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ABSTRACT OF THE DISSERTATION

Pediatric Asthma Management: System and Algorithms

by

Anahita Hosseini

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Majid Sarrafzadeh, Chair

Pervasive health is an emerging field of research aimed at providing health monitoring to

anyone at any time and anywhere. In contrast to existing healthcare systems, this paradigm

is centered on prevention, wellness maintenance, and proactive care outside the hospital

setting. In recent years, advances in sensing technologies and machine learning, as well as

wide adoption of smart devices, have led to the development of successful pervasive health

solutions such as daily activity monitoring.

Despite this growth, the full potential of pervasive health is yet to be unlocked. In

this dissertation, we make several contributions to the application and methodological sides

of pervasive health to advance it closer to its promises. We investigate design, implemen-

tation, and deployment of a highly context-aware and real-time solution for the complex

application of pediatric asthma management, trying to predict the exacerbation of asthma

ahead of time. On the methodological side, we investigate unmet data modeling challenges

that arise in building a highly context-aware pervasive health solution and propose novel

approaches to address them. In particular, we approach the challenges of integrative and

interpretable modeling of heterogeneous health data, transferring and adapting models to

new domains/individuals, and tackling sparsity of labels in real-world settings.
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CHAPTER 1

Introduction

1.1 Motivation

Over the past century, healthcare systems have experienced remarkable advancements, thanks

to multi-disciplinary discoveries in science, from the introduction of evidence-based medicine

to digital technologies such as medical imaging. Healthcare evolution has resulted in a 5.4

years increase of life expectancy, 2.4 billion growth in world population, and 44.2 of mortality

rate reduction in infants between the years of 1985 and 2015 [69].

Despite these advancements, the healthcare system still faces serious challenges includ-

ing access limitations, skyrocketing costs, and being occasional and reactive, meaning that

clinical interventions take place only after the manifestation of a disease or a new condition.

To tackle these, preventive and pervasive approaches to healthcare has gained remarkable

attention from researchers. In this paradigm, there is a focus on wellness maintenance and

proactive health monitoring outside the hospital setting, which not only improves the quality

of care but can also result in a great reduction of healthcare costs by permitting early de-

tection of health conditions and lowering unnecessary clinician and hospital visits. In recent

years, advances in computer science and sensing technologies have paved the way for the rise

of pervasive healthcare, a research domain working towards the ambitious goal of providing

healthcare to anyone at any time and anywhere [171]. This goal can only be fully achieved

when an integrated, accurate, and personalized view of a person’s past medical history and

real-time context can be obtained.

Existing pervasive health solutions mainly rely on environmental and physiological sens-

ing to achieve context-awareness. With the recent prevalence of mobile devices and inte-

1



gration of sensing technologies, pervasive health has witnessed a fast growth in the data

collection through mobile health (mHealth) applications [79]. Analysis of the collected data,

which is a key element of pervasive health solutions, has also witnessed notable improve-

ments. With the emergence of machine learning and more recently deep neural networks,

they have successfully replaced the classical approaches formerly used in pervasive health

and have brought state of the art results in various applications such as daily activity track-

ing [128], detection of mental health problems [6], and cardiovascular monitoring [15].

These advancements, although showing the promise of pervasive health, have not yet

unlocked the full potential that it can offer. Aside from the need to explore applications of

pervasive health in more diverse populations (e.g., children) and disease cohorts, there are

still important unmet challenges in the design of analytical models and systems for achieving

a fully context-aware healthcare solution, usable by diverse groups of people. The current

challenges in training healthcare models include sparsity of labels, heterogeneity of data

sources and types, the need for adapting to people differences, and providing interpretable

explanations of the decision process. Furthermore, designed systems should meet domain-

specific requirements such as data transfer security and flexibility in sensor integration.

In this dissertation, we investigate and address the aforementioned challenges in the

pervasive health domain in the context of an impactful application, pediatric asthma man-

agement. We propose novel algorithms and techniques that can advance us closer towards

the promises of pervasive health and employ them to study the feasibility of mitigating

asthma symptoms and negative events in children.

1.1.1 Significance of Asthma Management

Asthma is a chronic inflammatory lung disease that can cause recurring periods of acute

exacerbation with different severity degrees [161]. It is known as the most common chronic

disease of childhood and affects nearly 7 million or 10% percent of pediatrics population

(0 - 17 years) in the united states [167]. Asthma is also reported as the leading cause of

hospitalization for those under the age of 15 [208] and today more than 57% of children with
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asthma experience an attack each year [120].

Asthma is associated with high direct and indirect costs and poor management of its

symptoms can significantly impact one’s quality of life. The direct healthcare costs for

pediatric asthma in the USA is estimated to go up to $10 billion [120], with an estimated

average yearly cost of care for a child with asthma being $1,450. Indirect costs of pediatric

asthma are also considerable, including school absenteeism, which is experienced by 60 % of

children with asthma, and negative impacts on a child’s social and physical life [167].

It is clear that there is a significant need to alleviate asthma symptoms and reduce

the costs and risks. Proper control of asthma has been shown to be extremely beneficial

in reducing costs and the burden of this disease [58], with 4.6 times lower frequency of

hospitalization and 1.8 times lower emergency visits compared to those with uncontrolled

asthma [27].

1.2 Research Objectives

The purpose of this dissertation is to investigate the existing data modeling challenges in

pervasive health, under the umbrella of pediatric asthma management application, in which

we try to answer whether we can make an early, person-specific, and context-aware prediction

of asthma exacerbation to mitigate and prevent such events in children?

Asthma is a complex disease with numerous impacting factors and considerable variability

among different individuals. This complexity is particularly interesting as it can surface the

special data modeling and system design needs that an advanced pervasive health solution

should meet. Overall, the data modeling challenges approached in this dissertation are:

1. Sparsity of labels: The majority of the collected data in pervasive health applications

remains unlabeled. This is largely due to uncontrolled and real-time data collection

setting and the tediousness of offline labeling of data by domain experts. Therefore,

traditional supervised models which heavily rely on the availability of labels, become

disadvantageous in this domain and unsupervised approaches should be explored. To
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this end, we propose an unsupervised model for the prediction of future negative events

in pervasive health solutions in chapter 3.

2. Heterogeneity of data types: A successful pervasive health solution should be able

to integrate real-time and historical data from various sources. However, the huge

size, sparsity, and heterogeneity of health data pose technical challenges in building

such an integrative model. To overcome these challenges, we propose a novel approach

using heterogeneous information networks to represent healthcare data and model its

relations which is presented in chapter 4. Chapter 5 extends this work by adding target-

awareness to the representation learning process and expanding data integration.

3. Poor model generalizabilty: Due to person-specific variations in healthcare, the

models trained for a specific group of individuals, are not always generalizable be-

yond that group. Furthermore, recalling the label sparsity challenge discussed above,

separate modeling of each individual is not practically feasible in many applications.

Therefore, there is a need for transferable models that can reuse the available knowl-

edge, while adapting it to new individuals and groups. We present deep multi-task

learning and domain adaptation frameworks for the pervasive health domain in chap-

ters 6 and 7 respectively.

4. Interpretablity of results: Recognizing the sensitive nature of the healthcare do-

main, the decision process of the proposed solutions should be transparent to the

clinicians and researchers, so that the validity of the decision can be examined. We

propose integrative and unified modeling of health records and demonstrate the full

interpretability of its prediction process in chapter 5.

Furthermore, we present a study on the design of a complex and highly context-aware

pervasive health solution. Our proposed system for asthma management is designed with the

goals of scalable and flexible sensor integration, data security, and collection of a comprehen-

sive set of context information (e.g., physiological and environmental sensing and medical

history) that can contribute to the detection of an asthma event.

4



1.3 Contributions

This dissertation offers several methodological and application contributions to the pervasive

health domain. On the methodological side:

• we propose an unsupervised future event detection model that can capture complex

and gradual changes in signal behavior prior to an event onset. We further show how

the framework can be extended to semi-supervised settings (chapter 3).

• we introduce a novel approach for modeling electronic health records using heteroge-

neous information networks. Our model offers effective capturing of the rich structure,

relation semantics, and heterogeneity of entities in healthcare (chapter 4). We fur-

ther extend the model to be capable of integrating various data formats, especially

time-series (chapter 5).

• we propose a hierarchical target-attentive health record embedding mechanism that

can learn the importance of different records for a specific clinical prediction task. We

show that our approach provides interpretability over the clinical decision process while

improving the performance in clinical modeling tasks (chapter 5).

• we put forward the use of deep multi-task learning model for achieving improved per-

sonalized prediction performance (chapter 6).

• we present a deep domain adaptation model for unsupervised and semi-supervised

knowledge transfer among groups with different data distributions with the aim of

tackling the label missingness challenge in pervasive health applications (chapter 7).

On the application side:

• we present a secure and highly integrative pervasive health solution for pediatric asthma

management (chapter 8).

• we present an effective model for early prediction of Bradycardia heart events in infants

with no label supervision(chapter 3).
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• we propose a fully integrative clinical diagnosis prediction model based on electronic

health records, capable of achieving state of the art performance in recognizing both

high-level disease cohorts and exact diagnosis codes (chapter 4 and chapter 5)

• we develop a smartwatch-based activity recognition model for children, previously miss-

ing in the field and shed light upon personalization needs in this setting (chapter 6).

• we show effective transfer of a benchmarked adult activity recognition model to a

younger population with a different data collection setting (chapter 7).

1.4 Dissertation Outline

The organization of the rest of this dissertation is as follows: Chapter 2 provides background

information on asthma, pervasive health applications, and algorithmic advances in modeling

healthcare data. Chapter 3 introduces an approach for early detection of negative events in

an unsupervised manner which is applied to an infant heart signal dataset. Chapter 4 pro-

poses a heterogeneous information network modeling of electronic health records to improve

the diagnosis prediction task. Chapter 6 introduces a children activity recognition model

and provides a comparative analysis of personalization through fine-tuning and multi-task

learning. Chapter 7 approaches the problem of domain transfer in pervasive health, taking

the activity recognition task under the study. Chapter 5 extends chapter 4 by showing how

time-series data can be integrated into the introduced model. It also Improves the prior

model for improved interpretability and performance using attention mechanisms. Finally,

chapter 8 provides an overview of our pediatric asthma management system design and our

panel study specifications and results.
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CHAPTER 2

Background

2.1 Pervasive Health

Various entities are involved in a pervasive health solution to achieve the goal of providing

health monitoring to anyone at any time and anywhere. In this section, we provide a general

overview of data sources, analysis goals, users, and primary application areas of such systems,

all of which are summarized in Figure 2.1.

Diverse sources of data can be utilized to achieve a continuous and personalized view of

an individual’s health state. Ambient and wearable sensors that are placed in the individ-

ual’s surrounding environment or on the body are among the most utilized sources of data.

Inertial motion sensors (e.g., accelerometer and gyroscope), bio-electrical sensors collecting

ECG, EMG, and EEG signals, sensors collecting vital signs (e.g., heart rate, glucose level)

and those collecting environmental data (e.g., temperature and air quality) are among the

most widely adopted types of sensors in pervasive health [16]. Cameras, RFIDs, and social

media interactions are other data sources used in pervasive health systems [211]. Electronic

health records (EHR) that contain detailed information regarding an individual’s visit to the

hospital and health clinics can also provide valuable healthcare information. Examples of

records in EHR include those in a semi-structured format, such as symptoms and laboratory

results, along with time-series data collected by bedside monitoring systems such as heart

rate and respiratory rate. As researchers access to EHR is highly limited, partly due to

privacy and security considerations, integration of EHR with pervasive health models has

not yet been extensively studied. With the recent availability of anonymized EHR data and

corresponding bedside monitoring time-series data, few studies such as [124] have approached
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Figure 2.1: Overview of pervasive health data sources, analysis goals, users and prime ap-

plications areas.

the problem of combining this information.

Data analysis in pervasive health can provide various types of insights, depending on

the application and data. Recognizing the real-time context (e.g., performed activity [220]),

classifying negative events (e.g., type of anomalies in heart signal [95]), detection of negative

events [151], prediction of future health events (e.g., hospitalization, clinic visit [48]), assess-

ment of health risks (e.g., mortality [35]), and adherence improvement and monitoring (e.g.,

HIV medication adherence [187]) are among prime examples of analysis goals in pervasive

health. These goals have been approached with supervised and more recently unsupervised

methodologies depending on the availability of annotated data.

Applications of pervasive health, in general, can be categorized into daily health moni-

toring and chronic disease management. Examples of daily monitoring applications include

tracking of activities using wearable devices such as Fitbit [64], food intake monitoring using

throat movement and audio sensors [12], heart activity recording [123], sleep quality track-
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ing [118], and posture improvement by slouch detection and intervention [87]. In chronic

disease monitoring, diabetes management and non-invasive glucose assessment have long

been a problem of interest [70]. Furthermore, monitoring of individuals with cardiovascular

disorders with the aims of continuous heart activity tracking and re-admission prevention

has been approached by prior studies [134]. Other application areas include obesity [145],

cancer [155], Parkinson’s [132], and asthma management [214] as well as gait assessment and

fall detection for elderly individuals [207] and autism management in children [126]. Last

but not least, stress and mental health monitoring along with suicide prevention through

analysis of digital social interactions and other physiological signals such as activity and

heart rate levels has gained considerable attention in recent years [6].

Pervasive health solutions serve both their clients as well as healthcare providers. Users

and/or their caregivers can gain access to their real-time health tracking information and

their medical records, leading to better self-monitoring and health management. They can

also communicate instantly to their healthcare providers by actively recording their infor-

mation, such as symptoms, and receive targeted alerts, reminders, or diagnostic results. On

the other hand, pervasive health allows healthcare providers to obtain a more comprehensive

longitudinal tracking of users’ health status. Pervasive health systems can support clinical

decision making and risk assessment while allowing transmission of automated or manual

interventions and notifications to the users.

2.2 Sensor Data Modeling in Pervasive Health

Machine Learning has been an integral part of advancements in health informatics. In

this section, we first provide a background on pervasive health data processing workflow

and traditional processing techniques. We then review more recent data analysis trends,

especially deep neural networks and how they are applied in the field.
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2.2.1 General Workflow

Pervasive health solutions follow a general workflow for analyzing the sensor data, which is

illustrated in Figure 2.2. The process starts with acquiring data from sensors attached to

users or placed in the environment. The data is then fed into a processing module which can

be located in the cloud or as close as possible to the device, known as Edge Processing [195].

The time-series is then pre-processed, particularly with the aim of data cleaning and noise

reduction, and is segmented into fixed or variable length windows, a process that is known as

windowing. Prior studies have approached the problem of time-series windowing from two

main directions. Time-based windowing, which is the most common approach, partitions

the signal into fixed-size windows so that an event can be divided into two or more windows.

Alternatively, event-based windowing tries to fit events into separate windows of variable

length. The simplicity and lack of processing costs of time-based windowing have made

this method well-suited to real-time processing applications. [127] provides a comprehensive

survey of common windowing techniques used in healthcare informatics.
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In the next step, extracted windows are embedded into representative feature vectors.

Traditional processing approaches use feature engineering for this aim and there is a large

body of research in the extraction of the most informative set of features from health sig-

nals, reviewed in [24]. These studies extract the features from both time and frequency

domains of the signal, the later of which is obtained by applying the Fourier Transform

decomposition [104].

Finally, the extracted features are fed into a prediction model in order to perform a

supervised (e.g., classification of disease) or unsupervised task (e.g., clustering of patients

based on similarity). Relying on a survey of machine learning techniques used in pervasive

health before 2015, SVM, decision trees, and shallow neural networks were the most widely

adopted models by researchers [67].

2.2.2 Background on Recent Sensor Data Modeling Advances

Deep Learning (DL) has recently drawn special attention of researchers in various domains

following its massive success in achieving state of the art results in image and natural lan-

guage processing [142]. Deep Learning has rapidly started to replace the traditional machine

learning techniques in healthcare informatics as well. This trend can be specially attributed

to the automatic representation learning that DL offers, allowing full or partial elimination

of expert knowledge previously needed in feature engineering. In this section, we provide an

overview of the design and applications of the most recent models used in healthcare as well

as those appearing in further chapters of this thesis.

Deep Learning Introduction

Neural network models are designed on top of a simple feed-forward building block called

Multilayer Perceptron (MLP), which consists of an input, an output and, a hidden layer.

Each layer of a simple neural network is defined by a set of weights, an optional bias vector,

and activation function that transforms the data before being fed into the following layer.
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the MLP block can be formulated as follows:

h = σ1(W1X + b1)

y = σ2(W2h+ b2)
(2.1)

Where σ, W , and b indicate, the activation function, layer weights, and layer biases

respectively. Selection of non-linear activation functions allows introducing non-linearity

to the function learned by the model. The most commonly used activation functions are

sigmoid, softmax, rectified linear unit (ReLU), and hyperbolic tangent (Tanh) that are all

reviewed in [10]. To tackle more complex problems, a higher number of hidden layers can

be employed in the network, known as a deep neural network.

Neural networks are trained by defining a customized loss function and minimizing the

error observed in generated results for a single sample or a batch of samples. The error is

back-propagated to the network layers using the derivative chain rule, allowing the model to

update the weights and biases with an optimization algorithm such as Stochastic Gradient

Decent [182]. More advanced optimization algorithms including Adagrad [68], RMSprop [91],

and Adam [129] have been introduced to speed up and ease the process of finding an opti-

mization point in the searching space.

Convolutional Neural Network (CNN)

CNN is a family of neural networks that initially showed considerable success in automatically

extracting predictive features for classification of images [103]. Relying on that success, their

application has been expanded to time series and sensor data analysis as well, which we focus

on in this section.

CNNs allow extraction of time-invariant features of time series data which can convey

important information around patterns and change processes. For this aim, a convolution

filter is slid along the time series and is multiplied by the values in an element-wise manner,

mapping the original signal into a new feature signal based on the following equation:

Ct = σ(W ·Xt:t+l + b) (2.2)
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Figure 2.3: Feature extraction from time series sensor data using two convolution filters

where Xt:t+l denotes a window of length l starting at time t, W and b are the shared

weights and bias of the applied filter which are trained jointly by the model and σ denotes the

non-linearity function. As each sliding filter extracts specific features of the signal, multiple

filters can be employed to jointly represent features of time series data. Figure 2.3 depicts the

process of feature extraction from time series data using two distinct filters, each generating

a new feature signal as the filter slides along the data. These feature signals can be further

used in the prediction layers of the network.

Applications of CNN in the analysis of healthcare signals has grown in recent years. In

the analysis of ECG signals which record the electrical activity of heart, [7, 130, 239] are

among studies that show the significance of convolution layers in classification of heartbeats

and detection of arrhythmia, benchmarked on the MIT-BIH Arrhythmia publicly available

database [88]. CNN has been also used for extraction of representative features for the

gesture and hand movement classification based on Electromyography (EMG) signals in [172,

19, 83]. Detection and classification of seizures [8] along with advancing brain-computer

interaction [135] are among other applications of CNN in health signal analysis. When

working with everyday sensor-based monitoring, DeepSense [234] show that CNN can be

used as a powerful tool for extraction of features from time and frequency domain signals

in a unified sensor data processing framework. A more comprehensive list of CNN-based
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Figure 2.5: Internal design of an LSTM cell with three input, output, and forget gates.

studies in healthcare data analysis can be found in [75].

Recurrent Neural Network (RNN)

RNNs are another family of neural networks that are aimed at capturing the temporal

relation of input data and have shown success in the analysis of sequential data especially

natural language [185] and time-series [222]. RNNs can keep track of previously observed

samples by storing the model output for them in an internal memory and passing it as an

additional input for the next sample prediction. As illustrated in Figure 2.4, the network
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dynamically unrolls on the arrival of new data points to generate a new output using the

new input and the last memory state.

Traditional RNN architectures are shown to suffer from the vanishing gradient problem

during back-propagation when working with a long sequence of data [173]. Long Short Term

Memory (LSTM) [106] network is a variation of RNN that was originally proposed to tackle

this challenge by introducing a new data forgetting and remembering mechanism. Each

LSTM cell contains three input, output, and forget gates that jointly work to control what

information should be read, stored in the internal memory, or passed to the next cell. The

Figure 2.5 shows the internal architecture of one LSTM cell.

Bidirectional LSTM (BiLSTM) [235] is an extension to LSTM cells that is shown to

improve the performance in many applications. BiLSTM stacks two layers of LSTM cells

to process the sequential data on in forward and one reverse order. Processing the data in

reverse order is shown to help the model to better retain information near the end of the

sequence. In this architecture, the concatenation of the hidden states of the forward and

backward layers form the representation of the sequential data.

RNN has become one of the main models of interest in the analysis of health signals

and sequential readings. LSTM-based models have produced state of the art results in

daily health monitoring systems, especially human activity recognition, surveyed in [220]. In

the study of sleep quality, BiLSTMs have been used on polysomnography signals to detect

negative respiratory events during sleep [118, 31]. In cardiovascular disease monitoring,

recurrent models have been used in the detection of congestive heart failure [221] as well

as classification of negative heart events from ECG signals [15], especially when RNN is

used in combination with CNNs studied in [95]. Moreover, state of the art performance in

cuff-less monitoring of blood pressure has been obtained by LSTM-based models applied

on ECG and PPG signals [190]. In the area of diabetes management, utilizing sequential

models has led to a significant improvement in forecasting the glucose level and detection of

glycemic events [163]. In mental health domain, LSTM has been applied on EEG signals to

detect mental disorders [51], emotions [233], as well as detection of Parkinson’s disease [132].
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Furthermore, sequential analysis of speech signals has led to accurate detection of stress and

nervousness in recent studies such as [99, 224]. In addition, [81] and [225] used two variants of

LSTM-based models to analyze an individuals interactions in social media communications

to detect suicide risk and stress respectively.

Attention

Attention is a technique that allows the model to better differentiate relevant and non-

relevant information and focus on the former for making a prediction. Attention was initially

applied in image recognition tasks to improve the model focus for supervised prediction [231].

Later, a great success was obtained in natural language processing domain, when attention

was incorporated in sequence to sequence modeling in machine-translation tasks [147, 22].

Following this success, attention has been extended to other sequential prediction tasks such

as time-series analysis. [50, 149] are among studies that used attention in the processing of

health time-series data. As LSTM-based models show trouble in processing long sequential

data, a recent study introduced Transformer architecture [212] that replaces sequential pro-

cessing modules such as LSTMs with self-attention mechanism, so that long data history can

be processed based on importance rather than temporal relation. Although this approach is

proposed for the natural language processing domain, it has been recently used for processing

other sequential data including historical health data [200].

Following the generic view of attention suggested in [212], attention is defined as a func-

tion between a query (q) and a set of keys (K), denoted as f : q×K → [0, 1], in which each

key is mapped to an importance score between zero and one, with respect to q. Moreover,

it is commonly expected to have:
∑

k∈K f(k, q) = 1. The function f has been defined in

various ways in past studies. [92] use a cosine similarity score among the feature vectors of k

and q while [22] concatenates them and feed them into a MLP layer. Taking the dot product

of q and k feature vectors is another approach used in [147], which is then modified in [212]

to scaled dot product defined as qk̇√
n

where n is the dimension of q and k feature vectors.

Other than performance improvements, attention offers the advantage of improved inter-
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pretability. The attention scores calculated for different keys can add transparency to the

model decision process and explain what features have contributed most to the prediction.

Unsupervised Representation Learning

Although pervasive health systems can generate an enormous amount of sensor data, major-

ity of it remains unlabeled, mainly because annotation process is costly, requires real-time

expert knowledge, and high adherence of users to report changes in context and symptoms

at the time of occurrence. Recognizing this challenge, there is an emerging trend of adopting

unsupervised learning models in the analysis of healthcare data. Here we review two of the

most commonly used models autoencoder and skip-gram based models.

Autoencoder networks are a family of unsupervised representation learning models. Au-

toencoders commonly consist of an encoder that embeds data into a compact feature vector

and a decoder aimed at using the learned embedding for reconstructing the input. The model

is then trained in an end to end manner with the objective of minimizing the reconstruction

error. Figure 2.6 illustrates the general schema of an autoencoder. In the design of these

networks, some training constraints are commonly introduced to drive extraction of repre-
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sentative features of the signal rather than learning an identity mapping [142]. The most

common constraint used is adopting a smaller size for embedding layer compared to input

and output to act as a bottleneck. The learned representations by the autoencoder can be

used as an informative and compact encoding of data for further classification or clustering

tasks [142].

Autoencoders have yielded new state of the art results in various domains including

image-processing [141] and their application have been extended to other domains including

speech recognition [76] and video processing [202]. Following their initial success, several

variants of autoencoders were later introduced to improve the feature embedding quality

and robustness. Sparse autoencoders [165] add increase training constraints by adding KL

divergence penalty term to the cost function. This term ensures that most of the activation

units in the hidden layer remain close to zero, leading to more representative extraction of

feature in active units. Denoising autoencoders [216] are another group that attempts to

reconstruct the data while removing the noise. For this aim, a certain amount of noisy data

is intentionally added to the input. The model is then trained to reconstruct the original

data from the noisy input. In addition to exploring new training constraints, various encoder

and decoder architecture have been used as well. LSTM encoder-decoder is among successful

architectures that were originally introduced in improving video representation learning [202].

In this model, an LSTM layer is used to encode an input sequence into a representation vector

and another LSTM layer is used to decode it back to the original sequence. This approach

was later used in a number of time-series analysis applications, mainly due to its capability

of capturing temporal features of the signal as well [151, 218].

Applications of autoencoder have been recently studied in the pervasive health domain.

Denoising autoencoders have been employed to approach the problem of missing value impu-

tation [122, 229] which is a familiar challenge in sensor-data processing. Another application

of unsupervised representation learning is the clustering of individuals or diseases based on

their health data [160, 28]. Anomaly detection is another important application of autoen-

coders that have recently gained considerable attention in applications such as detection of
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anomalies in ECG signals [151] and detection depression [85]. Anomalies in these studies are

generally identified by analyzing the reconstruction error in the time of prediction.

Skip-gram is another unsupervised learning technique originally introduced in natural

language processing to learn word representations [158]. In this approach, feature vectors

of input data are learned in a way that similar points reside in close proximity in the new

feature space. The similarity is commonly defined as a neighboring relation. Skip-gram

can be especially beneficial in the healthcare domain where similarity and co-occurrence of

various data points can play a major role in various prediction tasks. Recently, a number of

studies have combined autoencoders and skip-gram model to extract a dictionary of signal

segments and learn their representations so that neighborhood relationship among segments

is preserved [236, 232].

2.3 Interpreting Electronic Health Records

Electronic Health Records (EHR) provide detailed documented information on various clin-

ical events that occur during a patient’s stay in the hospital. Laboratory tests, medications,

nurse notes, and diagnoses are examples of heterogeneous types of clinical records. EHR

can play a major role in painting a more comprehensive picture of someone’s health history

and state and its availability in recent years has opened great opportunities for researchers

to further explore computer-aided advancements in the healthcare domain. Variety of clini-

cal prediction tasks have been studied on EHR including prediction of mortality, diagnosis,

length of stay, and readmission [177, 102]. Regardless of the task at hand, there are a number

of inherent challenges in EHR data modeling that prior studies have approached in different

ways.

First, clinical records are heterogeneous and are sparsely distributed among patients.

To tackle this, manual feature selection has been a method of choice in many studies [223,

201, 139, 46]. However, feature engineering for the clinical domain is a tedious task and

requires expert knowledge. Moreover, missing values in EHR pose a great challenge to feature
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extraction [30]. Two recent studies have worked on addressing these by benchmarking the

MIMIC III [125] EHR dataset and introducing sets of features to be manualy extracted for

various prediction tasks [102, 177].

Recognizing the discussed challenges of manual feature extraction, recent studies have

shifted towards unsupervised embedding of clinical records [90, 52, 74]. The main idea

behind many unsupervised EHR embedding studies is inspired by the success of word2vec

models [158, 159] in natural language processing. Earlier studies turned the clinical event

records into an ordered sequence of words and employed skip-gram [159] to capture co-

occurrence of clinical events and learn latent embeddings [53, 62]. To expand the idea,

Med2vec [48] proposed a multilayer representation learning model for clinical code and visit

embedding which uses skip-gram for initializing the representations but tailors them through

the network training process. Similar EHR embedding approaches has been adopted by a

number of later studies such as [149, 49, 50].

Another challenge in mining EHR data is modeling the complex structure and relations

in EHRs. Recurrent Neural Networks (RNNs) have been one of the most widely adopted

techniques, especially for sequential prediction tasks, such as prediction of future clinician

visit based on admission history, in studies such as Dipole [149] and RETAIN [50]. However,

for more complex tasks such as diagnosis prediction based on patients’ clinical records, RNNs

have some shortcomings. Firstly, RNNs lose efficiency and performance when working on

long sequences, and clinical records may contain thousands of items. SAnD [200] is a recent

study that tackles this loss of performance by using multi-head self-attention rather than an

RNN. Secondly, relations among health records have various types and semantics and are

not always sequential. GRAM [49] is a parallel study to above ones showing the promise

of modeling EHRs as graphs, however, its design is very limited and only applicable on

hierarchical medical codes. Observing these shortcomings, there is still a strong need for an

integrative and structure-aware modeling of EHR data.
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2.4 Asthma Monitoring

In this section, we provide a background on asthma control factors and exacerbation triggers

and survey the prior mHealth studies on the improvement of asthma management.

2.4.1 Asthma Control and Triggers

Asthma is characterized by recurring attacks in the form of wheezing and breathlessness that

can vary in frequency and intensity. The severity of an individual’s asthma is measured by

a combination of features, including the frequency of symptoms, medication requirements,

reduced flow rates, and functional limitations. The individual is then assigned to one of 4

severity groups of intermittent, mild, moderate, and severe [169]. However, asthma and its

symptoms can be controlled so that a patient with severe but well-controlled asthma can

show symptoms of an intrinsically mild asthma [58]. Therefore, asthma is often described

based on the control level that is evaluated by a number of impairment and risk components.

Table 2.1 lists the main impairment metrics associated with three asthma control classes for

children of age 5 or older. The full information on control factors and severity classifications

of asthma can be found in guidelines for the diagnosis and management of asthma by National

Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health [169].

Although levels of asthma control are dependent on the underlying severity and respon-

siveness to treatment, proper management with high adherence to medication and care

towards environmental and physiological triggers can play an important role in improving

asthma control [237]. Variety of factors has been shown to trigger episodes of asthma ex-

acerbation and reduce control. These factors include exposure to allergens (e.g., pollen,

dust), cold weather, intense physical activity, extreme emotional arousal, and ambient air

pollutants [215]. Contributing pollutants to asthma exacerbation, especially in children, are

known to be ozone [140], particle matters with a diameter less than 2.5 (PM2.5) [84] and

10 (PM10) [65], smoke (carbon) [203] and No2 [43]. Prior studies have shown that these

pollutants can increase significantly through basic activities such as cooking and vacuum-
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Table 2.1: Asthma impairment assessment for different control levels

Control Impairment Components Age
Levels of Asthma Control

Well Controlled Not Well controlled Very poorly controlled

Symptoms
5-11 2 days/week but 1x/day

> 2 days/week or multiple

times on 2 days/week Throughout the day

> 12 ≤ 2 days/week > 2 days/week

Interference with activity All None Some limitation Extremely limited

Nighttime awakenings
5-11 < 1x/month > 2x/month > 2x/week

> 12 ≤ 2x/month 13x/week ≥ 4x/week

Lung function (PEF,FEV1) ≥5 > 80% 60-80% < 60%

Rescue medication use All ≤ 2 days/week > 2 days/week Several times per day

ing [107, 119]. Furthermore, asthma triggers vary considerably from person to person, adding

to the complexity of proper asthma management.

2.4.2 Pervasive Health Solutions

Recognizing the significance of proper asthma management on patients and their families

quality of life, there has been a long interest in asthma control improvement through remote

education and monitoring. [133, 162] are among early telehealth studies showing the positive

impact of digital education and remote intervention in asthma control. Following this trend,

early mHealth solutions were designed with the aim of improving medication adherence and

symptom recording , however, they mostly relied on self-reports and diaries [108, 166, 217, 78]

as well as reminders and alerts [148, 80]. Results of a number of randomized controlled trials

reported improved control and a decrease in hospital visits through these approaches [157,

179, 37]. However, others showed that adherence to these solutions drops dramatically in a

course of one year, attributing that to the demanding design of self-reporting systems [181].

Later, with the prevalence of ubiquitous computing, a number of wearable sensors were

introduced for improved monitoring of asthma. These sensors include Respiri [38] that can

measure and detect wheeze as a sign of airway obstruction, and Propeller Health sensors [226]

that can be attached to asthma inhalers to record geographical and temporal information of

medication use. Moreover, personal spirometers provide the opportunity for more compre-
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hensive monitoring of lung function at home. Spirometry is the most common pulmonary

function test used in asthma that allows assessment of airways and lung functionality [56]

and is reported by two measure of: Forced expiratory volume in one second (FEV1) and

Peak expiratory flow (PEF).

Recently, a number of pervasive health solutions have adopted the aforementioned sen-

sors and other data sources for achieving enhanced asthma management and monitoring.

AshtmaHealthApp (AHA) [39, 40] was introduced after Apple launched the health Re-

searchKit [123] and combines regional air quality tracking using phone GPS with self-reports.

The current system design of AHA is very limited in terms of Asthma trigger and context

monitoring. Khealth [13, 214] is another solution that combines public information sources

(e.g., regional air quality) with local sensor-based data. Khealth shows limitation in the

range and quality of variables it can monitor as in many scenarios it relies on the public

information sources that do not offer desirable accuracy and reliability. Furthermore, it

does not support the real-time assessment of an individual’s asthma state in order to learn

personalized triggers and reactions. Overall, systems presented above mostly deliver a re-

port of collected information rather than building predictive models for detection of asthma

exacerbation.
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CHAPTER 3

An Unsupervised Approach to Ahead of Time

Detection of Negative Health Events

Recognizing the sparsity of annotations in pervasive health and with the emergence of suc-

cessful unsupervised prediction techniques in machine learning, special attention has been

recently directed toward unsupervised and real-time detection of health anomalies. While

anomaly detection happens at the time or after an event onset, in many applications, such

as asthma control, there is a significant advantage in the early prediction of a forthcoming

negative health event. Moreover, despite the commonly sharp changes of health signals on

or after an onset, early changes before an upcoming negative event can be very subtle and

gradual. In this chapter, we propose an unsupervised model for uncovering the early and

complex changes prior to a negative health event. We first demonstrate our observations on

the shortcomings of the widely adopted anomaly detection methods in this setting. Next,

we propose a sequential autoencoder for the suitable embedding of the time and frequency

domain features of health signals, followed by a noise-tolerant online clustering module for

detection of abnormal signal behavior. We show how the framework can be extended to

semi-supervised setting and benchmark our results on a publicly available heart ECG signal

dataset which is collected from 10 infants experiencing Bradycardia events.

3.1 Introduction

Many health events such as asthma attacks, seizures, or cardiac arrests can be character-

ized by the changes they introduce to the physiological signals such as ECG and PPG and
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provide an opportunity for real-time analysis of such events. However, lack of annotations

and interpersonal differences in health signals can hinder the use of established supervised

training models, hence, there has been a recent growth of research interest in the use of

unsupervised approaches.

Unsupervised models, especially autoencoders [23], have recently brought great success

in learning an informative representation of data for improving further supervised or unsu-

pervised tasks. When it comes to time series analysis, one important application of these

representations has been anomaly detection [186] which has been successfully used in applica-

tions such as cyber-attack and financial loss surveyed in [96]. This success has been recently

expanded to health care domain as well, especially in the analysis of ECG signals [151].

In spite of the recent application of unsupervised anomaly detection models on health

signals, there has been a missing focus on the early prediction of forthcoming negative health

events. Analysis of physiological and environmental sensor data can reveal early signs of a

negative health event in the near future and a number of studies have already validated this

hypothesis in case studies such as Bradycardia events (sudden heart rate drop) in infants [82].

Moreover, the commonly used anomaly detection models, cannot fully address the special

challenges inherent in healthcare. Prior studies generally rely on the sudden increase of

reconstruction error of an autoencoder trained on the normal signal to detect anomalies.

The hypothesis in this approach is that such a model cannot reconstruct anomalous data

points accurately. However, this approach works best when changes are abrupt and may

lead to poor performance in addressing many health problems in which changes are gradual,

complex, and subtle.

In this study, we draw the attention to the problem of early event detection and propose

an unsupervised framework based on deep sequential autoencoders and online clustering of

the internal representations to overcome shortcomings of prior methods. For this aim, we

employ an LSTM encoder-decoder based architecture [151] to extract temporal and local

features of the signal. We use unit-ball regularization of the learned representations [21]

to optimize the results of further clustering phase. Furthermore, we use the wavelet trans-
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form [176] as a pre-processing step of the signal to better capture the time and frequency

domain information when training the autoencoder model. We then analyze the clusters

formed by the representation of signal segments using a variant of Denstream [34], an online

and noise-tolerant clustering method. At last, we show how the model can be employed

in a semi-supervised manner in scenarios when a sparse set of labeled samples are present.

We evaluate our model on the publicly available Preterm Infant Cardio-Respiratory Signals

Database (PICS) [175] which provides ECG signal prior to Bradycardia heart events in in-

fants. As heart rate signals inherently show more complicated behavior compared to many

other sensor data, this dataset is desirable to surface the advantages of our approach.

3.1.1 Contributions

The contributions of this study are: 1) we highlight the problem of in-advance detection

of negative health events and propose an unsupervised and robust framework relying on

real-time clustering of time-series representations. 2) We reveal the shortcomings of existing

models relying on signal reconstruction error measurement. 3) We demonstrate the effec-

tiveness of our approach in achieving a decent performance compared to prior supervised

models by predicting Bradycardia events in infants 1.3 minutes ahead of time with 68%

AUC score on average, using no supervision. 4) Finally, we demonstrate that the prediction

performance can be further improved by incorporating a small set of labeled samples using

the semi-supervised variant of our proposed framework.

3.2 Background

3.2.1 Autoencoders and Anomaly Detection

One important application of Autoencoders in time-series analysis has been anomaly detec-

tion [186]. The general workflow of anomaly detection using autoencoders is depicted in

Figure 3.1. The process starts with training the model on normal segments of the time-

series data. The model is expected to generate a compact representation of data and learn
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to reconstruct each segment from that. Having a model trained in this way, a sudden ab-

normal change in the input data is shown to increase the reconstruction error of the model

at the time of prediction. This increase in discrepancy between the input signal and its

reconstruction by the model is commonly thresholded to detect anomalies [186].

Encoder 
Module

Decoder 
Module

Training

Testing

Original signal
Predicted signal

Detect Large Reconstruction error

Minimize Reconstruction error

Figure 3.1: The general schema of anomaly detection using autoencoders

Two recent studies have shown improved performance of anomaly detection in more

complex settings by utilizing the encoded representations from autoencoders rather than

relying on the reconstruction error. [21] showed that the clustering of these representations

can improve the results when the original normal data comes from multiple classes. This

study, however, is not designed for time-series analysis and does not consider the real-time

prediction setting of wireless health data. Moreover, [136] is another study on time series

data but targeting the different task of data segmentation. They show the changes in internal

representations in neighbor segments are an important sign for point of change detection in

time series data.
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3.2.2 Anomaly Detection in Healthcare

Many of the initially proposed anomaly detection models in healthcare relied on supervised

prediction models [41]. However, as these models require large enough samples from abnor-

mal data points, later studies shifted to more unsupervised models. Clustering of data points

based on hand-engineered features for detection of outliers [178] and building future value

prediction models for discovering unexpected readings [101] are among common approaches

reviewed in [230]. Shortcomings of these methods, especially lack of generalizability, were

later addressed with autoencoder based anomaly detection models. [151, 44, 152] are among

studies that employed autoencoders on ECG signal to distinguish anomalous parts from the

healthy ones. They all used reconstruction error to distinguish anomalous segments from

normal ones.

3.2.3 Prior studies on PICS dataset

Prediction of Bradycardia in infants using the PICS dataset was approached before by pub-

lishers of the dataset with statistical methods [82]. They specifically used a point process

analysis and tried to capture the differences in variance and mean of signal segments before

a Bradycardia event. Although this study proves the feasibility of the task and achieves

reasonable accuracy, their approach is supervised, hand-engineered, and heavily relies on

the observance of multiple onsets of Bradycardia events in each infant, which is not always

possible in the real-world setting. This is while our approach focuses on the straightforward

collection of normal signals from individuals and the detection of changes in an unsupervised

and automatic manner.

3.3 Methodology

In this section, we provide details of the two main components of our proposed model:

sequential representation learning and real-time clustering.
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Figure 3.2: Design of the LSTM autoencoder with unit-ball regularization.

3.3.1 Sequential Representation Learning

Extracting representative features of a signal using unsupervised models such as autoencoders

can provide beneficial insights into the detection of abnormal signal behavior. Moreover,

temporal dependencies in health signals often carry important information regarding gradual

changes. Therefore, we employ a deep sequential autoencoder to extract temporal and local

features of health signal segments. In particular, we use a variant of LSTM encoder-decoder

architecture similar to [151], design of which is discussed below.

Given a time series T , it is segmented into fixed or variable length windows denoted

as W = {w1, w2, w3, · · · , wn} where each wi is itself a list of readings of length li, hence

wi can be represented as: wi = {xj, xj+1, · · · , xj+li−1}. The model first embeds wi into a

fixed length representation by feeding it into an encoder module, an LSTM based recurrent

neural network (RNN) with li cells. The hidden state of the last (lith) cell can be considered

as a compact and informative representation of wi, which we call it R(i). To make these

representations more suitable for comparison using distance-based metrics and remove the

impact of representation length, we apply l2 normalization on R(i) in the training phase and
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before feeding to the decoder as suggested by [21].

R∗(i) =
R(i)

‖R(i)‖
(3.1)

The decoder module that is aimed to reconstructs window wi from R∗(i) is also an LSTM

RNN with a linear transformation layer on the output gates. The decoder uses R∗(i) as

the initial state to its first LSTM cell. Afterward, the output of each cell in the decoder,

which represents the reconstructed value of the corresponding input by the model, is used

as an input to the next decoding cell. Following the findings of prior studies on improved

optimization of encoder-decoder architectures [202], our model is designed to predict each

window wi in reverse order. Figure 3.2 depicts the design of the encoder and decoder modules.

Considering decoder module as a function D, D(R∗(i)) denotes the output of the model

for window wi. When reconstruction error between D(R∗(i)) and input wi is used as the

objective function and both modules are jointly trained on normal intervals of data, the

model learns to embed representative features of the input window wi into R∗(i). Therefore,

the objective function can be written as:

L =
1

‖W‖
∑
wi∈W

1

li

li∑
j=1

‖xj − x̂j‖2 (3.2)

where xj denotes the original reading and x̂j denotes the corresponding prediction. We

train the proposed autoencoder on event-free intervals to achieve representative features of

a normal signal behavior.

3.3.2 Online Clustering

The sequential autoencoder is hypothesized to map similar windows into close feature vectors.

Therefore, those related to the normal signal behavior may form one or more clusters in the

feature space. This is while, any deviation from the norm in a signal window, would reflect in

the features and increase the distance from those clusters. Therefore, a clustering approach

is desirable to keep track of the clusters formed by normal windows and detect any abnormal

outlier or cluster formation over time. Furthermore, outlier detection should be robust to
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noise and concept drift over time. To meets these needs, we employ an approach similar to

Denstream [34], an online and noise-tolerant clustering model.

Training Phase

After training a subject-specific autoencoder, we feed features extracted from a set of normal

training windows to find the main normal clusters (C). Similar to Denstream, our clustering

model relies on finding and connecting the dense gathering of data points called micro-

clusters. Each micro-cluster is represented by the two features of radius and weight. At

each point in time, a micro-cluster is denoted as ”core” if its weight is more than the weight

threshold (µ) and an outlier otherwise. On arrival of each data point, it is added to closest

micro-cluster, with a priority on core ones, while keeping its radius below the threshold (ε).

All micro-clusters evolve as the new data points arrive and outlier and core micro-clusters

get updated. Once all windows are processed, we apply the DBSCAN [72] algorithm to

connect overlapping core micro-clusters and form the final main clusters in C. Algorithm 1

provides detailed description of our clustering algorithm in the training phase.

Testing Phase

In the test time, as the incoming signal windows are encoded and fed into the clustering

module in real-time, micro-clusters are updated and DBSCAN is used to generate the main

clusters. An increased appearance or growth of clusters other than C in a short amount of

time can be considered as an abnormality and a sign for a possible event onset. It is worth

mentioning that as our clustering algorithm ignores outlier micro-clusters, any newly formed

cluster is dense enough to show a real change in the signal behavior.

To robustly use the abnormal cluster formation and its growth trend in the prediction of

an event we introduce ”confidence window”. In particular, We consider the last K received

windows and keep track of the ratio that they join a cluster other than C. A threshold

on this ratio(λ) can tune the sensitivity of the model against abnormal cluster formation.

Algorithm 2 shows the process of our cluster-based real-time anomaly detection.
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Algorithm 1 Training Phase Clustering

. core weight threshold µ, radius threshold ε

for a new normal signal window do

compute the representation r

try to merge r to closest core micro-cluster

if new radius < ε then complete the merge and record the new weight

else try to merge r to closest outlier micro-cluster

if new radius < ε then complete the merge and and record the new weight

else create new outlier micro-cluster with r and record the new weight

end if

if new weight > µ then change the micro-cluster from outlier to core

end if

end if

end for

Use DBSCAN algorithm to find the main clusters of a normal signal (C).

Algorithm 2 Testing Phase Clustering

. Confidence Window length K, ratio threshold λ

cnt = 0

for a new test window do

compute the representation r

merge r into the suitable core or outlier micro-cluster

Use DBSCAN algorithm to find the clusters of data.

if r joined a cluster other than C then cnt+ +

if cnt
K
> λ then Trigger the alarm for a negative event

end if

else update cnt to include appearance of new clusters in the last K windows

end if

end for

32



3.3.3 Semi-supervised Variation of the Proposed Model

Our proposed algorithm is designed with the aim of prediction in the absence of labeled

data, which is a known challenge in the healthcare domain. However, when a sparse set of

labels are available, it is desirable to incorporate them into the prediction model. To this

end, we employ a cluster tagging approach. Recalling the clustering phase in the training

stage, on arrival of each window, if the window is labeled we use that to tag the assigned

cluster as normal or abnormal. The cluster tag is determined by the majority vote of labeled

samples inside that cluster. Different from the original approach which density of a cluster

is considered as the main feature of a normal cluster, in this approach can detect sparse but

normal clusters of signal and avoid false-positive triggering of alarms.

3.4 Experiments

In this section, we report the results of our experiments for evaluating our proposed approach

in the detection of future negative events. The section starts with a general overview of the

infant heart signal dataset used, followed by implementation details, experiment setup, and

results.

3.4.1 Dataset and Data Processing

We benchmark our model on the Preterm Infant Cardio-Respiratory Signals Database (PICS),

publicly available on [175]. This dataset contains 20 to 70 hours of ECG recordings of 10

infants with multiple onsets of Bradycardia events, in which an infant’s heart rate stays

below 100 beats per minute for at least two beats.

In this study, we rely on heart rate variability signal rather than the raw ECG, following

the large body of research showing its power in indicating negative heart events [73, 131].

Heart rate variability is generated by taking the time difference between R-peaks in the

original ECG signal, which is an indicator of how fast or slow the heart beats.
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A number of studies have already shown the effectiveness of frequency domain analysis

(along with the time domain) on improving the predictive power of heart rate variability

signal [176]. Having this in mind, we employ Continuous Wavelet Transform (CWT) that

permits simultaneous access to the time and frequency domain information at each point of

time. As suggested by prior research [9], we use Morlet function as the mother wavelet in

our CWT analysis and study the obtained signals on the low-frequency band (0.01-0.15 HZ),

relying on initial results reported in [82].

3.4.2 Evaluation Measure

We evaluate our model by scoring the rate of true-positive alarms (recall), true negatives

decisions (specificity), Area Under the Receiver Operating Characteristic curve (AUC), and

earliest prediction time on true-positive alarms.

An alarm is considered as true positive if a negative event happens within a 3-minute

time span. Moreover, 6 minutes after each onset is disregarded in evaluation to ensure the

effects of the last event has passed. As a result, a true negative happens when no alarm is

generated from 6 minutes after to 3 minutes before two consecutive events. The used time

ranges are borrowed from an initial study on this database [82]. In all experiments we use

70% of data of each infant for training and the remaining 30% for testing.

3.4.3 Model Hyper-parameters

In the training of the autoencoder, we used window sizes of length 64 to processes heart-

beat signal and hidden state size of 20 for the LSTM cells. In the clustering phase, radius

threshold and minimum weight were set to 0.02 and 2 respectively. Moreover, we used the

ratio threshold of 50% when using confidence windows in generation of event alarms.
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3.4.4 Results

As tracking reconstruction error has been used as a common approach in detection of anoma-

lies, we first share results of the performance of this approach in detection of early changes

in the heart-rate signal before an event onset. Figure 3.3 illustrates an interval of heart-

rate monitoring of infant 7 in which it shows multiple Bradycardia events. The figure also

reports the corresponding reconstruction error computed by the autoencoder introduced in

section 3.3.1. As it can be inferred, reconstruction error shows significant jumps at the time

of events when the heart rate experience a sudden drop and other sharp changes. However,

as discussed in [82] and observable here, the variability in heart rate, which translates into

a similar variability in the reconstruction error, does not show a simple pattern before a

Bradycardia onset. Therefore, although reconstruction error achieves good performance in

unsupervised detection of sudden changes, it can perform poorly for prediction of forthcom-

ing events, mainly due to the more complex nature of this task. This experiment validates

our approach in employing deeper features of signal for uncovering the hidden changes before

a negative event.

We next evaluate our proposed model qualitatively and quantitatively. Figure 3.4 visual-

izes a snapshot of the real-time trend of cluster formation by our method before three event

onsets of infant 7. Each cluster is depicted by a unique color and level in the y-axis and forms

as we move in time (on the x-axis) and process incoming signal windows. Moreover, clusters

appearing in a 3-minute time span before an event onset (depicted by yellow triangles) are

shown with a cross mark for easier readability. As the figure suggests, the two blue clusters

appearing most often in the snapshot, especially in the times away from an event onset,

represent the clusters corresponding to the normal behavior of data. The noisy samples that

do not fit into any core micro-clusters are not represented in this figure. We can observe the

sudden appearance of numerous new clusters in the 3 minute time spans before the onset of

each event. This increase in the number of newly formed clusters is visibly a powerful sign

for detection of an onset. Furthermore, it is noticeable that abnormal clusters appear far

more sparsely at normal intervals of data. Confidence windows introduced in section 3.3.2
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Figure 3.3: Correlation of heart rate variability signal and reconstruction error in a time

span containing multiple onsets of Bradycardia related to infant 7.
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Figure 3.4: Example of online clustering in an interval of data from infant 7.

help in tuning the sensitivity of our model to these appearances.

The next experiment is used to analyze the impact of confidence window size (K) on the

performance of our model and its results are outlined in Figure 3.5. In general, as we increase

K, the earliest time to prediction decreases as the model has to wait for k windows to decide

whether to generate an alarm or not. Moreover, with an increase of K the recall goes down

and the specificity increases, meaning that the number of false alarms decreases, however,

it comes with the cost of losing detection of some events. If we observe closer, for K > 2

to K < 7 we can see a stable performance. This is because having K > 2 ensures that a

single appearance of an abnormal window does not generate an alarm. Furthermore, K < 7

corresponds to around 2 minutes before an event onset (recognizing the size of windows and

their overlap used), which coincide with the time the main changes in signal is expected

to happen [82]. We can also observe that AUC score is pretty stable as this metric is not

dependent on our cut-off threshold (50% abnormal observations in a confidence window)

and mainly measures how well our model can assign distinguishable scores to positive and
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negative labels.

Figure 3.5: Comparison of evaluation metrics using different confidence windows

Table 3.1 reports AUC score and earliest time of prediction of our model using confidence

window of size 5 for all 10 infants, achieving an average of 67.7% AUC and 1.29 minutes

time difference between model alarm trigger and actual event onset. As expected, the results

from our unsupervised model are lower than the supervised model introduced in an initial

study of this dataset [82], achieving an average AUC score of 79%. However, our model

shows the possibility of achieving competitive results with an unsupervised approach which

is advantageous in the healthcare setting that labels are generally missing. This is while

the supervised model relies on the observance of multiple negative events per infant in the

training phase.

In the last experiment, we study the semi-supervised variant of our model and its impact

on anomaly detection performance. To this end, we consider the addition of 10, 40, and 70

percent of labeled data to our model in the training stage and we perform the testing on the

last 30% chunk of data as before. Mean AUC scores achieved from these models are reported
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Table 3.1: Results of our unsupervised model for all the subjects

Infant Id 1 2 3 4 5

AUC score 0.71 0.65 0.61 0.68 0.63

Forecast time to onset (min) 0.87 1.31 1.24 1.42 1.28

Infant Id 6 7 8 9 10

AUC score 0.69 0.77 0.67 0.63 0.72

Forecast time to onset (min) 1.34 1.46 1.42 1.33 1.23

Table 3.2: Comparison of results from unsupervised and semi-supervised models with various

labeled samples percentages.

Percentage of labeled samples 0% 10 % 40% 70%

Mean AUC score 0.68 0.73 0.75 0.76

in Table 3.2. As it can be inferred, the model is able to increase the prediction performance

by 5% after observing only 10% of available labeled data. We can also observe that the

performance gain between the scenarios when 40% and 70% of labeled data is available

decreases significantly. These results suggest that few labeled samples can effectively guide

the model toward the correct tagging of clusters.

3.5 Conclusion

In this study, we presented a framework for early detection of negative events from health

signals. There are a number of improvements and extensions that can be considered when

applying this framework to larger scale problems and for longer periods of time. Firstly,

as the normal behavior of signal can change and drift over time, it is necessary to update

clusters related to the normal signal behavior in a timely manner. For this aim, clusters
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can be regularly updated in an offline manner by recording the latest event-free intervals of

signal or be updated online in intervals when no negative event happens. Moreover, in this

study, we have not used the time decay on micro-clusters. This feature can be beneficial

in capturing the time-related changes in the signal as well. Finally, the real-time clustering

approach can be further optimized as calling the DBSCAN algorithm at each time a new

point is added to the model can deliver sub-optimal performance.
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CHAPTER 4

Heterogeneous Information Networks for Integrative

Modeling of Health Records

Electronic Health Records(EHR) provide key information regarding an individual’s health

history which is essential in the design of an integrative pervasive health solution. However,

EHR data is very high-dimensional, sparse, and structurally complex which pose major

challenges to its modeling and integration into other systems. In this chapter, we intro-

duce HeteroMed that represents entities and rich relationships in an EHR as a heteroge-

neous information network. HeteroMed automatically assigns each record to a type-aware

feature embedding vector which allows for straightforward handling of missing values and

heterogeneity of data. It also exploits metapaths to capture higher level and semantically

important relations contributing to a specific prediction goal. Furthermore, it employs a

joint embedding framework to tailor clinical event representations to the disease diagnosis

goal. To evaluate the effectiveness of HeteroMed, we study it in the context of the diagnosis

prediction task and show its superior performance compared to existing EHR modeling and

diagnosis prediction approaches.

4.1 Introduction

Building predictive models for Electronic Health Records (EHR) requires suitable extrac-

tion of representative information available. Recognizing the high dimensionality of EHR

data, commonness of missing values, and the need for extensive clinical knowledge to apply

manual feature engineering, a recent group of studies have employed unsupervised represen-
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tation learning of clinical events, patients, and visits [48, 52, 53, 62]. As discussed before in

section 2.3, these methods that are mostly inspired by Med2vec [48], consider co-occurrence

of clinical events in different patient records to extract latent embeddings of these entities.

However, representations learned are general and not tailored to the prediction goal. More

importantly, none of the above-mentioned approaches can capture the rich structure of EHR

data and semantics of various relations it contains. This information makes a great contri-

bution to the prediction task and a desirable model should be able to capture and reflect

it into the learned representations. Therefore, any adopted EHR modeling approach should

achieve two main goals:

• properly capture structure of EHR data and semantic of relations; and

• learn representations suitable for the prediction goal.

To address these requirements and shortcomings of prior models, we propose an EHR model

based on Heterogeneous Information Network (HIN) [100]. These information networks that

offer definition of various types of nodes and relations, have gained lots of attention in recent

years due to their ability in distinguishing and learning the different semantics of relations

among entities [193] and can be profoundly beneficial to better express the rich network of

patients and clinical events in the EHR data.

We demonstrate how EHR can be translated into an HIN and introduce our node extrac-

tion strategies from different formats of data (e.g., raw text, numerical, categorical) present

in EHR. We further show benefits of employing metapaths [100] to introduce composite re-

lation semantics into our network and capture the informative ones for the prediction task.

This allows our model to learn similarity of clinical events and patients with respect to se-

mantically important paths rather than random sampling strategy used in prior skip-gram

based diagnosis studies. To train the model, we employ an unsupervised heterogeneous em-

bedding model [66] to learn representations of clinical events of the network and further

tailor latent embeddings to diagnosis prediction goal by jointly training a supervised em-

bedding model similar to [47]. While our diagnosis prediction model only utilizes diagnostic
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information for reasoning the disease, we propose exploiting the treatment information at

the time of unsupervised representation learning to improve learned embeddings and capture

similarity of clinical events in terms of outcome. Apart from relation-aware modeling and

tailored representation learning, HINs also offer the advantage of straightforward handling

of missing values, which is a common challenge in clinical data modeling.

In this study, we conduct model experiments on the task of diagnosis prediction and

demonstrate that employing HIN for modeling EHR outperforms state of the art models

in two levels of general disease cohort and specific diagnosis prediction. We also conduct

two case studies to qualitatively reveal the strength of HeteroMed in capturing relations in

clinical data which are validated by a clinician.

4.1.1 Contributions

In short, contributions of this study are: 1) We propose HeteroMed, an HIN-based medical

model which captures the semantics of clinical entities and relations and learns record em-

beddings tailored for an aimed prediction task. To the best of our knowledge, this is the first

study to use Heterogeneous Information Network for modeling clinical data. 2) We demon-

strate how EHR data can be translated into an HIN to achieve optimal learning power. 3)

We empirically show superior performance of HeteroMed compared to prior methods in the

diagnosis prediction task at two levels of exact diagnosis code and general disease cohort. 4)

We qualitatively demonstrate that HeteroMed outperforms the baseline models in capturing

relations and similarities of clinical events.

4.2 Background

Heterogeneous Information Networks [100] are different from homogeneous ones in their

ability of representing multiple types of nodes and relations. This capability has attracted

lots of attention in different applications such as personalized recommendation [194] and

malware detection [116]. Due to the large size of real-world networks and sparsity of data,

43



representing nodes as a low-dimensional vectors is a widely adopted approach in network

mining. Network representation learning techniques in general are inspired by word2vec [158],

among which DeepWalk [174], LINE [206], and Node2vec [94] have been utilized in many

network mining researches. Recent studies have adopted similar techniques for heterogeneous

network representation learning [42, 66, 47]. They include the heterogeneity of nodes in the

definition of relations and neighbors. Furthermore, it is demonstrated in [47] that a joint

embedding approach in heterogeneous node representation learning can lead to improved

supervised task performance. In this study, we employ heterogeneous network embedding

alongside with the joint learning framework to learn clinical event representations.

4.3 Methodology

In this section, we first put forward the problem definition and terminology used in the study.

Then, we introduce how EHR can be viewed as a heterogeneous network and discuss network

construction techniques. Lastly, we discuss the training and prediction models adopted for

our disease diagnosis task.

4.3.1 Problem Definition and Clinical Terminology

Each record in EHR data is conventionally called a clinical event. A clinical event e can be

viewed as a triple: e = (t, n, v) where t, n, and v respectively denote type, name, and value

of it. Glucose level of 60 is an example of a clinical event that has type = laboratory test,

name = Glucose, and value = 60. Clinical events type may or may not have a value based

on their type.

Furthermore, the set of clinical event types in EHR, denoted as t1, t2, . . . , t|T | ∈ T , can be

broadly viewed as union of two main categories: T = DIAGNOSTIC ∪ TREATMENT

where DIAGNOSTIC = {laboratory test, symptom, age, gender, ethnicity, microbiology

test} and TREATMENT = {prescription, procedure, diagnosis}. Diagnostic clinical events

are the source of information for disease diagnosis. This is while clinical events in treatment
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Figure 4.1: EHR heterogeneous network schema.

category happen after the diagnostic process and should not be directly used for diagnosis

prediction.

We represent clinical events for a patient p as E(p) = {E1(p), . . . , ET (p)} where Et(p)

denotes all clinical events of type t recorded for p. Consequently, the problem of disease diag-

nosis is formulated as prediction of p’s diagnosis clinical events (Dp), denoted as Dp = [Et(p)|

t = diagnosis], given the diagnostic clinical events of p: {Et(p)| t ∈ DIAGNOSTIC}. Due

to the large size of all possible diagnoses in EHR data, we define diagnosis prediction as

a ranking problem such that top results of prediction model should ideally match the real

diagnosis set (Dp) for patient p.

4.3.2 EHR from a Heterogeneous Network Point-of-View

Multiple types of clinical events and their various types of relations can be intuitively viewed

as a heterogeneous network.

Definition 4.3.1. Heterogeneous Information Network is defined as a graph G = (V,E) in
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which nodes and links between them can have various types. Nodes are mapped to their type

by a node mapping function gv : V → A where A is the set of all node types and similarly a

link mapping function ge : E → R maps links to their type where R is the set of all possible

link types. By definition we have |R| > 1 or |A| > 1. Furthermore, SG = (A,R) denotes the

network schema.

Different patients and clinical events form the nodes of our clinical heterogeneous network.

The type of a node in this network is defined by the type of the clinical event mapped to

it. Moreover, links of the network are designed based on the basic EHR relations which are

mainly between a patient and a clinical event (e.g., patient’s relation to his laboratory tests

or symptoms). Figure 4.1 shows the abstract schema of the network illustrating node types

and basic links. The figure also specifies if nodes belong to the treatment or diagnostic type

category.

To further enrich the network with semantics of relation in EHR, new compositional

relations can be defined using Metapaths [42].

Definition 4.3.2. Metapaths in HIN define higher order relations between two node types.

Having the network schema SG = (A,R), a metapath schema is represented by its node and

edge types connections: A1
R1−→ A2

R2−→ ...
Rm−−→ Am+1.

A metapath is considered as a new link in the network and is added by creating a

new connectivity between start and end nodes of any path matching the metapath schema.

Metapaths allow our network to better learn the semantics of similarity among nodes. For

instance, patient→ symptom ← patient can capture relation of patients in terms of experi-

encing similar symptoms.

4.3.3 Construction of HIN from Clinical Events

In this section, we introduce the proper modeling approach for construction of HIN from

EHR data and our technique in extraction of some clinical events from raw text.

In general, having a clinical event e = (t, n, v), it can be mapped into a node of type t
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with identification of (n, v). For instance, a Glucose level of 60 can be mapped to a node

of type laboratory test and identified by (Glucose, 60). However, in many cases, different

values of a unique clinical event convey identical semantic in terms of disease prediction. For

instance, various numerical measurements in many laboratory tests are considered the same

as long as they fall into one of the normal or abnormal ranges. Therefore, a proper modeling

strategy should map clinical events with duplicate diagnostic semantic into the same node

as failing to do so can negatively affect the power of the model in capturing similarity of

nodes. Having this in mind, following steps are taken for mapping clinical events to nodes.

Procedure and diagnosis clinical events are mapped based on the icd-9 coding system [18].

For each laboratory test, its name coupled with a reported flag which can be either normal or

abnormal is considered as a unique node. The same strategy is employed when dealing with

microbiology tests, where flags can be sensitive, resistant, or intermediate. Moreover, the age

of patients is classified with threshold 15, 30, and 64 based on a statistical analysis of adverse

events in different age groups studied by [146]. Finally, gender, ethnicity, and prescription,

which are categorical events, are easily mapped by their unique category names.

Symptom Extraction

For extraction of symptoms that are commonly found inside raw-text clinical notes, we

employed Autophrase [192] which is a novel phrase mining technique that learns high-quality

phrases from a large corpus and allows for incorporating domain-specific knowledge bases

for achieving highly domain-relevant results. We feed Autophrase with a pool of clinical

phrases that are generated from two main sources: (1) Medical Subject Headings (MeSH)

1 vocabulary treasure which contains 90,000 medical entry terms, and (2) the ICD-10 2

medical coding database. Quality phrases for symptoms are extracted from MeSH “signs

and symptoms” category, code C23 and ICD-10 Chapter XVIII. We also run some final

filtering steps on results of Autophrase to drop phrases that include measurements, adverbs,

1https://www.nlm.nih.gov/mesh/

2http://www.who.int/classifications/icd/en/
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or symbols as they do not contribute to our diagnosis goal.

Having all nodes constructed, their connections are added based on schema in Figure 4.1

and selected metapaths are discussed in following sections. One of the advantages of HIN

is that missing values in EHR only lead to the absence of some links and does not require

further missing value management methods.

4.3.4 Heterogeneous Network Embedding for Clinical Events

Given the rich clinical information network, learning a latent and low-dimensional embedding

of clinical events that can capture their internal relations is greatly beneficial for further

analysis tasks. Inspired by the success of skip-gram [159] in learning latent word embeddings

from the context of words in a corpus, most of homogeneous network embedding techniques

[206, 94] rely on neighbor prediction paradigm. In this approach, given a network G = (V,E),

and an embedding function f : V → Rd that maps each node to a d dimensional vector, the

objective is to maximize the probability of observing neighborhood of a node v, denoted as

N(v), conditioned on its representation f(v) [94].

argmax
f

∏
v∈V

∏
c∈N(v)

Pr(c|f(v))

where the probability Pr(c|f(v)) is defined as a softmax function, normalized with respect

to representation of all network nodes.

To exploit the rich structural information of EHR data and enrich semantics of similarity

among different nodes, we employ an extension of above paradigm to heterogeneous networks

that incorporates variety in node types and metapaths in the definition of node neighborhood

and the objective function [47, 66]. In particular, with presence of multiple node types,

neighborhood of a node v is defined as N(v) = {N1(v), N2(v), ..., NT (v)} where Nt(v) denotes

type t neighbors of v and T is the number of node types.

Moreover, having multiple types of paths leaving a node (simple or metapath), the neigh-

bor prediction probability function Pr(c|f(v)) should be also conditioned on the type of

path used. Specifically, the probability of visiting a neighbor c of a node v under path r with
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schema V1 → ...→ Vl, is defined as:

Pr(c|f(v), r) =
exp(f(c) · f(v))∑

u∈Vl
exp(f(u) · f(v))

As computation of above probability is very expensive in large networks, negative sampling

[159] is employed to achieve following objective function:

Pr(c|v, r) = log σ(f(c) · f(v)) +
m∑
1

Eul∼Pl(ul) log σ(−f(ul) · f(v))

where m negative sample nodes are drawn based on their node degree and from nodes having

the same type as r destination type (Vl). Therefore, a training step randomly samples a path

schema r and two nodes v and c connected under r, along with m negative sampled nodes

and employs Stochastic Gradient Descent (SGD) to update their embeddings. The tuple

(v, c) is sampled based on the normalized number of links under the path r over each node

tuples.

Although treatment clinical events should not be directly used in the diagnosis prediction,

they can be profoundly beneficial in the unsupervised embedding model for capturing similar-

ity of diagnostic clinical events in terms of consequent treatment. For instance, by including

prescription and the metapath symptom ← patient → prescription, into the embedding

model, it can learn similarity among symptoms that lead to the same prescription. There-

fore, for training the unsupervised embedding model, we first select the set of advantageous

treatment nodes to be added to the embedding model by evaluating the performance-gain

obtained from each or combination of them. Next, among many possible metapaths, we

select candidate paths mainly from those that link a diagnostic event to a treatment one

through a patient (such as the one above). We also compare candidate metapaths in terms

of performance-gain when they are added to the network separately and incrementally and

select the best configuration.

4.3.5 Diagnosis Prediction

When node embeddings are present, the process of diagnosis prediction for a new patient

involves construction of the patient’s representation based on his clinical events and ranking
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Figure 4.2: Diagnosis prediction flow.

diagnosis codes according to their dot product similarity to the patient’s representation. Fig-

ure 4.2 shows the overview of the prediction flow. Given a patient p, his type t neighborhood

(Nt(p)) can be summarized into a latent embedding (ft(p)) by averaging its members:

ft(p) =
∑

n∈Nt(p)

f(n)

|Nt(p)|

Having clinical events of p grouped into latent type embeddings (ft(p)), a representation for

p can be intuitively achieved by aggregating them, but with different weights for each type

(wt) to capture importance of the type in diagnosis prediction.

f(p) =
∑
t

wtft(p)

Finally, a diagnosis d is scored and ranked by a dot product similarity between p and d

embeddings: s(d, p) = f(d) · f(p).
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4.3.6 Supervised Node Representation Learning for Diagnosis Prediction

The heterogeneous network embedding model discussed in section 4.3.4, does not have a

direct guidance for learning representations that are specifically suitable for disease diagno-

sis aim and learns a general knowledge of the network. To add such guidance and provide

diagnostic knowledge to the model, following [47] we employ the diagnosis prediction flow

discussed in section 4.3.5 as a supervised embedding process and jointly use with the unsuper-

vised model at the time of representation learning to tailor embeddings to disease diagnosis

goal.

Recalling computation of prediction score from section 4.3.5, which is defined for a tuple

of diagnosis d and patient p, we have:

s(d, p) = f(d) · f(p) = f(d)
∑
t

wtft(p) = f(d)
∑
t

wt

 ∑
n∈Nt(p)

f(n)

|Nt(p)|


We can employ a hinge loss ranking objective for the triple (p, d, ∼ d) to update node

embeddings (f) and node type weights (wt) defined as:

max(0,−s(d, p) + s(∼ d, p) + σ)

where d and ∼ d are positive and negative sampled diagnosis for p and scores s(d, p) and

s(∼ d, p) are calculated for them respectively.

To jointly learn embeddings, objectives of the two supervised and unsupervised models

( Zsupervised, Zunsupervised) are combined to form the joint objective as:

Zjoint = ω · Zunsupervised + (1− ω) · Zsupervised + λ
∑
n

‖f(n)‖22

where ω ∈ [0, 1] is a pre-defined parameter for tuning importance of either models and a

regularization term is added to prevent over-fitting of learned representations.

Therefore, a training step in the joint representation learning model works as follows.

We draw one of the embedding models based on Bernoulli(ω). If the unsupervised model is

drawn, its objective function is used on a mini-batch of randomly drawn triples (r, v, c) and
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Table 4.1: MIMIC tables used in this study.

Table name Main Columns Description

patients icd gender, DOB, ethnicity Name and demographic information of patients

procedures icd icd9 code Procedure events such as brain monitoring, tubing, injection

prescriptions generic drug name Drugs prescribed in each admission

microbiologyevents spec itemid, interpretation Microbiology tests and their sensitivity level; eg. fungi, bacteria

labevents itemid, flag Laboratory results and their flag (normal, abnormal); eg. Blood Glucose

Diagnosis icd icd9 code Prescribed diagnosis codes.

noteevents Category = D̈ischarge Summary¨ Raw text notes recorded by nurses which includes symptoms and other

clinical information collected on admission time.

m negative samples to update representations. Otherwise, the supervised objective is used

for a mini-batch of drawn triples (p, d, ∼ d) to update type weights (wt) and representations

(f). Negative samples are drawn in both cases from a unigram distribution based on node

degree [159].

4.4 Experiments

In this section we evaluate HeteroMed through three sets of experiments. First, it is evaluated

under different design configurations. Then its diagnosis prediction performance is compared

to various baseline models and finally it is quantitatively evaluated through two case studies.

4.4.1 Dataset

Experiments of this study are conducted on the publicly available Medical Information Mart

for Intensive Care III (MiMIC III) [125] dataset. It contains a comprehensive clinical data

for forty thousand patients admitted to the ICU department of BIDMC hospital during

11 years. The MIMIC dataset is organized into 26 tables containing clinical event records

for each admission to the ICU and other general information such as definitions of clinical

terms. Table 4.1 lists utilized database tables alongside with main columns used and a short

description for each table. In this study, each admission of an adult subject (aged 15 years
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Table 4.2: Node statistics for the HIN network.

Node Type abbreviation Train Test

Patient stay pati 36641 10000

Procedures proc 1673 746

Prescription pres 6000 3523

Microbiology micro 212 63

Laboratory lab 1870 1045

Diagnosis diag 5605 2745

Symptom symp 1602 435

Gender gen 2 2

Age group age 3 3

ethnicity eth 40 32

or older) to the hospital is considered as a sample and called a patient stay. Few subjects

with multiple ICU stays in a single hospital admission were excluded due to the insufficiency

of diagnosis information provided for them in MIMIC.

Following these steps, we obtained a sample set of 46,641 patient stays from which 10,000

were randomly sampled for the test set and 36,641 remaining for the training set. The

heterogeneous network was then constructed with the strategy discussed in section 4.3.3

using our train set. Table 4.2 lists statistical details for nodes of this network.

Furthermore, in addition to 9 length one basic links of the network, 9 other candidate

metapaths were selected. Table 4.3 lists both types of paths with their frequency in the

constructed network. As patient node is a central hub in our metapaths, each path is denoted

only by its start and end node types. (e.g., lab-symp denotes the laboratory test← patient

→ symptom metapath).
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Table 4.3: Edge statistics for constructed network.

simple links count metapaths count

pati-proc 94,452 lab-diag 1,155,278

pati-pres 757,195 symp-diag 261,861

pati-micro 19,768 lab-proc 341,907

pati-lab 1,948,360 lab-pres 770,297

pati-age 36,641 symp-pres 223,666

pati-diag 292,473 symp-proc 63,424

pati-symp 307,325 lab-symp 214,356

pati-gen 36,641 micro-lab 14,394

pati-eth 35,342 micro-symp 8,696

4.4.2 Evaluation Strategies and Implementation Details

In this study, disease diagnosis is conducted in two levels. First, exact diagnosis code pre-

diction as a ranking problem and second general disease cohort prediction as a multi-label

classification problem which are evaluated with MAP@k and AUROC score respectively.

MAP@k is a metric widely employed in information retrieval and reports the mean of aver-

age precision at k (AP@k) over all test samples. In this study, having a ranked diagnoses list

returned by the prediction model, AP@k shows the averaged precision over all the positions

in the list that the diagnosis is correct and has index less than k.

AUROC is a goodness of binary prediction metric based on different cut-off thresholds

on classifier prediction score. Here, AUROC is computed for each of disease cohorts based

on the scores computed by our supervised prediction model and baselines for each cohort.

For training HeteroMed and learning node embeddings, a mini-batch of 500 patients

has been used at each training step with embedding vector size of 128. The unsupervised

embedding model is selected with 4 times higher probability than the supervised model

when performing the joint representation learning. Furthermore, each step of unsupervised
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Figure 4.3: Treatment node selection evaluation.

approach draws 100 negative diagnosis samples for each patient based on the diagnosis node

degree.

4.4.3 Evaluation of Proposed Method

In this section, we demonstrate experimental results of evaluating performance of HeteroMed

under different metapaths and node selection configurations.

Treatment Node Selection

In this part, we evaluate performance-gain obtained, when each or a combination of treatment

nodes (proc, pres, diag) are included in the network of unsupervised embedding model.

Figure 4.3 illustrates the comparison to the baseline performance in which the network only

contains diagnostic nodes.

We can observe that among treatment nodes, “diagnosis” show a great advantage to

be added to the unsupervised embedding process. This is partly due to the fact that any

improvement in diagnosis node embeddings directly impacts performance of diagnosis predic-

tion. Procedure and prescription nodes also impact the performance in a positive way. This
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Figure 4.4: Metapath selection evaluation. Red line denotes additive performance and blue

bars denote single path performance.

is while they are not included in the prediction step of diagnosis. Results of this experiment

confirm the advantage of utilizing the whole set of available information in the unsupervised

representations learning process.

Metapath Selection

In the second part of this experiment, we evaluate performance-gain obtained by using

selected metapaths listed in Table 4.3. The results are elaborated in Figure 4.4. The blue

bars in the figure show the performance for each metapath when added separately to the

baseline and are sorted in descending order based on this measure. The red line, however,

evaluates performance when these paths are accumulated incrementally to the model. Results

of this experiment indicate that the combination of 4 first metapaths (lab-diag, symp-diag,

lab-symp, lab-pres) provides us with the optimal performance for the disease diagnosis goal.

This is while adding more paths leads to a gradual performance drop. This observation

further clarifies the significant advantage of metapath-based neighbor sampling rather than
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the random neighbor sampling used in prior medical domain studies.

Based on these results, the model used in all succeeding experiments employs all treat-

ment nodes and the four above-mentioned metapaths in its representation learning process.

4.4.4 HeteroMed Compared to Other Diagnostic Models

To further assess our model, we compare its diagnosis performance to selected state of the

art models in two levels. First, when exact disease codes are to be predicted and second

when disease cohorts are desired.

Exact Code Prediction

In this experiment, we try to rank exact disease codes for a patient stay. In this part, we

compare HeteroMed only to embedding based models as the size of diagnosis codes is too

large to be predicted by a supervised classifier. The baseline models in this task are:

Med2vec: Med2vec [48] is a multilayer medical embedding neural network which learns

embeddings of medical events and visits using an approach inspired by word2vec. We

modified the last softmax layer of this model to predict diagnosis codes for the current

visit as the model originally predicted disease codes for last or future visits. Represen-

tation sizes in this model are chosen to be of size 100.

Skipgram-embedded: We use word2vec (skip-gram) to learn network node representa-

tions similar to the way it is employed in prior studies. In particular, all clinical events

associated with an admission are considered as words and are concatenated to form

sentences. The window size is set to the maximum length of sentences so that all

clinical events (words) in an admission (sentence) can be sampled as neighbors. Node

representations learned are fed into the supervised prediction model (section 4.3.5) to

score diagnoses and rank them.

HeteroMed-embedded: We learn node embeddings by only employing the unsupervised
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Table 4.4: Comparison of HeteroMed model to baselines for exact code prediction.

Model Name MAP@3 MAP@5 MAP@10

Med2vec 0.75 0.78 0.79

Skipgram-embedded 0.73 0.76 0.77

HeteroMed-embedded 0.78 0.79 0.80

HeteroMed 0.81 0.85 0.87

Table 4.5: Similarity search results.

Diabetes Cold Anemia (lack of blood)

HeteroMed skipgram HeteroMed skipgram HeteroMed skipgram

peripheral neuropathy dietary change general pain fever fatigue weight loss

sleep apnea tightness fever sick contact malaise allergy reaction to iron

leg tingling confusion chill constipation heart palpitation penile discharge

urinary frequency speak difficulty sore throat muscle pain itchy skin sick contact

ulcers nausea swelling recent travel bloody stool shortness of breath

dietary change rash allergy limb pain bruising stuffy nose

burning fever tightness urinary changes abdominal pain leg tingling

abdominal pain mental status change sinus congestion cough nausea suicidal attempt

thirst numbness cough stiff neck chills abdominal pain

itchy skin sleepiness blurred vision runny nose cramps jaundice

representation learning approach introduced in section 4.3.4. We use the same set of

metapaths as the main model for this aim. As the previous method, the supervised

diagnosis model is then used to rank diagnoses.

Disease Cohort Prediction

Icd-9 diagnosis coding provides 20 code groups that correspond to 20 high level disease

cohorts. In this part, we aim to predict all disease cohorts that a patient is diagnosed

with. Having multiple diagnosis codes for a patient stay, different groups of diseases may be

involved which turns the problem into a multi-label classification. When training our model
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for cohort prediction, only 20 disease nodes are constructed for the network and each disease

code of patient is mapped to one of these nodes. Furthermore, in prediction time, scores for

all 20 diagnosis nodes are computed to be evaluated. The baseline models are listed below:

Shallow supervised models: We use feature engineering along with common shallow

models, from which Random Forest provided best results. We extracted the same

features suggested by [177] but only from tables used to construct our network.

Deep Mimic Model: We finally compare our results to the ones from mimic learning

model [46] which employs a deep neural network alongside with a Gradient Boosting

Model for prediction of icd-9 diagnosis code groups.

Results

The exact code prediction evaluation is depicted in Table 4.4. As the results suggest,

HeteroMed outperforms all the baseline models in exact diagnosis prediction. The out per-

formance of HeteroMed-embedded model compared to skipgram-embedded model, reveals

superiority of relation-aware embedding approach employed in this study to the skip-gram

used in conventional clinical models. Furthermore, the Med2vec model outperforms the

Skipgram-embedded model although they are both trained based on skip-gram embedding.

This can be due to the fact that Med2vec incrementally updates the embeddings with back

propagation in its model. However, it sill falls behind HeteroMed that employs a relation-

aware embedding approach.

Results of the disease cohort prediction are illustrated in Figure 4.5. We can observe

that HeteroMed performance exceeds baseline models in almost all code groups. In general,

performance in some groups are lower than the others which generally corresponds to those

diagnosis groups that are sparser in the MIMIC dataset.
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Figure 4.5: Disease cohort prediction evaluation.

4.4.5 Case Studies

In this section, we qualitatively evaluate modeling of EHR data using HeteroMed and validate

sensibility of learned clinical event representations. First, we perform a similarity search to

find relevant symptoms to three common diseases. We then review results of a sample

prediction case. In both experiments, we compare the results to the Skipgram-embedded

model introduced in the last section.

Table 4.5 lists top ten related symptoms and observations to three common clinical

conditions: Diabetes, Cold, and Anemia. A dot product similarity has been employed to

generate these results. To achieve better vision for comparison, results are validated by a

clinical expert and relevant symptoms are shown in bold format. Recognizing the fact that

symptoms can have hidden and complex relations to diseases, only directly related symptoms

to each condition are considered as relevant.

Results of this experiment confirm the validity of learned representations by our model.

Moreover, we can easily observe that HeteroMed ranks relevant symptoms higher than the
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Table 4.6: Comparison of sample prediction results for a patient and real diagnosis codes.

Star sign shows that the predicted code is not present in the ground truth codes.

Ground truth Category Skipgram HeteroMed

4282 Circulatory system 2875 4273

4254 Circulatory system 3970 4282

2875 Blood organs 6841∗ 4583

4273 Circulatory system 281 2832∗

3970 Circulatory system 7217∗ 2875

5303 Digestive system 427∗ 4254

4280 Circulatory system 4583 530∗

281 Blood organs 4273 260∗

4583 Circulatory system 2501∗ 281

Skipgram-embedded model and is vividly stronger in understanding relations of symptoms

to diseases. One may notice that the intersection among results of two models is small.

The large number of symptoms and the fact that a single complication can be described in

multiple ways are the main reasons for this observation. For instance, leg tingling, numbness,

and peripheral neuropathy can all refer to a similar complication caused by diabetes.

Table 4.6 shows a sample admission with 9 real diagnosis codes along with the 9 top-

ranked predicted codes by each model. Wrong predictions are denoted by a star sign (∗) on

the top right corner. Furthermore, the main category of each disease code in ground truth

is specified to provide better understanding of codes. The two methods rank a number of

wrong codes in their first 9 predictions. However, the superior performance of HeteroMed is

noticeable in two aspects. Firstly, we can observe that HeteroMed is able to detect all disease

categories of the ground truth, although not predicting exact diagnosis codes. For instance,

HeteroMed ranks the code 530, which is not present in ground truth, in its top 9 predicted

codes. However, this code is a more general indication of the code 5303 in the ground truth

and both show a digestive system disease with different specificity. This is while the top

61



diagnosis codes ranked by Skipgram-embedded model do not cover this disease category.

Secondly, all the top-ranked codes by HeteroMed are related to disease categories that are

present in the ground truth. However, some of the diagnosis codes that are ranked high by

Skipgram-embedded model are outside the ground truth disease categories. For instance,

the code 7217 which relates to connective tissue diseases is ranked 5 by Skipgram-embedded

model, while this disease category is not present in the ground truth.

4.5 Conclusion and Future Work

In this paper, we study the problem of disease diagnosis from a patient’s diagnostic records

available in EHR data. We propose modeling of clinical events as a heterogeneous infor-

mation network, HeteroMed, to address shortcomings of previous methods pursuing same

goals. Existing studies ignore the rich structure and relations in EHR data when learning

representations of clinical events. HeteroMed is capable of capturing informative relations

for the diagnosis goal and use the best relation sampling strategy when learning clinical event

representations. It also allows for easy handling of missing values and learning embeddings

tailored to the disease prediction goal using a joint embedding framework. Result of our

study shows that HeteroMed can achieve significantly better results in diagnosis task and

finding clinical similarities. This in turn confirms the benefits of employing heterogeneous

information network in modeling clinical data.
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CHAPTER 5

Hierarchical Target-Attentive Clinical Prediction using

Heterogeneous Information Networks

In this chapter, we aim to extend our previously introduced approach in EHR modeling,

HeteroMed (chapter 4), to achieve more integrative and target-aware modeling of patients’

health records. In HeteroMed and existing studies relying on automatic EHR representation

learning, record representations are often learned and aggregated without specificity for the

target being predicted. Our model introduces a hierarchical attention mechanism that allows

it to learn to attend to the most important clinical records for prediction of a specific target.

Additionally, we propose a method for integrating non-categorical data such as real-time

time-series data into our model which is essential in pervasive health solutions.

We evaluate our model using a publicly available benchmark EHR dataset on diagnosis

prediction tasks and demonstrate that the use of target-aware attention significantly improves

the performance compared to the current state of the art. We also demonstrate that the

addition of time-series data leads to further performance improvements. Lastly, we show

that the predictions made by our proposed model are easily interpretable.

5.1 Introduction

In this study, we revisit the problem of integrative health data modeling and take the di-

agnosis prediction as our target task. When mining EHR data, one recent approach for

addressing the challenges of heterogeneity and sparsity of records has been unsupervised

record embedding. As discussed in section 2.3, Med2Vec [48], as well as successive studies
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such as [49] and HeteroMed (chapter 4), use skip-gram [52] based techniques to learn latent

representations for health records based on their co-occurrence relations. In these studies,

predictions are commonly made by training supervised models on patient representations,

which are obtained by aggregating the representation vectors of the items in a patient’s

health records.

One shortcoming in these past works stems from the relatively simple aggregation process

they use, in which they treat records with equal importance regardless of what diagnosis is

being predicted. Taking diabetes and kidney failure as an example, we can see how this is an

issue: prior models generate a single patient representation by combining records with fixed

weights, which is then used for the prediction of both diagnoses; however, the importance

of tests should vary based on the diagnosis being predicted, with blood glucose levels being

more important than blood albumin levels when predicting diabetes than when predicting

kidney failure and vice versa.

Another shortcoming of these past approaches is that the predictions generated by these

models are not easily interpretable, with no way for an end user to understand how the

model arrived at its conclusion. Lastly, past approaches only make use of records whose

values can be mapped to distinct categories, leaving out other important information such

as time series data obtained from continuous monitoring of vital signs.

Inspired by the very recent success of attention mechanisms in network embedding [240,

117, 213], we propose HTAD, a novel approach for modeling EHR data that leverages hierar-

chical attention, to overcome these shortcomings. HTAD produces diagnosis-aware patient

representations, as well as explainable predictions. We also suggest how non-categorical

data, in particular, time series data, can be integrated into HTAD.

Considering EHR in the context of Heterogeneous Information Networks (HIN) with pa-

tients and records mapped to network nodes, our model’s goal is to aggregate a patient’s

neighborhood such that the obtained representation is tailored to the prediction of a specific

target diagnosis. Recognizing heterogeneity of nodes, we perform the neighborhood aggre-

gation at two levels: first, at node-level and among nodes having similar type to obtain a
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set of type representations, and then at the type-level to achieve a comprehensive patient

representation. In node-level aggregation, we propose employing a target-aware attention

mechanism to learn the importance of various nodes with respect to the given diagnosis.

We also show ways for the incorporation of time-series data at this level. We apply similar

attention technique at the type-level to allow the model to learn preference towards various

record types for the prediction of the specified disease. We then pass the resulting patient

representation into our objective function for prediction. Importantly, attention weights

generated in our model improve the interpretability by providing insight as to which nodes

and types the model finds most important for the prediction.

We evaluate our proposed model’s performance on two diagnosis prediction tasks: ex-

act diagnosis code prediction and high-level diagnosis group prediction, using the publicly

available MIMIC-III EHR dataset [125]. We compare HTAD to several existing models that

represent the state of the art for diagnosis prediction using EHRs. Our experiments show

that HTAD outperforms these benchmarked models on both tasks, in multiple cases beating

them by a margin of over 10%. Additionally, we evaluate our model’s interpretability, some-

thing that has not been explored in past models for diagnosis prediction that represented

patients based on their aggregated EHR embeddings.

5.1.1 Contributions

In summary, we make the following contributions in this chapter: 1) we propose Hierarchical

Target Attentive Diagnosis (HTAD), a novel approach in mining EHR data using HINs. 2)

We show how attention mechanism can be exploited in EHR network mining for the calcu-

lation and incorporation of record importance with respect to various prediction targets. 3)

We show how non-categorical data can be incorporated when mining EHR data represented

as an HIN. 5) We demonstrate that HTAD significantly improves diagnosis prediction perfor-

mance compared the state-of-the-art models. 6) We show that HTAD’s use of target-aware

hierarchical attention can provide full interpretability on its clinical decision process.
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5.2 Methodology

In this section, we present our hierarchical target attentive representation learning model for

multi-modal EHR mining using heterogeneous information networks.

5.2.1 Model Overview

Relying on the general design of HeteroMed introduced in chapter 4, we model EHR data

as a heterogeneous information network, allowing record embedding vectors to contain in-

formation on the node types and their unique relations. Similar prior patient embedding

studies, record representations are trained using an unsupervised skip-gram based approach

and the patient representation is obtained through an aggregation of neighboring record

representation vectors. However, different from prior studies where the relative importance

of various context nodes in the prediction of the target is not considered, we propose a hier-

archical target-attentive aggregation to include this information. In other words, instead of

generating a single patient representation that is then used for scoring or classification of all

target nodes, our model learns to generate a distinct patient representation for each target

node, achieved by favoring the most predictive context nodes for that specific target. The

overall architecture for our target-attentive patient aggregation is depicted in Figure 5.1.

As illustrated, we first aggregate context nodes based on their type using a node-level

attention mechanism, generating type-specific embedding vectors. The attention weights are

assigned based on the importance of the node in prediction of the diagnosis. We also present

a type-level attention layer to learn the importance of each type in predicting the target,

further helping to obtain a diagnosis-aware patient representation. Finally, to generate the

aggregated type embedding for time-series nodes as well, we replace the node-level attention

mechanism with a deep sequential model.

In the rest of this section, we provide the formal details of our proposed model. A

summary of the notations used in the following sections along with their explanations are

provided in Table 5.1.
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Figure 5.1: The architecture of the proposed hierarchical target-attentive HIN, illustrating

the aggregation of patient p’s context nodes with respect to diagnosis d.
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Table 5.1: Notation and Explanations

Symbol Explanation

hn Embedding of node n

h
′
n Transformed embedding of node n

Nt(p) Type t neighborhood of patient p

ztp,d
Aggregated embedding of nodes in Nt(p)

with respect to diagnosis d

qd Node-level attention vector for diagnosis d

sd Type-level attention vector for diagnosis d

αt
n,d

Node-level attention score assigned to node n ∈ Nt(p)

when predicting for diagnosis d

βt
p,d

Type-level attention score assigned to type t representation

of patient p, when predicting for diagnosis d

fp,d Aggregated patient p embedding with respect to diagnosis d

M Node embedding lookup matrix

Q Node-level attention lookup matrix

S Type-level attention lookup matrix

W t
c , b

t
c Transformation parameters for context nodes with type t

Wd, bd Transformation parameters for target (diagnosis) nodes

Wq, bq Transformation parameters to obtain node-level attention

Ws, bs Transformation parameters to obtain type-level attention

Wt, bt Transformation parameters for time series type embedding
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5.2.2 Problem Definition

Following the strategies introduced in section 4, each record in EHR is translated into a node

in a heterogeneous information network. Having built a network using the EHR data, we

can view the set of all nodes as a union of the target, patient, and context nodes.

Definition 5.2.1. Target/Context Nodes Target nodes are defined as the nodes for

which we want to predict if a connection exists to a given patient p node. In this study,

diagnosis nodes are considered to be target nodes. All nodes other than patient and target

are considered context nodes.

Consequently, the prediction task in an HIN representing EHR data can be defined as:

Definition 5.2.2. Clinical Prediction in an HIN Setting Given a patient p with context

nodes N(p) = {N1(p), N2(p), . . . , NT (p)} where Nt(p) denotes the type t neighborhood of p,

predict p’s target neighborhood: Nd(p) = {d1, d2, . . . , d|Nd(p)|}.

When working with diagnosis prediction task, it is important to note that many medical

ontologies, such as the ICD-9 system [18], provide a hierarchical and multi-resolution view

of diagnoses, with the highest level of the hierarchy identifying the general disease group

(e.g., cardiovascular disorders) and lower levels providing more specificity as to the exact

diagnosis. Importantly, clinicians may assign codes to a patient at any level. Therefore, the

diagnosis prediction task can be defined at two levels:

• Low-level (exact) code prediction: Due to the large size of diagnosis codes, this task

is approached as a ranking problem, with the aim of scoring positively labeled codes

higher than others.

• High-level (grouped) code prediction: In this task, we aim to predict all diagnosis

groups associated with a patient, formulated as a multi-label classification task.
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5.2.3 Target-attentive Node-Level Aggregation

As EHRs are composed of data of heterogeneous types, each node type can carry specific

semantic and diagnostic information. Therefore, we start the aggregation process of patient

p’s neighborhood by combining the context nodes based on their types, thus obtaining type

representation vectors.

As motivated in section 5.2.1, ignoring the relative importance of nodes in prediction

of a specific diagnosis and consequently making use of a single patient representation, may

impede achieving optimal diagnosis prediction performance. To address this, we leverage an

attention mechanism to generate diagnosis-aware type and patient representations. Given

a patient p, its type t neighborhood denoted as Nt(p), and a diagnosis node d with corre-

sponding embedding vector hd, the node level attention works as follows:

We first utilize a linear transformation layer, parameterized by a type-specific weight

matrix W t
c ∈ RF

′×F and bias vector btc ∈ F′
, to project p’s context nodes into a new feature

space that is more compact and expressive for attention-based node scoring:

h
′

n = W t
chn + btc (5.1)

where hn denotes embedding of context node n ∈ Nt(P ) with length F looked up from a

trainable embedding matrix M ∈ R|N |×F and h
′
n denotes the transformed node embedding

with length F
′
.

The importance of each node is then measured based on the similarity of its transformed

embedding to a diagnosis-specific attention vector qd ∈ F ′
. In the most general design, this

vector is obtained by applying a linear transformation, parameterized by weight Wq ∈ RF
′×F

and bias vector bq ∈ F′
, to the diagnosis node embedding hd, formulated as:

qd = Wqhd + bq (5.2)

where hd is the original diagnosis node embedding.

However, when working with low-level diagnosis codes, there is a significant imbalance

in their frequency in a real-world setting. Therefore, the prior approach may face trouble in
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learning attention vectors for sparser codes. As such, grouping together those with similar

diagnostic processes and allowing them to share attention vectors can improve the expressive

power of attention for sparser codes.

Following this idea and taking D
′

as the set of such a grouping with size |D′ |, qd can

be looked up from an attention matrix Q ∈ R|D
′ |×F ′

, after mapping d to one of the |D′|

diagnosis groups. Q is randomly initialized and jointly trained by the model. It is important

to note that for high-level diagnosis classification task these groups can be defined the same

as diagnosis groups we are predicting for. We refer to this approach in the rest of this paper

as group-based attention.

Having the transformed node embedding h
′
n and diagnosis attention vector qd obtained,

the importance score between them denoted as etn,d, is calculated as:

etn,d =
qd · h′

n√
F ′

(5.3)

where t shows the type of node n and division by
√
F ′ is used to scale the dot product for

improved performance, following design of the scaled dot product attention [212].

We then normalize the node importance scores using a softmax function to obtain the

attention coefficient αt
n,d.

αt
n,d =

exp(etn,d)∑
n′∈Nt(P ) exp(et

n′ ,d
)

(5.4)

Lastly, the normalized attention coefficients are used as weights for linear aggregation of

transformed node embeddings, which is then followed by a non-linearity function to form

the type embedding:

ztp,d = σ
( ∑

n∈Nt(p)

αt
n,d · h

′

n

)
(5.5)

where ztp,d denotes the aggregated embedding generated from patient p’s neighbors of type t

that is used to predict the presence of diagnosis d.
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5.2.4 Node-Level Time Series Aggregation

As discussed in section 5.2.2, the node embeddings used in the node-level aggregation process

are obtained using a shallow embedding lookup process. However, such a technique is not

usable for records kept in a time series format, as these records cannot be easily mapped

to a small fixed set of categorical values and as there would be too little sharing of nodes

between patients if each unique time series were mapped to its own categorical node.

Therefore, to incorporate such records into our proposed information network, we employ

a Long-Short Term Memory (LSTM) [106] sequential model similar to [102] to obtain the

aggregated type representation.

Formally, given a patient p and its type t neighborhood Nt(p) in which nodes have contin-

uous values, the values are first sorted by time to form a sequence St(p) = {s1, s2, s3, . . . , sT}

that is then fed to an LSTM-based recurrent neural network. Next, the hidden state of the

last LSTM cell, denoted as vt, is transformed to a vector with embedding size F
′
, forming

the type t representation formulated as:

ztp,d = Wtvt + bt (5.6)

where Wt and bt are the parameters of the transformation function. It is worth noting

that the embedding obtained is not diagnosis specific, but we have included d to keep the

type representation notation consistent throughout the paper.

5.2.5 Type-level Aggregation

After deriving the node-level aggregations on patient p’s neighborhood with respect to di-

agnosis d to obtain type embeddings Zp,d = {z1p,d, z2p,d, . . . , zTp,d}, our next step is to combine

them to generate the patient representation. Similar to nodes, the predictive power of the

different types may vary across diagnoses. For example, the diagnosis of some diseases relies

more upon the results of microbiology tests while others rely more on laboratory test results.

Therefore, we propose to use another layer of diagnosis-aware aggregation. To this end,
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the importance of each type is measured by taking the closeness of its aggregated repre-

sentation to a type-level attention vector sd. Similar to node-level attention, the type-level

attention vector can either be obtained by applying a linear transformation parameterized

by weight W s and bias bs to a disease node’s embedding, or by the group-based attention

introduced that maps d to one of the |D′| diagnosis groups and look up its attention vector

from the attention-matrix S ∈ R|D
′ |×F ′

.

The normalized attention coefficient between the aggregated type t representation (ztp,d)

and attention vector sd is defined as:

βt
p,d =

exp
sd · ztp,d√

F ′∑
z
′
p,d∈Zp,d

exp
sd · z′

p,d√
F ′

(5.7)

In the final step, the comprehensive patient representation, specific to prediction of diag-

nosis d, is denoted as fp,d and is obtained by combining the type representations as follows:

fp,d = σ
(∑
t∈T

βt
p,dz

t
p,d

)
(5.8)

5.2.6 Model Inference and Optimization

In this section, we describe how parameters and node embeddings are learned. We employ

both supervised and unsupervised learning objectives, which we will provide their optimiza-

tion details. Furthermore, recalling that our diagnosis prediction task is defined at two levels

and as classification and ranking tasks, we formulate the supervised classification objectives

separately for each of these tasks.

High-level Diagnosis Code Classification

In section 5.2.5, we explained how we obtain a set of patient representations Fp = {fp,d1 , fp,d2 ,

. . . , fp,dk} in order to predict each of the k diagnoses in D = {d1, d2, . . . , dk} for a patient p.

73



To make a prediction using these representations, we first feed them into a Multi Layer

Perceptron (MLP) that uses a sigmoid activation function on its last layer. The MLP

maps FP 7→ D and is implemented in two layers: the first one shared among all patient

representations and the second one specific to each diagnosis group.

As the task is formulated as a multi-label classification problem, we use the following loss

definition to optimize the model:

L = mean(l1, l2, . . . , lk) (5.9)

where

li = yi log σ(xi)− (1− yi) log(1− σ(xi)) (5.10)

where yi denotes the ground-truth label for diagnosis di in patient p’s records and xi is the

prediction made by the model.

Low-level Diagnosis Code Ranking

As this task is framed as a ranking problem, we rely on score calculation between a patient

and diagnoses. In particular, given a patient representation fp,d ∈ RF
′

learned with respect

to diagnosis d, we first transform d’s node embedding to the same space as fp,d. In particular,

we employ weight matrix Wd ∈ RF
′×F and bias vector bd ∈ F

′
for this aim and have:

h
′

d = Wdhd + bd (5.11)

where hd and h
′

d denote original and transformed diagnosis node embeddings, respectively.

The score of diagnosis d for patient p is then defined as the dot product between their

representations:

score(p, d) = fp,d · h
′

d (5.12)

Using this score definition, we optimize the model using a hinge loss formulated as:

max(0,−score(d, p) + score(∼d, p) + ε) (5.13)

where ∼d is a negative diagnosis sampled for this patient and ε is the hinge margin.
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Unsupervised Node Embedding

Besides the guidance of the supervised task, similar to HeteroMed we employ an unsupervised

network embedding to capture the network structure and relation of nodes. The unsupervised

model is optimized by:

logP (j|i; r) ≈ log σ(hi · hj + br) +
k∑

l=1

Ej′∼P r
n(j

′ )[log σ(−hi · hj′ − br)] (5.14)

where i is a node in the network and j is its random neighbor under the path r. Dest(r) is

the set of all nodes that are possible destinations on a path of type r and hi and hj are the

embedding vectors of nodes i and j, respectively. j
′

is a negative sample, a destination on

path type r that is not connected to node i, and br is a learned bias term specific to path

type r. We draw k negative samples, without replacement, using a probability distribution

based on the weight of the edges connecting to each node.

Combining the Supervised and Unsupervised Models

The supervised objectives we introduced optimize the node embeddings for the diagnosis

prediction task, while the unsupervised model embeds more general knowledge about the

proximity of nodes and their relationships with one another. To combine these two types of

models, we follow the joint optimization approach suggested in [47] and define the following

objective:

Ljoint = ωLunsupervised + (1− ω)Lsupervised + λ
∑
i

‖hi‖22 (5.15)

where ω ∈ [0, 1] sets the weight used when sampling a model to train at each training step.

We incorporate L2 regularization to reduce overfitting.

5.3 Experiments

In this section, we provide qualitative and quantitative evaluations of HTAD, demonstrating

its superior performance to existing models and its interpretability advantages.
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5.3.1 Dataset

All evaluation experiments in this study are conducted using MIMIC-III, a freely accessible

critical care database [125]. For data preparation and preprocessing, we follow the steps

suggested by a recent work that has established a method for creating a standardized bench-

marking dataset derived from MIMIC-III [102] and is adopted by recent studies. Accordingly,

a total of 42,019 unique hospital admissions and their corresponding clinical records and di-

agnostic information are included for modeling, 35,725 of which are used for model training

and 6,294 of which are used for testing. This work also proposes a set of manually selected

dense features for model training, which we rely upon when training the LSTM-based time

series node aggregation model.

As discussed earlier, the two main tasks we deal with in this study are exact and group-

based diagnosis code prediction. To investigate the former, we utilize the 6016 exact ICD-9

codes recorded in MIMIC-III, with a mean of 11.33 diagnosis codes in each patient’s records.

For the task of high-level diagnosis group prediction, we rely on the 25 disease phenotype

groups introduced in the aforementioned MIMIC-III benchmarking study [102]. Table 5.2

summarizes the statistics of the nodes we extract to build our proposed information network.

Table 5.2: Node statistics in our network

Abbreviation Description
Used in

supervised model

Unique

Values (train)

Unique

Values (test)

symp Symptoms Yes 802 486

micro Microbiology tests Yes 1,467 684

proc ICD-9 procedure codes Yes 1,788 1,088

labt Lab tests Yes 960 853

bio Biographical data Yes 9 9

pres Medications Prescribed No 2,594 1,547

pati Patient stay identifier No 35,725 6,294

diag Low-level ICD-9 diagnosis codes No 6,016 3,597
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Evaluation Metrics

Prediction of high-level disease groups is considered a multi-label classification problem.

Accordingly, we follow existing works and employ Micro, Macro, and Weighted AUC-ROC

scores to evaluate this task.

On the other hand, the exact diagnosis code prediction task is considered a ranking

problem. Following adopted approaches in the evaluation of large-scale ranking tasks [153],

rather than scoring all diagnosis codes for each patient, the ranking is conducted on a list

of 100 codes, consisting of the original positive codes and a number of negatively sampled

diagnosis codes. We evaluate our performance on this task using the Mean Average Precision

at K (MAP@K), where K is set to 4, 6, 8, and 10.

5.3.2 Baselines

We compare our proposed model, HTAD, to recent studies that have achieved state of the

art results in diagnosis prediction, including those combining manual feature selection and

supervised deep models as well as those relying on unsupervised EHR embedding. We

also evaluate variants of HTAD in order to demonstrate the effectiveness of each of its

components. A comprehensive list of models evaluated is as follows:

• Std-LSTM [102]: An LSTM-based model for predicting high-level diagnosis groups.

This model was introduced as the standard baseline for benchmarking the diagnosis

prediction task.

• MMDL [177]: A multi-modal deep model for diagnosis group prediction that relies

on a comprehensive set of hand selected features extracted from categorical and time

series records in EHR. We compare with MMDL to show the effectiveness of automatic

health record embedding.

• SAnD [200]: SaND is a recent study on diagnosis group prediction that employs a

self-attention mechanism when modeling the EHR data. This study relies on manual
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feature extraction as well.

• Med2Vec [48]: An influential skip-gram based model for embedding health records. As

this model is used to learn node embeddings and not for prediction, we employ mean

aggregation of the embeddings it learns to represent patients based on their records

and rely on supervised prediction methods similar to those used in HTAD.

• HeteroMed (chapter 4): An HIN embedding method for modeling EHR data. Compar-

ing to HeteroMed can directly reveal the benefits of learning record importance scores

in diagnosis prediction as its basic architecture is similar to HTAD’s.

• HeteroMedMLP: A variant of HeteroMed that we introduce and use for the group-based

diagnosis classification task, obtained by replacing the hinge loss ranking objective with

our multi-label classification one. For fair comparison, the MLP classification layer is

configured identically to HTAD’s.

• HTADnoAttnGrp/noTS: A variant of HTAD that does not employ the group-based atten-

tion introduced in section 5.2.3. This model also excludes time series data so that the

performance comparison to HeteroMed is solely focused on the attention mechanism

used.

• HTADAttnGrp/noTS: A variant of HTAD that employs the group-based attention. For

fair comparison with HeteroMed, this model excludes the time series data as well.

• HTAD: Our proposed model, employing group-based attention along with time series

node aggregation in both prediction tasks.

Implementation Details

We implemented HTAD in Python using TensorFlow [5]. The model parameters are ran-

domly initialized, and the model is trained using the Adam optimizer [129]. The learning

rate of the optimizer and the batch size are set to 0.001 and 32, respectively. Moreover,

the node embedding size is set to 256 and the attention vector size is set to 128. When
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using grouped attention vectors, diagnosis groups are formed based on the Clinical Classi-

fication Software hierarchical coding system [60], which organizes diagnosis codes based on

their overall disease cohorts. Furthermore, the LSTM model used in node-level time series

aggregation is pre-trained using the model configuration proposed by the Std-LSTM model.

Our implementation of HeteroMed shares its code base with HTAD, particularly in net-

work formation and unsupervised node embedding training. For a fair comparison, both

models use the same set of hyperparameters and meta paths when training the unsupervised

node embedding task. The metapaths used are: labt← pati→ diag, diag ← pati→ symp,

labt ← pati → symp. Furthermore, we observed that running the unsupervised part as a

pre-training step provided the best results for low-level prediction in HTAD, and as such

for both models we do not employ joint training for this task. However, joint training is

employed in all other tasks, with the model selection coefficient (ω) set to 0.5. Med2Vec

is trained with an embedding size of 256, and the MMDL and SAnD models are run using

the same parameters and setups suggested in their studies. Experiments were run on one

NVIDIA GeForce RTX 2080 Ti GPU and two cores on an Intel Core i9-7920X CPU.

5.3.3 Evaluation of Disease Phenotype Classification

Table 5.3 lists the results obtained from evaluating our models on the diagnosis group classifi-

cation task. Overall, we observe that HTAD outperforms all of the baselines we investigated.

Inspection of results further demonstrates that:

• HTADAttnGrp/noTS shows notably higher performance than HeteroMedMLP. This com-

parison is important as it demonstrates the effectiveness of our target-attentive aggre-

gation mechanism versus models that otherwise share the same structure.

• Compared to HTADnoAttnGrp/noTS, HTADAttnGrp/noTS shows slightly better performance.

This indicates that defining independent attention vectors as in group-based attention

can be easier to train even when we are working with limited set of diagnoses.

• HTAD shows better performance than HTADAttnGrp/noTS, which is expected as the
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Table 5.3: Phenotype Classification Results

AUC-ROC

Model Micro Macro Weighted

Std-LSTM 0.821 0.77 0.757

MMDL 0.819 0.754 0.738

SAnD 0.816 0.766 0.754

Med2Vec 0.815 0.748 0.741

HeteroMed 0.831 0.745 0.739

HeteroMedMLP 0.864 0.788 0.786

HTADnoAttnGrp/noTS 0.871 0.829 0.815

HTADAttnGrp/noTS 0.874 0.832 0.818

HTAD 0.880 0.843 0.828

latter does not utilize the time series information in our dataset.

• HeteroMedMLP outperforms HeteroMed by a considerable margin. This is in line with

our expectations, as the original ranking objective used in HeteroMed may not be op-

timal for multi-label classification, and we expected that adjusting that could improve

the performance.

• HeteroMedMLP shows performance distinctly superior to that of the methods that rely

on deep neural networks (SAnD, Std-LSTM, MMDL). This can be attributed to the

fact that information networks eliminate the need for manual feature selection and

allow for the incorporation of all clinical records. HeteroMedMLP also outperforms

Med2Vec, which is expected as it employs a more semantic-aware node representation

learning approach.
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Table 5.4: Exact Diagnosis Code Ranking

Model MAP@4 MAP@6 MAP@8 MAP@10

Med2Vec 0.752 0.743 0.738 0.714

HeteroMed 0.866 0.843 0.814 0.805

HTADnoAttnGrp/noTS 0.867 0.842 0.813 0.806

HTADAttnGrp/noTS 0.888 0.848 0.821 0.810

HTAD 0.890 0.881 0.865 0.923

5.3.4 Evaluation of Exact Disease Code Prediction

Few studies have approached the task of exact disease code prediction, partly due to the

huge size of the prediction space, which consists of thousands of possible disease codes.

Furthermore, many of the studies we evaluated for the phenotype classification task cannot

be directly extended to the task of exact disease code prediction. In this study, we evaluate

variants of our model against HeteroMed and a model based on Med2Vec. Results of these

experiments are presented in Table 5.4, from which we can infer that:

• HTAD, which incorporates time series data as well as group-based attention, outper-

forms all other models.

• Similar to the high-level classification task, a comparison between HTADAttnGrp/noTS

and HeteroMed reveals the significance of employing hierarchical attention mechanism

in node-aggregation.

• The performance gain of HTADAttnGrp/noTS compared to HTADnoAttnGrp/noTS is signif-

icantly more greater in this task. This gain can better demonstrate the advantage of

using the group-based attention mechanism. As discussed before, sharing attention
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Figure 5.2: Distribution of attention scores for prediction of kidney disease and diabetes in

a patient presenting with both conditions.

vectors among similar diagnoses can result in better performance for less common ones

that otherwise remain under-trained.

5.3.5 Analysis of Attention Mechanism

Besides the performance improvement that our proposed hierarchical attentive architecture

offers, one major benefit it provides is the interpretability of its results and the transparency

for understanding which clinical events have led the model to a specific diagnostic decision.

To illustrate this interpretability in the node-level aggregation process, we consider a

patient with stay id 20728. With diabetes and kidney failure both listed among this pa-

tient’s high-level diagnosis groups, we study the importance score assigned to each of his 59

laboratory tests when predicting these two conditions. Recall that in our model, attention
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Figure 5.3: The distribution of attention weights among various types.

scores are calculated with respect to the diagnosis being predicted. The results of this case

study are listed in Figure 5.2, which shows the five highest scored lab tests for each disease.

The first important observation we can make from this figure is that the set of laboratory

tests the model attends to varies between the two diseases. As the figure shows, the highest

attention score for the detection of diabetes is given to blood glucose level, which is a key

predictor for diabetes. Similarly, the laboratory tests listed for kidney failure are highly

indicative of this condition, as validated by a clinician.

Additionally, we observe a larger skewness in attention scores when predicting for dia-

betes, with glucose having a notably higher score than other labs, than we do when predicting

for kidney disease, where attention scores are more evenly distributed. This can be attributed

to the fact that kidney failure is indicated by multiple factors while blood glucose is a single

key indicator of diabetes. Insights such as these can be highly beneficial in supporting the

diagnosis decision process.

We next analyze the attention scores in the type-level aggregation process, where they
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represent the importance of various clinical record types in the prediction of different dis-

eases. Figure 5.3 contains a box plot demonstrating the range of attention weights assigned

to different type-level embeddings across the diseases in our test set. As we can see, the

procedures and laboratory tests are overall our main predictors of diagnoses. However,

there is more variance in procedure scores than in laboratory test scores, indicating that the

predictive power of this category varies across diseases.

5.4 Conclusions

In this study, we introduced HTAD, an HIN based model incorporating a hierarchical atten-

tion mechanism for diagnosis prediction using EHRs. In HTAD, a patient representation is

learned through the target-attentive aggregation of neighboring clinical records’ embeddings,

a process that allows distinguishing important record items for the prediction of a specific

diagnosis. The novelty of this approach lies also in the interpretability it offers. Addition-

ally, HTAD is capable of incorporating non-categorical records unused by past approaches.

Experimental results demonstrate HTAD’s superior performance compared to the previous

state of the art methods and the interpretability of its predictions.

We suggest a few potential directions for future work. First, in this study, the target-

aware selection process is done at a node-level. One possible direction for future work

is the exploration of similar approaches for meta path-based relation selection. Another

possible direction would be extending the model to other healthcare prediction tasks, and

even incorporating it into multi-task learning methods. Finally, future work could investigate

ways to incorporate information from multiple modalities in an end-to-end manner.
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CHAPTER 6

Activity Recognition in Children:

Personalization vs. Generalization

Physical activity is considered as an important health monitoring variable in diverse pediatric

pervasive health applications including asthma management. Therefore, the development of

an accurate activity recognition model can be of great value in achieving a better context

of an individual’s health. Despite the great advances in activity recognition in the past

years, there has been a missing focus on building such models for children that are shown

to have different motion patterns than adults. In this chapter, we present our smartwatch-

based children activity tracker, trained on 20 children aged between 8 and 14 years old.

We perform a comparative analysis of the prediction performance when personalized and

generalized models are trained and propose a multi-task learning approach to combine the

advantages of both approaches. Findings of this study can be beneficial in the development

of other pediatric health monitoring applications as well.

6.1 Introduction

The long interest in Human Activity Recognition (HAR) using wearable motion sensors, has

led to a large body of research and remarkable contributions to remote health monitoring [20].

As the motion in different body parts, including hip, waist, wrist, and foot can be indicative

of activity, earlier HAR studies utilized multiple standalone sensor placements for activity

recognition [57]. Although these studies concluded that combined sensor placement (e.g.,

on waist and wrist) can provide the best results, the special attention of researchers in
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recent years has been drawn to improving activity recognition models when using everyday

devices such as smartphones, and more recently smartwatches, presented in studies such as

[205, 128, 26, 188, 197]. This shift can be attributed to the rapid advancement of motion

sensors on the smart devices and their widespread adoption by the public which allows

achieveing continuous activity monitoring of users in their everyday life.

Among the many HAR models developed in the past years and surveyed in [196, 220, 168],

few have worked with populations other than young adults, especially children. This is

while continuous activity monitoring can be highly beneficial to various pediatrics health

management applications, such as asthma, and [109] and is suggested as a possible way for

prevention of health risks such as obesity and cardiovascular disorders in children [89, 14].

Prior studies on children activity monitoring are limited to few that mostly took place before

the recent advancements of smart devices in motion sensing and their wide adoption in HAR

research [71, 97, 105, 154]. Accordingly, although they demonstrate the poor transferability

of established adult activity models to youngsters and the need for a children-focused model

design, their approach in using standalone sensors placed on various body parts (e.g., ankle

and waist) is limited for practical use in real-world settings. Therefore, there still remains a

significant gap between adult and children activity models and there is a need for practical

continuous activity monitoring solutions for children. As partly discussed in section 8.1.1,

smartwatches are especially desirable in this setting as they offer undemanding data collection

that can be used throughout the day and across different activities. Moreover, considering

their widespread usage [55], they are deemed more cost-effective and usable.

Activity recognition models are generally trained with the assumption of similarity among

activity patterns in the time of training and deployment. However, considering the observed

variance among children and adults, a higher range of difference among children activity

patterns can be expected as well. Hence, a comparative study across personalized and

generalized models seems necessary. However, the limited size of labeled samples per person,

in this study as well as real-world settings, pose some challenges on personalized model

training. To tackle this, we propose employing multi-task learning to share the common
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knowledge among subjects while personalizing the model based on each subject’s activity

patterns.

In this chapter, we first present our study on building a smartwatch-based children ac-

tivity recognition model and report the comparative performance results of several classical

and state of the art pre-processing and data modeling techniques. Furthermore, we study

the variance among children by comparing generalized and personalized prediction models.

To tackle the challenge of label sparsity in person-specific modeling, we compare two transfer

learning approaches, particularly simple sequential adaptation and multi-task learning and

show that the later can achieve the best results for personalized activity modeling.

6.1.1 Contributions

Contributions of our work are as follows: 1) we introduce a smartwatch based activity recog-

nition model for children, which to the best of our knowledge has been missing in prior

pervasive health studies. 2) We perform a comparative analysis of generalized and personal-

ized prediction models that can shed more light on the personalization requirements in this

setting. 3) We propose a deep multi-task learning approach for addressing the personaliza-

tion needs that arise in activity tracking, especially when working with children. We show

that our approach obtains the best results compared to existing single-task training models.

6.2 Background

Inertial motion sensors are considered the most widely used devices for the study of activity

recognition [156]. Triaxial accelerometer monitoring permits real-time measurement of a

body part acceleration along three orthogonal axes and pairing it with a triaxial gyroscope

for detection of rotation has brought the state of the art results of HAR modeling [196].

The general workflow of activity recognition models is similar to the one in pervasive

health discussed in section 2.2.1. Therefore, in this section, we focus on providing an

overview of prior studies in HAR, starting from strategies for building accurate prediction
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models using classical machine learning, followed by the recent success of deep learning

models. We finally provide background on multi-task learning and its applications.

6.2.1 Classical Activity Recognition Models

Prior research in HAR has put the effort into improving various pre-processing and modeling

steps in classical pervasive health data analysis. Signal segmentation and windowing of the

motion signals can play a major role in the correct detection of activities. Therefore, earlier

studies have focused on finding the best window length when using time-based windowing [25]

or have worked on dynamic windowing approaches for addressing more complex scenarios

such as overlapping activities [137, 191, 11, 219].

Recognizing the complexity of inertial signals, a great wealth of research has gone into

finding and extracting the most advantageous set of features for HAR task. [77] is among

early studies that outlined an all-inclusive pre-processing and feature extraction techniques

for interpreting accelerometer data. This work is followed by later studies such as [33] that

provide a thorough comparative analysis among the performance of HAR when different sets

of features are used. This study also provides a publicly available smartphone-based activity

data [17] that provides a full set of extracted features that can achieve over 90% accuracy in

recognition of 6 activities with a simple prediction model.

6.2.2 Deep Learning Based Models

The recent success of Deep Neural Network models in other domains has drawn the re-

searchers focus on their application on activity recognition. Convolutional and recurrent neu-

ral network models offer automatic embedding of signals into representative vectors that can

replace the complex manual feature engineering techniques. Studies such as DeepSense [234]

and [183] showed the superior performance of CNN in extracting representative features

from time and frequency domain of the signal. Furthermore, RNN models, specifically BiL-

STMs, have been shown by various studies reviewed in [220] to achieve the state of the art

results in sensor-based activity recognition. These studies include [98] that gained 92.7%
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F-score on Opportunity benchmark dataset [45] and [204] that achieved 88.87% on HAR

public dataset [17]. The high performance of RNN models can be attributed to their ability

in capturing temporal dependencies among signal readings that can carry key information

regarding the activity performed. Studies using RNN, either used it on top of an initial

feature extraction layer [234] or as a feature extractor and predictor on the raw signal it-

self [98], although the latter is shown to require more complex pre-processing steps to achieve

state of the art results. The interested reader can find a more comprehensive list of stud-

ies on the role of deep learning in human activity recognition in two recent comprehensive

surveys [220, 168]

6.2.3 Smartwatch-based models vs Smartphone-based models

Smartwatch based activity models have been recently approached by researchers in studies

such as [188, 197] that provide a side by side comparison between the activity models relying

on smartphones and smartwatches. Results of these studies suggest that smartphone-based

models show higher range of prediction accuracy (with surprising 10% margin) in recognition

of high-level activities such as running, walking, and sitting, when compared to smartwatch-

based models, This is while smartwatches show superior performance on gesture-based ac-

tivities such as detection of smoking and eating [198]. These observations can be explained

by the fact that wrist-worn sensors may capture hand movements that are not directly cor-

related to the high-level activity performed. For instance, a person standing still may move

his/her hands during this activity and introduce some complexity to prediction. In contrast,

many smartphone-based activity recognition models rely on movement patterns of the phone

when placed in a fixed position such as subject’s waist [17], which can better capture the

repetitive pattern of motion data compared to the wrist position. A combination of both

devices is shown to bring the best of both worlds [197], however compromising comfortable

wear. Having these in mind, one should select a suitable device for each application based

on the trade-off between usability and performance.
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6.2.4 Multi-task Learning

Multi-task learning (MTL) is an approach in machine learning in which a number of similar

separate tasks are trained jointly so that the common knowledge required in learning them

can be shared. In a deep neural network setting, this goal is often achieved by sharing

the initial layers of the model among all tasks, while separating the top prediction layers

for each of them. MTL has shown to bring great performance gain in many studies, part

of which are reviewed in [238]. As discussed in [185], this observed gain in joint training

of tasks compared to single-task training can be attributed to a number of features MTL

offers. Firstly, MTL implicitly increases the data size for model training. This feature can be

especially beneficial in the healthcare domain where labeled samples are commonly sparse.

Furthermore, MTL improves the generalization of the model by extracting features of data

that are informative for the prediction of various tasks. Finally, MTL acts as a regularizer

for prevention of over-fitting.

In recent years, MTL has been applied in a number of pervasive health applications. [29,

121, 180, 102] are among studies that employed MTL for improving the prediction perfor-

mance of similar health outcomes such as suicidal risk and mental health disorder. While

the application of deep MTL for personalized prediction has been explored in other domains

such as natural language processing [228] and speech recognition [164], it has not been well

studied in improving the prediction based on health signals.

6.3 Data Collection

To collect children activity data, a smartwatch app was designed to record triaxial accelerom-

eter and gyroscope signals in real-time and transfer the anonymized data to a web server for

activity prediction. Figure 6.1 illustrates an overview of the data collection process. In this

study, 25 children (10 girls and 15 boys) aged 8 to 14 years old participated to perform the

following six activities: running, walking, standing, sitting, lying down, and stair climbing.

Motion signals related to each activity were recorded with a frequency of 10 Hz for a duration
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Figure 6.1: The data collection process for smartwatch-based activity monitoring.

of 10 minutes. Experiments took place in an open environment and children subjects were

left with minimal interruptions to retain their natural movements and keep the dataset as

close to real-world scenarios as possible. Data collection was manually stopped during time

spans in which subjects required water break or needed to rest. Due to technical and exper-

imental challenges involved when working with children, data from 5 participants contained

a significant amount of noise and missing values which is not included in this study.

6.4 Methodology

In this section, we first review the pre-processing steps conducted on the collected dataset

and then present the design of our main BiLSTM prediction model. We then explore the

personalized model design and provide details of our proposed multi-task learning approach,

along with fine-tuning that is employed as a baseline for evaluation of the MTL model.

6.4.1 Pre-processing

Figure 6.2 demonstrates the data processing and cleaning steps that we employed in this

study. The pre-processing starts with removing noise from each one of 6 channels (x, y, z
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Figure 6.2: Pre-processing steps for data cleaning, quality improvement and augmentation.

per accelerometer and gyroscope sensors) by applying a median filter with kernel size of 3.

Next, there is a need to temporally fix and align the signal channels, mainly due to

two challenges observed in smartwatch-based data collection. Namely, the sampling rate on

the smartwatch can be loose and while the average number of readings per second remains

close to the assigned frequency, the time difference between consecutive readings may vary.

Besides, the sensor reading timestamps from the two sensors are not evenly matched. To

address these, we first generate a 50 Hz equally spaced timestamp array, covering the whole

data collection period. Afterward, each sensor reading is assigned into the closest timestamp

and all missing values are injected using a cubic spline interpolation method [61], which

is shown to improve the results of activity recognition models when the sampling rate is

increased [137]. The 50 Hz frequency was also selected as it is considered as a confident

range that can capture human movement [204].

Having all sensors aligned, we extract episodes of data that none of the signals were

missing for more than 5 seconds. A fixed-length sliding window segmentation process was
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then performed on each of the 6 signals to generate temporally aligned windows. The

next two steps are aimed at the integration of extra information to the processed dataset.

In particular, Fast Fourier transform of all channels are added as new signals to capture

the frequency domain information as well. Furthermore, 3 new signals are introduced by

calculating the third order Butterworth filter [189] of each accelerometer channel with cut-

off frequency of 0.3 Hz. This setting is shown to cancel the effects of gravity on acceleration

and reflect the original acceleration happened due to hand movements [204]. Finally, the

windows are normalized and scaled into (0, 1) range.

To compare deep neural network models to those relying on feature engineering, each set

of matching windows from 15 signals generated above, were mapped into a single represen-

tative vector by extracting the features employed in a benchmarked dataset [204].

6.4.2 Prediction Model

Following the proven success of Recurrent Neural Network in time-series modeling and rely-

ing on their ability in capturing temporal dependencies, we employ a Bi-directional LSTM

(BiLSTM) model to capture representative local and temporal features of windows extracted

from motion signals. The structure of the designed network is shown in Figure 6.3.

having the 15 aligned signals obtained by approaches discussed in section 6.4.1, 15

temporally matching windows can be extracted in each prediction step, which are de-

noted as: W = W1,W2, ..., w15. Each window wi wraps l sensor readings, represented

as: Wi = [xi,1, xi,2, xi,3, ..., xi,l]. Given these, the input vector to the ith LSTM cell of

our model is formed by combining the ith readings of windows in W forming the vector:

Ii = [x1,i, x2,i, x3,i, ..., x15,i].

The l input vectors constructed as above are fed into two layers of LSTM cells, one in

forward and one in reverse order. The concatenation of the hidden states of the last LSTM

cells in the forward and backward layers forms the representation of W . This representation

is then fed into a fully connected layer followed by a softmax layer for activity prediction.
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Figure 6.3: BiLSTM model for learning a single representation from 15 motion signals.

6.4.3 Person-Specific Model Design

To study and compare person-specific and generalized activity recognition model for children,

the first straightforward approach is training a model for each subject. However, recognizing

the limitation of obtaining labeled data samples for each subject in real-world settings (and

in our study), we explore transfer learning approaches with the aim of leveraging the labeled

data available from other subjects to develop general knowledge and tune the model to

activity patterns of a new subject. In particular, we examine the two following methods:

• Fine Tuning: In this approach, the prediction model is first pre-trained on a set of

labeled training samples. Afterward, the model is adapted to the subject by continuing

the training on all or a set of layers. In this study, we freeze the BiLSTM layers and

continue the training only on the last prediction layer.

• Multi-task Learning: In contrast to fine-tuning that performs the model transfer in a

sequential manner, in this scenario, we allow the transfer of knowledge among subjects
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concat

...

Figure 6.4: The general schema of our personalized multi-task learning model.

in a joint-learning setting. Recognizing the fact that various subjects share the basic

activity patterns, each subject is regarded as a separate task that can be trained jointly

to others. For this aim, the representation learning layers of the BiLSTM model is

shared among all subjects, while keeping the prediction layers specific to each person.

Two fully connected layers followed by a softmax activation are used in design of these

layers. A general schema of this model is illustrated in Figure 6.4. As discussed before,

this design pattern not only allows the model to use data from all subjects for learning

an informative representation of motion signals, it tackles the over-fitting challenge

present in fine-tuning approach by acting as a regularizer.

95



6.5 Experiments

In this section, we report the results of several experiments performed in this study. We

first compare the performance of the proposed activity recognition model against various

pre-processing and modeling methodologies. We then analyze the effect of personalized

prediction on the performance improvement of our activity recognition model.

6.5.1 Implementation Details

To train our models we employed a window size of 8 seconds with 50% overlap. The hidden

layer size was set to 32 in the BiLSTM model and to 16 in last prediction layer. The model

is trained with Adam optimizer. The data are split into disjoint train and test sets with 70%

to 30% ratio.

6.5.2 Comparative Analysis of Generalized Activity Models

Focusing on building a general children activity recognition model, our first experiment

reports the comparative results among baseline models with different pre-processing and

representation learning approaches. In particular, the performance of the proposed BiLSTM

model is compared against two shallow models using feature engineering, as well as a BiLSTM

model but when the augmented signals introduced in section 6.4.1 are not used. The baseline

models are as follows:

• Feature Engineering + Random Forest (FeatEngRF): In this approach, window rep-

resentations are generated by manual feature extraction from the all 15 original and

augmented signals. The representation of each window is then fed into a Random

Forest model for activity prediction.

• Feature Engineering + FFN (FeatEngFNN): This model is different than above in

using a three layer fully connected neural network model on window representations

for activity prediction.
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• Bi-LSTM Representation Learning/ No signal augmentation (BiLSTM/NoAug): This

approach employs the proposed BiLSTM model, however, ignores the 9 additional

augmented signals to evaluate their impact on the model performance.

Figure 6.5: Comparative results of 4 activity prediction models in group training setting.

Figure 6.5 summarizes the results of this experiment. As the figure suggests, the BiLSTM

model delivered considerably more consistent performance across all activities compared to

other methods, specifically FeatEngRF and FeatEngRNN. These models although achieved a

marginally higher performance in prediction of the run and walk activities, showed markedly

inferior results on other activities especially standing, sitting and stair climbing. This can

indicate that the established feature engineering approaches for HAR may not be easily ap-

plicable to new domains and proves the advantage of using automatic representation learning

approaches such as the proposed BiLSTM model. Furthermore, comparison of BiLSTM and

BiLSTM/NoAug results can clearly show the advantage of signal augmentation with fre-

quency domain and pure hand acceleration information. The BiLSTM model is used in later

experiments of this chapter.
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The Confusion Matrix of the BiLSTM model is illustrated in Figure 6.6 and conveys im-

portant information regarding the prediction challenges. It is noticeable that the model faces

trouble in distinguishing the lie and sit activities. This confusion can be partly attributed

to the fact that the movement of the wrist in these two activities can be very similar to

each other when the hand is left on a horizontal position when sitting. Other confusions are

not as significant but observable among walking and standing, as well as stair climbing and

sitting activities.

Figure 6.6: Confusion matrix of the BiLSTM model.

6.5.3 Person-Specific Analysis

This experiment is aimed at examining the hypothesis that variability in children activity

pattern can bring sub-optimal performance in a general activity model. To test this hypoth-

esis we designed and compared four scenarios related to person-specific activity recognition,
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as listed below:

• Person-specific training: In this scenario, the first 70% of each child’s activity data is

considered as train set and the model is tested on the remaining 30%.

• Leave-one-out: This model is trained to provide a baseline for the performance of the

general training model on each child. The model is trained on all children except the

child under the study and is tested on the last 30% of his/her data for a fair comparison

to person-specific models.

• Fine-tuning: This approach relies on using the general trained model but tuning it

to each subject. For this aim, the training on the Leave-one-out model corresponding

to each child is restarted using the initial 30% of the child data. The model is then

evaluated as above on the last 30%. To avoid over-fitting to the new data early stopping

was employed.

• Multi-task learning: In this approach, the first 70% of all children data is used for

training the shared and person-specific layers. The model is then evaluated on the last

30% of each child’s data.

Table 6.1 lists the results of aforementioned models for all 20 subjects under the study. Re-

sults of this table indicate two distinguishable behavior of models. For a number of subjects

(including 2, 4, 8 10, and 17) we can observe that the person-specific model performs notably

better than the leave-one-out model. This can suggest that these participants show highly

person-specific activity patterns that a general model cannot detect. Results of the fine-

tuned model for these subjects also show higher performance than the leave-one-out model,

showing that the fine-tuned model was able to capture person-specific activity patterns that

were not learned by the general model. These observations can support the hypothesis of

high variation in children activity pattern.

On the other hand, the leave-one-out model leads to higher performance for participants

that arguably show more general activity pattern when compared to person-specific models,
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Subject

Model
Person-specific Leave-one-out Fine-tune Multi-task learning

1 0.65 0.72 0.71 0.72

2 0.58 0.52 0.61 0.56

3 0.33 0.72 0.61 0.71

4 0.82 0.71 0.79 0.77

5 0.63 0.78 0.68 0.79

6 0.43 0.67 0.63 0.69

7 0.53 0.70 0.69 0.71

8 0.71 0.69 0.81 0.77

9 0.69 0.72 0.68 0.73

10 0.83 0.63 0.75 0.79

11 0.65 0.74 0.69 0.75

12 0.76 0.75 0.74 0.76

13 0.58 0.69 0.61 0.71

14 0.66 0.57 0.72 0.67

15 0.68 0.71 0.62 0.71

16 0.61 0.67 0.58 0.68

17 0.69 0.56 0.75 0.67

18 0.56 0.63 0.57 0.64

19 0.64 0.73 0.69 0.71

20 0.65 0.66 0.61 0.67

Table 6.1: Comparison of results among 4 person-specific activity prediction models.
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partly due to the larger volume of training data and ability to capture a wider range of

general activity patterns. Importantly, fine-tuned model show lower performance than the

leave-one-out model for many participants which can be largely attributed to overfitting to

the small new dataset.

The multi-task learning approach shows competitive results compared to the best result

of all models as it allows tuning to the subject-specific patterns to some extent and can

capture general patterns with more resistance against overfitting. We can especially observe

a visible gain in participants that showed better results in person-specific models.

6.6 Discussion

A comparison between the results of this study and prior studies on adult activity recognition

shows a considerable performance gap which can be attributed to a number of factors. First,

the sampling rate adopted in this study stays in the lower range of suggested rates in prior

research, mainly due to the current limitations of smartwatches and the existing trade-off of

battery consumption and sensor data accuracy. The 10 Hz sampling rate allows BREATHE

to run for a full day of data collection while maintaining a reasonable performance, especially

for activity intensity prediction. Second, as this gap remains on person-specific models as

well, we can conclude that smartwatch-based activity patterns of children can be noisy (due

to uncorrelated hand movements) and more complex to analyze, when compared to adults.

As discussed earlier, smartwatch-based adult activity recognition studies also report poorer

results on the performance

Future directions include a more thorough study of the trade-off between sampling rate

and battery consumption and how this can be optimized for children. This is while the

constant improvement of smart devices batteries can help in reducing this trade-off as well.
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CHAPTER 7

Deep Domain Adaptation in Pervasive Health

Among the major challenges in building supervised predictive models in pervasive health,

is adapting them to new individuals or groups of people. This is not trivial largely due to

possible differences in the distribution of data in training time and real-world deployments.

For instance, an activity recognition model trained on adults may significantly lose accuracy

when deployed to children or elderly people. The classical approach of addressing this issue

is the collection of new annotated data from the representative groups under each study.

However, this approach is very time-consuming and hinders the design of scalable pervasive

health systems. In this chapter, we aim to tackle this problem by building upon the recent

advancements in Domain Adaptation, which aims at transferring a model trained on a labeled

dataset to a new unlabeled one, while taking the possible differences in the data distributions

into account. To show the benefits of our approach, we transfer an activity recognition model

trained on a popular adult dataset to children. We show that direct use of the adult model on

children loses 25.2% F1-score compared to baseline on average, while our proposed transfer

approach reduces this to 9%.

7.1 Introduction

Machine Learning methods used by many health studies rely heavily on annotated training

datasets and can only perform as expected when the distribution of the data in the time of

training and deployment is the same [209]. However, this assumption does not always hold

in the real-world health applications, where the distribution of collected sensor data can vary

based on various factors such as age, gender, or sensor placement [36].
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A common approach in pervasive health applications is training models by collecting

data from a group of representative individuals. However, this approach is not desirable

as it introduces challenges when studying minorities and more importantly, it still fails

to capture many person-specific differences. Annotation of each individual’s data is not

practically feasible as well, largely due to the real-time nature of data, its scale, and the

significant effort required.

Therefore, there is a strong need for building transferable models that allow the deploy-

ment of pervasive health systems among individuals from various backgrounds and health

conditions, denoted as new domains. The challenge of transferring a model to a new domain

with no available labels has arisen in other applications, such as image recognition [184] as

well and an appealing approach in addressing it has been Domain Adaptation (DA) [209].

In this approach, the model trained on a source domain (a group of individuals in our case)

is transferred to solve the same problem in a target domain (a new individual), for which a

considerable amount of data is available but the labels are missing. This setting is perfectly

aligned with features of the pervasive health field since a huge amount of unlabeled sensor

data is generally available from continuous monitoring of an individual while the size of the

labeled data is limited.

Although applications of Domain Adaptation has expanded to diverse areas such as

natural language processing [54], voice recognition [63], and brain-computer interaction [227],

pervasive health has lagged behind in adopting this technique, especially after the rapid

emergence of deep learning models. Prior studies have mainly relied on approaches such as

fine-tuning the model to each subject [220] which is shown to lead to over-fitting and is only

possible when labeled data for each subject is available.

In this study, we propose a deep sequential domain adaptation model for classification of

health signals. Our model which is inspired by [209], tries to learn domain invariant features

of data to allow label-free transfer among different datasets. In particular, we employ a

Bidirectional LSTM Recurrent Neural Network for extracting representative features of the

input signal along with Maximum Mean Discrepancy (MMD) [93] loss to minimize confusion
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between the source and target domains. We evaluate our model on activity recognition task

and with the aim of transferring a model from a publicly available dataset for adult activity

recognition to one we collected for children.

7.1.1 Contributions

Our contributions in this study are: 1) we propose a domain adaption framework to address

the important and existing challenge of poor model generalizability in pervasive healthcare.

Our proposed model relies on a deep sequential design for working with time-series data. 2)

We demonstrate that our model is able to effectively transfer an activity recognition model

between two groups having different data distributions due to the difference in age-group

and data collection device type. 3) Our approach can be extended to many applications in

pervasive health to extend the reach and inclusion of the designed solutions.

7.2 Background

In this section, we first provide background on Domain Adaptation and a general overview

of its applications in other areas. We then review prior studies in wireless health that have

approached the problem of model transfer.

7.2.1 Domain Adaptation

In many applications, a model trained on a dataset may not be generalizable to other datasets

for solving a similar problem, due to the difference in data distributions. Domain Adaptation

(DA) [209] tries to tackle this problem and transfer the knowledge from a labeled source

domain to an unlabeled or sparsely labeled target domain.

A classic approach used by early studies was fine-tuning the source model with a small set

of labeled data from the target domain [170]. However, this approach introduces over-fitting

problems, especially in deep models when the labeled target dataset is small [184]. Later

attempts were focused on different ways of building a shared representation space between
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the source and target domain. This was done by either learning a transformation from the

source to the target domain or from both domains into space with a similar distribution [86].

With the emergence of deep learning and feasibility of automatic feature extraction,

prior ideas were extended to extract features from the source and target domains so that

they would map into a domain-invariant feature space. Models following this idea generally

introduce an additional domain discrepancy loss term to the main objective function of the

network to force the representations of the two domains to follow the same distribution. A

widely adopted loss term is Maximum Mean Discrepancy (MMD) [93], which is utilized to

measure the similarity of two distributions. [209] was among the first studies that used this

approach to learn domain-invariant features from images of office appliances collected from

three different domains: Amazon.com, a webcam, and an SLR camera. This study used

shared network weights among domains and a single layer of discrepancy loss. On top of this

study, other works proposed different architectures by adding extra loss terms in different

layers [143], using sequential models [138], and using separate streams of data for source and

target domain [184].

Following success of Domain Adaptation in image recognition, applications of it has been

rapidly expanded in recent years to other areas such as voice recognition in determining

individual emotions [63], natural language processing in improving machine translation [54],

and brain computer interaction in calibration of the system [227]

In the domain of health signal processing using deep models, however, there has been

a missing focus on this challenge. One study [36] has recently approached the problem

of domain adaptation in ECG signal processing, however, with a focus on unsupervised

signal reconstruction and anomaly detection. This is while in this study we aim to test

feasibility of domain adaptation classification of health signal especially in application of

activity recognition.
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7.3 Methodology

In this section, we review our approach in building a domain invariant model using a labeled

source and an unlabeled or partially labeled target dataset. This section starts with the

problem definition and continues with providing design details of our proposed model.

7.3.1 Problem Definition

We are given a time series source dataset, Ds, which is segmented into fixed length windows

denoted as W s = {ws
1, w

s
2, w

s
3, ..., w

s
n} and is coupled with the corresponding label set Y s =

{ys1, ys2, ..., ysn}. The target time series dataset Dt, collected for a similar task but in a different

domain, is also provided as a set of segmented windows W t = (wt
1, w

t
2, w

t
3, ..., w

t
m), however,

the label set Y t is not be provided or we have ‖Y t‖ � ‖Y s‖. Recognizing the motivations

of our study, we also assume that the marginal probability distribution of the two domains

do not match and we have P (W s) 6= P (W t).

Our goal is to transfer the source prediction model to the target domain with minimal

access to the later domain labels. For this aim, a transformation function F is trained to

map Ws and Wt into a domain invariant feature space with similar probability distribution:

P (F (W s)) = P (F (W t)). Consequently, the prediction model trained on the transformed

source domain, f(Y s, F (W s)), can be used for predictions on the transformed target domain

F (Dt) as well. The overall design of our model is illustrated in Figure 7.1.

7.3.2 General Prediction Model

To learn the feature extraction function F , we rely on a Recurrent Neural Network (RNN)

model, particularly a Bi-directional LSTM (BiLSTM) similar to the one introduced in sec-

tion 6.4.2 with shared weights between the source and target domains. The motion signals

from both domains are fed into the BiLSTM model to extract local and temporal informa-

tion and encode them into a fixed length feature vector. These representations are used to

train the prediction function f , by minimizing the prediction loss Lc on all labeled samples
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Figure 7.1: Structure of the BILSTM prediction model (a) and discrepancy loss layer between

source and target domain (b)..

largely from W s. For this aim, the transformed input samples by BiLSTM are fed into a fully

connected layer followed by a softmax activation. Recognizing the dependence of learned

representations to the objective of the model and optimization functions applied, there is a

need to add an objective for minimizing the discrepancy between the representations learned

from the target and source domains.

7.3.3 Domain Invariant Feature Training

The transformation function F obtained from the sequential model does not guarantee invari-

ance between the source and target domains. In other words, if we feed W s and W t windows

as input to the BiLSTM to achieve corresponding representation sets F (W s) and F (W t),

the two may not share the same space. Consequently, the prediction function f trained
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on F (W s) cannot be safely transferred to F (W t). To address this, we add an additional

domain discrepancy loss before the prediction layers to maximize the similarity between the

distributions of F (W s) and F (W t) (Figure 7.1(b)).

In particular, we employ Maximum Mean Discrepancy (MMD) as a similarity measure

between source and target domain representation distributions denoted as Ps and Pt. MMD

is empirically estimated as the distance between the mean of sample representations in each

domain, after mapping them to Reproducing Kernel Hilbert Space (RKHS) denoted as H:

MMD2(Ps, Pt) =

∥∥∥∥∥ 1

|W s|
∑

ws∈W s

φ(F (ws))−
1

|W t|
∑

wt∈W t

φ(F (wt))

∥∥∥∥∥
2

H

(7.1)

Here F is our representation learning function and φ is a mapping function to RKHS

which is commonly defined as a kernel function k. Accordingly, we can write the squared

MMD by expanding the above formula and using the kernel trick as:

MMD2(Ps, Pt) =
∑
ws,w

′
s

k(F (ws), F (w
′
s))

|W s|2
− 2

∑
ws,wt

k(F (ws), F (wt))

|W s|2|W t|2
+
∑
wt,w

′
t

k(F (wt), F (w
′
t))

|W s|2

(7.2)

In this study, we employ RBF kernel function with a bandwidth of 1 as suggested by [185].

Based on this definition, we expect lower MMD scores to show higher similarity between

F (W s) and F (W t). Therefore, the score can be directly used as a loss term (LMMD) in

model optimization.

7.3.4 Learning Objective

If we jointly optimize the BiLSTM model on the labeled data and minimize the discrepancy

loss between Ds and Dt, the model is hypothesized to learn domain-invariant features from

both domains, enabling the use of the prediction function f for Dt as well. Therefore, in

training our model we optimize the following loss function:

L = Lc(W
s, Y s) + LMMD(W s,W t) + λrLr (7.3)
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Where Lc is the classification loss, LMMD is the MMD discrepancy loss and Lr is the regu-

larization term on trainable weights, weighted by coefficient λr.

To train this network in an end to end manner, we feed it with mini-batches of data

containing samples from both source and target domains. The labeled samples of each batch

contribute to reducing the classification loss, while all samples from both domains are used

to optimize the MMD score.

7.4 Experiments

In this section, we demonstrate the effectiveness of our approach in transferring a time-series

health model between two domains and we report results on the case of transferring an adult

activity recognition model to children. One level of adaptation complexity is inherent in the

experiments of this study as the adult dataset is collected using a smartphone, while the

child data comes from a wrist-worn smartwatch.

7.4.1 Datasets and Pre-processing

As our proposed model uses a shared design between the source and target data, we need

to address a few differences between our two datasets. We use UCI-HAR [204] which is

an open-sourced dataset for adult activity recognition as our source (labeled) domain. In

this dataset, accelerometer and gyroscope signals are collected with a frequency of 50 Hz

from 30 adult participants using a smartphone mounted on their waist. Our target domain

dataset is similar to the one used in section 6.5.2 in which 20 child subjects used a wearable

smartwatch to collect motion signals with a frequency of 10 Hz.

There are a number of steps required to match the two datasets to be fed into a shared

model. Recognizing the lower data frequency of children dataset, we apply data alignment

and interpolation discussed in section 6.4.1. Afterward, we follow all the discussed pre-

processing steps on both datasets. Finally, to match the list of activities between the two

domains, we use the following shared set of activities: walking, sitting, standing, stair climb-
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ing, and lying down. It is worth mentioning that stair climbing from UCI-HAR is obtained

by combining upstairs and downstairs climbing sets and is down-sampled to be in balance

with other activities.

7.4.2 Results

We first share the results of training the prediction model on the source dataset. Figure 7.2

shows the the performance of activity prediction using the introduced BiLSTM model (Sec-

tion 6.4.2) on the UCI-HAR dataset.

Figure 7.2: BiLSTM activity prediction results on the source domain.

To validate the benefits of our proposed approach in transferring the knowledge between

domains, our first experiment compares the results of three child activity recognition models

in the following scenarios:

• Supervised Ground Truth: To report a fair evaluation of the domain-adaption

results, we consider the performance of the supervised baseline for children activity

recognition. For this aim, the supervised BiLSTM model is trained on the 70% of

children data and is evaluated on the remaining 30%, similar to section 6.5.2.

• MMD Transfer: Our proposed approach which learns a domain-invariant feature set
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Figure 7.3: Comparative analysis of activity prediction.

between adults and children and makes predictions only by using labels of the adult

dataset. This model utilizes 70% of unlabeled children data and is evaluated on the

same test samples as above.

• Naive Transfer: In this scenario, the BiLSTM model is trained on the adult activity

dataset and is directly used for prediction on the children with no domain adaptation

considerations. Results of this setup will show how well or poorly distributions of the

source and target domain match. This setup shares the same test samples as the first

scenario as well.

Results of this experiment in terms of activity-scores are illustrated in Figure 7.3. As

the figure suggests, the model trained on the adult dataset shows poor performance on the

children data, confirming the difference in the distributions of these two domains and the

need for domain adaptation. We can especially observe lower performance for walking and

stair climbing activities that involve greater body part movements.

Furthermore, The MMD-Transfer model shows significant performance gain over the

Naive-Transfer, reducing the performance gap compared to baseline from 25.2% to 9%. We
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Figure 7.4: Comparative analysis of activity prediction.

can also observe that this gap becomes especially small for more steady activities. This can

be partly due to the fact that movement patterns on a smartwatch are more diverse than a

smartphone fixed on the waist.

Figure 7.4, reports the result of child-specific activity recognition using the MMD-Transfer

model and provides comparative results of Naive-Transfer and supervised ground truth mod-

els as well. In an ideal real-world deployment scenario, the unlabeled target domain data

can be easily collected from the child’s activity records. However, as the duration of activity

records for each subject is limited in this study, we included data from other subjects as

well. It is worth mentioning that the supervised ground truth model for each subject in

this experiment is trained in a leave-one-out setting. Similar to the last experiment, we can

notice a noticeable performance gain using MMD-Transfer model for each subject.

Previous results were achieved in scenarios where the target labels were completely ig-

nored. However, small supervision of target domain is hypothesized to improve the domain

adaptation performance. To evaluate this, we gradually increase the ratio of labeled samples

in the target domain from 10% to 100% in an exponential manner. Results, of this experi-

ment, is listed in Figure 7.5. As it can be inferred, we can observe a performance jump after

inclusion of 10% of target domain samples into the training model. We can also observe that
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Figure 7.5: Domain Adaptation Performance in Presence of Labels.

the performance gain reduces afterward which can further indicate the significance of our

approach in utilizing a small set of labels for achieving a competitive prediction performance

to the supervised model trained on the target domain.

7.5 Conclusion

In this chapter, we introduced the significance of domain adaptation in the pervasive health

field and proposed a sequential deep model for the transfer of activity recognition from adults

to children. Results of our study show the promise of this approach which can be extended to

other applications as well. As future directions for this study, we suggest exploration of this

framework in broader applications and inclusion of deeper layers for reducing distribution

discrepancy between the source and target domains
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CHAPTER 8

BREATHE: A Pervasive Health Solution For

Improvement of Pediatric Asthma Management

BREATHE (Biomedical REAl-Time Health Evaluation) is our pervasive health solution for

improvement of pediatric asthma management. BREATHE provides a flexible framework

for collection and integration of information from diverse sources including wearable sensors,

online environmental data, and historical health records to obtain an expressive model of

an individual’s asthma exacerbation triggers and context. Our efforts in BREATHE are

part of a larger initiative, PRISMS (Pediatric Research with Integrated Sensor Monitor-

ing Systems), launched by National Institutes of Health in 2014. This chapter overviews

BREATHEs architecture and components, followed by initial results from a study on 20

asthmatic children.

8.1 System Overview

BREATHE system is designed as a real-time and end-to-end framework with the main goals

of flexible sensor integration, suitable data unification, and real-time analysis. BREATHE

connects various data sources to analytical engines and keeps an on-demand interaction

with children and their caregivers for providing health feedback or collecting self-assessment

information. Different components and the complete life cycle of data in BREATHE are

shown in Figure 8.1.

Successful modeling of asthma is dependent on how well data sources can cover different

environmental and physiological variables that affect or indicate an asthma exacerbation
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Figure 8.1: An illustration of main entities and data flow in BREATHE.

(section 2.4.1 provides background on these variables). Therefore, BREATHE is motivated

to gather as much relevant information as possible to achieve high context-awareness. For

this aim, three main data sources are employed: real-time sensing, self-assessment surveys,

and external online data.

8.1.1 Real-time Sensor Data Collection

BREATHE utilizes an Android-based smartwatch and smartphone pair as the central com-

munication points between the system and clients. This design choice facilitates continuous

and integrated sensing, allows flexible interaction with subjects, and takes the usability

considerations for children into account.

• Smartwatch: The BREATHE’s smartwatch acts as the primary connection hub among

various environmental and physiological sensors and merges data from registered de-

vices advertising via Bluetooth Low Energy (BLE) in real-time. Using the smartwatch

for sensor connectivity is beneficial for a continuous data collection, buffering and

transmission in a multi-sensor monitoring study—particularly in children—as it can
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be readily worn throughout the day and across different activities (e.g., school, ex-

ercise). Moreover, smartwatches offer integrated health monitoring signals including

heart rate and motion tracking that can be seamlessly merged in. All data is then

directed to the smartphone.

• Smartphone: As the power and processing resources on a smartwatch are limited, we

use a smartphone to perform more computationally intensive tasks including data en-

cryption and transmission to the cloud. Moreover, the larger screen of the smartphone

allows more involved user interaction for collection of EMA surveys. Importantly, chil-

dren do not have to always carry the smartphone given the BLE connection to the

smartwatch that remains active when in the range of 20-100 meters (depending on the

device and power [59, 144]). Upon receiving of real-time data from the smartwatch, it

is normalized into a standard format, temporally and geographically tagged, appended

with device status metadata (e.g., battery level), encrypted and reliably sent to the

cloud.

The information regarding all sensor data collected in BREATHE along with the asthma

variable they monitor is listed in Table 8.1.

8.1.2 Self-Assessment Surveys

A number of severe asthma exacerbation events can be recognized through rescue inhaler

usage monitoring. However, developing an asthma model for recognizing events causing mild

to moderate symptoms requires the inclusion of the subjects’ self-assessment and validation

as well. Ecological momentary assessments (EMA) permits the collection of asthma and

environmental self-report from subjects, randomly or close in time to an event of interest

(e.g., sudden increase of air pollution). In general, there are three types of EMA triggers used

in our system: 1) context-sensitive EMAs that are triggered to assess the context around

an event detected through real-time monitoring of data on the cloud, 2) scheduled EMAs

that are collected based on a pre-set morning and night schedule, 3) random EMAs that
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Table 8.1: List of integrated environmental and physiological sensors integrated.

Monitoring Variable Device Provider
Communication

to BREATHE

Triaxial accelerometer

Moto360 [1] Motorola Mobility

BLE

Triaxial gyroscope

Heart rate

PM 2.5 (air quality)

Airbeam v1.0 [3] AirCastingTemperature

Relative Humidity

Black carbon (air quality) MA200 [2] AethLabs/PRISMS Columbia

Ozone (air quality)

ASU sensor PRISMS/Arizona State UniversityVOCs (air quality)

Temperature

Humidity

Forced expiratory volume (FEV1)
Asthm-1 BT Spirometer [4] Vitalograph

Peak expiratory flow rate (PEF)

Medication usage Inhaler sensor [226] Propeller Health BREATHE API

Table 8.2: Self-assessment surveys in BREATHE

EMA type Trigger type Trigger Event Major Question Categories

Air pollution Context-sensitive Sudden increase in PM 2.5 Event validation, asthma symptoms, general context.

Rescue m‘edication Context-sensitive Use of rescue inhaler Event validation, asthma symptoms, general context.

Heart rate Context-sensitive
Stay 2 minutes in moderate

to vigorous heart activity zone
Event validation, asthma symptoms, general context.

Spirometry Context-sensitive Use of spirometer Event validation, asthma symptoms, general context.

Morning survey Scheduled First EMA of the day Asthma over night, asthma symptoms, general context.

Random survey Random Random Asthma symptoms, general context.

End of day survey Scheduled Last EMA of the day Allergy and sickness, asthma symptoms, general context.

are collected based on a pre-set or random schedule aimed at capturing the asthma state

of subjects in their natural settings. Each EMA questionnaire contains several categories

of questions relevant to the trigger type and event. These categories include: 1) asthma

symptom questions that evaluate 4 major symptoms of wheezing, coughing, chest tightness,

and troubled breathing, 2) event validation questions that are aimed at checking the accuracy

of the detected event by the real-time analytical model, 3) general context questions that
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are designed to obtain a self-report of child’s location, activity, and exposures, 4) the end or

start of day context questions that are designed to obtain key information such as presence of

a sickness, allergy, or night-time awakenings. Table 8.2 presents types of EMAs available in

BREATHE along with their trigger type, trigger event, and categories of questions included

in them.

8.1.3 External Clinical and Environmental Data

To expand the contextual information, BREATHE incorporates electronic health records

of recruited subjects and real-time environmental information based on geographic location

(e.g., traffic and regional air quality) from resources provided by Sonoma Technology Inc.

8.1.4 BREATHE Server

BREATHE cloud-server is the main component handling real-time data processing and stor-

age. The server provides a RESTful API accepting various real-time requests including data

push and EMA trigger generation. Through this API, data that can be received from any

source that has registered secure access to the server, particularly BREATHE smartphone

app and sensors not supporting BLE data transfer and requiring to transfer data directly to

the server (see Table 8.1).

Once data is received and decrypted, it is parsed, reformatted into a standardized JSON,

and relayed to PRISMS Data Software and Coordinating Integration Center (DSCIC) for

long-term archive and offline data modeling. One day of data per subject is kept on the

BREATHE server for real-time analysis purposes (e.g., event-based EMA trigger generation,

subject-specific risk assessment). The separation of modeling and real-time data processing

allows BREATHE server to retain high performance in scaled usage.
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8.2 Data Security

In order to maintain a closed Health Insurance Portability and Accountability Act(HIPAA)-

compliant system design, multiple levels of data security is employed. On data transfer

between sensors to smartwatch and smartphone, we rely on the BLE stack which is compliant

with HIPPA requirements of encryption [210]. To transfer the data from the smartphone

to the server, we use a 128-bit hybrid Rivest Shamir Adleman (RSA)-Advanced Encryption

Standard (AES) technique [199], which is illustrated in Figure 8.2. In this approach, AES

generates a session key for encryption and decryption of data. However, as AES key is

symmetric, meaning that the same key must be used to encrypt and decrypt the data, it

should be transferred from the smartphone to the cloud in each session. To ensure secure

key exchange, we employ the RSA algorithm to encrypt the AES symmetric key from the

smartphone to the cloud. The RSA algorithm generates a pair of public and private keys

on the cloud and the smartphone uses the public one to encrypt the AES symmetric key

when sending it to the cloud. [199] showed that this hybrid encryption technique increases the

privacy and confidentiality of data while showing a lower encryption time and cost compared

to other techniques.

Figure 8.2: Data security layers in BREATHE data transfer from a device to the server.
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Table 8.3: Background information on recruited participants.

Age Gender Asthma level

8-10 11-13 14-16 Male Female Mild Moderate Severe

3 11 6 11 9 5 9 6

Figure 8.3: Distribution the type of triggered EMA questionnairs (left) and their total

frequency among all participants (right).

8.3 Pilot Study

In this section, we provide results of our efforts in modeling asthma exacerbation using

data collected from 20 participants recruited as part of the BREATHE pilot study. All

individuals are consented, trained, and their asthma scores and sensor baselines are collected

before entering the study. Following the recruitment session, they take the BREATHE kit

to use during the child waking hours for a 2-week monitoring period. Table 8.3 provides

demographic information on the recruited children. From 20 participants under the study,

19 completed and 1 left the study after 5 days. On average, each participant used the kit

for 11 hours per day generating approximately 1.3 GBs of sensor data. It is important to

mention that many participants reported trouble in using the kit during the school hours.
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Participants were also asked to answer to EMA questionnaires within 10 minutes of their

trigger event. Figure 8.3 demonstrates the distribution of triggered EMAs as well as their

types among all participants. The observable difference in the number of total triggered

EMAs can be attributed to the dependency of a subset of EMAs to the context events and

its variation among the participants. Participants compliance with questionnaire completion

has an average of 40%, ranging from a minimum of 11% to maximum of 85%.

8.3.1 Annotating Asthma Exacerbation Events

To form a model of asthma exacerbation for participants, we consider two sources of data:

momentarily asthma symptom assessments and rescue inhaler usage. As discussed before,

all EMA questionnaires contain a query on 4 asthma symptoms: chest tightness, wheezing,

coughing, and having trouble breathing that are scored between 0 and 3 by participants.

Asthma score which is used as a label in our study is defined as the summation of these 4

symptom scores. Furthermore, a rescue inhaler usage which is detected through Propeller

sensors is considered as a label for a moderate to severe exacerbation of asthma. Figure 8.4

illustrates temporal changes in asthma scores and distribution of rescue inhaler usage among

all participants. As both figures suggest, participants show a wide range of asthma exac-

erbation frequency and severity. However, the dataset distribution is skewed towards lower

rates of rescue inhaler usage and minor asthma score changes.

In this study, we investigate the problem of predicting asthma exacerbation within the

next two-hour time window. A positive label is assigned to any usage of rescue inhaler or

a 2 point increase of asthma assessment score compared to the individual’s baseline. These

parameters are selected based on the observed distribution of collected data and consultation

with domain experts in PRISMS. Table 8.4 summarizes the label distribution among subjects

as well as the distribution of positive and negative labels in our dataset.
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Figure 8.4: Temporal changes in asthma scores for all participants (left) and rescue inhaler

usage distribution (right)

Table 8.4: The distribution of the number of collected data samples per participant and the

average number of positive and negative labels in each bucket.

Number of samples per subject 0− 10 10− 20 20− 30 30− 40 40− 50 > 50

Number of subjects 6 2 1 5 3 3

Sample label type Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg

Avrg number of label per subject 0.5 3.5 6 6 6 18 15 20 25.5 20.5 19.3 37.3

122



8.3.2 Asthma Model

Recognizing the sparsity of labels in this application, we employ a hierarchical prediction

model. In the first step, we rely on supervised and unsupervised anomaly detection models

to extract the environmental and physiological events in proximity to an annotated asthma

assessment point. Next, an asthma model is developed for each individual to learn the

relation of these events to possible exacerbation of symptoms.

Feature Event Extraction

A summarized view of how features/events are extracted from different components of

BREATHE kit is illustrated in Figure 8.5. To detect changes in air quality and weather

signals, we employ an online and unsupervised anomaly detection model, similar to the one

discussed in section 3.2.1, which trains an autoencoder on intervals of data showing normal

signal behavior for each individual and uses the reconstruction error for online detection of

anomalies and possible asthma triggers. Furthermore, an increase in the intensity of activity,

which is recognized as a possible trigger of asthma symptoms, is detected using the activ-

ity recognition model introduced in chapter 6. In order to detect heart rate events, we rely

on [150] and examine the increase of heart rate reserve which is calculated as HRmax−HRrest

with HRmax = 208− 0.7× age. More than 50% increase of heart rate reserve for 2 minutes

is considered as a heart event and possible asthma trigger. Experiencing an intense feeling

such as anger or stress is also included as a feature through EMA questionnaires. Existence

of these events is studied in a two-hour time-span before an annotated asthma assessment.

To include more long-term variables we also consider the presence of sickness and allergy

in the past day, which is collected from the end of day surveys of participants. Furthermore,

adherence to control medication is examined against each participant required dosage in the

past two days and is integrated as a feature into the model. Poor lung function (detected by

spirometer usage) and a close recorded exacerbation (through EMA or rescue inhaler usage)

are two other features integrated into the model. It is worth mentioning that a few data
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Figure 8.5: Temporal changes of asthma scores for all participants (left) and rescue inhaler

usage distribution (right)

sources introduced before have been excluded in our feature extraction process. In particular,

ASU and MA200 sensors posed some deployment challenges such as loss of calibration on

the time of deployment that left their records unreliable for some of the participants.

Figure 8.6 demonstrates the availability of each of the above-mentioned events prior to

our labeled data samples. The numbers are reported separately for the two scenarios of

rescue inhaler usage and self-assessment of asthma symptoms through EMAs. As it can be

inferred from the left figure, the majority of detected events occur with higher frequency

before positively labeled samples (presence of exacerbation) compared to negatively labeled

ones. This difference in frequency is much lower for two event types, namely the increase of

heart rate and experiencing an intense feeling, which can indicate a lower correlation either

due to lack of accuracy or subjectivity of the event. On the other hand, we can observe a

considerably lower frequency rate of activity and air quality events before usage of the rescue

inhaler. A closer analysis shows no usage of BREATHE smartwatch before 35% of rescue

inhaler usage events while this number is 16% for EMA questionnaires. To surface the roots

of the observed usage behavior multiple factors such as battery issues and usability of the

system when participants do not feel well should be further studied.

124



Figure 8.6: Frequency of various events prior to asthma assessments using EMA questionnairs

(left) and rescue inhaler usage (right). Asthma assessment events are separated based on

weather an exacerbation is observed (positive) or not (negative).

Prediction Results

Recognizing the limited availability of labeled samples and personal nature of asthma trig-

gers, we rely on shallow models to build personalized predictors for each subject. For 11

out of 20 participants we were able to generate a large enough dataset (more than 20 sam-

ples) with a fairly balanced set of negative and positive labels. Figure 8.7 demonstrates the

prediction results for these participants using a Random Forests classifier. The performance

is reported based on accuracy, precision, recall, and average precision metrics. The average

precision metric is especially important as it better shows how well the model scores the

probability of an exacerbation onset. As the figure suggests, a mean average precision of

78.6% is achieved.

The importance of each feature in the prediction of the exacerbation is essential in the

selection of optimal sensors and monitoring variables for asthma prediction. Figure 8.8
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Figure 8.7: The prediction performance of personalized models trained on 10 participants.

reports the average importance score assigned by the predictor to each feature among all

participants. The results interestingly show that a poor asthma control (lack of adherence to

medications) and a close exacerbation are the main predictors of a future negative asthma

event. High-intensity activity and sudden change in air quality follow these features in

importance and show a significant importance margin against other features.

Results of this experiment show the considerable potential in personalized prediction

of asthma exacerbation when enough positive labels (exacerbation events) are observed.

However, for participants lacking enough labeled samples a general prediction model can

be employed. To this end, three general models for mild, moderate and severe groups are

trained. As the datasets collected from the remaining 9 participants are small and very

skewed towards negative samples (with an average of 5 samples and less than 2 positive

samples per participant) the prediction model for mild control group is employed which

achieves an average of 92% accuracy, 57% recall, 71% precision and 61% average precision

among these participants.
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Figure 8.8: Average feature importance in prediction of asthma exacerbation.

8.4 Acknowledgment

BREATHE is a collaborative study between University of California Los Angeles (UCLA)

and University of Southern California (USC) led by Alex A.T. Bui, director of UCLA Med-
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(DSCIC) led by Jose-Luis Ambite from USC Viterbi school of engineering and PRISMS

center in Arizona State University and Aethlabs.

8.5 Conclusion

In this chapter, we introduced BREATHE, a pervasive health solution aimed at the prediction

of asthma exacerbation ahead of time. Through this chapter, we visited the system design

of BREATHE for secure and flexible data collection, transmission and analysis. We also

investigated the modeling of asthma exacerbation on 20 participants. Results of our study

show the potential of such a system in the prediction of future asthma events.

The future steps that are envisioned for this study include analytical and systematical

improvements. On the modeling side, it is desirable to validate the obtained results on a

larger set of participants with a diverse range of asthma symptoms. With the availability of

larger datasets, further studies can be conducted on the design of reliable general models for

participants with sparse labeled samples. On the system design side, we believe data quality

can be improved by the adoption of more accurate heart measurement devices and increasing

the frequency of motion signals collection. These improvements should be approached with

the important challenge of battery consumption in mind. On the other hand, battery life

improvements on smart devices can be of great value to such applications and removing the

burden of recharging the kits from the user.
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CHAPTER 9

Conclusion

In this final chapter, we summarize the objectives and contributions of this research and

discuss the directions we envision for the future. This dissertation made several contributions

to address unique data modeling challenges in the domain of pervasive health that were

surfaced through our efforts in building a highly context-aware solution for the prevention

of asthma exacerbation in children. These challenges and our approach in addressing them

are summarized below:

• Sparsity of labels: Pervasive health solutions generate an enormous size of data, how-

ever, the majority of the collected samples remain unlabeled in a real-world setting.

Therefore, diversifying pervasive health applications requires the adoption of unsuper-

vised or semi-supervised approaches. To this end, we proposed a new unsupervised

method for the detection of future negative events through physiological sensors in

chapter 3. On the same direction, we also showed how a model can be transferred to

a new domain with no or sparse set of labeled samples in chapter 7.

• Heterogeneity of data types: Developing a comprehensive model of health requires

the integration of heterogeneous types of data in various formats. This is especially

challenging due to the huge size of data in healthcare. In chapters 4 and 5, we proposed

a unified integration using Heterogeneous Information Networks and showed that it can

achieve the state of the art results in diagnosis prediction task.

• Poor model generalizability: One challenging aspect of healthcare is its high variability

among individuals and diseases. Models trained for a specific group in the healthcare

domain are hardly generalizable to individuals beyond that group. In chapters 6 and 7,
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we investigated multi-task learning to improve personalization and deep domain adap-

tation to address the important challenge of deploying a model in a new domain.

• Interpretability of results: Recognizing the sensitive nature of healthcare and the need

for transparency of the decision process, interpretability is considered as an essential

requirement in the design of models in this domain. To this end, we proposed an

interpretable integration of healthcare data in chapter 5.

9.1 Future Directions

In this section, we discuss the lines of research that we find promising for further advancement

of pervasive health and healthcare informatics in general. We envision these advancements

in both methodological and application sides.

9.1.1 Methodological side

One important challenge in the current state of healthcare informatics is building longi-

tudinal models of individuals’ health state. This limitation is largely due to the lack of

access to datasets containing long-term health records of subjects. In the future, we expect

availability of such datasets that will in turn open new lines of research to address major

unmet challenges, including adapting to an individual’s health shift over time, balancing the

impact of long-term and short-term events on prediction of an individual’s health state, and

learning the sequential relation of health events on different outcomes. On this direction,

we also hope to see datasets and analytical models connecting electronic health records of

individuals to the data collected from pervasive health solutions. Such integrative models

will provide more detailed investigation of health trajectories and prevention opportunities.

As discussed in the objectives of our research, in order to expand the reach and scale of

pervasive health solutions, we need to rely on learning transferable models for healthcare. In

chapters 6 and 7, we approached this problem by showing how a time-series based model can

be transferred among individuals and domains. However, there is still room for investigation
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of how models combining various types of data for an individual, such as the one we proposed

in chapter 4, can be transferred. Furthermore, the transfer of models among various EHR

datasets with a different distribution of records (e.g., symptoms and diseases) is a direction

we expect to see in the future. This will allow tackling the existing high discrepancy among

EHR datasets and eliminate the need for the development of dataset-specific models.

We similarly expect more work on personalization of healthcare models. Pervasive health

solutions can currently collect a huge set of personalized data but there is still a great need

for person-specific data modeling. In chapter 6, we showed the promise of this direction on

improving the activity recognition task, which involved only a single source of data. In the

future, we expect to see personalized models that integrate heterogeneous sources of data.

Recalling the sparsity of labels in pervasive health, we also expect to see the investigation of

active learning algorithms that query the individual only for highly informative labels that

can improve the personalized prediction.

Last but not least, we expect to see a higher focus on unsupervised or semi-supervised

models for real-time predictions in pervasive health. Following our work in chapter 3, we

envision the investigation of how the model can be extended to incorporate various sources

and types of information.

9.1.2 Application side

There have been many lessons learned through our efforts in building a highly context-aware

pervasive health solution. We found battery life of smart devices one of the main existing

barriers in the successful deployment of such solutions. Ideally, the battery should last for at

least one day of constant use, however, our experience in the design of BREATHE (chapter 8)

suggests much lower battery life expectancy, especially when the smart device is used as

the main connection hub of other sensors. While we expect to see advancements in this

direction, we envision a line of research on determining the minimum acceptable frequency

of data collection for different types of sensors. This will ensure acceptable performance for

models built on top of the collected data while minimizing energy consumption.
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Furthermore, our experience in the integration of a wide range of sensors into BREATHE

surfaces the strong need for the development of standardized APIs for flexible connection of

sensors into pervasive health solutions. Although we established a normalized data view of

available sensors, there is still a need to develop a specification of possible data elements and

formats collected by environmental and physiological sensors so that previously unknown

sensors can also be integrated into the system on-the-fly.

Finally, we expect to see advancements in the accuracy of built-in sensors in smart

devices, especially smartwatches. Our experiments in BREATHE show high variation and

low accuracy of heart rate signal collected by the smartwatch used in our study.
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[164] Markus Müller, Sebastian Stüker, and Alex Waibel. Language adaptive multilingual
ctc speech recognition. In International Conference on Speech and Computer, pages
473–482. Springer, 2017.

[165] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[166] Flory L Nkoy, Bryan L Stone, Bernhard A Fassl, Karmella Koopmeiners, Sarah Hal-
bern, Eun H Kim, Justin Poll, Joseph W Hales, Dillon Lee, and Christopher G Mal-
oney. Development of a novel tool for engaging children and parents in asthma self-
management. In AMIA Annual Symposium Proceedings, volume 2012, page 663. Amer-
ican Medical Informatics Association, 2012.

[167] Carlos Nunes, Ana Margarida Pereira, and Mário Morais-Almeida. Asthma costs and
social impact. Asthma research and practice, 3(1):1, 2017.

[168] Henry Friday Nweke, Ying Wah Teh, Mohammed Ali Al-Garadi, and Uzoma Rita
Alo. Deep learning algorithms for human activity recognition using mobile and wear-
able sensor networks: State of the art and research challenges. Expert Systems with
Applications, 105:233–261, 2018.

[169] US Department of Health, Human Services, et al. Expert panel report 3: Guidelines
for the diagnosis and management of asthma. Bethesda, MD: HHS, National Heart,
Lung and Blood Institute, National Institutes of Health. Publication, (07-4051), 2007.

[170] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring
mid-level image representations using convolutional neural networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1717–1724,
2014.

[171] Carsten Orwat, Andreas Graefe, and Timm Faulwasser. Towards pervasive computing
in health care–a literature review. BMC medical informatics and decision making,
8(1):26, 2008.

[172] Ki-Hee Park and Seong-Whan Lee. Movement intention decoding based on deep learn-
ing for multiuser myoelectric interfaces. In 2016 4th International Winter Conference
on Brain-Computer Interface (BCI), pages 1–2. IEEE, 2016.

[173] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages
1310–1318, 2013.

147



[174] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[175] PhysioBank PhysioToolkit. Physionet: components of a new research resource for
complex physiologic signals. Circulation. v101 i23. e215-e220.

[176] Vincent Pichot, Jean-Michel Gaspoz, Serge Molliex, Anestis Antoniadis, Thierry
Busso, Frédéric Roche, Frédéric Costes, Luc Quintin, Jean-René Lacour, and Jean-
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