

Claim 3.3. Supposing a Laplace kernel κ with a scale parameter b, i.e.,

κ (x1,x2) = e−
∥x1−x2∥1

b , (3.16)

random features v should be drawn such that each element of v are drawn from the distribu-

tion p(v) independently and

p(v) =
b

π [1 + (bv)2]

when using the RFF approximation in (1.5) and (1.6).

Proof. For simplicity, let us denote the Laplace kernel by κ (x) = e−
∥x∥1

b . From [23], we

know random features v should be drawn from the distribution of f (ω) = F{κ (x)}/(2π).

According to the definition of the K-dimensional Fourier transform, we get

f (ω) =

(
1

2π

)K ∫
RK

κ (x) e−jω
⊤xdx
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where j2 = −1. Since the l1 norm of a vector can be written as ∥x∥1 =
∑K

k=1 |xk| where xk

is the k-th element of x, together with ω⊤x =
∑K

k=1 ωkxk where ωk is the k-th element of

ω, we can express f (ω) in

f (ω) =

(
1

2π

)K K∏
k=1

∫ ∞

−∞
e−

|xk|
b e−jωkxkdxk.

Following the well-known Fourier transform pair F{e−a|t|} = 2a
a2+ω2 , we have

f (ω) =

(
1

2π

)K K∏
k=1

2b

1 + (bωk)
2 =

K∏
k=1

b

π
(
1 + (bωk)

2) .
That is, each element of the random feature can be drawn independently, and identically

from the distribution p(v) = b

π(1+(bωk)
2)
. ■

Claim 3.4. Supposing a Cauchy kernel κ with a scale parameter ψ, i.e.,

κ (x1,x2) =
K∏
k=1

1

1 +
(
x1,k−x2,k

ψ

)2 (3.17)

where xn,k denotes the k-th element of xn, random features v should be drawn such that each

element of v are drawn from the distribution p(v) independently and

p(v) =
ψ

2
e−ψ|v|

when using the RFF approximation in (1.5) and (1.6).

Proof. For simplicity, let us denote the Cauchy kernel by κ (x) =
∏K

k=1
1

1+(xk/ψ)
2 . Similar to

the proof of Claim 3.4, we know that the corresponding random features should be drawn

from the distribution f (ω) and

f (ω) =

(
1

2π

)K K∏
k=1

∫ ∞

−∞

1

1 + (xk/ψ)
2 e

−jωkxkdxk.
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Using the duality of the Fourier transform on the well-known pair F{e−a|t|} = 2a
a2+ω2 , we get

F{ 2a
a2+t2
} = 2πe−a|−ω| and

f (ω) =
K∏
k=1

ψ

2
e−ψ|ωk|.

That is, each element of the random feature can be drawn independently, and identically

from the distribution p(v) = ψ
2
e−ψ|ωk|. ■

Finding a Suitable Kernel Parameter

As stated in [51], the kernel is viewed as a similarity measure between the training inputs and

the current input. That expression is consistent with what we get for the KRG-RFF model.

We know from (3.14) that the (scaled) kernel values are used as weights of observations.

Then, it is natural to set higher weights, i.e., to have higher kernel values, for more similar

inputs.

A detailed parameter analysis for Gaussian kernels in another learning model called Gradraker

is provided in Section 2.4 [50] together with a method of finding a suitable Gaussian variance

for the kernel. The method can be applied to the KRG-RFF model, guiding on how to find a

suitable Gaussian variance. The essence of the method is to let the maximum possible kernel

values to be close to 1 and the minimum possible kernel values to be close to 0 given the

training dataset. So, although the method in Section 2.4 applies on Gaussian kernels only,

as stated in Section 2.6, it can be easily extended to include Laplace kernels. Specifically,

according to the expression of a Gaussian kernel in (3.15), the maximum possible kernel

value is attained at the largest l2-norm of the difference among all used training pairs in the

given dataset, i.e., max
m,n
∥xm − xn∥22. So, according to Section 2.4, we have for a Gaussian
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kernel, a suitable Gaussian variance σ2 should be such that

e−
max
m,n
∥xm − xn∥22

2σ2 =
1√
2D

or equivalently,

σ2 =
max
m,n
∥xm − xn∥22
ln(2D)

(3.18)

with xm and xn being different training inputs. Similarly, according to (3.16) for a Laplace

kernel, the maximum possible kernel value is attained at the largest l1-norm of difference

among all used training inputs in the given dataset. So, a suitable Laplace kernel parameter

σ should be such that

e−
max
m,n
∥xm − xn∥1

σ =
1√
2D

or equivalently,

σ =
2max

m,n
∥xm − xn∥1

ln(2D)
(3.19)

with xm and xn being different training inputs. The extended method of finding a suitable

parameter for Gaussian kernels and Laplace kernels based on Algorithm 2 is summarized in

Algorithm 4.

Although the idea of finding maximum possible value and then setting it close to 1 can be

applied on kernels such as Cauchy kernels, it is hard to find a closed-form expression for

a suitable parameter for such a kernel. Because the power of the unknown variable., i.e.,

the wanted kernel parameter, is too high in the resulting equality. Besides, Algorithm 4

does not consider the input distribution. Therefore, we propose Algorithm 5. It considers
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Algorithm 4 Extended Method: Finding Maximum Possible Value

Input: Kernel type (Gaussian or Laplace), all used training inputs
if Gaussian kernel then
find max

m,n
∥xm − xn∥22 among all inputs;

get σ2 via (3.18);
else if Laplace kernel then
find max

m,n
∥xm − xn∥1 among all inputs;

get σ via (3.19);
end if

the distribution of used inputs and tries to find the the kernel parameter that achieves

the maximum variance for the resulting kernel values for used inputs. More specifically,

given a kernel parameter, we can find a kernel value for each pair of used inputs and thus

a variance for the resulting kernel values. Algorithm 5 is to maximize the variance for

kernel values. We have seen that kernel values for similar inputs should be larger than

kernel values for dissimilar inputs. Consequently, finding a kernel parameter which achieves

maximum variance of resulting kernel values is a reasonable way. In addition, Algorithm 5

can be applied on kernels such as Cauchy kernels which do not have a closed-form expression

for a suitable kernel parameter.

3.3.3 Learning Rates and α

Given a kernel, different learning rates still lead to different model performance. In order

to find a suitable learning rate for a model, we need to first understand how the learning

rate affects the model performance. Intuitively, a suitably large learning rate helps the

model converge to its optimum fast, whereas a smaller learning rate lets the model fail to

accumulate enough change to achieve its optimum. That intuition can be explained by (3.14)

via sum of weights of training observations t.
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Algorithm 5 Finding Maximum Kernel Variance

Input: Kernel type, all used training inputs, stopping threshold ϵ
Initialization:
set middle to be the result from Algorithm 4 or a random positive value and get kernel
values for all input pairs;
get varm as the variance of acquired kernel values based on middle;
set left to be middle/2 and get kernel values for all input pairs;
get varl as the variance of acquired kernel values based on left;
set right to be middle ∗ 2 and get kernel values for all input pairs;
get varr as the variance of acquired kernel values based on right;
while max{varl, varm, varr} > ϵ do
if varl < varm < varr then
set left to be middle and middle to be right, and update varl and varm accordingly;

set right to be right ∗ 2 and update varr accordingly;
else if varl > varm > varr then
set right to be middle and middle to be left, and update varr and varm accordingly;

set left to be left/2 and update varl accordingly;
else
set left to be

√
left ·middle and right to be

√
right ·middle, and update varl and

varr accordingly;
end if

end while

Sum of Observation Weights

Let us first examine the sum of observation weights. The exact sum depends on the sequence

of the training observations, the RF realization, and other data-specific factors. So, we focus

on the expectation of the sum. Noticing that aγN+1−l,i’s in (3.14) are at the same order for

different l and i, we can find a substitution a also in the same order and have the following

equality

S =E

[
γN∑
l=γ0

Nb∑
i=1

[(1− µα) (1− a)]γN−l µ

Nb

ξl,i

]
=

γN∑
l=γ0

Nb∑
i=1

[(1− µα) (1− a)]γN−l µ

Nb

E [ξl,i]

(3.20)
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holds. Recalling that ξl,i = κ (xlδ−Nb+k,x), when the distribution of inputs is independent

of time instances, the expectation E [ξl,i] is not related with l and i. Thus, we can have

ξ = E [ξl,i] further reduce (3.20) as

S =
µξ ·

[
1− [(1− µα)(1− a)]γN−γ0+2]
1− (1− µα)(1− a)

. (3.21)

Noticing that a is in the same order as µ
1−µα ·

1
Nb

∑Nb

k=1
ξγ,i,l,kξl,k

ξγ,i
, we can have the approximation

a ≈ µξ
1−µα and rewrite (3.21) as

S ≈ ξ

ξ + α

[
1− [1− µ(ξ + α)]γN−γ0+2] . (3.22)

The approximation (3.22) plays a central role in understanding the influence of learning

rates.

Influence of µ

Considering a stationary output distribution, it makes sense that we want the expectation

of the sum over observation weights S to be 1. Consequently, α has to be a small number

relative to ξ such that ξ
ξ+α
≈ 1 holds. That is a valid requirement because we do not want the

second term in (1.8) to be dominant. But
[
1− [1− µ(ξ + α)]γN−γ0+2] in (3.22) is not always

close to 1 because γN − γ0 + 2 is limited. This is when µ plays a role. The influence of µ is

shown in Fig. 3.2. Note that, in the figure, lower NMSE values means better performance.

The possible range (0,∞) of µ is divided into three ranges, i.e., the immature range, the

weighting range, and the diverging range, based on the behavior of S. The threshold of

the immature range and the weighting range is denoted by µiw, and the threshold of the

weighting range and the diverging range is denoted by µwd.

In the immature range, µ is so small that µ(ξ + α) ≪ 1. As a result, we would have
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Figure 3.2: A general normalized mean squared error (NMSE) curve versus the learning rate
µ given a kernel.

1− µ(ξ + α) ≈ 1 and S ≪ 1. That means observations do not gain large enough weights to

compose a model prediction with a similar distribution to the distribution of observations.

The model performance is bad. As µ increases in the immature range, S becomes larger and

the model performance gets better.

Increasing µ till S ≈ 1, then we are looking at the weighting range. In the weighting range,

µ is suitable such that µ(ξ + α) ≈ 1. We would like to mention that when µ(ξ + α) < 1, the

weights of observations are generally positive. When µ(ξ+α) > 1, the weights of observations

would alter between positive and negative based on the batch indices they belong to. Notice

that both of the situations could attain S ≈ 1. When the negative weights are not dominant,
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the model performance is acceptable. So, generally speaking, increasing µ slightly improves

the model performance while all of them achieve acceptable performance.

Continuing increasing µ from the weighting range, we will finally look at the diverging range.

In this range, µ is too large such that 1−µ(ξ+α) < −1 and the absolute value of S becomes

far larger than 1. The model performance is bad and increasing µ further brings worse

performance.

As a result, we choose µ such that

µ(ξ + α) = 1

or equivalently

µ =
1

ξ + α
(3.23)

as a suitable learning rate.

3.4 Simulation Results

We provide simulation results about the influence of parameters in the KRG-RFF model on

observation weights and thus model performance using real datasets. Specifically, we show

behavior of the weights using different combinations of the batch size Nb and the refreshing

period δ, the performances of the two methods, i.e., Algorithm 4 and Algorithm 5, on finding

a suitable kernel parameter, behavior of the weights under different learning rates µ given a

kernel, and the performance of the proposed suitable µ.

Following [32], we use the normalized mean squared error in dB, NMSE (dB), as the perfor-
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mance metric

NMSE = 10 log10

(
E
[
∥Y −T∥2F
∥T∥2F

])
(3.24)

for tested data.

3.4.1 Real Datasets

Norway Temperature

The data is collected by the Norwegian Meteorological Institute [52]. The dataset used in

the paper contains daily average temperature of K = 36 Norway meteorological stations

during January 1st, 2020 to December 31st, 2020.

The weighted, undirected graph is constructed using the information for January 1st, 2020.

First, we create a directed 5-nearest-neighbor (5NN) graph, based on which we create a

weighted undirected graph where there is an edge if there exists at least one directed edge

between the two nodes in the 5NN graph. The undirected edge weight is proportional to

the absolute difference between the two nodal values. More specifically, if there exists an

undirected edge between nodes vi and vj, then the edge weight is

wi,j = wj,i =
| [y]i − [y]j |

max (y)−min (y)
(3.25)

where y is a graph signal and [y]i is the corresponding nodal value for vi.
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US Temperature

The US Temperature dataset used in the paper is from the Average Daily Temperature

Archive [53]. Source data of the site are from the National Climatic Data Center. The site

contains the daily temperature of more than 300 cities all over the world from January 1st,

1995 to present. The US Temperature dataset consists of daily temperature for K = 143

cities in the US from January 1st, 2019 to December 31st, 2019.

Similar to the graph in the Norway Temperature, the weighted, undirected graph in the US

Temperature dataset is generated based on the directed nearest-neighbor (8NN this time)

using the information for Jan. 1st, 2019 with weight in (3.25).

3.4.2 Weight Behavior Under Nb and δ

We use the Norway Temperature dataset to show influences of different combinations of the

batch size Nb and the refreshing period δ. Recall that we view the daily temperature for all

the cities on a day as a graph signal. My goal is to predict the daily temperature on the

next day given a graph signal. We randomly shuffle the sequence of the graph signals in the

dataset and choose 70% of total today-tomorrow pairs as training input-output pairs.

In the experiment, we use a Gaussian kernel with Gaussian variance σ2 = 1000 and learning

rate µ = 0.05. We also set α = 0.01, β = 0.001, the number of RF D = 4K. The behavior of

observation weights for a tested input under different combinations of Nb and δ are shown in

Fig. 3.3. In the figures, the blue lines denote the (scaled by µ
Nb
) kernel values of the training

inputs at the training time instances and the tested input, i.e., µ
Nb
κ (xn,x) , Nb ≤ n ≤ N .

The red lines denote the weights of the observations. We can see from Fig. 3.3a with Nb = δ

that weights are decaying from the end of training to the beginning in general, and that

large (scaled) kernel values tend to lead to large weights. In Fig. 3.3b, we can see that

90



160 180 200 220

Training time

-0.01

0

0.01

0.02

0.03

0.04

0.05
V

a
lu

e

B value

weight

(a)

160 180 200 220

Training time

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

V
a
lu

e

B value

weight

(b)

160 180 200 220

Training time

-0.02

0

0.02

0.04

0.06

0.08

0.1

V
a
lu

e

B value

weight

(c)

160 180 200 220

Training time

-0.02

0

0.02

0.04

0.06

0.08

0.1

V
a
lu

e
B value

weight

(d)

Figure 3.3: Behavior of observation weights under different combinations of the batch size
Nb and the refreshing period δ. The resulting NMSE (dB) values are reported. (a) Nb = 10,
δ = 10, NMSE (dB) is −10.02. (b) Nb = 10, δ = 8, NMSE (dB) is −10.06. (c) Nb = 10,
δ = 5, NMSE (dB) is −10.79. (d) Nb = 5, δ = 10, NMSE (dB) is −9.86.

there is a very high weight at training time 207. The observation gains a weight higher

than its (scaled) kernel value whereas other observations with similar (scaled) kernel values

gain obviously smaller weights. This is an example of the weighting disorder phenomenon.

This phenomenon is less severe in Fig. 3.3c where Nb = 2δ. In Fig. 3.3c, although the last

few examples have smaller weights, weights of other observations change exponentially in

general. It is clear in Fig. 3.3d with Nb < δ that some observations have weights equal to 0.
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From the perspective of NMSE (dB), there is not much difference among the situations.

However, behavior of the weights better interprets what is happening in different situations

which are seemingly alike.

3.4.3 Finding a Suitable Kernel Parameter

Comparing with the batch size Nb and the refreshing period δ selection, kernel parameter

selection has a huge influence on model performance. In fact, kernel parameter selection

determines the lowest achievable NMSE (dB) value for the model in an application. We

proposed two methods in Section 3.3.2 for finding a suitable kernel parameter. The per-

formance of the two methods are reported in Table 3.1 and Table 3.2. In both tables, the

first numerical column represents the lowest NMSE (dB) values achievable with the kernel

parameter found by Algorithm 4. The second numerical column represents the lowest NMSE

(dB) values with the kernel parameter found by Algorithm 5. The third numerical column

represents the lowest NMSE (dB) values found by trial and error. The difference between

Table 3.1 and Table 3.2 is that Table 3.1 uses graph signals in their original sequence whereas

Table 3.2 uses randomly shuffled graph signals, so that we would have different input distri-

butions for the two groups of simulations. We set Nb = δ = 10, α = 0.01, β = 0.001, and

the number of RFs D = 4K. Reported numbers are averages over 50 repeated experiments.

Table 3.1: Lowest NMSE (dB) values found by the two methods and by simulation using
different kernels and the two datasets. The graph signals sequence is in order.

Alg. 1 Alg. 2 Sim.

Norway
Gaussian -4.39 -6.22 -6.22
Laplace -4.91 -5.4 -5.87
Cauchy - -6.13 -6.21

US
Gaussian -14.01 -15.5 -15.5
Laplace -15.4 -15.4 -15.7
Cauchy - -15.65 -15.65
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Table 3.2: Lowest NMSE (dB) values found by the two methods and by simulation using
different kernels and the two datasets. The graph signals sequence is shuffled.

Alg. 1 Alg. 2 Sim.

Norway
Gaussian -10.36 -10.48 -10.48
Laplace -10.37 -10.37 -10.37
Cauchy - -10.44 -10.44

US
Gaussian -16.8 -16.2 -16.85
Laplace -17.43 -17.43 -17.5
Cauchy - -16.6 -17.04

In Table 3.1 and Table 3.2, the values in the third numerical column are highlighted since that

is the best one can achieve in the specific application with a specific kernel. The number(s)

in the first two column of the same row is (are) highlighted as well. We can see that the

performance of Algorithm 5 is slightly better than Algorithm 4, but both of the methods

could achieve acceptable performance.

3.4.4 Weight Behavior Under µ

While a suitable kernel parameter gives the possibility to achieve low NMSE (dB) values, the

model would achieve its optimum only when the learning rate µ is also chosen properly. We

first show the influence of µ on observation weights behavior, and then show the performance

of the proposed formula (3.23) of finding a suitable µ.

Fig. 3.4 shows observation weights behavior under different learning rates using the Norway

Temperature Dataset. In the experiments, Nb = δ = 10, α = 0.01, β = 0.001, and D = 4K.

We use a Gaussian kernel with Gaussian variance found by Algorithm 5. The resulting kernel

variance is σ2 = 0.43. When we have µ = 0.4, we would get S ≈ 0.97 according to (3.22).

So, we set µiw = 0.4. In addition, we have µwd =
2

ξ+α
= 4.55.

Fig. 3.4a shows for the case µ = 0.03. In the figure, the observation weights are generally

small and the actual sum of weights is 0.26. The model performance is bad in terms of
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Figure 3.4: Observation weights behavior under different learning rates. The sums of weights
and the resulting NMSE (dB) values are reported. (a) µ = 0.03, S = 0.26, NMSE (dB) is
−1.54. (b) µ = 0.3, S = 0.98, NMSE (dB) is −8.6. (c) µ = 3.6, S = 2.53, NMSE (dB) is
−8.22. (d) µ = 5.2, S = −220.46, NMSE (dB) is 61.22.

NMSE (dB) value. As µ approaches µiw, for example, µ = 0.3 as shown in Fig. 3.4b, the

actual sum of weights comes to 0.98 and NMSE (dB) value is decreased to −8.6. When we

continue to increase µ but keep µ to stay within the weighting range, for example, making

µ = 3.6, the actual sum of weights is increased to 2.53 but the NMSE (dB) stays roughly

the same. However, when we increase µ till reaching the diverging range, i.e., larger than

µwd, for example, setting µ = 5.2, the absolute value of the actual sum of weights is more

than 200, and the NMSE (dB) value is up to 61.22.
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Figure 3.5: NMSE (dB) found by simulation with different learning rates and the position
of the proposed learning rate via (3.23) for different kernels using the Norway Temperature
dataset. (a) a Gaussian kernel with σ2 = 948. (b) a Laplace kernel with b = 221. (c) a
Cauchy kernel with ψ = 44.

We use the Norway Temperature dataset to check how well the proposed µ in (3.23) performs.

The results are shown in Fig. 3.5 for the three shift-invariant kernels. In the experiments,

we set Nb = δ = 10, α = 0.01, β = 0.001, and D = 4K. Kernel parameters are found via

Algorithm 5. Blue curves denote NMSE (dB) values found in simulation with corresponding

learning rates. Note that each point on blue curves are averages over 50 repeated experi-

ments. The red dotted lines denote theoretical µ values via (3.23). We can see that (3.23)

finds suitable learning rates for different kernels.
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Chapter 4

Conclusion

This dissertation presented a parameter analysis framework for kernel-based regression mod-

els over graphs with random Fourier feature approximation and batch-based training solu-

tions. The main idea of the framework is to express the model prediction, either a scalar or a

vector, with respect to training observations. According to the framework, we find that the

weights of observations when calculating a model prediction are scaled kernel values between

the observation inputs and the tested input. The influences of hyper-parameters, such as

kernel parameters and learning rates, on model predictions are understood by figuring out

the influences of hyper parameters on observation weights.

The recursion nature of the training process is shown in the definition of observation weights.

We put effort on figuring out properties of the observation weights, especially being inter-

ested in understanding how those weights are related with different hyper parameters in the

model. Although acquiring exact properties is hard due to the recursion nature, we man-

aged to get insights through approximations. The weights of observations are approximately

kernel values multiplied by an exponential factor whose base is related with the kernel value

average over the input difference distribution and the exponent is related with the time
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difference between the two inputs for the kernel. The influence of learning rates are found

by checking summations of weights of observations. The influence of the batch size and

the refreshing period, if there are such two parameters, should be considered jointly. Based

on such understandings on parameters, methods of finding suitable model parameters are

proposed.

KRG-RFF models are confirmed to have good performance and iterative learning makes

KRG-RFF application on large networks possible. Using the proposed model parameters in

the dissertation avoids wasting physical and temporal resources on tuning the model to its

optimal status in an application, and at the mean time, makes the model more interpretable.
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