
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Tempered Bregman Divergence for Continuous and Discrete Time Mirror Descent and 
Robust Classification

Permalink
https://escholarship.org/uc/item/9128m8rp

Author
Amid, Ehsan

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike 
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9128m8rp
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

TEMPERED BREGMAN DIVERGENCE FOR CONTINUOUS
AND DISCRETE TIME MIRROR DESCENT AND ROBUST

CLASSIFICATION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Ehsan Amid

June 2020

The Dissertation of Ehsan Amid
is approved:

Professor Manfred K. Warmuth, Chair

Professor David Helmbold

Professor Abhradeep Guha Thakurta

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies



Copyright © by

Ehsan Amid

2020



Table of Contents

List of Figures vi

List of Tables ix

Abstract x

Dedication xi

Acknowledgments xii

1 Introduction 1
1.1 Motivation and Previous Work . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Original Publications . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Convex Duality, Bregman Divergence, and Matching Loss 8
2.1 Convex Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Bregman Divergence . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Strong Convexity and Smoothness . . . . . . . . . . . . . . . . . . 12
2.4 Dual of a Constrained Convex Function . . . . . . . . . . . . . . . 13
2.5 Matching Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Reparameterizing Mirror Descent as Gradient Descent 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Continuous-time Mirror Descent . . . . . . . . . . . . . . . . . . . 26
3.3 Discretized Updates . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Reparameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Tempered Bregman Updates . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Tempered EGU± . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.2 Reparameterized Tempered EGU± . . . . . . . . . . . . . 47

iii



3.6 Minimum-norm Solutions . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.1 Vector Case . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Partial Results on the Matrices . . . . . . . . . . . . . . . 52

3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.1 Minimum-norm Solutions for Linear Regression . . . . . . 59
3.7.2 Reparameterizing Weights of Neural Networks . . . . . . . 59

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Winnowing with Gradient Descent 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Reparameterizing the Continuous-time Exponentiated Gradient Al-

gorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Reparameterization of the Winnow . . . . . . . . . . . . . . . . . 70
4.4 Reparameterization of the Hedge . . . . . . . . . . . . . . . . . . 72
4.5 Reparameterizations of EGU and EG for Linear Regression . . . . 75
4.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.1 Lower-bounds on the Hadamard Problem . . . . . . . . . . 81
4.6.2 Behavior of GD and Reparameterized EGU with Different

Initializations . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Tempered Bregman Divergence for Classification 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Our replacement of the softmax output layer in neural net-
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.2 An illustration . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Tempered Matching Loss . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Tempered softmax function . . . . . . . . . . . . . . . . . 92
5.2.2 Matching loss of tempered softmax . . . . . . . . . . . . . 93

5.3 Robust Bi-Tempered Logistic Loss . . . . . . . . . . . . . . . . . . 93
5.3.1 Properness and Monte-Carlo sampling . . . . . . . . . . . 94
5.3.2 Bayes-risk consistency . . . . . . . . . . . . . . . . . . . . 95

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.1 Corrupted labels experiments . . . . . . . . . . . . . . . . 97
5.4.2 Overfitting to Noise and Generalization . . . . . . . . . . . 99
5.4.3 Large scale experiments . . . . . . . . . . . . . . . . . . . 100

5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 100

6 Conclusion and Future Work 102

A 104
A.1 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 Proof of Theorem 14 . . . . . . . . . . . . . . . . . . . . . . . . . 107

iv



A.3 Proof Sketch of Claim 1 . . . . . . . . . . . . . . . . . . . . . . . 110

B 112
B.1 An Iterative Algorithm for Computing the Normalization . . . . . 112
B.2 Other Tempered Convex Functions . . . . . . . . . . . . . . . . . 112
B.3 Convexity of the Tempered Matching Loss . . . . . . . . . . . . . 113
B.4 Derivatives of Lagrangian and the Bi-tempered Matching Loss . . 115

Bibliography 117

v



List of Figures

2.1 Projected gradient of a convex function with an affine constraint:
the gradient of the unconstrained function θ is decomposed into
θ̌, which corresponds to the projected gradient that lies on the
hyperplane plus λprojc, which is the term that is orthogonal to the
hyperplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The relation between the primal variable w and its corresponding
unconstrained dual θ and constrained dual θ̌. . . . . . . . . . . . 17

3.1 A reparameterized linear neuron where wi = |ui|
2

2−τ as a two-layer
sparse network: value of τ = 0 reduces to GD while τ = 1 simulates
the EGU update. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 logτ (x), for different τ ≥ 0. . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Underdetermined linear regression: (a)-(c) norms of the solutions

obtained using GD, EGU±, and tempered EGU± (τ = 0.6) along
with their reparameterized forms on an underdetermined linear re-
gression problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Absolute values of (a slice of) the weights of the last layer for the
vanilla GD and the reparameterized EGU± networks. The L1-norm
of the GD weights is 571.1 while for reparameterized EGU±, the
L1-norm is 176.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Reparameterizing theweights wi of a linear neuron by u2
i . . . . . . . 66

vi



4.2 Complete two-layer linear network. The green weights are initial-
ized to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 GD, EGU, & Reparameterized EGU on the online Hadamard prob-
lem (n= 128): at round t, we train until consistency on the t past
examples. The 128 weights are shown in blue and the average loss
over all 128 examples in red. . . . . . . . . . . . . . . . . . . . . . 81

4.4 Results of two-layer linear networks on the online Hadamard prob-
lem (n=128). We perform one pass over the examples. The prod-
uct of the weights of the first and the second layer (128 weights in
total) are shown in blue and the average loss over all 128 examples
in red. Results of the two-layer network of Figure 4.2 using GD
where the first layer weights are (a) initialized to zero, (b) initial-
ized uniformly on both diagonals, (c) results of the sparse network
of Figure 4.1 where the weights are initialized randomly. . . . . . 83

5.1 Tempered logarithm and exponential functions, and the bi-tempered
logistic loss: (a) logτ function, (b) expτ function, bi-tempered lo-
gistic loss when (c) τ2 = 1.2 fixed and τ1 ≤ 1, and (d) τ1 = 0.8 fixed
and τ2 ≥ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Logistic vs. robust bi-tempered logistic loss: (a) noise-free labels,
(b) small-margin label noise, (c) large-margin label noise, and (d)
random label noise. The temperature values (τ1, τ2) for the bi-
tempered loss are shown above each figure. . . . . . . . . . . . . 90

vii



5.3 Top-1 accuracy of the models trained using the logistic loss (top)
and the bi-tempered loss with (τ1, τ2) = (0.5, 4.0) (bottom) on the
noisy MNIST dataset: accuracy on (a) noise-free training set, (b)
noisy training set, (c) and noise-free test set. Initially, both mod-
els provide better generalization but gradually overfit to the label
noise. However, the overfitting for the logistic loss happens much
earlier during the optimization. The variance of the model is also
much higher for the logistic loss. The bi-tempered loss provides
better generalization accuracy overall. . . . . . . . . . . . . . . . 99

viii



List of Tables

3.1 Some special cases of the tempered Bregman divergence. . . . . . 45
3.2 Different levels of sparsity achieved by thresholding the weights of

the reparameterized last layer and the corresponding top-1 test set
accuracy. Even with 98.90% sparsity the network achieves 97.48%
test accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Top-1 accuracy on a clean test set for MNIST and CIFAR-100
datasets where a fraction of the training labels are corrupted. . . . 98

5.2 Top-1 accuracy on ImageNet-2012 with Resnet18 and 50 architec-
tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



Abstract

Tempered Bregman Divergence for Continuous and Discrete Time Mirror

Descent and Robust Classification

by

Ehsan Amid

Bregman divergence is an important class of divergence functions in Machine

Learning. Many well-known updates including gradient descent and (un)normalized

exponentiated gradient are motivated by using a Bregman divergence as the in-

ertia term. Moreover, Bregman divergence is used as a measure of progress for

online algorithms as well as the training loss for classification models. In this the-

sis, we introduce a class of tempered Bregman divergences that, as special cases,

includes many well-known distance measures such as squared Euclidean and rel-

ative entropy. We explore the tempered updates motivated by the new tempered

Bregman divergence and develop theorems that allow us to unify these updates

as gradient descent. We show the application of the reparameterized updates

by proving regret bounds for the special case of reparameterized exponentiated

gradient. Finally, we extend the notion of a matching loss to the new tempered

Bregman divergence and develop bounded classification loss functions that are

significantly more robust to noise and outliers.

x



ایران صنعت و علم دانشگاه
(١٣٩٨ (بهار عمیق یادگیری

پایانی گزارش فرمت

اول نویسنده ی
کامپیوتر مهدسی دانشکده

ایران صنعت و علم دانشگاه
name@cs.iust.ac.ir

چکیده

عزیزم مادر به تقدیم

مقدمه ١

متون و چاپگرها است. گرافیک طراحان از استفاده با و چاپ صنعت از نامفهوم سادگی تولید با ساختگی متن ایپسوم لورم
هدف با متنوع کاربردهای و نیاز مورد تکنولوژی فعلی شرایط برای و است لازم که سطرآنچنان و ستون در مجله و روزنامه بلکه

باشد. می کاربردی ابزارهای بهبود

پیش زمینه / مرتبط کار های ٢

متون و چاپگرها است. گرافیک طراحان از استفاده با و چاپ صنعت از نامفهوم سادگی تولید با ساختگی متن ایپسوم لورم
هدف با متنوع کاربردهای و نیاز مورد تکنولوژی فعلی شرایط برای و است لازم که سطرآنچنان و ستون در مجله و روزنامه بلکه

باشد. می کاربردی ابزارهای بهبود

شده پشینهاد مدل ٣

متون و چاپگرها است. گرافیک طراحان از استفاده با و چاپ صنعت از نامفهوم سادگی تولید با ساختگی متن ایپسوم لورم
هدف با متنوع کاربردهای و نیاز مورد تکنولوژی فعلی شرایط برای و است لازم که سطرآنچنان و ستون در مجله و روزنامه بلکه

باشد. می کاربردی ابزارهای بهبود

نتایج ۴

و چاپگرها است. گرافیک طراحان از استفاده با و چاپ صنعت از نامفهوم سادگی تولید با ساختگی متن ایپسوم نتایجلورم
با متنوع کاربردهای و نیاز مورد تکنولوژی فعلی شرایط برای و است لازم که سطرآنچنان و ستون در مجله و روزنامه بلکه متون

باشد. می کاربردی ابزارهای بهبود هدف

تحلیل ۵

متون و چاپگرها است. گرافیک طراحان از استفاده با و چاپ صنعت از نامفهوم سادگی تولید با ساختگی متن ایپسوم لورم
هدف با متنوع کاربردهای و نیاز مورد تکنولوژی فعلی شرایط برای و است لازم که سطرآنچنان و ستون در مجله و روزنامه بلکه

باشد. می کاربردی ابزارهای بهبود

١

(To my dear Mother)

xi



Acknowledgments

I would like to first and foremost thank my advisor, Manfred Warmuth, for all his

help and support throughout these years. Apart from being an excellent advisor

and a true inspiration, he has always been a caring friend.

I would like to also thank all the people with whom I have had the previlidge

to collaborate. Especially, my colleagues at the Google Brain team, Rohan Anil

and Tomer Koren, and Sriram Srinivasan at the UC Santa Cruz.

Many thanks to the committee members, David Helmbold, Abhradeep Guha

Thakurta, and Wojciech Kotłowski, for their valuable feedback for preparing this

thesis.

Last but not least, I am grateful to all the friends and family members for

going through this journey with me.

xii



Chapter 1

Introduction

Divergence functions are at the core of Machine Learning and Statistics. In

general, divergence functions are used as a measure of discrepancy between a

control object (i.e. model parameter, prediction, distribution, etc.) and its target

value. In particular, divergence functions can be used as: 1) a regularization term

in deriving parameter updates: the update thus balances the trade off between

minimizing the objective function while remaining close to the old parameter.

An important family of such updates that we study extensively in this thesis

is called mirror descent [50], which includes gradient descent and exponentiated

gradient updates [40] as special cases. 2) As a measure of progress in achieving

worst-case regret bounds: classical regret bounds in online learning establish an

upper-bound on the worst-case performance of an online algorithm compared to

the best learner in hindsight. The progress of the algorithm towards an arbitrary

learner is measured in terms of a divergence function. 3) As a way of defining

well-behaved (convex) loss functions: the learner minimizes the discrepancy of the

model prediction and the target. Classification is one of the main problems in this

regard. In this thesis, we greatly advance the agenda in these aspects. We first

review the previous work for each case in detail in the following.

1



1.1 Motivation and Previous Work

Given a parametric model and some initial values for the parameters, the goal

of learning is to update the parameter values such that the model fits the data as

accurately as possible. The goodness of the fit is generally measured in terms of

a loss, commonly a divergence function, that punishes the discrepancy between

the output of the model and the desired target dictated by the data. A good loss

function should preferably take into account the structure of the problem. For

instance, many different divergence functions are proposed for the cases where the

model output and the target are probability distributions [19].

Usually, the learning proceeds in steps and the model maintains the best set

of parameters at any instance. At each step, the parameters are updated to

the minimizer of the loss plus an inertia term that keeps the new parameters

close to the old ones. In general, the inertia term is another divergence function

between the old and new parameters. Using different divergence functions for the

parameters leads to different classes of parameter updates, as we will discuss later.

The main class of divergence functions include Csiszár f -divergence [22] (which

includes the α-divergence [3] as a special case), optimal transport cost between

probability distributions [66] and its approximation via entropic regularization [23],

and Bregman divergence [16] (which includes the β-divergence [20] as a special

case). Specifically, the f -divergence is defined via an expectation over the value

of a convex function f applied to the ratio of two probability distributions. The

most interesting parametric class of f -divergences is perhaps the Tsallis diver-

gence [62]. The Tsallis divergence is motivated by the Tsallis entropy which is

a generalization of the standard Boltzmann–Gibbs entropy with a temperature

τ ∈ R. The standard entropy is recovered at τ = 1. The Tsallis divergence is also

closely related to the Rényi divergence [63].

2



The optimal transport cost, or more specifically the Wasserstein or Kan-

torovich–Rubinstein metric is defined as a distance function between two prob-

ability distributions on a given metric space [66]. Intuitively, the Wasserstein

distance is the minimum amount of cost of moving one probability distribution

into another. Since the calculation of the cost requires an optimization over all

possible joint probability distributions, direct application of Wasserstein metric is

infeasible in many cases. However, approximations of the distance in certain cases

have been proposed using entropic regularization and Sinkhorn balancing [23].

The Bregman divergence is perhaps the most versatile divergence used in Ma-

chine Learning. It is defined as the difference between the growth of a strictly

convex function and its linear approximator. The Bregman divergence includes

many commonly used divergences such as the squared Euclidean, relative entropy,

Burg (a.k.a. Itakura-Saito), inverse divergence, etc. The properties of the Breg-

man divergence have been studied throughout the years [52, 13, 15, 26, 65] and

it has been successfully applied to clustering [12], matrix factorization [21], and

density-ratio estimation [60]. In particular, the Bregman divergence can be used

as the inertia term for parameter optimization, which leads to the class of mir-

ror descent updates [50]. The main class of mirror descent updates are gradient

descent and exponentiated gradient [40], which are motivated using the squared

Euclidean and relative entropy divergence as inertia terms, respectively. For ex-

ample, the classical Perceptron and Winnow algorithms are motivated using the

identity and log links, respectively, when the loss is the hinge loss. The gradi-

ent descent and the exponentiated gradient updates have fundamentally different

properties [67, 25] and for years the differences between the two have been studied

extensively [40, 41, 51]. In particular, the Hadamard problem is a paradigmatic

linear problem that has been used to highlight the difference between the two

3



updates [39, 67]. There has been recent attempts to approximately unify the two

updates in different regions of the parameter space [30]. However, the unification

holds only approximately and the transition between the two updates has been

unclear.

In addition to efficient parameter updates, the Bregman divergence can also

be used as a classification loss. Specifically, the relative entropy divergence paired

with the softmax transfer function, called the logistic loss, is perhaps the most

commonly used loss function for training classifiers. The main drawback of using

the logistic loss for classification in noisy setting is that, due to the convexity of the

loss, the effect of noisy examples can dominate the total loss and therefore, result

in a poor classification margin [48]. There has been attempts to make the loss non-

convex by bending down the loss for large-margin misclassified examples [28, 10].

However, these approaches fail to satisfy important properties for classification

loss functions such as properness [72] and Bayes-risk consistency [43, 61].

1.2 Contributions

In this thesis, we provide a set of parametric mirror descent updates that inter-

polate between the gradient descent and the exponentiated gradient updates. For

this, we first develop a tempered Bregman divergence that interpolates between

the squared Euclidean and the relative entropy divergence. Our new tempered

divergence also generalizes beyond the two main divergences and recovers other

well-known divergences such as Burg and inverse. Next, we construct a reparame-

terization theorem that unifies the tempered updates (including the exponentiated

gradient update) as gradient decent updates on a new set of parameters. We first

show the exact equivalence in the continuous domain where the learning rate is

infinitesimally small. We show that the tempered updates as well as their cor-

4



responding gradient descent equivalent converge to minimum norm solutions in

certain settings. Next, we analyze the discretized updates for the exponentiated

gradient updates and show that even after discretization, the known bounds for

the exponentiated gradient updates still hold closely for the reparameterized ap-

proximations. Finally, we consider an application of the new tempered Bregman

divergence for robust classification. That is, we extend the concept of a matching

loss [35, 38] to the tempered divergence and show that the convexity holds when

the temperature of the tempered softmax function matches the temperature of the

Bregman divergence. However, we show that bounded non-convex loss functions

that are significantly more robust to noise can be constructed by introducing a

mismatch between the temperatures of the transfer function and the Bregman

divergence. We show that the new bi-tempered loss can handle large amounts of

label noise for training deep neural networks.

1.3 Outline of the Thesis

In Chapter 2, we review the preliminary topics for the remainder of the thesis,

namely, convex duality, Bregman divergence, and two related concepts namely

strong convexity and strong smoothness. We also discuss the dual of a convex

function under an affine constraint. Using this, we revisit the notion of a match-

ing loss and introduce a new formulation based on convex duality. In Chapter 3,

we motivate the continuous-time mirror descent as the solution of a functional

objective. Next, we show that in the continuous domain, a mirror descent update

on a set of parameters can equivalently be written as an alternative mirror descent

update on a different set of parameters given that a certain mapping exists be-

tween the parameters. In order to apply this trick on the exponentiated gradient

updates, we first introduce the tempered Bregman divergence and show that the

5



different well-known Bregman divergences can be recovered as special cases. Next,

we introduce the reparameterized form of the tempered updates as gradient decent

updates and apply the results to the underdetermined linear regression problem.

We show that under certain conditions, the solution converges to the minimum

norm solutions w.r.t. the appropriate norm. In Chapter 4, we show that the dis-

cretization of the reparameterized exponentiated gradient updates closely mimics

the original updates. Specifically, we show that the known bounds for the original

updates for the Winnow and Hedge algorithms as well as the linear regression

problem holds similarly for the reparameterized updates. In Chapter 5, we apply

the tempered Bregman divergence to the classification problem and show that the

tempered matching loss still induces a convex loss w.r.t the activations. Next, we

introduce a mismatch between the temperatures of the tempered softmax function

and the tempered Bregman divergence and show that for certain choice of tem-

peratures, the loss becomes bounded (and therefore non-convex) and the transfer

functions adopts a heavier-tail than the softmax function. We show that bound-

edness and tail-heaviness are important properties for handling small-margin and

large-margin label noise, respectively. We also show that the new bi-tempered

loss is proper and Bayes-risk consistent, even in the non-convex case. Finally, we

conclude the thesis in Chapter 6 and provide a number of research directions as

possible extensions.

1.4 Original Publications

A part of the material in Chapter 2 along with a discussion of the joint expo-

nential family distributions for hidden variable models appeared as two conference

papers in UAI 2020 [6] and AAAI 2020 [7], and its extensions will be submitted

as a journal paper. The material in Chapter 3 is under review as a conference

6



paper in NeurIPS 2020 [8]. Chapter 4 appeared as a conference paper in COLT

2020 [9]. Finally, Chapter 5 appeared as two conference papers, one in AISTATS

2019 [10], and the other in NeurIPS 2019 [5].

1.5 Notation

We use � and superscript � for element-wise product and element-wise power,

respectively, and use � to denote element-wise division. We let w(t) denote the

weight or parameter vector as a function of time t. Learning proceeds in steps.

During step s, we start with weight vector w(s) = ws and go to w(s+ 1) = ws+1

while processing a batch of examples. Similarly, we use W (t) for a continuous-

time parameter matrix and denote W (s) = Ws. We also write the Jacobian of

a function q evaluated at v as Jq(v) and use HF (v) to denote the Hessian of

a real-valued function F at v. Also, Sd denotes the set of real-symmetric d × d

matrices and ∆n denotes the unit n-simplex.

In the continuous-time setting, the dot symbol
•

v(t) .= ∂
∂t
v(t) denotes the time

derivative of the vector v(t). Also,
•

f(v(t)) .= ∂
∂t
f(v(t)) = Jf (v(t))>

•

v(t) denotes

the time derivative of the multivariate vector function f at v(t).

7



Chapter 2

Convex Duality, Bregman

Divergence, and Matching Loss

In this chapter, we review the material that will be used throughout the disser-

tation. Specifically, we first discuss duality, Bregman divergence, and two related

concepts, namely, strong convexity and strong smoothness. Next, we show how

to calculate the dual of a convex function when the domain is constrained to an

affine set. Using these tools, we review the notion of a matching loss which was

initially introduced in [35, 38] by means of area under integrals. We generalize

the matching loss in terms of convex duality to the cases where the domain is

constrained to an affine set. For a more detailed discussion on convexity, the

interested reader is referred to standard textbooks such as [37]. A part of the

material in this chapter appeared as two conference papers in UAI 2020 [6] and

AAAI 2020 [7]

8



2.1 Convex Duality

Let F : D → R ∪ {−∞,+∞} be a proper, continuously-differentiable convex

function defined on the convex domain D ⊆ Rd taking values on the extended

real line. The convex conjugate of F , denoted by F ∗ : D∗ → R ∪ {−∞,+∞}, is

defined in terms of the supremum

F ∗(θ) = sup
w̃∈D

{θ · w̃ − F (w̃)} .

Denoting w = arg supw̃∈D {θ · w̃ − F (w̃)}, the following relations hold between

the dual variables (w,θ) and the link functions f .= ∇F and f ∗ .= ∇F ∗,

θ = f(w) , w = f ∗(θ) , and f ∗ = f−1 . (2.1)

Additionally, by lower semi-continuity of F , we have

F (w) = sup
θ̃∈D∗

{ θ̃ ·w − F ∗(θ̃)} = θ ·w − F ∗(θ) ,

where D∗ is the domain of the dual function F ∗. Later, we will discuss how the

convex dual of F is affected when the domain of F is constrained to an affine set.

We first review a closely related concept, namely, the Bregman divergence.

2.2 Bregman Divergence

Given a continuously-differentiable, strictly convex function F defined on the

convex domain D, the Bregman divergence [16] between w̃, w ∈ D induced by F

9



is defined as

DF (w̃,w) = F (w̃)− F (w)− f(w) · (w̃ −w) .

The Bregman divergence includes many well-known divergences commonly used

in practice, namely, the squared Euclidean distance, relative entropy, Burg di-

vergence, etc. Also, the Bregman divergence enjoys many favorable properties,

making it an active topic of research for many decades [40, 11, 12, 52, 26, 21, 15,

65, 60, 13]. For instance, using Bregman divergence as an inertia term leads to

a class of updates called mirror descent [50], which will be discussed thoroughly

in the later chapters. The main properties of the Bregman divergence can be

summarized as follows:

• Non-negativity: DF (w̃,w) ≥ 0 and DF (w̃,w) = 0 if and only if w̃ = w.

• Convexity: the Bregman divergence DF (w̃,w) is always convex in the first

argument, but not necessarily in the second argument.

• Asymmetry: DF (w̃,w) 6= DF (w, w̃) in general.

• Invariance to addition of affine function: DF+A(w̃,w) = DF (w̃,w)

where A(w) = a ·w + b for arbitrary a ∈ Rd and b ∈ R.

• Duality: DF (w̃,w) = DF ∗(f(w), f(w̃)) = DF ∗(θ, θ̃) for the pairs of dual

variables (w,θ) and (w̃, θ̃).

• Derivatives: the derivatives of DF (w̃,w) w.r.t. the first and second argu-

ments yield

∇w̃DF (w̃,w) = f(w̃)− f(w) , and ∇wDF (w̃,w) = −HF (w) (w̃−w) .

10



where HF (w) .= ∇2F (w) denotes the Hessian of F , evaluated at w.

The following lemmas are useful for combining Bregman divergences.

Lemma 1 (Forward Combining). Let {wi ∈ D}ki=1 be a set of variables with

corresponding dual variables {θi ∈ D∗}ki=1. Let

wopt = arg min
w̃

∑
i

αiDF (w̃, wi) where αi ≥ 0 and
∑
i

αi = 1 .

be the minimizer of the convex combination of forward Bregman divergences. We

have

wopt = f−1(
∑
i

αif(wi)
)
, i.e. θopt =

∑
i

αi θi ,

where θopt = f−1(wopt) is the dual of wopt.

Proof. Setting the derivatives of the objective w.r.t. w̃ to zero, we have

∑
i

αi
(
f(wopt)− f(wi)

)
= f(wopt)−

∑
i

αi f(wi) = 0 .

Applying the inverse function concludes the proof.

Corollary 1 (Forward Combining Gap). Given in the conditions of Lemma 1,

the following holds

∑
i

αiDF (w,wi) = DF (w,wopt) +
∑
i

αiDF (wopt,wi)︸ ︷︷ ︸
optimum objective

=
∑
i

αi F
∗(f(wi))− F ∗(f(wopt)) ,

for any w ∈ D where wopt = f−1(∑i αif(wi)
)
.

11



Lemma 2 (Backward Combining). Let {wi ∈ D}ki=1 and {θi ∈ D∗}ki=1 be the set

of variables as in Lemma 1. Let

wopt = arg min
w̃

∑
i

αiDF (wi, w̃) where αi ≥ 0 and
∑
i

αi = 1 ,

be the minimizer of the convex combination of backward Bregman divergences. We

have

wopt =
∑
i

αiwi , i.e. θopt = f(
∑
i

αi f
−1(θi)

)
.

Corollary 2 (Backward Combining Gap). Given in the conditions of Lemma 2,

the following holds

∑
i

αiDF (wi,w) =
∑
i

αiDF (wi,wopt)︸ ︷︷ ︸
optimum objective

+ DF (wopt,w)

=
∑
i

αi F (wi)− F (wopt) ,

for any w ∈ D where wopt = ∑
i αiwi.

2.3 Strong Convexity and Smoothness

The following material for strong convexity and strong smoothness are adopted

from [58]. The proofs are omitted for conciseness.

Definition 1 (σ-Strong Convexity). A continuous function F is σ-strongly convex

w.r.t. the norm ‖ · ‖ over the convex set S if S is contained in the domain of F

and the following inequality holds for any w̃, w ∈ S,

F (w̃) ≥ F (w) +∇F (w) · (w̃ −w) + σ

2 ‖w̃ −w‖
2 .

12



Lemma 3. Assume F is twice differentiable. Then F is σ-strongly convex if

w̃>HF (w) w̃ ≥ σ ‖w̃‖2, ∀w̃, w ∈ S .

Lemma 4. Let F be a σ-strongly convex differentiable function over the non-

empty convex set S. For all w̃, w ∈ S, we have

σ

2 ‖w̃ −w‖
2 ≤ DF (w̃,w) .

Definition 2 (σ-Strong Smoothness). A differentiable function F is σ-strongly

smooth w.r.t. the norm ‖ · ‖ if

DF (w̃,w) ≤ σ

2 ‖w̃ −w‖
2 .

Lemma 5. Let F be a closed and convex function. Then F is σ-strongly convex

w.r.t. the ‖ · ‖ norm if and only if F ∗, the dual of F , is 1
σ
-strongly smooth w.r.t.

the dual norm ‖ · ‖∗.

2.4 Dual of a Constrained Convex Function

We now consider the dual of the convex function F (w) where the domain

is restricted to an affine set. The affine constraints appear naturally in many

cases such as classification where the the weight vector w corresponds to the class

probabilities and therefore, lies on the unit simplex. Affine constraints also appear

in online learning where w corresponds to a distribution over the experts [46].

Theorem 1. Let F be a differentiable proper convex function defined on the convex

domain D with convex dual function F ∗. Suppose the convex set Daff
.= D ∩ {w̃ :

c · w̃ = d} is non-empty. Then, function F restricted to Daff induces an alternate

13



dual function F̌ ∗ such that the new dual variable θ̌ corresponding to w ∈ Daff

satisfies θ̌ = P θ where P .= I − c c>

‖c‖2 is the projection matrix onto the affine set

{w̃ : c · w̃ = d}. Additionally, the following relation holds between the constrained

dual function F̌ ∗ and the unconstrained dual function F ∗

F̌ ∗(θ̌) = F ∗(θ)− λproj d ,

such that θ = θ̌ + λproj c holds.

Proof. Let θ̌ ∈ Rd be such that P θ̌ = θ̌. Using the definition of the convex dual,

we have

F̌ ∗(θ̌) = sup
w̃∈D∩{c · w̃=d}

{w̃ · θ̌ − F (w̃)} = sup
w̃∈D
{w̃ · θ̌ − F (w̃) + λ (c · w̃ − d)} ,

where in the second equality, we use a Lagrange multiplier λ ∈ R to enforce the

affine constraint. Setting the derivatives w.r.t. w̃ to zero, at the optimum w, we

have

f(w) = θ̌ + λproj(θ̌) c i.e. w = f−1(θ̌ + λproj(θ̌) c) = f ∗(θ̌ + λproj(θ̌) c) , (2.2)

where λproj(θ̌) denotes the value of the Lagrange multiplier for which the affine

constraint c ·w = d holds (notice the dependence on θ̌). Note that since P θ̌ = θ̌,

the value of λproj c = (I −P ) f(w) corresponds to the component of f(w) that is

along the vector c and θ̌ = P f(w) is the projected gradient, that is,

f(w) = θ = P θ + (I − P )θ

= θ̌ + λproj c .

14



Plugging in for w, we have

F̌ ∗(θ̌) = θ̌ · f−1(θ̌ + λproj c)− F (θ̌ + λproj c)

= (θ̌ + λproj c) · f−1(θ̌ + λproj c)− F (θ̌ + λproj c)− λproj c · f−1(θ̌ + λproj c)

= F ∗(θ̌ + λproj c)− λproj d . (2.3)

The following corollary connects the the unconstrained and constrained link

functions.

Corollary 3. The following relation holds between the unconstrained and con-

strained link functions:

f̌ ∗(θ̌) = f ∗(θ̌ + λproj c) ,

where λproj is such that c · f ∗(θ̌ + λproj c) = d.

Proof. Taking the derivatives of both sides of (2.3) w.r.t. θ̌ yields

f̌ ∗(θ̌) = ∂(θ̌ + λproj c)
∂θ̌

f ∗(θ̌ + λproj c)−
∂λproj

∂θ̌
d

= (I + ∂λproj

∂θ̌
c>) f ∗(θ̌ + λproj c)−

∂λproj

∂θ̌
d

= f ∗(θ̌ + λproj c)−
∂λproj

∂θ̌
(c · f ∗(θ̌ + λproj c))−

∂λproj

∂θ̌
d

= f ∗(θ̌ + λproj c) ,

(2.4)

Theorem 2. The dual of the function F̌ ∗ corresponds to a convex function F̌

defined on the convex set Daff such that F̌ (w) = F (w) for any w ∈ Daff and

f̌(w) = P f(w).

15



Figure 2.1: Projected gradient of a convex function with an affine constraint: the
gradient of the unconstrained function θ is decomposed into θ̌, which corresponds
to the projected gradient that lies on the hyperplane plus λprojc, which is the term
that is orthogonal to the hyperplane.

Proof. The dual of F̌ ∗ can be written as

F̌ (w) = sup
θ̃

{w · θ̃ − F̌ ∗(θ̃)}

= sup
r∈R, θ̃: c · θ̃= 0

{w · (θ̃ + r c)− F̌ ∗(θ̃ + r c)}

= sup
θ̃: c · θ̃= 0

{w · θ̃ − F̌ ∗(θ̃)} .

Thus, any direction along c is vacuous and can be ignored. Setting the derivatives

w.r.t. θ̃ to zero, and denoting the optimum by θ̌, we have

w = f̌ ∗(θ̌) = f ∗(θ̌ + λproj c) , i.e. θ̌ = f(w)− λproj c .

16



w ∈ Daff

θ θ̌

f̌ =P ff

f∗

P

f̌∗

+λproj(θ̌) c

Figure 2.2: The relation between the primal variable w and its corresponding
unconstrained dual θ and constrained dual θ̌.

Plugging in the optimum value yields

F̌ (w) = w · (f(w)− λproj c)− F̌ ∗(f(w)) + λproj d

= w · f(w)− F̌ ∗(f(w))− λproj d+ λproj d = F (w) .

Finally, since dom(F̌ ) = Daff , we have f̌(w) = P f(w) for w ∈ Daff.

Figure 2.1 pictorially shows the relation between the gradient and the projected

gradient. In summary, the diagram in Figure 2.2 commutes between any w ∈ Daff

and its unconstrained dual variable θ and constrained dual variable θ̌.

An important property of the F̌ ∗ function and its link function f̌ ∗ is given in

the following lemma.

Lemma 6. The constrained dual function F̌ ∗ satisfies

F̌ ∗(θ̌ + r c) = F̌ ∗(θ̌) + r d , for any r ∈ R .

17



Proof. Using the definition of the dual function

F̌ ∗(θ̌ + r c) = sup
w̃∈Daff

{w̃ · (θ̃ + r c)− F (w̃)}

= sup
w̃∈Daff

{w̃ · θ̃ − F (w̃)}+ r d

= F̌ ∗(θ̌) + r d .

Corollary 4. The constrained link function f̌ ∗ satisfies

f̌ ∗(θ̌ + r c) = f̌ ∗(θ̌) , for any r ∈ R .

Proof. Taking the derivatives of both sides in Lemma 6 yields the result.

Theorem 3 (Bregman projection onto the affine set). Let w′ ∈ D and let w? be

the Bregman projection of w′ onto the affine set Daff = D ∩ {w̃ : c · w̃ = d},

w? = arg min
w̃∈Daff

DF (w′, w̃) ,

w.r.t. the convex function F . Then

θ̌? = P f(w′) , thus w? = f̌ ∗(P f(w′)).

Proof. Using a Lagrange multiplier λ to enforce the affine constraint c · w̃ = d,

we have

min
w̃∈Daff

DF (w′, w̃) = min
w̃∈D

DF (w′, w̃) + λ (c · w̃ − d) .

Setting the derivatives w.r.t. w̃ to zero yields

f(w′) = f(w?)− λproj c ,

18



where λproj is chosen such that c · w? = c · f−1(f(w′) + λproj c) = d. The dual

variable θ̌? can be found by using the dual link function f̌ , that is

θ̌? = f̌(w?) = P f(w?) = P
(
f(w′) + λproj c

)
= P f(w′) ,

where we use the fact that P c = 0. The second claim follows immediately by

applying the dual link f̌ ∗.

Proposition 1. The Bregman divergence induced by the convex function F̌ on

the affine set dom(F̌ ) = dom(F ) ∩ {w̃ : c · w̃ = d} is equivalent to the Bregman

divergence induced by F .

Proof. Given w,w′ ∈ dom(F̌ ), we have

DF̌ (w,w′) = F̌ (w)− F̌ (w′)− f̌(w′) · (w −w′)

= F (w)− F (w′)− P f(w′) · (w −w′)

= F (w)− F (w′)− f(w′) · (P w − P w′)

= F (w)− F (w′)− f(w′) · (w −w′) = DF (w,w′) ,

where we use the fact that P w = w − d
‖c‖2c for any w ∈ dom(F̌ ).

Recall that every Bregman divergence is equal to its dual Bregman divergence

by flipping the arguments, i.e. DF (w,w′) = DF ∗(θ′,θ) where (w,θ) and (w′,θ′)

are dual variables. The following corollary shows that the equality still holds

under an affine constraint.

Corollary 5 (Bregman Duality Under an Affine Constraint). The following equal-

ity holds

DF (w,w′) = DF ∗(θ′,θ) = DF̌ ∗(θ̌′, θ̌) ,

19



where θ (θ′) and θ̌ (θ̌′) are the unconstrained and constrained dual variables

corresponding to w (w′), respectively.

Proof. The proof immediately follows from Proposition 1.

Example 1 (Negative Entropy Function). To exemplify the results of this section,

consider the negative entropy function defined over the set of discrete non-negative

measures w ∈ Rd
≥0 , given by

Fent(w) =
∑
i

(wi logwi − wi) , fent(w) = logw .

The unconstrained dual of Fent is given by

F ∗ent(θ) =
∑
i

exp θi , f ∗ent(θ) = f−1
ent (θ) = expθ = w .

Restricting the domain of Fent to the set of non-negative probability measures w ∈

Rd
≥0 ,

∑
iwi = 1 ·w = 1 yields

F̌ ∗ent(θ̌) = log
∑
i

exp θ̌i , f̌ ∗ent(θ̌) = exp θ̌∑
i exp θ̌i

= w ,

where θ̌ = f̌ent(w) = P fent(w) = logw − 1
d

∑
i logwi. Plugging back w into the

link function yields

log exp θ̌∑
i exp θ̌i

− 1
d

∑
j

log exp θ̌j∑
i exp θ̌i

= θ̌ − 1
d

∑
j

θ̌j︸ ︷︷ ︸
=0

= θ̌ ,

which confirms that f̌ent is in fact the inverse of f̌ ∗ent. The converse relation is

20



trivial to verify. Moreover,

λopt = (I − P ) fent(w)

= 1
d

∑
i

log exp θ̌i∑
j exp θ̌j

= 1
d

∑
i

θ̌i︸ ︷︷ ︸
= 0

− log
∑
j

exp θ̌j = − log
∑
j

exp θ̌j .

By Corollary 3, we have

f ∗ent(θ̌ + λopt 1) = exp(θ̌ − log
∑
j

exp θ̌j) = exp θ̌∑
j exp θ̌j

= f̌ ∗ent(θ̌) .

2.5 Matching Loss

Classification is one of the core problems in Machine Learning. A classifier

consists of a model which, given an input x, produces a probability distribution ŷ

over the classes at the output. In general, the output probabilities are generated

by applying a transfer function s : Rk → ∆k−1 on the output activations â ∈ Rk,

that is ŷ = s(â). Usually, the class with the highest probability is chosen as the

predicted class for the input.

In order to train a classifier, we need to define a notion of loss which estab-

lishes a measure of discrepancy between the output probabilities ŷ and the given

target class probabilities (i.e. labels) y. The classification loss functions are of pri-

mary interest in Machine Learning. The most basic loss function for classification

consists of 0/1-loss which assigns a unit of loss when the instance is misclassi-

fied. Minimizing the 0/1-loss directly is a challenging task and is shown to be

NP-hard [14]. The main challenge in minimizing the 0/1-loss is its non-convexity.

Therefore, many convex loss functions have been proposed as convex surrogates.

A well-known example is the logistic loss which consists of the relative entropy

21



divergence applied to the softmax function on the activations (which induces the

class probabilities).

In this section, we recall the notion of a matching loss [35, 38, 17, 55]. It

arises as a natural way of defining a loss function over activations â ∈ Rk, by

first mapping them to a probability distribution over class labels using a transfer

function s, and then computing a divergence DF between this distribution and

the correct target labels. The idea behind the following definition is to “match”

the transfer function and the divergence via duality.1

Definition 3 (Matching Loss). Let F : D → R ∩ {−∞,+∞} be a continuously-

differentiable, strictly convex function such that ∆k−1 ⊆ D and let s : Rk →

∆k−1 be a transfer function such that ŷ = s(â) denotes the predicted probability

distribution based on the activations â. Then the loss function

LF (â | y) .= DF (y, s(â)) ,

is called the matching loss for s, if s = f̌ ∗ = ∇F̌ ∗.

Note that f̌ ∗ is no longer one-to-one since f̌ ∗(â+ R1) = f̌ ∗(â) (Corollary 4).

However, w.l.o.g. we can constrain the domain of the function to â ∈ dom(f̌ ∗) ∩

{a′ ∈ Rk | a′ ·1 = 0} to obtain a one-to-one mapping. The matching loss is useful

due to the following property.

Proposition 2. The matching loss LF (â | y) is convex w.r.t. the activations

â ∈ dom(f̌ ∗) ∩ {a′ ∈ Rk | a′ · 1 = 0}.

Proof. Note that F̌ ∗ is a strictly convex function and the following relation holds
1Originally in [35, 38], the matching loss was defined as a simple integral over the transfer

function s = f−1: LF (â | y) =
∫ â

s−1(y)(s(z)− y)· d z. Our new duality based definition handles
additional linear constraints.

22



between the divergences induced by F and F̌ ∗ (Corollary 5):

DF (y, ŷ) = DF̌ ∗

(
(f̌ ∗)−1(ŷ), (f̌ ∗)−1(y)

)
. (2.5)

Thus for any â in the range of (f̌ ∗)−1,

DF

(
y, f̌ ∗(â)

)
= DF̌ ∗

(
â, (f̌ ∗)−1(y)

)
.

The claim now follows from the convexity of DF̌ ∗ w.r.t. its first argument.

The original motivating example for the matching loss was the logistic loss

[35, 38]. It can be obtained as the matching loss for the softmax function (see

Example 1)

ŷi = [f̌ ∗(â)]i = exp(âi)∑k
j=1 exp(âj)

,

which corresponds to the relative entropy (KL) divergence

LF (â | y) = DF

(
y, f̌ ∗(â)

)
=

k∑
i=1

yi (log yi − log ŷi)

=
k∑
i=1

(
yi log yi − yi âi)

)
+ log

( k∑
i=1

exp(âi)
)
,

induced from the negative entropy function F (y) = ∑k
i=1(yi log yi−yi). In Chap-

ter 3, we define a family of convex functions Fτ parameterized by a temperature

τ ∈ R. In Chapter 5, we show that the matching loss LFτ (â | y) = DFτ

(
y, f̌ ∗τ (â)

)
for the link function f̌ ∗τ of F̌ ∗τ is convex in the activations â. However, by let-

ting the temperature τ2 of f̌ ∗τ2 be larger than the temperature τ1 of Fτ1 , we con-

struct bounded non-convex losses with heavy-tailed transfer functions. As we will

see, boundedness of the loss and tail-heaviness of the transfer function are useful

properties for handling large-margin and small-margin label noise, respectively,

for training deep neural networks.

23



Chapter 3

Reparameterizing Mirror Descent

as Gradient Descent

In this chapter, we revisit the continuous-time mirror descent (CMD) [69,

53] and provide a new interpretation based on minimizing a functional form of

Bregman divergence plus loss. Next, we show that different discritizations can be

achieved by direct Euler approximation of CMD or its natural gradient [4] form.

We then introduce the main result of the chapter which allows reparameterizing

one CMD as another. Using a proposed tempered Bregman divergence, we show

that many well-known CMD updates can be unified as gradient descent (GD).

Finally, we analyze the tempered updates and their reparameterized forms for the

linear regression problem. The material in chapter currently is under review as a

conference submission [8].

3.1 Introduction

Mirror Descent (MD) [50, 40] refers to a family of updates which transform

the parameters w ∈ D from a convex domain D ⊆ Rd via a link function (a.k.a.

24



mirror map) f : D → Rd before applying the descent step. The continuous-time

mirror descent update, which can be seen as the limit case of (discrete-time) MD,

corresponds to the solution of the following ordinary differential equation (ODE)

[50, 69, 53]:
•

f(w(t)) = −η∇wL(w(t)) , (3.1)

where
•

f
.= ∂f

∂t
is the time derivative of the link function. The main link functions

investigated in the past are f(w) = w and f(w) = log(w) leading to the gra-

dient descent (GD) and the unnormalized exponentiated gradient (EGU) family

of updates1. These two link functions are associated with the squared Euclidean

and the relative entropy divergences, respectively. For example, the classical Per-

ceptron and Winnow algorithms are motivated using the identity and log links,

respectively, when the loss is the hinge loss. A number of papers discuss the dif-

ference between the two updates [40, 41, 51, 30] and their rotational invariance

properties have been explored in [70]. In particular, the Hadamard problem is

a paradigmatic linear problem that shows that EGU can converge dramatically

faster than GD when the instances are dense and the target weight vector is sparse

[39, 67]. This property is linked to the strong-convexity of the relative entropy

w.r.t. the L1-norm2 [59].

In this chapter, we introduce a family of tempered updates (parameterized by

a temperature τ ∈ R) that interpolate between GD (with τ = 0) and EGU (with

τ = 1) while covering a wider class of updates such as those motivated using the

Burg and inverse divergences. Next, we show that all these updates can be unified

as GD updates via a simple reparameterization. For this, we first carefully analyze

the CMD updates and discuss the relation between the primal and dual updates.
1The normalized version is called EG and the two-sided version EGU±. More about this

later.
2Whereas the squared Euclidean divergence is strongly-convex w.r.t. the L2-norm.

25



2/19/2020 Untitled Diagram.drawio

1/1

. . .
. . .

Figure 3.1: A reparameterized linear neuron where wi = |ui|
2

2−τ as a two-layer
sparse network: value of τ = 0 reduces to GD while τ = 1 simulates the EGU
update.

We also derive the constrained updates (e.g. when w lies on the simplex). Using

these results, we show an equivalence relation between a CMD update and its

reparameterization, given that the reparameterization mapping satisfies a certain

condition. Finally, we apply our findings and provide reparameterizations of the

new tempered updates as GD updates and show that for the underdetermined

(a.k.a. over-parameterized) linear regression problem, these updates converge to

the minimum L2−τ -norm solutions for values of τ ∈ [0, 1]. Figure 3.1 shows an

example of a reparameterized linear neuron with temperature τ for this problem.

We also provide partial results for the matrix case that generalize the results

in [31]. We conclude the chapter with experiments and post a number of open

problems for future research directions.

3.2 Continuous-time Mirror Descent

Recall that for a strictly convex, continuously-differentiable function F : D →

R ∩ {−∞,+∞} with convex domain D ⊆ Rd, the Bregman divergence between

26



w̃,w ∈ D is defined as

DF (w̃,w) = F (w̃)− F (w)− f(w) · (w̃ −w) ,

where f .= ∂F
∂w

= ∇wF denotes the gradient3 of F , sometimes called the link

function. Trading off the divergence to the last parameter ws with the current

loss lets us motivate the iterative mirror descent (MD) updates [50, 40]:

ws+1 = arg min
w

1/ηDF (w,ws) + L(w) , (3.2)

where η > 0 is often called the learning rate. Solving for ws+1 yields the so-called

prox or implicit update [56]:

f(ws+1) = f(ws)− η∇wL(ws+1) . (3.3)

This update is typically approximated by the following explicit update that uses

the gradient at the old parameter ws instead:

f(ws+1) = f(ws)− η∇wL(ws) . (3.4)

We now show that the CMD update (3.1) can be motivated similarly by replacing

the Bregman divergence in the minimization problem (3.2) with a “Bregman mo-

mentum” which quantifies the rate of change in the value of Bregman divergence

as w(t) varies over time: For the convex function F , we define the Bregman mo-

mentum between w(t),w0 ∈ D as the time differential of the Bregman divergence
3The gradient of a scalar function is a special case of a Jacobian, and should therefore be

treated as a row vector. However, in this chapter we write the gradients of scalar functions as
column vectors.

27



induced by F ,

•

DF (w(t),w0) =
•

F (w(t))− f(w0) ·
•

w(t)

=
(
f(w(t))− f(w0)

)
·

•

w(t) .

Proposition 3. The CMD update

•

f
(
w(t)

)
= −η∇wL(w(t)) , with w(s) = ws,

is the solution of the following functional:

min
w(t)

{
1/η

•

DF (w(t),ws) + L(w(t))
}
. (3.5)

Proof. Setting the derivatives w.r.t. w(t) to zero, we have

∂

∂w(t)

((
f(w(t))− f(ws)

)
·

•

w(t) + η L(w(t))
)

= HF (w)
•

w(t) + ∂
•

w(t)
∂w(t)

(
f(w(t))− f(ws)

)
+ η∇wL(w(t))

=
•

f
(
w(t)

)
+ η∇wL(w(t)) = 0 ,

where we use the fact that w(t) and
•

w(t) are independent variables, therefore
∂
•
w(t)
∂w(t) = 0 .

Note that the implicit update (3.3) and the explicit update (3.4) can both be

realized as the backward and the forward Euler approximations of (3.1), respec-

tively.

We can provide an alternative definition of Bregman momentum in terms of

the dual of F function. If F ∗(θ) = supw̃∈D
(
θ · w̃ − F (w̃)

)
denotes the Fenchel

dual of F and w = arg supw̃∈D(θ · w̃ − F (w̃)), then the following relation holds

28



between the pair of dual variables (w,θ):

w = f ∗(θ) , θ = f(w) , and f ∗ = f−1 . (3.6)

Taking the derivative of w(t) and θ(t) w.r.t. t yields:

•

w(t) =
•

f ∗
(
θ(t)

)
= HF ∗

(
θ(t)

) •

θ(t) ,
•

θ(t) =
•

f
(
w(t)

)
= HF

(
w(t)

) •

w(t) .
(3.7)

This pairing lets us rewrite the Bregman momentum in its dual form. The dual

form of Bregman momentum can be obtained by first forming the dual Breg-

man divergence in terms of the dual variables θ(t) and θ0 and taking the time

derivative, that is,

•

DF (w(t),w0) =
•

DF ∗(θ0,θ(t))

= ∂

∂t

(
F ∗(θ0)− F ∗(θ(t))− f ∗(θ(t)) ·

(
θ0 − θ(t)

)
= −

•

F ∗(θ(t)) + f ∗(θ(t)) ·
•

θ(t) + (θ(t)− θ0)>HF ∗(θ(t))
•

θ(t)

=
(
θ(t)− θ0

)>
HF ∗(θ(t))

•

θ(t) ,

where we use the fact that
•

F ∗(θ(t)) = f ∗(θ(t)) ·
•

θ(t).

•

DF (w(t),w0) =
•

DF ∗(θ0,θ(t)) = (θ(t)− θ0)>HF ∗(θ(t))
•

θ(t) . (3.8)

Using (3.7), we can rewrite the CMD update (3.1) as

•

w(t) = −ηH−1
F (w(t))∇wL(w(t)) , (3.9)

which corresponds to a natural gradient update [4] w.r.t. the Riemannian metric

29



HF . Using HF (w) = H−1
F ∗ (θ) and ∇wL(w) = HF ∗(θ)∇θL◦f ∗(θ), the update

can also be written equivalently in the dual domain θ as a natural gradient update

w.r.t. the Riemannian metric HF ∗ , or as a CMD with the link f ∗:

•

θ(t) = −ηH−1
F ∗ (θ(t))∇θL◦f ∗(θ(t)) , (3.10)

•

f ∗(θ(t)) = −η∇θL◦f ∗(θ(t)) . (3.11)

The above equivalence between the primal and dual versions of the natural gra-

dient update can also be seen as a special form of the reparameterization method

presented in the next section (Corollary 6).

The CMD update naturally generalizes to the case where there exists a number

of constraints on the parameter w(t). Essentially, the gradient on the r.h.s. is

replaced by a projected gradient.

Proposition 4. The CMD update with the additional constraint ψ
(
w(t)

)
= 0 for

some function ψ : Rd → Rm s.t. {w ∈ D|ψ
(
w(t)

)
= 0} is non-empty, amounts

to the projected gradient update

•

f
(
w(t)

)
= −ηPψ(w(t))∇wL(w(t)) , (3.12)

where (denoting the Jacobian of ψ(w(t)) by Jψ(w(t)))

Pψ
.= Id − J>ψ

(
JψH

−1
F J

>
ψ

)−1
JψH

−1
F ,

is the projection matrix onto the tangent space at w(t). Equivalently, the update

can be written as a projected natural gradient descent update

•

w(t) = −ηPψ(w(t))>H−1
F (w(t))∇wL(w(t)) . (3.13)

30



Proof. We use a Lagrange multiplier λ(t) ∈ Rm in (3.5) to enforce the constraint

ψ(w(t)) = 0 for all t ≥ 0,

min
w(t)

{
1/η

•

DF (w(t),ws) + L(w(t)) + λ(t) · ψ(w(t))
}
. (3.14)

Setting the derivative w.r.t. w(t) to zero, we have

•

f(w(t)) + η∇wL(w(t)) + J>ψ (w(t))λ(t) = 0 . (3.15)

In order to solve for λ(t), first note that
•

ψ(w(t)) = Jψ(w(t))
•

w(t) = 0. Using the

equality
•

f(w(t)) = HF (w(t))
•

w(t) and multiplying both sides by Jψ(w(t))H−1
F (w(t))

yields (ignoring t)

Jψ(w)
•

w︸ ︷︷ ︸
=0

+η Jψ(w)H−1
F (w)∇L(w) + Jψ(w)H−1

F (w)J>ψ (w)λ(t) = 0

Assuming that the matrix inverse exists, we can written

λ(t) = −η
(
Jψ(w)H−1

F (w)J>ψ (w)
)−1
Jψ(w)H−1

F (w)∇L(w) .

Plugging in for λ(t) yields (3.13). Multiplying both sides by HF (w) and using
•

f(w) = HF (w)
•

w yields (3.12).

In general, finding the solution w?(t) involves solving the PDE (3.1) and ap-

plying the boundary conditionw(s) = ws. However by integrating (3.1), a general

form of the solution can be obtained as

f(w?(t))− f(ws) = −η
∫ t

s
∇wL(w?(z)) d z .

31



We obtain a discretized version of continuous-time MD by simply setting t = s+1:

f(w?
s+1)− f(ws) = −η

∫ s+1

s
∇wL(w?(z)) d z . (3.16)

We can recover the implicit MD update (3.3) by approximating the Riemann

integral using the value of the gradient at z = s + 1. Alternatively, the explicit

MD update (3.4) can be obtained by an approximation at z = s. In the following,

we contrast all three versions of discrete mirror descent updates for the case of

linear regression with the identity link.

Example 2 (Linear Regression Using GD). We consider solving the linear re-

gression (LR) problem using GD updates. Given a set of input-output pairs of

the form {(xn, yn)}Nn=1 where xn ∈ Rd and yn ∈ R, the goal is to find the weight

vector that minimizes the squared loss

w? = arg min
w

1
2 ‖Xw − y‖

2 , (3.17)

where X contains the instance vectors as rows Xn,: = x>n and y ∈ RN denotes

the vector of outputs. We make the assumption that N ≥ d and X is in general

position. The analysis for the underdetermined case follows similarly. The least-

squared solution has a closed form in terms of the Moore–Penrose inverse of X,

that is

w? = X†y = (X>X)−1X>y .

The iterative explicit GD update for solving the LR problem involves linear approx-

imation of the loss function (3.17) at the current parameter ws and minimizing

32



the sum of the linear loss plus an inertia term

ws+1 = arg min
w

1
η
||w −ws||2 +

(
(Xws − y)2 + (w −ws)>X>(Xws − y)

)
= ws − ηX>(Xws − y) (3.18)
η→∞= −η × old gradient .

Note that the explicit update cannot recover w? in a single step with large η.

However, the implicit GD update which is derived as

ws+1 = arg min
w

1
η
||w −ws||2 + (Xw − y)2

= ws − ηX>(Xws+1 − y)

= (I + ηX>X)−1(ws + ηX>y) (3.19)

= ws − η(I + ηX>X)−1 X>(Xws − y)
η→∞= (X>X)−1X>y = X†y ,

recovers the least-squared solution in a single step as η → ∞. In contrast, the

explicit update simply follows the old gradient and requires iteration for conver-

gence.

A more precise approach for performing GD updates for LR involves solving

the following ODE [45]:

•

w(t) = −ηX>(Xw(t)− y) ,

i.e. continuous-time MD (3.1) with the identity link. Combining the homogeneous

33



and particular solutions


wH(t) = exp

(
− ηX>X (t− s)

)
c

(
with c ∈ Rd

)
, (homogeneous)

wP(t) = X†y , (particular)

and enforcing the boundary condition: w(s) = ws yields

w(t) = exp
(
− ηX>X (t− s)

)
(ws −X†y) +X†y . (3.20)

Note that this continuous-time GD update (3.20) converges to the least-squared

solution when η → ∞. Additionally, the explicit and implicit updates can be

recovered as approximations of the continuous-time update (3.20) as follows. For

t = s+1, we obtain the explicit GD update (3.18) by using first order Taylor series

approximation of the matrix exponential:

ws+1 ≈ (I− ηX>X)(ws −X†y) +X†y = ws − ηX>
(
Xws − y

)
.

Also, by first inverting the matrix exponential and then using the first order Taylor

expansion, we obtain the implicit GD update (3.19):

ws+t = exp(+ηX>X)−1 (ws −X†y) +X†y

≈ (I + ηX>X)−1(ws −X†y) +X†y

= (I + ηX>X)−1(ws����−X†y + (��I + ηX>X) X†y)

= (I + ηX>X)−1(ws + ηX>y) .

34



3.3 Discretized Updates

In this section, we discuss different ways of discretizing the CMD updates.

Specifically, we compare the direct discretization of the functional form (3.5) and

the corresponding Euler approximations of the corresponding CMD and its natural

gradient form. We also briefly discuss the normalized updates.

The most straight-forward discretization of the unconstrained CMD update (3.1)

is the forward Euler (i.e. explicit) discretization, given in (3.4). Note that this

corresponds to a (approximate) minimizer of the discretized form of (3.5), that is,

arg min
w

{
1/η
(
DF (w,ws)−DF (ws,ws)︸ ︷︷ ︸

= 0

)
+ L(w)

}
.

An alternative way of discretizing is to apply the approximation on the equivalent

natural gradient form (3.9), which yields

ws+1 −ws = −ηH−1
F (ws)∇wL(ws) .

Despite being equivalent in continuous-time, the two approximations may cor-

respond to different updates after discretization. As an example, for the EGU

update motivated by f(w) = logw link, the latter approximation yields

ws+1 = ws �
(
1− η∇wL(ws)

)
,

which corresponds to the unnormalized prod update, introduced by [18] as a Taylor

approximation of the original EGU update.

The situation becomes more involved for discretizing the constrained updates.

As the first approach, it is possible to directly discretize the projected CMD

35



update (3.12)

f(w̃s+1)− f(ws) = −ηPψ(ws)∇wL(ws) .

However, note that the new parameter w̃w+1 may fall outside the constraint

set Dψ .= {w ∈ D|ψ(w) = 0}. As a result, a Bregman projection [59] into

Dψ may need to be applied after the update, that is

ws+1 = arg min
w∈Dψ

DF (w, w̃s+1) . (3.21)

As an example, for the normalized EG updates with the additional constraint that

w · 1 = 1, we have Pψ(w) = In − 1w> and the approximation yields

log(w̃s+1)− log(ws) = −η
(
∇wL(ws)− 1Ews [∇wL(ws)]

)
,

where Ews [∇wL(ws)] = ws · ∇wL(ws). Clearly, w̃s+1 may not necessarily satisfy

w̃s+1 · 1 = 1. Therefore, we apply

ws+1 = w̃s+1

‖w̃s+1‖1
,

which corresponds to the Bregman projection onto the unit simplex using the

relative entropy divergence [40].

An alternative approach for discretizing the constrained update would be to

first discretize the functional objective with the Lagrange multiplier (3.14) and

then (approximately) solve for the update. That is,

ws+1 = arg min
w

{
1/η
(
DF (w,ws)−DF (ws,ws)︸ ︷︷ ︸

= 0

)
+ L(w) + λ · ψ(w)

}
.

Note that in this case, the update satisfies the constraint ψ(ws+1) = 0 because

36



of directly using the Lagrange multiplier. For the normalized EG update, this

corresponds to the original normalized EG update in [46],

ws+1 =
ws � exp

(
− η∇wL(ws)

)
‖ws � exp

(
− η∇wL(ws)

)
‖1
.

Finally, it is also possible to discretized the projected natural gradient update (3.13).

Again, a Bregman projection into Dψ may be required after the update, that is,

w̃s+1 −ws = −ηPψ(ws)>H−1
F (ws)∇wL(w(t)) ,

followed by (3.21). For the normalized EG update, the first step corresponds to

ws+1 = ws �
(
1− η

(
∇wL(ws)− 1Ews [∇wL(ws)]

))
,

which recovers to the approximated EG update of [40]. Note that ws+1 · 1 = 1

and therefore, no projection step is required in this particular case.

Although different ways of discretizing the CMD update (3.1) are equivalent in

the continuous-time limit, they yield remarkably different behavior in the discrete

case. In general, the approximations that apply the link function directly and

have a more implicit form for the gradient yield better results in practice. In

the normalized case, the updates that use the Lagrange multiplier to ingrain the

Bregman projection are preferable over those that generally fall outside of the

constraint set at each step and require a projection step explicitly.

3.4 Reparameterization

We now establish the first main result of this chapter.

37



Theorem 4. Let w = q(u) ∈ Rd where u ∈ Rk with k ≥ d is a vector of

parameters. The CMD update on w w.r.t. the convex function F ,

•

f(w(t)) = −η∇wL(w(t)) ,

coincides with the CMD update for parameters u using the convex function G (and

link g .= ∇uG) on the composite loss L◦q,

•
g(u) = −η∇uL◦q

(
u(t)

)
,

provided that range(q) ⊆ dom(F ) holds and we haveH−1
F (w) = Jq(u)H−1

G (u)Jq(u)>

for all w = q(u).

Proof. Note that
•

w(t) = ∂w(t)
∂u(t)

•

u(t) = Jq(u(t))
•

u(t). Also, ∇uL ◦ q
(
u(t)

)
=

Jq(u(t))>∇wL(w(t)). The CMD update on u with the link function g(u) can

be written as
•

u(t) = −ηH−1
G (u(t))∇uL◦q

(
u(t)

)
. Thus (dropping t for simplic-

ity),
•

u = −ηH−1
G (u)Jq(u)>∇wL(w) .

Multiplying by Jq(u) from the left yields

•

w = −η Jq(u)H−1
G (u)Jq(u)>∇wL(w) .

Comparing the result to (3.9) concludes the proof.

In the following, we provide a number of examples.

Example 3 (EGU as GD). The continuous-time EGU can be reparameterized as

continuous-time GD with the reparameterization function w = q(u) = 1/4u�u =

38



1/4u�2, i.e.

•

log(w) = −η ∇L(w) equals
•

u = −η ∇L◦q (u)︸ ︷︷ ︸
∇uL (1/4u�2)

= −η/2u�∇L(w)

This is proven by verifying the condition of Theorem 4:

Jq(u)Jq(u)> = 1/2 diag(u) (1/2 diag(u))> = diag(1/4u�2) = diag(w) = H−1
F (w) .

Example 4 (Reduced EG in 2-dimension). Consider the 2-dimensional normal-

ized weights w = [ω, 1 − ω]> where 0 ≤ ω ≤ 1. The normalized reduced EG

update [69] is motivated by the link function f(w) = log w
1−w , thus HF (w) =

1
w

+ 1
1−w = 1

w(1−w) . This update can be reparameterized as a GD update on u ∈ R

via ω = q(u) = 1/2 (1 + sin(u)) i.e.

•

log( w

1− w ) = −η ∇wL(w) equals
•
u = −η ∇uL◦q (u)︸ ︷︷ ︸

∇uL
(

1/2 (1+sin(u))
) = −η cos(u)

2 ∇L(w) .

This is verified by checking the condition of Theorem 4: Jq(u) = 1/2 cos(u) and

Jq(u)Jq(u)> = 1
4 cos2(u) = 1

2
(
1 + sin(u)

) 1
2
(
1− sin(u)

)
= w(1− w) = H−1

F (w) .

Open problem The generalization of the reduced EG link function to d >

2 dimensions becomes f(w) = log w

1−
∑d−1

i=1 wi
which utilizes the first (d − 1)-

dimensions w s.t. [w>, wd]> ∈ ∆d−1. Reparameterizing the CMD update using

39



this link as CGD is open. The update can be reformulated as

•

w = −η
(

diag
( 1
w

)
+ 1

1−∑d−1
i=1 wi

11>
)−1
∇L(w)

= −η
(
diag(w)−ww>

)
∇L(w) .

Later, we will give an d-dimensional version of EG using a projection onto a

constraint.

Example 5 (Burg updates as GD). The update associated with the negative Burg

entropy F (w) = −∑d
i=1 logwi and link f(w) = −1�w is reparameterized as GD

with w = q(u) := exp(u), i.e.

•

(−1�w) = −η ∇L(w) equals
•

u = −η ∇L◦q (u)︸ ︷︷ ︸
∇uL (exp(u))

= −η exp(u)�∇L(w) ,

This is verified by the condition of Theorem 4: HF (w) = diag(1�w)2, Jq(u) =

diag(exp(u)), and

Jq(u)Jq(u)> = diag(exp(u))2 = diag(w)2 = H−1
F (w) .

Example 6 (EGU as Burg). The reparameterization step can be chained, and

applied in reverse, when the reparameterization function q is invertible. For in-

stance, we can first apply the inverse reparameterization of the Burg update as

GD from Example 5, i.e. u = q−1(w) = logw. Subsequently, applying the repa-

rameterization of EGU as GD from Example 3, i.e. v = q̃(u) = 1/4u�2, results

40



in the reparameterization of EGU as Burg update, that is,

•

log(v) = −η ∇L(v) equals
•(
− 1
w

)
= −η ∇wL◦q̃◦q−1(w)︸ ︷︷ ︸

∇wL(1/4(logw)�2)

= −η (log(w)� (2w))�∇L(v) .

Note that Theorem 4 shows, in general, how the local geometry is affected by

the reparameterization function q. For instance, the primal (3.1) and dual (3.11)

equivalence is an immediate consequence 4:

Corollary 6. The primal (3.1) and dual (3.11) CMD updates are equivalent via

the special case of reparameterization where w(t) = f ∗
(
θ(t)

)
(or θ(t) = f(w(t))).

In the following, we also provide the constrained reparameterized updates for

completeness.

Theorem 5. The constrained CMD update (3.12) coincides with the reparame-

terized projected gradient update on the composite loss,

•
g
(
u(t)

)
= −ηPψ◦q(u(t))∇uL◦q(u(t)) ,

where (Jψ◦q(u(t)) .= J>q (u(t))∇wψ
(
q(u(t))

)
)

Pψ◦q
.= Ik − J>ψ◦q

(
Jψ◦qH

−1
G J

>
ψ◦q

)−1
Jψ◦qH

−1
G ,

is the projection matrix onto the tangent space at u(t).

Proof. Similar to the proof of Proposition 4, we use a Lagrange multiplier λ(t) ∈
4Note that the equivalence of the primal-dual updates was already shown in [69] for the

continuous case and in [54] for the discrete case (where it is only one-sided).

41



Rm to enforce the constraint ψ ◦ q(u(t)) = 0 for all t ≥ 0,

min
u(t)

{
1/η

•

DG(u(t),us) + L◦q(u(t)) + λ(t) · ψ ◦ q(u(t))
}
.

Setting the derivative w.r.t. u(t) to zero, we have

•
g(w(t)) + η∇uL◦q(w(t)) + J>ψ◦q(u(t))λ(t) = 0 ,

where Jψ◦q(u) .= J>q (u)Jψ(q(u)). In order to solve for λ(t), we use the fact that
•

ψ ◦ q(u(t)) = Jψ◦q(u(t))
•

u(t) = 0. Using the equality
•
g(u(t)) = HG(u(t))

•

u(t)

and multiplying both sides by Jψ◦q(u(t))H−1
G (u(t)) yields (ignoring t),

Jψ◦q(u)
•

u+ η Jψ◦q(w)H−1
G (u)∇L◦q(u) + Jψ◦q(w)H−1

G (w)J>ψ◦q(u)λ(t) = 0 .

The rest of the proof follows similarly by solving for λ(t) and rearranging the

terms. Applying the results of Theorem 4 concludes the proof.

Example 7 (EG as GD). The normalized EG update is motivated similar to the

EGU update with the additional constraint that w · 1d = 1. Note that for the

negative entropy function, HF = diag(w)−1. Using Proposition 4, we have

Pψ = Id −
11> diag(w)
1> diag(w)1 = Id − 1w> .

Thus, the projected update can be written as,

•

w(t) = −ηP>ψ diag(w)∇L(w)

= −η
(
Id −w1>

)
diag(w)∇L(w)

= −η
(

diag(w)−ww>
)
∇L(w) . (3.22)

42



Note that the projection ensures that
•

w(t) · 1 = 0 and therefore, a change in w(t)

with an infinitesimal step size, w(t) + dw(t), remains on the simplex.

We now develop the projected reparameterized updates for EG using Theorem 5

and show the equivalence to update (3.22). Let w = q(u) = 1/4u� u s.t. u ∈ Rd

and ‖u‖2 = 2. Clearly, this choice for u results in w ∈ ∆d−1. Note that for GD

updates on u, we have HG = Id. Using Theorem 5, we have

Jψ◦q = 1
2 u

> and Pψ◦q = Id −
1
4 uu

> .

This results in the following projected updates for u

•

u(t) = −η
(
Id −

1
4 uu

>
)
∇uL◦q(u) . (3.23)

Using the fact that
•

w = 1/2u�
•

u and ∇uL◦q(u) = 1/2u�∇wL(w), we have,

•

w(t) = −η 1
4 diag(u)

(
Id −

1
4 uu

>
)

diag(u)∇wL(w)

= −η
(

diag(w)−ww>
)
∇L(w) ,

which is the same as update (3.22).

So far, we discussed reparameterizing a number of important CMD updates,

such as EGU and the update motivated using the Burg divergence, as GD. We

now show that EGU and many other updates can be unified as GD via a simple

reparameterization. For this, we first introduce the tempered Bregman divergence.

43



Figure 3.2: logτ (x), for different τ ≥ 0.

3.5 Tempered Bregman Updates

In this section, we introduce a tempered Bregman divergence that includes

the squared Euclidean and the relative entropy divergences as special cases. As a

result, the new Bregman divergence allows us to derive updates that interpolate

between GD and EGU. Next, we show the reparameterization of the tempered

updates and unify all the updates as GD updates on the reparameterized weights.

The tempered relative entropy divergence [5] is defined based on the tempered

logarithm link function [49] which generalizes the standard log function:

fτ (w) = logτ (w) = 1
1− τ (w1−τ − 1) , (3.24)

for w ∈ Rd
≥0 and τ ∈ R. The logτ function is shown in Figure 3.2 for different

values of τ ≥ 0. Note that τ = 1 recovers the standard log function as a limit

point. The logτ (w) link function is the gradient of the convex function

Fτ (w) =
∑
i

(
wi logτ wi + 1

2− τ (1− w2−τ
i )

)
=
∑
i

( 1
(1− τ)(2− τ) w

2−τ
i − 1

1− τ wi + 1
2− τ

)
.

44



τ Fτ (w) DFτ (w̃,w) Name

-1 ∑
i

(
1
6w

3
i − 1

2wi
) ∑

i

(
1
6(w̃i + 2wi)(w̃i − wi)2

)
0 1

2
∑
iw

2
i

1
2
∑
i(w̃i − wi)2 Euclidean

1
2

1
3
∑
i(4w

4
3
i − 6wi + 2) ∑

i(4
3w̃

3
2
i − 2w̃i

√
wi + 3

2w
3
2
i )

1 ∑
i(wi logwi − wi + 1) ∑

i(w̃i log w̃i
wi
− w̃i + wi) KL-divergence

3
2

∑
i(−4w

3
2
i + 2wi + 2) 2∑i

(
√
w̃i−
√
wi)2

√
wi

Squared Xi on roots
2 ∑

i(− logwi + wi)
∑
i( w̃iwi − log w̃i

wi
− 1) Itakura-Saito

3 1
2
∑
i(− 1

wi
+ wi − 2) 1

2
∑
i( 1
w̃i
− 2

wi
+ w̃i

w2
i
) Inverse

Table 3.1: Some special cases of the tempered Bregman divergence.

The convex function Fτ induces the following tempered Bregman divergence5:

DFτ (w̃,w) =
∑
i

(
w̃i logτ w̃i − w̃i logτ wi −

w̃2−τ
i − w2−τ

i

2− τ

)

= 1
1− τ

∑
i

(
w̃2−τ
i − w2−τ

i

2− τ − (w̃i − wi)w1−τ
i

)
. (3.25)

For τ = 0, we obtain the squared Euclidean divergence DF0(w̃,w) = 1
2
∑
i(w̃i −

wi)2 and for τ = 1, the relative entropy DF1(w̃,w) = ∑
i(w̃i log(w̃i/wi)− w̃i +wi).

Some special cases of the tempered divergence are shown in Table 3.1 for different

values of τ .

In the following, we derive the CMD updates using the time derivative of (3.25)

as the tempered Bregman momentum. Notice that the link function logτ (x) is only

defined for x ≥ 0 when τ > 0. In order to have a weightw ∈ Rd, we use the EGU±

trick [40] by maintaining two non-negative weights w+ and w− and setting w =

w+ −w−. We call this the tempered EGU± update. As our second main result,

we show that that continuous-time tempered EGU± updates interpolate between

continuous-time GD and continuous-time EGU (for τ ∈ [0, 1]). Furthermore, these
5The second form is more commonly known as β-divergence [20] with β = 2− τ .

45



updates can be simulated by continuous-time GD on a new set of parameters u

using a simple reparameterization. We show that on the underdetermined linear

regression problem, under certain assumptions, these updates converge to the

solution with the smallest L2−τ -norm.

3.5.1 Tempered EGU±

We first introduce the generalization of the EGU± updates using the tempered

Bregman divergence (3.25). Let w(t) = w+(t)−w−(t) with w+(t),w−(t) ∈ Rd
≥0

and w+(0) = w−(0) = w0. The tempered EGU± updates are motivated by

arg min
w+,w−∈Rd≥0

{
1/η

•

DFτ

(
w+(t),w0

)
+ 1/η

•

DFτ

(
w−(t),w0

)
+ L(w(t))

}
.

Enforcing the constraints using the Lagrange multipliers λ+(t),λ−(t) ∈ Rd
≥0, we

have

•

logτw+(t) = −η∇wL(w(t)) + λ+(t) ,
•

logτw−(t) = +η∇wL(w(t)) + λ−(t) .
(3.26)

Using
•

logτw(t) =
•

w(t) � w(t)�τ and applying the KKT conditions w+(t) �

λ+(t) = 0 and w−(t)� λ−(t) = 0 gives

•

w+(t) = (w+(t))�τ �
(
− η∇wL(w(t))

)
,

•

w−(t) = (w−(t))�τ �
(

+ η∇wL(w(t))
)
,

(3.27)

46



which means we can simply ignore λ+(t) and λ−(t) in (3.26). Integrating (3.26)

over t and applying the inverse link yields

w+(t) = expτ
(
logτ w0 − η

∫ t

0
∇wL(w(z)) dz

)
,

w−(t) = expτ
(
logτ w0 + η

∫ t

0
∇wL(w(z)) dz

)
,

(3.28)

where expτ (x) .= [1 + (1 − τ)x]
1

1−τ
+ . Note that τ = 1 is a limit case which

recovers the standard exp function and the updates (3.28) become the standard

EGU±. Additionally, the GD updates are recovered at τ = 0. As a result, the

tempered EGU± updates (3.28) interpolate between GD and EGU± for τ ∈ [0, 1]

and generalize beyond for values of τ > 1 and τ < 0.

Note that the tempered EGU± updates make use of two d-dimensional non-

negative weight vectors and then use a d-dimensional difference for inference. The

EGU± updates (for which the double weight trick was introduced originally) can

be reformulated using the d-dimensional link function arcsinh(w) which behaves

as a “two-sided logarithm”. Also the associated arcsinh(w) based Bregman diver-

gence [71, 30] can be used to analyze EGU±. The two-sided generalization of the

tempered logarithm function is an interesting open problem.

3.5.2 Reparameterized Tempered EGU±

We now show that the updates (3.26) can be obtained via a reparameterization

on a set of weights u+,u− ∈ Rd.

Proposition 5. The updates (3.26) can be realized by GD updates on u+ ,u− ∈ Rd

and setting w+ = qτ (u+) and w− = qτ (u−) where

qτ (u) =
( 2

2− τ
)− 2

2−τ |u|
2

2−τ , τ 6= 2 . (3.29)

47



Proof. Note that the Jacobian is

Jqτ (u+) =
( 2

2− τ

) τ
2−τ

diag
(

sign(u+)� |u+|
τ

2−τ
)
.

Thus, Jqτ (u+)J>qτ (u+) = diag
(
(w+)�τ

)
. A similar construction holds for w− and

u−. Applying the results of Theorem 4 yields the same dynamics as in (3.26).

For completeness, we write the reparameterized tempered EGU± updates as

•

u+(t) = −η∇u+L
(
qτ (u+)− qτ (u−)

)
,

•

u−(t) = −η∇u−L
(
qτ (u+)− qτ (u−)

)
.

(3.30)

Note that in the reparameterized update, the non-negativity of the reparameter-

ized weights is naturally imposed by the absolute value in the reparameterization.

Special cases of the reparameterized tempered EGU± updates include GD with

τ = 0 and EGU± with τ = 1, where the latter corresponds to w = u+�u+−u−�

u−. This form of updates was recently discussed in [64] for sparse signal recovery

from an underdetermined system of linear measurements. Similar approaches

have been applied for mapping the replicator dynamics from the simplex to the

unit sphere [2, 57]. Additionally, values of 0 < τ < 1 interpolate between GD and

EGU. However, any other value of τ ∈ R−{2} also corresponds to a valid update.

Note that τ = 2 is a special case, which according to [5] corresponds to the Burg

divergence

DBurg(w̃,w) =
∑
i

(
w̃i
wi
− log

(w̃i
wi

)
− 1

)
.

To find the update for Burg, we point out that the shifted version of reparame-

terization (3.29),

q̃τ (u) =
∣∣∣∣1d +

( 2
2− τ

)− 2
2−τu

∣∣∣∣ 2
2−τ

,

48



also satisfies the conditions in Proposition 5. For this choice of reparameterization,

we have q̃2(u) = exp(u). For simplicity, we consider the reparameterization in

Eq. (3.29) and adopt q2(u) .= exp(u) for the special case of τ = 2 (as discussed

in Example 5).

3.6 Minimum-norm Solutions

Gunasekar et. al [31] showed that on the underdetermined linear regression

problem, using the factorization W = UU> for the weight matrix W and ap-

plying continuous-time GD on U achieves the minimum L1-norm solution. Note

that in the vector (i.e. diagonal weight matrix) case, this corresponds to setting

w = u�u and running continuous-time GD on u, which according to Theorem 4

is equivalent to running EGU update on w. The fact that the EGU update favors

the minimum L1-norm solution is linked to the strong-convexity of the negative

entropy function F1(w) = ∑
i(wi logwi − wi) (which induces the EGU updates)

w.r.t. the L1-norm. The focus here is to show that, under similar assumptions,

the tempered updates converge to the solution with the smallest L2−τ -norm when

τ ∈ [0, 1]. For a start, the following result establishes strong-convexity of Fτ

function.

Lemma 7. The function Fτ , with 0 ≤ τ ≤ 1, is B−τ–strongly convex over the set

{w ∈ Rk
+ : ‖w‖2−τ ≤ B} w.r.t. the L2−τ -norm.

Proof. We have HFτ (w) = ∇2 F (w) = diag(w−�τ ) (which validates HFτ (w) <

0). Applying Lemma 4, note that the function

(∇2Fτ (w) · w̃) · w̃ =
∑
i

w̃2
i

wτi
,

is unbounded over the set S = {w̃ ∈ Rd
+ : ‖w̃‖2−τ ≤ B} and the minimum

49



happens at the boundary {‖w̃‖2−τ = B}.

min
w̃

∑
i

w̃2
i

wτi
+ γ (

∑
i

w̃2−τ
i − 1) ⇒ w̃ = B

w

‖w‖2−τ
,

where γ is the Lagrange multiplier. Plugging in the solution yields ∑i
w̃2
i

wτi
≥

1
Bτ
‖w̃‖2

2−τ .

The strong convexity of the Fτ function w.r.t. the L2−τ -norm suggests that the

updates motivated by the tempered Bregman divergence (3.25) yield the minimum

L2−τ -norm solution in certain settings. We verify this by considering the vector

and matrix updates for the linear regression problem.

3.6.1 Vector Case

Let {xn, yn}Nn=1 denote the set of input-output pairs and let X be the de-

sign matrix for which the n-th row is equal to x>n . Also, let y denote the

vector of targets. Consider the tempered EGU± updates (3.26) on the weights

w(t) = w+(t) − w−(t) where w+(t),w−(t) ≥ 0 and w+(0) = w−(0) = w0.

Following (3.28), we have

w+(t) = expτ
(

logτ w0 − η
∫ t

0
X>δ(z) dz

)
,

w−(t) = expτ
(

logτ w0 + η
∫ t

0
X>δ(z) dz

)
,

(3.31)

where δ(t) = X
(
w+(t)−w−(t)

)
.

Theorem 6. Consider the underdetermined linear regression problem where N <

d. Let E = {w ∈ Rd|Xw = y} be the set of solutions with zero error. Given

w(∞) ∈ E, then the tempered EGU± updates (3.28) with temperature 0 ≤ τ ≤ 1

and initial solution w0 = α1 ≥ 0 converge to the minimum L2−τ -norm solution

50



in E in the limit α→ 0.

Proof. We show that the solution of the tempered EGU± satisfies the dual feasi-

bility and complementary slackness KKT conditions for the following optimization

problem (omitting t for simplicity):

min
w+,w−

‖w+ −w−‖2−τ
2−τ , 0 ≤ τ ≤ 1,

s.t. X(w+ −w−) = y and w+,w− ≥ 0 .

Imposing the constraints using a set of Lagrange multipliers ν+,ν− ≥ 0 and

λ ∈ R, we have

min
w

sup
ν+,ν−≥0,λ

{
‖w+ −w−‖2−τ

2−τ + λ>
(
X(w+ −w−)− y

)
−w>+ν+ −w>−ν−

}
.

The set of KKT conditions are


w+,w− ≥ 0 ,

Xw = y ,

+ sign(w)� |w|�(1−τ) −X>λ < 0 ,

− sign(w)� |w|�(1−τ) +X>λ < 0 ,(
sign(w)� |w|�(1−τ) −X>λ

)
�w+ = 0 ,(

sign(w)� |w|�(1−τ) −X>λ
)
�w− = 0 ,

where w = w+ − w−. The first condition is imposed by the form of the up-

dates (3.28) and the second condition is satisfied by the assumption at t → ∞.

51



Using w0 = α1 with α→ 0, we have

w+(t) = expτ
(
− 1

1− τ − η
∫ t

0
X>δ(z) dz

)
=
[
− (1− τ) ηX

∫ t

0
δ(z)

]� 1
1−τ

+
,

w−(t) = expτ
(
− 1

1− τ + η
∫ t

0
X>δ(z) dz

)
=
[

+ (1− τ) ηX
∫ t

0
δ(z)

]� 1
1−τ

+
.

Setting λ = −(1− τ) η
∫∞

0 δ(z) satisfies the remaining KKT conditions.

Corollary 7. Under the assumptions of Theorem 6, the reparameterized tempered

EGU± updates (3.30) also recover the minimum L2−τ -norm solution where w(t) =

qτ (u+(t))− qτ (u−(t)).

3.6.2 Partial Results on the Matrices

The linear regression problem can be generalized to the matrix case where the

inputs Xn are symmetric matrices and the goal is to learn a symmetric weight

matrix W ∈ Sd which minimizes the squared error

min
W∈Sd

1/2 ‖X(W )− y‖2 ,

in which X(W )n .= tr
(
XnW

)
.

The generalization of Theorem 4 to symmetric matrices W ∈ Sd requires a

machinery to handle the matrix-matrix derivatives for the Jacobians. Instead, we

first consider a natural extension of the reparameterized tempered EGU± to the

52



symmetric PSD matrices: given U+,U− ∈ Rd×d, we define

W+ =
( 1

2− τ

)− 1
1−τ (

U+U
>
+

) 1
2−τ ,

W− =
( 1

2− τ

)− 1
1−τ (

U−U
>
−

) 1
2−τ ,

(3.32)

and setW = W+−W−. The solution for the linear regression problem using the

reparameterization (3.32) can be obtained by solving

•

U+ = −ηX∗(δ) (U+U+)−
1−τ
2−τ U+ ,

•

W 2−τ
+ =

•

U+U
>
+ +U+

•

U
>
+

= −η
(
X∗(δ)W+ +W+X

∗(δ)
)
,

(3.33)

where δ(t) = X(W (t)) − y and X∗(v) = ∑
nXnvn. Also, the constant factors

are absorbed into the learning rate. A similar set of equations hold for W− with

a sign flip. Solving for W+ and W− yields

W+(t) =
[
W 2−τ

0 − η
∫ t

s
S
(
δ(z),W+(z)

)
dz
] 1

2−τ

+
,

W−(t) =
[
W 2−τ

0 + η
∫ t

s
S
(
δ(z),W−(z)

)
dz
] 1

2−τ

+
.

(3.34)

where S(δ,W±) = X∗(δ)W± +W±X
∗(δ) . Update (3.34) is a generalization of

the update given in [31], which is obtained by setting τ = 1. We generalize the

results of [31] as follows: In the special case where the inputs Xn are symmetric

and commutative, i.e., XnXn′ = Xn′Xn for all n, n′, the following result holds.

Proposition 6. Given that the inputs Xn to the matrix linear regression problem

are symmetric and commutative, if X(W (∞)) = y holds, the reparameterized

update (3.34) converges to the minimum L2−τ matrix norm solution when W0 =

limα→0+ αI.

53



Proof. Note that the optimization problem corresponds to

min
W+,W−

‖W+ −W−‖2−τ
2−τ , s.t. X(W+ −W−) = y .

To prove the proposition, it suffices to show that the solution satisfies the following

KKT conditions:


W+,W− < 0

X(W ) = y

X∗(ν) 4 sign
(
W
)
|W |1−τ

sign
(
W
)
|W |1−τ 4X∗(ν)(

sign
(
W
)
|W |1−τ −X∗(ν)

)
W+ = 0

(
sign

(
W
)
|W |1−τ −X∗(ν)

)
W− = 0

for some ν ∈ Rn. Also, W = W+ −W− and sign(A) = sign(V DV >) =

V sign(D)V > is the sign function applied to the eigenvalues. The first condition

is satisfied by the form of the updates. The second condition follows from the

assumption. To show the remaining conditions, first note that the symmetric and

commutative inputs Xn are diagonalizable, thus the eigenvectors of X∗(v) are

fixed and the eigenvalues can be written as λi(v) , for i ∈ [d].

In the limit W0 = limα→0+ αI, the reparameterization updates (3.34) can be

written as

W+(t) =
[
− η

∫ t

0
S
(
δ(z),W+(z)

)
dz
] 1

2−τ

+
,

W−(t) =
[

+ η
∫ t

0
S
(
δ(z),W−(z)

)
dz
] 1

2−τ

+
,

54



where [A]+ = [V DV >]+ = V [D]+V > is applied to the eigenvalues. Since both

W+(t) and W−(t) share the same eigenvectors as X∗(ν) for all ν, it suffices to

show that the eigenvalues satisfy the complementary slackness and dual feasibil-

ity KKT conditions. Let ω+,i(t) and λi(t) denote the i-th eigenvector of W+(t)

and X∗(u(t)), respectively. For fixed eigenvectors, Equation (3.33) imposes the

following differential equation on the eigenvalues

∂

∂t
ω2−τ

+,i = 2− τ ω1−τ
+,i

•
ω+,i = −η

(
λi ω+,i + ω+,i λi

)
= −2 η ω+,i λi .

A similar ODE holds for ω−,i(t) with a sign flip. Imposing the constraint ω+,i ≥ 0

with the boundary condition ω+,i(s) = 0 yields

ω+,i(t) =
[
− 2 η

2− τ

∫ t

0
λi(z) dz

] 1
1−τ

+
,

ω−,i(t) =
[

+ 2 η
2− τ

∫ t

0
λi(z) dz

] 1
1−τ

+
.

Thus, the updates can be written

W+(t)1−τ =
[
− c

∫ t

0
X∗(δ(z)) dz

]
+
,

W−(t)1−τ =
[

+ c
∫ t

0
X∗(δ(z)) dz

]
+
,

(3.35)

for some constant c > 0. This proves the existence of ν so that the KKT conditions

are satisfied. The proof for the case τ = 1 follows similarly to [31] using a limit

argument.

Next, we provide an alternative dynamic based on generalizing the tempered

Bregman divergence (3.25) to the positive semi-definite (PSD) matrices. Let us

first introduce the matrix logτ operator as follows:

logτA = V logτ (D)V > ,

55



where logτ (D) is the diagonal matrix for which the logτ function is applied to the

diagonal elements. The matrix tempered Bregman divergence can be defined as

DFτ (W̃ ,W ) = tr
(
W̃ logτW̃ − W̃ logτW − 1

2− τ
(
W̃ 2−τ −W 2−τ

))
. (3.36)

The continuous-time learning problem for a general symmetric matrix W (t) can

again be achieved via introducing a pair of PSD matrices W+(t),W−(t) < 0

such that W+(0) = W−(0) = W0 and W (t) = W+(t) −W−(t). Following a

similar derivation as in the vector case (3.26) and imposing the positive semi-

definiteness constraints in the form of Lagrange multipliers λ+,λ− ≥ 0 applied

to the eigenvalues of W+,W−, we have

•

logτW+ =− η∇WL(W )+V+ diag(λ+)V >+ ,

•

logτW−=+ η∇WL(W )+V− diag(λ−)V >− ,
(3.37)

where V± denotes the matrix of eigenvectors of W±. Integrating the r.h.s. yields

the following update equations

W+(t)=expτ
(
logτW0 − η

∫ t

0
∇WL(W (z)) dz

)
,

W−(t)=expτ
(
logτW0 + η

∫ t

0
∇WL(W (z)) dz

)
,

(3.38)

where matrix expτ is defined similarly in terms of the eigen-decomposition of the

input.

However, the dynamic induced by the tempered Bregman divergence in (3.37)

is different than the one obtained from the reparameterization (3.32). As an

56



example, consider the matrix EGU± case for τ = 1. The GD update on U+ yields

•

U+ = −∇WL(W )U+ ,

•

W+ =
•

U+U
>
+ +U+

•

U
>
+

= −
(
W+∇WL(W ) +∇WL(W )W+

)
,

which is different than the dynamic given in (3.37) for τ = 1. (The dynamic for

W− follows similarly with a sign flip.) Nevertheless, we show that for the un-

derdetermined linear regression problem with commutative inputs, the tempered

Bregman updates (3.38) yield the same minimum-norm solution in the limit when

the initial solution goes to zero.

Substituting for the gradients in (3.38) yields

W+(t)=expτ
(
logτW0 − η

∫ t

0
X∗(δ(z)) dz

)
,

W−(t)=expτ
(
logτW0 + η

∫ t

0
X∗(δ(z)) dz

)
,

(3.39)

where δ(t) = X(W (t))− y and X∗(v) = ∑
nXnvn.

Proposition 7. Given that the inputs Xn to the matrix linear regression problem

are symmetric and commutative, if X(W (∞)) = y holds, the tempered matrix

EGU± update (3.39) converges to the minimum L2−τ matrix norm solution when

W0 = limα→0+ αI.

Proof. The first KKT condition is satisfied by the form of the updates. The second

condition follows from the assumption. To show the remaining conditions, note

that the matrix tempered Bregman updates (3.39) in the limitW0 = limα→0+ αI

57



(a) (b) (c)

Figure 3.3: Underdetermined linear regression: (a)-(c) norms of the solutions
obtained using GD, EGU±, and tempered EGU± (τ = 0.6) along with their
reparameterized forms on an underdetermined linear regression problem.

can be written as

W+(t) =
[
− (1− τ) η

∫ t

0
X∗(δ(z)) dz

] 1
1−τ

+
,

W−(t) =
[

+ (1− τ) η
∫ t

0
X∗(δ(z)) dz

] 1
1−τ

+
.

(3.40)

Thus, W+(t),W−(t) share the same eigenvectors as X∗. Setting ν = −(1 −

τ) η
∫∞

0 δ(z) dz satisfies the remaining conditions. The case τ = 1 also follows by

a limit argument, similar to the one given in [31].

Note that the analysis for the tempered updates holds in the continuous do-

main. Moreover, the analysis is based on the assumption that the initialization

tends to zero. In practice, however, the learning proceeds in steps and the ini-

tial solution cannot be made arbitrary small. Therefore, such assumptions may

seem impractical. Nevertheless, we show experimentally that, despite the ap-

proximations, the discrete updates behave very closely to their continuous-time

counterparts.

58



3.7 Experiments

In this section, we first consider the GD, EGU±, and tempered EGU± updates

and their reparameterizations for an underdetermined linear regression problem.

Next, we provide preliminary results on reparameterizing deep neural networks.

3.7.1 Minimum-norm Solutions for Linear Regression

We apply the GD, EGU±, and the tempered EGU± (τ = 0.6) updates on a

toy underdetermined linear regression problem. For the experiment, we consider

N = 100 samples of d = 200 dimensional zero-mean unit-variance Gaussian inputs

and a linear target obtained with a random Gaussian weight. We apply the

updates as well as their reparameterized forms using the weights u+,u− ∈ Rd.

We consider a small learning rate of η = 0.05 and set the initial solutions w+(0) =

w−(0) = 1e−5 × 1. This corresponds to a zero initial solution for the actual

weights w(0) = w+(0)−w−(0) = 0. We apply the updates on the full batch for

1e + 5 iterations. The results are shown in Figure 3.3(a)-(c). As expected, EGU±

and GD converge to the minimum L1 and L2-norm solutions, respectively. This

is also verified by solving for the minimum L1 and L2-norm solutions numerically.

Additionally, tempered EGU± achieves the minimum L2−τ -norm. Finally, note

that the reparameterized versions of the algorithms track the original algorithms

very closely.

3.7.2 Reparameterizing Weights of Neural Networks

We consider a convolutional neural network for classifying the MNIST hand-

written digits dataset [44]. The network consists of two convolutional layers of

size 32 and 64, followed by two fully connected layers of size 1024 and 10. We

59



Figure 3.4: Absolute values of (a slice of) the weights of the last layer for the
vanilla GD and the reparameterized EGU± networks. The L1-norm of the GD
weights is 571.1 while for reparameterized EGU±, the L1-norm is 176.7.

train the first network normally for 100 epochs using SGD. The top-1 accuracy

obtained on the test set is 99.13%. Next, we train a second network similarly,

except we apply the EGU± reparameterization to the weights of the final layer

(size 1024×10) where we expect a high amount of redundancy due to the large

size of the network. As a result, the reparameterized weights naturally exhibit a

high amount of sparsity compared to the weights of the vanilla network, as shown

in Figure 3.4. As can be seen, most components of the reparameterized weights

are concentrated around zero and only a small fraction of the components have

large values. In fact, the L1-norm of the GD weights is 571.1 while for reparame-

terized EGU±, the L1-norm is 176.7. To test the significance of the small weights,

we clamp the weights of the final layer for which the absolute values are below

a certain threshold, to zero during the inference. The top-1 test accuracy results

are shown in Table 3.2 for different values of the threshold and the levels of spar-

sity achieved. Note that even with 98.90% sparsity, the reparameterized EGU±

network achieves 97.48% test accuracy.

60



Threshold 0 1e−3 5e−3 1e−2 5e−2 1e−1
Sparsity (%) 00.00 25.58 62.02 79.08 97.55 98.90
Accuracy (%) 99.02 99.02 99.00 98.96 98.20 97.48

Table 3.2: Different levels of sparsity achieved by thresholding the weights of the
reparameterized last layer and the corresponding top-1 test set accuracy. Even
with 98.90% sparsity the network achieves 97.48% test accuracy.

3.8 Discussion

In this chapter, we discussed the continuous-time mirror descent updates and

provided a general framework for reparameterizing these updates. Additionally,

we introduced the tempered EGU± updates and their reparameterized forms.

The tempered EGU± updates include the two commonly used updates, namely,

gradient descent and exponentiated gradient updates, and interpolate between the

two updates. We showed that under certain conditions for the underdetermined

linear regression problem, the tempered EGU± updates converge to the minimum

L2−τ -norm solution. Finally, we expanded the reparameterized updates to the

matrix case, generalizing the results of [31].

The current work leads to many interesting future directions:

• The reparameterization equivalence theorem holds only in the continuous-

time. Clearly, the equivalence relation breaks down after discretization,

however, the discretized reparameterized updates seem to track the original

updates in many importnat cases (as we show for one of the cases in the

next chapter). A key research direction is to find general conditions un-

der which the discretized updates closely track the original continuous-time

counterparts.

• A more general treatment of the underdetermined linear regression requires

analyzing the results for arbitrary start vectors. Also, extending the matrix

61



results to non-commutative matrices (as discussed in [31]) is still an open

problem. Furthermore, developing a matrix form of the reparameterization

theorem is left for future work.

• Perhaps the most important application of the current work is reparameter-

izing the weights of deep neural networks for achieving sparse solutions or

obtaining an implicit form of regularization that mimics a trade-off between

the ridge and lasso methods (e.g. elastic net regularization [76]).

62



Chapter 4

Winnowing with Gradient

Descent

4.1 Introduction

Multiplicative updates started with the Winnow algorithm for learning dis-

junctions and linear threshold functions [47, 36]. These algorithms updates their

weights by multiplicative factors and often learn sparse targets with a logarith-

mic dependence on the number of features. For example, Winnow makes at most

k log n mistakes on the sequence of n-dimensional boolean vectors labeled consis-

tently with a k-literal disjunction.

Another paradigmatic case is the so called “expert setting” where the learner

is to perform as well as a single feature/expert. For sequences of n-dimensional

feature vectors with one consistent feature, the total loss of the update is typically

O(log n). The situation is repeated for linear regression. When the weight vector

realizing the labels is sparse, then the normalized and unnormalized EG algorithms

incur loss at most O(log n). So far we focused on the noise-free case in our

63



discussion. In the noisy case (when the solution has non-zero loss), then additional

square root terms appear in the regret bounds of these algorithms.

We first observe that in continuous-time, multiplicative updates can be exactly

reparameterized as continuous gradient descent. This is done by replacing the lin-

ear weights wi by u2
i and applying continuous-time GD w.r.t. the new parameter

ui (See Figure 4.1). We show how the discretization of the continuous multiplica-

tive updates results in the usual Winnow and EG updates. More importantly, the

discretizations of the reparameterized continuous multiplicative updates results

in discrete time GD variants of these updates. However, the equivalence between

the multiplicative updates and the gradient descent reparameterizations does not

hold after discretization. Nevertheless, we show that the GD reparameterizations

closely track the multiplicative originals by proving the same regret bounds for

them as were known for the originals. In each case, the constants we obtain for

the second order terms are the same or slightly different in either direction.

For the discrete GD updates, lower-bounds that grow linearly in the number

of features n are known for all three settings [39, 67]. In these lower-bounds, the

instances are essentially the rows of an n× n Hadamard matrix and the target is

in the simplest case a single column of this matrix. When averaged over targets,

then for linear regression the lower-bound holds even if the input vectors x are

replaced by a feature map φ(x) of any kernel [67]. It was conjectured in [25] that

the linear lower bound holds for every neural network, as long as it is trained with

gradient descent.

For a long time, the Hadamard problem remained a case which highlighted

the fundamental difference between the GD and EGU updates. Specifically, a

single linear neuron (with any kernelization) fails to learn the Hadamard problem

via backpropagation. Although EGU can solve this problem efficiently, it was

64



conjectured that there would be no neuron that could simulate the multiplicative

updates of EGU via backpropagation. This conjecture is now contradicted by the

linear network in Figure 4.1. If this network is trained with GD, then it experi-

mentally solves the Hadamard problem as efficiently as EG and EGU. Thus for

the Hadamard problem, any kernel method satisfies the linear lower-bound while

there is a simple two-layer linear network that, when trained with GD, can realize

the log n dependence on the number of examples. Also experimentally, when all

the missing n2 − n connections are added at the bottom layer and initialized to

zero, then the now fully-connected two-layer linear network again incurs the linear

lower-bound when trained with GD.

Previous work. Regret bounds for multiplicative updates go back to the

Winnow [47], Weighted Majority algorithm [40], and Aggregating [68] algorithms.

A key insight made by [31] (followed by [73] and [64]) showed that when the

weights wi of a linear predictor are replaced by u2
i , then the continuous-time

gradient descent update on ui’s imposes an implicit regularization on wi’s that

makes the reparameterized weight vector w converge to the minimum L1-norm

solution1. The EG updates are known to connect with the L1-norm regularization.

Indeed, the relative entropy, which is the divergence motivating the EG updates,

is strongly convex w.r.t. the L1-norm [59]. We show that the continuous-time

unnormalized exponentiated gradient algorithm is in fact equivalent to the con-

tinuous GD on ui’s. Curiously enough, this reparameterization method has been

used by game theorists to convert problems defined on the simplex to the unit

sphere [2]. In particular, the replicator dynamics of evolutionary game theory

corresponds to EG and gradient descent equivalents have been investigated for

this dynamic. The equivalence relation between the EG updates and the cor-
1Note that [31] did the reparameterization already in the much richer matrix context. For

the sake of simplicity we focus in this chapter on the diagonal case

65



output ŷ

ui

ui

input x

Figure 4.1: Reparameterizing theweights wi of a linear neuron by u2
i .

responding reparameterized updates holds trivially in the continuous case. The

main result of this chapter is showing that essentially the same regret bounds hold

for the discretized GD reparameterizations of the multiplicative updates.

Note that obtaining an online regret bound is one of the most stringent learn-

ing criterion since it must hold for worst-case sequences of examples. Standard

conversions exist to randomized settings (See e.g. [40]). Also, EGU is a special

case of mirror descent where the link function is the component-wise logarithm.

A more general framework for reparameterizing mirror descent was developed in

Chapter 3.

Outline. In the next section, we show the equivalence between the continuous-

time exponentiated gradient updates and their reparameterized gradient descent

versions. We also motivate the discretizations of the continuous updates. In the

following three chapters, we reprove the regret bounds for the discrete gradient

descent variants of Winnow, the Hedge algorithm, and the EG algorithms for

linear regression. Lower-bounds and some implications of neural network training

are briefly discussed in Section 4.6. We conclude with a number of open problems.

The material in chapter appeared in COLT 2020 [9].

66



4.2 Reparameterizing the Continuous-time Ex-

ponentiated Gradient Algorithms

In the following, we discuss the continuous-time EGU and EG updates and de-

rive their reparameterized forms. Although reparamterization method presented

here is more versatile and applies to a wider class of continuous mirror descent

updates (as shown in Chapter 3), we only focus on these two known cases in this

chapter [2, 57].

The continuous-time EGU update can be seen as the solution of the following

ordinary differential equation (ODE) defined on Rn
≥0 with the boundary condition

w(t = 0) = w0 ∈ Rn
≥0:

•

logw(t) = −η∇w`(w(t)) , (4.1)

in which the ∇w`(w(t)) denotes the gradient of the loss wrt w evaluated at w(t).

Typically, the loss `( · ) also depends on a given example x(t) and possibly a label

y(t). Although the dynamic of the continuous-time EGU (4.1) is fundamentally

different than a dynamic based on GD, we apply the results of Chapter 3 to cast

this update as GD. Namely, we substitute w(t) = q(u(t)) .= u(t) � u(t) where

the new parameter u(t) ∈ Rn is updated via GD on the composite loss `◦q (·).

Remark 1 (Reparameterized continuous-time EGU). The solution of the ODE (4.1)

is equal to the w(t) = q(u(t)) for all t ≥ 0, where q(u) := u � u and the new

parameter u(t) is the solution of the following ODE defined on Rn:

•

u(t) = −η/4∇u `◦q
(
u(t)

)
, with initial condition u(t = 0) = u0 ∈ Rn. (4.2)

See Example 3 for a proof.

The discrete-time EGU can be derived as the finite difference approximation

67



of (4.1) with a step-size of one, that is,

logwt+1 − logwt = −η∇w`(wt) , (4.3)

which corresponds to the solution to the following objective function:

wt+1 = arg min
w̃∈Rn≥0

{
1/ηDRE(w̃,wt) + ˆ̀(w̃|wt)

}
. (4.4)

Here, ˆ̀(w̃|wt) denotes the first-order Taylor series approximation2 of the loss

`(w̃) at wt

ˆ̀(w̃|wt) = `(w̃) + (w̃ −wt) · ∇w`(wt) .

Similarly, discretizing (4.2) yields the discrete-time reparameterized EGU update

ut+1 − ut = −η/4∇u `◦q
(
ut
)

= −η/2 ut �∇w `
(
wt
)
, (4.5)

with wt = ut � ut. This can be seen as the solution to the objective

ut+1 = arg min
ut+1 ∈Rn

{
1/η ‖ũ− ut‖2

2 + 1/2 ̂̀◦q (ũ |ut)} , (4.6)

where ̂̀◦q (ũ |ut) is the first-order Taylor series approximation of `◦q (ũ) at ut:

̂̀◦q (ũ |ut) = `◦q
(
ut
)

+ (ũ− ut) · ∇u `◦q
(
ut
)
. (4.7)

A similar continuous-time dynamic can be constructed for the normalized EG

update and its equivalent reparameterized form. This involves applying projected

gradient updates to maintain the constraint ‖w(t)‖1 = 1 (respectively, ‖u(t)‖2
2 =

2Note that a backward Euler approximation of (4.1) yields the implicit form of the up-
date [41], which corresponds to using `(w̃) instead of ˆ̀(w̃|wt) in (4.4).

68



1). Here, we state the result for the discretized reparameterized form and refer the

reader to Chapter 3 for further details. Our construction here is based on directly

discretizing the functional form, which follows the derivation of the discretized

updates in Section 3.3. That is, adding the Lagrange multiplier λ to (4.6) to

enforce the constraint
(
ut+1 � ut+1

)
· 1 = 1, we have

ut+1 = arg min
ut+1 ∈Rn

{
1/η ‖ũ− ut‖2

2 + 1/2 ̂̀◦q (ũ |ut)+ λ
((
ũ� ũ

)
· 1− 1

)}
(4.8)

which results in the reparameterized EG update

ut+1 = ut − η/2ut �∇w `(wt)∥∥∥ut − η/2ut �∇w `(wt)‖2
, where wt = ut � ut . (4.9)

Clearly, after the discretization, the EGU and EG updates and their repa-

rameterized forms are no longer equivalent. The key question that naturally

arises is the following: How well does the discretized reparameterized EGU update

(and its normalized form) approximate the original EGU (respectively, the orig-

inal EG) update? In the following, we address this question by comparing the

worst-case regrets of the original (un)normalized EG and its reparameterizations

on three problems, namely, the Winnow algorithm for binary classification, the

Hedge algorithm for the expert setting, and EGU and EG for linear regression.

The following regret bounds for the reparameterizations are proven by bounding

the progress towards a comparator. Curiously enough, the progress is measured

i.t.o. the relative entropy divergence even though the reparameterized updates

are motivated by regularizing with the squared Euclidean distance.

69



4.3 Reparameterization of the Winnow

The Winnow algorithm learns a linear threshold function for the task of binary

classification. It is a special case of EGU when the loss is the hinge loss. The

hinge loss on example (xt, yt) where yt ∈ {±1} is defined as `H(w|xt, yt) =[
− yt (w · xt − θ)

]
+
. GD w.r.t. same loss results in the Perceptron update. The

Winnow algorithm and its reparameterized form are given in the following. Both

algorithms update their weights only when a mistake occurs because when the

prediction is correct, then the gradient of the hinge loss is zero. See e.g. [39] for

a comparative study.

Algorithm 1 Winnow Algorithm
Parameters initial weight w1 > 0,
learning rate η, threshold θ > 0
Initialize w1 = w1 1n
for t = 1 to T do

Receive instance xt ∈ [0, 1]n

Predict ŷt =

+1 if wt · xt ≥ θ

−1 otherwise

Receive label yt and update

wt+1 =

wt if ŷt = yt

wt � exp(η yt xt) otherwise

Algorithm 2 Reparameterized Winnow
Parameters initial weight u1 ∈ R,
learning rate η, threshold θ > 0
Initialize u1 = u1 1n
for t = 1 to T do

Receive instance xt ∈ [0, 1]n

Predict ŷt =

+1 if (ut � ut) · xt ≥ θ

−1 otherwise

Receive label yt and update

ut+1 =

ut if ŷt = yt

ut + η yt (ut � xt) otherwise

Theorem 7 (Winnow bound [47, 71]). Given any sequence of examples (xt, yt)

such that xt ∈ [0, 1]n the labels yt are ±1, and there is a weight s with k ones and

n− k zeros such that

s · xt =


≥ 1

2 if yt = +1

0 otherwise ,

then the Winnow algorithm makes at most 7.18 k log n
k
mistakes on this sequence,

when η ≈ 1.28, θ = 0.19, and w1 = n/k.

70



Note for the sake of simplicity we only address the case when there exists a con-

sistent disjunction. In the more general case, there are the additional terms in the

mistake bound that involve the number of attribute errors w.r.t best disjunction.

Theorem 8 (Reparameterized Winnow bound). Given any sequence of examples

(xt, yt) and given that the assumptions of Theorem 7 hold, then the reparame-

terized Winnow algorithm makes at most 5.66 k log n
k
mistakes on this sequence,

when η ≈ 0.85, θ = 0.18, and u1 =
√
n/k.

Proof. We lower-bound the per trial progress DRE(s,ut�ut)−DRE(s,ut+1�ut+1)

towards any comparator s which satisfies the constraints in Theorem 7. Note that

if no mistake occurs, ut+1 = ut. Otherwise, ut+1 is updated to ut+η yt (ut�xt) =

ut � (1 + η yt xt). Assuming η ≤ 1, and using the facts that log(1 + ηytxti) ≥

xti log(1 + ηy) and (xti)2 ≤ xti for xti ∈ [0, 1], we have

DRE(s,ut�ut)−DRE(s,ut+1�ut+1) = 2s·log(1 + ηytxt)−(ut�ut)·(2ηytxt+η2xt�xt)

≥ 2 s · xt log(1 + η yt)− (ut � ut) · xt (2 η yt + η2) .

A mistake occurs if yt 6= ŷt. If yt = −1, then s · xt = 0 by the assumption and

(ut � ut) · xt ≥ θ. Thus, the lower-bound on the progress becomes

(ut � ut) · xt(2 η − η2) ≥ θ(2 η − η2) .

If yt = +1, then we have s ·xt ≥ 1
2 by the assumption and also (ut�ut) ·xt ≤ θ.

Thus in this case the progress is lower-bounded by

log(1 + η)− (ut � ut) · xt (2 η yt + η2) ≥ log(1 + η)− θ(2 η + η2) .

Setting the two values to be equal, we obtain θ = log(1+η)
4 η . With this choice of θ,

71



the progress per mistake is always lower-bounded by 1/4 (2− η) log(1 + η) which

is maximized for η ≈ 0.85. This choice of η yields θ ≈ 0.18 and the progress is

≈ 0.18. Summing over all trials and denoting the number of mistakes by M , we

have

DRE(s,u1 � u1)︸ ︷︷ ︸
k log n

k

−DRE(s,uT+1 � uT+1)︸ ︷︷ ︸
≥0

≥ 0.18M .

This implies M ≤ 5.56 k log n
k
.

Note that the constant in the bound in Theorem 8 is slightly better than the

one in Theorem 7. We believe this is merely a byproduct of the analysis and the

two algorithms behave very closely in practice. A more thorough experimental as

well as theoretical treatment is required to validate this argument.

4.4 Reparameterization of the Hedge

An important algorithm in the online expert setting is the RandomizedWeighted

Majority algorithm [46]. Here, we only discuss the simplified version known as

the Hedge algorithm [29]. This algorithm maintains a non-negative probability

vector wt ∈ ∆n−1 such that ∑iw
t
i = 1. At trial t, the algorithm draws an ex-

pert/feature i with probability wi and upon receiving the loss `t, it incurs the

expected loss wt ·`t. The weights are then updated by a multiplicative exponenti-

ated gradient term and re-normalized afterwards (see Algorithm 3) to assure that

the non-negative weights sum to one. The Hedge update and its reparameteriza-

tion are a special case on EG and reparameterized EG when the losses are the dot

loss w̃ · `t and ũ� ũ · `t, respectively.

The normalization ensures that wt+1 ∈ ∆n−1. The Hedge update at round t

is motivated by minimizing the relative entropy to the current weight wt plus the

72



dot loss:

wt+1 = arg min
w̃∈∆n−1

{
1/ηDRE(w̃,wt) + w̃ · `t

}
. (4.10)

Algorithm 3 Hedge Algorithm
Parameters initial probability
vector w1 ∈ ∆n−1, learning rate η
for t = 1 to T do

Draw expert i with probability
wti

Incur loss `ti & expected losswt ·
`t

Update wt+1 = wt � exp(−η `t)∑
iw

t
i exp(−η `ti)

Algorithm 4 Reparameterized Hedge
Alg.
Parameters initial weight vector u1 ∈
Rn s.t. ‖u1‖2 = 1, learning rate η
for t = 1 to T do

Draw expert iwith probability (uti)2

Incur loss `ti & expected loss (ut �
ut) · `t

Update ut+1 = ut − ηut � `t

‖ut − ηut � `t‖2

Theorem 9 (Hedge bound [46, 29]). For any sequence of loss vectors {`t}Tt=1 ∈

[0, 1]n such that ‖`t‖∞ < L, any comparator s ∈ ∆n−1 and any start vector

w1 ∈ ∆n−1 such that DRE(s,w1) ≤ D ≤ log n, the total expected loss of the Hedge

algorithm with start vector w1 and learning rate η = log(1 +
√

2D/L) is bounded

as ∑
t

wt · `t ≤
∑
t

s · `t +
√

2LD +DRE(s,w1) .

In the reparameterized Hedge update, w is replaced with u � u where u ∈ Rn

and ‖u‖2 = 1. That is, the reparameterized weight u lies on the unit sphere and

the squared weight u�u corresponds to an n-dimensional probability vector. The

update is motivated by minimizing the squared Euclidean distance as the inertia

73



term plus the expected loss3,

ut+1 = arg min
ũ s.t. ‖ũ‖2=1

{
1/η ‖ũ− ut‖2

2 + (ũ� ũ) · `t
}
. (4.11)

Using a Lagrange multiplier to enforce the constraint that∑i(uti)2 = 1 and solving

for ut+1 yields the reparameterized Hedge update in Algorithm 4.

Theorem 10 (Reparameterized Hedge bound). For any sequence of loss vectors

{`t}Tt=1 ∈ [0, 1]n such that ‖`t‖∞ < L, any comparator s ∈ ∆n−1 and any start

vector u1 ∈ Rn such that ‖u1‖2 = 1 and DRE(s,u1 � u1) ≤ D ≤ log n, the total

expected loss of reparameterized Hedge with learning rate η = (1 +
√
L/D)−1 is

bounded as

∑
t

(ut � ut) · `t ≤
∑
t

s · `t + 2
√
LD +DRE(s,w1) .

Proof. We lower-bound the progress of the algorithm towards an arbitrary com-

parator s ∈ ∆n−1. Assuming η < 1, the progress can be written as

DRE(s,ut � ut)−DRE(s,ut+1 � ut+1)

= 2 s · log
(
1− η `t

)
− log

(
(ut � ut) · (1− 2η `t + η2 `t � `t)

)
≥ 2 s · `t log(1− η)− log

(
1− (2η − η2) (ut � ut) · `t

)
.

Using log(1− x) ≥ −x/(1− x) and − log(1− x) ≥ x for 0 ≤ x < 1 yields

DRE(s,ut � ut)−DRE(s,ut+1 � ut+1) ≥ − 2 η
1− η s · `

t + (2η − η2) (ut � ut) · `t .

Summing over all trials and re-arranging the term results in the following bound
3A similar first-order Taylor approximation to (4.7) is required to obtain the explicit update.

74



on the loss of the algorithm

∑
t

(ut � ut) · `t ≤
2 η

1−η
∑
t s · `t +DRE(s,u1 � u1)−DRE(s,uT+1 � uT+1)

2 η − η2 .

Setting η to (1 +
√
L/D)−1 and substituting the values of L and D yields the

bound.

Note that the regret bound of Theorem 10 for the reparameterized Hedge has

an additional
√

2 factor before the square root term in its regret bound. By

plotting the progress, we can show that this additional factor disappears if you

use the alternate learning rate η =
√
D/(D + 2L). Based on this evidence, we

conjecture that with the alternate tuning, the reparameterized Hedge has the same

regret bound as the original.

Another approximation of the Hedge update has been analysed in [18], called

the Prod update. It replaces the exponential factors exp(−η `i) used in Hedge by

their Taylor expansions (1− η `i) and normalizes multiplicatively.4 Our reparam-

eterized GD update is subtly different: it is a GD update w.r.t. the square roots

of the weights as the parameters.

4.5 Reparameterizations of EGU and EG for Lin-

ear Regression

The regret bounds for linear regression using GD, EG, and EGU have been an-

alyzed extensively in [40]. Here, we derive similar bounds for the reparameterized

EG and EGU updates.
4The same Taylor expansion is used in the Approximated EG update of [40], but that update

keeps the weight sum as one by subtracting a term. It is motivated by the χ2-divergence.

75



We first recall the original EGU algorithm for linear regression,. The unnor-

malized EG (i.e. EGU) algorithm maintains a weight vector wt ∈ Rn
≥0. Upon

receiving input xt ∈ Rn at round t, the algorithm predicts with ŷt = wt · xt.

Then, the algorithm receives the response yt and incurs loss ‖yt − ŷt‖2. EGU

updates the weights wt+1 as

wt+1 = wt � exp
(
− 2 η (ŷt − yt)xt

)
.

[40] analyze a slight variant of EGU. For a given sequence of trials (xt, yt) for

which yt ∈ [0, Y ] for all t and for some Y > 0, the EGU predicts with ŷt = wt ·xt

if ŷt ≤ Y holds, and sets ŷt = Y otherwise. The variant uses the clipped ŷt in its

update.

Theorem 11 (Linear regression with EGU [40]).Let {(xt, yt)}Tt=1 be any sequence

such that xt ∈ [0, X]n and yt ∈ [0, Y ] for some constants X, Y > 0. Then for any

comparator s ∈ [0,∞)n, EGU with learning rate η = 1/(3XY ) and arbitrary start

point w1 ∈ [0,∞)n satisfies the total loss bound

T∑
t=1
‖yt −wt · xt‖2

2 ≤ 3
(∑

t

‖yt − s · xt‖2
2 +X YDRE(s,w1)

)
. (4.12)

Furthermore, let L and D be constants such that ∑t ‖yt − s · xt‖2
2 ≤ L and

DRE(s,w1) ≤ D and let

η =
√
D√

2LXY + 2XY
√
D
. (4.13)

Then we have

T∑
t=1
‖yt −wt · xt‖2

2 ≤
T∑
t=1
‖yt − s · xt‖2

2 + 2
√

2LXYD + 2XYDRE(s,w1) . (4.14)

76



Reparameterized EGU uses ut �ut as its weights, where u1 ∈ Rn, and updates

as

ut+1 = ut − η (ŷt − yt)ut � xt , (4.15)

where ŷt is again the clipped prediction min
(
wt · xt, Y

)
.

Theorem 12 (Reparameterized EGU linear regression). Let {(xt, yt)}Tt=1 be any

sequence such that xt ∈ [0, X]n and yt ∈ [0, Y ] for some constants X, Y > 0.

Then for any comparator s ∈ [0,∞)n, Reparameterized EGU with learning rate

η = 1/(3XY ) and arbitrary start point w1 ∈ [0,∞)n satisfies the same total loss

bound (4.12) as the original EGU when replacing wt with ut � ut. Moreover,

for the same constants L and D as in Theorem 11 and by setting η to (4.13), the

reparameterized EGU achieves the same bound as in (4.14).

Proof sketch. We first establish a lower-bound of the form

a ‖yt − ŷ2‖2 − b ‖yt − s · xt‖2 ≤ DRE(s,ut � ut)−DRE(s,ut+1 � ut+1)

on the progress of the algorithm towards the comparator s, for some constants

0 ≤ a, b. We can lower-bound the progress as

DRE(s,ut � ut)−DRE(s,ut+1 � ut+1)

≥ 2 s · xt log(1− η (ŷt − yt)X)
X

+
(
2 η (ŷt− yt)− η2 (ŷt− yt)2X

)
(ut�ut) ·xt .

Denoting by r .= s·xt and q .= (ut�ut)·xt, it suffices to show that G(q, ŷ, y, r) ≤

0 where (omitting the superscript t)

G(q, ŷ, y, r) = −2r log(1− η (ŷ − y)X)
X

−
(
2 η (ŷ−y)−η2 (ŷ−y)2X

)
q−‖y−ŷ‖2+b ‖y−r‖2 .

77



It suffices to show the result for q = ŷ. The function G(ŷ, r, y, ŷ) is maximized

for r = y − log(1 − η(ŷ − y)X)/(Xb). Setting η = b/(1 + 2XY b), the inequality

holds for any a ≤ b/(1 + 2XY b). Setting b = 1/(XY ), the bound is achieved for

η = a = 1/(3XY ).

Algorithm 5 EGU Linear Regression
Parameters initial weightw1 ∈ Rn

≥0,
learning rate η
for t = 1 to T do

Receive instance xt ∈ [0, X]n

Predict ŷt =

wt ·xt if wt ·xt≤Y
Y otherwise

Receive label yt and update
wt+1 = wt � exp

(
− 2 η (ŷt − yt)xt

)

Algorithm 6 Reparam. EGU Lin. Reg.
Parameters initial weight u1 ∈ Rn,
learning rate η
for t = 1 to T do

Receive instance xt ∈ [0, X]n

Predict ŷt=

wt ·xt if wt ·xt≤Y
Y otherwise

where wt = ut � ut
Receive label yt and update
ut+1 = ut − η (ŷt − yt)ut � xt

Alternatively, the (normalized) EG algorithm maintains a probability vector

wt ∈ ∆n−1 as its weight vector. The update for EG is the same as EGU, except

for a multiplicative normalization:

wt+1 =
wt � exp

(
− 2 η (ŷt − yt)xt

)
∑
iw

t+1
i exp

(
− 2 η (ŷt − yt)xti

) .
The following theorem from [40] expresses the worst-case bound of running EG

for linear regression.

Theorem 13 (EG linear regression [40]). Let {(xt, yt)}Tt=1 be any sequences such

that maxi xti −mini xti ≤ R for some R ≥ 0. Then for any comparator s ∈ ∆n−1,

the EG algorithm with learning rate η = 2/(3R2) and arbitrary start point w1 ∈

78



∆n−1 satisfies the total loss bound

T∑
t=1
‖yt −wt · xt‖2

2 ≤
3
2
( T∑
t=1
‖yt − s · xt‖2

2 +R2DRE(s,w1)
)
. (4.16)

Furthermore, let L and D be constants such that ∑t ‖yt − s · xt‖2
2 ≤ L and

DRE(s,w1) ≤ D and let

η = 2
√
D

R
√

2L+R2
√
D
. (4.17)

Then we have

T∑
t=1
‖yt −wt · xt‖2

2 ≤
T∑
t=1
‖yt − s · xt‖2

2 +R
√

2LD + R2

2 DRE(s,w1) . (4.18)

Using (4.9), the reparameterized EG update for linear update can be written

as

ut+1 = ut − η (ŷt − yt)ut � xt
‖ut − η (ŷt − yt)ut � xt‖2

. (4.19)

The algorithm for EG on linear regression is similar to Algorithm 6, except the

initial weight u1 satisfies ‖u1‖2 = 1 and the update is replaced with (4.19).

In the following, we show the regret for the reparameterized EG update for

linear regression. For simplicity, we first consider the case when the input x ∈

[0, X]n for some X > 0.

Theorem 14 (Reparameterized EG linear regression). Let {(xt, yt)}Tt=1 be any

sequences such that xt ∈ [0, X]n for some X ≥ 0. Then for any comparator

s ∈ ∆n−1, the Reparameterized EG algorithm with learning rate η = 1/(3X2) and

arbitrary start point u1 ∈ Rn, such that ‖u1 � u1‖2 = 1, satisfies the total loss

bound

T∑
t=1
‖yt − (ut � ut) · xt‖2

2 ≤ 3
(∑

t

‖yt − s · xt‖2
2 +X2DRE(s,u1 � u1)

)
. (4.20)

79



output ŷ

input x
Figure 4.2: Complete two-layer linear network. The green weights are initialized
to zero.

Furthermore, let L and D be constants such that ∑t ‖yt − s · xt‖2
2 ≤ L and

DRE(s,u1 � u1) ≤ D and let

η =
√
D

X
√

2L+ 2X2
√
D
. (4.21)

Then we have

T∑
t=1
‖yt−(ut�ut)·xt‖2

2 ≤
T∑
t=1
‖yt−s·xt‖2

2+2X
√

2LD +2X2DRE(s,w1) . (4.22)

The proof is given in the Appendix A. In the following, we claim a bound for

the reparameterized EG for the more general case where xt ∈ [−X,X]n for all

t. We provide a proof sketch for the claim in the appendix. Our partial proof

shows strong evidence for the existence of such regret bound. However, finding

an analytical proof by simplifying the final form is left for future work.

Claim 1 (A more general bound for reparameterized EG linear regression). For

the same setting as in Theorem 14 but a more general case where xt ∈ [−X,X]n

for all t, the reparameterized EG algorithm achieves the same bound (4.22) with

R = 2X when η is set to (4.21).

80



(a) (b) (c)

Figure 4.3: GD, EGU, & Reparameterized EGU on the online Hadamard problem
(n=128): at round t, we train until consistency on the t past examples. The 128
weights are shown in blue and the average loss over all 128 examples in red.

4.6 Simulations

In this section, we provide a number of simulations in order to discuss the im-

plications of the results of the previous sections. We first show some experimental

results on the behavior of the GD as well as EGU and the reparameterized EGU

updates for learning the Hadamard problem. Next, we show the effect of different

initializations on the results.

4.6.1 Lower-bounds on the Hadamard Problem

Linear lower-bounds for all three cases have been studied in the previous

work [39, 67]. These lower-bounds are all based on the “Hadamard problem”5:

The instances are the rows of the n-dimensional Hadamard matrix in random or-

der and the target is one of the columns. This means the target is a unit weight

vector that “selects” the target column. GD brings up the weight of the right

column slowly at the expense of the linear decaying average square loss. Multi-

plicative updates, such as EGU, bring up the target weight dramatically faster
5Similar behavior is observed if a random ±1 matrix is used.

81



and the average square loss decays essentially after log n examples (Figure 4.3).

GD on the ui of the sparse linear network of Figure 4.1 has the same behavior

as EGU with almost identical weights trajectories. Surprisingly, if we run GD on

the complete (i.e. fully-connected) two-layer network (Figure 4.2) with the green

weights initialized to zero, then the combined linear weights of both layers again

behave as when a simple linear neuron is trained with GD (see Section 4.6.2). It

seems that GD focuses on keeping the highest weight as small as possible and uses

the additional weights to overfit.

4.6.2 Behavior of GD and Reparameterized EGU with

Different Initializations

Here, we discuss two interesting observations on the two-layer networks in

Figure 4.1 and Figure 4.2. We extend the experiments on learning a column of

the Hadamard matrix to two-layer networks. We consider the online Hadamard

problem (n = 128) where we perform one pass over the examples. The results

are shown in Figure 4.4. The figures stress two points about training two-layer

linear networks with GD. First, if all the weights in the first layer are initialized

to zero (Figure 4.4(a)), then the product of the weight matrix of the first layer

times the weight vector of the second layer behaves qualitatively the same as the

weights of a single linear neuron trained with GD (compare to Figure 4.3(a)).

The same is true if the green weights in Figure 4.2 are initialized to zero and the

remaining weights (black diagonal weights of the first layer and the weights of the

second layer) are all set to uniform (Figure 4.4(b)). This is essentially the same

initialization used for the reparameterized EGU algorithm, except in this case,

the green connections are not removed.

Second, the initialization of the sparse linear network (Figure 4.1) is rather ro-

82



(a) (b) (c)

Figure 4.4: Results of two-layer linear networks on the online Hadamard problem
(n= 128). We perform one pass over the examples. The product of the weights
of the first and the second layer (128 weights in total) are shown in blue and
the average loss over all 128 examples in red. Results of the two-layer network
of Figure 4.2 using GD where the first layer weights are (a) initialized to zero,
(b) initialized uniformly on both diagonals, (c) results of the sparse network of
Figure 4.1 where the weights are initialized randomly.

bust. Equal initializations or random initializations of both diagonals all make the

combined weight behave qualitatively like EGU on a single neuron (Figure 4.4(c)

compared to Figure 4.3(b)).

4.7 Open problems

There are a number of technical open problems. A complete analytical proof

still has to be provided for the regret of reparameterized EG when the instance

domain is two-sided, i.e. xt ∈ [−X,X]n. Proofs of such bounds are also required

for the original and the reparameterized EGU. Experimentally, the updates behave

as expected but obtaining analytical regret bounds (in particular for EGU) in

those cases seems challenging. For the lower-bound discussion, we still need an

analytical proof that the optimal initialization for the weights of the first layer in

a two-layer linear network is always zero when the network is trained with GD

83



and the targets are columns of a Hadamard matrix or their negations. So far, we

were only able to validate this by means of numerical differentiation.

Also, there are a number of open problems in the expert setting. We were

able to repeat the regret bounds for the Reparameterized Hedge algorithm (i.e.

when the loss is the dot loss and the loss components lie in [0, 1]). However, so far

we were not able to repeat O(log n) regret bounds [68, 33] for a reparameterized

version of the multiplicative expert algorithm when the loss is the dot loss and

the loss components are the square loss (a.k.a. the Brier scores). We believe that

O(log n) regret bounds are not possible for the reparameterized version of the

expert algorithm when the loss components are log losses. The reason is that this

loss is unbounded.

There are many open problems regarding neural networks: are reparameter-

ized multiplicative updates useful for large networks and do they produce sparser

weights?

84



Chapter 5

Tempered Bregman Divergence

for Classification

5.1 Introduction

The logistic loss, also known as the softmax loss, has been the standard choice

in training deep neural networks for classification. The loss involves the applica-

tion of the softmax function on the activations of the last layer to form the class

probabilities followed by the relative entropy (aka the Kullback-Leibler (KL) di-

vergence) between the true labels and the predicted probabilities. The logistic

loss is known to be a convex function of the activations (and consequently, the

weights) of the last layer.

Although desirable from an optimization standpoint, convex losses have been

shown to be prone to outliers [48] as the loss of each individual example unbound-

edly increases as a function of the activations. These outliers may correspond to

extreme examples that lead to large gradients, or misclassified training examples

that are located far away from the classification boundary. Requiring a convex

loss function at the output layer thus seems somewhat arbitrary, in particular

85



since convexity in the last layer’s activations does not guarantee convexity with

respect to the parameters of the network outside the last layer. Another issue

arises due to the exponentially decaying tail of the softmax function that assigns

probabilities to the classes. In the presence of mislabeled training examples near

the classification boundary, the short tail of the softmax probabilities enforces the

classifier to stretch the decision boundary towards the noisy training examples. In

contrast, heavy-tailed alternatives for the softmax probabilities have been shown

to significantly improve the robustness of the loss to these examples [28].

The logistic loss is essentially the negative logarithm of the predicted class

probabilities, which are computed as the normalized exponentials of the inputs.

In this chapter, we tackle both shortcomings of the logistic loss, pertaining to its

convexity as well as its tail-lightness, by replacing the logarithm and the expo-

nential functions with their corresponding “tempered” versions. Recall that the

tempered logarithm function logτ : R+ → R with temperature parameter τ ∈ R

as in [49] is defined as:

logτ (x) .= 1
1− τ (x1−τ − 1) .

The logτ function is monotonically increasing and concave. The standard (natural)

logarithm is recovered at the limit τ → 1. Unlike the standard log, the logτ
function is bounded from below by −1/(1 − τ) for 0 ≤ τ < 1. This property

will be used to define bounded loss functions that are significantly more robust

to outliers. Similarly, our heavy-tailed alternative for the softmax function is

based on the tempered exponential function. The function expτ : R → R+ with

86



(a) (b) (c) (d)

Figure 5.1: Tempered logarithm and exponential functions, and the bi-tempered
logistic loss: (a) logτ function, (b) expτ function, bi-tempered logistic loss when
(c) τ2 = 1.2 fixed and τ1 ≤ 1, and (d) τ1 = 0.8 fixed and τ2 ≥ 1.

temperature τ ∈ R is defined as the inverse1 of logτ , that is,

expτ (x) .= [1 + (1− τ)x]1/(1−τ)
+ , (5.1)

where [ · ]+ = max{ · , 0}. The standard exp function is again recovered at the

limit τ → 1. Compared to the exp function, a heavier tail (for negative values of

x) is achieved for τ > 1. We use this property to define heavy-tailed analogues of

softmax probabilities at the output layer.

The vanilla logistic loss can be viewed as a logarithmic (relative entropy) di-

vergence that operates on a “matching” exponential (softmax) probability assign-

ment [35, 38]. Its convexity then stems from classical convex duality, using the

fact that the probability assignment function is the gradient of the dual function

to the negative entropy on the simplex. When the logτ1 and expτ2 are substituted

instead, this duality still holds whenever τ1 = τ2, albeit with a different Bregman

divergence, and the induced loss remains convex2. However, for τ1 < τ2, the loss

becomes non-convex in the output activations. In particular, 0 ≤ τ1 < 1 leads

to a bounded loss, while τ2 > 1 provides tail-heaviness. Figure 5.1 illustrates

the tempered logτ and expτ functions as well as examples of our proposed bi-
1When 0 ≤ τ < 1, the domain of expτ needs to be restricted to −1/(1−τ) ≤ x for the inverse

property to hold.
2In a restricted domain when τ1 = τ2 < 1, as discussed later.

87



tempered logistic loss function for a two-class problem expressed as a function of

the activation of the first class. The true label is assumed to be class one.

Tempered generalizations of the logistic regression have been introduced be-

fore [27, 28, 75, 10]. The most recent two-temperature method [10] is based on the

Tsallis divergence and contains all the previous methods as special cases. However,

the Tsallis based divergences do not result in proper loss functions. In contrast, we

show that the Bregman based construction introduced in this chapter is indeed

proper, which is a requirement for many real-world applications. The material

in chapter appeared as conference papers in AISTATS 2019 [10] and NeurIPS

2019 [5].

5.1.1 Our replacement of the softmax output layer in neu-

ral networks

Consider an arbitrary classification model with multiclass softmax output.

We are given training examples of the form (x,y), where x is a fixed dimensional

input vector and the target y is a probability vector over k classes. In practice,

the targets are often one-hot encoded binary vectors in k dimensions. Each input

x is fed to the model, resulting in a vector z of inputs to the final softmax layer.

This layer typically has one trainable weight vector wi per class i and yields the

predicted class probability

ŷi = exp(âi)∑k
j=1 exp(âj)

= exp
(
âi − log

k∑
j=1

exp(âj)
)
,

for linear activation âi = wi · z for class i. We first replace the softmax function

by a generalized heavy-tailed version that uses the expτ2 function with τ2 > 1,

88



which we call the tempered softmax function:

ŷi = expτ2

(
âi − λτ2(â)

)
, where λτ2(â) ∈ R is s.t.

k∑
j=1

expτ2

(
âj − λτ2(â)

)
= 1 .

This requires computing the normalization value λτ2(â) (for each example) via

a binary search or an iterative procedure like the one given in Appendix B. The

relative entropy between the true label y and prediction ŷ is replaced by the

tempered version with temperature range 0 ≤ τ1 < 1,

k∑
i=1

(
yi (logτ1 yi − logτ1 ŷi)−

1
2−τ1

(y2−τ1
i − ŷ2−τ1

i )
)

if y one-hot= − logτ1 ŷc −
1

2−τ1

(
1−

k∑
i=1

ŷ2−τ1
i

)
.

where c = arg maxi yi is the index of the one-hot class. In later sections we

prove various properties of this loss. When τ1 = τ2 = 1, then it reduces to the

vanilla relative entropy loss with softmax. Also when 0 ≤ τ1 < 1, then the loss is

bounded, while τ2 > 1 gives the tempered softmax function a heavier tail.

5.1.2 An illustration

We provide some intuition on why both boundedness of the loss as well as tail-

heaviness of the tempered softmax are crucial for robustness. For this, we train

a small two-layer feed-forward neural network on a synthetic binary classification

problem in two dimensions. The network has 10 and 5 units in the first and

second layer, respectively3. Figure 5.2(a) shows the results of the logistic and

our bi-tempered logistic loss on the noise-free dataset. The network converges

to a desirable classification boundary (the white stripe in the figure) using both
3An interactive visualization of the bi-tempered loss is available at: https://google.

github.io/bi-tempered-loss/

89

https://google.github.io/bi-tempered-loss/
https://google.github.io/bi-tempered-loss/


Lo
gi
st
ic

bounded & heavy-tail
(0.2, 4.0)

only heavy-tail
(1.0, 4.0)

only bounded
(0.2, 1.0)

bounded & heavy-tail
(0.2, 4.0)

B
i-T

em
pe

re
d

(a) (b) (c) (d)

Figure 5.2: Logistic vs. robust bi-tempered logistic loss: (a) noise-free labels, (b)
small-margin label noise, (c) large-margin label noise, and (d) random label noise.
The temperature values (τ1, τ2) for the bi-tempered loss are shown above each
figure.

loss functions. In Figure 5.2(b), we illustrate the effect of adding small-margin

label noise to the training examples, targeting those examples that reside near

the noise-free classification boundary. The logistic loss clearly follows the noisy

examples by stretching the classification boundary. On the other hand, using only

the tail-heavy tempered softmax function (τ2 = 4 while τ1 = 1, i.e. KL divergence

as the divergence) can handle the noisy examples by producing more uniform

class probabilities. Next, we show the effect of large-margin noisy examples in

Figure 5.2(c), targeting examples that are located far away from the noise-free

classification boundary. The convexity of the logistic loss causes the network to be

highly affected by the noisy examples that are located far away from the boundary.

In contrast, only the boundedness of the loss (τ1 = 0.2 while τ2 = 1, meaning that

the outputs are vanilla softmax probabilities) reduces the effect of the outliers

by allocating at most a finite amount of loss to each example. Finally, we show

the effect of random label noise that includes both small-margin and large-margin

90



noisy examples in Figure 5.2(d). Clearly, the logistic loss fails to handle the noise,

while our bi-tempered logistic loss successfully recovers the appropriate boundary.

Note for random noise, we exploit both boundedness of the loss (τ1 = 0.2 < 1) as

well as the tail-heaviness of the probability assignments (τ2 = 4 > 1).

The theoretical background as well as our treatment of the softmax layer of

the neural networks are developed in later sections. In particular, we show that

special discrete choices of the temperatures result in a large variety of divergences

commonly used in machine learning. As we show in our experiments, tuning the

two temperatures as continuous parameters is crucial.

5.2 Tempered Matching Loss

We start by discussing a few properties of the convex function Fτ and the

corresponding tempered Bregman divergence. Note that the convexity of Fτ can

be verified easily by considering the HessianHFτ (y) = ∇2Fτ (y) = diag(y−�τ ) < 0

for any y ∈ Rk
≥0. We also showed the strong convexity of Fτ for 0 ≤ τ ≤ 1 in

Chapter 3, Lemma 7. The following corollary is the direct consequence of the

strong convexity of Fτ .

Corollary 8. Let max(‖y‖2−τ , ‖ŷ‖2−τ ) ≤ B for 0 ≤ τ < 1. Then

1
2Bτ
‖y − ŷ‖2

2−τ ≤ DFτ (y, ŷ) ≤ Bτ

2 (1− τ)2‖y
1−τ − ŷ1−τ‖2

2−τ
1−τ

.

Proof. Note that using the duality of the Bregman divergences, we have

DFτ (y, ŷ) = DF ∗t
(fτ (ŷ), fτ (y)) = DF ∗t

(logτ (ŷ), logτ (y)) .

91



Using the strong convexity of Fτ and strong smoothness of F ∗τ , we have

1
2Bτ
‖y − ŷ‖2

2−τ ≤ DFτ (y, ŷ) ≤ Bτ

2 ‖ logτ y − logτ ŷ‖2
2−τ
1−τ

.

Note that ‖ · ‖2−τ and ‖ · ‖ 2−τ
1−τ

are dual norms. Substituting the definition of logτ
to the right-hand-side, we have

Bτ

2 ‖ logτ y − logτ ŷ‖2
2−τ = Bτ

2 (1− τ)2 ‖y
1−τ − ŷ1−τ‖2

2−τ
1−τ

≤ Bτ

2 (1− τ)2

(
2B1−τ

)2
= 2B2−τ

(1− τ)2 .

Thus for 0 ≤ τ < 1, DFτ (y, ŷ) is upper-bounded by 2B2−τ

(1−τ)2 . Note that bounded-

ness on the simplex also implies boundedness in the L2−τ -ball. Thus, Corollary 8

immediately implies the boundedness of the divergence DFτ (y, ŷ) with 0 ≤ τ < 1

over the simplex. Alternate parameterizations of the family {Fτ} of convex func-

tions and their corresponding Bregman divergences are discussed in Appendix B.2.

5.2.1 Tempered softmax function

Now, let us consider the convex function Fτ (y) when its domain is restricted

to the probability simplex ∆k−1. We denote the constrained dual of Fτ (y) by

F̌ ∗τ (a),

F̌ ∗τ (a) = sup
y′∈∆k−1

(
y′ · a− Fτ (y′)

)

= sup
y′∈Rk≥0

inf
λτ∈R

(
y′ · a− Fτ (y′) + λτ

(
1−

k∑
i=1

y′i
))
.

(5.2)

92



Following our discussion in Chapter 2 and using (2.1), the transfer function in-

duced by F̌ ∗τ is4

y = expτ
(
a− λτ (a)1

)
, with λτ (a) s.t.

k∑
i=1

expτ
(
ai − λτ (a)

)
= 1. (5.3)

5.2.2 Matching loss of tempered softmax

Finally, we derive the matching loss function LFτ . Plugging in (5.3) into (3.25),

we have

Lt(â | y) = DFτ

(
y, expτ (â− λτ (â)1)

)
.

Recall that by Proposition 2, this loss is convex in activations â ∈ dom(f̌ ∗)∩{a′ ∈

Rk | a′ · 1 = 0}. In general, λτ (a) does not have a closed form solution. However,

it can be easily approximated via an iterative method, e.g., a binary search. An

alternative (fixed-point) algorithm for computing λτ (a) for τ > 1 is given in

Algorithm 7 in Appendix B.

5.3 Robust Bi-Tempered Logistic Loss

A more interesting class of loss functions can be obtained by introducing

a “mismatch” between the temperature of the divergence function (3.25) and

the temperature of the probability assignment function, i.e. the tempered soft-
4Note that due to the simplex constraint, the link function y = f̌∗

τ (a) = ∇F̌ ∗
τ (a) = expτ

(
a−

λτ (a)1
)
is different from f−1

τ (a) = f∗
τ (a) = ∇F ∗

τ (a) = expτ (a), i.e., the gradient of the
unconstrained dual.

93



max (5.3). That is, we consider loss functions of the following type:

∀ 0≤τ1< 1<τ2 : Lτ2
τ1(â | y) := DFτ11

(
y, expτ2(â− λτ2(â)1)

)
,

with λτ2(â) s.t.
k∑
i=1

expτ2

(
ai − λτ2(a)

)
=1.

(5.4)

We call this the Bi-Tempered Logistic Loss. As illustrated in our two-dimensional

example in Section 5.1, both properties are crucial for handling noisy examples.

The derivative of the bi-tempered loss is given in Appendix B.4. In the following,

we discuss the properties of this loss for classification.

5.3.1 Properness and Monte-Carlo sampling

Let PUK(x, y) denote the (unknown) joint probability distribution of the ob-

served variable x ∈ Rm and the class label y ∈ [k]. The goal of discriminative

learning is to approximate the posterior distribution of the labels PUK(y | x) via

a parametric model P (y | x; Θ) parameterized by Θ. Thus the model fitting can

be expressed as minimizing the following expected loss between the data and the

model’s label probabilities

EPUK(x)

[
D
(
PUK(y | x), P (y | x; Θ)

)]
, (5.5)

where D
(
PUK(y | x), P (y | x; Θ)

)
is any divergence measure between PUK(y | x)

and P (y | x; Θ). We use D := DFt1
as the divergence and P (i | x; Θ) .= P (y =

i | x; Θ) = expτ2(âi − λτ2(â)), where â is the activation vector of the last layer

given input x and Θ is the set of all weights of the network. Ignoring the constant

94



terms w.r.t. Θ, our loss (5.5) becomes

EPUK(x)

[∑
i

(
− PUK(i | x) logτ P (i | x; Θ) + 1

2− τ P (i | x; Θ)2−τ
)]

(5.6a)

= −EPUK(x,y)

[
logτ P (y | x; Θ)

]
+ EPUK(x)

[ 1
2− τ

∑
i

P (i | x; Θ)2−τ
)]

(5.6b)

≈ 1
N

∑
n

(
− logτ P (yn | xn; Θ) + 1

2− τ
∑
i

P (i | xn; Θ)2−τ
)
, (5.6c)

where from (5.6b) to (5.6c), we perform a Monte-Carlo approximation of the

expectation w.r.t. PUK(x, y) using samples {(xn, yn)}Nn=1. Thus, (5.6c) is an un-

biased approximate of the expected loss (5.5), thus is a proper loss [72].

Following the same approximation steps for the Tsallis divergence used in [10],

we have

EPUK(x)

[
−
∑
i

PUK(i | x) logτ
P (i | x; Θ)
PUK(i | x)︸ ︷︷ ︸

DTsallis
τ

(
PUK(y|x), P (y|x;Θ)

)
]
≈ − 1

N

∑
n

logτ
P (yn | xn; Θ)
PUK(yn | xn) ,

which, due to the fact that logτ a
b
6= logτ a − logτ b in general, requires access to

the (unknown) conditional distribution PUK(y | x). In this case the approximation

− 1
N

∑
n logτ P (yn | xn; Θ) proposed in [10] by setting PUK(yn | xn) to 1 is not an

unbiased estimator of (5.5) and therefore, not proper.

5.3.2 Bayes-risk consistency

Another important property of a multiclass loss is the Bayes-risk consistency [61].

The conditional risk of the multiclass loss l(â) with li
.= `(â| y = i), i ∈ [k] is

defined as

R(η, l(â)) =
∑
i

ηi li ,

95



where ηi .= PUK(y = i|x).

Definition 4 (Bayes-risk Consistency). A Bayes-risk consistent loss for multi-

class classification is the class of loss functions ` for which â?, the minimizer of

R(η, l(â)), satisfies

arg min
i
`(â?| y = i) ⊆ arg max

i
ηi .

Bayes-risk consistency of the two-temperature logistic loss based on the Tsallis

divergence was shown in [10]. As expected, the tempered Bregman loss (5.4) is

also Bayes-risk consistent even in the non-convex case.

Proposition 8. The multiclass bi-tempered logistic loss Lτ2
τ1(â | y) is Bayes-risk

consistent.

Proof. For the bi-tempered loss, we have

li = − logτ1 expτ2(âi − λτ2(â)) + 1
2− τ1

∑
j

expτ2(âj − λτ2(â))2−τ1 .

Note that the second term is repeated for all classes i ∈ [k]. Also,

R(η, l(â)) = −
∑
i

ηi logτ1 expτ2(âi − λτ2(â)) + 1
2− τ1

∑
i

expτ2(âi − λτ2(â))2−τ1 .

The minimizer of R(η, l(â)) satisfies

ηi = expτ2(â?i − λτ2(â?)) .

96



Since − logτ1 is a monotonically decreasing function for 0 ≤ τ1 < 1, we have

arg min
i
`(â?| y = i) = arg min

i
− logτ1 expτ2(â?i − λτ2(â?))

= arg max
i
â?i ⊆ arg max

i
ηi .

5.4 Experiments

We demonstrate the practical utility of the bi-tempered logistic loss function

on a wide variety of image classification tasks. For moderate-size experiments,

we use MNIST dataset of handwritten digits [44] and CIFAR-100, which contains

real-world images from 100 different classes [42]. We use ImageNet-2012 [24] for

large scale image classification, having 1000 classes. All experiments are carried

out using the TensorFlow [1] framework. We use P100 GPU’s for small-scale

experiments and Cloud TPU-v2 for larger scale ImageNet-2012 experiments. An

implementation of the bi-tempered logistic loss is available online at: https:

//github.com/google/bi-tempered-loss.

5.4.1 Corrupted labels experiments

For our moderate size datasets, i.e. MNIST and CIFAR-100, we introduce

noise by artificially corrupting a fraction of the labels and producing a new set of

labels for each noise level. For all experiments, we compare our bi-tempered loss

function against the logistic loss.

For MNIST, we use a CNN with two convolutional layers of size 32 and 64

with a mask size of 5, followed by two fully-connected layers of size 1024 and 10.

We apply max-pooling after each convolutional layer with a window size equal to

2 and use dropout during training with keep probability equal to 0.75. We use

97

https://github.com/google/bi-tempered-loss
https://github.com/google/bi-tempered-loss


Dataset Loss Label Noise Level

0.0 0.1 0.2 0.3 0.4 0.5

MNIST Logistic 99.40 98.96 98.70 98.50 97.64 96.13

Bi-Tempered (0.5, 4.0) 99.24 99.13 99.02 98.62 98.56 97.69

CIFAR-100 Logistic 74.03 69.94 66.39 63.00 53.17 52.96

Bi-Tempered (0.8, 1.2) 75.30 73.30 70.69 67.45 62.55 57.80

Table 5.1: Top-1 accuracy on a clean test set for MNIST and CIFAR-100 datasets
where a fraction of the training labels are corrupted.

Model Logistic Bi-tempered (0.9,1.05)
Resnet18 71.333± 0.069 71.618± 0.163
Resnet50 76.332± 0.105 76.748± 0.164

Table 5.2: Top-1 accuracy on ImageNet-2012 with Resnet18 and 50 architectures.

the AdaDelta optimizer [74] with 500 epochs and batch size of 128 for training.

For CIFAR-100, we use a Resnet56 [34] model without batch norm from [32] with

SGD + momentum optimizer trained for 50k steps with batch size of 128 and

use the standard learning rate stair case decay schedule. For both experiments,

we report the test accuracy of the checkpoint which yields the highest accuracy

on an identically label-noise corrupted validation set. We search over a set of

learning rates for each experiment. For both experiments, we exhaustively search

over a number of temperatures within the range [0.5, 1) and (1.0, 4.0] for τ1 and

τ2, respectively. The results are presented in Table 5.1 where we report the top-1

accuracy on a clean test set. As can be seen, the bi-tempered loss outperforms

the logistic loss for all noise levels (including the noise-free case for CIFAR-100).

Using our bi-tempered loss function the model is able to continue to perform well

even for high levels of label noise whereas the accuracy of the logistic loss drops

immediately with a much smaller level of noise.

98



Training Set (Noise-free) Training Set (Noisy) Test Set (Noise-free)
Lo

gi
st
ic

0 100 200 300 400 500
epochs

0.2

0.4

0.6

0.8

1.0
a
cc

u
ra

cy

noise level 0.0%

noise level 10.0%

noise level 20.0%

noise level 30.0%

noise level 40.0%

noise level 50.0%

0 100 200 300 400 500
epochs

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

noise level 0.0%

noise level 10.0%

noise level 20.0%

noise level 30.0%

noise level 40.0%

noise level 50.0%

0 100 200 300 400 500
epochs

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

noise level 0: 0%

noise level 10: 0%

noise level 20: 0%

noise level 30: 0%

noise level 40: 0%

noise level 50: 0%

B
i-T

em
pe

re
d

0 100 200 300 400 500
epochs

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

noise level 0.0%

noise level 10.0%

noise level 20.0%

noise level 30.0%

noise level 40.0%

noise level 50.0%

0 100 200 300 400 500
epochs

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

noise level 0.0%

noise level 10.0%

noise level 20.0%

noise level 30.0%

noise level 40.0%

noise level 50.0%

0 100 200 300 400 500
epochs

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

noise level 0.0%

noise level 10.0%

noise level 20.0%

noise level 30.0%

noise level 40.0%

noise level 50.0%

(a) (b) (c)

Figure 5.3: Top-1 accuracy of the models trained using the logistic loss (top)
and the bi-tempered loss with (τ1, τ2) = (0.5, 4.0) (bottom) on the noisy MNIST
dataset: accuracy on (a) noise-free training set, (b) noisy training set, (c) and
noise-free test set. Initially, both models provide better generalization but gradu-
ally overfit to the label noise. However, the overfitting for the logistic loss happens
much earlier during the optimization. The variance of the model is also much
higher for the logistic loss. The bi-tempered loss provides better generalization
accuracy overall.

5.4.2 Overfitting to Noise and Generalization

We provide additional results on the generalization performance of the bi-

tempered loss on the noisy MNIST dataset. In Figure 5.3, we illustrate the top-1

accuracy on the noise-free and noisy training set, as well the accuracy on the

(noise-free) test set for both losses as a function of number of epochs. As can be

seen from the figure, initially both models yield a relatively higher test accuracy,

but gradually overfit to the label noise in the training set over time. The overfitting

to the noise deteriorates the generalization capacity of the models. However,

99



overfitting to the noise happens earlier in the training and is much severe in case

of the logistic loss. As a result, the final test accuracy (after 500 epochs) is

comparatively much lower than the bi-tempered loss as the noise level increases.

Finally, note that the variance of the model is also considerably higher for the

logistic loss. This confirms that the bi-tempered loss results in more stable models

when the data is noise-corrupted.

5.4.3 Large scale experiments

We train state-of-the-art Resnet18 and Resnet50 models on the ImageNet-

2012 dataset. Note that the ImageNet-2012 dataset is inherently noisy due to

some amount of mislabeling. We train on a 4x4 CloudTPU-v2 device with a

batch size of 4096. All experiments were trained for 180 epochs, and use the SGD

+ momentum optimizer with staircase learning rate decay schedule. The results

are presented in Table 5.2. For both architectures we see a significant gain in the

top-1 accuracy using the robust bi-tempered loss.

5.5 Conclusion and Future Work

Neural networks on large standard datasets have been optimized along with

a large variety of variables such as architecture, transfer function, choice of opti-

mizer, and label smoothing to name just a few. We proposed a new variant by

training the network with tunable loss functions. We do this by first developing

convex loss functions based on temperature dependent logarithm and exponential

functions. When both temperatures are the same, then a construction based on

the notion of “matching loss” leads to loss functions that are convex in the last

layer. However by letting the temperature of the new tempered softmax function

be larger than the temperature of the tempered log function used in the divergence,

100



we construct tunable losses that are non-convex in the last layer. Our construc-

tion remedies two issues simultaneously: we construct bounded tempered loss

functions that can handle large-margin outliers and introduce heavy-tailedness in

our new tempered softmax function that seems to handle small-margin mislabeled

examples. At this point, we simply took a number of benchmark datasets and

networks for these datasets that have been heavily optimized for the logistic loss

paired with vanilla softmax and simply replaced the loss in the last layer by our

new construction. By simply trying a number of temperature pairs, we already

achieved significant improvements. We believe that with a systematic “joint op-

timization” of all commonly tried variables, significant further improvements can

be achieved. This is of course a more long-term goal. We also plan to explore the

idea of annealing the temperature parameters over the training process.

101



Chapter 6

Conclusion and Future Work

In this thesis, we considered the application of the tempered Bregman diver-

gence for developing continuous and discrete-time MD algorithms as well as robust

classification loss functions. For this, we first developed a novel motivation for the

continuous-time MD as the minimizer of a Bregman momentum plus loss. Next,

we showed a reparameterization theorem for casting one MD update in terms of

an another MD. Using the reparameterization theorem, we proved that the up-

dates induced by the tempered Bregman divergence can be reparameterized as

GD updates. As an example, we showed the application of the tempered updates

for the linear regression problem. Finally, after giving an alternate motivation

for the idea of a matching loss in terms of convex duality, we introduced the

bi-tempered logistic loss for classification based on the tempered Bregman diver-

gence. We showed that when the temperature of the softmax function matches

the temperature of the Bregman divergence, we still obtain a convex loss function

in activations. We also showed that introducing a certain mismatch between the

temperatures results in non-convex robust losses for classification.

Apart from the open problems that we presented throughout the chapters, the

following ideas can be explored as future research directions:

102



• The reparameterization trick introduced in Chapter 3 is more versatile and

can be extended to other MD updates. An interesting extension of the

reparameterization would be to cast other updates such as the p-norm per-

ceptron [41] as GD updates. Also, it would be interesting to analyze the

regret bounds for the reparameterized versions of such algorithms in the

discrete case.

• A prominent research direction is to analyze the effect of the structure of

a neural network on its learning dynamics. For instance, an open problem

is to verify whether a multi-layer neural network can learn sparse solutions

only via sparse structures. A potential impact of “learning the structure” is

to impose certain regularizations naturally, without any explicit tuning.

• Another interesting direction is to consider other Bregman divergences (or

possibly other class of divergences) to develop robust loss functions for re-

gression, classification, and ranking. For ranking, an important notion is

asymmetry of the loss to punish misplacement of the top-rank items more

strictly than the remaining items. This can possibly be achieved using ideas

similar to the bi-tempered loss, but instead by shifting and scaling the trans-

fer function.

103



Appendix A

A.1 Proof of Theorem 12

Proof. We first establish a lower-bound of the form,

a ‖yt − ŷ2‖2
2 − b ‖yt − s · xt‖2

2 ≤ ∆RE(s,ut � ut)−∆RE(s,ut+1 � ut+1) , (A.1)

on the progress of the algorithm towards the comparator s, for some constants

0 ≤ a, b. Assuming that η ≤ 1/(2XY ), we have (1 − η (ŷt − yt)xti) ≥ 0 for all i.

Thus, we can lower-bound the progress as

∆RE(s,ut � ut)−∆RE(s,ut+1 � ut+1)

= 2 s · log(1− η (ŷt − yt)xt)

− log
(
wt · (1− 2 η (ŷt − yt)xt + η (ŷt − yt)2 xt � xt − 1

)
.

Applying the inequalities log(1−η (ŷt−yt)xti) ≥
xti log(1−η (ŷt−yt)X)

X
and log(1+x) ≤

x for x > −1 and using the fact that (xti)2 ≤ xtiX, we have

∆RE(s,ut � ut)−∆RE(s,ut+1 � ut+1)

≥ 2 s · xt log(1− η (ŷt − yt)X)
X

+
(
2 η (ŷt − yt)− η2 (ŷt − yt)2X

)
(ut � ut) · xt .

104



Denoting by r .= s·xt and q .= (ut�ut)·xt, it suffices to show that G(q, ŷ, y, r) ≤

0 where (omitting the superscript t)

G(q, ŷ, y, r) = −2r log(1− η (ŷ − y)X)
X

−
(
2 η (ŷ − y)− η2 (ŷ − y)2X

)
q + a ‖y − ŷ‖2 − b ‖y − r‖2 .

Recall that the prediction ŷt of the reparameterized EGU is given by ŷt = q =

(ut�ut)·xt if q ≤ Y holds; otherwise ŷt = Y . Thus, we need to showG(q, ŷ, y, r) ≤

0 for two cases: when ŷ = q, and for 0 ≤ ŷ = Y < q. Recall that by the assumption

0 ≤ y ≤ Y and η ≤ 1/(2XY ). Therefore, G(q, ŷ, y, r) is non-increasing in q for ŷ ≥ y.

Hence, the condition G(q, ŷ, y, r) ≤ 0 for ŷ = Y < q is satisfied if G(Y, Y, y, r) ≤ 0

holds. Thus, it suffices to show the result for 0 ≤ ŷ = q ≤ Y .

For fixed ŷ and y, the function G(ŷ, ŷ, y, r) is maximized for

r = y − A/(Xb) , where A
.= log(1− η(ŷ − y)X) .

Plugging in this value, we have H(ŷ, y) .= G(ŷ, ŷ, y, y − A/(Xb)) where

H(ŷ, y) = −2 η (ŷ − y)ŷ + η2 (ŷ − y)2 ŷ X + a (ŷ − y)2 + A2/(bX2)− 2Ay/X .

In order to obtain the bound (A.1), we show that H(ŷ, y) ≤ 0 holds for the choice

of η = b/(1 + 2XY b) and a = b/(1 + 2XY b). Substituting these values for η and

a, we have H(y, y) = ∂H(y,y)
∂y

= 0 and Furthermore,

∂2H(ŷ, y)
∂y2 = −4b2X(Y − ŷ)

(1 + 2XY b)2 ≤ 0 for all 0 ≤ ŷ ≤ Y .

Thus, it suffices to show that ŷ = y is the only maximum of the function. For

105



this, we first write

∂2H(ŷ, y)
∂y2 = − 1(

1
2 +X

(
Y + y

2 −
ŷ
2

)
b
)2 (

1
2 +XY b

)2

×
((1

2 +XY b
)2

log
(

1 + X(y − ŷ)b
1 + 2XY b

)
b

+
(
Y 3 −

( ŷ + y

2
)
Y 2 +

( ŷ2 − y2

4
)
Y + ŷ(ŷ − y)

8

)
b4X3

+
(
Y 2 −

( ŷ + y

2
)
Y + ŷ2 − y2

8

)
b3X2 +

(
Y

4 + ŷ − y
8

)
b2X

)
.

Using the inequality log(1 +x) ≤ x for x > −1, we can upper-bound the log-term

as

log
(

1 + X(y − ŷ)b
1 + 2XY b

)
b ≤ X(y − ŷ)b2

1 + 2XY b ,

and write the new function as Q(ŷ, y) such that ∂2H(ŷ,y)
∂y2 ≤ Q(ŷ, y). It is trivial to

check that the derivative

∂Q(ŷ, y)
∂y

=
3
((
Y + y

6 −
ŷ
2

)(
Y + y

2 −
ŷ
2

)
bX + Y + y

3 −
ŷ
2

)
X2b3

2
(

1
2 +X

(
Y + y

2 −
ŷ
2

)
b

)4 ≥ 0 ,

for any 0 ≤ y ≤ Y and 0 ≤ ŷ ≤ Y . Hence, it remains to check that Q(ŷ, Y ) ≤ 0

holds:

Q(ŷ, Y ) = − 1

9
(

1
3 +

(
Y − ŷ

3

)
bX
)3(

1
2 + bXY

)2
×

(Y − ŷ)Xb2
(1

3 +
(
Y − ŷ

3
)
(Y − ŷ)

(
Y − ŷ

2
)
b3X3 +

5
(
Y 2 − 3

5Y ŷ + 2
15 ŷ

2
)
b2X2

2

+
5
(
Y − ŷ

5

)
bX

3

)
≤ 0 ,

106



which holds for any 0 ≤ ŷ ≤ Y . This implies ∂2H(ŷ,y)
∂y2 ≤ Q(ŷ, y) ≤ 0 for any

0 ≤ ŷ ≤ Y and 0 ≤ y ≤ Y .

The remainder of the proof follows similarly to [40]. Specifically, by setting

setting b = c/(XY ), we obtain

T∑
t=1
‖yt− (ut�ut) ·xt‖2 ≤

(
1+2 c

) T∑
t=1
‖yt−s ·xt‖2 +

(
2+ 1

c

)
XY∆RE(s,u1�u1) .

Setting c = 1, the bound in (4.12) is achieved for η = a = 1/(3XY ). Using the

values L and D and tuning for c achieves (4.14) for the choice of η as in (4.13).

A.2 Proof of Theorem 14

Similar to the proof of Theorem 12, we establish a lower-bound of the form

a ‖yt − ŷ2‖2
2 − b ‖yt − s · xt‖2

2 ≤ ∆RE(s,ut � ut)−∆RE(s,ut+1 � ut+1) , (A.2)

on the progress of the algorithm towards the comparator s where∑i ui = 1, and for

some constants 0 ≤ a, b. Assuming that η ≤ 1/(2X2), we have (1−η (ŷt−yt)xti) ≥ 0

for all i. Thus, we can lower-bound the progress as

∆RE(s,ut � ut)−∆RE(s,ut+1 � ut+1)

= 2 s · log(1− η (ŷt − yt)xt)

− log
(
wt · (1− 2 η (ŷt − yt)xt + η (ŷt − yt)2 xt � xt

)
.

107



Applying the inequalities log(1− η (ŷt − yt)xti) ≥
xti log(1−η (ŷt−yt)X)

X
and − log(1−

c) ≥ c for 0 ≤ c ≤ 1 and using the fact that (xti)2 ≤ xtiX, we have

∆RE(s, ut � ut)−∆RE(s,ut+1 � ut+1)

≥ 2 s · xt log(1− η (ŷt − yt)X)
X

+
(
2 η (ŷt − yt)− η2 (ŷt − yt)2X

)
ŷt .

Denoting by r .= s ·xt, it suffices to show that G(ŷ, y, r) ≤ 0 where (omitting the

superscript t)

G(ŷ, y, r) = −2r log(1− η (ŷ − y)X)
X

−
(
2 η (ŷ − y)− η2 (ŷ − y)2X

)
ŷ + a ‖y − ŷ‖2 − b ‖y − r‖2 .

For fixed ŷ and y, the function G(ŷ, y, r) is maximized for

r = y − A/(Xb) , where A
.= log(1− η(ŷ − y)X) .

Plugging in this value, we have H(ŷ, y) .= G(ŷ, y, y − A/(Xb)) where

H(ŷ, y) = −2 η (ŷ − y)ŷ + η2 (ŷ − y)2 ŷ X + a (ŷ − y)2 + A2/(bX2)− 2Ay/X .

It is easy to verify that H(y, y) = ∂H(y,y)
∂y

= 0. Moreover, notice that

∂2H(y, y)
∂y2 = (4Xy + 2) η2 − 4 b η + 2 ab

b
,

which is minimized at y = X for η = b/(1 + 2X2b). Plugging in this value, we

have ∂2H(y,y)
∂y2 ≤ 0 for a ≤ b/(1 + 2X2b). Now there remains to show that ŷ = y is

the only maximum of the function H(ŷ, y). This is easily verified by plugging in

108



a = b/(1 + 2X2b) and observing

∂2H(ŷ, y)
∂y2 = − b(

1
2 +X2b

)2(
1
2 +

(
X + y

2 −
ŷ
2

)
Xb
)2 ×

(
1
2

(1
2 +X2b

)2
log

(
1 + (y − yh)Xb

1 + 2X2b

)

+Xb

((
X3 −

(y + yh

2
)
X2 +

( ŷ2 − y2

4
)
X − ŷ(y − ŷ)2

8

)
X2b2

+Xb
(
X2 −

(y + yh

2
)
X +

( ŷ2 − y2

8
))

+ X

4 −
y + ŷ

8

)
≤ 0 ,

for 0 ≤ ŷ ≤ X and 0 ≤ y ≤ X and

∂2H(y, y)
∂y2 = −4 b2X(X − y)

(1 + 2X2b)2 .

Finally, setting b = c/(X2) for some c > 0, we have

T∑
t=1
‖yt− (ut�ut) ·xt‖2 ≤

(
1+2 c

) T∑
t=1
‖yt−s ·xt‖2 +

(
2+ 1

c

)
XY∆RE(s,u1�u1) .

Setting c = 1 establishes the first bound. Similarly, optimizing for c yields

c = X
√
D√

2L
.

For this choice of c and η as in (4.21), we obtain the second bound.

109



A.3 Proof Sketch of Claim 1

We can lower-bound the progress of the algorithm as (assuming η ≤ 1/(2X2)),

∆RE(s,ut � ut)−∆RE(s,ut+1 � ut+1)

= 2 s · log(1− η (ŷt − yt)xt)

− log
(
wt · (1− 2 η (ŷt − yt)xt + η (ŷt − yt)2 xt � xt

)
≥ (r +X)

X
log

(1− η (ŷt − yt)X
1 + η (ŷt − yt)X

)
+ 2 log

(
1 + η (ŷt − yt)X

)
− log

(
1− 2 η (ŷt − yt) ŷt + η2 (ŷt − yt)2X2

)
,

where r = s · xt. For fixed y and ŷ, the lower-bound can be maximized for

(omitting t)

r = y − 1
Xb

log
(1− η (ŷ − y)X

1 + η (ŷ − y)X

)
.

Thus, plugging back for r and introducing the new variable δ = y − ŷ, it suffices

to show that the function G(a, b, η, δ, ŷ) ≤ 0 for the choices of a, b, and η in the

claim, and for all −X ≤ ŷ ≤ X, where

G(a, b, η, δ, ŷ) .= log(1 + 2 η δ ŷ + η2 δ2X2) + 1
4X2b

log
(1 + ηδX

1− ηδX

)2

− 1
X

(X + δ + ŷ) log
(1 + ηδX

1− ηδX

)
− 2 log(1− η δX) + a δ2 .

For a fixed δ, this function is maximized at

ŷopt = X

log
(

1+ηδX
1−ηδX

) − 1
2ηδX

2 since ∂

ŷ
G(a, b, η, δ, ŷopt) = −

log
(

1+ηδX
1−ηδX

)2

X
.

110



Substituting this value for ŷ, we need to show H(a, b, η) .= G(a, b, η, δ, ŷopt) ≤ 0

where

H(a, b, η) = log
(1 + ηδX

1− ηδX
)( 1

4X2b
log

(1 + ηδX

1− ηδX
)

+ ηδX

2 − δ

X
+ 1

2ηδX

)
+ log

(
ηδX

log
(

1+ηδX
1−ηδX

))+ a δ2 − log(1− η2δ2X2) + log(2)− 1 .

This function can be simplified further by substituting a = η = b/(1 + 2X2b).

Also, we can introduce two new variables by defining b = c/X2 for some c > 0

and δ = pX for −2 ≤ k ≤ 2. AS final step of the proof, there remains to show

that the function

K(c, p) .= log
(1 + (2 + p)c

1 + (2− p)c

)(1
c

log
(1 + (2 + p)c

1 + (2− p)c

)
+ pc

2(2c+ 1) − p+ 2c+ 1
2pc

)

+ log
(

pc

log
(

1+(2+p)c
1+(2−p)c

))+ p2c

2c+ 1 − log
(
(1 + 2c)2 − p2) + log(2)− 1 ≤ 0 ,

for all values of c > 0 and −2 ≤ p ≤ 2.

111



Appendix B

B.1 An Iterative Algorithm for Computing the

Normalization

Algorithm 7 Iterative algorithm for computing λτ (â) (from [10])
Input: Vector of activations â, temperature τ > 1
µ← max(â)
ã← â− µ
while ã not converged do

Z(ã)← ∑k
i=1 expτ (ãi)

ã← Z(ã)1−τ (â− µ1)
Return: λτ (â)← − logτ 1

Z(ã) + µ

B.2 Other Tempered Convex Functions

In the construction of the strict convex function family Fτ we used Fτ (x) =∫
logτ (x) dx exploiting the fact that logτ (x) is strictly increasing. We can also

define an alternative convex function family F̃τ by utilizing the convexity (respec-

tively, concavity) of the logτ function for values of τ ≥ 0 (respectively, τ ≤ 0):

F̃τ (y) = −1
τ

∑
i

(logτ yi − yi + 1) = − 1
τ (1− τ)

∑
i

(y1−τ
i − yi) .

112



Note that f̃τ (y) .= ∇F̃τ (y) = 1−y−τ
τ

and ∇2F̃τ (y) = diag(y−(1+τ)), thus F̃τ

is indeed a strictly convex function. The following proposition shows that the

Bregman divergence induced by the original and the alternate convex function

are related by a temperature shift:

Proposition 9. For the Bregman divergence induced by the convex function F̃τ ,

we have

∀y, ŷ ∈ Rk
+ : ∆

F̃τ
(y, ŷ) = 1

τ

∑
i

(logτ ŷi−logτ yi+(yi−ŷi) ŷ−τi ) = ∆Fτ+1(y, ŷ) .

The F̃τ function is also related to the negative Tsallis entropy over the proba-

bility vector y ∈ Sk defined as

−HTsallis
τ (y) = 1

1− τ
(
1−

∑
i

yτi
)

= −
∑
i

yi logτ
1
yi
.

Note that (−HTsallis
τ − (1 − τ) F̃1−τ ) is an affine function. Thus, the Bregman

Divergence induced by F̃τ , and the one induced by −HTsallis
τ are also equivalent up

to a scaling and a temperature shift. Thus, both functions Fτ and F̃τ can be viewed

as some generalized negative entropy functions. Note that the Bregman divergence

induced by −HTsallis
τ is fundamentally different from the Tsallis divergence over the

simplex, defined as

∆Tsallis
τ (y, ŷ) = −

∑
i

yi logτ
ŷi
yi

=
∑
i

yτi (logτ yi − ŷi) .

B.3 Convexity of the Tempered Matching Loss

The convexity of the loss function ∆Fτ

(
y, expτ (â − λτ (â)1

)
with τ ≥ 1 for

â ∈ Rk immediately follows from the definition of the matching loss. A more

113



subtle case occurs when 0 ≤ τ < 1. Note that the range of the combined function

logτ ◦ expτ does not cover all Rk as the logτ function is bounded from below by

− 1
1−τ . Therefore, range(logτ ◦ expτ ) = {a′ ∈ Rk | − 1

1−τ ≤ a
′}.

Remark 2. The normalization function λτ (â) satisfies:

λτ (â+ b1) = λτ (â) + b for any τ ≥ 0 and b ∈ R .

Proof. Note that

∑
i

expτ
(
(âi+b)−λτ (â+b1)

)
=
∑
i

expτ
(
âi−(λτ (â+ b1)− b)︸ ︷︷ ︸

=λτ (â)

)
= 1 for ∀â ∈ Rk .

The claim follows immediately.

Proposition 10. The loss function ∆Fτ

(
y, expτ (â − λτ (â)1) for 0 ≤ τ < 1 is

convex for

â ∈ {a′ + R1 | − 1
1− τ ≤ a

′ and a′ · 1 = 0} .

Proof. Using the definition of the dual function F̌ ∗ and its derivative f̌ ∗, we can

write

∆Fτ (y, ŷ) = Fτ (y)− Fτ (ŷ)− (y − ŷ) · fτ (ŷ)
(
ŷ = expτ (â− λτ (â)1)

)
= Fτ (y)− Fτ (ŷ)− (y − ŷ) · logτ ◦ expτ (â− λ(â)1)

= Fτ (y)− Fτ (ŷ)− (y − ŷ) · â
(
(y − ŷ) · 1 = 1− 1 = 0

)
= Fτ (y)− y · (f̌ ∗τ )−1(y)︸ ︷︷ ︸

−F̌ ∗τ ((f̌∗τ )−1(y))

+y · (f̌ ∗τ )−1(y) −Fτ (ŷ) + ŷ · â︸ ︷︷ ︸
F̌ ∗τ (â)

−y · â

= F̌ ∗τ (â)− F̌ ∗τ ((f̌ ∗τ )−1(y))− (â− (f̌ ∗τ )−1(y)) · y

= ∆F̌ ∗τ
(â, (f̌ ∗τ )−1(y)) .

114



Note that the transition from the second line to the third line requires that the

assumption − 1
1−τ ≤ â holds. The dual function F̌ ∗τ satisfies

F̌ ∗τ (â+ b1) = λτ (â+ b1)+ 1
2− τ

∑
i

expτ
(
(âi+ b)−λτ (â+ b1)

)2−τ
= F̌ ∗τ (â)+ b .

Taking the derivative w.r.t. â yields

f̌ ∗τ (â+ b1) = f̌ ∗τ (â) .

Additionally,

∆F̌ ∗τ
(â+ b1, (f̌ ∗τ )−1(y))

= F̌ ∗τ (â+ b1)− F̌ ∗τ ((f̌ ∗τ )−1(y))− (â+ b1− (f̌ ∗τ )−1(y)) ·y = ∆F̌ ∗τ
(â, (f̌ ∗τ )−1(y)) .

The claim follows by considering the range of logτ ◦ expτ and the invariance of the

Bregman divergence induced by F̌ ∗τ along R1.

B.4 Derivatives of Lagrangian and the Bi-tempered

Matching Loss

The gradient of λτ (â) w.r.t. â can be calculated by taking the partial derivative

of both sides of the equality 1 = ∑
j expτ (âj − λτ (â)) w.r.t. âi:

0 =
∑
j

expτ (âj − λτ (â)
)τ (

δij −
∂λτ (â)
∂âi

)

= expτ
(
âi − λτ (â)

)τ
− ∂λτ (â)

∂âi

∑
j

expτ (âj − λτ (â)
)τ
, (B.1)

115



where δii = 1 and δij = 0 for i 6= j . Therefore ∂λτ (â)
∂âi

= expτ (âi−λτ (â))τ
Zτ

, where Zτ =∑
j expτ (âj − λτ (â))τ . This concludes that ∂λτ (â)

∂âi
is the “τ -escort distribution” of

the distribution ŷi = exp(âi − λτ (â)).

Similarly, the second derivative of λτ (â) can be calculated by repeating the

derivation on (B.1):

∂2λτ (â)
∂âi∂âj

= 1
Zτ

∑
j′
τ expτ

(
âj′ − λτ (â)

)2t−1 (
δij′ −

∂λτ (â)
∂âi

)(
δjj′ −

∂λτ (â)
∂âj

)
.

Although not immediately obvious from the second derivative, it is easy to show

that λτ (â) is in fact convex in â. Also the derivative of the loss Lτ2
τ1(â|y) w.r.t.

âi (expressed in terms of y and ŷ = expτ2(â− λτ2(â)1)) becomes

∂Lτ2
τ1

∂âi
=
∑
j

∂

∂ŷj

(
yj logτ1 yj − yj logτ1 ŷj −

1
2− τ1

y2−τ1
j + 1

2− τ1
ŷ2−τ1
j

) ∂ŷj
∂âi

=
∑
j

(ŷj − yj) ŷτ2−τ1
j

(
δij −

ŷτ2
i∑
j′ ŷ

τ2
j′

)
.

116



Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
and et al. TensorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] Ethan Akin. The geometry of population genetics, volume 31 of Lecture Notes
in Biomathematics. Springer-Verlag, Berlin-New York, 1979.

[3] S.-I. Amari and H. Nagaoka. Methods of Information Geometry. American
Mathematical Society: Providence, RI, USA, 2000.

[4] Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Com-
putation, 10(2):251–276, 1998.

[5] E. Amid, M. K. Warmuth, R. Anil, and K. Tomer. Robust bi-tempered
logistic loss based on Bregman divergences. In Proceedings of the 32nd In-
ternational Conference on Neural Information Processing Systems, NIPS’19,
2019.

[6] Ehsan Amid and Manfred K. Warmuth. Divergence-based motivation for
online EM and combining hidden variable models. Uncertainty in Artificial
Intelligence (UAI), 2020.

[7] Ehsan Amid and Manfred K. Warmuth. An implicit form of krasulina’s k-
PCA update without the orthonormality constraint. Thirty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-20), 2020.

[8] Ehsan Amid and Manfred K. Warmuth. Interpolating between gradient de-
scent and exponentiated gradient using reparameterized gradient descent.
arXiv preprint arXiv:2002.10487, 2020.

[9] Ehsan Amid and Manfred K. Warmuth. Winnowing with gradient descent.
Conference on Learning Theory (COLT), 2020.

[10] Ehsan Amid, Manfred K. Warmuth, and Sriram Srinivasan. Two-temperature
logistic regression based on the Tsallis divergence. In 22nd International
Conference on Artificial Intelligence and Statistics (AISTATS 19), 2019.

117



[11] Katy S Azoury and Manfred K Warmuth. Relative loss bounds for on-line
density estimation with the exponential family of distributions. Machine
Learning, 43(3):211–246, 2001.

[12] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh.
Clustering with Bregman divergences. Journal of machine learning research,
6(Oct):1705–1749, 2005.

[13] Michéle Basseville. Divergence measures for statistical data processing. Signal
Processing, 93(4):621–633, 2013.

[14] Shai Ben-David, Nadav Eiron, and Philip M Long. On the difficulty of ap-
proximately maximizing agreements. Journal of Computer and System Sci-
ences, 66(3):496–514, 2003.

[15] Jean-Daniel Boissonnat, Frank Nielsen, and Richard Nock. Bregman Voronoi
diagrams. Discrete & Computational Geometry, 44(2):281–307, 2010.

[16] Lev M Bregman. The relaxation method of finding the common point of con-
vex sets and its application to the solution of problems in convex program-
ming. USSR computational mathematics and mathematical physics, 7(3):200–
217, 1967.

[17] Andreas Buja, Werner Stuetzle, and Yi Shen. Loss functions for binary
class probability estimation and classification: Structure and applications.
Technical report, University of Pennsylvania, November 2005.

[18] Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-
order bounds for prediction with expert advice. Machine Learning, 66(2-
3):321–352, 2007.

[19] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures be-
tween probability density functions. City, 1(2):1, 2007.

[20] Andrzej Cichocki and Shun-ichi Amari. Families of alpha-beta-and gamma-
divergences: Flexible and robust measures of similarities. Entropy,
12(6):1532–1568, 2010.

[21] Andrzej Cichocki, Rafal Zdunek, Anh-Huy Phan, and Shun-ichi Amari.
Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory
Multi-Way Data Analysis and Blind Source Separation. Wiley, first edition,
2009.

[22] I. Csiszár. Information-type measures of difference of probability distributions
and indirect observations. In Studia Scientiarum Mathematicarum Hungar-
ica, volume 2, pages 229–318, 1967.

118



[23] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal trans-
port. In Advances in neural information processing systems, pages 2292–2300,
2013.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[25] M. Derezinski and M. K. Warmuth. The limits of squared Euclidean distance
regularization. In Advances in Neural Information Processing Systems 27,
NIPS’14, pages 2807–2815, Cambridge, MA, USA, 2014.

[26] Inderjit S Dhillon and Joel A Tropp. Matrix nearness problems with Bregman
divergences. SIAM Journal on Matrix Analysis and Applications, 29(4):1120–
1146, 2008.

[27] Nan Ding. Statistical machine learning in the t-exponential family of distri-
butions. PhD thesis, Purdue University, 2013.

[28] Nan Ding and S. V. N. Vishwanathan. t-logistic regression. In Proceedings of
the 23th International Conference on Neural Information Processing Systems,
NIPS’10, pages 514–522, Cambridge, MA, USA, 2010.

[29] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119–139, 1997.

[30] U. Ghai, E. Hazan, and S. Singer. Exponentiated gradient meets gradient
descent. arXiv preprint arXiv:1902.01903, 2019.

[31] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam
Neyshabur, and Nati Srebro. Implicit regularization in matrix factorization.
In Advances in Neural Information Processing Systems 30, NIPS’17, pages
6151–6159, 2017.

[32] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. Interna-
tional Conference on Learning Representations (ICLR), 2017.

[33] David Haussler, Jyrki Kivinen, and Manfred K Warmuth. Sequential predic-
tion of individual sequences under general loss functions. IEEE Transactions
on Information Theory, 44(5):1906–1925, 1998.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

119



[35] D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Relative loss bounds for
single neurons. IEEE Transactions on Neural Networks, 10(6):1291–1304,
November 1999.

[36] David P Helmbold, Sandra Panizza, and Manfred K Warmuth. Direct and
indirect algorithms for on-line learning of disjunctions. Theoretical Computer
Science, 284(1):109–142, 2002.

[37] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of Con-
vex Analysis. Springer-Verlag Berlin Heidelberg, first edition, 2001.

[38] J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional
regression problems. Machine Learning, 45(3):301–329, 2001.

[39] J. Kivinen, M. K. Warmuth, and P. Auer. The Perceptron algorithm vs.
Winnow: linear vs. logarithmic mistake bounds when few input variables are
relevant. Artificial Intelligence, 97:325–343, December 1997.

[40] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus
gradient descent for linear predictors. Inf. Comput., 132(1):1–63, 1997.

[41] Jyrki Kivinen, Manfred K Warmuth, and Babak Hassibi. The p-norm gener-
alization of the LMS algorithm for adaptive filtering. IEEE Transactions on
Signal Processing, 54(5):1782–1793, 2006.

[42] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

[43] Brian Kulis and Peter L. Bartlett. Implicit online learning. In ICML, 2010.

[44] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist,
2, 2010.

[45] Z. Liao and R. Couillet. The dynamics of learning: A random matrix ap-
proach. arXiv preprint 1805.11917, 2018.

[46] N Littlestone and MK Warmuth. The weighted majority algorithm. Infor-
mation and Computation, 108(2):212–261, 1994.

[47] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine learning, 2(4):285–318, 1988.

[48] Philip M Long and Rocco A Servedio. Random classification noise defeats all
convex potential boosters. In Proceedings of the 25th international conference
on Machine learning, pages 608–615. ACM, 2008.

120



[49] Jan Naudts. deformed exponentials and logarithms in generalized thermo-
statistics. physica a, 316:323–334, 2002.

[50] A. Nemirovsky and D. Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley & Sons, New York, 1983.

[51] Jiazhong Nie, Wojciech Kotłowski, and Manfred K Warmuth. Online PCA
with optimal regret. The Journal of Machine Learning Research, 17(1):6022–
6070, 2016.

[52] Frank Nielsen and Richard Nock. On the centroids of symmetrized Bregman
divergences. arXiv preprint arXiv:0711.3242, 2007.

[53] Maxim Raginsky and Jake Bouvrie. Continuous-time stochastic mirror de-
scent on a network: Variance reduction, consensus, convergence. In 2012
IEEE 51st IEEE Conference on Decision and Control (CDC), pages 6793–
6800. IEEE, 2012.

[54] Garvesh Raskutti and Sayan Mukherjee. The information geometry of mirror
descent. IEEE Transactions on Information Theory, 61(3):1451–1457, 2015.

[55] M. D. Reid and R. C. Williamson. Surrogate regret bounds for proper losses.
In Proceedings of the 26th International Conference on Machine Learning
(ICML’09), pages 897–904, 2009.

[56] R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm.
SIAM journal on control and optimization, 14(5):877–898, 1976.

[57] William H Sandholm. Population games and evolutionary dynamics. MIT
Press, 2010.

[58] Shai Shalev-Shwartz et al. Online learning and online convex optimization.
Foundations and Trends® in Machine Learning, 4(2):107–194, 2012.

[59] Shai Shalev-Shwartz et al. Online learning and online convex optimization.
Foundations and Trends® in Machine Learning, 4(2):107–194, 2012.

[60] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density-ratio
matching under the Bregman divergence: a unified framework of density-ratio
estimation. Annals of the Institute of Statistical Mathematics, 64(5):1009–
1044, 2012.

[61] Ambuj Tewari and Peter L Bartlett. On the consistency of multiclass classifi-
cation methods. Journal of Machine Learning Research, 8(May):1007–1025,
2007.

121



[62] Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics.
Journal of statistical physics, 52(1-2):479–487, 1988.

[63] Tim Van Erven and Peter Harremos. Rényi divergence and Kullback-Leibler
divergence. IEEE Transactions on Information Theory, 60(7):3797–3820,
2014.

[64] Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regu-
larization for optimal sparse recovery. In Advances in Neural Information
Processing Systems 32, pages 2968–2979, 2019.

[65] Baba C Vemuri, Meizhu Liu, Shun-Ichi Amari, and Frank Nielsen. Total
Bregman divergence and its applications to DTI analysis. IEEE Transactions
on medical imaging, 30(2):475–483, 2010.

[66] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science
& Business Media, 2008.

[67] S.V.N. Vishwanathan and M.K. Warmuth. Leaving the span. In Proceedings
of the 18th Annual Conference on Learning Theory (COLT 05), Bertinoro,
Italy, June 2005. Springer.

[68] Volodimir G Vovk. Aggregating strategies. In Proceedings of the third annual
workshop on Computational learning theory, pages 371–386. Morgan Kauf-
mann Publishers Inc., 1990.

[69] M. K. Warmuth and A. Jagota. Continuous and discrete time nonlinear gra-
dient descent: relative loss bounds and convergence. In R. Greiner E. Boros,
editor, Electronic Proceedings of Fifth International Symposium on Artificial
Intelligence and Mathematics. Electronic,http://rutcor.rutgers.edu/̃ amai,
1998.

[70] M. K. Warmuth, W. Kotłowski, and S. Zhou. Kernelization of matrix up-
dates. Journal of Theoretical Computer Science, 558:159–178, 2014. Special
issue for the 23nd International Conference on Algorithmic Learning Theory
(ALT’12).

[71] Manfred K. Warmuth. Winnowing subspaces. In Proceedings of the 24th
International Conference on Machine Learning, ICML’07, pages 999–1006,
New York, NY, USA, 2007. ACM.

[72] Robert C. Williamson, Elodie Vernet, and Mark D. Reid. Composite multi-
class losses. Journal of Machine Learning Research, 17(223):1–52, 2016.

[73] Blake Woodworth, Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan
Srebro. Kernel and deep regimes in overparametrized models. arXiv preprint
arXiv:1906.05827, 2019.

122



[74] Matthew D Zeiler. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[75] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training
deep neural networks with noisy labels. In Advances in Neural Information
Processing Systems, pages 8778–8788, 2018.

[76] Hui Zou and Trevor Hastie. Regularization and variable selection via the elas-
tic net. Journal of the royal statistical society: series B (statistical method-
ology), 67(2):301–320, 2005.

123


	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Motivation and Previous Work
	Contributions
	Outline of the Thesis
	Original Publications
	Notation

	Convex Duality, Bregman Divergence, and Matching Loss
	Convex Duality
	Bregman Divergence
	Strong Convexity and Smoothness
	Dual of a Constrained Convex Function
	Matching Loss

	Reparameterizing Mirror Descent as Gradient Descent
	Introduction
	Continuous-time Mirror Descent
	Discretized Updates
	Reparameterization
	Tempered Bregman Updates
	Tempered EGUpm
	Reparameterized Tempered EGUpm

	Minimum-norm Solutions
	Vector Case
	Partial Results on the Matrices

	Experiments
	Minimum-norm Solutions for Linear Regression
	Reparameterizing Weights of Neural Networks

	Discussion

	Winnowing with Gradient Descent
	Introduction
	Reparameterizing the Continuous-time Exponentiated Gradient Algorithms
	Reparameterization of the Winnow
	Reparameterization of the Hedge
	Reparameterizations of EGU and EG for Linear Regression
	Simulations
	Lower-bounds on the Hadamard Problem
	Behavior of GD and Reparameterized EGU with Different Initializations

	Open problems

	Tempered Bregman Divergence for Classification
	Introduction
	Our replacement of the softmax output layer in neural networks
	An illustration

	Tempered Matching Loss
	Tempered softmax function
	Matching loss of tempered softmax

	Robust Bi-Tempered Logistic Loss
	Properness and Monte-Carlo sampling
	Bayes-risk consistency

	Experiments
	Corrupted labels experiments
	Overfitting to Noise and Generalization
	Large scale experiments

	Conclusion and Future Work

	Conclusion and Future Work
	
	Proof of Theorem 12
	Proof of Theorem 14
	Proof Sketch of Claim 1

	
	An Iterative Algorithm for Computing the Normalization
	Other Tempered Convex Functions
	Convexity of the Tempered Matching Loss
	Derivatives of Lagrangian and the Bi-tempered Matching Loss

	Bibliography



