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ABSTRACT OF THE DISSERTATION

Multi-Scale Modeling and Simulations

for Materials Phenomena

by

Shu Huang

Doctor of Philosophy in Materials Science And Engineering

University of California, Los Angeles, 2022

Professor Jaime Marian, Chair

Multi-scale modeling has been growing rapidly from the descriptive to predictive functions

and employing modeling and simulations has become a crucial mission of science that helps

to deliver an uninterrupted growth of the modern society. Here we integrated modeling works

on di↵erent levels of scale regarding four di↵erent material behaviors, with each illustrated

in a chapter. They are ordered as atomic scale modeling, oxidation kinetics modeling for

tungsten, reaction rates for 1D motion particles(verified with Kinetic Monte Carlo) and

modeling work on the non-monotonic strain response of nanoporous multiferroic composites

with Finite Element Method.

We used Density Functional Theory(DFT) to obtain di↵erent kinds of intrinsic material

parameters based on the calculations of the electronic configuration of a system, part of

which is then used in the oxidation model for pure tungsten.

In the oxidation numerical model, we predict oxide scale growth on tungsten surfaces

under exposure to oxygen at high temperatures. The model captures the formation of four

thermodynamically-compatible oxide sublayers, WO2, WO2.72, WO2.9, and WO3, on top

ii



of the metal substrate. Oxide layer growth is simulated by tracking the oxide/oxide and

oxide/metal interfaces using a sharp-interface Stefan model coupled to di↵usion kinetics.

We simulate oxide growth at temperatures of 600�C and above, where we find deviation

from classical parabolic growth in several cases. A comparison of the model predictions with

an extensive experimental data set, shows reasonable agreement at most temperatures.

Our development of reaction rate for 1d motion particle was initiated due to the asym-

metry in di↵usion dimensionality between self-interstitial atom (SIA) clusters and vacancies

is a fundamental feature of irradiation damage in crystals. While SIA clusters perform

one-dimensional motion along mostly rectilinear trajectories, a complete set of kinetic coe�-

cients, including coagulation reaction rates and sink strengths, does not exist for 1D-moving

objects. We derive analytical expressions for these coe�cients from continuum di↵usion the-

ory particularized to 1D motion and carry out kinetic Monte Carlo simulations of numerical

replicas of the geometry of di↵using particles and sinks to validate the proposed solutions.

Our simulations, which are conducted entirely independently from the analytical derivations,

reveal excellent agreement with the proposed expressions, adding confidence to their validity.

We compare the 1D and 3D cases and discuss their relevance for kinetic codes for damage

accumulation calculations.

In the work that uses Finite Element Method (FEM) to study the non-monotonic strain

response of nanoporous multiferroic composites under electric field control, we simulate and

analyze the mechanical response of a class of multiferroic materials consisting of a templated

porous nanostructure made out of cobalt ferrite (CFO) partially filled by atomic layer de-

position (ALD) with a ferroelectric phase of lead zirconate titanate (PZT). Our numerical

results show that the non-monotonic mechanical response’s causes e.g. The increase of the

strain due to a reduced system sti↵ness; And a larger mass fraction of PZT due to decreased

porosity. A nonlinear piezoelectric response for PZT leads to an improved agreement with

the experimental data, consistent with ex situ poling of the nanostructure prior to magnetic

measurements.
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CHAPTER 1

Background

1.1 Multiscale Material Modeling

Our daily life is presented by all materials based phenomena that can span a broad order

of length and time scale levels. Materials science which integrates physics and chemistry,

describes and explains di↵erent materials phenomena, in which multi-scale modeling methods

are developed to acquire material properties at di↵erent level of scale through simulations

and calculations. On each level, a material system is described by particular approaches,

and the di↵erent scales can be seen in Figure 3.2.3 [3]. As the field of multi-scale material

modeling is growing rapidly with continuously increasing computing power and maturer use

of numerical methods for materials science, the description, understanding and prediction

made to a material system with modeling and simulations has become a vital scientific task

that protects the welfare of the currently on-going society.

The approaches to study material behaviors bridging across nano-scale to continuum-

scale and examples can be at various scales in an ascending order like: quantum mechanical

models (electrons structure calculation, e.g. DFT), molecular dynamics models (calculation

about individual atoms or molecules), rate/field theory, kinetic models, continuum models

(Finite Element Method, etc.), device models and so on. Each scale will best describe a

corresponding a situation with a specific window of length and time. Multi-scale modeling

has shown its indispensable importance in materials engineering since it integrates compu-

tational power and allows the prediction of material properties or behavior with the most

1



Figure 1.1: Schematic diagram showing the multi-scale nature of microstructural evolution

in fusion structural materials.[3]

import mechanism seized while the cost is reduced tremendous compared with experimental

approaches.

This thesis addressed material topics from atomic to centimeter scale begin with atomic

scale ab inito calculations in Chapter 2; Chapter 3 demonstrates the kinetic model which

is used to mimic the oxidation process for pure tungsten with 5 di↵erent phases integrated.

Chapter 4 talks about the development of the analytical expression of 1d motion defect

and Kinetic Monte Carlo simulations as the proof. Lastly Chapter 5 introduced a study on

the non-monotonic strain response of nanoporous multiferroic composites under electric field

control of the using Finite Element Method(FEM). We introduced the minimum scale model

which is ab initio calculations on atomic scale in Chapter 2. While this regime can cover

many-body electronic structure theory, density functional theory(DFT), quantum chemistry

and so on, what we used here is DFT method. It’s based on the first principle of physics and

provide approaches to fetch properties that are related to the stoichiometric attributes of a

material, which could be the fundamental bricks of a system. In this Chapter we focused on

2



the calculation of the di↵usion properties of an oxygen vacancy in a WO2 system, which are

then put to use in the kinetic model for the oxidation process of pure tungsten described in

Chapter 3.

To study the oxidation process of tungsten, we present a numerical model to predict oxide

scale growth on tungsten surfaces under exposure to oxygen at high temperatures. The model

captures the formation of four thermodynamically-compatible oxide sublayers, WO2, WO2.72,

WO2.9, and WO3, on top of the metal substrate. Oxide layer growth is simulated by tracking

the oxide/oxide and oxide/metal interfaces using a sharp-interface Stefan model coupled to

di↵usion kinetics. The model is parameterized using selected experimental measurements and

electronic structure calculations of the di↵usivities of all the oxide subphases involved. We

simulate oxide growth at temperatures of 600�C and above, extracting the power law growth

exponents in each case, which we find to deviate from classical parabolic growth in several

cases. We conduct a comparison of the model predictions with an extensive experimental

data set, with reasonable agreement at most temperatures.

Among various research works to study the mechanism of material phenomena, we are

especially interested in the damage and failure of nuclear materials for its irreplaceable utility

to provide energy to mankind, for which investigations have been conducted[1, 2, 4, 5, 6].

We particularly are interested in the of first wall materials behaviors, the oxidation of tung-

sten , which is the candidate of plasma facing material, has been articulated in Chapter 3,

and the 1D motion pattern of defects in the first wall materials can seen Chapter 4, Our

development of reaction rate for 1d motion particle was initiated due to the asymmetry in

di↵usion dimensionality between self-interstitial atom (SIA) clusters and vacancies which is

a fundamental feature of irradiation damage in crystals, leading to a defect buildup imbal-

ance that manifests itself as measurable dimensional and mechanical property changes. It is

well known that, while vacancies and mobile vacancy clusters di↵use in a three-dimensional

(3D) fashion, SIA clusters perform one-dimensional motion along mostly rectilinear trajecto-

ries. Despite this, a complete set of kinetic coe�cients, including coagulation reaction rates

3



and sink strengths, does not exist for 1D-moving objects. We derive analytical expressions

for these coe�cients from continuum di↵usion theory particularized to 1D motion. More-

over, we carry out kinetic Monte Carlo simulations of numerical replicas of the geometry of

di↵using particles and sinks to validate the proposed solutions. The FEM(Finite Element

Method) work on the non-monotonic strain response of nanoporous multiferroic composites

under electric field control, we simulate and analyze the mechanical response of a class of

multiferroic materials consisting of a templated porous nanostructure made out of cobalt

ferrite (CFO) partially filled by atomic layer deposition (ALD) with a ferroelectric phase of

lead zirconate titanate (PZT). We apply finite element modeling to the smallest repeatable

unit of the nanoporous template and find that this non-monotonic mechanical response is

caused by the interplay between two driving forces: First, increased porosity works towards

increasing the strain due to a reduced system sti↵ness. Second, decreased porosity involves

a larger mass fraction of PZT, which drives the electro-mechanical response of the structure,

thus leading to a larger strain.
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CHAPTER 2

Atomic Scale Modelling

2.1 Model for DFT calculation

Schrödinger0s wave function is extremely promising, as it contains all of the information

available to describe a system.

Ĥ = E (2.1)

In a system of a specific configuration of atoms, the Hamiltonian would contain the

kinetic energy from electrons, nuclei, and potential energy from the interaction of electrons

to electrons, nuclei to nuclei, and electrons to nuclei:

Ĥ = � ~2
2m

nX

i

r2
i
� ~2
2M

NX

i

r2
A
�

nX

i

NX

j

Zje2

|Rj � ri|
+

1

2

nX

i

NX

j

j 6=i

e2

|rj � ri|
+
1

2

MX

i

NX

j

j 6=i

ZiZj

|Rj �Ri|

(2.2)

Born - Oppenheimer (B-O) approximation proved that the mass of a nuclear M is at least

3 orders heavier than the mass of an electron m, the motion of nuclei is negligible, and the

interaction of nuclei to nuclei will be a constant. So both of them can be dropped, thus we

get Equation2.3. Born is the one who gave now-standard interpretation of the probability

density function for  ⇤ in the Schrösdinger equation, for which he was awarded the Nobel

Prize in 1954.  ⇤ is the probability of finding an electron at the corresponding position.

And Oppenheimer is known as “father of the atomic bomb”.
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Ĥ = � ~2
2m

nX

i

r2
i
�

nX

i

NX

j

Zje2

|Rj � ri|
+

1

2

nX

i

NX

j

j 6=i

e2

|rj � ri|
(2.3)

While many body problem is prohibitively hard to solve, we want to avoid this. We

now think about using electron density instead of these point electrons. The Hartree-Fock

Approximation gives: the ith electron is treated as a single electron moving in the mean field

created by all the other electrons, as shown in Equation 2.5, and a product of single-electron

wave functions like this is called Hartree product.

 (r1, ...rN , ) =  (r1), (r2), ... (rN ) (2.4)

Hence the electron density can be

n(r) = 2
X

i

 (r)⇤ (r) (2.5)

which sums over all the probabilities that an electron in the individual electron wave

function  i(r), the factor 2 comes from “electron spin”. Two theories then finally help to

produce the ultimate form of DFT equation:

• Theory 1: The ground-state energy is a unique functional of electron density, by Ho-

henberg and Kohn (1964).

• Theory 2: The electron density that minimizes the energy of the overall functional is

true ground state electron density, by Kohn and Sham (1965)

Instead of finding out the wave function, we can just deal with the density, and the 1st

theorem here tells people the density contains information as much as the wave function.

And the expression for DFT is given as:

E[{ i}] =�
~2
2m

nX

i

Z
 ⇤
i
r2

i
 id

3r

+

Z
Vext(r)n(r)d

3r +
1

2

Z
n(r)n(r0)

|r � r0| d3rd3r0 + Exc[n(r)]
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where electron density is n(r) = s
P

n

i
| i(r)|2,  i(r) is the wave function of electron i,

Vext(r) is the potential electrons feel from nuclei and Exc[n(r)] is the exchange-correlation

energy which can be LDA(local density approximation) or GGA(general gradient approxi-

mation) depending on the choice.

2.2 Electronic structure calculations for Oxygen Vancancy

2.2.1 DFT+U method

The use of the DFT+U technique is necessary to reach a correct description of the electronic

configuration of tungsten, which is critical to calculate formation energies and migration en-

ergy barriers [10]. Tungsten is a transition metal with electron configuration [Xe]4f 145d46s2,

i.e., a partially filled d orbital that requires special DFT treatments [8].

When applying a one-electron method with an orbital-independent potential to transition

metal compounds, one has as a result a partially filled d band with metallic type electronic

structure and itinerant d electrons. This is definitely the wrong model for late-transition-

metal oxides and rare-earth metal compounds where d (f) electrons are well localized and

there is a sizable energy separation between occupied and unoccupied sub-bands (the lower

Hubbard band and upper Hubbard band in a model Hamiltonian approach [1]). LDA/GGA

functionals describe poorly the electronic properties of these localized orbitals and that is

where DFT+U technique comes in. DFT+U accounts for electron-electron interactions in

strongly correlated materials because the self-interaction error is dominant in d and f states.

DFT+U is based on Hubbard model, which solves the energy of electron correlation

introduced or Coulomb repulsion between electrons at the same atomic orbitals [3]. The

Hubbard model explains the transition between the insulation and conduction features of

the systems with strong on-site repulsion using the following Hamiltonian:

HHub = t
X

hi,ji, �

c†
i,�
cj,� + U

X

i

ni"ni# (2.6)
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The Hubbard Hamiltonian has two components, namely, the hopping integral t and the

electron repulsion strength U . c†
i,�

and cj,� are the creation and annihilation operators of

electron state at sites i and j and spin �, respectively. The sum runs over all hi, ji nearest

electron pairs, i and j. ni = ni" + ni# is the total density operator at site i.

The Hubbard model allows us to write the total energy of the system as a standard DFT

energy plus a term representing the strong correlation of the electronic states in d (and f)

orbitals.

EDFT + U [n] = EDFT [n] + EHub[n
�

i
]� Edc[n

�

i
] (2.7)

where U [n] is the correction induced by DFT+U method, EHub[n�

i
] is the Hubbard functional

that describes the correlated states, and n�

i
is the occupation number of the localized orbitals

with the spin of � and site i. The term of Edc[n�

i
] is a ‘double counting’ term, which is included

because when we additively append the Hubbard term EHub[n�

i
], the energy contribution of

the related orbitals has already been counted in the DFT term. In our calculations we use a

Coulomb interaction parameter of LDAUU=1.82 eV for pure metal W [2] because it does not

a↵ect the distribution of electrons for the attempt frequency calculations. However, we have

also repeated the calculations with a value of LDAUU=6.2 eV used for WO3 [4] and found

only a change of 5% in the migration energy barriers.

2.3 DFT calculations of O di↵usivity in WO2

Tungsten is a transition metal with partially-filled d orbitals that requires special DFT

treatments. Here we use the DFT+U technique with the parameterization for W used by

Feng et al. [2]. The generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof

(PBE) was applied to build the pseudopotential of the system and the frozen-core convention

was implemented with the projector-augmented wave (PAW) method. The DFT simulations

are performed with a cuto↵ energy of 600 eV and a k-point sampling of 2⇥2⇥4. The

9



convergence criterion for the energy relaxation of the atomic positions was set to be 10�5

eV. Defect energies were calculated in a WO2 supercell containing 36 atoms under constant

volume.

2.3.1 Formation energy, EV
f

The calculations are based on supercells of WNO2N lattices, where N is the number of W

atoms. A vacancy is created by removing an O atom from a lattice position and placing it

at infinity, i.e.:

EV
f
= EWNO2N�1

+ µO � EWNO2N , (2.8)

where EWNO2N�1
and EWNO2N are the energy of the supercells with and without a vacancy,

and µO is the chemical potential of an isolated oxygen atom. Under low oxygen partial

pressures, µO satisfies:

µO = µO2
+

1

2
Ef

WO2
(2.9)

where µO2
is the chemical potential of bimolecular oxygen and Ef

WO2
is the formation energy

of tungsten dioxide. For its part, Ef

WO2
is given by:

Ef

WO2
= µWO2

� µO2
� µW

where the r.h.s. of the equation contains the chemical potentials (energy per molecule) of

the perfect WO2 crystal, bimolecular oxygen, and pure (metal) W. After carrying out the

pertinent DFT calculations, we arrive at values of µO = �7.65 eV and EV
f
= 2.49 eV. It must

be kept in mind, however, that measurable concentrations of vacancies have been detected

in tungsten oxide under ambient conditions [9, 11], which suggests that they exist in natural

concentrations so as to naturally enable oxygen transport by a vacancy mechanism. This

will the assumed mode of oxygen migration in WO2.
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2.3.2 Migration energy: EV
m

Migration energies are obtained using the nudged elastic band (NEB) method [12]. In the

WO2 crystal structure (monoclinic), there are three non-equivalent oxygen lattice positions,

shown in Figure 2.1a and labeled as VO1
, VO2

, and VO3
. The NEB paths for the VO1

 !VO2

and VO2
 !VO3

migration trajectories are shown in Fig. 2.1. The resulting energy barriers

are summarized in the following table:

Path EV
m
[eV]

VO1
�!VO2

2.19

VO2
�!VO1

1.86

VO2
 !VO3

1.96

By way of comparison, an energy of 2.46 eV has been calculated for the VO1
�!VO2

path [5].

While all of these oxygen vacancy exchanges are viable di↵usive transitions, here we take

the VO1
�!VO2

as representative of all vacancy jumps and proceed to calculate the attempt

frequency for that path.

2.3.3 Attempt frequency: ⌫0

⌫0 can be obtained by resorting to harmonic transition state theory as [6, 7]:

⌫0 =

Q3N
i
!eq
iQ3N�1

i
!sp
i

(2.10)

where !eq
i

and !sp
i

are, respectively, the normal frequencies of vibration of the system at the

equilibrium position (e.g., VO1
) and saddle point of the migration path. In each case, the

normal frequencies can be obtained by diagonalizing the dynamical matrix, D, generated at

the equilibrium and saddle point positions, which amounts to solving the eigenvalue problem

defined by:

D✏ = �✏
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Figure 2.1: (a) WO2 supercell employed in the calculations. Red spheres symbolize O

atoms, blue spheres W atoms. The three oxygen vacancy sites considered are marked and

labeled. (b) Oxygen vacancy migration energy paths for the VO1
 !VO2

and VO2
 !VO3

trajectories.
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where ✏ is the eigenvector matrix and � is a diagonal matrix containing all the eigenvalues

of the system from which the eigenfrequencies can be calculated as !k =
p
�kk. At the

saddle point, one of the normal modes of vibration is undefined (imaginary eigenvalue) and

eliminated from the product in the denominator of eq. 2.10, hence the 3N � 1 limit of the

product.

The results for the VO1
�!VO2

path give a value of ⌫0 = 243.2 THz, which, when inserted

in eq. 3.11, results in D0 = 3.087⇥10�5 m2·s�1. With this, the final expression for the oxygen

di↵usivity in WO2 becomes:

D4(T ) = 3.087⇥ 10�5 exp

✓
�1.9

kT

◆
[m2 · s�1] (2.11)

These results are added to Table 3.2 to be used in the kinetic model simulations.
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CHAPTER 3

Kinetic Model of W0s Oxidation

3.1 Introduction

Corrosion of metallic structural materials is an extraordinarily broad phenomenon with im-

plications in many areas of engineering [35, 39, 52]. In fusion energy devices, where tungsten

(W) is the preferred candidate material for plasma-facing applications, the reaction chamber

is designed to operate under nominal (⇡ 10�8 Torr) vacuum conditions [4, 10, 46]. However,

under accident scenarios leading to a loss of cooling (LOCA) with simultaneous air ingress

(due to loss of structural integrity of the vacuum chamber), W oxidizes rapidly, forming an

unstable radioactive oxide that can break o↵ mechanically and/or by sublimation, presenting

a potentially-severe environmental hazard [18, 38, 43]. This has prompted the development

of advanced tungsten alloys with enhanced oxidation resistance to eliminate the harmful re-

lease of toxic tungsten oxide into the environment in case of a LOCA event [5, 11, 27]. Good

understanding of W oxidation rates is also needed to support the planning of execution of

maintenance and decommissioning, where atmospheric control may be required to prevent

the hazardous oxidation or the temperature may need careful control to restrict oxidation

to more benign phases [8, 29]. As well, considerable interest in tungsten oxides stems from

it use as a highly e�cient hydrogen oxidation electrocatalyst [23].

While much progress has been made to understand the mechanisms of W oxidation in

high temperature conditions [14, 34, 41], the inherent complexities associated with the co-

existence of several di↵erent tungsten oxide phases make this topic one still under vigorous
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investigation. Under nominal conditions, W oxide structures experiences a series of trans-

formations where temperature, stresses, and environmental conditions all play key roles in

the evolution of the oxide scale. Cifuentes et al. [7] have provided an excellent description

of the overall oxidation process at high temperature, which is summarized as follows: “At

600�C, a protective WO2.72 layer forms. This layer cracks at a prescribed thickness, leading

to a rapid increase in mass gain resulting from fast oxygen transport through percolation

pathways. The arrival of oxygen at the WO2.72/metal interface turns the oxide into a coarse

non-protective columnar WO2.9 layer. The relative abundance of vacancies in WO2.9 favors

oxygen transport into the alloy, leading to rapid growth. Above 700�C, growth stresses in

the scale are released through local cracking. At this stage, WO2.9 becomes progressively

transformed into WO3 when the oxygen partial pressure increases across the scale thickness”.

As well, Lassner and Schubert [23] confirm that above 500�C the native WO2.72 oxide layer

cracks, and above 600�C turns into WO3. WO3 is permeable to oxygen, and its formation

rate depends on the oxygen ion transport to the WO3/WO2.72 interface. So long as the

WO2.72 layer thickness stays below its critical value, the growth is parabolic, while –after it

cracks– the growth turns to linear.

The fact that WO3�x phases form below their equilibrium temperature threshold is likely

related to the existence of compressive tangential stresses with a high Pilling-Bedworth ratio

[37]. These stresses stabilize the oxide layer during the incipient growth phase but they build

up with layer thickness, which ultimately results in loss of protection and cracking [16, 17].

The process described by Cifuentes et al. and Lassner and Schubert does not involve the

WO2 phase. This could be caused by failure to achieve steady state during the length of

time attained in experiments, or an inability to detect the WO2 layer. Coexistence of WO2

and WO3 has been detected, however, under certain conditions [48]. The next stage of

the oxidation process occurs when the WO3 has covered the surface of the thin dark film.

Being porous, not particularly adhesive and having a Pilling-Bedworth ratio of 3.35, this

oxide creates high stresses causing the oxide layer to crack and thus exposing new surface
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to the oxygen. At this point, the non-protective nature of the WO3 layer results in a linear

oxidation rate.

Under loss-of-coolant or loss-of-vacuum conditions, air ingress and decay heat can push

the temperatures in the tungsten between 1200 and 1500�C for several weeks [28]. At these

temperatures, oxidation of pure W is almost immediate, and direct sublimation of WO3 is

then the main concern. The favored allotrope of WO3 in this situation is the tetragonal

(↵) structure, with the rest of tungsten oxide phases becoming marginally stable and not

observed [30].

Understandably, the multi-parametric nature and microstructural complexity of tungsten

oxidation presents a di�cult challenge for developing predictive material models and design

guidelines. Recently, Nagy and Humphry-Baker have provided an oxidation mechanism map

from an extensive compilation of experimental data [33]. These maps are an excellent visual

tool to quickly determine the expected oxidation behavior of tungsten slabs as a function

of temperature and time. However, unlike for oxidation of nuclear materials [37], there is

a lack of fundamental models operating at relevant scales to simulate oxide scale growth

under a variety of conditions. In this work, we present a kinetic model of oxide interface

evolution based on oxygen transport across a series of layers representing di↵erent oxide

stoichiometries. The model is informed by equilibrium phase diagrams by furnishing the

appropriate oxide phases at each thermodynamic condition. The model is parameterized with

a combination of experimental and calculated material properties and physical constants. In

particular, we carry out density functional theory (DFT) calculations of oxygen vacancy

formation and migration energy barriers, as well as the attempt frequency in WO2 to define

the oxygen di↵usivity in the corresponding layer.

The paper is organized as follows. First, a review of the physical-chemistry of W oxidation

and a detailed description of the methods developed here are provided in Sec. 3.2. The results

of the paper are presented in Sec. 3.3, including DFT calculations of di↵usion parameters in

WO2 and simulations furnished by the model under several di↵erent scenarios. We provide
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a discussion of our findings in Sec. 5.4, and finish with the main conclusions of the paper in

Sec. 3.5.

3.2 Methods

3.2.1 Preliminary considerations

Under high oxygen partial pressure conditions, the WO3 layer grows by the transfer of mass

from the metal represented by the reaction:

W6+ + 3O2� !WO3 (3.1)

This reaction is enabled by the reduction of molecular oxygen1 on the environment side:

O2 + 2e� ! 2O2� (3.2)

which receives electrons from the oxidation of metal tungsten within the metal substrate:

W!W6+ + 6e� (3.3)

The formation of WO3�x phases follows the same sequence as above but with other oxidation

states of tungsten as the starting point, such as +2, +3, +4, or +5.

On the basis of these considerations, in the most general case the oxidation of metallic

tungsten will evolve into a structure characterized by five distinct layers. These layers

represent di↵erent tungsten-oxygen structures ranging from WO3 on the environment side

(where O radicals are produced) to the W-O metallic solid solutions (where the metal is

reduced). In between, three more oxide phases are expected to form, namely, WO2.9, WO2.72,

and WO2. More details about the structure and properties of the di↵erent oxide compounds

can be found in 3.6.1. As shown in Fig. 3.1a, WO2.9 should only exist above 484�C, while

WO2.72 is expected to appear only above 585�C. WO3 and WO2 exist as equilibrium phases

1In aqueous conditions, the equivalent process is: H2O! O2� + 2H+
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in the entire temperature range. All these oxides appear as strong line compounds in the

phase diagram, suggesting that the should form with near perfect stoichiometry.

3.2.2 Di↵usion kinetics

The model starts with the adsorption of oxygen radicals at the surface of the material.

Adsorption is a thermally activated process that sets the rate of oxygen atom ingress in the

solid:

ċ0 = c0⌫ads = c0⌫
0
ads exp

✓
�Eads

kT

◆
(3.4)

where c0 is the concentration of oxygen radicals in solution on the environment side, ⌫0ads is an

oxygen pick-up rate, Eads is the adsorption activation energy, k is Boltzmann’s constant, and

T the absolute temperature. The value of c0 is environment-dependent, but as a reference

the oxygen concentration in air under standard ambient conditions is 5.64 ⇥ 1024 m�3 [1].

The activation barrier for adsorption depends on the structure of the surface, and ranges

between 0.1 and 1.0 eV [13, 32, 42]. For lack of better data, here we take ⌫0ads = 1012 Hz and

Eads = 1.0 eV. Note that the model can be solved using both ċ0 or c0 as boundary conditions

on the environmental side.

The model of oxide growth can then be formulated by considering the motion of four

interfaces, each characterized by its own evolution equation. Together, the motions of these

interfaces determinate the rate of oxidation of the underlying metal substrate. Note that

this means that the oxide grows into the metal, which is the correct physical assumption due

to mass conservation. As well, here we ignore the relative volumetric expansion of the oxide

layers relative to the initial metal phase. The evolution equations can be written assuming

a sharp-interface model (known as a Stefan model) in one dimension:

ṡi(x) =
�Ji|si
ni⇢W

(3.5)

where the subindex i refers to a specific interface, x is the depth coordinate, �Ji|si is the

net flux of (free) oxygen exiting the interface towards the interior, ni is the O-to-W atomic
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ratio, and ⇢W is the atomic density of tungsten. The above equation describes the rate of

advance of a specific interface on the basis of the oxygen flux di↵erential on both sides of the

interface. In essence, an interface must move to maintain mass continuity dynamically. The

full derivation of eq. 3.5 is contained in 3.7. To determine �Ji|si , one must solve a di↵usion

equation in each oxide sublayer to first determine the free oxygen concentration profile and

then obtain the flux using Fick’s first law:

�Ji|si = Ji|si+ � Ji|si� = Di

@c

@x

���
si+
�Di�1

@c

@x

���
si�

(3.6)

@c

@t
= Di

@2c

@x2
(3.7)

Equation 3.7 is subjected to two concentration boundary conditions, one for each interface

bounding each oxide sublayer. At the inner edge of the layer (i.e., at x = si), c = 0 always.

At the outer edge of the layer (x = si�1), c = ⇢W (ni�1 � ni). The exceptions to this are the

outermost and innermost layers (which are both fixed, i.e., ṡ0 = ṡ5 = 0), where c = c0 and

J5 = 0, respectively. The specific values for each sublayer are given in Table 3.1.

Table 3.1: Details for the formulation of the Stefan model of multilayer interface evolution.

Layer Compound n Outer

interface

Inner

interface

Outer

boundary

condition

[⇢W]

Inner

boundary

condition

[⇢W]

1 WO3 3.0 s0 s1 c = c0 c = 0

2 WO2.90 2.90 s1 s2 c = 0.1 c = 0

3 WO2.72 2.72 s2 s3 c = 0.18 c = 0

4 WO2 2.0 s3 s4 c = 0.72 c = 0

5 W-O metal - s4 s5 c = 2.0 J = 0
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3.2.3 Multilayer structure

Note that here we are assuming that all the oxygen above the stoichiometric concentration

in each layer is insoluble in that layer, while according to the phase diagram some of it starts

to precipitate as the next phase richer in oxygen. However, here we treat this as having a

minor e↵ect on the kinetics. As well, a delayed formation of a WOx phase can take place

even when the oxygen concentration is lower than x⇢W. In that case, as eq. 3.4 indicates,

building up the oxygen concentration up to the required value for each stoichiometric oxide

phase to form, takes an amount of time given by �t = x/ċ0. The assumption made in this

work is that this time does not compute towards the total oxide layer formation time. The

equations to be solved for each layer, with the appropriate numerical notation and boundary

conditions to be used are given below. To indicate the boundary conditions on the right-

hand side of a given interface i (with respect to the frame of reference on Figure 3.2), the

su�x ‘si+’ (‘si�’ to refer to the left side).

Layer 1:

Material WO3

Governing

equations

ṡ1(x) =
�J1|s1
3.0⇢W

�J1|s1 = D2
@c

@x

���
s1+
�D1

@c

@x

���
s1�

@c

@t
= D1

@
2
c

@x2

Boundary

conditions

c(0) = c0 � 3⇢W, c(s1) = 0

(as well : ċ(0) = ċ0)
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c [⇢W]

xs0 s1 s2 s3 s4 s5

WO3 WO2.9 WO2.72 WO2 W-O

c0

3.0
2.9

2.72

2.0

1

Figure 3.2: Schematic representation of the multilayer system in steady state. The absorbed

oxygen is partitioned into ‘chemical’ oxygen, which is immobilized in the oxide structures

themselves, and ‘free’ oxygen, which di↵uses through each layer and is represented by a

concentration profile shown as a thick black line. Note that the width of each layer is

arbitrary in the figure.
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Layer 2:

Material WO2.9

Governing

equations

ṡ2(x) =
�J2|s2
2.9⇢W

�J2|s2 = D3
@c

@x

���
s2+
�D2

@c

@x

���
s2�

@c

@t
= D2

@
2
c

@x2

Boundary

conditions
c(s1) = 0.1⇢W, c(s2) = 0

Layer 3:

Material WO2.72

Governing

equations

ṡ3(x) =
�J3|s2
2.72⇢W

�J3|s3 = D4
@c

@x

���
s3+
�D3

@c

@x

���
s3�

@c

@t
= D3

@
2
c

@x2

Boundary

conditions
c(s2) = 0.18⇢W, c(s3) = 0
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Layer 4:

Material WO2

Governing

equations

ṡ4(x) =
�J4|s3
2.0⇢W

�J4|s4 = D5
@c

@x

���
s4+
�D4

@c

@x

���
s4�

@c

@t
= D4

@
2
c

@x2

Boundary

conditions
c(s3) = 0.72⇢W, c(s4) = 0

Layer 5:

Material W-O (metal)

Governing

equations

@c

@t
= D5

@
2
c

@x2

Boundary

conditions
c(s4) = 2.0⇢W, J(s5) = 0

When a given layer cracks, a modification to the above formulation must be adopted.

When a layer i bounded by oxygen concentrations of ci�1 and ci fragments after it reaches

a critical width, w⇤
i
, it opens up percolation pathways that equalize the free oxygen concen-

tration across it [3], i.e., ci�1 = ci. When such a situation arises, the layer in question stops

growing and simply acts as an oxygen bridge between its two adjacent layers. During the

simulations that will be presented below, a provision is introduced in the model to switch to

this mode of oxygen transport once w⇤
i
is reached.
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3.2.4 Discretized multilayer equations

Here we adopt a first-order finite di↵erence scheme to solve the di↵usion equations (Fick’s

1st and 2nd laws) given in the previous sections. A one-dimensional central finite di↵erence

approach results in the following discretized form:

cn+1
i

= cn
i
+ �tD

✓
cn
i+1 � 2cn

i
+ cn

i�1

�x2

◆
(3.8)

Jn

i
= �D

cn
i+1 � cn

i�1

2�x
⇡ �D

cn
i
� cn

i�1

�x
(3.9)

where �t and �x are the time and space increments, and the subindices n and i refer to

temporal and spatial steps. Both equations above are subjected to the Neumann stability

condition �t < �x2/D.

Application of the boundary conditions leads to:

c0
i
= 0, cn0 = c0, cn

s5
= cn

s5��x

While the total oxygen concentration (stoichiometric plus free) is continuous at each inter-

face, each di↵usion equation in each layer is solved only for the free oxygen concentration.

This results in jumps in the concentration depending on whether one looks at the interface

from the left or from the right in Fig. 3.2. With the coordinate x arriving at each interface,

one has:

cn
s1
= cn

s2
= cn

s3
= cn

s4
= 0

and with x leaving each interface:

cn
s1
= 0.10, cn

s2
= 0.18, cn

s3
= 0.72, cn

s4
= 2.00

all in units of ⇢W.

3.2.5 Material parameters and DFT calculations

The above model is fully defined when the external parameters, T and c0, and the material

properties, ⇢W and the di↵usivities, are specified. Here, T and c0 are prescribed, and the
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value of ⇢W is known. That leaves the di↵usivities Di (i = 1, 5) as the remaining material

constants to determine.

The general expression for the di↵usion coe�cient is the standard Arrhenius form:

D(T ) = D0 exp

✓
�Ea

kT

◆
(3.10)

where D0 is the di↵usion pre-factor and Ea is the activation energy. That means that five

separate pre-factors and five activation energies must be determined for each oxide layer.

In all cases, TEM experiments have revealed that the oxide always grows into the tungsten

metallic matrix, confirming that oxide growth is controlled by oxygen anion di↵usion from

the environment side inwards [45].

In any case, the first thing to ascertain is whether oxygen is transported by a vacancy

mechanism (through exchanges with empty oxygen sublattice sites) or as interstitial atoms

in an otherwise fully-occupied lattice. On first inspection of Fig. 3.1a, the line compound

structure of all the oxide sublayers considered here (in Fig. 3.2) suggests that oxygen atoms

will di↵use as free interstitials in all cases. However, there is su�cient consensus about the

abundance of oxygen vacancies, both thermal and chemical (i.e., due to natural stoichiometric

deviations) in all oxide phases [21, 22, 31, 49], and so here we assume going forward that

all oxygen transport within the oxide laters takes place via a vacancy mechanism. Next, we

select oxygen di↵usion properties for each layer shown in Sec. 3.2.3, either from literature

sources or –if unavailable– by carrying out DFT calculations using the methodology described

in 2.2.1.

3.2.5.1 WO3 layer

Sikka and Rosa [41] studied oxidation of pure W in the 568-908�C interval and measured

an oxygen di↵usivity of D(T ) = 6.83⇥ 10�6 exp (�1.3/kT ) [cm2·s�1]. Such experiments are

conducted under the assumption that tungsten trioxide is under some slight deviation, rep-

resented by x (not to be confused with the spatial coordinate), from stoichiometry. i.e., in
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WO3�x. The measured activation energy of 1.3 eV is indeed suggestive of a vacancy mech-

anism if one takes the activation energy as being the sum of the oxygen vacancy formation

and migration energies. DFT calculations of oxygen vacancy formation energies consistently

yield values of ⇡1.5 eV [22, 25], while for the migration energy alone, energies between 0.4

and 0.9 eV are obtained [6, 25].

With this, we take the values measured by Sikka and Rosa [41] for D1(T ).

3.2.5.2 WO2 layer

In contrast to WO3, no data are available for oxygen di↵usion in WO2 and we proceed to

calculate O di↵usivity in layer 4. Here too, a vacancy mechanism is assumed. The starting

point for the calculations is an expanded expression for the di↵usivity:

D4(T ) = zcV(T )`
2⌫(T ) (3.11)

where z is a geometric factor, ` is the jump distance,

cV(T ) = exp

 
�
EV

f

kT

!

is the thermal vacancy concentration (EV
f
is the oxygen vacancy formation energy), and

⌫(T ) = ⌫0 exp

✓
�EV

m

kT

◆

is the jump frequency with EV
m

the oxygen vacancy migration energy. Equations 3.10 and

3.11 imply that D0 = z`2⌫0 and Ea = EV
m
+ EV

f
. The factor z, which includes the number

of jump sites np and the dimension of di↵usion d, is np/2d = 5/3, and the jump distance `

is 2.76 Å for the oxygen sub-lattice in WO2 [20, 47]. In this work, EV
f
, EV

m
, and ⌫0 were

obtained using DFT calculations as reported in 2.3. The final expression for D4(T ) is given

in eq. 2.11.
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3.2.6 WO2.9 and WO2.72 layers

No data whatsoever exist for the di↵usivity of oxygen in the WO2.9 and WO2.72 layers. In

their analysis of oxidation kinetics data, Nagy and Humphry-Baker identified three bands

of oxygen partial pressure, low (0.1 atm), medium (0.2 atm), and high (3.4⇠13.6 atm).

They extracted e↵ective activation energies of 1.22, 1.40, and 1.94 eV for each one [33]. By

mapping O partial pressures to oxygen/metal ratio, these can loosely be ascribed to di↵usion

in WO2.72, WO2.9, and WO3, respectively. Indeed, these energies are not inconsistent with

the values of 1.3 and 1.5 eV measured and calculated for oxygen di↵usion in WO3 [22, 41].

We thus select 1.22 and 1.40 eV as the activation energies for WO2.72, WO2.9. In terms of

the prefactor, for lack of a more suitable option, here we take that in D1 to be the same in

D2 and D3.

3.2.6.1 Metallic W

The solubility of oxygen in W is very low [23] and O atoms are found primarily in interstitial

positions. Specifically, interstitial oxygen is seen to di↵use in the W lattice throughout

tetrahedral positions with a migration energy of 0.15 eV [53]. The di↵usion pre-factor has

been obtained by Alkhamees et al. [2] to be 7.6⇥ 10�8 m2·s�1, i.e.:

D5(T ) = 7.6⇥ 10�8 exp

✓
�0.15

kT

◆
[m2 · s�1] (3.12)

Table 3.2 lists all the di↵usivities used in the multilayer model.

3.2.7 Critical fragmentation widths

As indicated at the end of Sec. 3.2.3, fragmentation of an oxide scale occurs due to the large

epitaxial misfit between the metal substrate and the oxide phase. These creates residual

stresses (known as Pilling-Bedworth stresses) that put the oxide under compression, building

up as the layer grows. At a critical thickness threshold, which we term w⇤, the layer fragments
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Table 3.2: Compilation of di↵usivity parameters used in the multilayer tracking model de-

veloped in this work.

Di↵usivity Material D0 [m2·s�1] EV
m
[eV]

D1 WO3

6.8⇥ 10�6

1.3

D2 WO2.9 1.40

D3 WO2.72 1.22

D4 WO2 3.1⇥ 10�5 1.90

D5 W metal 7.6⇥ 10�8 0.15

generally creating a network of cracks through which oxygen can flow unimpeded [3]. At this

stage, oxygen transport ceases to be the rate limiting step in oxide layer growth, which is

subsequently seen to scale linearly with time. Linear growth can also coexist with parabolic

(di↵usive) growth. Indeed, the presence of exponents between 0.5 and 1.0 in oxidation

experiments is suggestive of the coexistence of cracked layers and protective layers [7, 33].

By its own definition, these stresses set in only between the oxide phase immediately in

contact with the metallic base. As such, in a multilayer setting as the present one, one would

expect only one single layer to undergo cracking at any give time. A compilation of data

relating temperature, critical width w⇤, and oxide phase is provided in Table 3.4 (3.6.2).

These are based on measurements performed by Gulbransen and Andrew [14] and analyzed

by Nagy and Humphry-Baker [33]. As the table shows, the WO2 phase is common to all

oxidation conditions, consistent with the expectation that it should be the layer immediately

adjacent to the metal substrate2 On the basis of these data, in the forthcoming simulations,

we assume that in impoverished oxygen atmospheres, a WO2 layer forms and grows up to a

temperature-dependent thickness given by the listed values of w⇤.

2However, care should exercised in utilizing these data, as they were obtained in depleted oxygen condi-
tions where WO2 and WO2.72 phases would be favored.
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3.3 Results

3.3.1 Oxide growth simulations as a function of temperature

Next, we present results of the oxide layer growth as a function of temperature. We consider

three temperature regions, (i) at or below 600�C (873 K), (ii) between 600 and 800�C (873 to

1073 K), and (iii) at or above 800�C. We initialize the model with the temperature value and

a boundary oxygen concentration, c0, that favors the formation of the oxide phases listed

in Table 3.4. We set �t and �x to 1 ns and 1 nm, respectively, which are su�ciently small

to always guarantee the numerical stability of the finite-di↵erence solution procedure. In all

cases, we show results for the first 30 s of evolution, when the thickness of all oxide layers

involved is well below the fragmentation threshold (second column of Table 3.4). As such,

the results presented below correspond to the regime when the oxide maintains its protective

structure, which can thus be assumed until its thickness reaches the critical width at each

temperature.

We give the results in each case as a pair of plots, one showing the depth profiles of all

the sublayers involved color-coded by the time instant for which they are displayed, and the

other showing the position of the di↵erent interfaces as a function of time. c is always given

in units of ⇢W. The depth profiles are always color-coded by the scale used in Fig. 3.1b to

facilitate the identification of each oxide type.

3.3.1.1 Kinetic model simulations at 600�C

The results at this temperature are shown in Figure 3.3. As indicated in Table 3.4, only

WO2.72 and WO2 form at this temperature. Figure 3.3a reveals a very thin WO2 layer behind

WO2.72, also captured in Fig. 3.3a. A power law fit to the s4-t graph yields s4(t) = 3.747t0.407,

indicating a substantial deviation from pure parabolic growth law.
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Figure 3.3: (a) Depth-time profiles of the oxide layer structure at 873 K. (b) Time evolution

of the WO2.72/WO2 (s3) and WO2/metal (s4) interfaces during the first 30 s of exposure.

3.3.1.2 Kinetic model simulations at 600 < T < 800�C

The slow growth of the WO2 layer carries over to the simulations at 650 and 700�C (923

and 973 K). At 650�C, however, all oxide sublayers are present, Figs. 3.4a and 3.4b, with

WO3 also displaying slow growth kinetics. At 700�C, Figs. 3.4c and 3.4d, the evolution is

qualitative similar to that at 600�C given in the previous subsection. In this case, the growth

law exponents at 650 and 700�C are 0.41 and 0.44.

3.3.1.3 Kinetic model simulations at and above 800�C

Figure 3.5 shows the corresponding graphs at 800 and 1000�C. At these temperatures, again

according to the observed phases in the experiments listed in Table 3.4, only the WO2 phase

forms. Interestingly, at 800�C the growth kinetics is quite slow, with the power law fit being

s4(t) = 1.852t0.454 (in microns). By contrast, at 1000�C the temperature is su�ciently high

to overcome the di↵usion barrier of oxygen in WO2, giving rise to faster kinetics compared
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Figure 3.4: Depth-time profiles of the oxide layer structure at 923 (a) and 973 K (c).

Corresponding time evolution of the di↵erent oxide interfaces interfaces during the first 3 s

of exposure, (b) and (d).

to the previous scenarios. As such, the fitted expression in this case is s4(t) = 7.812t0.490.

As revealed by the value of the power exponents, having one layer only forming part of the

oxide significantly approximates the kinetics to the pure parabolic case.
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Figure 3.5: Depth-time profiles of the oxide layer structure at 1073 (a) and 1273 K (c).

Corresponding time evolution of the di↵erent oxide interfaces interfaces during the first 3 s

of exposure, (b) and (d).

All the fitting coe�cients are compiled for each temperature in Table 3.3. It is worth

mentioning that the power law exponents obtained here are similar to those measured in

SMART W-based alloys [19, 27].
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Table 3.3: Power law fitting coe�cients si(t) = atb for all the temperatures considered in

this work. Sublayer thickness given in units of microns.

T [K] number of sublayers a b kp [mg2 cm�4 min�1]

873 2 3.747 0.407 4.28

923 4 7.930 0.413 20.31

973 2 6.435 0.441 16.69

1073 1 1.852 0.454 3.85

1273 1 7.812 0.490 34.20

3.4 Discussion

3.4.1 Main feature of the numerical model

The model presented here is formulated as a Stefan interface tracking approach where di↵er-

ent oxide/oxide and oxide/metal interfaces evolve in time driven by discontinuities in oxygen

fluxes across each one of them. These fluxes emerge in each oxide sublayer from the di↵usion

of free oxygen (i.e., not chemically immobilized) as a function of temperature. As such, it

is crucial to have accurate oxygen di↵usivities for the di↵erent oxide layers. These can be

inferred from mass gain experiments, by assuming parabolic growth laws governed by pure

di↵usion. Unfortunately, most experimental works do not discriminate among the di↵erent

oxide subphases, which has prompted the use of computational techniques to calculate the

di↵usivity in specific WO compounds [24, 26]. Even then, the computational data is scarce

and does not address many of the gaps in our understanding of oxygen di↵usion in tungsten

oxide. For example, it is not clear whether oxygen di↵usion primarily takes place by an

interstitial or a vacancy mechanism in each of the di↵erent oxide phases. Here, we have ap-

plied electronic structure calculations to quantify the migration parameters of oxygen atoms

in WO2 by a vacancy mechanism, which was lacking in the literature.
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From this point of view, this work is a first attempt at embedding the thermodynamic

and kinetic complexity of tungsten oxide growth into a comprehensive mesoscale kinetic

model that captures the more important features of the oxidation process. Below we provide

further discussion about how the model has been designed, implemented, and validated.

3.4.2 Physical model validity

In this work, the simulated oxide structures are inspired by empirical observations of the

outermost oxide layer during environmental exposure of pure W [7, 14, 15, 41] (see 3.6.2).

Of note is the apparent absence of tungsten trioxide in oxidized samples. Indeed, WO3 is

not customarily seen to form as a standalone layer in the majority of experimental works

scrutinized in this work. Instead, WO3 forms only after lower order oxides have grown and

cracked, allowing for fast oxygen transport pathways that stimulate the formation of the

trioxide. For example, in a recent work Cifuentes et al. [7] note that, at 600�C, the oxidation

was initially controlled by the development of a continuous WO2.72 layer, which grows until

it starts cracking leading to linear kinetics. At 700 and 800�, after cracking of the WO2.72

layer, WO2.92 is progressively seen to form, eventually turning into WO3 in the course of the

oxidation. Other times, WO2.92 volatilization after cracking exposes tungsten to the exposed

surface, leading to the formation of a yellow external WO3 layer [7]. This evidence points to

a mechanism of formation of WO3 by which its formation takes place only after the WO2.72

(and WO2, discussed further below) layer has fragmented and lost its protective abilities.

The lack of stated observation of WO2 in many of these experiments may be due to its

intrinsic small thickness. Indeed, our calculations suggest that oxygen transport through

tungsten dioxide is slow (mostly owing to a migration energy of almost 2.0 eV, Table 3.2),

making WO2 a true protective layer. Only above 1000�C is WO2 seen to form at high rates,

although at such temperatures all oxide layers start becoming structurally unstable due to

sublimation. Based on this presumed behavior, our interpretation of the kinetics of oxide

growth is that: (i) the free oxygen concentration under nominal conditions is generally never
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su�ciently high to form WO3 directly; (ii) the most common oxide sublayers are WO2.72 and

WO2; (iii) these layers will grow in a protective fashion until a critical thickness is reached, at

which point cracking occurs and the oxygen-rich phases WO2.92 and WO3 begin to form; (iv)

whenever multiple oxide sublayers form in succession, deviations from the standard parabolic

growth law are clearly seen. In our case, fracture and fragmentation is not a part of the

current model, and we control the formation of the di↵erent oxides simply by regulating the

amount of available oxygen, c0, on the environment side of the exposed metal. c0 is in fact

the only parameter of our model that is ‘adjusted’ to reproduce certain observations.

3.4.3 Comparison to experimental measurements

A useful exercise is to compare the growth kinetics simulated in this work to available

experimental data. As is customary in most works, oxide scale growth is measured in terms

of tungsten mass gain assuming parabolic growth. Consequently, the mass gain constant is

obtained from first to the data expressed linearly in time.

(�m)2 = [(n⇢W)s4(t)]
2 = kpt

where �m is the mass gain, n⇢W is the amount of oxygen gained when a WOn oxide forms

(expressed as a mass density), and kp is the parabolic kinetic constant. Next, we fit all the

sublayer evolutions shown in Figs. 3.3-3.5 to ideal parabolic growth expressions and plot the

simulated values of kp in Figure 3.6 along with a set of experimental measurements. The

numerical values of kp extracted from the simulations are also given in Table 3.3. The results

show that, while the simulated values generally overestimate the experimental measurements,

they lie within the broader range of the data at some temperatures. Given the figurative

‘distance’ between how the model was developed and how experiments are performed, we

consider these di↵erences reasonable.
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Figure 3.6: Parabolic growth constant as a function of temperature from a set of experi-

mental data and as obtained in this work. Experimental data from Habainy et al. (2018)

[15], Gulbransen et al. (1960) [14], Cifuentes et al. (2012) [7], and Sikka et al. (1980) [41].

3.5 Conclusions

We finalize with our main conclusions:

1. We have developed an interface-tracking model to simulate the kinetic evolution of

multiple tungsten oxide layers. The model is consistent with the observed equilibrium

oxide phases in the W-O phase diagram, and uses the di↵usivities as the only mate-

rial constants. The model is solved in space and time by adopting a finite-di↵erence

approach in one dimension with length and time increments of 1 nm and 1 ns, respec-

tively.

2. We have parameterized the model using di↵usivities both from experimental and com-

putational sources. Due to the lack of available information for the di↵usivity of oxygen
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in WO2, we have carried out a series of DFT calculations to calculate the migration

energy and di↵usion pre-factor of oxygen in WO2 by a vacancy mechanism.

3. We consider only the protective growth stage of the oxide, before the critical fragmen-

tation thickness is reached and the oxide layers begin to fail. This stage is believed

to be captured by so-called ‘parabolic’ growth behavior, while after cracking growth is

generally characterized by linear time kinetics.

4. The time evolution of the oxide scale matches parabolic growth only at high temper-

atures and when only one oxide sublayer is involved. Whenever multiple layers are at

play, measurable deviations from parabolic growth can be appreciated.

5. The calculated values for the mass gain proportionality constant are in reasonable

agreement with experimental measurements from several independent data sources.

This adds validity to the model, particularly since the model is not fitted to experi-

mental results a posteriori.

3.6 Summary of properties and evolution of tungsten oxides

3.6.1 Brief description of tungsten oxide phases

During oxidation of W, several di↵erent oxides may form. WO3 is the most stable oxide,

and at ambient temperature and pressure it displays a monoclinic structure consisting of

a network of WO6 octahedra (�-WO3). Above 330�C, WO3 is seen to transform into an

orthorhombic structure (�-WO3), and tetragonal above 740�C (↵-WO3) [9]. WO2 has a

monoclinic structure in ambient conditions, and an orthorhombic structure at high tem-

peratures and pressures. The crystal structure of monoclinic WO2 also consists of WO6

octahedra but with the di↵erence that the octahedra in WO2 are edge-shared while they

are corner-shared in WO3 [26]. Between WO3 and WO2, the stoichiometric oxides W18O49

(WO2.9), W24O68 (WO2.72) have been reported at temperatures of 485�C and above [12, 51].
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The intermediate phases W18O49 and W24O68 form due to the thermal stabilization of

distorted arrangements of the WO6 octahedra [36, 40, 44]. As the amount of chemical

oxygen decreases, the usual corner-sharing arrangement of octahedra is partially replaced

by groups of edge-sharing octahedra, which form pockets of shear planes. This is due to

the tendency lattice to eliminate single oxygen vacancies by a crystallographic shear process

[40, 44]. When these shears become coordinated, new stoichiometric lattices can form, e.g.,

WO2.9 and WO2.72. However, as revealed by the W-O phase diagram shown in Figure 3.1a

[12], these phases have very narrow stability ranges close to the theoretical stoichiometry

values. Interestingly, each phase is characterized by a distinctive color, as shown in Figure

3.1b, associated with the optical di↵raction of the di↵erent octahedral arrangements.

3.6.2 Extraction of parabolic-to-linear transition thicknesses from tabulated ex-

perimental observations

To extract the critical scale thicknesses at which a transition from parabolic (protective layer)

to linear (loss of protective layer) growth, we resort to the tabulated data given by Gulbransen

et al. [14] in a series of oxidation experiments at several temperatures and di↵erent oxygen

atmospheres. The data are listed in Table 3.4 (units from the original paper have been

updated to more current usage). The presumed phase is inferred from the observed color

and the oxygen concentration (high O concentrations favoring WO3 and low ones favoring

WO2). The oxide scale thickness at which a deviation from parabolic growth is observed is

marked as the value of w⇤ to be used in the simulations.

3.7 Derivation of the Stefan equation

Mass conservation dictates that a discontinuity in the first derivative of the concentration

at an interface, i.e., di↵erent arriving and exiting oxygen ion fluxes, must be compensated

by a moving interface. The rationale for such motion is provided by the conservation of the
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Table 3.4: Transition oxide layer thickness calculated as a function of temperature at an

O2 partial pressure of 0.1 atm (adapted from ref. [14]). The observed color and presumed

oxide phase are also included. The presumed phase is inferred from the observed color and

the oxygen concentration (high O concentrations favoring WO3 and low ones favoring WO2).

The mass density of metallic W is 19.3 g·cm�3, which amounts to an atomic concentration

of 6.3⇥ 1028 per m3

T [�C] w⇤ [µm] observed surface color presumed oxide

600 52 blue black WO2.72/WO2

625 77 black with yellow spots WO3/WO2

650 100 blue black with yellow covering WO3/WO2.72/WO2

700 155 blue black WO2.72/WO2

750 181 black WO2

800 207 black WO2

850 310 black WO2

900 310 blue black WO2.72/WO2

950 340 black WO2

1000 360 black WO2

1050 360 black WO2

1100 390 yellow black WO3/WO2
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total oxygen concentration at the interface, which includes chemical oxygen (in the form of

stoichiometric oxide phases) and free oxygen (free to di↵use through the crystal structure).

At a given interface with a total area A, the amount of oxygen ions arriving per unit time

from the left (negative side of the interface):

J�
intA

The amount of oxygen ions exiting that same interface is:

J+
intA

When both fluxes are equal, the interface is in equilibrium and does not move. However,

if the the exiting flux is larger than the arriving flux, the interface must move lest there is

a depletion in the total oxygen content. Such a gap must be filled by taking some of the

exiting (free) oxygen and immobilizing it as chemical oxygen, i.e., growing the oxide layer.

For a specific oxide phase with an oxygen-to-metal ratio of n, the number of oxygen ions

needed to grow that phase by a thickness s is:

(sA)(n⇢W)

with the term (sA) indicating the volume of the new phase, and the term (n⇢W) indicating

the number of oxygen ions per unit volume needed to create the oxide phase. The rate form

of the above expression is trivially:

ṡAn⇢W

such that the excess flux exiting the interface is immobilized as stoichiometric oxygen. The

balance equation is:

J�
intA = J+

intA� ṡAn⇢W (3.13)

which, after rearranging and eliminating the variable A becomes:

ṡ =
J+
int � J�

int

n⇢W
(3.14)
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CHAPTER 4

Reaction Rates for 1D-motion Particles

4.1 Introduction

Accurately accounting for the fate of irradiation species, such as vacancies, self-interstitial

atoms (SIA) and clusters thereof, is of extraordinary importance to predict damage accumu-

lation and its derivative e↵ects, such as hardening, swelling, and/or creep. One of the fun-

damental pillars that the theory of irradiation damage rests on is defect di↵usion[15, 24, 35],

as it controls how defects migrate, react, and reach defect sinks, which over long time scales

results in microstructural evolution. While a complete theory of irradiation damage is still

lacking, it is now recognized that physical models such as the production [44] and dislocation

bias models [10, 21] are crucial in order to understand many aspects of irradiation damage

in crystalline materials. From this understanding, a picture has emerged whereby it is well

accepted that (i) self-interstitial clusters are produced directly within displacement cascades

[41] and (ii) these clusters di↵use athermally in a one-dimensional fashion, with long unidirec-

tional random walks punctuated by sporadic changes in direction that become less frequent

as the clusters grow larger [2, 12, 28, 38, 45]. In particular, molecular dynamics simulations

of displacement cascades in atomistic systems have played a key role in establishing several

of these features with certainty [1].

Knowledge of the character of the di↵usivity (as well as of its magnitude) enters kinetic

transport models derived from the Becker-Döring formalism based on classical nucleation

theory [5, 31, 40]. These models, which in their simplest form have come to be known as
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mean field rate theory models, make use of kinetic coe�cients where this information is input

[3, 4, 16, 17, 25, 27, 29, 30, 39]. However, despite several decades after the formulation of the

production and dislocation bias models and the role played by fast 1D-moving species such

as SIA clusters, most of these methods continue to rely on three-dimensional descriptions of

these kinetic coe�cients based on di↵usion theory. In particular, the existence of 3D and

1D moving species requires that kinetic coe�cients be derived for all possible combination

reactions, i.e. 3D+3D, 3D+1D, 1D+1D. Of these, the 3D+3D case is of course described

by the venerable solution for the rate of coagulation of two populations in steady state by

Smoluchowski [37]. Solutions for the reaction rate of particles in 1D were also proposed going

back to the 1970s [2, 18, 19, 20, 22], but we must di↵erentiate between these and solutions

for one-dimensionally moving particles in 3D space (as considered, e.g., in refs. [13]). Recent

e↵orts aimed at providing solutions for 3D+1D and 1D+1D cases rely on approximations

that, while reasonable in many situations, require monitoring the kinetic state of a system to

ascertain their validity. For example, Kohnert and Wirth [26] adopt the adiabatic approx-

imation for the 3D+1D case, whereby 3D-moving species di↵using much slower than their

1D counterparts are treated as stationary species to compute the e↵ective reaction rate.

The 1D+1D case was discarded altogether as having too low a reaction cross section to be

quantitatively relevant1. Dunn et al. have also resorted to a stationary approach to derive

coe�cients for the reaction rates in the 3D+1D and 1D+1D cases [14].

The other element needed to close the system of kinetic equations of an irradiated system

is the definition of the sink strengths that describe the defect absorption propensity of several

microstructural features. These may include voids, precipitates, dislocations, free surfaces,

and/or grain boundaries. The standard solutions used for 3D species are based on the work

by Brailsford, Bullough, and co-workers [7, 8, 9], while Borodin [6] has generalized them

to anisotropic di↵usion and one-dimensional defect transport. In this paper, we provide

closed-form solutions to the rate coe�cients for 1D+1D reactions (understood to take place

1We will show later that this is not necessarily the case in certain particle concentration regimes.
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in a three-dimensional setting) and sink strengths of 1D di↵users for intrinsic and extrin-

sic spherical sinks (precipitates and grain boundaries), line sinks (dislocations) and surface

sinks (thin films). Our objective is to employ these in kinetic models of damage evolution

to account for the e↵ect of dimensionality in irradiation species transport, as others have

recently attempted to do [14, 26]. Our approach is to derive analytical expressions for each

coe�cients using the correct geometric setting and verify these numerically using equiva-

lent kinetic Monte Carlo (kMC) simulations. We obtain these coe�cients under stationary

conditions such that they can be inserted into rate theory formulations in a straightforward

manner.

Our paper is organized as follows. First we briefly describe the method utilized to arrive at

the analytical solutions and the kMC simulation setup. In Sec. 4.2 we derive the expressions

for the reaction rates of two one-dimensionally moving objects in 3D, and describe the

numerical verification approach. We then in Sec. 4.3 derive the sink strengths for 1D-moving

species for the standard cases enumerated above. We finalize with a brief discussion and the

conclusions.

The mathematical problem to solve here is (i) the calculation of the rate of coagulation

between two one-dimensionally moving objects in 3D, and (ii) the rate of absorption of one-

dimensionally moving particles by sinks. To that end, we consider a continuum medium with

an initial particle concentration of C1 as represented in Figure 4.1a. kMC simulations are

carried out replicating the corresponding geometry and boundary conditions in each case by

following these general guidelines, represented in flowchart format in Figure 4.1b.

i Consider a material volume V and two particles of sizes R1 and R2 moving one-

dimensionally along random directions with di↵usivity coe�cients D1 and D2. To

the extent that it is possible the finite volume is always chosen to be cubic, with side

length L, or spherical, with diameter d.

ii The number of particles of each type in the simulation is always limited to one, such
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Figure 4.1: KMC simulations of two 1D-di↵using particles. (a) Simulation box used in the

kMC simulations. Each particle’s trajectory is highlighted using dashed lines. � is the angle

formed by the two di↵usion directions. (b) Flow chart of the kMC procedure with matching

step designators as given in the text.
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the the corresponding particle concentration is always the inverse of the cell volume,

i.e. C = L�3 or C = 3
4⇡R

�3.

iii Each particle is made to move along a randomly generated one dimensional trajec-

tory, by sampling the polar and azimuth angles independently from a uniform angular

distribution in the intervals [0, ⇡] and [0, 2⇡], respectively.

iv A potential move along each trajectory is generated by randomly choosing a direction

and considering a displacement of �l = b, where b is the first nearest neighbor distance.

The jump rate of the particle is r1D = D

2�l2 , where D is the corresponding particle

di↵usivity. A move is randomly selected with the appropriate probability and time is

advanced as �t = � ln ⇠

2r1D
, where ⇠ is a uniform random number in the (0, 1] interval.

v This process is repeated until the two particles are within a distance (R1 +R2) of one

another inside the simulation volume, or when one of the particles exits the simulation

volume. In either case, the simulation is terminated and a new pair of particles are

introduced in the kMC cell. The aggregate time, however, is not reset to zero: time is

advanced regardless of the outcome of the two-particle simulation.

In all cases shown in this paper we use D = 2.45 ⇥ 10�7 cm2·s�1 as a realistic atom

di↵usivity at low temperatures in metals [23]. R1 and R2 are 0.15 nm, while b = 0.3 nm.

4.2 Reaction rates of one-dimensionally-migrating species

4.2.1 Reaction rate for one-dimensionally moving particles following parallel

trajectories

It is helpful to first study the two extreme cases of parallel and perpendicular trajectories.

We first consider two particles moving along parallel directions with di↵usivity coe�cients

D1 and D2. In such case, one can resort to relative motion and fix one of the particles at the
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Figure 4.2: Model for particles with parallel trajectories. (a) Particle 2 is fixed at the origin

of sample box while particle 1 di↵uses along the x axis. (b) Concentration profile of particle

1 in the box.

origin while the other moves with di↵usivity (D1 +D2) in one dimension. In such case, the

problem reduces to finding the steady state concentration in a cubic representative volume

element with volume V = L3, as shown in Figure 4.2.

The steady state solution of the concentration of moving particles is obtained by solving

Fick’s second law under stationary conditions:

(D1 +D2)
@2C1

@x2
= 0. (4.1)

The solution to this equation is a linear profile C1 = ax+ b where the constants a and b are

obtained by considering the boundary conditions:

At x = R,C1 = 0

At x = L

2 , C1 = C1

which results in:F

C1(x) =
C1

L

2 �R
(x�R) (4.2)
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This results in a particle flux equal to:

J1 = �(D1 +D2)
dC1(x)

dx
= �(D1 +D2)

C1
L

2 �R
(4.3)

From this, one can calculate the particle current M1 arriving at particle 2:

M1 = J1 · ⇡R2 = (D1 +D2)
2⇡R2C1
L

2 �R
. (4.4)

which, assuming L >> R, leads to:

M1 =
4⇡(D1 +D2)(R1 +R2)2C1

L
(4.5)

where R has been replaced with the sum of the sizes of both particles and the minus sign

in eq. (4.3) has been removed by disregarding for convenience the vectorial nature of the

flux. Multiplying the above expression times C2 gives the coagulation rate per unit volume

of particles 1 and 2. Moreover, since in the present setting C1 ⌘ C1 and C2 = L�3, eq. (4.5)

reduces to:

rpar = 4⇡(R1 +R2)
2(D1 +D2)C1C

4

3

2 . (4.6)

The above solution is checked against numerical simulations using kMC in the geometry

shown in Figure 4.2a. The results are shown in Figure 4.3, where, after a certain transient,

the numerical simulations are seen to converge to the steady state analytical solution given

in eq. (4.6) for a number of di↵erent domain sizes.

When there are two particles moving in perpendicular directions things get a little dif-

ferent but can also be solved by the same steps.

4.2.2 Reaction rate for one-dimensionally moving particles following perpen-

dicular trajectories

Next we study the case of one-dimensionally di↵using particles following perpendicular tra-

jectories. In this case we solve Fick’s 2nd law in steady state conditions using cylindrical
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Figure 4.3: Comparison between kMC simulations and eq. (4.6) for 1D-di↵using particles

moving on parallel trajectories. (a) Time evolution of the reaction rate for several domain

sizes. (b) Time-converged reaction rates as a function of domain size.

coordinates with e↵ective di↵usivity D1+D2

2
2:

D1 +D2

2r

d

dr

✓
r
dC1

dr

◆
= 0 (4.7)

The solution to the above expression is:

C1(r) = a ln r + b (4.8)

subjected to identical boundary conditions as the parallel case:

At r = R, C1 = 0

At r = L

2 , C1 = C1

from which:

C1(r) =
C1

ln L

2R

(ln r � lnR) (4.9)

The corresponding net flux becomes:

J1 =
D1 +D2

2

dC1

dr

�����
r=R

=
D1 +D2

2

C1

R ln L

2R

. (4.10)

2This is easy to show by considering the motion of one particle relative to the motion of the other, as
proved in (see proof in Appendix 4.5).
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Figure 4.4: Model for particles with perpendicular trajectories. (a) Particle 2 is fixed at the

center of box while particle 1 di↵uses along the r direction. (b) Illustration of di↵erential of

area dA for integration of the particle flux. (c) Concentration profile of particle 1 in the box.

As above, we can write the expression for the particle current at particle 2 assuming that

R = R1 +R2:

M1 =

Z

A

JdA =
D1 +D2

2

Z

A

C1

R0 ln L

2R0

dA (4.11)

In this case the contact area dA is not constant, as it was for the case of parallel trajec-

tories, but changes with the intersection plane conformed by particle 1’s trajectory and the

sphere representing particle 2 (cf. Figure 4.4b), i.e.:

dA = 2⇡R0d(R cos ✓) = 2⇡R sin ✓d(R cos ✓)

with R0 = R sin ✓. Consequently, eq. (4.11) is written as:

M1 = 2⇡R(D1 +D2)C1

Z 1

0

d(cos ✓)

ln L

2R sin ✓

(4.12)

The above integral is challenging to solve analytically. However, the integrand in the equation

can be simplified by assuming that the logarithmic term varies slowly compared to the

numerator of the integral. This implies that ln(L/2R sin ✓) ⇡ ln(L/2R), and thus:

M1 =
2⇡R(D1 +D2)C1

ln L

2R

(4.13)
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Figure 4.5: Comparison between kMC simulations of 1D-moving particles following perpen-

dicular trajectories and eq. (4.15).(a)Simulations are approaching analytical results as time

t goes by; (b)trend of eq. (4.15) with di↵erent simulation volume dimension L, consists with

simulations

As for the parallel case, the coagulation rate is obtained by making C1 ⌘ C1 and multiplying

the particle current times C2:

rperp =
2⇡R(D1 +D2)C1C2

ln L

2R

(4.14)

and using C2 = L�3 we arrive at the final expression for the scale-free steady state coagulation

rate of two particles moving one-dimensionally along perpendicular trajectories:

rperp =
2⇡R(D1 +D2)C1C2

ln C
�1/3
2

2(R1+R2)

(4.15)

A comparison between the predictions from eq. (4.15) and the corresponding numerical

simulations is given in Figure 4.5, where good convergence is shown after a short transient

in the numerical simulations, therefore validating our analytical expression.
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4.2.3 General reaction rate for one-dimensionally moving species with arbitrary

trajectories

Obtaining the general expression for the reaction rate of two unidimensionally-moving species

(in 3D space) with trajectories forming an angle � and concentrations C1 and C2 is straight-

forwardly obtained from eqs. (4.6) and (4.15) as:

r� = rpar cos�+ rperp sin� =

= 2⇡ (R1 +R2) (D1 +D2)

2

42 (R1 +R2)C
1/3
2 cos�+

1

ln C
�1/3
2

2(R1+R2)

sin�

3

5C1C2(4.16)

This expression has also been verified numerically using kMC simulations, as shown in Figure

4.6 Finally, to get a mean-field expression that can be directly used in rate theory calculations,

independent of �, we propose to use the angle-averaged version of eq. (4.16):

r1D-1D =
1

⇡/2

Z
⇡/2

0

r�d� =

= 8 (R1 +R2) (D1 +D2)

2

4(R1 +R2)C
1/3
2 +

1

2 ln C
�1/3
2

2(R1+R2)

3

5C1C2 (4.17)

where the term within the square brackets should be seen as a correction factor to the

coagulation factor due to one-dimensional di↵usion of both species involved.

4.3 Absorption rates of one-dimensionally moving particles at ideal

sinks

As discussed in the introduction, the other element needed to characterize the kinetics of

1D-moving species is their interaction with ideal sinks. For this, one can follow the same

approach as in the previous Section, i.e. the particle flux is determined by solving the di↵u-

sion equation along one dimension subjected to the boundary conditions prescribed by the
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Figure 4.6: Comparison between kMC simulations of 1D-moving particles following trajec-

tories forming an angle � between them and eq. (4.16).

geometry of the particular sink type. Here we consider intrinsic and extrinsic spherical sinks,

cylindrical sinks, and flat surfaces to represent grain boundaries, precipitates or inclusions,

dislocations, and thin films, respectively. Images of the geometries considered in each case

are shown in Figure 4.7.

4.3.1 Absorption rate at grain boundaries

A grain boundary is represented as a closed three dimensional surface, in the manner shown

in Figure 4.7a. This implies solving the di↵usion equation in one dimension:

@C

@t
= D

@2C

@x2

with boundary conditions

C = 0 at x = ±L

2

C = C1 at x = 0

However, in this case, one must consider the continuity of the particle flux everywhere inside

the sphere (the grain), which prevents us from solving the di↵usion equation in steady state
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(a) (b) (c) (d)

Figure 4.7: Geometries used to derive the absorption rate of 1D-moving particles at (a) grain

boundaries, (b) precipitates, (c) dislocations, and (d) thin films.
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Figure 4.8: (a) Linear concentration profile inside a finite domain giving rise to a flux

discontinuity at the origin. (b) The discontinuity is eliminated by considering an arc of

constant curvature.

following the approach followed in Sec. 4.2.2 (corresponding to a linear concentration profile

as shown in Figure 4.8a). A workaround is to solve:

D
@2C

@x2
= �

with � being an arbitrarily small constant (� ! 0). This, however, allows us to consider a

concentration profile with constant curvature as Figure 4.8b shows.

Geometric inspection of this small arc of curvature, as shown in Figure 4.9a, reveals a

series of equivalences that can be used to derive the particle flux. For example, assume that

point A represents the concentration at the grain boundary, B is the concentration at the
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Figure 4.9: (a) Supporting geometry to determine the equation for the particle concentration

from an arc of constant curvature. (b) Integration over the sphere’s volume.

center, Q is the center of the circle containing the arc, and P is the midpoint of the segment

AB. From the figure, it can be seen that triangles 4ABO and 4QBP are similar triangles.

From this, it can be readily seen that:

AB

BO
=

QB

BP

which can be rewritten as
q�

l

2

�2
+ C1

2

C1
=

R

1
2

q�
l

2

�2
+ C1

2

From this,

R =

�
l

2

�2
+ C2

1

C2
1

and one arrives at the expression for the arc:

x2 + [C + (R� C1)]2 = R2

The flux can then be obtained as

J = �DdC

dx
= � Dx

C + (R� C1)
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At endpoint A, x = ± l

2 , C = 0:

JA = � Dl/2

R� C1
= � 2D

l/2
C1
� C1

l/2

= � 2D
1

tan\ABO
� tan\ABO

Because the arc can have arbitrarily small curvature, tan\ABO ⇡ 0, which results in:

JA ⇡ �2D tan\ABO = �4DC1

l
(4.18)

The particle current is obtained by integrating JA over the entire spherical surface S. This

is done by considering parallel rings and sweeping along the Euler angle, as shown in Figure

4.9b:

Mgb =

Z

S

JAds =

Z
d/2

�d/2

4DC1

l
2⇡rdr =

Z
⇡

0

4DC1

2d cos ✓
(2⇡d2 sin ✓ cos ✓)d✓ =

= 4⇡DC1d

Z
⇡

0

sin ✓d✓ = 8⇡DC1d (4.19)

where we have used r = d sin ✓ and l = 2d cos ✓. As above, the rate of absorption is obtained

by making C1 ⌘ C1 and multiplying Mgb times C2:

rgb = 8⇡DdC1C2 =
24D

d2
C1 (4.20)

where we have used C2 =
⇣

4⇡(d/2)3

3

⌘�1

. This implies a sink strength k2
gb = 24/d2. As Figure

4.10 shows, excellent agreement is found between this expression and kMC simulations of

the equivalent spherical geometries.

4.3.2 Absorption by precipitates and dislocations

For absorption of one-dimensionally-moving particles at spherical precipitates, we refer this

case back to the geometry displayed in Figure 4.11a, which shows that it is a particular case

of the 1D-1D situation discussed in Sec. 4.2.1 with one of the particles being immobile. As

above, the rate of absorption is obtained by making C ⌘ C1 and eliminating L in eq. (??)

with the precipitate density as L = ⇢�3
ppt with the flux given by eq. (4.18):

rppt = 8⇡DR2
ppt⇢

4/3
pptC (4.21)
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Figure 4.10: Comparison between eq. (4.20) and kMC simulations of one dimensionally

di↵using particle absorption at grain boundaries. The error bars are shown within each data

point due to the small value of the standard deviation for this case.

This implies a sink strength k2
ppt = 8⇡R2

ppt⇢
4/3
ppt for a density of precipitates ⇢ppt with radius

Rppt.

Similarly, for a dislocation density of ⇢d, we use eq. (4.18) for the flux coming into an

e↵ective cross-sectional surface area of A = 2RL, where L = ⇢�1/2
d

which leads to:

rd = 8DR⇢3/2
d

C (4.22)

This means that a sink strength of k2
d
= 8R⇢3/2

d
is defined for this case. In doing so, we have

assumed that no interaction between 1D-moving particles and dislocations exists. Consider-

ing such e↵ects requires solving a di↵usion problem with a drift, which leads to the analytical

derivation of the ‘bias’ factor [7]. Here we prefer to solve the homogeneous problem and use

empirical bias factors as provided, e.g., by atomistic simulations [11, 36, 43]. Figures 4.11a

and 4.11b show the results of the comparison between the numerical simulations and eqs.

(4.21) and (4.22), with very good agreement found in both cases.
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Figure 4.11: Comparison between numerical simulations and eqs. 4.21 (a), and 4.22 (b).

4.3.3 Particle absorption at free surfaces

The starting point for the geometry shown in Fig. 4.7d is also eq. (4.18). The distinction

with respect to the grain boundary case is that the geometry used is a thin film of thickness

l with periodic boundary conditions along the directions perpendicular to the free surfaces.

Taking into account o↵-normal trajectories, the general expression for the flux at one of the

surfaces is:

Jfs(�) =
8DC1

l
cos2 � (4.23)

where � is the angle between the particle trajectory and the surface normal. The current is

defined in the usual way by multiplying times the free surface area A = 2L2:

Mfs(�) = Jfs(�)A =
8DC1

l
L2cos2�

from which we obtain the rate after multiplying times C1 with C1 = (lL2)�1:

rfs(�) =
8D

l2
cos2 �C1 (4.24)

The predictions from this equation are compared with kMC simulations with random tra-

jectory orientation (�) in Figure 4.12.

Averaging expression (4.24) over the interval [0, ⇡/2], we arrive at the e↵ective expression

for the rate of absorption of one-dimensionally moving particles at free surfaces of a thin
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Figure 4.12: (a) Geometry of a particle trajectory in the thin film geometry. (b) Comparison

between eq. (4.24) and di↵erent kMC simulations as function of �.

film of thickness l:

rfs =
4D

l2
C1 (4.25)

from which the corresponding sink strength is 4D
l2
.

4.4 Discussion and summary

The asymmetry in di↵usion dimensionality between self-interstitial atom (SIA) clusters and

vacancies is a fundamental feature of irradiation damage in crystals, leading to a defect

buildup imbalance that manifests itself as measurable dimensional and mechanical property

changes. It is well known that, while vacancies and mobile vacancy clusters di↵use in a

three-dimensional (3D) fashion, SIA clusters perform one-dimensional motion along mostly

rectilinear trajectories. Despite this, a complete set of kinetic coe�cients, including coag-

ulation reaction rates and sink strengths, does not exist for 1D-moving objects. In this

paper, we derive analytical expressions for these coe�cients from continuum di↵usion the-

ory particularized to 1D motion. Moreover, we carry out kinetic Monte Carlo simulations of

numerical replicas of the geometry of di↵using particles and sinks to validate the proposed
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solutions. Our simulations, which are conducted entirely independently from the analytical

derivations, reveal excellent agreement with the proposed expressions, adding confidence to

their validity. We compare the 1D and 3D cases and discuss their relevance for kinetic codes

for damage accumulation calculations.

A summary of the expressions derived and verified here for one-dimensionally di↵using

particles is given in Table 4.1. Their 3D counterparts all also shown for reference. In general,

it can be seen that sink strengths for 1D-moving species are higher for escribed absorbers

(grain boundaries and free surfaces) and lower for inscribed absorbers (precipitates and dis-

locations) than in the 3D case. This is in principle not unexpected in view of the more direct

nature of one-dimensional trajectories. Compounded with significantly higher di↵usivities

–particularly– at low temperatures, this is expected to make the absorption proclivity of SIA

clusters at surface sinks even more pronounced compared to that of vacancies.

Table 4.1: Summary of expressions for 1D-moving particles and comparison with the 3D

case (sink strengths for the 3D case taken from ref. [7]).

Reaction rate
Sink strengths

Grain

bound-

ary (size

d)

Precipitates

(radius R,

density ⇢)

Dislocations

(density

⇢d)

Thin

film

(thick-

ness l)

1D 8(R1+R2)(D1+D2)

2

66664
(R1+R2)C

1/3
2

+
1

2 ln
C
�1/3
2

2(R1+R2)

3

77775
C1C2 24/d2 8⇡R2⇢4/3 8R⇢3/2

d
4/l2

3D 4⇡(R1+R2)(D1+D2)C1C2 6/d2 4⇡R⇢ ⇢d 2/l2

The coagulation rates are more complex to analyze, particularly for the 1D case due

to the highly nonlinear terms in C2. Figure 5.6 shows r1D and r3D as surface plots in

a representative concentration interval. The figure clearly shows that the 1D rates are

consistently lower than the 3D ones (as one intuitively would suspect), with the di↵erences
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(a)

Figure 4.13: Comparison between r1D and r3D (see Table 4.1) in the concentration interval

[5⇥ 1022, 1024] m�3.

becoming more pronounced for high values of C1 and C2.

We note that the approach followed here to derive the analytical expressions shown in

the table is slightly di↵erent than that on which the solutions proposed by Dunn et al. [14]

is based. These build on Trinkaus’ general expression for the sink strength, which is related

to the defect mean free path �↵ [2, 42]:

ri = k2
↵
DiCi =

1

�2
↵

DiCi

where k2
↵
is expressed as an inverse cross section that depends on the sink concentration c

and its capture radius R:

k2
↵
= (⇡R2c)2

Derivations using this formalism [2] have shown that in the case of 1D-moving species a

periodic arrangement of absorbers should not be reduced to its minimum repeatable unit

cell because the mean free path of these particles can well encompass several of these unit

cells. This is generally neglected for 3D-moving particles because their sampling of the
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configurational space is much more e�cient, typically leading to reaction with the nearest

neighbor absorber. In this sense, our results provide a lower bound (or first order estimation)

to the general solutions for the sink strengths of the absorbers considered here. While based

on these premises, the solutions used by Dunn et al. do not capture this long-range e↵ect,

in which case we believe our expressions are of more general applicability.

As well, it should also be mentioned that di↵usion is the result of the collective behavior

of particles following nonlinear trajectories in phase space[32, 33, 34]. As such, the di↵usion

coe�cient is defined as the ensemble average of the particle displacement self-correlation

function, which when considered in an isotropic infinite medium leads to the value of the

di↵usivity in the bulk. Here we assume that the scale of the simulation boxes exceeds

the correlation lengths of particle motion, which allows us to consider a uniform di↵usion

coe�cient in all the scenarios considered here.

To summarize, in this work we have derived analytical expressions for the reaction rates

of one-dimensionally moving species by solving the di↵usion equation along straight trajec-

tories in a 3D setting. Our derivations include solutions for the coagulation rates and the

absorption rates at sinks, including grain boundaries, precipitates, dislocations, and thin

films. Our solutions have all been verified using specifically-tailored kMC simulations, which

have confirmed in all cases the validity of the expressions. These are given in a format

amenable for use in kinetic rate theory simulations, such as cluster dynamics models based

on the mean-field approximation and classical nucleation theory. Work is currently under-

way to implement them in our codes to assess more precisely the e↵ect of using the correct

dimensionality in the kinetic coe�cients.
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Figure 4.14: Representation of two particles moving along perpendicular trajectories.

4.5 Appendix

When two particles with di↵usivities D1 and D2 move along perpendicular trajectories, the

problem can be reduced to the motion of particle 1 with e↵ective di↵usivity D1+D2

2 keeping

particle 2 stationary. The geometry is shown in Figure 4.14, with particle 1 moving along

the positive y axis and particle 2 along positive x. At time tn each particle’s position can be

described by:

rn

1 = (xn, 0); (4.26)

rn

2 = (0, yn). (4.27)

At time tn+1 = tn + �t, the position of the particles is:

rn+1
1 =

⇣
xn +

p
2D1�t, 0

⌘
(4.28)

rn+1
2 =

⇣
0, yn +

p
2D2�t

⌘
(4.29)

The relative position of particle 1 with respect to particle 2 at times tn and tn+a can be

written as:

rn

1-2 = rn

1 � rn

2 = (xn, yn) (4.30)
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rn+1
1-2 = rn+1

1 � rn+1
2 =

⇣
xn +

p
2D1�t, yn +

p
2D2�t

⌘
(4.31)

and so the mean displacement of particle 1 relative to particle 2 during the time interval �t

is:

�r1-2 = rn+1
1-2 � rn

1-2 =
⇣p

2D1�t,
p

2D2�t
⌘

(4.32)

Taking squares of the above expression, one can calculate the mean square displacement of

particle 1 relative to particle 2:

�r2
1-2 =

��rn+1
1-2 � rn

1-2

��2 = 2 (D1 +D2) �t (4.33)

However, this mean square displacement must be the same as that of the relative particle,

which has an e↵ective di↵usivity D and moves in the two-dimensional space (x, y). Because

of this, we can write:

D =
�r2

1-2

4�t
=

(D1 +D2)

2
(4.34)

which is the expression for the di↵usivity used in Sec. 4.2.2.
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loider lösungen. Zeitschrift für physikalische Chemie, 92(1):129–168, 1918.

[38] N Soneda and T Diaz De La Rubia. Defect production, annealing kinetics and damage

evolution in ↵-fe: an atomic-scale computer simulation. Philosophical Magazine A, 78

(5):995–1019, 1998.

[39] Roger E Stoller, Stanislav I Golubov, C Domain, and CS Becquart. Mean field rate

theory and object kinetic monte carlo: A comparison of kinetic models. Journal of

Nuclear Materials, 382(2-3):77–90, 2008.

[40] Michael P Surh, JB Sturgeon, and WG Wolfer. Master equation and fokker–planck

methods for void nucleation and growth in irradiation swelling. Journal of nuclear

materials, 325(1):44–52, 2004.

[41] H Trinkaus, BN Singh, and CH Woo. Defect accumulation under cascade damage

conditions. Journal of nuclear materials, 212:18–28, 1994.

[42] H Trinkaus, BN Singh, and SI Golubov. Progress in modelling the microstructural

evolution in metals under cascade damage conditions. Journal of nuclear materials,

283:89–98, 2000.

77



[43] WG Wolfer. The dislocation bias. Journal of Computer-Aided Materials Design, 14(3):

403–417, 2007.

[44] CH Woo and BN Singh. The concept of production bias and its possible role in defect

accumulation under cascade damage conditions. physica status solidi (b), 159(2):609–

616, 1990.

[45] CH Woo and BN Singh. Production bias due to clustering of point defects in irradiation-

induced cascades. Philosophical Magazine A, 65(4):889–912, 1992.

78



CHAPTER 5

Strain response of nanoporous multiferroic composites

under electric field

5.1 Introduction

Multiferroic composites have attracted a considerable amount of research in recent years as

functional materials that exhibit the magnetoelectric (ME) e↵ect. These materials transfer

the strain induced by an external electric field in the ferroelectric component to the fer-

romagnetic component through elastic coupling. The application of multiferroic materials

can drastically reduce power consumption in small-scale devices compared to standard elec-

tromagnetic devices. Advances in chemical synthesis and device fabrication have resulted

in a renewed interest in composite ME materials thanks to superior ability to couple their

magnetic and electric response. Compared with single phase ME materials, multiferroic

composites have obvious advantages. For example, they display a significant ME e↵ect at

room temperature, whereas single-phase materials only show a simultaneous piezoelectric

and magnetic response at low temperatures (below the transition temperature) [23, 30].

This makes them attractive for a number of potential applications such as sensors, switches,

data storage elements, and other novel electronic devices [].

Multiferroic composites were originally synthesized in the early 1990s [28] using unidirec-

tional eutectic mixtures of BaTiO3 and CoFe2O4. Several other designs have been proposed

since, such as particulate composites, thin laminate composites, and fiber/rod composites

[3, 14, 21, 22, 25, 26, 29, 34]. Despite these improvements, multiferroic devices composed
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of dissimilar materials arranged in alternating geometries are often limited by poor mechan-

ical coupling, thermal expansion coe�cient mismatch, or irregular interfacial bonding. In

many instances, these issues appear during synthesis and can all contribute to a weakened

ME e↵ect. By way of example, multiferroic thin film composites with ceramic components

have been widely reported to develop microcracks during fabrication by solution deposition

[8, 18, 19].

Alternatively, nanoscale synthesis and device operation can result in substantial quality

improvements in device morphology and coupling response. In recent years, research on

nanoscale multiferroic heterostructures [17, 33], organic multiferroics [23], thin films [6],

among others, has demonstrated the feasibility of nanosynthesis techniques. As well, theory

and simulation are being used to establish the suitability of downscaling di↵erent multiferroic

designs as well as assessing their potential response [1, 31]. In this work, we present finite

element simulations of a novel multiferroic structure generated by infiltrating a ferroelectric

phase, lead zirconate titanate, onwards referred to as ‘PZT’ (PbZrxTi1�xO3, where x=0.52

in this work) via atomic layer deposition (ALD) into a nanoporous ferromagnetic template

made of cobalt ferrite (CoFe2O4, referred to as ‘CFO’). Such structures have been seen to

yield an enhanced ME response and be free of many of the issues limiting other multiferroic

devices. We focus on the dependence of the deformation behavior of the device on the

thickness of the ALD film coating the interior of the pores. In particular, we model the

non-monotonic strain response of the structure as a function of PZT thickness and analyze

the physical causes behind such response.

The paper is organized as follows. We begin with a brief description of the synthesis

procedure and magnetic measurements of the nanostructure (5.2.1). This is followed by a

detailed description of the finite element model and parameterizations used in the simulations

(5.2.2 and 5.2.2.2). We then show the results of the modeling approach, including a geometric

analysis and the impact of nonlinear piezoelectricity (5.3). We finalize with a discussion and

the main conclusions (5.4).
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5.2 Methods

5.2.1 Sample preparation

Nanostructured PZT/CFO composites were created in two parts: first making the porous

CFO architecture, then conformally coating the inside of the pores using ALD. First, porous

CFO structures were synthesized by block copolymer templating of sol gel films, as reported

elsewhere [5, 24]. In brief, metal precursors were dissolved, and over time, condensation

reactions form a metal oxide polymer known as a ‘gel’. An amphiphilic di-block copolymer

is added, which forms micelles in solution. As the solution is deposited onto the conductive

silicon substrate, micelles self-assemble into ordered, periodic structures. Once pyrolyzed,

the polymer is removed, leaving behind a porous, metal oxide framework. ALD was then

used to conformally coat the inside of the pores with PZT, the details for which are discussed

elsewhere [4]. Since ALD is a gas phase deposition process, the ALD precursors uniformly

bind to available surface sites throughout the porous network. The thickness of the PZT

coating is precisely controlled by the ALD process, and The ALD layers were then crystallized

through rapid thermal annealing, or RTA, at 700�C for 60 seconds under oxygen. To observe

the magnetoelectric coupling of the PZT/CFO composite structure, samples were electrically

poled ex situ with the electric field being applied perpendicular to the sample. Samples were

cut down to be approximately 5⇥5 mm2, then sandwiched between aluminum electrodes

with a 13 µm thick dielectric spacer above the film side to prevent shorting. The electric

fields utilized in this work ranged between 0 to 1.42 MV/m. Importantly, since the films were

poled ex situ, with measurements being performed in the absence of an electric field, the

remnant (not saturation) changes are discussed in this work. Once poled, high resolution

di↵raction measurements were performed at Stanford Synchrotron Light Source (SSRL),

experimental station 7-2, with an x-ray energy of 0.9919 Å and 1.0332 Å. The d-spacing of

the composites was determined by peak fitting the CFO (311) di↵raction peaks to a Voigt

function (through PeakFit v4.11 [32]). Measurements shown in this work were performed
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out of the plane of the sample, showing out-of-plane tension.

100 nm

(a) (b)

Figure 5.1: (a) Top down and (b) cross sectional view of bare, unfilled CFO, demonstrating

pore symmetry. For the composites, bare CFO was filled with atomic layer deposition grown

PZT, which is described in refs. [2, 4].

5.2.2 Geometry construction and FEM simulations

5.2.2.1 Simulation structure and geometric details

Finite element (FE) simulations of a nanoporous network of CFO internally coated with

PZT are carried out using COMSOL Multiphysics [7]. The CFO network functions as the

ferromagnetic substructure while the PZT filling provides the ferroelectric response. The

pores of the CFO substructure are arranged into a close-packed three dimensional lattice

(i.e., a face-centered cubic lattice, or FCC). The pores are coated with a PZT layer of

varying thickness (3, 6, and 10 nm), as shown in Figure 5.2b. The CFO and the PZT are

assumed to be ideally bonded (no gaps or cracks) with the displacements being continuous

across their interface (Dirichlet boundary condition).

The size of the ‘unit’ FCC cell for the CFO structure was ⇡42 nm, while the pore
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diameters were in the 15⇠20-nm range. The radius of the ligaments connecting the pores

(only along the first nearest-neighbor distance of the underlying FCC cell) was 8 nm. Figure

5.2 shows images of the unfilled CFO substructure (5.2a), and the coated structures with 3,

6, and 10 nm-thick PZT (5.2b, 5.2c, and 5.2d, respectively). With 10-nm PZT layers, the

ligaments become fully infiltrated and the pores are no longer interconnected. The porosity

of the entire structure for each ALD-coating thickness is 15.3, 6.6, and 0.03%, respectively.

5.2.2.2 Physical modeling

Application of an external electric field, E, results in a piezoelectric coupling with the

ferroelectric component of the device, i.e., the PZT coating. The PZT deforms, transferring

part of the deformation to the ferromagnetic component CFO, which itself triggers a magnetic

response. The governing equations for the piezoelectric e↵ect can be expressed in stress-

charge form as:

T = CES � etE (5.1)

D = eS + "0"SE (5.2)

or in strain-charge form:

S = SET � dtE (5.3)

D = dT + "0"TE (5.4)

where T and S are the stress and strain tensors, respectively, E is the electric field (vector),

D is the electric displacement vector, CE = S�1
E

is the elasticity matrix, e and d are the

converse and direct piezoelectric coe�cient matrices, "0 is the permittivity in free space,

and "S and "T are the material permittivity matrices at constant strain and stress, respec-

tively. CE (SE), e (d), and "S ("T ) are tensors of rank four, three, and two, respectively.

These tensors, however, are highly symmetric for physical reasons and they can generally be

represented as sparse matrices using Voigt notation, which makes their algebraic treatment
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more convenient. COMSOL includes a standard piezoelectric constitutive model such as this

one in its Multiphysics release 1. The values used in the present work for PZT are listed in

Appendix 5.5.1. CFO is simply treated as a compatible material with cubic structure. Its

elastic properties are given in Appendix 5.5.2.

Closure of the system of eqs. (5.3) and (5.4) is achieved by adding the equilibrium con-

ditions r ·D = 0, r ⇥E = 0, r · T = 0, and the definition of the strain tensor from the

displacement vector u: S = 1/2 (ru+ ur). The system is assumed to be constrained by the

device geometry along the x and y directions and thus no displacements are allowed on those

boundaries, i.e. u = (0, 0, uz). Along the z direction, displacements are uniform across the

entire top surface, with uz equal to the displacement of the center of mass of that surface.

By way of example, the mesh for the 3 nm-thick PZT layer consists of over 100,000

elements and is shown in Figure 5.3.

5.3 Results

First, we simulate the strain response of the structures shown in Fig. 5.2 as a function

of the applied external electric field assuming perfectly linear piezoelectric behavior and

ideal CFO/PZT interface bonding. Demonstrative examples are given in Figure5.4 for the

displacement (5.4a) and stress (5.4b) fields for the 3-nm PZT layer case when Ez = 1.2

MV·m�1.

The results as a function of Ez are shown in Figure 5.5, where the experimental mea-

surements have also been included. While based on these results it may appear that the

relationship between PZT-coating thickness and applied voltage is monotonically decreas-

ing, next we map the response of thicknesses from 1 nm to full infiltration (zero porosity,

around 11 nm) to get a clearer picture of the dependence on PZT layer thickness. A surface

plot showing the calculations of the strain as a function of these two variables is shown in

1https://www.comsol.com/blogs/piezoelectric-materials-understanding-standards.
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Figure 5.6. As the data show, the peak piezoelectric e↵ect is reached for a coating thickness

of 3 nm, increasing sharply from zero, and decreasing smoothly thereafter.

To understand this behavior, and also to explain the di↵erences with the experimental

data, in the following sections we explore the e↵ect of non-ideal conditions on device response.

5.3.1 Nonlinear piezolectricity of PZT

We start by considering the e↵ect of nonlinear piezoelectricity on the current design response.

Recall from App. 5.5.1 the expression for the direct piezoelectric coe�cient matrix used in

eqs. (5.3) and (5.4):

d =

2

6664

0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0

3

7775

In piezoelectricity, the polarization of a crystal under the application of an electric field or

a mechanical stress consists of intrinsic and extrinsic contributions [12, 13]. The intrinsic

contribution is associated with the atomic structure of the crystal lattice, and it is strictly

speaking the only one that can be considered linearly coupled to the electric field. The

extrinsic response results principally from 90� domain wall movements [12], which naturally

exist in ferroelectric materials like PZT [15]. Poling of PZT prior to electrical stimulation

enhances this nonlinear e↵ect by aligning like-domains and enhancing the polarization re-

sponse. Indeed, domain wall movement increases with the intensity of the electric field and

thus the extrinsic part of the polarization is seen to couple more strongly to E.

The standard model that captures this nonlinearity is the Rayleigh law [9, 11, 27], which

for dzz 2 under a constant applied electric field takes the simple form:.

d33 = dint + ↵E3 (5.5)

where dint = 593 fC N�1 (cf. Appendix 5.5.1) represents the intrinsic part of the coe�cients

2Only ‘axial’ components of d are subjected to extrinsic polarization.
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and ↵ is the Rayleigh constant. For tetragonal PZT, ↵ = 6.02⇥ 10�18 m2 C N�2 [10]. Con-

sistent with ex situ poling of our multiferroic structure, we carry out computer simulations

with the updated Rayleigh model. The results are shown in Figure 5.7. The calculated data

points show a larger deviation of the device strain with PZT-coating thickness as the electric

field increases, more in line with the experimental results.

While the magnitude of the results is di↵erent between the results in Figs. 5.5 and 5.7,

the Szz-Ez trend remains. In the next subsection we carry out extra analysis to understand

the reasons behind this.

5.3.2 CFO/PZT interface coupling

As indicated in Sec. 5.2.2.2, the FE simulations are carried out using Dirichlet boundary

conditions (continuity in the displacement field). This leads to a discontinuous stress dis-

tribution across a dissimilar material interface, as illustrated in Fig. 5.4b. Due to the axial

nature of the deformation (along the z direction) and the spherical nature of the internal

cavity, the stresses that develop on elements of PZT near the equatorial plane of the pore

are of tangential character, while those on elements aligned with z (near the spherical caps

of the pore) are of tensile character. The relative magnitude of these two types of stresses

depends on the value of Ez and on the geometry changes of the material due to deformation.

It is thus important to understand the e↵ect that these stresses have on the device response.

To that end, we perform a series of simulated tests aimed at isolating the stress component

in each case and analyze its impact on the material.

5.3.2.1 Shear coupling

First we set up a simple test where a layer of PZT of varying thickness is attached to a CFO

solid block 10-nm in size in the manner shown in Figure 5.8a. Then a voltage di↵erential of

0.05 V is applied to the PZT layer so as to induce piezoelectric expansion and the deformation
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and stress of the system are obtained. This resembles the conditions in the region of the PZT

layer under tangential stress. However, because CFO is not directly mechanically deformed,

the elements adjacent or near the PZT/CFO interface are under shear stresses, as shown in

Figure 5.8b. Interestingly, while the region of CFO near the interface deforms in the same

manner as the PZT, at a distance away from it the trend inverses and the CFO contracts

along the direction of the applied field. Thus, shear stresses in CFO created by tangential

stresses in PZT can partially induce an inverse displacement-voltage correlation, which is

more pronounced the farther away from the interface.

The results as a function of PZT-layer thickness (at a fixed value of Ez = 5.0 MV m�1)

are shown in Figure 5.9, where we plot the strain Szz on the edge of CFO block farthest

from the interface. As the graph illustrates, this strain is negative under shear conditions at

the interface, with a maximum value of �0.80 % for a PZT thickness of 6 nm.

5.3.2.2 Tensile coupling

By contrast, application of a constant electric field to the geometry shown in Figure 5.10a

results in positive monotonically increasing strains as the PZT layer thickness increases,

as seen in Fig. 5.9. These computational tests thus reveal a mixed picture whereby (i) a

diminishing strain response of the system with PZT thickness to an external electric field is

observed when the CFO/PZT interface is oriented tangentially to the loading direction, and

(ii) an increasing strain response when oriented along the field direction. Note that these

tests in Secs. 5.3.2.1 and 5.3.2.2 only capture the e↵ect of the interface coupling, but not the

e↵ect of porosity. We study this in the next section.

5.3.3 E↵ect porosity on structure response

To understand the e↵ect of porosity, we carry out simulations of a simplified geometry

consisting of a simple cubic cell with a single central internal pore, as depicted in Figure
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5.11a. First, we study the deformation of the isolated PZT material relative to the combined

structure. For this, the central pore is then infiltrated with PZT forming a coating layer of

varying thickness and the resulting PZT material is extracted and studied separately (Figure

5.11b). We then apply a constant voltage to both geometries and simulate the deformation

with and without CFO. The results are shown in Figure 5.12 where a clear gap (with a

factor of 3⇠4) in strain can be appreciated between the CFO+PZT structure versus just

having PZT. Moreover, the PZT substructure di↵ers from the combined one in that the Sxx

vs. thickness relation is not monotonically decreasing. The PZT strain does not vary much

as a function of thickness. This means that the increased sti↵ness due to reduced porosity as

the coating thickness grows is matched almost exactly by the tensile driving force created by

the extra volume pf PZT. For the combined CFO-PZT structure in Fig. 5.11a, in addition to

the 3⇠4 scale reduction in strain compared to the pure PZT case, a non-monotonic (albeit

decreasing after 3-nm thickness) dependence is again observed. This implies that the the

extra sti↵ness added by the CFO substructure is su�cient to contain the extra tensile driving

force of a thicker PZT (lower porosity)

The slightly increasing part of the curve below 3-nm thickness suggests that the overall

sti↵ness increase of the structure as the porosity is reduced is not su�cient to compensate

for the extra tensile driving force.

5.4 Discussion and conclusions

Reduced to its simplest expression, the deformation behavior of a CFO porous nanostruc-

ture partially filled with PZT can be understood as a competition between two phenomena.

First, an open cell structure is always softer than a solid one. As the thickness of the internal

PZT layer increases, one expects the sti↵ness of the structure to grow, leading to a reduc-

tion in overall strain. On the other hand, PZT is the electro-mechanical sensitive material

that transforms an electric signal into deformation, and so having more of it contributes
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to increasing the strain. As the experimental and FE results show, such competition does

not result in a monotonic response. Above a critical thickness of 3 nm, the strain decreases,

indicating that the reduction in porosity dominates over the extra piezoelectric driving force.

Below 3 nm, the strain grows with PZT thickness, indicating that the piezoelectric driving

force overcomes the extra sti↵ness that results from the decrease in porosity.

While this balance between porosity and piezoelectricity has not been reported before for

multiferroic structures, studies have shown that the relative fraction of ferromagnetic and

ferroelectric phases does impact the system’s magnetic response. In a recent work, it has

been shown that CFO/PZT composites with molar ratios of 1:4 and 1:6 were seen to exhibit

better ferroelectricity and magnetic properties, with the overall magnetization decreasing

with increasing PZT content [16].

Another point worth discussing is the need to include nonlinear piezoelectricty in the

ferroelectric material due to extrinsic poling of PZT. The comparison of the results in Figs.

5.5 and 5.7 with the experimental data confirms this by a much improved agreement with

the measurements.

We conclude the paper with a summary of our most important points:

1. We have developed a computational finite-element model of a nanoporous multiferroic

composite consisting a CFO template coated in the interior of the pores with PZT of

various thicknesses. The scale of the model mimics that of the experimentally synthe-

sized structures, with the model subjected to nominally identical boundary conditions

as in experimental tests.

2. The model has been run parametrically as a function of PZT layer thickness and electric

field in an attempt to reproduce the observed experimental response of a non-monotonic

strain response of the nanoporous structure with ALD thickness. We have considered

both linear and nonlinear piezoelectric responses to infer the degree of poling of PZT

prior to the application of an electric field.
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3. We find that the observed non-monotonic response stems from two competing pro-

cesses. First, increased porosity works towards increasing the strain due to a reduced

system sti↵ness. Second, decreased porosity involves a larger mass fraction of PZT,

which drives the electro-mechanical response of the structure, thus leading to a larger

strain.

4. The balance between these two driving forces is controlled by the shear coupling at

the CFO/PZT interface and the e↵ective PZT cross section along the direction of the

applied electric field.

5.5 appendix

5.5.1 PZT elastic properties

List of parameters for PZT employed in the present analysis. For the components of CE

(SE), e and d we assume trigonal symmetry.

d =

2

6664

0 0 0 0 741 0

0 0 0 741 0 0

�274 �274 593 0 0 0

3

7775
[⇥10�15 C N�1]

e =

2

6664

0 0 0 0 17.03 0

0 0 0 17.03 0 0

�6.62 �6.62 23.24 0 0 0

3

7775
[C m�2]

"S =

2

6664

1704.4 0 0

0 1704.4 0

0 0 1433.6

3

7775
["0]

90



"T =

2

6664

3130 0 0

0 3130 0

0 0 3400

3

7775
["0]

with "0 = 8.8541878128⇥ 10�12 [F m�1].

SE =

2

6666666666664

16.5 �4.78 �8.45 0 0 0

�4.78 16.5 �8.45 0 0 0

�8.45 �8.45 20.7 0 0 0

0 0 0 43.5 0 0

0 0 0 0 43.5 0

0 0 0 0 0 42.6

3

7777777777775

[TPa]�1

CE =

2

6666666666664

127.21 80.21 84.67 0 0 0

80.21 127.21 84.67 0 0 0

84.67 84.67 117.43 0 0 0

0 0 0 23.0 0 0

0 0 0 0 23.0 0

0 0 0 0 0 23.5

3

7777777777775
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5.5.2 CFO elastic properties

The elasticity matrix for cubic CFO is given below (all values from ref. [20]). From these

values, the bulk, Young’s, and shear moduli, B, E and G, are 81.1, 178.5 and 60.2 GPa,
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respectively. Poisson’s ratio is ⌫ = 0.13.

CE =

2

6666666666664

186.0 28.6 28.6 0 0 0

28.6 186.0 28.6 0 0 0

28.6 28.6 186.0 0 0 0

0 0 0 50.3 0 0

0 0 0 0 50.3 0

0 0 0 0 0 50.3

3

7777777777775

[GPa]
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(a) (b)

(c) (d)

Figure 5.2: (a) CFO building block showing the substructure’s pores and ligaments. The

PZT-infiltrated structure is shown for (b) 3.0, (c) 6.0, and (d) 10.0 nm thickness.
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Figure 5.3: View of the undeformed finite element mesh for the 3 nm-thick PZT layer case.
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(a)

(b)

Figure 5.4: (a) Deformation (per unit length) and (b) stress fields (in Pa) of the system for

Ez = 1.2 MV·m�1. Color maps are plotted on the undeformed configuration. The wireframe

in (a) represents the mesh after deformation.
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Figure 5.5: Simulation results and experiment data of the relationship between strain (Szz

component of S) and electric field (Ez component) for the three geometries considered in

this work. These results assume perfect linear piezoelectric behavior and ideal CFO/PZT

interface bonding.
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Figure 5.6: Surface plot of the dependence of the device strain on applied electric field and

PZT-coating thickness.
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Figure 5.7: Deformation response assuming nonlinear piezoelectric coe�cients. Compare

these results to Fig. 5.5.
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(a) (b)

Figure 5.8: (a) Simulation setup for quantifying the e↵ect of shear stresses on the CFO/PZT

interface. (b) Deformed geometry and distribution of the Mises stress. The applied voltage

di↵erential is 0.5 V (Ez = 5.0 MV m�1).
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Figure 5.9: Axial strain in the CFO block shown in Figs. 5.8a and 5.10a due to the piezo-

electric stimulation of a slab of PZT with varying thickness.
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(a) (b)

Figure 5.10: (a) Simulation setup for quantifying the e↵ect of tensile stresses on the

CFO/PZT interface. (b) Deformed geometry and distribution of the Mises stress. Ez = 5.0

MV m�1.

(a) (b)

Figure 5.11: (a) A simple CFO+PZO cubic configuration with single pore in the center. (b)

Extracted PZT coating.
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Figure 5.12: Axial strain for the geometries in Figs. 5.11a and 5.11b under a 0.05 V voltage

di↵erential.
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