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Abstract of the Dissertation

Mechanical Entrainment of Saccular Hair Cell

Bundles

by

Yuttana Roongthumskul

Doctor of Philosophy in Physics

University of California, Los Angeles, 2014

Professor Dolores Bozovic, Chair

Mechanical detection of auditory and vestibular system displays exquisite sensitiv-

ity, with sub-nanometer detection threshold. The system is also highly nonlinear,

exhibiting sharply tuned frequency selectivity and compression of dynamic range.

Detection of sounds and vibrations is mediated by the sensory hair cells, which

transduce mechanical inputs into electrical signals via hair bundles’ deflections.

Experiments have consistently shown that hair bundles are not just passive de-

tectors, as they spontaneously oscillate and respond to mechanical stimulus in an

active manner. A number of theories based on nonlinear dynamics have described

the active hair bundle as a nonlinear system poised near a Hopf bifurcation. Prior

studies of mechanical response of hair bundles were done in spontaneously oscil-

lating hair bundles, with mechanical stimulus fluctuating around bundles’ resting

positions. These conditions, however, might not be true under in vivo conditions.

In fact, hair bundles from the bullfrog sacculus are coupled to an overlying mem-

brane, which imposes a steady state offset to the bundle position, and suppresses

bundles’ spontaneous activity. In this dissertation, we study entrainment of hair

bundles from the bullfrog sacculus by sinusoidal stimuli under different mechani-

cal manipulations: offsets and couplings. First, multimode oscillations are more

frequently observed upon application of a small negative offset onto spontaneous
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oscillating hair bundles. Using a numerical model based on detailed physiology

of hair bundle, this complex temporal profile requires an additional element - a

variable gating spring - with a stiffness that varies with calcium concentration.

The dynamics of the process are slow compared to other timescales in the bun-

dle, i.e. gating of transduction channels and slow adaptation process. Second,

oscillating hair bundles subject to weak mechanical stimuli are extremely sensi-

tive, with response in the phase histogram already observed at 0.4-pN stimulus.

Time-dependent phase-locking behavior at slightly higher signal amplitudes ex-

hibits phase slips, indicating that the system undergoes phase-locking via a SNIC

bifurcation. Study of hair bundle dynamics under mechanical offsets reveals a

spiking regime, which is even more sensitive to stimulus compared to the oscilla-

tory regime. Larger mechanical offset yields suppression of spontaneous activity,

during which spikes can be evoked by stimulus. Evoked spikes occur at a pre-

ferred phase of the stimulus cycle, and exhibit a constant amplitude, regardless of

signal amplitude and frequency, and leading to an amplifying movement. Finally,

we study how coupling between hair bundles affects their mechanical response.

Synchronization of bundles’ spontaneous movements is always observed, regard-

less of the original characteristic frequencies of hair bundles prior to coupling.

While some coupled bundles show an enhancement, we find that, in general, cou-

pling only two bundles does not significantly improve the sensitivity and frequency

tuning.
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CHAPTER 1

Introduction

1.1 Hearing

Auditory and vestibular organs in the inner ear exhibit remarkable sensitivity,

frequency discrimination, and dynamic range. The human ear is sensitive to

sound waves ranging from 20 - 20,000 Hz, spanning over six orders of magnitude

in sound pressure level [50]. An untrained individual can distinguish two tones

differing in frequency by 0.5% [44], indicating an exquisite frequency selectivity.

An observation that cochlea is filled with fluid led to the first notion, made by

Gold in 1948, that the inner ear must employ an active process in amplifying a

weak incoming signal to overcome dampening due to viscosity dampening. Later

studies revealed that at the threshold of hearing displayed by the mammalian

cochlea, sound evokes vibrations of the sensory epithelium - the basilar membrane

- with an amplitude of 0.3 nm, which is smaller than those caused by thermal

fluctuations [72]. This level of exquisite sensitivity dropped by 99% post-mortem

[71], suggesting the presence of active mechanisms. Moreover, the upper range

of sound pressure level (6 orders of magnitude larger than threshold) was found

to result in only 10-nm vibrations of the epithelium. This compression of the

dynamic range indicated that the inner ear is not only active, but also highly

nonlinear. In 1980s, the discovery of otoacoustic emissions - sound emitted from

the ear in a quiet environment - confirmed both of these assumptions [51, 65].

Detection of sound and ground vibrations relies on the transduction of a me-
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chanical input into an electrical signal [50]. This process of mechano-electrical

transduction is performed by hair cells, the detectors of the inner ear. Each hair

cell has a cluster of 20-300 stereocilia, called a hair bundle, protruding from its api-

cal surface, shown in Fig. 1.1A. These stereocilia, composed of tightly bound actin

cores, are arranged in rows of increasing height, and coupled to nearest neighbors

via extracellular links. The tallest row of stereocilia is connected to a kinocilium -

the only true cilium in the bundle, composed of microtubules. In hair bundles of

some species, including mammals, the kinocilium is present only during develop-

ment, and then disappears as the hair cells reach maturity. In many organs, hair

bundles are coupled to overlying structures, such as the otolithic membrane in the

sacculus and the tectorial membrane in mammalian cochlea, which provide me-

chanical coupling between hair bundles. These sensory epithelia are unique in the

configuration of their chemical environment, with the apical side, including hair

bundles, immersed in endolymph (high potassium, low calcium), and the basal

side exposed to perilymph (low potassium, moderate calcium).

Despite the differences between structures that conduct mechanical stimuli

along the auditory pathways and possibly provide mechanical amplification in dif-

ferent species, sound waves ultimately evoke hair-bundle deflections. Displacement

of a hair bundle toward taller stereocilia opens transduction channels, mechanosen-

sitive ion channels that resides within the bundle. This leads to an inward ionic

current, which depolarizes the hair cell’s membrane potential, and further triggers

action potentials that get conveyed to the brain. The schematic diagram of the

transduction process is shown in Fig. 1.1B. Active motility has been observed in

hair bundles from organs in some species [17, 41]. Therefore, hair bundles have

been proposed as one of the candidates for the source of active processes and

nonlinearity of the inner ear.
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A B

Figure 1.1: Hair bundles and transduction process
(A) Variation in hair bundle morphology. Left, an optical image a hair cell from the
bullfrog sacculus. Protruding from the cuticular plate (CP) at the apical surface
of the cell body (N denotes nucleus) is the hair bundle (HB) [43]. Top right, SEM
image of a hair bundle from the chicken cochlea [44]. Bottom right, top-down SEM
image of an outer hair bundle from the rat cochlea [7]. (B) Schematic diagram
illustrates transduction by a hair bundle. Deflection of a hair bundle toward the
tallest row of stereocilia leads to opening of transduction channels [66].

1.2 Bullfrog Sacculus

In order to study basic principles of the transduction process and detection mech-

anisms, one must focus on the hair bundles. However, due to technical difficulties

in performing experiments on hair bundles from mammalian cochlea, much of our

understanding of the bundle functions and dynamics comes from studying hair

bundles in lower vertebrate auditory and vestibular organs, especially those from

the bullfrog sacculus. The bullfrog sacculus is an auditory/vestibular organ which

detects low-frequency sound and vibrations (20-120 Hz) [77]. Hair cells in the

sacculus are arranged in a quasi-hexagonal pattern on an essentially flat epithe-

lium, shown in Fig. 1.2A. Hair bundles from the sacculus are naturally coupled to

an overlying structure called the otolithic membrane (OM), a ∼ 25-30 µm thick,

gelatinous layer, via the kinociliary bulbs, shown in Fig. 1.2B. Observations made

in [25] showed that the OM imposes not only mechanical coupling to hair bundles,

3



A B

Figure 1.2: Bullfrog saccular epithelium and otolithic membrane
(A) Top-down images of the bullfrog sacculus (top: SEM image [80], bottom:
zoomed-in optical image [67]). The otolithic membrane was removed in bottom
image. (B) Hair bundles when attached to the overlying otolithic membrane (top:
optical image of a fixed preparation [48], bottom: SEM image [21]).

but also mechanical offsets. Specifically, when attached to the OM hair bundles

are pulled towards their kinocilium.

1.3 Saccular Hair Bundles

In this section, elements and function of hair bundles from the bullfrog sacculus are

reviewed, including hair bundle morphology, transduction process, and adaptation

process. Some of the properties described here also apply to hair bundles from a

variety of organs and species.

Hair bundles from the bullfrog sacculus are typically ∼ 7-10 µm tall, with

∼ 10 µm in diameter. Each bundle is composed of 30-50 stereocilia, with the

tallest row connected to a kinocilium. A single stereocilium is thought to be

a rigid rod, which tapers at the base with a few tens of actin filaments at the

point of insertion in the cuticular plate; hence, the stereocilium only deflects at

4



A

B

Figure 1.3: Side links and tip link structure
(A) Top Schematic diagram illustrates various links between stereocilia [85]. Bot-
tom TEM image of a tip link connecting two adjacent stereocilia [49]. Note that
the tip link was in a tensed state as the bundle was slightly deflected in the positive
direction. (B) Helical structure of the tip link [49].

its base [23]. As mentioned earlier, each stereocilium is coupled to its nearest

neighbors via extracellular links at the base of the bundle (ankle links), along the

length of the cilia (shaft connectors), and near the tips of the cilia (horizontal

top connectors) [85], as shown in Fig. 1.3A. These links ensure coherent motion

between the cilia, and the bundle therefore moves as a unit, with no splaying

within the bundle [53]. Measurement based on a laser differential interferometry

reported the passive stiffness of a bundle as 350 µN/m, and its drag coefficient

∼127 nNs/m [18, 53].

Among these extracellular links, the link that governs the transduction pro-

cess is the tip link, connecting the top of a stereocilium to the side of a taller

adjacent cilium, shown in Fig. 1.3A. High-resolution imaging of tip links reveals

a helical structure, shown in Fig. 1.3B, with 8-11 nm diameter and ∼ 150 nm in

length [49]. Study of the molecular composition indicates that the tip links are
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composed of cadherin23 at the upper end and protocadherin15 at the lower end.

Molecular dynamic simulations suggest an overlap of these two molecules at the

site of binding [79], and that the stiffness of a tip link is very large (40-60 mN/m),

making it inextensible [78].

Mechano-electrical transduction is mediated by the transduction channels em-

bedded in the membrane of the stereocilia. The exact location of these channels

in bullfrog saccular hair bundles is not yet known. Results from calcium imaging

indicate that the channels are located at both ends of the tip links [56] (while only

on the lower end in mammalian bundles [8]). However, numerical simulations and

activation energy calculations suggest that channels should only be on one end of

the tip links [82]. Studies on the basic properties of transduction channels show a

unitary conductance of 12.7 pS, with a reversal potential close to 0 mV [40]. The

channels are also nonselective, allowing an influx of ions up to 1.2 nm in diameter

[85].

Application of an abrupt step deflection to a hair bundle evokes an inward

transduction current with only 25 µs delay. This rapid response raises the “gating-

spring model” which states that the transduction channel is attached to an elastic

element called the gating spring. Increasing tension in the tip link due to bundle

deflection directly reduces the activation energy and increases the channel opening

probability [16, 3]. The activation curve of bundle displacement vs. transduction

current is well described by a Boltzmann function, as shown in Fig. 1.4A, indi-

cating that 15%-20% of transduction channels are open at rest. Detailed mea-

surements of channel gating indicate that the channel moves by ∼ 2.5 nm upon

opening with gating spring stiffness ∼ 1000 µN/m, suggesting an additional elastic

element in series with the tip link.

In response to a sustained stimulus, transduction current shows a peak corre-

sponding to opening of the channels, then a decay to the resting level with time,

as shown in Fig. 1.4B, commonly known as an adaptation process. Application
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Figure 1.4: Electrical response and adaptation processes
(A) Inward transduction current as a function of bundle displacement (activation
curve) of a hair bundle from the bullfrog sacculus [20]. The curve shifts along
the displacement axis (following the arrow) in response to a positive prolonged
deflection. (B) Adaptation processes observed in the transduction current and
the corresponding hair bundle motion [85]. Step deflection was applied from 1 -
40 ms.

of a large step deflection reveals, usually in high-calcium endolymph (4 mM), two

distinct adaptation processes: a fast adaptation which completes within a few ms

after the peak response in the current, and a slow process that takes place over a

few tens of milliseconds [20]. Hair bundle motion associated with the adaptation

processes is illustrated in Fig. 1.4B, where fast adaptation results in a “twitch”

motion [6, 14]. While the exact mechanism underlying the fast adaptation is

still not known, several theories have been proposed, all of which assume that the

process are mediated by calcium influx through the transduction channels [14, 10].

The slow adaptation process has been shown to be calcium dependent [21],

and corresponds to a shift in the activation curve along the displacement axis in

the direction of the stimulus, Fig. 1.4A [21, 35]. The speed of adaptation is shown

to be ∼ 1-2 µ/s, corresponding to that of myosin motors climbing/slipping along

actin. Studies of myosin localization suggest that a myosin 1c complex, located

near the transduction channel, is responsible for the slow adaptation process in

bullfrog saccular hair bundles [31, 37, 26]. The motor complex is also thought to

7



Figure 1.5: Myosin motor model
Schematic diagram of the transduction apparatus. Myosin motor complex can
climb and slip along the stereocilia, allowing the repositioning of the channels.
As the location of the transduction channels is not exactly known, this diagram
posits the channels at both ends of the tip link.

directly anchor to the transduction channel, and be able to move the channel along

the plasma membrane of the bundle, thus relaxing or storing tension in the tip link

to modify the channel open probability, Fig. 1.5 [41, 30, 27]. Calcium is thought

to modulate the adaptation by binding to calmodulin, found to be co-localized

with the myosin 1c complex. Slow adaptation appears to be asymmetric, with a

greater, constant speed upon positive deflection, and slower, tension-dependent

speed in the relaxing direction [35, 74]. However, adaptation is incomplete, as the

activation curve moves by only 80% of the stimulus amplitude, with a fixed limit

∼ 100-500 nm in the negative direction [74].

1.4 Spontaneous Hair Bundle Motility

Hair bundles from the bullfrog sacculus exhibit spontaneous oscillations under in

vitro conditions [41]. This phenomenon is described as a result of the interplay

between gating of the transduction channels and the slow adaptation [62, 58]. It
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Figure 1.6: Negative stiffness and spontaneous oscillations
(A) Measurement of the force-displacement curve of an oscillating hair bundle
in the channel-opening state (filled circles), and -closing state (open circles) [32]
shows negative stiffness. Notice the shift due to slow adaptation process. This
shift, as illustrated in (B), can results in spontaneous oscillations [62]. Bundle
motion obtained from experimental data is shown in the bottom trace of (B).

has been shown that the opening (closing) of the transduction channels is associ-

ated with a bundle’s displacement in the positive (negative) direction [42]. Thus,

within the displacement corresponding to the operating range of the channel, the

bundle stiffness appears to be significantly smaller than the actual passive stiff-

ness. Later measurements of the force-displacement curve done in lower Ca2+

concentration indicate that this gating compliance leads to a regime of negative

stiffness of the bundle, shown in Fig. 1.6A, resulting in an instability [62]. Slow

adaptation shifts this curve along the line whose slope corresponds to the stiff-

ness of the bundle’s pivot, thus shifting the position of instability [32, 62]. The

interplay between these two mechanisms gives rise to a spontaneous oscillation,

as shown in Fig. 1.6B.

One can explain the spontaneous oscillations from a biophysical point of view

[45]. Starting from a hair bundle in the channel-opening state, calcium influx

diffuses from the channel to the binding sites of the adaptation motor, presumably

calmodulin in myosin 1c tail domain. Binding of calcium promotes detaching

of myosin from actin, causing the whole transduction apparatus, including the
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motor complexes along with the transduction channels, to slip downward along

the stereocilia. Due to the bundle’s geometry, as the insertion point of the upper

end of the tip link displaces, the hair bundle additionally exhibits a slow movement

in the channel-opening direction. This reduces tension in the tip link, thus relaxing

the gating spring, and the transduction channels can close, causing a rapid motion

in the opposite direction. Calcium within the bundle then diffuses away and gets

extruded through PMCA Ca2+ pumps [86], allowing the myosin motors to continue

climbing along the actin. Similarly, displacement of the upper end of the tip link

causes slow movement of the bundle, and simultaneously builds up tension in the

gating spring, such that the transduction channels can reopen. These processes

result in a “relaxation oscillation”, defined as a rapid excursion followed by a slow

movement, as observed experimentally, Fig. 1.6B.

1.5 Mechanical Response of Hair Bundles

Mechanical manipulations on individual hair bundles have been shown to affect the

spontaneous oscillation profiles. Stimulations are typically delivered to a hair bun-

dle via a glass fiber attached to the kinociliary bulb, or the top row of stereocilia

(details described in Chapter 2). An application of small amplitude sinusoidal

stimuli on an oscillating hair bundle results in an entrainment, illustrated as a

peak in the Fourier transform at the stimulus frequency, shown in Fig. 1.7A. The

degree of phase locking, defined as the fraction of the root-mean-square amplitude

of the bundle movement at the stimulus frequency, increases with stimulus ampli-

tude, and eventually saturates, shown in Fig. 1.7B [60]. The stimulus amplitude

at which the phase-locking reaches the maximum value becomes larger with a

larger mismatch between the stimulus frequency and the characteristic frequency

of the bundle.

Analysis of the phase-locked amplitude, extracted from the Fourier transform
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Figure 1.7: Mechanical response of oscillating hair bundles
(A) Hair bundle motion subject to sinusoidal stimuli, shown in red traces. The
Fourier transform of bundle motion is shown in the right. Dashed line indicates the
stimulus frequency. (B) Degree of phase locking calculated from the Fourier trans-
form of the bundle motion, with the stimulus amplitude close to (circles) and far
from (triangles) the characteristic frequency of the hair bundle. (C) Phase-locked
response as a function of stimulus amplitude shows the regime of compressive
nonlinearity. (D) Phase-locked amplitude of an oscillating bundle (filled circles),
and a passive bundle (open circles) at different stimulus frequencies [60]
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of the bundle motion at the stimulus frequency, reveals a regime of compressive

nonlinearity, during which the phase-locked amplitude exhibits a power-law de-

pendence on the stimulus amplitude, with exponent < 1, illustrated in Fig. 1.7C.

Although the exponents observed experimentally vary among bundles, the fit of a

one-third exponent seems to capture the behavior of the collective plot shown in

Fig. 1.7C, in agreement with the observed basilar membrane response value [72].

Hair bundle response to sinusoidal stimuli of different frequencies, but fixed

amplitude, displays a frequency selectivity (Fig. 1.7D), with the peak response

corresponding to the characteristic frequency of the bundle, and quality factor

of ∼ 1. The averaged difference between the phase of the stimulus and that of

the bundle oscillation exhibits zero-crossing at the characteristic frequency of the

bundle, with a phase lead (lag) for low (high) frequency signal.

Calculation of the work done by a bundle subject to a sinusoidal stimulus con-

firms that hair bundle oscillations require active work [59], suggesting that the

bundle could amplify an incoming signal. Active work is defined as the difference

between the dissipative work due to viscous drag , and work delivered from the

glass fiber. Another proof of the requirement of an active process for hair bundle

oscillations employs the fluctuation-dissipation theorem (FDT), which generally

states the condition of a system in thermal equilibrium. Calculation of the re-

sponse function and the autocorrelation function shows that bundle oscillations

violate the FDT, indicating that the system is not in thermal equilibrium [61], thus

eliminating the possibility that a hair bundle can be a passive bi-stable system

driven by noise.

Resting positions across bundles also significantly affects oscillation profiles.

Application of a step deflection on a hair bundle evokes a transient response, with

a rapid excursion in the direction of the stimulus followed by a slow movement in

the same direction [58], similar to what is observed in a viscoelastic system. The

oscillation recovers with a gradually increasing amplitude within 300 ms after the

12



onset of the deflection (Fig. 1.8A). Hair bundle oscillation under prolonged steady-

state offset is shown in Fig. 1.8B. While positive deflection significantly increases

the oscillation frequency, negative deflection has the opposite effect. In some

hair bundles, the spontaneous oscillations display complex temporal profiles with

oscillations interrupted by quiescent intervals. This behavior is more pronounced

upon an application of a small negative deflection. This suggests an additional

manifold in the bundle dynamics that has not yet been captured in the current

models, as described in the previous section.

To explore the continuous change in bundle dynamics under different deflec-

tions, slowly varying offset in both positive and negative directions is applied to

the bundle [25]. As shown in Fig. 1.8C, large deflections result in asymmetric

bundle oscillations, preferring the channel-opening state for positive ramp, and

channel-closing state for negative ramp. Spike-like behavior is observed in bundle

motion before suppression of the active motility.

1.6 Theoretical Description of Hair Bundle Dynamics

Theories based on nonlinear dynamics have been proposed to describe active hair

bundle dynamics. Around 2000, several theoretical studies proposed that me-

chanical sensitivity of a hair bundle can be explained by tuning the system near

a Hopf bifurcation [15, 11], at which a stable fixed point becomes unstable, and a

stable limit cycle emerges [81]. This theoretical description was also generalized

to the auditory system [22]. Later, the validity of a Hopf bifurcation description

was confirmed by the observations of spontaneous oscillations, frequency tuning,

and compressive nonlinearity with a one-third exponent [60]. A normal form of a

supercritical Hopf (or Andronov-Hopf) bifurcation can be written as [22]

ż = (µ+ iω0)z − |z|2z (1.1)
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Figure 1.8: Effects of mechanical offsets on spontaneous oscillations
(A) Transient response to step deflection [58]. (B) Effects of a steady-state deflec-
tion in the negative direction, multimode behavior is more pronounced [75]. (C)
Effects of slowly varying offset in both positive and negative directions [25]
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where z denotes a complex variable, whose real part is the (bundle) position, and

imaginary part is some internal parameter, interpreted as the adaptation and other

dynamics in the cell. ω0 is the characteristic frequency of the system (bundle),

and µ is the control parameter. The solution of Eq 1.1 remains quiescent at z = 0

when µ < 0, and exhibits limit-cycle oscillation when µ > 0 with amplitude
√
µ.

For hair bundles, this explains the existence of spontaneous oscillations.

In the presence of a driving force, F = F0 exp iωt, the solution of Eq. 1.1

takes the form z = R exp iωt+ iϕ, with ϕ denoting phase difference. Adding the

driving force term to the right hand side of Eq. 1.1, one obtains

F 2 = R6 − 2µR4 +R2[µ2 + (ω − ω0)
2] (1.2)

This relation predicts both frequency selectivity and compressive nonlinearity

in the response (R). For a system at the bifurcation point (µ = 0), compressive

nonlinearity with an exponent of one-third is observed at any stimulus amplitude

for small detuning (ω − ω0), R = F 1/3. The system also exhibits amplification

for small stimulus amplitude (F <1). For nonzero detuning, the onset of the

compressive nonlinearity regime occurs at sufficiently large stimulus amplitude,

the magnitude of which grows with detuning, while a small driving force leads to

a linear response with constant gain. Including thermal fluctuations in the model

yields similar results, with a linear regime at weak signal increasing with noise

level [55].

An elaborate treatment of a general form of Hopf bifurcation (both super-

critical and subcritical) shows that the exponent of the nonlinear regime varies

varies once the system departs from the bifurcation point and for nonzero detun-

ing, and that there always exists a regime of fixed response, independent of the

forcing amplitude [55]. This could explain the broad range of exponents observed

in experimental data [70].
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1.7 Outline of the Dissertation

In this current work, we focus on mechanical entrainment of hair bundle oscil-

lations under different mechanical manipulations, relating to more natural con-

ditions in which hair bundles are coupled to the overlying membrane Details on

materials and methods used in this work are explained in chapter 2. As described

earlier, the otolithic membrane imposes mechanical offsets onto the bundles, and

provides coupling between bundles. As illustrated in Fig. 1.8, multimodal behav-

ior is more pronounced upon application of a small negative offset to spontaneously

oscillating bundles. Therefore, in chapter 3, we use numerical simulations to ex-

plain the mechanisms underlying this multimodal oscillation. Next, in chapter

4, we study mechanical entrainment of oscillating hair bundles by small sinu-

soidal stimuli without additional offset, and we compare the experimental data

with theories based on nonlinear dynamics. To imitate the effects of the otolithic

membrane, in chapter 5 we again explore the dynamics of hair bundles subject

to sinusoidal stimuli, now comparing results from varied mechanical offsets. Fi-

nally, chapter 6 describes how mechanical coupling between hair bundles affects

entrainment.
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CHAPTER 2

Materials and Methods

2.1 Biological Preparation

All animal-handling protocols were approved by the UCLA Chancellor Animal

Research Committee (Protocol Number ARC 2006-043-13C) in accordance with

federal and state guidelines. Adult American bullfrogs (Rana catesbeiana) were

anesthetised with 200 to 600 µL of 50 mg/mL sodium pentobarbitol, pithed and

decapitated. The sacculus from the inner ear was then excised in artificial per-

ilymph, containing 110 mM Na+, 2 mM K+, 1.5 mM Ca2+, 113 mM Cl−, 3

mM D-glucose, 1 mM sodium pyruvate, 1 mM creatine, and 5 mM HEPES. The

preparation was mounted into a two-compartment chamber, with the apical side

immersed in artificial endolymph (2 mM Na+, 118 mM K+, 0.25 mM Ca2+, 118

mM Cl−, 3 mM D-glucose, and 5 mM HEPES), and the basal side in perilymph.

The otolithic membrane was gently lifted off with an eyelash tool after 8-minute

enzymatic dissociation with 50 µg/mL collagenase IV (Sigma Aldrich) at room

temperature.

2.2 Imaging and Tracking of Hair Bundle Motion

Preparations were imaged under an upright optical microscope (Olympus B51X)

with a 20X water-immersion objective (Olympus XLUMPLF20XW). The images

were further magnified to 400X with a double-Gauss lens, and recorded at 500-

2000 frames per second by a high-speed Complementary Metal Oxide Semiconduc-
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Figure 2.1: Intensity profile and tracking of hair bundle motion.
(A) A top-down optical image of a hair bundle with a glass fiber, appearing as
shadow, attached to the tallest row of stereocilia. The scale bar (black) indicates
1 µm distance. The intensity profile corresponding to the red line is shown in (B).
(B) Intensity profile of the cross section, with the red line indicating the averaged
level of intensity profile. Center of gravity is calculated only from the intensity
above the mean level.

tor (CMOS) camera (Photron FASTCAM SA1.1). The spatial scale was routinely

calibrated with a 600 linepair per mm Ronchi ruling (Edmund Optics) and was

typically ∼ 50 - 54 nm per pixel.

Hair bundle motion was extracted from the video records. In each frame, the

intensity profile obtained from a row of pixels, parallel to the direction of bundle

motion, was subtracted by its average. The bundle position was determined from

the center of mass calculated within the window width larger than the range of

bundle motion (Fig. 2.1). To improve the signal-to-noise ratio, 10-20 vertically

adjacent rows of pixels were tracked and averaged, depending on the size of the

bundle imaged.

2.3 Probe Fabrication and Hair Bundle Stimulation

Glass probes were used to mechanically stimulate hair bundles. 1-mm diame-

ter borosilicate glass capillaries (WPI Inc.) were pulled with a Flaming/Brown

pipette puller (Sutter Instrument Co.). The fibers were then pulled again at ap-

proximately right angles with a custom built microforge to obtain desired probe
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stiffness. In experiments that involve coupling of two adjacent hair bundles, the

tips of the fibers were then placed ∼ 1-2 mm above the microforge, and heated for

∼ 1 second. Thermal expansion of the fibers rendered eyelash-shaped-like probes

necessary for simultaneously attaching two hair bundles, while avoiding other bun-

dles on the epithelium. To enhance optical contrast, the glass fibers were sputter

coated with gold-paladium via a Hummer sputtering system (Anatech, Ltd.).

The stiffness and viscous drag of a fiber were measured using the method

following [34]. The equation of motion for the fibers tip is given by,

ξ
dx

dt
+ kx = F, (2.1)

where ξ, and k are viscous drag, and fiber stiffness, respectively. F represents the

Langevin force due to thermal fluctuations. The fiber’s mass term is omit since

the probes are overdamped. Fourier transform of Eq. 2.1 yields,

x̃(ω) =
F̃ (ω)

k + iωξ
. (2.2)

According to the Fluctuations Dissipations Theorem, it can be shown that the

Fourier Transform of the Langevin force is given by,

|F̃ (ω)|2 = 4kBTξF (2.3)

where kB is the Boltzmann’s constant and T is the tempurature. Eq. 2.2 then

becomes

|x̃(ω)|2 = 4kBTξ

k2
F + ω2ξ2

. (2.4)

To estimate the fiber stiffness and viscous drag, the motion of the fiber’s tip

was recorded in water at room temperature at 10,000 fps for 3 seconds. The trace

was divided up into 0.1-s long sections and the Fourier Transform was computed
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from each section. The power spectral density was then fitted with Eq. 2.4 in

high-frequency limit, to approximate the viscous drag, and low-frequency limit,

to approximate the stiffness as follows,

ξ =
4kBT

ω2|x̃(ω)|2
, ω → ∞ (2.5)

k2

ξ
=

4kBT

|x̃(ω)|2
, ω → 0 (2.6)

Probe stiffness used in all experiments was ∼100 - 200 µN/m. Probes were

coated with 2 mg/mL concanavalin-A to enhance the adhesion, then attached to

the tallest rows of stereocilia or the kinocilium of hair bundles. For experiments

involving large positive offsets, the probes were attached only to the kinocilium

which provided better adhesion, possibly due to larger surface area. Probes were

mounted at the base to a piezoelectric stack actuator (PiezoJena A4/12) whose

amplifier (PiezoJena ENT 400) was controlled with a function generator (Tek-

tronics AFG3022). Mechanical stimuli were sent to the base of the probe.
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CHAPTER 3

Multiple-timescale Dynamics Underlying

Spontaneous Oscillations of Saccular Hair

Bundle

The results of this chapter appeared in the publications:

1. “Multiple-timescale Dynamics Underlying Spontaneous Oscillations of Sac-

cular Hair Bundle” in Biophysical Journal 101 (2011) 603 - 610. The au-

thors are Yuttana Roongthumskul, Lea Fredrickson-Hemsing, Albert Kao,

and Dolores Bozovic.

2. “Dynamics of Freely Oscillating and Coupled Hair Cell Bundles under Me-

chanical Detection” in Biophysical Journal 102 (2012) 1785 - 1792. The

authors are Lea Fredrickson-Hemsing, C. Elliott Strimbu, Yuttana Roongth-

umskul, and Dolores Bozovic.

3. “Magnetic Actuation of Hair Cells” in Applied Physics Letter 99 (2011)

193701 - 3. The authors are David Rowland, Yuttana Roongthumskul, Jae-

Hyun Lee, Jinwoo Cheon, and Dolores Bozovic.

3.1 Introduction

Under in vitro conditions, hair bundles of the bullfrog sacculus exhibit sponta-

neous oscillations at amplitudes up to ∼100 nm, at 5 - 50 Hz. We showed previ-
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ously that these oscillations are mutually uncorrelated, with frequencies uniformly

and randomly distributed across the epithelium [67]. We observed that the ma-

jority of active hair bundles exhibit multimode oscillations, with long quiescent

periods interrupting oscillatory behavior. Similar to bursting behavior seen in

neuronal firing patterns [47], this temporal characteristic indicates the existence

of an additional manifold with slower dynamics. Prior numerical simulations in

the field have described the more regular limit-cycle oscillations observed in hair

bundles loaded with an elastic probe [58, 83, 63]. Our data indicate that freely

oscillating bundles may access a different dynamics regime, hence, in this chapter,

we propose modifications to the current models to describe the observed complex

temporal patterns by introducing a variable gating spring element that includes

slow calcium-binding dynamics.

Experiments accompanying numerical simulations in this chapter were per-

formed by Lea Fredrickson-Hemsing, Albert Kao, David Rowland, and Jae-Hyun

Lee. We explored the impact of mechanical and ionic manipulation on the os-

cillation patterns in hair bundles that exhibited this bursting-type behavior. We

showed that varying external calcium concentration and imposing a mechanical

load affect both the fast component of the oscillations as well as the occurrence

of quiescent intervals. We explored these same effects numerically and showed

that this additional element in the model captures a rich array of experimental

observations.

3.2 Numerical Model

The numerical model used in this work was based upon previous theoretical sim-

ulations of hair bundle mechanics [58, 63, 83, 45, 36].
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Figure 3.1: Schematic diagram of the mechanical model of a hair bundle.
(A) A hair cell with a few of the 30-50 stereocilia that typically comprise a bundle.
Horizontal displacement of the bundle is denoted by X, with positive direction
chosen to be towards the tallest stereocilia. The transduction complex (dashed box
in(A) ) is depicted in (B). Displacement of the myosin motors, denoted by Xa, is
taken to be positive in the downward direction. We arbitrarily depict the channel
to be at the top end in the diagram but note that placing the channel at the lower
end of the tip link would not significantly alter the model. The myosin motors are
anchored to the insertional plaque near the transduction channel (black rectangle
in the diagram). The variable gating spring with stiffness Kgs is illustrated in (C).
The gating spring consists of two elastic elements in parallel, one of which has
a calcium-dependent stiffness (Kgs,1pgs), while the stiffness of the other element
is constant (Kgs,0). The total stiffness of the combined springs (Kgs) is always
positive.
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3.2.1 Hair bundle mechanics

The hair bundle is modeled as a rigid structure with elastic components. The

inertial force is neglected, as the system oscillates in a liquid environment (en-

dolymph) at low Reynolds number. The drag force is proportional to the velocity,

with drag coefficient ξ. The main contribution to the stiffness of the bundle arises

from the pivots of the stereocilia and the tip links, which connect neighboring

stereocilia and attach on one of the ends to the transduction channels. These me-

chanically gated, nonselective ion channels open and close in response to bundle

deflection. A schematic diagram of a hair bundle is shown in Fig. 3.1. We only

consider bundle displacement (X) along the axis of sensitivity, corresponding to

the direction of increasing height of the stereocilia comprising the bundle. The

displacement of the myosin-motor complex along the axis parallel to the stere-

ocilium is denoted by Xa; following convention, the downward direction is defined

to be positive. Newton’s second law yields the equation of motion for the hair

bundle:

ξ
dX

dt
= −NγKgs(γX−Xa+Xc−pod)−Ksp(X−Xsp)+Kf (∆−X)+η(t) (3.1)

The first term on the right represents the tension in the gating spring, where

N is the number of transduction channels, γ is the geometrical gain for the hair

bundle, Kgs is the gating spring stiffness, Xc is the resting extension of the gating

spring with all channels closed, po is the open probability of the transduction

channel, and d is the gating swing distance of the transduction channel. The

extension of the gating spring is assumed to be along the stereociliary axis (Xa

direction). The second term represents the passive stiffness element of the bundle,

with Ksp denoting the combined stiffness of all the connections between adjacent

stereocilia, as well as their innate stiffness, determined at their pivots. The offset
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Xsp is the resting position of an unloaded bundle in the absence of gating springs.

The next term accounts for the force exerted by an attached glass fiber, where ∆

is the displacement of the fiber base and Kf is the stiffness of the fiber. The noise

due to stochastic forces acting on the bundle is denoted by η (see Fluctuations in

the system).

The transduction channel is described as a two-state system, with its opening

probability following the Boltzmann distribution. The energy difference between

the open state and the close state has two contributions: the intrinsic energy

difference due to the conformational change (∆E0) and the extension of the gating

spring (d). The channel gating is assumed to be instantaneous, and therefore,

the open probability is always in equilibrium with the bundle displacement. At

temperature T , the open probability of the transduction channel is

po =
1

1 + exp(∆E0−Kgsd(γX−Xa+Xc−d/2)
kBT

)
(3.2)

The energy difference ∆E0 is determined from Eq. 3.2 at the resting value of

open probability (po,0) = 0.5.

3.2.2 Calcium influx

During channel opening, a fraction of the cation inflow is carried by calcium ions,

which enter the stereocilia and diffuse to the myosin motors to which they bind.

The calcium influx through a transduction channel is well approximated by the

Goldman-Hodgkin-Katz current equation [38]:

ICa = po
PCaz

2eFVM [Ca2+]ext

kBT (1− exp( zeVM

kBT
))

(3.3)

in which PCa is the calcium permeability, z is the valence of the calcium ion, e is

the electron charge, F is the Faraday constant, [Ca2+]ext is the calcium concen-
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tration in endolymph, and VM is the membrane potential. We assume the resting

calcium concentration inside the stereocilia to be negligible, and thus omit it in

our equations. In this model, we assume the membrane potential to be a constant.

The calcium ions diffuse rapidly to the binding sites at myosin motors; there-

fore, the calcium concentration at the motors is assumed to equilibrate instantly

to

[Ca2+]motor =
−ICa

2πzFDCarm
(3.4)

where DCa is the diffusion coefficient of a calcium ion, and rm is the distance from

the transduction channel to the myosin motors. Following convention, inward

current is defined to be negative.

3.2.3 Adaptation

Calcium binding to the myosin motors affects the stability of their actin binding,

and allows them to slip along the actin core in response to the force exerted by

the gating spring [28, 39]. The slipping reduces the tension stored in the gating

spring and allows the re-closure of the transduction channels. After the calcium

ions are instantaneously extruded from the stereocilia during the closed-channel

state, the myosin motors restore tension in the gating spring by climbing along

the actin filaments.

In the absence of calcium, myosin motors climb along the actin filaments at a

constant rate. The slipping rate depends on the tension exerted on the myosin-

motor complex by the gating spring, and on the binding of calcium (binding

probability pm). The velocity of the myosin-motor array along the length of a

stereocilium is given by:

dXa

dt
= −C + S[Kgs(γX −Xa +Xc − pod)−Kes(Xa −Xes)] +

ηa(t)γ

λa

(3.5)
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where C is the rate of climbing, S is the rate of slipping, and Kes is the stiffness of

the extension spring connecting the myosin motors to the actin core. The resting

extension of this spring is given by Xes, and ηa denotes noise similar to η (see

Fluctuations in the system). For simplicity, the rate of slipping (S) is assumed to

linearly depend on pm. Hence,

S = (Smax − Smin)pm + Smin (3.6)

With the assumption that the dynamics of binding are instantaneous, the

binding probability to the motors is given by:

pm =
1

1 +
km,off

km,on[Ca2+]motor

(3.7)

with km,on and km,off denoting the rates of calcium binding and unbinding to the

myosin motors. Its resting value (pm,0) is calculated from Eq. 3.3, 3.4, and 3.7

at po,0. The climbing rate is constant over time but dependent on pm,0: C =

(1− pm,0)(Cmax − Cmin) + Cmin.

3.2.4 Slow dynamics

We posit a variable gating spring element, intracellularly in series with the tip

link, which consists of a constant spring stiffness in parallel with one of variable

stiffness (see Fig. 3.1C ). Calcium binding to the variable element decreases its

stiffness thus rendering the overall gating spring more elastic. For simplicity, we

assume the gating stiffness Kgs to linearly decrease with the probability of calcium

binding (pgs):

Kgs = Kgs0 −Kgs1pgs (3.8)
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where Kgs0 is the gating stiffness in the absence of calcium, and Kgs1 is the slope

of stiffness change with bound calcium.

This variable gating spring introduced here is analogous to a relaxation element

previously proposed to capture fast channel re-closure [58, 10]. In contrast, the

dynamics of calcium binding and unbinding from the variable gating spring are

assumed to be slow with respect to those at the myosin motors, and thus introduce

a slow timescale into our system. This binding probability follows the standard

rate equation:

dpgs
dt

= kgs,on[Ca2+]gs(1− pgs)− kgs,offpgs (3.9)

with kgs,on and kgs,off denoting the rates of binding and unbinding of calcium to

the variable gating spring. [Ca2+]gs denotes the calcium concentration at this site.

The location of this variable gating spring is assumed to be in close proximity to

the myosin motors, and therefore [Ca2+]motor ≈ [Ca2+]gs.

3.2.5 Fluctuations in the system

We incorporate noise terms into our model that were previously shown to play

a role in simulated spontaneous oscillations [63]. The noise η(t) in the bundle’s

equation of motion (Eq. 3.1) accounts for channel clatter and hydrodynamic

friction. The noise ηa(t) for myosin displacement (Eq. 3.5) arises from the force

due to the stochastic binding and unbinding of the motors to actin filaments. All

the noise terms are assumed to be Gaussian with zero mean, with the fluctuation-

dissipation theorem characterizing the autocorrelation function:

⟨η(t)η(0)⟩ = 2kBTλδ(t) (3.10)

⟨ηa(t)ηa(0)⟩ = 2kBTλaδ(t) (3.11)
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where λ and λa are the friction coefficients of the hair bundle and the myosin

motors respectively, following notations in [63]. We neglect any effects of calcium

fluctuations.

3.2.6 Simulation protocol

The numerical simulations were performed in MATLAB, using the fourth-order

Runge-Kutta method with a time step of 0.1 ms. Table 3.1 lists all of the param-

eter values used in the simulations presented. The following criteria were used to

distinguish regular from complex oscillations: For a noiseless simulation, regular

limit-cycle oscillations (referred to as single-mode oscillation in the figures) have

only one channel-opening and closure per cycle, while bursting-type ones (referred

to as multimode oscillation in the figures) have multiple open and closed states

per cycle. The channels are defined as open if the probability po exceeds 0.5 and

closed otherwise.

3.3 Results

3.3.1 Complex temporal profile

The phenomenon of spontaneous motility observed in hair bundles of the am-

phibian sacculus has been characterized by a limit-cycle oscillation [83]. Prior

theoretical work has examined the effects of noise on these oscillations, including

thermal fluctuations in the ambient water bath, channel clatter, and stochastic

binding and unbinding of myosin motors to and from the actin core [63]. Incorpo-

rating these noise terms into the system of differential equations describing hair

bundle motion captures many of the features experimentally observed in sponta-

neous oscillations.

Recording with a CMOS camera allows us to track 10-20 hair bundles per
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Figure 3.2: Spontaneous oscillation profiles of hair bundles.
Experiment Time-dependent displacement measured in two different hair bun-
dles. The top trace shows an example of a single-mode oscillation with a single
dominant period, while the bottom trace shows a multimode oscllation, with os-
cillatory behavior interspersed with quiescent intervals. (A) Numerical simulation
of spontaneous oscillations, with the gating spring stiffness set to be constant.
(B) and (C ) Examples of two numerical simulations, which display quiescent in-
tervals interspersed with oscillatory behavior as observed in experimental data.
Parameters used in simulation of B (C ) are those of Cell 1 (Cell 2) in Table 3.1.
Numerical simulation shown in (A) used the same set of parameters as in (B),
with constant gating stiffness equal to the time-averaged value from (B).

field of view, and hence observe spontaneous oscillations in many cells from each

preparation. Secondly, we readily record bundle motion without an attached fiber,

thus probing its intrinsic oscillation pattern. The top trace of Fig. 3.2 (Experi-

ment) shows an example of a single limit-cycle oscillation. We observed, however,

that the majority display complex temporal profiles, with long pauses occurring

intermittently with oscillatory behavior as seen in the bottom trace of Fig. 3.2

(Experiment). The intervals of quiescence can last hundreds of milliseconds and

typically show a slow negative movement of the bundle, indicative of the climbing

phase of the myosin.

To capture the intermittent pauses, or multi-mode oscillatory behavior, we

include a variable gating spring - an elastic element of tunable stiffness, hypothe-

sized to be in series with the tip link. We assume the calcium dependence of the
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variable gating stiffness to be linear. Further, to account for the slow modulation

of the oscillatory behavior, we assume the kinetics of calcium binding and disso-

ciation to and from this element to be slow with respect to that of the myosin

motor complex. Fig. 3.2, B and C show examples of simulations for two sets of

parameters (representing 2 simulated “cells”) which yield complex oscillatory be-

havior qualitatively similar to experimental observations. Without the inclusion

of the variable gating spring, the multi-mode oscillation is not observed: Fig 3.2A

shows a simulation performed with the same set of parameters as in Fig 3.2B but

with a constant gating stiffness, set to equal to the time-averaged gating stiffness

of the simulation in Fig 3.2B.

In general, a multimode oscillation does not arise in a two-dimensional sys-

tem as it would show trajectory crossings in a two-dimensional phase portraits.

Hence, we introduce a third dimension into the system by including a variable

gating spring in the model. An example of a three-dimensional phase portrait of

a noiseless multi-mode oscillation is shown in Fig. 3.3. The system moves along

the trajectory in a clockwise direction from a top-down view: the higher peak of

the velocity corresponds to the first opening of the channels after a quiescent in-

terval; the bundle subsequently deflects in the positive direction as myosin motors

slip; upon channels closing, the bundle position drifts in the negative direction

before the channels re-open, corresponding to the lower peak in the velocity. Note

that the openings and closings of the channels occur at different positions of the

adaptation motors.

In Fig. 3.4, we show traces from a simulation demonstrating the effects of noise

on the active bundle motility predicted by the model. The top traces in both A and

B show spontaneous oscillations for two simulated cells, without the inclusion of

noise terms. Effects of thermal jitter and stochastic attachment and detachment of

myosin motors to and from the actin filaments are introduced into the simulations

shown in the bottom traces. As can be seen from the records, noise can strongly
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Figure 3.3: Phase portrait of a simulation of a noiseless multimode oscillation.
Parameters used in the simulation are those of Cell 3 in Table 3.1.

affect the oscillation profiles. Fig. 3.4A illustrates a case where the addition of

noise changed the behavior of a simulated cell from that of regular oscillation to

one with sporadic quiescence. For other choices of parameters (example shown in

Fig. 3.4B), the presence of noise only introduces variation in the timing of the

quiescent intervals. This indicates that the bursting-type behavior is sensitive to

the choice of model parameters, and is affected by the inclusion of noise terms.

3.3.2 Parameter dependence of multiple oscillatory behavior

With the inclusion of slow calcium dynamics, our numerical simulations capture

the bursting-type behavior observed experimentally; the effect was however sensi-

tively dependent upon the choice of parameters. We therefore systemically varied

key parameters in the simulations without the inclusion of noise terms, to deter-

mine the range of values for which the oscillations were single-mode oscillation,

multi-mode oscillation, or entirely suppressed.

The impact of calcium binding upon the variable gating stiffness and on the

myosin motor activity was seen to play an important role in determining the
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Figure 3.4: Simulations of the effects of noise on the oscillation profiles.
For each panel, the top trace shows a simulation of a noiseless spontaneous oscilla-
tion. The corresponding bottom traces show simulations obtained with the same
set of parameter values, but with noise terms added. (A) The oscillation becomes
multi-mode in presence of noise (parameters of Cell 4, Table 3.1), while the noise
only causes the irregular occurrence of the quiescent intervals in (B) (parameters
of Cell 1 in Table 3.1).
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motile behavior. Fig. 3.5 shows a summary plot, where Smax (maximal slipping

rate of myosin motors) and Kgs1 (slope of the gating stiffness change with cal-

cium binding) were incrementally varied. As shown in the figure, qualitatively

different oscillation profiles were observed in different regimes of the parameter

space. Varying these parameters simultaneously is analogous to the experiment in

which the calcium concentration in the endolymph is changed, as Smax and Kgs1

describe the calcium sensitivity of the myosin motor complex and the variable

gating spring, respectively.

In Fig. 3.6, we plot the results of a numerical study where the stiffness of

the stereocilary pivots (Ksp) and the offset position of the bundle due to the

stereociliary pivots (Xsp) were systematically varied in the model. The steady-

state terms were found to have a profound effect upon the oscillation profiles,

as illustrated in the diagram. These numerical results are consistent with our

experimental observations [24], where imposed offsets were shown to modulate

and even suppress spontaneous oscillations in hair bundles (example shown later

in Fig. 3.9). This parameter space also corresponds to the experiment where the

overall stiffness of the bundle is manipulated by imposing a mechanical load on

the bundle (examples shown later in Fig. 3.10).

In Fig. 3.7, we plot the time evolution of key parameters (X, pm, and pgs)

during a simulated multimode oscillation. We find that the transduction channel’s

opening probability varies through most of its full range during the fast component

of the oscillation. Probability of calcium binding to the myosin motors (Fig. 3.7B)

likewise shows the full range of modulation. Binding probability to the variable

gating spring, on the contrary, shows only partial modulation during the fast cycles

(as seen in Fig. 3.7C ). Consistent with the imposed slow dynamics, modulation

reaches its full extent only over the slower timescales that include the quiescent

intervals.
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Figure 3.5: Oscillation profiles over the parameter space of Smax and Kgs1.
The diagram shows various states of the hair bundle: stable (nonoscillating),
oscillating with regular patterns (single-mode oscillation), or showing complex
bursting-type behavior (multimode oscillation). Examples of the oscillations with
different parameter values are shown in the insets located in regions that corre-
spond to their parameters values. The horizontal scale bar indicates 0.2 second
time interval for all of the oscillations shown. The displacement of each oscilla-
tion is independently scaled. Note that the two non-oscillating regions are due
to different stabilities: in the low-Smax region, most of the channels stay open,
and in the high-Smax region, most of the channels remain closed. Regimes that
show single-mode oscillation likewise show different patterns, though no sharp
transition exists at high Kgs1. The region with Smax higher than that of the ‘mul-
timode oscillation’ region shows spike-like profiles with periodicity determined by
the quiescent interval and the region with lower Smax shows only fast component
of the oscillations. Parameters used in the simulation are those of Cell 1 in Table
3.1.
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Figure 3.7: Plots of the parameter variation from the simulation of a noiseless
oscillation.
Data obtained from oscillations shown in Fig. 2B. (A) The position of the hair
bundle (X). (B) The probability of calcium binding to the myosin motors (pm).
(C ) The probability of calcium binding to the variable gating spring (pgs). Notice
that the decay of pgs during the channel-closed state is significantly slower than
that of pm, illustrating the slow dynamics of calcium binding at the variable gating
spring. Parameters used in the simulation are those of Cell 1 in Table 3.1.
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3.3.3 Effects of external calcium concentration

Previous experiments have shown calcium to have a strong effect on the active

motility of hair bundles: increasing its concentration in endolymph causes a reduc-

tion in the amplitude and an increase in the frequency of spontaneous oscillation

[58, 6]. We measured the effects of this ionic manipulation on motile hair bundles

that displayed multimode oscillatory pattern. The faster component of the oscil-

lation showed an increase in the characteristic frequency. Notably, the duration

of the open channel state was more strongly affected than that of the closed state,

resulting in a spike-like profile. The duration of the quiescent intervals were, on

the contrary, only slightly shortened by the increase in calcium. Fig. 3.8A shows

an example of measurements in which the concentration of calcium in endolymph

solution was incrementally raised; Fig. 3.8B shows numerical simulations under

the same conditions. As can be seen from the traces, the model captures the

impact of the ionic manipulation on both the fast and slow components of the

oscillation profile.

3.3.4 Mechanical offsets imposed on the bundle position

Mechanical offsets imposed on the bundle position were seen to strongly affect

its oscillatory behavior, as it can serve as a dynamic parameter that tunes the

frequency of spontaneous oscillation and induces a bifurcation crossing from os-

cillatory to the quiescent state. Fig. 3.9A shows the results of an experiment in

which a steady-state offset was imposed on a bundle with a flexible glass fiber,

and Fig. 3.9B shows the accompanying numerical simulation. Consistent with

the experimental observations, deflections in the negative direction reduce the

number of oscillations during each burst and extend the duration of the quies-

cent intervals. Deflections in the positive direction, on the contrary, eliminate the

quiescent intervals and result in single-mode oscillations. Similar behavior during
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Figure 3.8: Effects of calcium concentration in the endolymph upon characteristics
of the oscillation.
(A) Experimental records of spontaneous motility obtained from the same hair
bundle under 4 different calcium concentrations: 250, 350, 550, and 750 µM . (B)
Numerical simulations under the same calcium concentrations as in the experi-
ment. Both display similar effects: at higher concentration, the fast component of
the oscillation becomes faster and smaller in amplitude, while the slow component
does not show a significant change. Parameters used in the simulation are those
of Cell 5 in Table 3.1.
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the transitions between the multi- and the single-mode regime was observed upon

applying continuously varying offsets on the resting bundle position, as shown in

Fig. 3.10Experiment. In the experiment, mechanical force was exerted on micron-

sized ferromagnetic magnetite (Fe3O4) particles (Thermo Scientific) attached to

a hair bundle using a permanent magnet. This allowed us to observe oscillation

profiles at different offsets without effects from viscous drag imposed by the glass

fiber. Our numerical model reproduced both the transitions in oscillation profiles

due to continuously increasing (Fig. 3.10 Simulation, middle trace) and decreas-

ing (Fig. 3.10 Simulation, lower trace) offsets. This behavior is also illustrated

in Fig. 3.6 which examines numerically effects analogous to the imposed offsets.

Positive steady-state deflections shift the system from multimode oscillation to

single-mode oscillation regime. Moderate negative offsets maintain bursting-type

behavior while increasing the duration of the quiescent interval. Further offsets

eliminate the short-period component of the oscillations, leading to a single-mode

oscillation with a spike-like pattern.

Application of larger offsets enabled us to explore the oscillation profiles near

the suppression of the spontaneous activity. As shown in Fig 3.11 Experiment,

where a triangle wave offset was applied to the bundle, large positive (negative)

deflection led to a spike-like bundle motion with preferential channel-opening (-

closing) state. The recovery of the spontaneous oscillations exhibited history

dependence, with the onset of oscillations occurring at bundle positions larger

that of the suppression (Fig. 3.11 Experiment,B). The numerical model well

captured the behaviors observed experimentally both during positive (Fig. 3.11

Simulation, A), and negative (Fig. 3.11 Simulation, B) offset.

3.3.5 Stiffness of the mechanical load

Multi-mode oscillations are more often observed in unencumbered bundles than

those under an external load. In Fig. 3.12A, we illustrate three measurements
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Figure 3.9: Effects of steady-state offsets imposed on an oscillating hair bundle.
(A) Experimental records, where constant deflections were imposed on the bun-
dle via a glass probe of stiffness 100 µN/m. (B) The corresponding numerical
simulation. For offsets in the positive direction, the oscillations are faster and
smaller and the quiescent intervals disappear. In the negative direction, however,
the quiescent intervals occur more frequently and eventually become the dominant
component of the oscillation profile. Parameters used in the simulation are those
of Cell 1 in Table 3.1.

of spontaneous bundle motility before and after the attachment of a glass probe.

With light loading, the occurrence of quiescent intervals was reduced, while the

higher-frequency components remained unchanged (Fig. 3.12A, left). Stronger

loading led to a reduction in the amplitude and an increase in the characteristic

frequency of oscillation, and eliminated the occurrence of quiescent intervals (Fig.

3.12A, middle). Further increase in the stiffness of the load (Fig. 3.12A, right)

led to a near-suppression of innate oscillations. Fig. 3.12B displays the numerical

simulations corresponding to these experiments. The stiffness of the attached load

(Kf in Eq. 3.1) was incrementally increased in the calculation to capture the full

range of effects. The numerical simulations reproduce all the main features of

the experimental data: quiescent pauses are suppressed, the oscillation frequency

increases, and the amplitude decreases. This is analogous to an increase in the

parameterKsp, leading to a crossing from multi- to single-mode oscillatory regimes

shown in Fig. 3.6.
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Figure 3.10: Effects of mechanical loading.
Data were obtained experimentally (A) and theoretically (B). The top traces in
each of the panels in (A) represent the oscillation profiles of free bundles. Upon
light loading, 100 µN/m, the quiescent intervals disappear (A, left); with an
intermediate load, 500 µN/m, the oscillations become fast and small (A, middle);
heavy loading, 1000 µN/m, finally suppresses the oscillation (A, right). The
simulations of hair bundle oscillations under the same set of loading conditions
captures the full range of behavior (B). Parameters used in the simulation are
those of Cell 1 in Table 3.1.
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3.4 Conclusion

Direct gating of transduction channels in the stereocilia has been established as

the fundamental mechanism behind mechano-sensation in hair cells. Tip links

connecting neighboring stereocilia were proposed to comprise the gating spring

and introduced into numerical models to explain the nonlinear mechanical re-

sponse [42, 29]. Recent molecular dynamic simulations indicated however that

the tip link itself is far too stiff to constitute the putative gating spring [78]. As

the structural integrity of the tip link and its connection to the transduction chan-

nel is crucial for the proper detection of sound [44], it must constitute one of the

elements of the full mechano-electrical transduction complex. An elastic element

in series with the tip link would be consistent with both sets of results.

The numerical model presented in this chapter incorporates a variable gating

spring, composed of a spring of constant stiffness in parallel with one of calcium-

dependent compliance. As there are 30-50 stereocilia in a hair bundle, each with

a gating spring, and potentially multiple calcium binding sites on each element,

the linear term constitutes the simplest mean-field approximation for the calcium-

dependent stiffness of the gating spring. Possible coorperativity of calcium binding

to multiple sites on the variable gating spring is not considered in this model. Also

note that the variable gating spring might be interpreted as any spring element

within a bundle that regulates the degree of nonlinearity of the system.

The dynamics of calcium association and dissociation from the proposed vari-

able gating spring are assumed to be slow with respect to other timescales in the

system, most notably that of the myosin motor activity. Introduction of a slow

dynamic into our model allowed us to reproduce the complex temporal patterns,

observed in hundreds of spontaneous oscillations recorded in the course of these

experiments.

To characterize the factors determining the temporal profiles of spontaneous
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motility, we explored the space of key parameters in the model and classified the

resultant oscillations. We found a strong dependence on calcium sensitivity of the

variable gating stiffness and on the rate of myosin-based adaptation. Hence, any

cellular mechanism that would fine-tune the internal calcium concentration would

affect the steady-state gating spring stiffness and thus have a strong impact on the

oscillation dynamics. Ion channels found in the hair cell soma were shown to form

an electronic circuit that can exhibit resonance, tuning, and spontaneous voltage

oscillations [46, 73]. In a previous publication [68], we showed that inhibiting or

modulating the activity of the somatic system qualitatively changed the temporal

profiles of the spontaneous mechanical oscillations of the bundle. Somatic ion

channels comprise a possible control system via the membrane potential that

could modulate internal calcium levels and thus affect the variable gating stiffness

[36].

Offsets imposed on the resting position of the bundle or of the adaptation mo-

tors were seen to profoundly influence oscillation characteristics in the simulations.

This is consistent with our experimental findings that steady-state deflections can

regularize, modulate, or entirely suppress spontaneous oscillations [25]. In chap-

ter 5, we also study of deflections on mechanical entrainment of individual hair

bundles. The effects of calcium and steady-state mechanics may be inter-linked

in the hair cell, with offsets in the bundle position introduced by stiffening or

softening of internal gating elements, modulated in turn by calcium binding.
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CHAPTER 4

Phase-Locking Behavior of Individual Hair

Bundles With No Additional Offset

The results of this chapter appeared in the publication Phase Slips in Oscillatory

Hair Bundles in Physical Review Letters 110 (2013) 148103. The coauthors are

Roie Shlomovitz, Robijn Bruinsma, and Dolores Bozovic.

4.1 Introduction

4.1.1 Mechanical response of oscillating hair bundles: Analysis based

on phase-locked amplitude

Mechanical stimulation of single hair bundles by sinusoidal force of intermediate

amplitude (∼1-10 pN) was previously shown to exhibit a regime of compressive

nonlinearity [60]. The phase-locked component of the bundle response, obtained

from the Fourier transform of the bundle motion at the stimulus frequency, showed

a one-third power-law dependence on the stimulus amplitude. Smaller stimulus

amplitudes resulted in a linear response. Furthermore, the onset of the compres-

sive nonlinearity regime also happened at higher stimulus amplitude for larger

frequency mismatch between the stimulus and that of the bundle. This observed

behavior is in agreement with a theoretical description of a dynamical system

being poised at or near a supercritical Hopf bifurcation in the presence of noise.

Our recent study observed an Arnold tongue in the phase-locked amplitude
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of the bundle response over a broad range of stimulus amplitude and frequency,

suggesting the validity of the normal form equation of the supercritical Andronov-

Hopf bifurcation [24]. This generalized the bifurcation description of oscillating

hair bundles, since the normal form equation also exhibited a saddle-node bi-

furcation on an invariant circle (SNIC) at small stimulus amplitudes, where the

oscillation amplitude of the stimulated bundle remained unaffected.

While the previous studies focused on the phase-locked amplitude of the bundle

response, the phase behavior remained unexplored. Therefore, in this chapter, we

studied the phase dynamics of stimulated single hair bundles at small stimulus

amplitudes.

4.1.2 Stochastic Adler equation

The Adler equation describes the phase-locking behavior of a driven system cross-

ing a SNIC bifurcation. It can be obtained from the normal form of Hopf bifur-

cation in the limit of weak stimulus.

ż = (µ+ iω0)z − |z|2z + Feiωt (4.1)

where the real part of z represents the bundle motion, and F is the amplitude of

the external stimulus. µ, ω0, and ω are the control parameter, the characteristic

frequency of the bundle oscillation, and the stimulus frequency, respectively [22,

81].

We seek the response of hair bundle to external sinusoidal stimulus of the form

z = reiϕ, where r is the phase-locked amplitude of the bundle response, and ϕ is

the phase of the bundle oscillation. We define the phase difference between the

stimulus and the bundle oscillation as

∆ϕ(t) = ϕ(t)− ωt (4.2)
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Substituting the expected solution for z into Eq. 4.1, one obtains expression

of phase-locked amplitude and phase difference.

ṙ(t) = µr(t)− r(t)3 + F cos∆ϕ(t) (4.3)

˙∆ϕ(t) = −∆ω − ϵ sin∆ϕ(t) (4.4)

with ∆ω = ω − ω0 a frequency detuning, and ϵ = F
r
a coupling strength [64].

Without stimulus, the steady-state solution for r becomes µ1/2, for positive

µ. This solution also yields a good approximation for stimulus force smaller

than F ≪ µ3/2. Therefore, in this limit, external stimulus only affects the phase

dynamics of the system, while the oscillation amplitude remains constant.

The Adler equation, Eq. 4.4, describes the dynamics of phase difference of a

driven oscillator near SNIC bifurcation as an over-damped particle moving under

a tilted washboard potential, a periodic potential energy landscape with a tilt due

to frequency detuning (∆ω) [64, 84].

Close to a bifurcation, the Adler equation predicts a characteristic behavior of

phase difference, called phase slips, during which a sudden shift of 2π is observed

[84]. The duration between phase slips and their direction depends on the fre-

quency detuning. Positive phase slips (gaining 2π) occur with positive detuning.

As the detuning becomes smaller, phase slips occur less frequently with the de-

pendence τ ∼ |∆ω −∆ωc|−1/2, where τ represents the average duration between

successive phase slips, ∆ωc denotes the detuning at which the complete phase

locking occurs [9].

In the presence of noise, the stochastic Adler equation reads

˙∆ϕ(t) = −∆ω − ϵ sin∆ϕ(t) + η(t) (4.5)
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where the noise term η satisfies ⟨η(t)η(t′)⟩ = 2Tδ(t− t′), with T an effective noise

temperature [33].

In [2], Ambegaokar et al. presented a treatment of thermally activated phase

slips in Josephson Junctions. Converting to notation used in our system, the tilted

washboard potential is obtained from an integral of Eq. 4.4.

U = −∆ϕ∆ω − ϵ cos∆ϕ (4.6)

In the limit of small detuning, in the presence of noise, ∆ω
ϵ

→ 0, the frequency

of phase slips is given by

νps =
∆ω

2π
[I0(

ϵ

T
)]−2 (4.7)

where I0 is the modified Bessel function of the first kind.

Also in this limit, the phase-locked amplitude can be estimated from the en-

semble average:

|X̃(ω)| = ⟨r cos (∆ϕ)⟩ = r

∫
cos (∆ϕ) exp (−U

T
)d(∆ϕ)∫

exp (−U
T
)d(∆ϕ)

= r
I1(ϵ/T )

I0(ϵ/T )
(4.8)

where the integrals are computed over the range [0,2π]. I0 and I1 are modified

Bessel functions of the first kind, and r is the measured amplitude of spontaneous

oscillations.

The analytic form of the effective diffusion coefficient calculated from the Adler

equation is given by [69]

Deff = D04π
2

∫
dxI±(x)I+(x)I−(x)

[
∫
dxI±(x)]3

(4.9)

where

I±(x) =
∫
dy exp {±[U(x)− U(x± y)]/T} (4.10)
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and U(x) = ∆ωx− ϵ cos (x) is the tilted washboard potential. x and y denote the

phase difference ∆ϕ. All the integrals are computed over the range [0,2π].

4.2 Materials and Methods

Experimental setups used in this work are as described in chapter 2. Mechanical

stimulations were sent to the base of the glass fiber attached to the top row of

stereocilia. The probe stiffness was ∼ 100-150 µN/m.

4.2.1 Data analysis : Phase determination

We utilize the phase portrait of the hair bundles displacement and velocity to

extract its instantaneous phase of oscillation. The motion of the bundle is low-

pass filtered at 100 Hz cutoff frequency, with offset removed. Any slow drift in

the bundle motion is subtracted by fitting a polynomial of the second order to

the displacement; therefore, the zero crossings of the oscillations occur roughly

half-way between the open and closed states. Five-point derivative of the bundle

motion is then numerically calculated to obtain the velocity. The bundle velocity is

proportional to the oscillation frequency (ϕ̇), which is estimated from the duration

between zero crossings, in each cycle of the oscillation. The instantaneous phase

is determined by ϕ = arctan ( 1
ϕ̇
ẋ
x
). The phase is then unwrapped, and the phase

of the stimulus (ωt) is subtracted to obtain the unwrapped phase difference.

4.2.2 Data analysis : Estimation of effective diffusion coefficient

In the absence of external stimulation, the phase of hair bundle oscillation exhibits

diffusive behavior. The diffusion coefficient (D) is defined as

⟨(ϕ(t+ τ)− ϕ(t))2⟩t − ⟨ϕ(t+ τ)− ϕ(t)⟩2t = 2Dτ (4.11)
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where ⟨...⟩t denotes time average. The diffusion coefficients of the hair bundle

oscillations are extracted from a log-log plot of ⟨(ϕ(t+ τ)−ϕ(t))2⟩t vs τ by fitting

a linear function of slope one. The diffusion coefficient is determined from the

intercept.

4.3 Results

In this chapter, we focused on the nonlinear response of spontaneously oscillating

hair bundles to a weak stimulus so that it had only a negligible effect on the

amplitude of innate motility. No additional mechanical offset was superposed to

the stimulus. We observed that the spontaneous oscillations can intermittently

phase lock to weak drives, leading to a staircase structure in ∆ϕ(t), characteristics

of a class of nonlinear systems. We demonstrated the presence of phase slips,

studied the statistics of their occurrence under various drive amplitudes, and

detuning (∆ω), and compared the measurements to theoretical predictions based

on the stochastic Adler equation.

4.3.1 Ensemble response to weak stimuli

At low amplitudes of stimulation (0.2 - 3 nm at the base of the stimulus fiber),

individual traces of hair bundle motion seemed unaffected, with the noisy innate

oscillation dominating over the sinusoidal signal (Fig. 4.1A). Upon averaging over

multiple presentations, a phase-locked signal emerged (Fig. 4.1B), indicating that

the drive affected the statistics of the phase distribution. In Fig. 4.1C, we present

a two-dimensional plot of the time-dependent probability distribution of ∆ϕ. The

distribution was obtained from 45 presentations of the stimulus. The stimulation

amplitude was 1.7 nm, corresponding to the force amplitude (f0) of ∼ 0.4 pN

exerted on a perfectly stationary bundle.

The stimulus frequency ω was close to the natural frequency ω0 of the hair
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Figure 4.1: Contraction of the phase distribution induced by a weak stimulus.
(A) An example of hair bundle spontaneous oscillations with 1.7 nm stimulus
applied from 2.5 to 7.5 seconds (ω = 20 Hz, ω0 = 21.5 Hz). (B) The averaged
response of the bundle (top), performed over 40 presentations, and the stimu-
lus profile (bottom). (C) Time-dependent histogram of ∆ϕ(t). The color-coded
scale indicates the height of the histogram in arbitrary units. (D) Time-averaged
histogram, in arbitrary units, of ∆ϕ(t) before (left), during (middle), and after
the stimulation (right). Histograms of freely oscillating, and driven interval are
averaged over 2.5 and 5 seconds, respectively.

bundle. Note that the statistical distribution of the phase contracts during the

stimulus. Time averaged phase distributions for both the free and driven system

are shown in Fig. 4.1D.

The probability distribution of ∆ϕ(t) acquired a more complex structure when

the hair bundle was driven by the slightly higher amplitude of 2.5 nm (f0 ∼

0.5 pN) at ω > ω0 (15 and 7.5 Hz, respectively). Fig. 4.2 shows histograms

of ∆ϕ(t). During applied stimulus, the phase probability distribution displayed

plateaus (Fig. 4.2B), indicating the existence of intervals of phase locking that

were separated by integer multiples of 2π.

In Figs. 4.2A and 4.2C, the same analysis was applied to records taken before

and after application of the stimulus, respectively, with the instantaneous phase
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Figure 4.3: Phase diffusion of spontaneous oscillations in the absence of stimula-
tion
The phase diffusion was calculated, following the procedure described in Data
Analysis, from data shown in Fig. 4.2A (blue circles), and Fig. 4.2C (green
squares). Each trace was obtained from an averaging over 50 presentations. The
black line is the linear fit of slope one.

difference extracted with respect to a zero-amplitude signal. The phase histograms

did not exhibit plateaus but rather showed a broadening of the distribution that

was consistent with phase diffusion. The diffusion coefficients were extracted from

Fig 4.3, as described in Data Analysis. Note that the phase became super-diffusive

for small τ due to a low-pass filter, applied to the raw traces to enable extraction of

the phase. The diffusion coefficients were 51.6 s−1 and 48.8 s−1 for the oscillations

before and after stimulation, respectively.

4.3.2 Occurrence of phase slips

We next explored phase-locking dynamics in the individual traces. Fig. 4.4 dis-

plays ∆ϕ(t) of one hair bundle as a function of time, extracted from a single trace

of motion over the course of the applied stimulus. The sequence of panels corre-

sponds to records taken at increasing f0. At very small stimuli (Fig. 4.4A), below
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Figure 4.4: Time evolution of ∆ϕ(t) at different stimulus amplitudes.
From (A) to (H), the stimulus amplitudes (f0) are 0.2, 0.35, 0.5, 0.6, 0.7, 0.8, 1.0,
and 1.2 pN, respectively. The stimulus frequency is fixed at 10 Hz, with ω0 ∼ 14
Hz. Phase-locking intervals can be observed for f0 above ∼0.5 pN (C) and extend
in duration as the stimulus amplitude increases.

∼5 nm (∼ 0.3 pN), the time trace of ∆ϕ(t) drifted linearly with time, consistent

with a biased random walk. By subtracting the drift due to nonzero ∆ω, a phase

diffusion coefficient was extracted, yielded 107.2 s−1.

As the stimulus amplitude was increased (Fig. 4.4B), plateaus began to appear

in ∆ϕ(t), becoming more pronounced with increasing stimulus (Fig. 4.4C). At

drive amplitudes above ∼5 - 10 nm (∼0.3 - 0.6 pN), the time-dependent traces

displayed intervals of phase locking, interspersed with phase slips (Fig. 4.4D -

4.4H). Increased levels of stimulus led to increased durations of the plateaus in

∆ϕ(t), and the reduction in the rate of phase slip production. The direction of

the average phase slip was determined by the sign of the detuning (ω − ω0).

To extract the characteristics of bundle motion during a phase slip, defined as

a change of 2π that occurs on a time scale shorter than the period of the imposed

drive, we performed an average over multiple phase slips in individual traces. The

detected events were aligned so that the centers of motion coincide (see Fig. 4.5).
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Figure 4.6A displayed three examples of phase slips, obtained from averages taken

over 51, 36, and 31 events, respectively. The top and middle of Fig. 4.6 illustrate

the bundle motion during a phase slip with positive detuning, where the skip in

the oscillation occurred from the positive or negative phase of the active motion.

Negative detuning resulted in an additional oscillation during the phase slip (Fig.

4.6A, bottom).

There existed a correlation between phase slip production and nonlinearity in

the amplitude response. We extracted |X̃(ω)| from the same hair bundle as shown

in Fig. 4.4, as well as time traces of ∆ϕ(t). In the low stimulus regime, where

|X̃(ω)| increased linearly with f0 (Fig. 4.6B, blue dots), diffusive behavior was

observed in ∆ϕ(t) (Fig. 4.6B, inset B). At f0 corresponding to the compressive

regime (black dots), ∆ϕ(t) exhibited the staircase structure indicative of phase

slips (Fig. 4.6B, inset A). Finally, high drive amplitudes suppressed the phase

slips and perfectly entrain the motion (Fig. 4.6B, inset C). In this regime, the

amplitude of the phase-locked response was proportional to f0 (Fig. 4.6B, green

dots).

4.3.3 Predictions from stochastic Adler equation

In a prior publication, we showed that the main features of the experimentally

observed Arnold Tongue could be reproduced by the normal form equation for the

Hopf bifurcation [24]. Fig. 4.6B constitutes a slice through the response space,

taken at a fixed frequency. The figure illustrates that the nonlinear growth of

|X̃(ω)| correlated with the occurrence of phase slips in its ∆ϕ(t). Throughout

the regime of weak stimulation (∼0.1 - 10 pN), the amplitude of spontaneous

oscillation remained constant. Hence, we proposed that the relevant variable to

describe the dynamics of bundle motion in response to weak signals is the phase

degree of freedom. We showed that the stimulus amplitude dependence of the

phase-locked amplitude (|X̃(ω)|), the rate of phase slips (νps), and the effective
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Figure 4.5: Examples of bundle motion during individual phase slips
The averaged motion of (A) and (B) is shown in Fig. 4.6A (top), (C) and (D) is
shown in Fig. 4.6A (middle), and (E) is shown in Fig. 4.6A (bottom).
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Figure 4.6: Correlations between phase slips, bundle motion, and phase-locked
amplitude
(A) Characteristic dynamics of hair bundle motion during a phase slip. The
superimposed gray lines indicate the averaged stimulus during the phase slip.
Top, Middle: Phase slip associated with positive detuning (ω = 40 Hz, ω0 = 30
Hz, and ω = 15 Hz, ω0 = 10 Hz, respectively). Bottom: A phase slip associated
with negative detuning (ω = 5 Hz, ω0 = 6.5 Hz). (B) Correlation between the
appearance of phase slips and the compressive nonlinearity. Red dots indicate the
stimulus amplitudes at which the phase slips occur. Blue dots indicate the linear
regimes.
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Figure 4.7: Comparison with the Adler equation.
Analytic solutions (solid lines) are superposed on experimental data (dots). (A)
Phase-locked amplitude as a function of f0 (ω = 5 Hz, ω0 = 4.5 Hz). The measured
r = 28 nm. The proportionality constant ϵ/T = 0.66f0, is obtained from the fit.
(B) Rate of phase slip production as a function of f0. The fit of the analytic
solution is plotted with the same fitting parameter as in (A), with ∆ω = 4.7 rad/s.
(C) Deff predicted by Eq. 4.5 and extracted from the data. The proportionality
constant ϵ/T = 0.63f0 and D0 = 40 s−1 are obtained from the fit, with ∆ω fixed
at the measured value of 60 rad/s.

diffusion coefficient (Deff ) can be well captured by the stochastic Adler equation

(Eq. 4.5).

In Fig. 4.7, we compared our measurements with predictions based on Eq.

4.5. Fig. 4.7A displays |X̃(ω)|, with the analytical prediction at zero detuning

superposed, |X̃(ω)| = r(I1(ϵ/T ))/(I0(ϵ/T )) [84, 2]. The bundle was stimulated

with low ∆ω (4.7 rad/s), for 10 s. Only the low (diffusive) and intermediate

(phase-slipping) regimes are shown. Since the coupling strength (ϵ) was linearly

dependent on f0, the proportionality constant between ϵ/Teff and f0 was the

only fitting parameter. The oscillation amplitude was estimated to be 28 nm

obtained from fitting the histogram of the bundle position with a double-Gaussian

distribution. The fit in Fig. 4.7A yielded ϵ/Teff = 0.66f0.

Fig. 4.7B displays the frequency of phase slip production (νps), as a function

of f0, from the same recordings as in Fig. 4.7A. In the limit of small ∆ω, the rate
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Figure 4.8: Frequency dependence of phase slip production.
The stimulus amplitude is 10 nm, corresponding to the f0 = 1.4 pN. The fitting
parameter is ϵ/Teff = 1.07f0. Linear dependence is observed

for thermally activated phase slips is νps = ∆ω
2π

[I0(
ϵ
T
)]−2. The relation between

ϵ/Teff and f0 was used as extracted from Fig. 4.7A.

We also examined the dependence of the rate of phase slip production on

∆ω, at a fixed f0. The experimental result showed a linear dependence which

is consistent with the theoretical prediction as shown in Fig. 4.8. The stimulus

amplitude was kept constant at 10 nm. The fitting parameter was ϵ/Teff = 1.07f0.

For the stimulus amplitude that did not induce entrainment, the phase of the

bundle oscillation exhibited diffusive behavior, as shown in Fig. 4.3. When the

stimulus amplitude reached∼10 nm, phase slips occurred, and the overall behavior

of the phase became non-diffusive. However, by subtracting a slow drift due to

any preference in the direction of phase slips, the effective diffusion coefficient

(Deff ) can be extracted from Eq. 4.11 as well. For higher stimulus amplitudes,

during which phase slips rarely occurred, the effective diffusion coefficient was

poorly defined (Fig. 4.9).

Fig. 4.7C compares the measured Deff , from the same hair bundle as the

top of Fig. 4.6A, with the theoretical prediction. The fitting parameters yielded

ϵ/Teff = 0.63f0 and D0 = 40s−1, with ∆ω fixed at 60 rad/s.

To further test the validity of the stochastic Adler equation, we independently
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Figure 4.9: Phase diffusion under different stimulus amplitudes.
Data obtained from results shown in Fig. 4.7C. (A) At 4 nm (0.86 pN) stimulus,
the phase is diffusive with Deff = 34 s−1. (B) At 15 nm (3.225 pN) stimulus,
Deff = 36.4 s−1. The black solid lines indicate the linear fit of slope one. (C) At
20 nm (4.3 pN) stimulus, a phase slip occurs only once during the recording, and
the linear regime is not apparent in the plot. The extracted Deff is 2.8 s−1. The
black solid line is the linear fit of slope one.

extracted ϵ from the averaged Eq. 4.5, and Teff from the autocorrelation function

of ∆ϕ(t) during phase locking. By averaging the Adler equation, we obtained a

linear plot between ⟨ d
dt
∆ϕ⟩ and ⟨f0 sin∆ϕ⟩ with α and ∆ω being the slope and

the intercept, respectively, as shown in Fig. 4.10A. The coupling strength and the

detuning extracted were ϵ = 5.6f0 and ∆ω = 4.83 rads.

To estimate the effective temperature, the autocorrelation of the phase dif-

ference during the phase-locking regime was fitted with exponential decay of the

form C(t) = C0e
−t/τc with T = C0/τc. The averaged autocorrelation function

with exponential fit is shown in Fig. 4.10B. The effective temperature extracted

was approximately 7.75. The ratio ϵ/T was then 0.7, consistent with the number

obtained from the fits in Fig. 4.10B (ϵ/T = 0.66).

4.3.4 Long-term effects of entrainment

Apart from contraction of phase space observed during weak mechanical stim-

ulation, some hair bundles also exhibited more regular spontaneous oscillations
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Figure 4.10: Estimates of ϵ and Teff .
(A) The averaged phase velocity versus ⟨f0 sin(∆ϕ)⟩. Each point is obtained from
recording with different stimulus amplitude. The proportionality constant of the
coupling strength and the detuning are extracted from the slope and the intercept
of the fit (black line), respectively. (B) Autocorrelation function of the phase
during phase-lock intervals. The plot is averaged over 4 recordings with different
stimulus amplitudes. The exponential fit (red line) is used to extract the effective
temperature.
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post-stimulation. Fig. 4.11A illustrates the autocorrelation function of hair bun-

dle oscillation obtained before, and after stimulation of 2.5 nm amplitude, at 20

Hz, slightly lower that the characteristic frequency of the bundle. 40 bursts of

2-second stimuli were applied, with ∼1.5 seconds pauses. Autocorrelation func-

tion was calculated from 0.5-second long recordings before and after each burst

of stimulation, then averaged over 40 presentations. As readily seen from Fig.

4.11A, bundle oscillation became more correlated after the stimulation, resulting

in a slower decay in the autocorrelation function.

In some experiments, hair bundles was stimulated for ∼ 5 - 7 minutes. In-

terestingly, phase-locking behavior of some bundles was enhanced over the course

of the experiment. This improvement was not apparent in individual traces, but

in the ensemble average. We applied 45 presentations of identical stimulus, as in

Fig. 4.1, and calculated averaged traces. Each averaged trace was obtained from

averaging increasing number of presentations (from 1 to 45) in chronological order,

and reversed. Fig 4.11B plots the longest phase-locking period, i.e., the longest

duration between two successive phase slips, of averaged traces. As the number of

recordings used in the averaging increased, the duration extended, until reaching

the whole duration of stimulation, indicating complete phase-locking, when the

first 42, or the last 34 presentations were used in averaging. Fig. 4.11C shows the

time at the onset of the longest period of phase-locking. Similar to Fig. 4.11B, the

onset of the longest phase-locking coincided with the onset of stimulation when

the first 42 , or the last 34 presentations were used in the averaging. Both analyses

suggested that the hair bundle was more easily entrained after ∼1 - 2 minutes of

stimulation.
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Figure 4.11: Long-term effects of entrainment.
(A) Autocorrelation function obtained from 0.5-second recordings before (dashed
line), and after (solid line) stimulation of 2.5 nm at 20 Hz. (B) Longest duration
of phase-locking obtained from traces of different averaging, in chronological order
of the experiment (open squares), and reversed (filled circles). (C) Time at the
onset of the longest phase-locking, obtained from traces of different averaging, as
in (B).
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4.4 Conclusion

Prior theoretical studies described the dynamics of the auditory system by prox-

imity to a supercritical Hopf bifurcation [11, 22], shown to capture the amplifi-

cation and frequency selectivity observed in the cochlea. Here, we examine the

response of spontaneously oscillating hair bundles under in vitro conditions, in-

dicating that the system is not in the immediate vicinity of a supercritical Hopf

bifurcation. We find that the dynamics at low stimulus amplitudes are well de-

scribed by the stochastic Adler equation, which displays a transition between the

spontaneous and mode-locked oscillation. The transition occurs via a SNIC [81]

and is characterized by a regime in which the phase difference ∆ϕ(t) between the

oscillator and the stimulus displays phase slips. The staircase structure observed

in the phase difference is one of the classic signatures of mode locking in a system

described in prior literature by a tilted washboard potential [84].

While the occurrence of spontaneous oscillation under in vivo conditions re-

mains unknown, the existence of spontaneous otoacoustic emissions indicates that

such an instability can arise. In the presence of spontaneous oscillation, weak sig-

nals lead to a contraction in the distribution of the instantaneous phase of hair

bundles. We observe that, at slightly higher amplitudes of stimulation, contrac-

tion in the distribution of phase does not proceed in a uniform fashion, but rather

leads to the appearance of phase-locked plateaus in the response. Mode-locked

intervals are interrupted by sudden phase slips of 2π, leading to the staircase

structure characteristic of this class of nonlinear systems [84]. Hence, even at

amplitudes of applied force that are too small to evoke complete entrainment,

intermittent intervals of phase locking occur in the active oscillation of individual

bundles. We propose that the phase degree of freedom dominates the hair bundle

response in this regime, and is well described by the stochastic Adler equation.

Entrainment of active motility by weak signals, with the bundles poised in
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the regime of intermittent mode locking, could provide a sensitive mechanism of

detection. Crossing of the SNIC bifurcation, however, does not lead to frequency

selectivity of the response. The sacculus, a vestibular and auditory organ special-

izing in low frequencies, is known to have convergent patterns of enervation, with

each neuron connected to an ensemble of hair cells. Phase locking of an ensem-

ble of oscillatory hair bundles constitutes a potential mechanism of detection in

biological systems that display high sensitivity and broad frequency tuning.
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CHAPTER 5

Phase-Locking Behavior of Single Hair Bundles

Under Mechanical Offsets

Part of the results in this chapter appeared in the publication “Phase-locked

spiking and stochastic resonance of hair cells” submitted to Interface Focus. The

authors are Roie Shlomovitz, Yuttana Roongthumskul, Robijn Bruinsma, and

Dolores, Bozovic.

5.1 Introduction

Under appropriate conditions, hair bundles of certain species can exhibit spon-

taneous limit cycle oscillations [58, 17], one of the signatures of an underlying

active amplifier. When hair bundles are deflected by sound waves, tip links con-

necting the individual stereocilia are placed under tension, leading to the opening

of mechanically sensitive ion channels. Gating of the transduction channels in

the stereocilia leads to bi-stability in the position of the bundle. An adaptation

process, mediated by an array of myosin motors physically connected to the trans-

duction complex, continuously adjusts the position of the bundle. Significant noise

is evident in this innate motility, with variation in the local frequency and phase

of the oscillation. External signals of much smaller amplitude have been shown

to entrain the spontaneous motion [59].

Theories based on nonlinear dynamics have been proposed to describe active

hair bundle motility [24, 75, 57]. Higher order nonlinearities have been shown to
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lead to rich bifurcation diagrams in the phase space. Dependent on the internal

parameters, the auditory system could be poised near a number of different bi-

furcations, which determine the characteristics of its phase-locking to the applied

stimulus. The theoretical models describe the nonlinear response observed ex-

perimentally, and predict the amplification of low-amplitude stimuli. In a recent

study, we showed that at low amplitudes of an imposed sinusoidal drive, phase-

locking of spontaneously oscillating bundles occurs via a saddle-node bifurcation,

characterized by the occurrence of phase slips, sudden excursions of 2π, at a rate

that is dependent on the amplitude and detuning of the applied drive, as described

in chapter 4. We measured the occurrence of phase slips in the response of the hair

bundle and showed that the dynamics of the observed behavior were consistent

with the stochastic Adler equation [64].

Under natural conditions, hair bundles of the bullfrog sacculus are coupled to

an overlying otolithic membrane [48, 5]. Hair bundles were shown not to exhibit

spontaneous oscillations when connected to the otolithic membrane, indicating

that loading can tune them across the bifurcation. Our observations indicated

that attachment to the membrane may impose an offset on the position of the

bundle with respect to its freestanding state [25, 48]. We therefore examined the

effects of mechanical deflection on the dynamic state of the bundle, and found

the active oscillation to be suppressed by the application of an offset, with the

transition displaying either frequency or amplitude modulation or an admixture

of the two [25].

In this chapter, we explore the dynamic response of hair bundles under large

mechanical offsets, until suppression of spontaneous oscillation is achieved. To

capture the regime where the system is quiescent, but still poised in the vicinity

of the bifurcation, we apply gradual ramps or sequential steps to the positions

of the hair bundles. We observe the occurrence of ‘spikes’–sudden and rapid

excursions of the hair bundle–under a range of imposed deflections. These spikes
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are stochastic, but are readily phase-locked by an imposed sinusoidal stimulus.

We demonstrate that this spiking regime leads to a significant amplification of

the signal and explore its mechanisms with a numerical simulation.

5.2 Materials and Methods

5.2.1 Mechanical stimulus

Mechanical stimuli were applied to a hair bundle at the base of a glass fiber, as

described in chapter 2. Probes were coated with concanavalin-A, then attached

only to the kinociliary bulb, which provided better adhesion, possibly due to larger

surface area. In this chapter, two types of mechanical offsets were applied to the

base of the glass fiber: steady-state and slowly increasing deflections, both away

and toward the kinocilia. However, to imitate the natural deflections imposed on

hair bundles under the otolithic membrane, most data analysis were done on data

obtained from positive deflections.

In some experiments, sinusoidal stimuli with different amplitudes and frequen-

cies were applied, simultaneously with a large static offset, on the bundle. A con-

stant offset was applied as a square wave, with the bundle returning to the original

position upon the cessation of each sinusoidal stimulus train, to avoid the effects

of long-term adaptation. The order of stimuli presented was also randomized to

avoid any consistent cumulative effects of adaptation.

5.2.2 Data analysis

5.2.2.1 Spike detection procedure

In the recordings where slowly increasing offsets were applied to the bundle, slow

drifts in the bundle motion were removed from the data, so the channel-opening

state fluctuates around zero. The traces were divided into 1-second long sections.
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The histogram of the bundle position of each section was calculated, and peaks

of the histograms corresponding to the channel opening position were fit with a

quadratic polynomial. This value was subtracted from the raw trace, defining zero

position to be that of the channel-opening state. The ramp-subtraction procedure

is shown in Fig. 5.1.

A spike detection procedure was applied to the ramp-subtracted traces. A

Gaussian distribution was fit to the histogram of the bundle position around the

channel-opening state to determine the standard deviation of the distribution (Fig.

5.2). To ensure that the detected spikes are well above the noise level, a threshold

was chosen to be 4 times this standard deviation. Any excursion of the bundle

beyond the threshold was defined to be a spike. This threshold was fixed for all

of the applied bundle offsets.

If sinusoidal stimuli were applied, the passive response of the bundle was re-

moved prior to applying spike detection software. The passive response was de-

termined by fitting a sine wave at the stimulus frequency to the bundle motion,

ignoring any displacements larger than 10 nm in the negative direction.

Once spikes were detected, their amplitudes were defined as the absolute min-

ima of the excursions. The spike duration was defined as the interval between

the two adjacent threshold-crossings, thus slightly underestimating the full spike

duration. Spike phase was defined as the phase of the stimulus cycle at the instant

when the bundle motion crosses the threshold away from channel-opening state.

5.2.2.2 Calculation of work and power

Active work was calculated according to [59]. The drag force was calculated based

on the bundle velocity, while the force delivered by the stimulus fiber is due to

the relative motion between the base of the probe and the tip of the hair bundle.

Fd = −ξ dx
dt

69



50 nm

0.
5 

s

0
5

10
15

20
25

30
35

40
-1

50
-1

00-5
005010
0

15
0

20
0

O!set (nm)

Ti
m

e 
(s

)

F
ig
u
re

5.
1:

R
am

p
su
b
tr
ac
ti
on

p
ro
ce
d
u
re

S
p
on

ta
n
eo
u
s
os
ci
ll
at
io
n
p
ro
fi
le

u
n
d
er

p
os
it
iv
e
ra
m
p
off

se
t
(t
op

tr
ac
e)
.
T
h
e
off

se
t
as

a
fu
n
ct
io
n
of

ti
m
e
w
as

ex
tr
ac
te
d
fr
om

th
e
p
ea
k
of

th
e
h
is
to
gr
am

of
th
e
b
u
n
d
le

p
os
it
io
n
ca
lc
u
la
te
d
fr
om

ea
ch

1-
se
co
n
d
lo
n
g
se
ct
io
n
,
th
en

fi
tt
ed

w
it
h
a
q
u
ad

ra
ti
c

p
ol
y
n
om

ia
l.
T
h
is
fi
t
w
as

su
b
tr
ac
te
d
fr
om

th
e
re
co
rd
in
g
to

ob
ta
in

th
e
ra
m
p
-s
u
b
tr
ac
te
d
tr
ac
e,

sh
ow

n
in

th
e
b
ot
to
m

tr
ac
e.

70



-80 -60 -40 -20 0

A

B

Bundle position (nm)

Figure 5.2: Spike detection procedure
(A) Histogram of the bundle position after ramp subtraction. Blue line shows
the Gaussian fit around the channel opening state. Spike detection threshold is
indicated by the vertical red line corresponding to 4 times standard deviation from
the Gaussian fit. (B) Ramp-subtracted trace with spike detection threshold (red
line). Any excursion exceeding the threshold is considered as a spike.

Pd = −ξ(dx
dt
)2

Fsf = ksf (∆−X(t))

Psf = ksf (∆−X(t))dx
dt

where ξ represents the combined drag coefficient of a hair bundle, and the

stimulus fiber. The value for a hair bundle is taken from [18] (127 nNs/m). The

stiffness ksf , and ξ of the fiber are obtained from the calibration explained in

chapter 2 (ksf ∼ 150 µN/m, xi ∼ 200-300 nNs/m).

The active power was defined as the difference between the dissipated power

performed by the bundle in overcoming the drag force and the power delivered by

the stimulus fiber.

Pac = ξ(
dx

dt
)2 − ksf (∆−X(t))

dx

dt
. (5.1)

This active power was then integrated over the course of a spike, or a stimulus

cycle to obtain the active work.
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5.3 Results

We studied the response of hair bundles under various degrees of steady-state

deflection and subject to mechanical sinusoidal stimuli of different amplitudes

and frequencies. The Bullfrog sacculus was placed in a two-compartment-chamber

configuration with the apical and basal sides of the epithelium exposed to artificial

endolymph and perilymph, respectively. A flexible glass fiber was used to apply

a static or a slowly increasing force toward or away from the kinocilium, with

a maximum force ∼200 pN, corresponding to a deflection of ∼0.5-1 µm at the

top of the bundle. Hair bundles were found to exhibit spike-like motions under

intermediate deflections.

5.3.1 Effects of mechanical offsets on hair bundle oscillations

Under in vitro conditions, decoupled hair bundles from the Bullfrog sacculus typ-

ically exhibit spontaneous oscillations, with comparable durations spent in the

channel-opening and -closing states. To capture the behavior of hair bundle os-

cillations at different deflections, a ramp of linearly increasing offset was applied

to the base of the glass fiber attached to the bundle. The ramp speed applied to

the base of the probe was 22 nm/s, corresponding to force 3.3 pN/s applied to a

stationary bundle, chosen to be slow with respect to the rate of adaptation [20].

As the bundle was gradually deflected toward the kinocilium (defined to be

the positive direction), an increase in the oscillation frequency was observed, to-

gether with a decrease in the amplitude of oscillation. In a significant fraction of

the hair bundles studied, under larger deflections, the oscillations became increas-

ingly asymmetric, favoring the channel-opening state, and exhibiting only brief

excursions in the negative direction, away from the kinocilium. Thus, the relative

time interval spent in the channel-opening state increased under applied offset.

In this study, the spiking regime is defined to be the regime in which the ratio
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between the interval of channel-closing to those of channel-opening is less than

20%. The threshold for spike detection is illustrated with dotted lines in the lower

panels, Fig 5.3A.

Analysis of spikes under positive deflection showed that these mechanical spikes

demonstrated a gradual reduction in the amplitude (Fig. 5.3B) and a decrease

in the duration (Fig. 5.3C). This reduction in amplitude was also observed in

recordings at a higher frame rate (2000 fps), and thus was not due to under-

sampling (Fig. 5.4). Spike duration can be as short as 10 ms, indicating that a

spiking bundle has an inherent ability to undergo one-to-one phase locking up to

100 Hz. The occurrence of spikes was previously shown to be stochastic, as the

interspike intervals followed a Poisson distribution [76]. The spike rate decreased

with increasing offset (Fig. 5.3D), until the motion was eventually completely

suppressed.

Calculation of work done by a bundle over the course of one spike suggests

that spike occurrence requires an active mechanism. Active work was defined as

the difference between the dissipated work performed by the bundle in overcoming

the drag force and the work delivered by the stimulus fiber [59]. Positive active

work indicated that the dissipated work exceeded the work performed on a bundle

by the stimulus fiber. Total active work done by the bundle per spike (Fig. 5.3E)

in the spontaneous spiking regime was ∼80 zJ, slightly below that of the total

active work performed per cycle in the oscillatory regime (∼100 zJ). Calculation

of the active power delivered at any instant during a spontaneous spike (Fig. 5.3F)

showed that over the course of the channel closing, the bundle generated active

work of ∼110 zJ. Restoring force exerted by the elastic glass fiber assisted channel

re-opening, hence the bundles performed a net negative work of ∼ -30 zJ.
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Figure 5.3: Characteristics of the spiking regime.
(A) Spontaneous oscillations of a hair bundle under a slowly increasing positive
offset (22 nm/s). Lower panels are the zoom-ins of 4 different sections of the
full trace, labeled by dashed lines. Dotted lines indicate the threshold used for
spike detection, corresponding to 4 times the standard deviation obtained from
a histogram of the bundle position. From (B) to (E), each point represents the
averaged value obtained from 10 successive spikes. (B) Spike amplitude as a
function of bundle offset in the oscillating (open circles) and spiking regime (filled
circles). (C) Spike duration at different bundle offsets. The duration saturated at
∼10ms, corresponding to a frequency of 100 Hz. (D) Spike rate showed a peak
at the end of the oscillating regime, and decreased in the spiking regime. (E)
Active work produced by the bundle during each spike (gray dots). (F) Averaged
behavior of bundle motion during a spike (top panel) and power from the viscous
drag (Pd), power delivered from stimulus fiber (Psf ), and active power performed
by the bundle (Pac). (G) Numerical simulations of spontaneous oscillations of a
hair bundle under a slow ramp offset (See Numerical Simulations).
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Spiking regime start at ∼200-nm offset.

5.3.2 Hair bundle response at different deflections

We next superposed sinusoidal stimuli onto the slow ramps. The stimulus fre-

quency was chosen to match the characteristic frequency of the bundle oscillation

at zero offset. In the spontaneously oscillating regime, the imposed signal en-

trained the innate motion (Fig 2A, 0 nm offset), as shown in prior literature.

The phase-locking behavior gradually transitioned from one-to-one mode-locking

to higher-order mode-locking as the characteristic frequency of the oscillation

increased due to larger deflections (Fig 2A, 100 nm offset). This was clearly il-

lustrated by the number of spikes per stimulus cycle reaching 2 at the end of the

oscillating regime (Fig 2B).

As the bundles transitioned from the oscillatory to the spiking regime, they

exhibited spikes superposed onto a passive response to the imposed sinusoidal

stimulus (Fig. 5.5A). Larger mechanical offsets led to a decrease in the amplitudes
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Figure 5.5: Phase-locking in the spiking regime.
(A) Hair bundle oscillation measured at different offsets, with an applied sinusoidal
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(B) Spike amplitude (black dots) and passive response (gray dots). The passive
response remained constant ∼3 nm. (C) Time-dependent active power generated
by hair bundle, corresponding to the bundle motion in the top trace, with stimulus
superposed (gray line). (D) Averaged spike phase drifted from π in the oscillating
regime, to ∼1.5π rad in the spiking regime. (E) Vector strength showed a decrease
in the oscillating regime, then rapidly increased as spikes occurred.
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of the evoked spikes (Fig. 5.5B),while the passive response remained constant. For

the particular experiment shown, spike amplitude was as large as 10 times that of

the passive response. This characteristic response provides a potential mechanism

for mechanical amplification by a hair bundle rendered quiescent by an imposed

load. Calculation of work done by a bundle over the course of a stimulus cycle

indicated that the hair bundle generated active work only during spikes, but not

during passive response (Fig. 5.5C). This provides a potential mechanism for

mechanical amplification by a hair bundle rendered quiescent by an imposed load.

Spikes showed an increased probability of occurrence at a preferential phase

within the stimulus cycle. This was illustrated by a significant increase in the

vector strength of the spike phase during the spiking regime (Fig. 5.5D). Upon

further deflection, the occurrence of spikes became rare; however, a preferential

phase was maintained and the vector strength continued to rise rapidly (Fig.

5.5D). The averaged spike phase fluctuated around π in the oscillatory regime (Fig.

5.5E), indicating 1-to-1 mode-locking; note that spikes are defined as excursions in

the negative direction, hence the channel-closing coincided with the zero-crossing

of the stimulus. The phase of the spikes slowly drifted to 3π/2 in the spiking

regime. This shift in the phase implied the possibility that spikes can be evoked

by an external stimulus, with an increasing threshold at larger deflections.

Under negative deflections, similar response was observed, as shown in Fig.

5.6. In the spiking regime, spikes occurred as brief excursions in the channel-

opening state. As the offset became more negative, unlike spikes under positive

deflections, spike duration was not significantly affected by the offsets. Spike rate

and spike amplitude, however, decreased as a function of offset.
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5.3.3 Mechanical amplification

To test the hypothesis that spikes can be evoked by an external signal, we ap-

plied bursts of 10-Hz sinusoidal stimulus, with amplitudes of 5, 10, and 20 nm

(corresponding to 0.75, 1.5, and 3 pN) applied to the base of the stimulus fiber,

superposed onto slow ramps. As can be readily seen from the trace measured at

97-140 nm offset (Fig. 5.7A, lower trace), there was a regime where spikes could

only be observed during the application of a stimulus. This clearly illustrated

the ability of a quiescent hair bundle to respond to mechanical signals with an

amplified movement.

The number of spikes per unit time did not show an overall increase with

respect to the spontaneous rate, until stimuli of 20 nm amplitude or higher were

imposed. A 10-nm stimulus only evoked an increase in the number of spikes in

the regime of low spontaneous spiking rate (Fig. 5.7B, top panel), corresponding

to the spiking regime near suppression. The vector strength of the spike phase, on

the contrary, showed a significant improvement upon the application of even very

weak signals (5 nm) (Fig. 5.7C). In contrast, comparable enhancement of phase-

locking in the oscillatory regime required a higher stimulus amplitude (10 nm or

higher). Hence, the spiking regime proved to be more sensitive to entrainment by

mechanical stimuli.

5.3.4 Spikes at different stimulus amplitudes

To explore amplification by a hair bundle in the quiescent state, we applied a

large static offset (100 pN) to the tip of the bundle in the positive direction. This

offset was observed to suppress the active motility in most hair bundles. To avoid

the effects of long-term adaptation, the offset was applied as a square wave, with

the bundle returning to the original position upon the cessation of each sinusoidal

stimulus train.
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We examined the effects of increasing amplitudes (3, 4, 8, 10, 12, 14, 16, 20,

30, 40, 50, 70, and 100 nm) on the bundle response (Fig. 5.8A). The order of

stimuli presented was randomized to avoid any consistent cumulative effects of

adaptation.

We decomposed the response of the bundle and measured separately the am-

plitude of the passive response and the amplitude of the superposed spikes. The

threshold for spike detection was fixed for all applied stimulus amplitudes. We

found that the spike amplitude remained largely constant, with a slight increase

at very large stimuli, while the passive response increased linearly with the stim-

ulus amplitude (Fig. 5.8B). The number of spikes per stimulus cycle gradually

increased with signal amplitude, with the increase well described by a Boltz-

mann curve with thresholds between 60-100 nm, variant among cells. The vector

strength, on the other hand, increased rapidly at small stimuli (∼ 10-20 nm), and

saturated to ∼ 0.9 at stimuli larger than 20 nm (Fig. 5.8C).

By observing the passive response and the spike amplitude separately, we can

define an amplitude gain due to the spiking: ratio of spike amplitude to the

passive movement. The amplitude gain was highest at small stimulus amplitudes,

reaching a 100-fold increase, then dropped off with increasing stimuli (Fig. 5.9A).

Calculation of active work generated per spike showed a significant reduction upon

increasing stimulus amplitude, with zero crossing occurring at ∼ 40-80 nm (Fig.

5.9B), corresponding to ∼ 6-12 pN of force applied to the bundle. This indicated

the range during which the hair bundle no longer amplified. Comparison with

spike probability and gain showed that this range of amplification cutoff also

corresponded to the amplitude gain ∼ 1-2, and spike probability ∼ 0.3-0.5, when

spiking is a relatively rare event.

Not only did the spike amplitude remain largely constant over a wide range of

stimulus amplitudes, it also did not show much variation with stimulus frequency,

as shown in Fig. 5.10. The passive response exhibited a reduction at high stimulus
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Figure 5.8: Mechanical amplification by a quiescent hair bundle at different signal
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passive response (solid line) as a function of the stimulus amplitude. (B) Vector
strength (open circles) and number of spikes per stimulus cycle (closed circles).
Solid line is a Boltzmann fit to the number of spikes.

82



0 20 40 60 80 100
-50

0

50

100

Stimulus amplitude (nm)

0 0.2 0.4 0.6 0.8 1
-50

0

50

100

Spike probability

A
ct

iv
e

 w
o

rk
 p

e
r 

sp
ik

e
 (

zJ
)

0 2 4 6 8 10
-50

0

50

100

Amplitude gain

100

A
m

p
li

tu
d

e
 g

a
in

Stimulus amplitude (nm)

10

1

1 10 100

A
ct

iv
e

 w
o

rk
 p

e
r 

sp
ik

e
 (

zJ
)

A
ct

iv
e

 w
o

rk
 p

e
r 

sp
ik

e
 (

zJ
)A B

DC

Figure 5.9: Mechanical amplification cutoff by quiescent hair bundles.
(A) Gain at different stimulus amplitudes obtained from the ratio between spike
amplitude and passive response from 12 bundles. Dashed line indicates unit gain.
(B)-(D), dashed lines indicate zero active work. (B) Active work per spike evoked
by the stimulus as a function of stimulus amplitude from 12 bundles. (C) Active
work per spike as a function of amplitude gain. (D) Active work per spike as a
function of spike probability.

83



20 40 60 80 100

15

20

25

30

35

0 20 40 60 80 100

0.4

0.6

0.8

1

0 20 40 60 80 100
-3

-2

-1

0

1

2

20 40 60 80 100
0

5

10

15

20

25

5 Hz

10 Hz

20 Hz

40 Hz

100 Hz
Sp

ik
e 

ra
te

 (s
-1)

Sp
ik

e 
p

h
as

e 
(r

ad
)

Ve
ct

o
r 

st
re

n
g

th

Sp
ik

e 
am

p
lit

u
d

e 
(n

m
)

Stimulus frequency (Hz)

Stimulus frequency (Hz)Stimulus frequency (Hz)

Stimulus frequency (Hz)

B

D

C

E

0.2

0.1 s

20
 n

m

A

Passive resp
o

n
se (n

m
)0

5

10

15

Figure 5.10: Mechanical amplification by a quiescent hair bundle at different signal
frequencies.
(A) Hair bundle oscillations at different stimulus frequencies. The imposed stimuli
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frequencies possibly due to the low-pass filtering by the glass fiber. The vector

strength of spike phase also fluctuated about a constant value over a wide range

of stimulus frequencies (5-100 Hz).

We also observed similar effects of stimulus amplitudes and frequencies on

hair bundles under large negative offset. As seen in Fig. 5.11, small stimulus

amplitude evoked only passive response with small spiking probability, the number

of spikes then increased as a function of signal amplitude. Spike amplitude seemed

large unaffected by the stimulus, while the passive response increased with signal

amplitude.

Fig 5.12 illustrates spike occurrence by different signal frequencies. Spikes were

evoked on cycle-by-cycle basis up to ∼10 Hz. Higher stimulus frequencies evoked

a spike, followed by a ∼0.2-0.5 s period of passive response. This passive period

is reminiscent of the “refractory period” in action potential and was set by the
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characteristic frequency of the hair bundle.

5.3.5 Numerical simulations

We performed a numerical simulation, based on the model described in Chapter

3, to explore the underlying mechanisms of bundle motility in the spiking regime.

The model can reproduce the spiking regime (Fig. 5.3G), with the reduction in

spike amplitude being captured with the existence of a variable gating spring –an

internal spring with a calcium-dependent whose dynamics are slow with respect

to those of myosin motors.

Based on the numerical model, the dynamics of a hair bundle can be described

by using a double-well potential, corresponding to channel-opening and -closing

state. Adaptation activity imposes an increasing tilt on the energy landscape,

promoting channel opening or closing. This tilting of the double-well potential

corresponds to the shift of the force-displacement curve along a sloped line [32].

At the onset of the spiking regime, at moderate deflections, the bundle resides

in a shallow local minimum in the channel-opening state prior to a spike, even

though the global minimum is the channel-closing state. A small perturbation due

to noise or an external stimulus promotes the system to overcome the barrier and

leads to the channel-closing excursion. Adaptation then plays a role to modify the

energy landscape until the channel-closing state becomes unstable, leading to the

re-opening of the channels (Fig. 5.13A). The double-well potential configuration

is gradually restored after ∼10-20 ms.

As the bundle is further deflected into the spiking regime and away from the os-

cillatory regime, the channel-opening state gains its stability, until it becomes the

global minimum (Fig. 5.13B). Noise and external stimulus can excite the system

across the energy barrier causing channel closing. Channel re-opening then occurs

spontaneously; the effects of adaptation process are minimal or absent, particu-

86



0.
5 

s
100 nm

0.
2 

s

100 nm

5 
H

z

10
 H

z

20
 H

z

25
 H

z

25
 H

z

40
 H

z

50
 H

z

75
 H

z

10
0 

H
z

F
ig
u
re

5.
12
:
M
ec
h
an

ic
al

am
p
li
fi
ca
ti
on

b
y
a
q
u
ie
sc
en
t
h
ai
r
b
u
n
d
le

at
d
iff
er
en
t
si
gn

al
fr
eq
u
en
ci
es

u
n
d
er

n
eg
at
iv
e
off

se
t.

H
ai
r
b
u
n
d
le

m
ot
io
n
u
n
d
er

la
rg
e
n
eg
at
iv
e
off

se
t,
su
p
er
p
os
ed

b
y
si
n
u
so
id
al

st
im

u
lu
s
at

20
n
m
,
sh
ow

n
in

re
d
li
n
es
.

87



5 ms1
0

 n
m

1
 k

B
T

5 nm

C

BA

1
 k

B
T

5 nm

5 ms1
0

 n
m

1

2

3

4

5

1

2

3

4

5

12

3

4

5
1

2
3

4

5

Figure 5.13: Numerical simulations of bundle dynamics during a spike.
(A) Energy landscapes corresponding to different states of a bundle during a spon-
taneous spike at moderate deflections indicated in the inset. Adaptation plays a
crucial role in modifying stability of the system. (B) Energy landscapes at dif-
ferent states of a bundle during a noise-induced spontaneous spike indicated in
the inset. Effects of adaptation process was minimal, and the channel-reopening
occurred due to the instability of the channel-closing state. (C) Numerical simula-
tions of bundle motion in the absence of adaptation with a steady state deflection.
left Bundle motion in the absence of noise. middle Bundle motion shows spikes
with noise. right Spikes evoked by a 7 nm external stimulus at 5 Hz in the absence
of noise.

larly when the channel-closing state is unstable at very large offsets. Numerical

simulations with the adaptation rate set to zero also exhibited a spiking regime

(Fig 5.13C) when a steady state deflection was applied to the bundle. Without

thermal fluctuations from noise, the bundle remained quiescent. Noise and/or an

applied stimulus could evoke spikes (middle and right panel, respectively). The

active motility is completely suppressed once the energy barrier becomes too large

(∼2-3 kBT , variant among cells).

5.3.6 Non-spiking Hair Bundles

Under slowly increasing positive offset, some fraction of hair bundles did not dis-

play a spiking regime, as shown in Fig. 5.14A. Instead, the oscillation remained
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symmetric and the frequency increased, with a decrease in the amplitude until the

oscillation vanished into the noise floor of the recording. According to the model,

this would corresponded to small oscillations of hair bundle motion around a

resting position at which the channel open probability is ∼ 0.5, indicating a min-

imal energy barrier between the channel-closing, and -opening state. Mechanical

response of these bundles at different offsets are shown in Fig. 5.14B.

Preliminary results indicated that the existence of the spiking regime did not

correspond to the ramp speed. However, the spiking regime was often observed

when the stimulus fiber used for deflection was far less stiff than the bundle.

We calculated the skewness of the bundle motion near the suppression of the

spontaneous activity. As seen in Fig. 5.15, large negative skewness, corresponding

to the spiking regime, occurs at small stiffness ratio, defined as the ratio between

the fiber stiffness to the combined stiffness of the bundle and that of the fiber.

This finding is in agreement with the theoretical prediction based on the numerical

model described in Chapter 2, in the absence of variable gating spring [57].

Based on morphology, hair cells from the bullfrog sacculus are previously shown

to fall into two different subgroups. The first group consists of cylindrical cells,

while the other one includes flask-shaped cell body, with smaller diameter [12,

13]. To verify whether the spiking behavior correlates with this classification, we

plotted the skewness versus hair cells’ diameter and bundle size. As shown in Fig.

5.16, no correlation was observed.

Results from numerical simulations showed that hair bundle motion near the

suppression of the active motility can be modified by the variable gating spring:

larger kgs,1 (strong dependence of gaiting spring stiffness on calcium concentration)

led to an absence of the spiking regime. Without variable gating spring, the

spiking regime was always observed. This implied that calcium concentration

played a central role in determining the bundle dynamics under positive offsets.

In fact, numerical simulations suggested that applying a positive ramp to a hair
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bundle in high calcium concentration abolished the spiking regime. We explored

these effects experimentally and the preliminary results were consistent with the

simulations, as shown in Fig. 5.17. Upon increasing calcium concentration, the

range of offsets during which the bundle exhibit spontaneous activity became

narrower, and the spiking regime disappeared.

5.4 Conclusion

A number of in vivo studies have demonstrated the presence of an amplification

process in the inner ear, and yet its precise mechanism at a single-cell level re-

mains unknown. In non-mammalian species, amplification of an applied signal has

been demonstrated in vitro in spontaneously oscillating hair bundles [59]. This

amplification occurred via the entrainment of a large-amplitude innate limit cycle

oscillation by a smaller sinusoidal stimulus. The response exhibited a compressive

nonlinearity, consistent with theoretical predictions, and weak frequency selectiv-

ity, consistent with the characteristics of the amphibian sacculus [60]. However,

there are thus far no observations of spontaneous oscillations under in vivo con-

ditions. Even in vitro, these oscillations are absent when the natural loading by

the overlying otolithic membrane is maintained. Hence, a question that has re-

mained open is how these cells might amplify a signal if their innate oscillations

are suppressed.

The occurrence of spikes exhibited by hair bundles under mechanical offset

constitutes a potential amplification mechanism for hair bundles that are poised

in the quiescent regime. These sharp and sudden movements constitute a large

excursion in the phase space, which corresponds to closure and re-opening of the

transduction channels. This indicates that the system is in the excitable regime,

where a minute signal can send it across the threshold and around a full limit

cycle.
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The characteristics of spiking behavior shown here are consistent with a theo-

retical study that modeled hair cell motion with a time-dependent Adler equation

[76]. The Adler equation describes a system moving in a tilted washboard poten-

tial, and the addition of an offset term leads to a time-dependent modulation of

the barriers. It was shown that such a model leads to the occurrence of spikes,

which can be entrained by a weak signal. Our data confirm the existence of

spikes, and show that this entrainment occurs at extremely weak signals, before

any effects on spike amplitude or rate are observed.

The temporal profile of a spike indicates that the myosin motors would be too

slow to exert much effect. As shown in our numerical model, the excursion of the

motors over the duration of a spike was far smaller than would be observed in a

limit-cycle spontaneous oscillation. The adaptation process hence plays a minimal

role in the spiking regime near suppression of the spontaneous activity. The model

indicates that the mechanism responsible for the excursion is the sudden closure

and re-opening of the transduction channels.

One of the questions that remain open is why only a certain fraction of hair

bundles exhibit a spiking regime under a slow ramp. A number of other species

demonstrate the existence of two subpopulations of cells, one of which is respon-

sible for amplification and the other for detection of signals. It is plausible that

a comparable division exists to some extent in the amphibian system, with one

set of cells showing the spiking regime and thus acting as non-frequency-selective

amplifiers, whereas another group may serve as weakly tuned detectors. Such a

division has however not yet been demonstrated and remains outside the scope of

this work.

94



CHAPTER 6

Phase-Locking Behavior of Coupled Hair

Bundles

6.1 Introduction

Under in vitro conditions, free-standing hair bundles from bullfrog sacculus dis-

play spontaneous oscillations, a manifestation of its active process. Amplification

of external stimulus by single hair bundles have been previously studied, also de-

scribed in Chapter 4, and 5. Prior literature demonstrated that this amplification

occurred via the entrainment of a large-amplitude spontaneous oscillation by a

smaller sinusoidal stimulus [59]. The amplitude of the phase-locked response ex-

hibited a compressive nonlinearity, and weak frequency selectivity [60]. However,

under a more natural condition, hair bundles are mutually coupled via the over-

lying structure, i.e., the otolithic membrane [48, 5]. Previous studies based on

numerical simulations of hair bundle dynamics showed that mechanical coupling

of a small number of hair bundles with small mismatch in their characteristic

frequencies enhanced both frequency tuning and sensitivity of the system [19, 4].

This would benefit a system with tonotopic organization, such as the cochlear and

the amphibian papilla, in which strong coupling occurs between neighboring hair

bundles with similar characteristic frequencies. However, since frequencies of os-

cillating hair bundles from bullfrog sacculus are shown to be randomly distributed,

how mechanical coupling enhances the sensitivity of the sacculus remains an open

question.
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Hair bundle dynamics have been previously described as a system poised near

a Hopf bifurcation [11, 36, 24, 63]. Theoretical study of mechanically coupled

Hopf oscillators suggests the existence of an “amplitude death” regime in which

coupling suppresses the spontaneous motion of the oscillator [1]. The coupled

system is also shown to exhibits a reduction in the noise level, rendering enhanced

sensitivity. These predictions are similar to behaviors experimentally observed in

the sacculus: the threshold of detection is lower than that of single hair bundles

[52], and spontaneous oscillations do not occur under the otolithic membrane [25].

Therefore, in this chapter, we experimentally explore the effects of mechanically

coupling two adjacent hair bundles on their mechanical response. Further, we test

the prediction of noise reduction by extracting noise level from the phase of the

coupled bundles oscillations, compared to those from single bundles. Frequency

selectivity and sensitivity are also calculated from amplitude of the response.

Finally, effects of mechanical offsets, similar to those described in Chapter 5, were

studied.

6.2 Materials and Methods

Biological preparation and tracking of hair bundle motion are as described in

Chapter 2.

6.2.1 Mechanical coupling of two adjacent hair bundles

Two adjacent hair bundles were mechanically coupled via a modified glass fiber.

As described in Chapter 2, a glass fiber was placed in the proximity of the tip of

the microforge. Thermal expansion causes bending of the glass fiber, resulting in

an eyelash-shaped probe. This allowed us to simultaneously attach the top rows

of stereocilia of two vertically adjacent hair bundles at the tips, while avoiding

other bundles on the epithelium, as depicted in the schematic diagram in Fig.
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A B

Figure 6.1: Probe attachment to two hair bundles
(A) Top panel shows schematic diagram of probe attachment to a single hair
bundle. The probe is adjusted with an angle, to avoid attaching neighboring
bundles. Lower panel shows a top-down optical image of a single bundle with a
probe attached. (B) Top panel shows schematic diagram of mechanically coupled
bundles. The modified probe allows both bundles to be attached at the tips, while
avoiding other bundles.

6.1B. Stimuli were sent to the base of the fiber by a piezo actuator, as described

earlier.

6.3 Results

In this chapter, we explored the effects of mechanical coupling of hair bundles on

their spontaneous activity and mechanical response to sinusoidal stimuli. Using

a modified probe allowed us to simultaneously couple and stimulate two adjacent
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hair bundles. We found that synchronized motion of hair bundles was always

observed. Characteristics of mechanical response of coupled systems were similar

to those measured from single bundles.

6.3.1 Synchronization of spontaneous oscillations

Two vertically adjacent hair bundles were simultaneously attached to the same

glass fiber, one to the tip, and the other closer to the base of the fiber, as illustrated

in Fig. 6.1. Although the overall stiffnesses of the fibers used in this chapter were

∼ 100-200 µN/m, the coupling stiffness between hair bundles appears to be far

higher, due to small separation between bundles (∼ 20 µm). Calculation based on

the bending rigidity of a rod yielded the coupling stiffness ∼ 25 mN/m [54]. This

ensured perfect synchronization between hair bundles: with no degree of freedom

observed. Fig. 6.2A demonstrates an example of hair bundles motion prior to,

and with coupling. The motion of uncoupled hair bundles was uncorrelated; upon

mechanical coupling, the correlation coefficient significantly improved (to ∼ 0.93

in this particular example).

Coupling of hair bundles with a large mismatch between their original charac-

teristic frequencies (ω0) also yielded synchronized motion, as shown in Fig. 6.2B.

The motion of the coupled bundles was qualitatively similar to that of single

bundles, with channel-opening, and -closing excursions followed by slow bundle

displacement due to the adaptation process. However, significant variation in os-

cillation amplitude was observed, as shown in Fig. 6.2A. In some cases, an unusual

oscillation profile was observed, as shown in Fig 6.2C, where small oscillations

were superposed on a typical oscillation profile, both in the channel-opening and

-closing state.

The characteristic frequency of the coupled system (ω) showed a linear de-

pendence on the averaged ω0, with significant scatter, shown in Fig. 6.3. This is
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Figure 6.2: Synchronization of oscillating hair bundles
Examples of hair bundle motion before, and after mechanical coupling by a glass
fiber. In each panel, the top (bottom) 2 traces represent uncoupled (coupled)
hair bundle motion. Motion of the same hair bundle is plotted in the same color.
(A) Coupling of single-mode oscillators. The coupled system exhibits variation
in oscillation amplitude. (B) Coupling of single- and multi-mode oscillators. (C)
Anomalous oscillation profile is sometimes observed upon coupling oscillators with
significantly different profiles. All the recordings shown are 2 seconds.
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Figure 6.3: Characteristic frequency of the coupled systems
Characteristic frequency of mechanically coupled hair bundles as a function of the
averaged characteristic frequency of the same bundles before coupling. Red line
shows a linear dependence with slope = 1.

presumably due to small mechanical offsets and elastic loading imposed on hair

bundles upon attachment of the glass fiber. Hence, the estimate of the averaged

ω0 did not accurately represent the actual frequency of an uncoupled hair bundle,

with a fiber attached.

In order to estimate the noise level of the bundle motion, we extracted the

phase of the oscillations, and calculated the effective diffusion coefficients (Deff ),

following the procedure described in Chapter 4. Deff represents the noise level

of the system, with a larger value corresponding to a broader peak in the power

spectral density (lower quality factor). The noise level did not exhibit any de-

pendence on the difference between ω0 of the bundles before coupling, Fig 6.4A.

Moreover, Deff obtained from the coupled systems, and those from single bundles

with a fiber attached (different cells) were comparable, with the averaged value

∼62.7 for single bundles, and ∼70.3 for coupled bundles, shown in Fig. 6.4B.
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Figure 6.4: Effective diffusion coefficient of the phase of oscillations in coupled
systems
(A) Deff shows no dependence on the mismatch in the characteristic frequency
of bundles before coupling. (B) Comparison between Deff obtained from single
and coupled bundles oscillations.

6.3.2 Compressive nonlinearity in the amplitude response of the cou-

pled system

Next, we applied mechanical sinusoidal stimuli of different amplitudes to the base

of the fiber. The stimulus frequency was chosen to match the characteristic fre-

quency of the system (small detuning). Similar to single bundles, amplitude of

the phase-locked response exhibited compressive nonlinearity, as shown in Fig

6.5. Note that, in this particular case, the regime of very small signal amplitude

showed an expansive response, with a slope of ∼2 on the log-log plot.

To investigate the sensitivity to external stimuli of the coupled systems, the

phase difference (∆ϕ(t)) between the bundle oscillations and the stimulus was

extracted. We calculated the variance (S) of the distribution of ∆ϕ(t), such

that complete phase-locking corresponded to S = 0, and the absence of phase-

locking resulted in S = 1. We found that the variance decayed exponentially with

stimulus amplitude, as shown in Fig 6.6A. The detection threshold was defined
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Figure 6.5: Compressive nonlinearity in phase-locked amplitude
Phase-locked amplitude obtained from the Fourier transform is shown as a func-
tion of stimulus amplitude, plotted on a log-log scale. Red lines show linear fits,
with compressive nonlinearity corresponding to slope smaller than 1.

as the decay constant (∆c) obtained from the exponential fit. We then compared

∆c obtained from the coupled systems, to those from single bundles, and found

that the detection thresholds in both cases were comparable, with < ∆c >single=

0.88± 0.57pN (n = 14), and < ∆c >coupled= 0.93± 0.7pN (n = 13).

6.3.3 Frequency tuning of the coupled system

Phase-locked response to sinusoidal stimuli with different frequencies were also

measured. The stimulus amplitude was fixed at 10 nm at the base of the fiber,

corresponding to ∼1 pN force applied to a stationary bundle. The coupled system

generally exhibited frequency selectivity, with the quality factor ∼ 1.24± 0.36 (n

= 10), slightly larger than the value reported in single bundles [4]. The quality

factor was found to be independent of the difference in ω0 before coupling. In some

cases, as illustrated in Fig. 6.7, the coupled system exhibited a sharp frequency

tuning, with quality factor ∼3, larger than that observed in single bundles.
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Figure 6.6: Detection threshold
(A) Phase variance (S) obtained from the distribution of phase difference decays
with stimulus amplitude. Red line indicates an exponential fit. (B) Threshold
of detection (∆c) does not depend on the mismatch between the characteristic
frequency and the stimulus frequency. ω0 is the characteristic frequency of hair
bundles, coupled or uncoupled. There is no significant difference between the
detection threshold of single (open circles) and coupled (filled circles) hair bundles.
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Figure 6.7: Frequency tuning
Phase-locked amplitude as a function of stimulus frequency. The stimulus ampli-
tude was fixed at 10 nm. In this example, the quality factor is 3.18.
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6.3.4 Effects of mechanical offsets

Finally, we explored the effects of mechanical offsets on spontaneous oscillation

profile of the coupled systems. We imposed a slowly varying offset, as a triangular

wave, to the base of the fiber. In some cases, the effects of mechanical offsets

were similar to those observed in single hair bundles, described in Chapter 5, with

positive offsets (toward the kinocilia) leading to faster, and smaller oscillations,

and negative offset resulting in longer durations spent in the channel-closing state

between oscillations, as illustrated in Fig 6.8A.

In most cases, however, due to the geometry of the system, one of the bundles

could act as a pivot point and the probe appeared to rotate, thus imposing different

offsets onto each bundle. As shown in Fig. 6.8B, the position of the bundle at

the tip of the fiber (Fig 6.8B, black trace) seemed largely unaffected by the offset,

while the other followed the imposed stimulus. As seen from the figure, positive

offset led to a reduction in the oscillation frequency, and the suppression occurred

in the channel-closing state. This might be due to the rotation of the probe, which

imposed negative offsets to one of the bundles.

We also studied the transient response to step deflections of the coupled sys-

tem. Upon negative deflection, the transient response was similar to those ob-

served in single bundles, with the recovery of oscillation occurring following the

channel-opening excursion, and the oscillation amplitude rapidly increasing, as

shown in Fig. 6.9A. In some cases, the response to positive deflection was distinct

from that observed in single bundles, in that the recovery of oscillation occurred

via channel-opening, illustrated in Fig. 6.9B.
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Figure 6.9: Transient response to step deflections
(A)Transient motion of coupled hair bundle under a positive step deflection. The
response at the onset and after the step are similar to those observed in single
bundles. (B) Anomalous response to positive step, where the recovery of the
oscillation starts with channel-opening excursion.

6.4 Conclusion

Although hair bundles from the bullfrog sacculus possess an active process, mani-

fested as spontaneous oscillations observed under in vitro conditions, these bundles

do not oscillate when coupled to the otolithic membrane. There are several pos-

sibilities as to how the membrane suppresses their spontaneous activity. Apart

from elastic and mass loading, the membrane seems to impose a mechanical offset

on hair bundles, the effects of which was investigated in chapter 5. In this chapter,

we explore another effect of otolithic membrane on bundles, mechanical coupling.

We found that with large coupling strength, synchronized motion of hair bundles

are always observed. The oscillation profile is similar to those of single bundles,

with an exception of large variations in the oscillation amplitude. Calculation

of diffusion coefficient indicates that the noise level in the coupled system is not

significantly reduced. Analysis of the phase-locked response of the coupled sys-

tem to mechanical sinusoidal stimuli of different amplitude and frequency showed
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that a coupled system does not respond very differently from a single bundle; it

exhibits a compressive nonlinearity, and comparable threshold. Frequency tuning,

however, can be drastically enhanced in some cases.
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CHAPTER 7

Conclusions

Detection of sound and seismic vibrations by the inner ear occurs when mechani-

cal stimuli are converted into electrical signals. This process of mechano-electrical

transduction is mediated by deflections of hair bundles, which leads to opening

and closing of mechano-sensitive transduction channels located within the bun-

dles. Understanding of mechanical entrainment of hair bundles is, therefore, a key

to elucidating how the inner ear detects and amplifies the incoming signals. Under

some in vitro conditions, hair bundles from some species can undergo spontaneous

oscillations, a manifestation of active processes within the bundles. Prior exper-

imental studies focus on entrainment of spontaneously oscillating hair bundles

by sinusoidal stimuli [60, 61, 59]. The results support the theoretical description

based on Hopf bifurcation, with observations of frequency selectivity, compressive

nonlinearity, and amplification associated with active power generated by hair

bundles in response to the stimuli. However, in most species, hair bundles are

coupled to an overlying membrane, such as the otolithic membrane in bullfrog

sacculus and the tectorial membrane in mammalian cochlea. Under the overly-

ing structure, hair bundles are mutually coupled, and do not exhibit spontaneous

movement. In this work, we study mechanical entrainment of active hair bundles

whose spontaneous movements are suppressed via the application of offsets to

the bundles’ position, and entrainment of systems of two mutually coupled hair

bundles.

Under in vitro conditions, a fraction of hair bundles exhibit spontaneous os-
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cillation with a complex temporal profile, with oscillations interrupted by qui-

escent intervals, resulting in multimode oscillations. This behavior is more pro-

nounced upon an application of small negative mechanical offsets [75]. This oscil-

lation profile cannot be captured by the existing model of hair bundle dynamics

[58, 63, 83, 36]. We propose an additional element of “variable gating spring” -

a gating spring with calcium dependent stiffness with very slow dynamics with

respect to those of the myosin motors. The variable gating spring enables us to

reproduce a broad range of experimental data, including mechanical and chemical

manipulations on hair bundles’ spontaneous oscillations.

Prior studies indicate that hair bundles operate on different timescales: with

fast adaptation occurring within a few ms, and slow adaptation within a few

tens of ms [20]. The underlying mechanisms of both processes are thought to be

mediated by calcium binding to different elements within the stereocilia, including

myosin motors for the slow adaptation. Our results shown in Chapter 3 suggest

the existence of another slow adaptation process occurring on the order of ∼100

ms, based on an assumption that calcium binding to an intracellular element can

reduce the gating spring stiffness. In a recent study, oscillating hair bundles are

found to undergo higher-order mode-locking to mechanical stimuli, with frequency

much lower than the characteristic frequency of the bundles [75]. This indicates

that the variable gating spring assists in entrainment of hair bundles by low-

frequency stimuli.

Next, we study one-to-one mode-locking behavior of oscillating hair bundles

with no additional offsets. In Chapter 4, we explore the time-dependent phase-

locking dynamics under small sinusoidal stimuli. The stimulus frequency is chosen

to match the characteristic frequency of the bundle. Very weak stimuli, with

amplitude of ∼1.7 nm (0.4 pN), can evoke a peak in the histogram of the phase

difference, indicating an exquisite sensitivity of the bundles. Further increase

in stimulus amplitude reveals a time-dependent phase-locking behavior, with the
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occurrence of phase slips. Various quantities extracted from experimental data

show an agreement with predictions based on the stochastic Adler equation. This

suggests that entrainment of hair bundles by small stimuli occurs via a SNIC

bifurcation.

To further imitate a more natural condition, in which hair bundles are coupled

to the otolithic membrane, we explore the entrainment of quiescent hair bundles

in Chapter 5. Mechanical offsets are imposed onto the resting bundles’ position

to achieve suppression of oscillations. The spiking regime is observed in some

fraction of hair bundles under large positive offsets. Upon application of sinu-

soidal stimulus, hair bundles are shown to amplify the signal by exhibiting spikes

superposed onto the passive component of the response. Calculation of the vec-

tor strength indicates that spikes were at least twice more sensitive to external

stimulus than limit-cycle oscillations. This suggests an amplification threshold of

∼1-nm stimulus. Spikes evoked in quiescent hair bundles by stimuli of different

amplitudes and frequencies exhibited a constant amplitude, another indication of

a system poised near a SNIC bifurcation.

Results from numerical simulations, based on the model developed in chapter

3, demonstrate that the slow adaptation process is not required for spike genera-

tion. Therefore, under a large positive offset imposed by the otolithic membrane,

adaptation process presumably provides self-tuning to the system, such that the

bundle is poised near the onset of the spontaneous activity. Small perturbations

due to noise or external signals can thus evoke spikes. The system therefore relies

on an incomplete adaptation to set the threshold of amplification.

Finally, we explore the effects of mechanical coupling on hair bundle entrain-

ment. Synchronization between two oscillating hair bundles always occurs, with

the oscillation profiles, in some cases, different from those observed in uncoupled

bundles. Analysis of noise level in phase space, the detection threshold, and the

frequency tuning do not show significant difference to those of single bundles.
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However, mechanical response of some coupled hair bundles to a step deflection

in positive direction showed anomalous behavior in hair bundle motion, with the

recovery of the oscillations occurs via a channel-opening excursion. This implies a

more complicated adaptation process due to interactions between the bundles, and

also suggests our future direction in studying mechanical entrainment of coupled

hair bundles under positive offsets.
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APPENDIX A

Source Codes

Numerical simulations in this thesis were performed in Matlab. In order to include

noise terms into the model, a home-built algorithm was developed following the

Runge-Kutta fourth-order method. At each time step of the calculation, a random

number was generated. The source codes are included as followed.

A.1 Solver

function X = ode4(odefun,f,A,kf,tspan,x0,noise)

%f = frequency of sinusoidal stimulus

%A = amplitude of sinusoidal stimulus

%kf = stiffness of stimulus fiber

%x0 = initial conditions

%noise = 0 for deterministic calculation, and 1 for calculation with

%fluctuations

L = length(tspan);

N = length(x0);

X = zeros(N,L);

k1 = zeros(N,L);

k2 = zeros(N,L);

k3 = zeros(N,L);

k4 = zeros(N,L);

h = diff(tspan);
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%initial position

X(:,1) = x0;

for i = 1:L-1

ti = tspan(i);

hi = h(i);

xi = X(:,i);

k1(:,i) = hi*odefun(f,A,kf,ti,xi,noise);

k2(:,i) = hi*odefun(f,A,kf,ti+0.5*hi,xi+0.5*k1(:,i),noise);

k3(:,i) = hi*odefun(f,A,kf,ti+0.5*hi,xi+0.5*k2(:,i),noise);

k4(:,i) = hi*odefun(f,A,kf,ti+hi,xi+k3(:,i),noise);

X(:,i+1) = xi+(1/6)*(k1(:,i)+2*k2(:,i)+2*k3(:,i)+k4(:,i));

end

A.2 Numerical Model

function xdot = hairmechn3(f,A,kpro,t,x,noise)

xp = x(1);

xa = x(2);

pr = x(3);

pm = x(4);

global x1

global xa1

global pr1

global pm1

global p

if t == 0

113



x1 = x(1);

xa1 = x(2);

pr1 = x(3);

pm1 = x(4);

end

noisefac = 1;

%constants

F = 96490; %Faraday constant (C/mol)

z = 2.; %valence of calcium ion

T = 300;

a = 0.; %coupling parameter for cca

e = 1.6*(10ˆ-19);

kb = 1.381*(10ˆ-23);

%calcium current

dca = 800.*(10ˆ-12); %diffusion coefficient of free calcium (mˆ2/s)

pca = 1.*(10ˆ-18); %calcium permeability of transduction channel (mˆ3/s)

vm0 = -50.*(10ˆ-3); %resting membrane potential of hair cell (V)

ccaext = 0.25*(10ˆ-3);%extracellular calcium concentration (M)

ccasoma = 50.*(10ˆ-9);%resting intracellular calcium concentration (M)

%geometrical parameters

gamma = 0.14; %geometric factor

si = (130+370).*(10ˆ-9); %drag coefficient of hair bundle (Ns/m)

if kpro == 0

si = 130*10ˆ(-9); %drag without glass fiber

end

n = 45; %number of transduction channels

d = 7*(10ˆ-9); %swing of transduction channel's gate (m)

kes = 140.*(10ˆ-6); %stiffness of adaptation extent spring (N/m)

rm =20.*(10ˆ-9); %distance from the channel to adaptation motor's

%binding site (m)
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%adaptation

kmon =30*(10ˆ6); %rate constant for calcium binding to adaptation motor (1/sM)

kmoff =15*10ˆ3; %rate constant for calcium unbinding to adaptation motor (1/s)

kmr = kmoff/kmon;%ratio kmoff/kmon

smin =1.5*10ˆ(3); %minimum rate constant for motor slipping (m/sN)

cmin = 0; %minimum rate constant for motor climbing (m/s)

smax = 170*10ˆ(3); %maximum rate constant for motor slipping (m/sN)

cmax = 0.05*(10ˆ-6); %maximum rate constant for motor climbing (m/s)

xsp = 2.5*10ˆ(-7); %resting position of the bundle without the tip link (m)

xes = 8*10ˆ(-8); %resting position of the extension spring (m)

xc = 18*(10ˆ-9); %extension of spring due to channels closing (m)

ksp =310*10ˆ(-6); %stiffness of the stereociliary pivot (N/m)

kgszero =1500; %tip link stiffness in the absence of calcium (10ˆ-6 N/m)

kgsone = -1000; %maximal reduction in tip link stiffness in the presence

%of calcium (10ˆ-6 N/m)

kron = 5*10ˆ(6); %binding rate of calcium to variable gating spring

kroff = 5; %unbinding rate of calcium from variable gating spring

%calculation of parameters at resting position

nbsite = 1;

p0 = 0.5; %channel open probability at rest

Ica0 = p0*pca*(zˆ2)*e*F*vm0*ccaext/(kb*T*(1-exp(z*e*vm0/(kb*T))));

%calcium influx through channels at rest

ccam0 = -Ica0/(2*pi*z*F*dca*rm)+ccasoma;

%calcium concentration at the motor at rest

pr0 = 1/(1+(kroff/kron)/(ccam0));

%probability of calcium binding to variable gating spring at rest

pm0 = 1/(1+(kmr)/ccam0); %probability of calcium binding to the motor at rest

kgs0 = kgszero+kgsone*pr0; %gating spring stiffness at rest
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C0 = (1-pm0)*(cmax-cmin)+cmin; %rate of myosin climing at rest

deltae0 = (kb*T)*log((1/p0)-1)+kgs0*10ˆ(-6)*d*(xc-d/2);

%difference in energy between open and closed states

%calculate p when t=0

if t == 0

kgs1 = kgszero+kgsone*pr1;

p = 1/(1+exp((deltae0-kgs1*10ˆ(-6)*d*(gamma*x1-xa1+xc-d/2))/(kb*T)));

end

%parameters in dynamics

vm = vm0;

Ica = p*pca*(zˆ2)*e*F*vm*ccaext/(kb*T*(1-exp(z*e*vm/(kb*T))));

%calcium influx through channel

%noise in calcium concentration at the motor

tc = 10ˆ(-3);

Cm = -(pca*(zˆ2)*e*F*vm*ccaext/(kb*T*(1-exp(z*e*vm/(kb*T)))))/(2*pi*z*F*dca*rm)

+ccasoma+a*ccasoma;

sig3 = sqrt(2*2*(Cmˆ2)*(1/n)*p*(1-p)*tc);

n3 =sig3*randn;

if noise == 0

n3 = 0;

end

ccam = (-Ica/(2*pi*z*F*dca*rm)+(1-a)*ccasoma+a*ccasoma+noisefac*n3)*(1.);

%calcium concentration at the motor

if ccam<0

ccam = 0;

end
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kgs = kgszero+kgsone*pr;

if kgs<0

pr0

pr

error('negative kgs')

end

s = nbsite*pm*(smax-smin)+smin;

C = C0;

p = 1/(1+exp((deltae0-kgs*10ˆ(-6)*d*(gamma*xp-xa+xc-d/2))/(kb*T)));

%probability of channel opening

%noise in passive bundle motion

lambda = si;

sig1 = sqrt(2*kb*T*lambda/0.0001);

n11 = sig1*randn;

n1 = n11+0;

%noise in adaptation motor position

lambdaa = 10*10ˆ(-6);

sig2 = sqrt(3*kb*T*lambdaa/0.0001);

n2 = sig2*randn;

if noise == 0

n1 = 0;

n2 = 0;

end

%stimulation

xpro = A*10ˆ(-9)*sin(2*pi*f*t);

fstim = kpro*(xpro-xp)-00*10ˆ(-9)*xpro;

forceramp = 52*10ˆ-12;
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%Differential equations

pos = gamma*xp-xa+xc-p*d;

alpha = 0;

mult = 1;

xpprime = (1/si)*(-n*gamma*kgs*10ˆ(-6)*(pos)-ksp*(xp-xsp)-ksp*alpha)

+(1/si)*fstim+(1.*noisefac*n1/si)+(forceramp/si);

xaprime = mult*(-C+s*(kgs*10ˆ(-6)*(pos+abs(pos))/2-kes*(xa-xes)-kes*alpha))

+noisefac*n2*gamma/(lambdaa);

prprime = (1-pr)*ccam*kron-kroff*pr;

pmprime = (1-pm)*ccam*kmon-kmoff*pm;

xdot = [xpprime;xaprime;prprime;pmprime];

end
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