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The Semi-Explicit Assembly Water Model

and Selected Applications

Charles W. Kehoe

We present a new solvation approach, capable of accelerating the computations re-

quired for explicit solvent modeling by several orders of magnitude. This technology

allows researchers to apply the most accurate solvation models available without sac-

rificing speed. Semi-Explicit Assembly (SEA) runs at nearly the same speed as the

fastest solvation models currently in use. We make this possible by distilling out

and reproducing the most important physics modeled by explicit solvent. This ap-

proach can be applied to any model of any dipolar solvent, even at the quantum level

(though we do not demonstrate that here). Since water is the solvent found in almost

all biological interactions, we have so far limited our work to aqueous solvation.

SEA is based on a set of precomputations which sample solvation behavior around

single atoms with varying properties, and record the response of explicit solvent to all

common sets of atomic parameters. The most important component turns out to be

water’s reproducible, but asymmetric, response to the electric field on the molecular

surface. Treating waters as particles, rather than as a dielectric field, also allows us

to reproduce important physical details.
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The first half of this work presents all the details of the SEA approach, along with

several sets of results demonstrating its potential. We show that, given a set of

conformations to work with, we can match the accuracy of explicit solvent at a similar

speed as the simple Generalized Born solvation model. We present several sets of

molecules which we can model at explicit solvent accuracy, but in which standard

approaches like γA and Poisson-Boltzmann (PB) miss important details.

The second half of this work presents additional applications. The first is a blind

solvation test using multiple forcefields and water models. We achieved the second-

highest accuracy to experimental values in the test, but our approach was also one

of the fastest used. The second application is a visualization tool, named SurfMap,

which allows users to explore several types of solvation results using interactive three-

dimensional models. SurfMap demonstrates additional solvation details which SEA

catches, but PB does not.
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Chapter 1

Introduction

Author: Charles Kehoe

There is considerable interest today in molecular modeling and simulation. Academic

and commercial researchers are increasingly finding that simulation offers a level

of detail, control, and convenience that experimental methods often cannot match.

Protein structures can be obtained via X-ray crystallography, estimated from known

structures of their relatives,87 or sometimes determined ab initio based on many

layers of statistical information.75 Simulations can then probe these structures for

atomically detailed information about folding,101,135 misfolding,133 and stability,14 as

well as interactions with ligands89 and other biomolecules.76 There is considerable

interest (and funding) from the pharmaceutical research community in technologies

such as ligand docking70 and rational drug design.3,88 And interest will only grow

further as the software improves, and hardware continues to get cheaper.
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Water is the solvent in which nearly all biochemistry takes place. It has several

unusual properties which make possible biology as we know it, and consequently

requires careful treatment in a simulation setting. There are several common ways of

simulating water, broadly classifiable as either implicit (treating water as a smooth

dielectric continuum) or explicit (treating water as a collection of many individual

molecules). Predictably, implicit models are fast to calculate, but not that accurate,

while explicit models are very computationally intensive, but produce more correct

results when used correctly.94

Primarily due to their high performance, implicit solvation models are still widely

used in biomolecular simulation. The Generalized Born125 family of solvation mod-

els, for example, simply modify the solute’s coulomb interactions to account for the

surrounding dielectric solvent. Models based on the Poisson-Boltzmann equation23

require numerical integration, but are still reasonably fast. However, these methods

require carefully recalculated atomic radii to produce accurate results.119 When used

with the standard radii provided by an all-atom forcefield, their numerical accuracy

suffers as compared to explicit solvent results, as we shall see in chapters 3 and 4.

Because they treat water as a continuum of infinitely small particles, they are also

unable to correctly reproduce certain biochemical phenomena, such as the correct

PMFs of salt bridges.129

2



Explicit solvent and its variants are sometimes also used to explore the behavior of

small and large molecular systems. However, their high computational expense –

sometimes several orders of magnitude slower than implicit methods – limits their

applicability. The ideal situation, of course, would be to achieve the accuracy of

explicit solvent methods at the speed of implicit solvent. This may seem like an

impossible dream, but we have been able to achieve it in several molecular simulation

areas.

How is it possible to skip all the work that explicit solvent does to get to its carefully

refined answers? The answer lies in critically evaluating the physics being simulated,

and the particular answers one is looking for. This allows several simplifications of

the problem that lead to dramatically improved computational speed.

We have focused on modeling the correct physical and energetic interactions between

molecules and the surrounding solvent. Especially for uncharged molecules, a sig-

nificant majority of water’s response to a solute occurs in the first layer of water

molecules around the solute (or the first solvation shell). Also, the advantages of

explicit solvent based on ”discrete size effects”, such as correct salt bridge behavior,

usually result from interactions between solute atoms and first-shell water molecules.

So the first simplification we used was to consider the first shell of water molecules

explicitly, and use an implicit model for the rest of the solvent. This approach has

been tried before,103 but it still requires explicit simulation of many water molecules,

and it usually introduces the new problem of how to create and destroy waters as

they exchange in and out of the first shell. We wanted to go farther with our model.
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The next step in focusing our computational effort came in noticing that the indi-

vidual motions of waters were not that important to the energetic behavior of the

whole system. Simulating these motions over time amounts to a huge computational

expense. One of water’s unique properties is its many degrees of rotational freedom,

which all must be integrated separately. Worse, some explicit water models have up

to five charge centers, all of which interact with all of the charge centers of every other

water. (In computer science, this type of O(n2) computational complexity is often

frowned upon.) But since each water that exchanges out of the first solvation shell is

quickly replaced by (or was originally pushed out by) another, what actually matters

is the favorability of certain locations and orientations for surface water molecules. In

order to eliminate explicit water simulation entirely, we needed to boil down explicit

water’s behavior (the pun is accidental) to just these essentials. How we implemented

these optimizations is the subject of chapter 3.

The technical discussion up to this point has mostly focused on methods of treating

water’s polar solvation effects: its dielectric-like response with associated finite-size

effects. A somewhat simpler question, and one that we address first, is that of the

solvent’s nonpolar effects: the energetic consequences or advantages of dispersion

interactions. For calculating free energies of solvation, these effects require completely

removing the solute from simulation in a slow, controlled process. The energetic

consequences are usually somewhat small, but they can be fantastically expensive to

compute because of the convergence problems involved. This is another area where

our Semi-Explicit Assembly (SEA) approach shines: again, it focuses on the exact

4



answers we are looking for, and reframes the entire calculation in terms of them. The

SEA nonpolar approach calculates the effective nonpolar character of every point on

the solute surface, and then estimates (quite accurately) explicit solvent’s response

to this landscape. Further details can be found in chapter 2.

In later chapters, we illustrate SEA’s potential by showing its fast, accurate perfor-

mance on a variety of data sets. We compare our results to those of similar methods,

showing that we provide real advantages in both performance and accuracy. Work

is ongoing in making these approaches available to a wider audience and in more di-

verse applications, including molecular dynamics. We hope you enjoy reading about

Semi-Explicit Assembly.
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Chapter 2

Oil/Water Transfer Is Partly Driven

by Molecular Shape,

Not Just Size

Authors: Christopher Fennell, Charles Kehoe, and Ken Dill

Published January 13, 2010 in the Journal of the American Chemical Society,

Volume 132, Number 1, Pages 234-240. DOI: 10.1021/ja906399e
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Abstract

We present a new approach to computer modeling of solvation free energies of oil

in water. In Semi-Explicit Assembly, we first precompute structural and thermal

properties of TIP3P waters around different Lennard-Jones spheres. This tabulated

information is then used to compute the nonpolar solvation properties of arbitrary

solutes. By accumulating interactions from whole regions of the solute molecule,

Semi-Explicit Assembly more properly accounts for effects of solute shape and solves

problems that appear as nonadditivities in traditional γA approaches.

Semi-Explicit Assembly involves little parameter fitting because the solute and water

properties are taken from existing force fields. We tested the predictions on alkanes,

alkynes, linear and planar polyaromatic hydrocarbons, and on a diverse set of 504

molecules previously explored by explicit solvent simulations. We found that not all

hydrocarbons are the same. Hydrocarbons have ‘hot spots’, places where first-shell

waters interact more strongly with the molecule than at other locations. For example,

waters are more attracted to hover over hydrocarbon rings than at the edges. By

accounting for these collective regional effects, Semi-Explicit Assembly approaches

the physical accuracies of explicit solvent models in computing nonpolar solvation

free energies, but because of the pre-computations and the regional additivities, it is

nearly as fast to compute as γA methods.
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2.1 Introduction

Various processes in nature – the folding of proteins, the self-assembly of lipid bilayer

membranes and soap micelles, the chromatographic separations of materials, the bind-

ing of drugs to proteins, and the partitioning of environmental toxins into fish oils

– are driven, at least in part, by the solvation or desolvation of oil-like molecules in

water. Two approximations have been commonly used in modeling the molecular

solvation of oil in water:

(1) The solute-solvent interface is assumed to be a miniature version of

a macroscopic liquid interface. Key knowledge of hydrophobic interactions de-

rives from bulk-phase experiments such as measurements of the interfacial tension

γ between oil and water, where ∆G = γA is this nonpolar free energy of transfer;

it increases in proportion to the interfacial area A. Microscopic solvation processes

such as protein folding are often treated as sums of transfers of subcomponents, such

as an oil moiety from water to oil. For example when a protein folds, its oil-like

amino acids are transferred from a state of exposure to water to a state of burial in a

nonpolar core. The free energies for such processes are often estimated by a quantity

of the same form, γiA, where A is a microscopic property – the surface area of the

oil molecule (which can be estimated in different ways), and γi is a parameter chosen

for a particular type of chemical moiety i. This is the approach generally taken in

“implicit” computer models of water.

8



(2) Solvation energies are approximated using group additivities. A main

approach to computing solvation free energies for complex processes is to assume

additivity and sum the free energies of component parts. Central to this enterprise

are hydrophobicity scales, which are lists of free energies of transfer – typically be-

tween an oil or vapor phase and water – of model compounds that represent the

component parts. There are more than 30 hydrophobicity scales for the amino

acids alone13,27,72,102,116,143,144 and many more for simple hydrocarbons and chem-

ical groups.8,18,116,121 This model-compound / hydrophobicity-scale approach rests

on the underlying assumptions of additivity and transferability. Model-compound

/ hydrophobicity-scale studies would have little value if the component quantities

measured in a simple oil/water experiment were not applicable to more complex me-

dia such as the interiors of lipid bilayers, protein cores, or nonpolar chromatographic

stationary phases, extending to situations beyond just the direct measurements them-

selves. Such additivity approaches require the assumption that one methylene group

or one amino acid somewhere in the molecule is equivalent to another methylene

group or amino acid somewhere else. In this way, solvation free energies are assumed

to only depend upon the numbers and types of substituents, and not their geometric

arrangements.

Moreover, hydrophobicity scales depend on the premise of equivalence, namely that

one type of oil is essentially the same as another type of oil. As Tanford and Nozaki

noted in one of their first publication on such scales,102 in order to have a ‘scale’ that

spans from some extreme of maximum nonpolarity to the other extreme of maximum

9



polarity requires a ‘gold standard’ of nonpolarity. Which type of oil best represents

the essence of ‘nonpolarity’? If oils were all different, then it would be impossible to

capture the spirit that somehow all protein cores or all lipid bilayers have the same

property of being ‘hydrophobic’.

Some limitations of the γA approach

Some of the problems with these simple approaches to molecular solvation are known.

(1) Solute shape matters too, not just surface area. The γA model treats

only the dependence of solvation free energy on solute surface area and not on solute

shape. Yet, water adopts very different structures and thermal properties around

highly curved or nonlinear solutes than around planar solutes or large (protein-sized)

objects having the same surface area.22,25,57,115,116,123,126,137 One result is that ∆G/A

measured from interfacial tensions at planar surfaces is 75 cal mol−1 Å−2 from inter-

facial tension measurements, but only ∆G/A ≈ 30 cal mol−1 Å−2 for small-molecule

hydrocarbon/water transfer115 and 5 cal mol−1 Å−2 for air/water transfer, the value

typically used in implicit models.24,113

(2) Dispersion interactions do not have the same form as cavity forma-

tion costs. Dissolving a solute in water entails: (1) opening a cavity in water,

which involves unfavorable water ordering or unfavorable hydrogen-bond breaking in

10



water, then (2) inserting the solute, which involves favorable dispersion interactions

of the solute with the water. Both terms are treated in the scaled particle theory

approach,52,108 for example. Often, both terms are assumed to have the same math-

ematical form and are captured in a single γA quantity; in this approach both cavity

formation and the attractive dispersion interactions are assumed linearly dependent

on the solute surface area. However, Pitera and van Gunsteren showed that this

simplification leads to underestimating the true attractive aspects of nonpolar sol-

vation, a nearly 50 kcal/mol oversight for small proteins.109 A better accounting of

dispersion interactions has been a driving force for new methods for treating nonpolar

solvation.43,79,128,136

(3) Different oil phases are different. Additivity sometimes doesn’t work.

While Tanford and Nozaki did show that partitioning into water is not strongly

dependent on the types of oil in some cases,102,130 more recent studies have shown that

partitioning can be substantially dependent on what oil is used for the oil phase,111

indicating the limitations of this assumption. The atom arrangements, densities,

and chemical character differ between different molecules. Solvation free energies

can sometimes be non-additive because of these microscopic details.32,85 Treating

chemically distinct solute surfaces additively with a uniform γ parameter misses these

effects.

The two standard routes to improved solvation modeling are: (1) to include additional

parameters,28,33,46,106,128,136 or (2) to perform ‘explicit water’ computer simulations,

but at considerably greater computational expense and loss of simplicity.93,117
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Here, we present a third approach, which we call Semi-Explicit Assembly. We use

parameters and water models that are taken directly from explicit-water forcefields, so

our approach does not involve ‘learning’ or parameterization from databases. Semi-

Explicit Assembly retains the simplicity of a type of additivity, but it is regional,

collectively capturing results from multiple solute groups at the same time. In this

way, it correctly captures effects that would be described as non-additivities in the

simpler group-additivity approaches. Also, as a consequence of this additivity and

of a pre-calculation step, this approach is computationally nearly as fast and simple

as γA methods, and is much faster than explicit solvent simulations. Nevertheless,

we find that the quality of the modeling is close to that of explicit solvent simulation

modeling.

2.2 The Semi-Explicit Assembly approach to nonpolar

solvation

Our aim in Semi-Explicit Assembly is to capture the parameters and much of the

physics from explicit solvent modeling within a rapidly computable implicit frame-

work. To do this, we use fully explicit solvent simulations to pre-compute the behav-

iors of waters around a series of nonpolar solute spheres having different radii and

attractive dispersion interactions. After this one time precomputation, we probe the

local interaction identity of an arbitrary solute molecule and assemble its nonpolar

solvation free energy.

12



Pre-computations of Lennard-Jones spheres in explicit water

In computer modeling, molecules are usually represented as collections of bonded

spheres. Steric repulsion and attractive dispersion interactions are most often handled

using a standard Lennard-Jones (LJ) pair potential,

VLJ(rij) =


4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

rij ≤ rc

0 rij > rc,

(2.1)

where the size (σ) and well-depth (ε) parameters account for the steric and disper-

sive elements respectivelya, rij is the distance between particles i and j, and rc is an

interaction cutoff distance. To gather the physics of solvation using LJ spheres, we

start by performing explicit solvent free energy calculations to compute their non-

polar solvation free energy (∆G) spanning a wide range of σ and ε values. These

calculations are based on a constructing a thermodynamic cycle connecting simula-

tions of the LJ sphere in two different media. We transfer the solute between vacuum

and water, and obtain ∆G for this transfer process. This is similar to a combined

scaled-particle theory approach,52,108,126 where cavity formation and interaction ac-

tivation steps are carried out simultaneously. It should be noted that total solvation

free energies include both a polar and nonpolar part. As indicated earlier, we are

interested exclusively in the nonpolar part throughout this study, so atomic partial

charges are always set to zero.

aWe use Lorentz-Berthelot combination rules, where σij is an arithmetic mean of the individ-
ual particle diameters (σij = [σi + σj ] /2) and εij is a geometric mean of the individual particle
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Figure 2.1: Nonpolar solvation free energy (∆G) of single LJ spheres in TIP3P water
at 300 K as a function of their σ and ε parameters. Unfavorable ∆G values are red.
Favorable ∆G values are blue.
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Figure 2.1 shows the pre-computed values of ∆G across a range of LJ spheres sol-

vated in the TIP3P water model.64 Increasing the LJ well-depth gives more favorable

solvation free energies. As the well-depth decreases, the ∆G values converge toward

the previously observed ∆G limit for purely hydrophobic hard spheres.22,57,58 A

crossover from unfavorable to favorable solvation occurs around a well-depth value

of ε = 0.75 kcal/mol. Individual atoms in molecular simulations rarely have disper-

sion attractions this strong, but we include these simulations because we find that

collections of atoms can have attractive potentials of this magnitude.

The pre-computation step that generates Figure 2.1 is computationally expensive,

but it is only performed once for any given temperature, pressure, or solvent model.

After the values in this plot are determined, they can be applied in much faster

computations for any given solute.

At the same time we compute ∆G values, we also construct a table of average sepa-

ration distances between the solute and first-shell water. We collect these distances

(rw) from radial distribution functions of water oxygen atoms with respect to the

centers of each type of LJ sphere; see Figure 2.2a. These distances are collected in a

table as a function of σ and ε of the LJ spheres.

interaction well-depths
(
εij =

√
εi · εj

)
.
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Figure 2.2: The process for incorporating non-additive environmental effects on the
solute surface atoms. (a) Sample LJ spheres in explicit water and build a map of water
distances (rw) as a function of σ and ε. (b) Construct the solvent accessible surface
(SAS) using the distances from the explicit solvent map. (c) Probe the LJ potential of
the solute along the line connecting each SAS dot to its surface atom. Average these
potentials for each surface atom, and extract new “effective” LJ parameters (σra and
εra) from this curve. (d) Use these effective potential parameters when calculating
the solvation free energy. Note that edge atoms will have more attractive εra values
than corner atoms because of the greater number of atoms near to the probe particle.
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Assembly of molecular solvation free energies

The explicit solvent pre-computations provide a detailed picture of how the chosen

water model will solvate simple nonpolar spheres. To estimate the nonpolar solvation

free energy of arbitrary solute molecules, the results from these representative atomic

systems need to be brought to the unique solute surfaces. This assembly process is

shown in Figures 2.2b, 2.2c, and 2.2d.

(1) Compute solvent-accessible surface (SAS) of the solute. For every atom

of the solute molecule, with its given radii and LJ parameters, we look up (or in-

terpolate) from the pre-computed table of rw values, the average contact distance

of the surrounding solvent. We form spherical accessibility boundary points around

each solute atom from these interpolated rw values and cull out points that are in-

accessible due to other neighboring atoms. This generates an initial molecular SAS;

(Figure 2.2b). This SAS differs from that of Lee and Richards74 in two ways: (1) we

do not use a hard sphere probe, so, in principle, our solvation boundary expands or

contracts with pressure and temperature, and (2) the interactions governing solvent

accessibility will not be with only a single nearest-neighbor solute atom (see below),

hence we capture contributions from other nearby atoms.

(2) Compute a region-averaged dispersion-potential field. Now we construct

local dispersion potential fields at different points in the solvation shell around the

solute. First, we define a vector from a water dot point of the initial SAS to the
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center of the associated solute surface atom. In Figure 2.2c, the current surface atom

is colored red. The dashed lines show vectors connecting this target solute atom to its

SAS dot sites. Starting at the SAS dot sites, we probe the regional LJ potential field

along these vectors. This regional field we use encompasses all solute atoms within the

rc of the target surface atom, the blue particles in Figure 2.2c. The gray particles are

outside this cutoff and therefore ignored. By including more surrounding interactions,

longer rc values will result in a more accurate depiction of the total solute dispersion

potential. Rather than use an infinitely long cutoff, we found that

rc = 2rmax + rww, (2.2)

gives results that were converged within the calculated error for the overall nonpolar

free energy. Here, rmax is the maximum rw found for the atoms making up the solute,

and rww is the water–water packing distance extracted from a water–water radial

distribution function (∼2.7 Å).

In this probing process, the LJ interactions are accumulated between the solute atoms

within the region described above and a probe particle along the dot site vector. The

pairwise LJ potential (Equation 2.1) is dependent on both σp (the probe σ parame-

ter) and atom σ parameters. So now σp becomes a parameter that is determined as

discussed below. This probe particle is progressively stepped closer to the surface in

order to construct a potential as a function of probe particle position, and this po-

tential is stored for each surface dot. As shown in Figure 2.2c, the wells of potentials
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calculated for surface sites in closer proximity to more solute atoms (those nearer to

solute edges rather than corners) will tend to be deeper. After constructing poten-

tials for each surface dot about a solute surface atom, we average them together to

generate a region-averaged dispersion potential (Vra) which incorporates shape and

the attractive interactions of nearby collections of solute atoms. We then extract

region-averaged parameters for each surface atom (σra and εra) by fitting this curve

to an LJ potential,

Vra (r) ≈ 4
√
εra · εp

[(
(σra + σp)

2r

)12

−
(

(σra + σp)

2r

)6
]
, (2.3)

where r is the distance between the probe and the target surface atom. As Vra is

an average of collective atom dispersion potentials, fitting it to a single LJ potential

is an approximation. It should be noted that the averaging procedure is technically

unnecessary. We could retain a more detailed map of the dispersion potential based

on these more numerous surface points rather than on an averaged, per atom basis.

We have tested both routes, and they are equivalent for the nonpolar solvation of

small molecules shown below, so we use the per atom averaging step for convenience.

(3) Reduce the region-averaged field to a single effective LJ interaction.

Assign these newly derived σra and εra parameters to the associated surface atoms

(Figure 2.2d). This procedure encodes information about the full solute structure

and interactions into the solvent exposed regions of the molecule.
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From the steps above, we obtain free energy component quantities of the solute that

can be added to get the total nonpolar solvation free energy,

∆G = pVv +
N∑
i=1

fi∆Gi. (2.4)

Here, fi is the fraction of the surfaced exposed for atom i, and ∆Gi is that atom’s free

energy term extracted (via a linear interpolation) from the map pictured in Figure 2.1

using the region-averaged parameters as our σ and ε values. The pVv “void” term is

the cavity formation cost due to the buried particles within the molecule (the lightened

atoms in Figure 2.2b)b. For small molecules, this void term is often zero because all

the solute atoms also happen to be surface atoms. We found setting the pVv term to

zero for all the molecules studied within a good approximation. If one is interested

in the absolute nonpolar solvation of macromolecular structures, optimization of this

void term will become increasingly important.

As the SAS is a set of discretized points, the fi will depend on the number of points

remaining after the culling process in Step 1. Culling points near the intersection of

nearby solvent-accessible surface shells will result in a slightly jagged edge. To arrive

at converged estimates of the fi values, we iterate over constructing the SAS and the

calculation of ∆G in Equation 2.4. In these series of Step 1 surface constructions, the

region-averaged LJ parameters are used to determine new rw distances. In this way,

this SAS used to determine the fi values incorporates the collective structure of the

solute molecule.

bIn this void term, the p term can be taken as the negative transfer free energy per unit volume
of the solvent, or it can be treated as an adjustable fitting parameter.128,136 The void volume is,
Vv = Vsol − Vsurf , where Vsol is the total solute volume, while Vsurf is the volume of a molecular
structure composed only of the surface atoms.
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Optimization of the dispersion potential probe

In order to calculate a particular nonpolar solvation free energy, we must optimize the

probe size (σp) for the Lennard-Jones field sampling procedure. This is necessary to

insure that we pick up the surrounding dispersion interactions properly, and is similar

to attractive probe optimization procedures in alternative techniques.79,128,136 While

one could optimize the probe size to a large set of target molecules, we decided to

start with a single molecule, n-pentane - the middle sized molecule of our linear alkane

series. After setting εp = 1 for convenience, we scanned σp values in 0.01 Å increments

and sought to minimize the difference between the ∆G using our method and the

explicit solvent ∆G for n-pentane. We tested different εp values and found that the

choice of εp does not change the results. The optimized σp value of 0.82 Å turns

out to be quite robust, and one can select values within a 0.1 Å window about this

midpoint without significantly altering the results below. We attempted optimizing

over a larger set of small molecules, but this did not significantly alter σp or lead to

improvements in the solute ∆G estimations.

Algorithm performance and computational details

There is probably no simple and fair way to compare various methods for compu-

tational speed. However, the following provides a good rough estimate. Standard

γA approaches are limited by the computational cost of constructing the solvent-

accessible surface. These are currently the fastest available methods. Semi-Explicit
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Assembly, too, requires construction of the solvent-accessible surface. Additionally,

there are the probing step described above which will optimally cost the same as con-

struction of a solvent-accessible surface, and a reconstruction of the solvent-accessible

surface with the region-averaged LJ parameters. Thus, in an optimized implemen-

tation, the maximum speed of Semi-Explicit Assembly would be about 3-fold slower

than γA methods.

The free energy surface of LJ parameters pictured in Figure 2.1 was constructed using

explicit solvent free energy calculations of individual spheres in cubic boxes of 1000

TIP3P water molecules at 300 K and 1 atm. The LJ σ values for solute particles in

this map cover a range of 0.6 to 7.0 Å linearly in 0.8 Å steps. The LJ ε values range

from ∼0.008 to 4 kcal/mol, where each subsequent ε value is two times the previous

value.

The free energy calculations were performed using thermodynamic integration with

GROMACS 4.0.55 In thermodynamic integration, the LJ solute particles are re-

versibly transformed between a fully interacting and non-interacting state over a

series of simulation windows, each with their own transformation parameter (λ). In-

tegrating the change in the potential over the change in λ over the full range of λ

values gives the free energy difference between these states. A detailed description

of the theory behind such calculations can be found elsewhere.44,71,127 Here, twenty

one windows were used for the transformation process, and they spanned λ = 0 to

1 in even steps of 0.05 units. A soft-core potential was used to minimize integration
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error in the transformation process,124 and the specifics of the actual simulations fol-

lowed those outlined by Mobley et al.98 One exception was that the interaction cutoff

needed to be longer to accommodate the large particle sizes explored as part of this

series. Thus, the LJ cutoff radius was smoothly switched off between 11 and 13 Å.

Errors in the free energies were estimated by the limiting value of block averages.54

For the polyaromatic hydrocarbon series, explicit solvent free energy calculations were

performed on naphthacene, pentacene, hexacene, triphenylene, and perylene because

literature values of ∆G were unavailable. The specifics of these calculations are

identical to those described above for single LJ spheres, with the exception of larger

numbers of water molecules in order to maintain hydration layers thicker than the

specified cutoff lengths. The LJ parameters for these molecules were assigned using

the general AMBER force field (GAFF).139

The Semi-Explicit Assembly nonpolar solvation free energies were averaged values

from 40 dot surfaces construction iterations, each using the same set of region-

averaged LJ parameters calculated using the initial dot surface. For each of these

dot surfaces, spheres of ∼300 dots per atom were randomly rotated before culling

overlapping points. The ∆G values for all the solutes come from single calculations

about the dominant clustered conformation from the explicit solvent simulations. We

attempted more detailed configuration analyses for several of the molecules that con-

tained multiple rotatable bonds; however, this led to negligible changes in the final

values, so we chose to simply take the dominant conformation as representative of the
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whole. With electrostatic effects being much stronger than dispersion, it is likely that

the polar part of the free energy is much more sensitive to changes in internal con-

formations. Calculated error for Semi-Explicit Assembly over the 40 iterations was

0.05 kcal/mol, averaged over all molecules explored in this study. A post-calculation

analysis indicated that a similar error can be obtained with fewer than 5 dot surfaces

construction iterations.

2.3 Results

For testing our solvation approach, we assume the ‘gold standard’ right answer sol-

vation free energies are given by experimental data where it exists, or otherwise by

all-atom explicit solvent free energy calculations.93 Here, we compare our predictions

to these explicit solvent simulations, to experiments where possible, and to γA val-

ues. In supplementary material, we show that this semi-explicit method is also more

accurate than other recent approaches.128,136

Linear hydrocarbons

The standard first test of solvation models are the linear n-alkanes. Figure 2.3a

confirms that the present model agrees with experiments, explicit-water simulations,

and standard γA models for these molecules. Interestingly, because of its assumed
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Figure 2.3: The nonpolar solvation free energy for a series of a) linear alkanes, b)
linear alkynes, c) polyaromatic hydrocarbons (PAHs) in a linear arrangement, and
d) PAHs in a planar arrangement calculated using γA + b, Semi-Explicit Assembly,
and explicit solvent. For γA+ b, the traditional (0.00542× SAtot) + 0.92 was used,113

and the TIP3P results are those obtained through explicit free energy calculations.93

Experimental comparisons to ∆G cannot be drawn with the linear alkynes or PAHs
series, because they have a substantial polar term to the overall solvation.
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a c eb d

Figure 2.4: Maps of the collective dispersion attraction about the solvent accessible
surface (SAS) of a) n-pentane, b) cyclopentane, c) pent-1-yne, d) benzene, and e)
pyrene. The color of the surface indicates the LJ well-depth, with blue starting at
0 kcal/mol and red lowering to deeper than 5 kcal/mol. Note the red “hot spots”
around the triple bond in pent-1-yne and in the center of the benzene and pyrene ring
planes. These indicate a significant enhancement of dispersion attraction with the
surroundings. As these regions grow with increasing molecule size, these collective
dispersion attractions will offset the cost of cavity formation in surrounding solvent.
With a simple γA, all these surfaces would be a uniform blue.

linear dependence, typical γA methods give an erroneous prediction for the intercept,

γA+ b, where b = 0.92 kcal/mol corresponds to insertion of a solute of near zero size.

In reality, the value should be much closer to zero for a solute of zero size. Explicit

solvent simulations with TIP3P water give a value of ∼0.2 kcal/mol. Because our

Semi-Explicit approach derives from explicit simulations, our values approximately

equal the explicit values.

Figure 2.3b shows solvation free energies for the linear alkynes, from the various

models. Alkynes have a carbon-carbon triple bond at the end of the chain. In

GAFF,139 the dispersion interaction well-depth is twice that of carbon-carbon single

bonds. Like the explicit simulations, but unlike γA, the Semi-Explicit approach

captures the more favorable aqueous solvation of the alkynes relative to the alkanes.

Figures 2.4a and 2.4c show that the extra attraction for water of the alkynes is

localized near the triple bond.
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Hot spots: not all hydrocarbons are the same

Figures 2.4a and 2.4b show the LJ potential surfaces for n-pentane and cyclopentane.

Seams between atom surfaces form favorable interaction “hot spot” regions, while

methyl end-groups of the alkane chain are a deeper blue and less favorable. The

surface area of cyclopentane is less than n-pentane, but this only accounts for a

modest decrease of 0.2 kcal/mol in ∆G when using γA + b. This modest change is

much less than the greater than 1 kcal/mol decrease seen experimentally.8,9 Semi-

Explicit Assembly includes the effects of these “hot spots” and lowers ∆G by an

additional 0.4 kcal/mol. The remaining difference between the estimated and the

experimental value likely comes from approximations in the Semi-Explicit Assembly

approach, such as the void term discussed previously and the incomplete capturing

of solvent-solvent interaction enhancement from optimal hydration cages.

Polyaromatic hydrocarbons: linear and non-linear topological ef-

fects

The solvation free energies of polyaromatic hydrocarbons (PAHs) provide a more

stringent test. Aromatic rings have an important asymmetry. A water molecule at

the lateral edge ‘sees’ one methylene-like group and its two lateral neighbors. But a

water molecule centered above or below the plane sees 6 methylene-like groups; see

Figures 2.4d and 2.4e. These combined attractions counter cavity formation costs,
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resulting in more favorable nonpolar solvation with larger arrangements of aromatic

rings; see Figures 2.3c and 2.3d. The γA method errs by predicting that the nonpolar

term of PAH molecule solvation should be less favorable with increasing size. Semi-

Explicit Assembly correctly captures this non-additivity, and predicts that larger

PAH molecules should be more readily hydrated than smaller ones because of the

“hot spots” centered above and below the rings.

504 small solute molecules: a variety of molecular shapes

Here, we broaden our comparison to a large diverse test set of solutes. We have

calculated ∆G values for the same extensive test set previously studied by Mobley et

al.,93 which is a subset of the molecules explored by Rizzo et al. using various implicit

solvent methods.113 This is a diverse series of compounds that includes a variety of

common functional groups in different arrangements.

Figure 2.5a shows the finding of others93,113,128 that γA does not capture the nonpolar

or cavity component of the solvation free energies from explicit solvent simulations.

The correlation does not improve if a volume term replaces the area term.93 Fig-

ure 2.5b shows that Semi-Explicit Assembly gives much better agreement with the

atomically detailed simulations. The correlation coefficient for the latter is 0.91, as

compared to 0.15 for the former. The key component in this improvement is accurate

calculation of attractive interactions. This correctly lowers the ∆G values for solutes

that contain strong attractive elements, like the example cases shown in Figure 2.3.
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Figure 2.5: Correlation plots of ∆G values comparing a) γA + b and b) our Semi-
Explicit Assembly technique with the ∆G values from explicit solvent free energy
calculations. A detailed incorporation of dispersion interactions takes what was orig-
inally a flat correlation and brings it much more in line with explicit solvent results.
This results in a correlation coefficient improvement from 0.15 to 0.91 and an RMS
deviation decrease from 1.2 kcal/mol down to 0.3 kcal/mol over the entire set.

Summary

We have described an approach to modeling the solvation free energies of nonpolar

solutes in water. We call this approach Semi-Explicit Assembly since its parameters

are taken without modification from explicit solvent simulations. The primary com-

putational expense is a pre-computation step in which LJ spheres of various sizes

are simulated in explicit water MD calculations. Here, we used the TIP3P water

model at 300 K and 1 atm. However, this approach is general and is directly ex-

tensible to any explicit-water model, without modification, including to expensive

polarizable models for example, and at other temperatures and pressures. These

pre-computations intrinsically capture the various structural properties of the sur-
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rounding water that are needed to represent solvation free energies. This approach

does not require parametrization to large databases of solvation free energies. It goes

beyond simpler models in capturing solute shape effects, and not just dependences on

solute size. It also goes beyond simpler models in capturing some of the important

group non-additivities, but it retains a broader-scale “regional” additivity assump-

tion, so it is nearly as fast to compute as γA methods. Comparisons with explicit

solvent simulations of alkynes, branched alkanes, and planar and linear polyaromatic

hydrocarbons show that a critical aspect missing from simpler additivity-based mod-

els is that some hydrocarbons have hot spots, i.e., regions where one water molecule

comes into contact with many carbons at the same time, such as over the centers

of aromatic rings. These are regions that contribute to very favorable solvation in

water. The results presented show that it is not necessary to sacrifice computational

efficiency in order to achieve physically accurate representations of solvation.

2.4 Supplementary Information

Available online at http://pubs.acs.org/doi/suppl/10.1021/ja906399e
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Detailed comparisons with enhanced approaches for nonpolar sol-

vation

In the main text, we mentioned comparisons to alternative techniques for treating

nonpolar solvation. While these were omitted from the main text, we have included

them here for the interested reader. Here we have applied two of the more recent

approaches that address the flaws in γA by way of a similar approach, fitting the

repulsive and attractive parts of nonpolar solvation separately and recombining these

to get an overall picture of the process.128,136

Computational Methodology

APBS version 1.0.0 was used for the Wagoner & Baker method calculations.6 These

results were relatively resistant to changes in surface dot density, so those shown are

from single calculations at the default density (sdens) of 100 points/Å2. AMBER

10 was used for the Tan, Tan, & Luo method calculations.19,128 These results are

averaged from 5 calculations using dot densities (maxsph) of 300, 350, 400 (the

AMBER default), 450, and 500 dots per atom. Average errors were 0.04 kcal/mol

for weakly attractive molecules (like the n-alkanes) and 0.5 kcal/mol for strongly

attractive molecules (like the polyaromatic hydrocarbons).
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Figure 2.6: The nonpolar transfer free energy for a series of linear alkanes calculated
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Figure 2.7: The nonpolar transfer free energy for a series of linear alkynes calculated
with the same methods used in Fig. 2.6. The triple bond is located at the end of
the hydrocarbon chain in all cases. Because the carbon atoms in this bond are given
a more attractive dispersion interaction in GAFF,139 all methods which account for
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Figure 2.8: The nonpolar transfer free energy for the linear polyaromatic hydrocarbon
series ranging from benzene to hexacene calculated using the techniques described
previously. In the molecular diagrams along the x-axis, the color indicates relative
attractiveness of the molecular LJ potential, with red indicating strongly attractive
areas. In explicit solvent calculations, the ∆Gnp decreases with increasing size, despite
the increasing surface area. The more advanced approaches to nonpolar solvation
(particularly Semi-Explicit Assembly) do a much better job of capturing this effect
than γA.
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Figure 2.9: The nonpolar transfer free energy for a planar polyaromatic hydrocarbon
series ranging from benzene to perylene calculated using the techniques described
previoiusly. Like the linear polyaromatic series in Fig. 2.8, the ∆Gnp decreases with
increasing size in explicit solvent, despite the increasing surface area. The more
advanced approaches to nonpolar solvation (particularly Semi-Explicit Assembly) do
a much better job of capturing this effect than γA.
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Comparison results and discussion

The key point that can be taken from these comparisons is that aside from the linear

alkanes, these advanced techniques are more successful than γA at incorporating

attractive interactions with these solutes. They (like Semi-Explicit Assembly) exhibit

more favorable ∆Gnp values than γA in Figures 2.7, 2.8, and 2.9. In general, the Tan,

Tan, & Luo (TTL) method appears to perform better than the Wagoner & Baker

(WB) approach, exhibiting slopes closer to explicit solvent and capturing more of the

favorable attractive dispersion interactions. This is likely due to the former being fit

to a large set of explicit-solvent small molecule transfer free energies, while latter is

fit to forces on protein structures.

For further comparisons, we included calculations of the extensive set of 504 small

molecules discussed in the main text. Figures 2.10a and 2.10b show the correlation

between both the WB and TTL approaches with explicit-solvent respectively. Here,

we see that TTL has a tighter correlation with explicit-solvent than WB, resulting in

RMSD to explicit-solvent of 0.4 kcal/mol for TTL and 1.0 kcal/mol for WB. Both of

these results are less accurate than the 0.3 kcal/mol RMSD exhibited by Semi-Explicit

Assembly.

It is important to note that the performance of both WB and TTL could be improved

through additional fitting. WB has 3 free fitting parameters, and the optimal form

of TTL has 5 free fitting parameters. Achieving the best set of parameters is a
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Figure 2.10: The nonpolar transfer free energy for a) the 504 molecule set in Mobley
et al.93 calculated using the Wagoner & Baker method and b) a 445 molecule subset
of these molecules calculated using the Tan, Tan, & Luo approach compared to the
TIP3P results. The reason for the subset is that 59 of the molecules included atom
types outside the allowed parameter space for the ‘pbsa’ module of AMBER.
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challenging task, and it is difficult to insure transferability to molecules outside the

optimization set, so it is not surprising that these approaches do not perform as well as

Semi-Explicit Assembly in the systems explored here. These two approaches do have

the benefit of fewer free parameters than earlier approaches to nonpolar solvation,28,46

which assign 2 or 3 free parameters for each atom type. With upwards of 20 available

atom types, the parameter space becomes quite large, and the results are more a result

of optimal statistical fitting rather than reliance upon the underlying physics. From

this perspective, the use of only a single free parameter in Semi-Explicit Assembly

is a beneficial attribute. The results obtained using Semi-Explicit Assembly are not

as dependent a fitting procedure and are more a result of the actual physics of the

microscopic interactions.

Data Tables

Tables 2.1 and 2.2 list the ∆Gnp and rw values calculated for the series of Lennard-

Jones spheres used in this study. The cells of Table 2.1 are colored by the magnitude

of the associated ∆Gnp value: red being less and blue being more favorably solvated.
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Table 2.1: Calculated ∆Gnp values for the base LJ spheres used in this study.

εLJ σLJ (Å)

(kcal/mol) 0.6 1.4 2.2 3.0 3.8 4.6 5.4 6.2 7.0

0.0078125 0.417(3) 0.907(5) 1.66(8) 2.71(1) 4.06(3) 5.69(2) 7.58(4) 9.73(4) 12.09(4)
0.015625 0.412(4) 0.905(5) 1.68(8) 2.73(1) 4.10(2) 5.75(2) 7.59(3) 9.71(4) 12.15(5)
0.03125 0.386(4) 0.878(5) 1.61(9) 2.68(1) 4.01(2) 5.63(3) 7.42(7) 9.57(4) 11.78(8)
0.0625 0.332(4) 0.799(7) 1.51(9) 2.49(1) 3.79(3) 5.26(3) 7.00(4) 8.89(4) 10.85(5)
0.125 0.244(3) 0.632(6) 1.29(8) 2.17(3) 3.26(2) 4.57(3) 6.08(3) 7.65(4) 9.47(5)
0.25 0.088(3) 0.385(6) 0.88(8) 1.59(1) 2.47(2) 3.48(5) 4.63(3) 5.73(5) 6.98(5)
0.5 -0.139(4) -0.023(7) 0.25(9) 0.67(1) 1.15(4) 1.72(3) 2.16(3) 2.84(5) 3.15(5)
1 -0.504(7) -0.64(5) -0.72(1) -0.75(1) -0.85(3) -0.96(3) -1.32(4) -1.82(5) -2.51(9)
2 -1.047(4) -1.58(6) -2.18(1) -2.90(2) -3.84(2) -5.11(3) -6.62(6) -8.58(6) -11.06(6)
4 -1.868(6) -3.00(7) -4.36(1) -6.10(2) -8.30(5) -11.07(3) -14.45(4) -18.62(6) -23.81(6)

Table 2.2: Extracted rw values for the base LJ spheres used in this study.

εLJ σLJ (Å)

(kcal/mol) 0.6 1.4 2.2 3.0 3.8 4.6 5.4 6.2 7.0

0.0078125 1.98 2.35 2.72 3.08 3.45 3.82 4.19 4.57 4.95
0.015625 2.00 2.37 2.74 3.11 3.49 3.86 4.24 4.61 4.99
0.03125 2.01 2.39 2.76 3.14 3.52 3.90 4.28 4.66 5.04
0.0625 2.02 2.41 2.79 3.17 3.55 3.93 4.31 4.70 5.08
0.125 2.03 2.43 2.81 3.19 3.58 3.96 4.35 4.73 5.12
0.25 2.05 2.45 2.83 3.22 3.61 3.99 4.38 4.77 5.16
0.5 2.07 2.46 2.85 3.24 3.63 4.02 4.41 4.81 5.19
1 2.07 2.48 2.87 3.27 3.66 4.05 4.44 4.84 5.23
2 2.08 2.49 2.89 3.29 3.68 4.08 4.47 4.87 5.26
4 2.10 2.51 2.91 3.31 3.71 4.11 4.50 4.89 5.29
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Abstract

We describe a computational solvation model called Semi-Explicit Assembly (SEA).

SEA water captures much of the physics of explicit-solvent models but with com-

putational speeds approaching those of implicit-solvent models. In this model, we

perform explicit-solvent precomputations to create a map of local water solvation

behavior around a set of systematically chosen spheres, having different electrostatic

and van der Waals parameters. At runtime, the first shell of waters around the full

solute molecule is assembled by looking up the properties of first shell waters around

the solutes component spheres and distant effects are handled using a solvent con-

tinuum. SEA fixes some flaws of implicit-solvent models by incorporating regional

additivity to account for curvature and neighbor-interaction effects, by accounting

for the discrete nature of microscopic water at a solutes surface, and by treating ex-

plicitly waters asymmetrical dipole. SEA does not involve parameter fitting, because

the solvent properties are taken directly from the given underlying explicit-solvation

model. Extensive tests against five different homologous alkyl series, a set of 504 var-

ied solutes, solutes taken retrospectively from two solvation-prediction events, and a

hypothetical polar-solute series show that SEA is about as accurate as explicit solvent

simulations, and is about 100-fold faster than Poisson-Boltzmann calculations.
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3.1 Introduction

We describe here an approach for computing the free energies of solvation of so-

lutes in water. Aqueous solvation has been modeled at different levels, ranging

from detailed quantum mechanics simulations of few-molecule clusters,114,132,142 to

faster classical simulations of liquid water using up to tens of thousands of ex-

plicit molecules,25,30,56,78,80,84,92,93,98,99,117,118,134 to very fast models in which water is

treated implicitly as a simple uniform continuous medium.21,28,45,83,105,113,125,131 For

large computations, such as those in typical biomolecule simulations, explicit-water

modeling is too slow and expensive, so it is common to use implicit water instead.

However, implicit models require trade-offs in the physics that can limit their accu-

racies:

1. Continuum. Water is treated as a continuum, rather than as particulate

molecules. This can miss important properties of water structuring in first and

second solvation shells.

2. Local additivity. The free energy of solvation is taken to be a sum of free

energies over solute atoms or small subgroups, whereas, in reality, near-neighbor

effects and nonadditivities are not uncommon.32,85

3. Independence of molecular shape. The nonpolar solvation free energy is

approximated (in commonly used γA terms) as depending only on the area A

of solute contact with water, while the free energy can have additional depen-

dencies on the solute’s molecular size or shape.25,36,128,136
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4. Water’s dipolar asymmetry. A water molecule is approximately spherical,

but it’s electrostatic dipole is not coincident with it’s center of mass. Water’s

partial negative charge is on its oxygen, near the center of the molecule, while

water’s partial positive charges are on its hydrogens, nearer to the surface. Be-

cause of this asymmetry, a water molecule is less attracted to a spherical cation

than to a spherical anion of identical size.59,73,112 Implicit-solvation models

typically compensate for this effect by an empirical adjustment of cationic radii

relative to anionic radii.73 However, attempting to ‘fix’ in the solute what is

fundamentally a limitation of the water model can lead to non-transferabilites

of the parameters in implicit solvent models.

It would be useful to have a computational model of water that is both fast – approach-

ing the speeds of the fastest implicit-solvent models – and that captures the physics

and the transferability of explicit-solvent models. Many researchers have contributed

to this goal by adding polarization or discretization effects to implicit-solvent mod-

els,42,90,107 developing faster or coarse–grained explicit solvents,17,20,38,61,81,86 and in-

troducing hybrid models that mix explicit and implicit solvents together.7,60,69,77,82,141

Here, we take a different approach. We pre-compute solvation properties of water in

explicit-solvent simulations that we then capture as approximate one-body terms,

which we then sum over assemblies of a solute’s component spheres. We call this

approach Semi-Explicit Assembly, or SEA water.
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3.2 Theory

In the SEA approach, we assume that the free energy of interaction, ∆G, of a solute

molecule with its solvating water molecules, is a sum of three terms,

∆G = ∆Gnp + ∆Gpol,surf + ∆Gpol,bulk. (3.1)

∆Gnp is the free energy of forming the cavity the solute occupies in water and includes

the dispersion interactions between the solute and the waters. For purely nonpolar

solutes, such as simple hydrocarbons, ∆Gnp is the only substantial contribution to

∆G. For solute molecules that are polar or charged, the total solvation free energy

also has two additional terms (see Equation 3.1): ∆Gpol,surf describes the electrostatic

interactions of the solute with the immediate-neighbor first-shell water molecules that

surround it, and ∆Gpol,bulk describes the electrostatic interactions of the solute with

the water molecules that are more distant than the first solvation shell.

For the nonpolar component ∆Gnp, the SEA approach is described in detail else-

where.36 In the present paper, we describe the SEA treatment of the two polar

terms. We compute these polar components using two steps: (1) a slow series of pre-

simulations for a given solvent and (2) a fast summation of component free energies

for a given solute.
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SEA Step 1: Pre-calculations on solute spheres in

explicit water

SEA treats a solute molecule as a collection of ‘atomic’ spheres of different types and

sizes (i.e. different Lennard-Jones parameters and different partial charges). The first

step in SEA modeling is to pre-calculate the positions and orientations of explicit-

water molecules around those component building-block spheres. SEA can use any

given explicit-solvent model. Here, to illustrate the principle, we use the TIP3P water

model.65

We start by solvating a series of individual spheres in baths of explicit water. Spheres

span a range of different sizes and Lennard-Jones parameters (6 ε values and 6 σ

values) and a range of 11 different partial charges. In total, we do pre-computations

on 396 different types of spheres in TIP3P water. Each sphere is simulated for 10 ns

at the desired state point, 1 atm and 300 K. From each such simulation, we harvest

the statistical properties of water distances and orientations around the sphere. For

each type of sphere, we calculate the average distance between the solute and the

water (the peak of the solute to water radial distribution function). Calculating ra-

dial distribution functions for water around these spheres, we found that the width

of the first hydration shell extends out 1 to 3 Å from the van der Waals surface of

the spheres, depending on the solute charge. We use a 2 Å cutoff distance from the

surface of each solute to define the ‘first shell’ (Fig. 3.1a) to insure we include most

to all the first shell waters without including any ‘second shell’ water population,

which begins to grow beyond this distance around the more highly charged solutes.
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Within this region, we calculate the average number of water molecules and gener-

ate nearest–neighbor distribution functions. These distribution functions tell us the

average distance between first shell waters about a given solute sphere.

Because many of these solute spheres have electrostatic charges, the resultant solvat-

ing first-shell water dipoles will have a distribution of orientations with respect to the

sphere center. To determine the dipole orientation of an average water molecule, we

first align all of the first-shell water molecules onto a common axis normal to the sur-

face of the solute sphere (Fig. 3.1b). The solvent atom orientations with respect to this

axis are then binned (Fig. 3.1c). Fig. 3.2 shows a series of these solvent-orientation

maps around spheres having charges ranging from -1 to +1. Not unexpectedly, it

shows that water dipoles orient most strongly around spheres having the strongest

electrostatic potentials, i.e. around spheres having the largest absolute charges. The

figure shows water’s average dipole along the common axis; in the supplementary

material, we also discuss a more detailed approximation based instead on water’s

projected quadrupole moment.

Fig. 3.3 shows that the average first shell water dipole moment has a simple functional

relationship vs. the strength of the electrostatic field from the solute sphere. This

universal relationship is useful because it allows us to replace a simulation lookup

with a simple sigmoidal functional form. These sigmoidal functions:

f (x) =
1

c0 + exp (c1 · x)
+ c2, (3.2)
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c

b

a

Figure 3.1: The pre-computation step. (a) Simulate the waters around a sphere. (b)
Superimpose all the first-shell waters onto a common axis relative to the solute-sphere
center. (c) Create an atomic density map.
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0 +δ+δ-–

Figure 3.2: Solute spheres having different charges lead to different distributions of
first-shell water hydrogen and oxygen atoms, and therefore to different degrees to
which water’s dipole is oriented relative to the common axis.

have coefficients c0, c1, and c2 which come from separate non-linear curve fits of

the positive and negative electrostatic field regions of Fig. 3.3. These component

curves have different shapes and limits because of the asymmetry of water’s dipole

moment.25,59,73,92,112 Around positive spheres, the limit of the sigmoidal curve co-

incides with the dipole moment of the TIP3P water model since water’s dipole mo-

ment points normal to the solute surface in the optimal electrostricted configuration.

Around negative spheres, water points one hydrogen towards the solute center in the

optimal electrostricted configuration (see Fig. 3.2) and water’s dipole is no longer

normal to the surface, resulting in a negative curve limit that is smaller than the

TIP3P dipole moment.
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Figure 3.3: The TIP3P water dipole free energy as a function of electric field strength
emanating from spheres of different charge and size. The red and blue lines are
sigmoidal fits to the data for dipoles pointing toward and away from the surface of
the spherical solute respectively.
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a b

Figure 3.4: The SEA sampling process around pyridine. (a) A solvent-accessible
dot surface is constructed using pre-computed water-sphere average distances. (b)
Sites are selected on this surface, and dipoles are placed at these sites according to
the electric field. Note that sites where the electrostatic field is stronger (i.e. near
the nitrogen) have longer dipoles than weaker sites, as indicated by the two opaque
dipoles. Interactions are accumulated for all the point charges in the cavity to get
∆Gsurf , and the total dipole in the molecular cavity is used to determine a reaction
field term for ∆Gbulk. This sampling process is iterated to converge on ∆Gpol.

SEA Step 2: Assembling the solvent shell around an arbitrary

molecule

Once the pre-computations have been performed, the SEA water model can be used

for the rapid computation of the hydration free energy of a given solute. The first

step is to determine the surface polarization term, ∆Gpol,surf . This requires placement

of surface water dipoles in physically representative locations and orientations. We

do this by first generating a solvent accessible dot surface about the solute of interest

(Fig. 3.4a). Rather than using the traditional route of ‘rolling a hard sphere’ of some

fixed size over the molecule to generate a Lee–Richards or Connelly surface,26,74 we

50



use instead our pre-computed average separations between a water molecule and the

sphere center. This strategy captures various physical aspects of solvation, such as

the fact that water molecules are held more tightly to solutes having higher charge

than to solutes having lower charge.

We select a solvation site at random on this surface and compute the electric field at

this point due to all the solute atoms using

E =
N∑
i=1

1

4πε0

qi
r2
ij

r̂ij, (3.3)

where qi is the charge on solute atom i and rij is the distance between site j and solute

atom i. Using the electric field association functions (Fig. 3.3), the appropriate dipole

(or quadrupole) is placed at this site along the electric field line. After placing this

dipole, surface water sites that are too close are eliminated. The random placement

procedure then continues until all possible solvation sites are occupied or eliminated.

Fig. 3.4b shows one such configuration about pyridine, where the dipoles are uniformly

elongated for clarity. Note that magnitude and direction of the solute electric field

is visible through the nature of the placed dipoles. The dipoles are long and point

towards the nitrogen atom as it has a large negative partial charge, while the dipoles

around the hydrogen atoms are short and point away from the solute surface.
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After generating a solvent configuration around a solute, the surface interactions are

accumulated into ∆Gpol,surf using

∆Gpol,surf = ∆Gsol−solv + ∆Gsolv−solv, (3.4)

where sol refers to solute particles and solv refers to solvent particles. For a dipolar

solvent representation, this can be explicitly written in terms of Coulombic sums as

∆Gpol,surf =
1

4πε0

(
N∑
i=1

M∑
j=1

qiqj
rij

+
M−3∑

i=1,3,5,...

M∑
j>i+1

qiqj
rij

+
M−2∑

i=2,4,6,...

M∑
j>i

qiqj
rij

)
, (3.5)

where N is the number of solute atoms and M is the number of solvent partial

charges. Equation 3.5 gives a free energy, rather than a potential energy, because

the positional and orientational entropies of the water molecules are captured by the

pre-computations.

To estimate the total polar component of solvation, we need the first–shell/surface

component described above and the bulk component of the electrostatic free energy

of solvation. We estimate this quantity using the Onsager reaction field,5,104

∆Gpol,bulk =
ε− 1

2ε+ 1
· µ

2

r3
c

, (3.6)

where µ is the dipole moment vector of the solute cavity of radius rc and ε is the

dielectric constant of the continuum. Here, rc extends from the geometric center

of the solute out to the outer boundary of the furthest semi-explicit shell (see the
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spherical cavity in Fig. 3.4b). We approximate the cutoff for this reaction field as if

it were spherical. This type of reaction field should give a good approximation for

neutral polar molecules, which are our primary focus here, but for solutes having a

formal net charge, an additional Born term will be needed.2,29,67,69,141

The procedure described above is based on one particular placement of water molecules

in the first solvation shell. Clearly, any single such configuration may not be fully

representative. So, we repeat the random dipole placement five times to estimate

the variance of the ∆Gpol as a function of water placement. This variance tells us

how many additional sampling iterations are needed to converge an averaged ∆G to

a specified standard error.

Finally, we accumulate these solvation-shell snapshots into a Boltzmann-weighted

average. We calculate the probability, pi, of shell-configuration i using,41

pi =
e−∆Gi/kBT

N∑
j=1

e−∆Gj/kBT

, (3.7)

where N is the total number of solvation configuration samples. The average free

energy is the weighted sum over the different shell configurations,

〈∆G〉 =
N∑
i=1

∆Gi · pi. (3.8)
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3.3 Computational Methods

Explicit Simulations

The simulations of model spheres were performed using GROMACS 4.0.4.11,55 In

these calculations, statistics for four spheres were accumulated simultaneously by

bonding them in a tetrahedral geometry with 20 Å edge lengths between each particle.

The charges of these four particles were assigned such that each tetrahedron is net

neutral, and they included values ranging from -1 to +1 in increments of 0.2. Separate

simulations were performed for different sets of Lennard–Jones parameters. Model

sphere diameters included σ = 1.4, 2.2, 3.0, 3.8, 4.6, and 5.4 Å, while well–depths

included ε = 0.015625, 0.03125, 0.0625, 0.125, 0.25, and 0.5 kcal/mol. Each of the

resulting 108 tetrahedral arrangements was solvated in a cubic box of TIP3P water

with a 12 Å buffer of water between any solute particle and face of the simulation

cell.

Each solvated tetrahedron was simulated under periodic boundary conditions in the

NPT ensemble at 300 K and 1 atm using the Nose-Hoover thermostat and Parrinello-

Rahman barostat with time constants of 1 and 10 ps respectively. The dynamics

were propagated with the leapfrog integrator with a timestep of 2 fs. The Lennard-

Jones interactions were switched off between 8 and 9 Å, with long-ranged energy and

pressure terms included. Smooth PME34 was used for electrostatics with a real-space
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cutoff of 10 Å, spline order of 4, Fourier spacing of 1.2 Å, and relative energy tolerance

of 10−5. Trajectory snapshots were saved at 1 ps intervals for the post–processing

described in the main text.

Details of the implementation

Solvent-accessible surfaces for SEA calculations were constructed as described in our

previous work.36 The surface detail was set to approximately 80 surface points per

solute atom. A minimum of 5 Semi–Explicit solvation configurations were sampled,

and this iteration process was continued until the accumulated ∆Gpol converged with

an error of ∼0.05 kcal/mol.

Force fields and conformation sampling

The General Amber Force Field (GAFF)139 was used to assign Lennard-Jones pa-

rameters for all of the small molecules. AM1-BCC partial charges63 were assigned

to initial minimized structures using the ANTECHAMBER program in AMBER.140

As these structures may not be the ideal representative structures of the molecules

in solution, we generated short conformation ensembles for each from 500 ps of MD

in explicit solvent using GROMACS 4.0.11,55 The results were clustered to obtain an

average representation of the small molecule, and the partial charges were reassigned

using this averaged conformation.
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In the cases where conformation plays a role in the calculated transfer free energies,

an ensemble of conformations is necessary to obtain an accurate estimation. We

generated solute conformation ensembles from 5 ns explicit solvent MD simulations

with 2, 20, and 200 ps snapshot intervals for all small molecules investigated in this

study. The various conformation sets all gave results that overlapped within error,

so we used the ensembles generated from the MD simulations with 200 ps snapshot

intervals (25 conformations) for maximum efficiency. The free energies reported for

each solute from SEA and the implicit solvent models come from averages over these

25 conformations.

Implicit-solvent calculations

Implicit solvent results were obtained for the Poisson–Boltzmann (PB) and general-

ized Born (GB) methods using version 1.0 of the Adaptive Poisson–Boltzmann Solver

(APBS)6 and the OBC implementation of GB in AMBER 10,19,105 respectively. For

the APBS calculations, the nonpolar term was computed using the APBS dispersion

incorporation method.136 The PB equation was solved on a 65 x 65 x 65 grid with 0.25

Å spacing to determine the polar component of solvation. In the GB calculations,

γA was used for the nonpolar term with a γ of 5 cal mol−1 Å−2.
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3.4 Predictions and comparisons with experiments

We now compare the SEA water model to experiments, to explicit-solvent simulations,

and to PB and GB models of solvation.

(1) Comparing SEA to other methods and to experiments on ho-

mologous series of alkyl chains terminated by different functional

groups

Fig. 3.5 shows calculated solvation free energies, ∆G, for 5 series of alkyl chains

terminated by common organic functional groups. The figures compare SEA to ex-

periments, TIP3P simulations, and GB. First, SEA gives good agreement with the

TIP3P results, within 1 kcal/mol in all cases. Because the parameters used in SEA

water modeling are identical to those of TIP3P, this shows that SEA’s sampling and

regional additivity approximation are not degrading the quality of predictions relative

to the much more expensive explicit-solvent simulations.

Second, while TIP3P and SEA both give good estimates of experimental ∆G values for

acetates, aldehydes, and phenyl groups, both methods predict solvation free energies

for the alcohols and amines that are too positive. This indicates that the combination

of GAFF and the AM1-BCC partial charges used in the underlying explicit-solvation

model needs improvement for these functional groups. Such errors have been noted

before in the explicit-solvent models.84,93,134
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Figure 3.5: Functional group comparisons for the linear alkyl series of a) acetates, b)
aldehydes, c) phenyls, d) alcohols, and e) amines. Experimental results come from
Ref. 4 and the TIP3P results from Ref. 93. The GB results are from Amber 10 using
iGB5 and γA with γ = 5 cal mol−1 Å−2.105
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Third, we find that GB gives free energies of solvation that are too negative in all

cases except for the amines, where it matches experiments quite accurately. The

errors in GB can be partly corrected by using the nonpolar SEA term in place of

the standard γA term, resulting in a general 0.2–0.4 kcal/mol improvement for these

molecules.

(2) Comparing SEA to other methods on a diverse set of

504 small molecules

Next, we explore a larger and more diverse set, containing 504 different small

molecules.15,93,113 This has become a canonical test set for solvation free-energy mod-

eling because of the availability of both experimental data and of extensive TIP3P

explicit-solvent simulation results.93

Fig. 3.6 compares GB, PB, and SEA with the TIP3P simulation results. Taking

TIP3P as the ‘gold standard’ for this test, the figure shows systematic improvement

from GB to PB to SEA. Again, as in the homologous series tests above, SEA is

within 1 kcal/mol RMSE relative to TIP3P. Thus, while there is a large gain in

computational efficiency from TIP3P explicit-solvent simulations to SEA, there is

little loss in predictive accuracy for computing solvation free energies.

59



RMSE: 2.87 kcal/mol

a

b

c

RMSE: 1.96 kcal/mol

-30 -20 -10 0

SE
A 

∆G
ca

lc
 (k

ca
l/m

ol
)

G
B 

∆G
ca

lc
 (k

ca
l/m

ol
)

-30

-20

-10

0

TIP3P ∆Gcalc (kcal/mol)

RMSE: 0.81 kcal/mol

PB
 ∆

G
ca

lc
 (k

ca
l/m

ol
)

-30

-20

-10

0

-30

-20

-10

0

Figure 3.6: Scatter plots of a) GB,105 b) PB,6 and c) SEA air-water ∆G transfer
values against TIP3P calculations.93 If the single largest outlier (triacetylglycerol)
in the GB and PB calculations is removed, the RMSEs decrease to 2.78 and 1.77
kcal/mol respectively.
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The PB and GB implicit-solvent models tend to solvate many of these molecules more

favorably than SEA or explicit solvent. There are some exceptions where GB returns

significantly less favorable solvation free energies than TIP3P, and these are nearly all

molecules with buried amines, like piperazine and triethylamine. Here, the strongly

charged nitrogen atoms have limited solvent exposure and do not fully contribute to

the overall solvation favorability. The balance of Born radii in such groups has been

recognized as a reason behind overly strong salt–bridges in protein simulations using

GB, and suggested corrections have included resizing the radii of atoms attached to

these nitrogens to fit to explicit solvent energetics.48 Both PB and SEA appear to

avoid suffering from this issue.

Computational performance of SEA vs. TIP3P, PB and GB

Fig. 3.7 compares the performance (computational speed per ligand vs. the RMSE

free-energy accuracy to experiment) of the various computational methods applied to

the test set of 504 small molecules described above. While there are many different

implicit-solvent implementations available, our test here is only intended as a general

sketch, not an exhaustive and detailed comparison. Briefly, TIP3P is about 108-fold

slower than GB (the fastest method) in calculating solvation free energies, and that

the RMSE errors in GB are about 2.8 kcal/mol while the RMSE errors in TIP3P are

about 1.2 kcal/mol. SEA provides an excellent compromise: while ∼ 10-fold slower

than GB, it is faster than PB and the RMSE errors are smaller than either, about

1.3 kcal/mol.
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Figure 3.7: The average execution time per solute versus the RMSE to experiment
for calculations on the 504 small molecule solute set. Note that the vertical axis is
a logarithmic scale. The light-gray region indicates the region of performance faster
than GB and more accurate than TIP3P, a target realm for future solvent models.
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One advantage of the TIP3P simulations is that they automatically generate multi-

ple conformers of the solute, and given sufficient sampling will generate a properly

weighted conformational ensemble. However, most of the small molecules in this

test set have few rotatable bonds, leading conformations to only play a minor role

in solvation of these solutes. This fact has been used to justify single conformation

calculations on larger sets.15,113 We decided to consider solute conformation effects

in Fig. 3.7, and the error bars on the PB, GB, and SEA points show the average

standard error per solute over 25 solute conformations. These errors indicate that

the average standard deviation of ∆G for each of these methods is 0.2–0.3 kcal/mol.

This error comes primarily from solutes with polar groups at different ends of rotat-

able bonds, like diols. These tend to be some of the most strongly hydrated solutes,

so while fluctuation magnitudes can be greater than kBT with different conformations

of these molecules, the fluctuations tend to be less than 20% of the total solvation

free energy.

There are a variety of methods available for generating solute conformation ensem-

bles for implicit solvents, from specialized programs like OpenEye’s Omega to general

molecular mechanics simulations. Generating a weighted ensemble of conformations

often takes longer than individual implicit solvent calculations on a given conformer,

and this is certainly the case for the present approach of extracting regular confor-

mations from a 5 ns explicit-solvent simulation. As generating conformations would

dominate the computation time, we would not be able to distinguish between the

computational costs of PB, GB, and SEA, so we neglect the time preparing confor-

mations in Fig. 3.7.
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Random configuration sampling vs. Boltzmann weighting

The solvation shell sampling process in SEA is initially random, and we re-weight the

average ∆G according to equation 3.8. How much of an effect does this have on the

final energies? We compared the random average and Boltzmann-weighted average

∆G values for the 504 small molecule set and found the error to TIP3P and to

experimental results to be identical. Such is expected for non-polar molecules, where

the first–shell water dipoles are weak and contribute little to favorable solvation,

so we ordered the results by their dipole moment as a measure of relative polarity.

There was no observable difference between these averages for any arbitrary subset

of polar molecules. These results indicate that the first–shell assembly procedure is

successfully producing thermally relevant solvent configurations simply using steric

exclusion of neighboring solvation sites.

(3) Retrospective analysis of SAMPL blind-test

solvation predictions

Recently, a community-wide blind prediction event for small-molecule solvation free

energies, called SAMPL, has been run by OpenEye Software.50,99 The SEA method

that we describe in this paper has not yet been tested in that event. (We tested

an incomplete version without water dipoles or solute conformational sampling in

SAMP09). Here, as a second-best alternative to a blind test, we retrospectively test

the present SEA approach predictions on the solute molecules from both prior SAMPL

events.
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As we found in the other two comparisons above, the SEA model performs at about

the same level of accuracy as the TIP3P model on which our model is based. Fig. 3.8a

shows the calculated ∆G versus experiment for the 56 SAMPL-1 molecules. The re-

sulting scatter is similar to that observed from explicit solvent simulations.96 The

RMSE of SEA vs. experiments is 4.1 kcal/mol, compared to 3.8 kcal/mol for TIP3P,

using AM1-BCC partial charges. Both SEA and explicit solvent have the same prob-

lems: they don’t handle well molecules containing sulfur or phosphorus, a difficulty

that is likely due to the GAFF force field parameters for these atom types.96

Fig. 3.8b shows 23 SAMPL09 molecules, and the RMSE for this small set is under

2 kcal/mol. The two largest outliers are d -xylose and d -glucose. For these sugars,

SEA predicts solvation free energies that are 4 and 5 kcal/mol less favorable than

experiments. Taken together with the alcohol comparisons in Fig. 3.5d, it suggests a

problem in the force field parameters for hydroxyl groups. While it would be unfair

to compare our current retrospective results with the prospective tests made by other

groups in SAMPL, nevertheless the present tests indicate that SEA is comparable to

the best current prediction methods. Because the SEA method does not involve the

fitting of free parameters, it is reasonable to expect that SEA should perform with

about the same RMSE accuracy as TIP3P simulations in future such tests.
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blind prediction molecules of the SAMPL-1 event and the b) 23 blind prediction
molecules in the SAMPL09 event.
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(4) SEA fixes some physical flaws in implicit-solvent models

Because water’s dipole is asymmetric, it means that positively charged atoms of a

given radius solvate less favorably than negatively charged atoms of the same ra-

dius.25,59,73,92,110,112 Such asymmetries in the physics are not directly captured in

implicit-solvent models. In implicit-solvent models, this asymmetry is handled in-

stead by empirical readjustment of solvation radii. To understand this asymmetry

more quantitatively, Mobley et al. created a series of polar molecules that they sol-

vated in explicit solvent.92 These fictitious benzene-like ‘bracelet’ molecules were

created to have either positive heads or negative heads, and were otherwise net neu-

tral. The difference in free energy of solvation of the positive-head bracelet and

negative-head bracelet was found to be about 10 kcal/mol. Zero difference in free

energy would have been expected from implicit-solvent models. This is a useful test

set of molecules for exploring whether SEA water modeling properly captures water’s

dipolar asymmetry.

Fig. 3.9 shows the results for bracelets of different sizes and shapes. It shows that

while SEA does capture the physics of the asymmetry, it underestimates the free en-

ergy difference of the asymmetry. We find, however, that if we go beyond just using

dipolar representation of water in SEA modeling, and use a quadrupolar representa-

tion instead, the agreement with TIP3P simulations is much better. A quadrupole

gives a better fit to the water response map around atoms having a formal negative

charge (see Fig. 3.2), like the head atom on the negative bracelets.
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polygons studied in Ref. 92. In this case, one atom of each polygon has a formal
charge, while the neutralizing counter charge is distributed evenly among the remain-
ing atoms, as shown in the 6 sided bracelet illustration on the left.
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3.5 Conclusions

We have described a method, called SEA, for computing the free energies of solvation

of solutes in water. SEA uses pre-computations with some chosen explicit-solvation

model and then assembles solvation shells of water in order to compute solvation

free energies of arbitrary solutes. Here, we performed these pre-computations using

TIP3P water, though more complex models, such as polarizable water models, or non-

aqueous solvents would also be practical. SEA aims to correct some of the physical

deficits of implicit-solvent models, such as water’s asymmetrical dipole, the lack of

particulate water in the first solvation shell, the local additivity approximation, and

the assumption that the free energy of cavity creation depends only on solute surface

area and not on its shape. We have shown that SEA water predicts the solvation

free energies for a range of non-polar and polar small molecules at approximately

the same accuracy as in TIP3P computer simulations, but it runs much faster than

explicit simulations, much closer to the speeds of implicit solvent models.

3.6 Supplementary Information

Available online at http://www.pnas.org/content/108/8/3234/suppl/DCSupplemental
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Nearest–neighbor distribution function analysis

From the set of precomputation simulations, we generate simplified free energy rep-

resentations of the local solvent molecules about single spheres. To assemble the

solvation behavior around a given arbitrary solute, it is important that these solvent

representations are placed on the surface in a physically reasonable manner, basically

in a manner that mimics how explicit solvent occupies the surface of the solute. If

they are too close to one another, the solvent–solvent interaction term may be too

strong, leading to artificially unfavorable solvation. To obtain more physical spatial

solvent arrangements, we place the dipoles or quadrupoles in accordance with the

surface solvent nearest–neighbor distribution functions.

Weak Field
(less electrostriction)

Strong Field
(more electrostriction)

rij(short) 

rij(long)

Figure 3.10: With weaker solute–solvent interactions (weak field), surface water is
more free to form hydrogen bonds, leading to separation distances (rij) similar to
bulk water ( 2.7 Å). With strong solute–solvent interactions (strong field), a surface
water molecule is unable to form hydrogen bonds with neighboring surface waters,
leading to longer separation distances.
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The idea behind the surface solvent nearest–neighbor distribution function (PNN) is

to determine from explicit solvent simulations a solvent arrangement connection to

the degree of electrostriction about a solute. Fig. 3.10 illustrates the observed be-

havior of water around weakly and strongly charged solutes. As the solute–solvent

interactions become stronger (with increasing charge magnitude), the water becomes

more strongly pinned to the solute and less able to form optimal hydrogen bonds

with neighboring surface waters. Unable to form favorable interactions, surface wa-

ters interact in a more repulsive fashion, leading to longer separation distances. To

determine these separation distances, we go to the extracted first–shell explicit sol-

vent trajectories discussed in the main text, and bin water–water separations between

nearest–neighbor waters. This can be determined as

PNN(rij) =
1

M · 〈NAB〉

M∑(
NA∑
i∈A

NB∑
j∈B

δ (min rij)

)
. (3.9)

Here, M is the number of configuration frames, 〈NAB〉 is the average number of water

molecules in frames where there exist at least 2 molecules (one termed A and the other

B), and δ(min rij) is a delta function for each minimum rij value. Numerically, Eq. 3.9

is equal to 1, but the shape of PNN as a function of rij is what we are interested in.

The curve is peaked at the most populated surface solvent separation distance. Thus,

for a given solute electric field strength, we know the optimal water spacing about a

possible surface site.
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In practice, we generate a table (see Tab. 3.2) of these PNN peak values as a function

of solute charge and size (i.e. local curvature). After placing a water representation

dipole on the solute surface, we eliminate all possible subsequent sites that have

distances shorter than those composing this peak. This eliminates unphysically close

solvent placement.

Dipolar and quadrupolar free energy representations of solvent

One of the key goals of Semi-Explicit Assembly is to reproduce the surface water

polarization response from explicit solvent simulations. This is accomplished through

the creation of free energy maps of the surface solvent molecules. These maps then

need to be placed about the solute surface accordingly so that we can accumulate the

polar solvation free energy due to surface water. In an effort to keep SEA conceptually

simple, we decided to start with the most straightforward electrostatic representation,

a simple dipole. As the electric field about the simple spherical solutes in our explicit

solvent simulations is always normal to the surface, we decided to condense these

maps onto a single normal vector to generate our ‘free energy dipoles’.

Fig. 3.11 illustrates the process used to perform this transformation. Charge density is

binned along the normal vector dimension to determine the local charge distribution

relative to each spherical solute surface. To generate a dipole representation, the

partial charge of the explicit water model’s oxygen is assigned to the location of

average negative charge density, while a neutralizing positive partial charge is assigned

to the location of the average positive charge density.
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Free Energy Map Normal Projection Dipole Quadrupole

a b c d

Figure 3.11: For each spherical solute simulation, the a) resulting free energy map
is binned along the vector normal to the solute to generate a b) projection of the
charge density along this vector. This charge density projection can be simplified to
a c) dipole or d) quadrupole by calculating the locations of the average density of the
positively and negatively charged distributions in the normal projection.

In the main text, we discussed a quadrupolar representation that could be used in

place of the simple dipole representation. A quadrupole comes naturally from the

free energy maps for water, because the hydrogen atoms easily separate out into two

distinct distributions, one near to and the other far from the solute surface. When

generating the free energy map, we actually classify these two hydrogens to separate

near and far distributions, and place water hydrogen partial charges at the average

distance of these distributions from the solute. This results in a linear quadrupole as

seen in Fig. 3.11d. This is easily represented as two dipoles, and we can apply separate

electric field curve fits to each. The benefit to a quadrupole representation is apparent

around negatively charged solutes, as one of the solvent partial positive charges can get

considerably closer to the solute. Drawbacks of a quadrupole representation include

increased complexity and performance degradation in the interaction accumulation

loop due the additional solvent site.
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Electric field fits and data tables

The explicit solvent pre-simulations provide us with simple measures of surface sol-

vent response. These measures include radial water distances, free energy dipole

magnitudes in electric fields near a solutes surface, and water–water separation dis-

tances. We have also accumulated mean molecular occupancy values (and occupancy

distribution variances) for the first solvation shell; however, these rarely get used as

the water–water separation distances already help limit the number of “waters” that

solvate each solute atom. While we have already accumulated and continue to ac-

cumulate all these quantities for other solvent types, we include below the relevant

plots and tables for TIP3P at 300 K and 1 atm, the solvent and state point used for

the SEA calculations in the main text.
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Figure 3.12: Sigmoidal curve fits to the positive and negative field regions of the
dipole charge separation vs. surface electric field plots. The sign indicates direction
of the dipole – with positive the partial positive charge is further than the negative
from the solute and with negative it is nearer to the solute. These fits are done in
internal units rather than SI units for ease in semi-explicit configuration assembly.
One can multiply by 4.006 to convert charge separation to Debye, and multiply the
electric field by 16.02/(4πε0) to convert qÅ−2 to N/C.

75



1
c0 + exp ( c1 · x) + c2

-0.4 -0.2 0 0.2 0.4
Electric Field at the SAS (q Å-2 )

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

W
at

er
 D

ip
ol

e 
C

ha
rg

e 
Se

pa
ra

tio
n 

(Å
)

c  : 0.629290

c  : -25.37401

c  : -0.9594332

c  : 0.7292910

c  : -14.22221

c  : -0.9252532

Figure 3.13: Sigmoidal curve fits to the positive and negative field regions of the inner
dipole charge separation of the quadrupole vs. surface electric field plots.
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Figure 3.14: Sigmoidal curve fits to the positive and negative field regions of the outer
dipole charge separation of the quadrupole vs. surface electric field plots.
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Table 3.1: Extracted rw values from the base LJ sphere pre-simulations used in this
study. These come from water-oxygen/solute radial distribution functions, and are
used in assembling the solvent accessible dot surface for iterative sampling to calculate
∆Gpol.

εLJ σLJ (Å)

(kcal/mol) 1.4 2.2 3.0 3.8 4.6 5.4

-1
0.015625 1.74 2.04 2.39 2.91 3.41 3.88
0.03125 1.60 2.08 2.46 2.98 3.47 3.94
0.0625 1.65 2.14 2.56 3.05 3.54 4.01
0.125 1.70 2.19 2.65 3.13 3.61 4.08
0.25 1.76 2.26 2.73 3.21 3.68 4.14
0.5 1.83 2.33 2.82 3.29 3.76 4.21

-0.8
0.015625 1.65 2.01 2.49 3.00 3.50 3.97
0.03125 1.66 2.10 2.56 3.07 3.57 4.03
0.0625 1.71 2.18 2.64 3.15 3.63 4.09
0.125 1.76 2.25 2.72 3.22 3.70 4.15
0.25 1.82 2.33 2.81 3.30 3.77 4.21
0.5 1.88 2.40 2.88 3.37 3.83 4.27

-0.6
0.015625 1.62 2.07 2.62 3.15 3.63 4.07
0.03125 1.69 2.15 2.69 3.21 3.68 4.12
0.0625 1.79 2.23 2.77 3.28 3.74 4.18
0.125 1.85 2.32 2.84 3.34 3.80 4.23
0.25 1.91 2.40 2.92 3.40 3.85 4.28
0.5 1.97 2.48 2.99 3.46 3.91 4.33

-0.4
0.015625 1.74 2.26 2.82 3.31 3.75 4.16
0.03125 1.80 2.34 2.89 3.37 3.79 4.20
0.0625 1.86 2.42 2.95 3.42 3.84 4.25
0.125 1.93 2.49 3.01 3.46 3.89 4.29
0.25 2.00 2.56 3.06 3.51 3.93 4.34
0.5 2.08 2.63 3.12 3.56 3.97 4.38

-0.2
0.015625 2.00 2.58 3.04 3.44 3.83 4.22
0.03125 2.08 2.63 3.08 3.48 3.87 4.26
0.0625 2.15 2.68 3.11 3.51 3.91 4.30
0.125 2.21 2.72 3.15 3.55 3.94 4.34
0.25 2.27 2.76 3.18 3.58 3.98 4.37
0.5 2.32 2.79 3.21 3.61 4.01 4.41

0
0.015625 2.37 2.74 3.11 3.49 3.86 4.24
0.03125 2.39 2.76 3.14 3.52 3.90 4.28
0.0625 2.41 2.79 3.17 3.55 3.93 4.31
0.125 2.43 2.81 3.19 3.58 3.96 4.35
0.25 2.44 2.83 3.22 3.61 3.99 4.38
0.5 2.46 2.85 3.24 3.63 4.02 4.42

εLJ σLJ (Å)

(kcal/mol) 1.4 2.2 3.0 3.8 4.6 5.4

+0.2
0.015625 2.25 2.67 3.08 3.46 3.84 4.22
0.03125 2.29 2.71 3.10 3.50 3.88 4.26
0.0625 2.32 2.74 3.14 3.53 3.92 4.30
0.125 2.35 2.77 3.17 3.56 3.95 4.34
0.25 2.38 2.80 3.20 3.59 3.99 4.38
0.5 2.41 2.83 3.22 3.62 4.02 4.41

+0.4
0.015625 2.04 2.52 2.98 3.40 3.80 4.19
0.03125 2.09 2.57 3.02 3.44 3.84 4.23
0.0625 2.15 2.63 3.06 3.48 3.88 4.27
0.125 2.20 2.67 3.11 3.52 3.92 4.32
0.25 2.26 2.72 3.15 3.56 3.96 4.36
0.5 2.30 2.76 3.18 3.59 4.00 4.39

+0.6
0.015625 1.93 2.35 2.84 3.30 3.72 4.13
0.03125 1.97 2.42 2.90 3.35 3.78 4.19
0.0625 2.02 2.49 2.96 3.40 3.83 4.23
0.125 2.07 2.55 3.02 3.46 3.88 4.28
0.25 2.13 2.61 3.07 3.51 3.92 4.33
0.5 2.19 2.67 3.12 3.55 3.96 4.37

+0.8
0.015625 1.85 2.23 2.70 3.18 3.64 4.06
0.03125 1.89 2.31 2.77 3.25 3.70 4.12
0.0625 1.93 2.38 2.85 3.32 3.76 4.18
0.125 1.98 2.45 2.92 3.38 3.82 4.24
0.25 2.03 2.51 2.99 3.44 3.87 4.29
0.5 2.10 2.58 3.05 3.50 3.92 4.34

+1
0.015625 1.79 2.19 2.57 3.06 3.54 3.99
0.03125 1.83 2.25 2.65 3.14 3.61 4.06
0.0625 1.87 2.31 2.74 3.22 3.68 4.12
0.125 1.92 2.37 2.82 3.29 3.75 4.18
0.25 1.99 2.43 2.90 3.37 3.82 4.24
0.5 2.09 2.50 2.97 3.44 3.88 4.30
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Table 3.2: Extracted solvent–solvent spacing distances from the base LJ sphere pre-
simulations used in this study. These are the peak locations of the first shell nearest–
neighbor distribution functions, and are used to eliminate dot surface sampling sites
that are too close to occupied solvent sites. As seen below, this is more of an issue
around smaller negatively charged solute atoms. Also, when the field gets extremely
strong, solute–solvent interactions dominate the spacing by trying to pack as many
first shell waters in as possible (lowering the solvent spacing back to the bulk rOO

distance).

εLJ σLJ (Å)

(kcal/mol) 1.4 2.2 3.0 3.8 4.6 5.4

-1
0.015625 2.50 2.83 3.01 3.07 2.78 2.76
0.03125 2.55 2.78 3.04 3.10 2.77 2.77
0.0625 2.62 2.84 3.11 3.10 2.77 2.78
0.125 2.70 2.90 3.07 3.19 2.79 2.78
0.25 2.77 2.96 3.09 3.22 2.79 2.77
0.5 2.85 3.01 3.07 3.23 2.79 2.79

-0.8
0.015625 2.59 2.98 3.08 2.78 2.77 2.76
0.03125 2.64 2.94 3.10 2.81 2.78 2.76
0.0625 2.70 2.91 3.18 2.81 2.79 2.77
0.125 2.77 2.98 3.20 2.83 2.79 2.77
0.25 2.85 3.03 3.28 2.82 2.78 2.78
0.5 2.92 3.07 3.24 2.80 2.79 2.80

-0.6
0.015625 2.71 3.09 3.17 2.78 2.77 2.76
0.03125 2.80 3.16 3.30 2.78 2.79 2.76
0.0625 2.83 3.19 3.27 2.79 2.78 2.77
0.125 2.89 3.21 3.30 2.79 2.78 2.78
0.25 2.95 3.24 3.25 2.80 2.77 2.77
0.5 3.01 3.17 3.34 2.79 2.77 2.77

-0.4
0.015625 2.88 3.34 2.80 2.79 2.76 2.75
0.03125 2.96 3.30 2.80 2.78 2.77 2.76
0.0625 3.04 3.40 2.80 2.79 2.77 2.76
0.125 3.13 3.38 2.80 2.78 2.77 2.76
0.25 3.16 3.37 2.82 2.79 2.76 2.76
0.5 3.21 3.36 2.80 2.77 2.79 2.77

-0.2
0.015625 3.42 2.78 2.77 2.75 2.75 2.75
0.03125 3.37 2.80 2.78 2.76 2.76 2.74
0.0625 3.21 2.77 2.77 2.77 2.76 2.75
0.125 3.10 2.79 2.79 2.76 2.75 2.75
0.25 3.03 2.77 2.77 2.76 2.75 2.76
0.5 2.86 2.79 2.76 2.76 2.76 2.76

0
0.015625 2.76 2.75 2.74 2.75 2.73 2.75
0.03125 2.75 2.75 2.75 2.75 2.75 2.75
0.0625 2.78 2.75 2.75 2.76 2.75 2.75
0.125 2.78 2.76 2.76 2.75 2.75 2.75
0.25 2.76 2.75 2.76 2.75 2.75 2.76
0.5 2.77 2.76 2.77 2.76 2.76 2.75

εLJ σLJ (Å)

(kcal/mol) 1.4 2.2 3.0 3.8 4.6 5.4

+0.2
0.015625 2.74 2.74 2.74 2.73 2.74 2.74
0.03125 2.74 2.73 2.73 2.74 2.74 2.73
0.0625 2.75 2.74 2.74 2.74 2.75 2.75
0.125 2.76 2.74 2.74 2.74 2.74 2.75
0.25 2.73 2.76 2.74 2.75 2.74 2.74
0.5 2.72 2.76 2.73 2.74 2.74 2.76

+0.4
0.015625 3.13 2.77 2.74 2.73 2.73 2.74
0.03125 3.16 2.74 2.74 2.75 2.73 2.73
0.0625 3.16 2.74 2.74 2.74 2.73 2.73
0.125 3.21 2.75 2.73 2.73 2.73 2.74
0.25 3.30 2.73 2.76 2.74 2.74 2.74
0.5 3.24 2.76 2.74 2.73 2.74 2.74

+0.6
0.015625 2.97 3.17 2.74 2.73 2.73 2.73
0.03125 3.00 3.16 2.74 2.73 2.73 2.73
0.0625 3.04 3.18 2.74 2.74 2.73 2.73
0.125 3.08 3.05 2.74 2.74 2.73 2.73
0.25 3.13 2.76 2.74 2.73 2.74 2.73
0.5 3.10 2.79 2.74 2.74 2.74 2.73

+0.8
0.015625 2.87 3.04 3.15 2.74 2.74 2.73
0.03125 2.91 3.06 2.80 2.74 2.73 2.73
0.0625 2.96 3.09 2.77 2.73 2.73 2.73
0.125 3.01 3.10 2.77 2.74 2.73 2.73
0.25 3.04 3.13 2.74 2.74 2.73 2.73
0.5 3.04 3.14 2.74 2.74 2.73 2.74

+1
0.015625 2.80 2.91 3.10 2.76 2.74 2.72
0.03125 2.85 2.95 3.12 2.76 2.73 2.74
0.0625 2.90 3.00 3.11 2.74 2.73 2.73
0.125 2.94 3.04 3.14 2.76 2.73 2.74
0.25 2.97 3.07 3.09 2.74 2.74 2.73
0.5 2.87 3.09 3.10 2.73 2.73 2.73
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Abstract

We report here a test of the Semi-Explicit Assembly (SEA) model in the solvation

free energy category of the SAMPL3 blind prediction event (summer 2011). We

tested how dependent the SEA results are on the chosen force field by performing

calculations with both the General Amber and OPLS force fields. We compared our

SEA results with full molecular dynamics simulations with explicit solvent. Of the

20 submissions, our SEA/OPLS results gave the second smallest RMS errors in free

energies compared to experiments. SEA gives results that are very similar to those

of its underlying force field and explicit solvent model. Hence, while the SEA water

modeling approach is much faster than explicit solvent simulations, its predictions

appear to be just as accurate.

4.1 Introduction

Motivated by the need for improved computational models of water and aqueous

solutions, we recently developed a solvation model called Semi-Explicit Assembly

(SEA) water.39,40 In this paper, we report a test of the SEA model through our

participation in the solvation-free-energy category of the SAMPL3 blind prediction

challenge.
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4.2 Description of the SEA-water method

SEA has been described in detail elsewhere,39,40 so here we give only a brief summary.

As shown in figure 4.1, SEA divides the calculation of the solvation free energy of

a solute into two parts. First, there is a pre-computation stage which samples the

interaction of various test spheres (having different radii, charges and van der Waals

properties) with a chosen explicit-solvent model of water, such as TIP3P. Among

other properties, these pre-simulations provide the average axial dipole moment of

first-shell waters as a function of the local electric field around the different solute

spheres. Second, at runtime, SEA models the solute under study as an assembly of

those pre-computed spheres. We can then rapidly compute a solvation free energy

as a sum over the properties of all the water molecules around the solute. In this

way, the SEA model captures many of the physical and structural properties of the

explicit-water model on which it was parameterized, and also captures the particulate

and electrostatic properties of first-shell waters. Yet the calculations at runtime are

nearly as fast to compute as those of implicit-solvent models.

SAMPL3 small molecules: a test of chlorinated molecule solvation

The SAMPL event, developed and run by OpenEye Software, is a community-wide

blind test of computational chemistry prediction methods, including the prediction

of solvation free energies.47,51,100 At the start, participants are provided with a
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a

b

sphere size

∆Gnp

electric field

µ

∆Gnp ∆Gpol

Figure 4.1: (a) The SEA solvation model involves pre-simulations of neutral and
charged spheres in explicit water to generate maps of the ∆Gnp vs. sphere size and
solvent dipole response vs. surface electric field. (b) After these one-time calculations,
we can rapidly calculate the ∆Gnp and ∆Gpol terms of the total solvation free energy
for an arbitrary solute molecule.
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set of varied solutes for which they do not know the solvation free energies. Each

group then uses its particular methodology to compute solvation free energies for

these compounds. After these predictions are submitted, the SAMPL organizers

then provide experimental solvation free energies to compare against. This year’s

event, SAMPL3, included 36 different solute molecules, roughly evenly divided among

ethanes, biphenyls, and dibenzo-p-dioxins. The molecules in each class varied only in

the number and location of substituted chlorines. This systematic approach allowed

for an analysis of trends across these classes of molecules, but it also had the potential

to exaggerate errors for any methods that are challenged by these particular molecule

types or by chlorinated solutes. In this work, we show our results for predictions on

these 36 molecules, and explore how the systematic changes in the chemical structure

affect the details of solvation with SEA, explicit, and implicit calculations.

4.3 Simulation Methods

The SEA method relies on underlying pre-simulations using an atomically detailed

force field. For comparisons of computational solvation methods, we performed SEA

and explicit-solvent calculations with the General Amber Force Field (GAFF) and the

OPLS force field.66,139 We used AM1-BCC partial charges62 for the GAFF calcula-

tions. As an additional implicit solvent comparison, we performed Poisson-Boltzmann

(PB) calculations with the resultant GAFF solute topologies. Our GAFF parameters

and AM1-BCC charges came from the ANTECHAMBER program in AmberTools
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1.4,138 and we used the TIP3P water model64 to solvate these structures, following

the practices of Mobley et al.95 OPLS parameters were from Desmond 2.4.2.1,16 and

we solvated these structures using the SPC water model,10 as was done in a published

study of OPLS small-molecule solvation free energy calculations.120 For each force

field, we also submitted two sets of results: one set with minimally relaxed, single

conformations, and another with multiple conformations per molecule, sampled from

explicit water simulations.

We submitted the SEA and PB calculations to the SAMPL3 event as blind predic-

tions, and performed the explicit calculations for the present study. We also compared

results from solutes put into a single (dominant) configuration against results that

sampled some of the solute’s conformational options.

Setting up molecules with Amber-based and OPLS-based force

fields

We performed all molecular dynamics (MD) calculations with GROMACS 4.0.4.12,55

We switched off Lennard-Jones interactions between 8 and 9 Å and applied long-

ranged energy and pressure corrections. We used smooth particle-mesh Ewald for

long-ranged electrostatics accumulation,35 this with a real-space cutoff of 10 Å, a

spline order of 6, fourier spacing of 1 Å, and a real-space energy tolerance parameter

of 10−6 kJ/mol. We used the SETTLE algorithm to constrain the geometry of water
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molecules in explicit-solvent simulations,91 and the LINCS algorithm to constrain

covalent bonds to hydrogen atoms on solute molecules.53

We solvated the target solutes in a rhombic dodecahedral box with a 12 Å buffer of

explicit water between the atoms of the solute and the edges of the box. We relaxed

these systems in two steps, first with 1000 steps of steepest descent minimization

followed by 10 ps of constant energy MD with a 1 fs timestep. All timesteps after this

relaxation phase were 2 fs. For the single-conformation calculations with SEA, we

used the final solute structure following 100 ps of Langevin Dynamics (LD) equilibra-

tion of these relaxed structures in explicit solvent. For the multi-conformation sets,

we followed relaxation with 100 ps of constant temperature LD (300 K), 100 ps of

constant pressure (1 atm) equilibration using the Berendsen thermostat, and 700 ps

of constant pressure dynamics using the Parrinello-Rahman barostat. We rescaled

the simulation box to the average volume from last 500 ps of this constant pressure

trajectory, and equilibrated this system with 500 ps of constant volume simulation

before our 1 ns LD production run. We selected 10 conformations at equal time in-

tervals from the production run calculations with SEA. Our final multi-conformation

results are arithmetic averages of the SEA calculations on these 10 solute conformers.
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SEA solvation free energy calculations

The SEA solvation method uses an extensive set of pre-simulations that were cal-

culated using Lorentz-Berthelot mixing rules for Lennard-Jones (LJ) interactions.

These resulting property tables are compatible with Amber force fields, but not di-

rectly compatible with OPLS force fields because OPLS uses a geometric mean for

determining the LJ size (σ) parameters between dissimilar atom types. To perform

OPLS force field calculations with SEA, we converted the OPLS LJ parameters to

an arithmetic mean equivalent,

σnew = 2 (
√
σOPLS · σwat)− σwat (4.1)

where σwat is the LJ σ value for the explicit water model of interest, in this case SPC

water.10 Note that converting atom parameters in this way will result in differences

in solute intramolecular LJ interactions. This does not directly affect the SEA calcu-

lations as there is no solute intramolecular interaction contribution in its estimation

of the solvation free energy.

Poisson-Boltzmann solvation free energy calculations

We performed our PB tests by combining a polar term and a non-polar term. For the

polar term, we solved the linearized Poisson equation provided in APBS.6 We set the
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dielectric boundary as the molecular surface and used a solvent dielectric constant of

78. For the non-polar term, we used the standard expression

∆Gnp = 0.00542× SASA+ 0.92, (4.2)

where SASA is the solvent-accessible surface area in Å2 to give ∆Gnp values in

kcal/mol.113 Our PB calculations were performed on the multi-conformer GAFF

structures.

Explicit solvent solvation free energy calculations

For our explicit solvent comparisons, we performed solvation free energy calculations

as others have done in previous studies.97,98 Here, we used thermodynamic integration

to transform the solute molecules between the relevant state-points. For the ∆Gchg

term, we turned off the partial charges of the solute in TIP3P or SPC water (for the

GAFF and OPLS calculations respectively) over λ windows of {0, 0.2, 0.4, 0.6, 0.8,

1.0}. Each of these windows involved a 5 ns simulation with GROMACS 4.0.4 using

the same simulation protocols described previously for the conformation sampling

calculations. In order to determine the absolute ∆Gpol term for transfer from air

to water, we subtracted out the internal Coulombic and conformation distribution

contributions to ∆Gchg. We calculated these by determining the ∆Gchg term in

vacuum, using λ window values of {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
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For the ∆Gnp term calculation, we converted the uncharged solute to a soft-core

representation124 over the set of λ window values {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 0.95, 1.0}. We used the standard trapezoid rule for

integration, and accumulated errors via the limiting value of block averages.54

4.4 Results and Discussion

Figure 4.2 shows an overview of our SAMPL3 submissions. For each method, we

show the RMS difference in free energy between the predicted solvation free energy

and the experimental value. After we parameterized the molecules and sampled their

conformations, SEA generated each prediction in less than one second on a 3 GHz

Intel Core 2 E8400 processor. As shown, SEA was one of the more accurate predictors

in the event, despite its modest computational cost. In terms of absolute performance

relative to the rest of the predictions, it should be noted that this is a small set of very

related solutes, so it is difficult to make definitive assessments. We perform additional

comparisons below to explore these SEA results in more detail.

As an implicit solvent reference, we submitted PB results using the GAFF and TIP3P

Lennard-Jones parameters to define the molecular surface and solvent accessible sur-

face area along with the same AM1-BCC partial charges used in the SEA calculations.

This combination of parameters did not perform particularly well, about 1.7 kcal/mol

higher RMSE than the analogous SEA submission. Most of this difference comes from
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
RMSE To Experiment (kcal/mol)

SEA OPLS

SEA GAFF

PB

Figure 4.2: Overall performance of the 20 submissions to SAMPL3. Average RMSE
of each method; best predictions are at the top. Our submissions are highlighted.

the use of equation 4.2 as opposed to a more microscopically physical approach to

∆Gnp. If the SEA ∆Gnp term is used in place of equation 4.2, this application of PB

would have given an only 0.2 kcal/mol higher RMSE than SEA.

Multiple conformations do not alter the solvation free energies

The 36 compounds in the SAMPL3 test were all fairly rigid. Not surprisingly, we

found that the free energies of the conformational ensembles of the solutes are accu-

rately approximated, in this case, by the single dominant conformer. The differences
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are within the errors of our calculations, only a few hundredths of a kcal/mol, which

is similar to the deviations between runs on identical input. This is markedly different

than for previous SAMPL events, in which some solute molecules (like the sugars in

SAMPL2) involved multiple energetically important conformations.

After the SAMPL meeting, it came to our attention that three of the biphenyl

molecules, 1,2,4,5-tetrachloro-3-(3,4-dichlorophenyl) benzene, 1,2,3,4-tetrachloro-5-

(3,4-dichlorophenyl) benzene, and 1,2,3,4-tetrachloro-5-(3,4,5-trichlorophenyl) ben-

zene, have a large dihedral barrier between two stereochemically unique conformations

that might affect the resulting solvation free energies. While the multi-conformation

calculations failed to show any added uncertainty for these molecules, no barrier

crossings were identified over the course of a 10 ns MD conformation calculation.

To test if these unsampled conformations would play any role in the resulting solvation

free energies, we performed single-point SEA calculations about minimized structures

on either side of this dihedral barrier. Table S1 shows the results of these calculations.

The differences between these conformations, though not completely negligible, are

in most cases much less than the difference between the force field’s predictions and

the experimental results.
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The SEA model is an accurate mimic of the underlying

explicit water model

One key finding here is that the SEA model captures quite accurately the much more

expensive explicit force field simulations on which it was parameterized; see figure 4.3.

That is, SEA/GAFF gives very similar results to GAFF explicit solvent calculations,

and SEA/OPLS gives very similar results to OPLS explicit solvent calculations. The

advantage is that the SEA methods are six orders of magnitude faster to compute.

So, if the force field parameters are flawed, the corresponding SEA models show the

same errors. For example, for the GAFF topologies, the most heavily chlorinated

biphenyl and dioxin solutes were the most problematic for both the SEA and explicit

simulations. This was true for the OPLS topologies as well, but in a different way.

With the GAFF topologies, SEA and explicit solvent systematically under -solvated

these molecules. With the OPLS topologies, SEA and explicit solvent systematically

over -solvated these molecules. The reason for this is shown in figure 4.4. While the

LJ parameters are similar for the aromatic carbon and substituted chlorine atoms, the

partial charges are roughly 7 times greater with OPLS than with GAFF/AM1-BCC.

The resulting difference in ring electric fields is why we see an 8 kcal/mol difference

between GAFF in OPLS in both the SEA and explicit calculations. While it is unclear

which set of partial charges gives a better representation of the actual electric field

(the GAFF calculations are closer to experiment in this case, but not in others), SEA

and explicit solvent respond to the topologies in the same way.
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Figure 4.3: The performance of SEA/GAFF, SEA/OPLS, GAFF explicit and OPLS
explicit vs. experimental data for all the solutes in SAMPL3. Ethanes appear as
triangles, biphenyls as circles, and dioxins as squares.
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Figure 4.4: A comparison of the aromatic ring region of octachlorodibenzo-p-dioxin
with the GAFF/AM1-BCC and OPLS topologies. The (a) partial charges are larger
in OPLS, resulting in a (b) stronger field seen by SEA at the solvent-accessible surface.
This difference in electric fields also affects explicit solvent, with (c) a greater water
occupancy probability interacting with the ring with the OPLS partial charges.
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We also performed retrospective tests on past SAMPL solutes

using SEA

As a further test, we performed SEA calculations on all the previous SAMPL solute

sets; our results are shown in Figure 4.5. We used the same simulation protocol as

that used for the SAMPL3 calculations. We compared the multi-conformer results

because previous SAMPL events had some solutes with more flexible dihedrals.

OPLS performed poorly in SAMPL2, while GAFF performed poorly in SAMPL1. In

SAMPL2, OPLS performed poorly on cyclic nitrogen compounds. When these com-

pounds are removed from the dataset, OPLS performance improves markedly, while

GAFF performance degrades slightly. Similarly in SAMPL1, GAFF (and OPLS)

perform poorly on sulfur compounds. Removing the sulfur compounds reduces the

problem. Results from both forcefields also improve when we skip the amides from

SAMPL0.

These results illustrate a key challenge of force field development: parameters the work

better for some molecules may be worse for others. SEA provides a tool for diagnosing

these problems. It is notable that for every SAMPL, one of either SEA/GAFF or

SEA/OPLS gives predictions that are among the very best predictions of that year.
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RMSE To Experiment (kcal/mol)

SAMPL3

SAMPL2

SAMPL2
(No Cyclic N)

SAMPL1

SAMPL1
(No Sulfur)

SAMPL0
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(No Amides)

SEA OPLS
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Figure 4.5: The performance of SEA/GAFF and SEA/OPLS on all SAMPL events.
Which force field performs better depends heavily on the set of molecules in question.
In each case, however, SEA is able to produce results rivaling the top performer from
that year, given a sufficiently accurate force field. We are also able to identify some
force field weaknesses: both forcefields have trouble with the sulfur compounds in
SAMPL1, and the amides in SAMPL0. OPLS also improves markedly if we skip the
cyclic nitrogen rings from SAMPL2. SEA’s accuracy and speed can greatly facilitate
force field tuning in cases like these.

96



4.5 Conclusions

We have tested the SEA water method of computational solvation in the blind test

SAMP3 event on 36 solute molecules. We submitted SEA calculation results using

both GAFF and the OPLS force field. SEA/OPLS performed second best among 20

submissions. For these rigid solutes, we confirmed that sampling solute conformations

added no further value. We compared our SEA approach with explicit solvent free-

energy calculations, and found that both methods give quantitatively similar solvation

free energies when based on the same underlying force field. The advantage of the

SEA method over explicit solvation simulations is that (in this test) it is six orders of

magnitude faster to compute. Hence SEA water promises to be faster than explicit

solvation and more accurate than implicit solvation.
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4.6 Supplementary Information

Available online at

http://www.springerlink.com/content/553821460730g10l/supplementals

Table S1 SEA solvation energies for alternate conformers of three biphenyls from

SAMPL3. The two conformers of these molecules were separated by particularly

high energy barriers, so we tested each conformer explicitly to see if they solvated

differently. All values are in kcal/mol.

Molecule SEA GAFF SEA OPLS Experiment

Cl

Cl

Cl

Cl

Cl

Cl

-1.58 / -1.71 -5.74 / -5.53 -3.04

Cl

Cl Cl

Cl

Cl

Cl

Cl

-1.19 / -1.15 -5.77 / -6.01 -4.40

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

-0.34 / -0.28 -5.19 / -4.98 -4.61
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Table S2a Our SAMPL3 hydration free energy submissions. All values are in

kcal/mol. The first four columns are SEA predictions, using the indicated force-

field. Multi-conformer SEA submissions are marked as “MC”, single-conformers as

“SC”. The last column contains multi-conformer PB results.

Molecule GAFF MC GAFF SC OPLS MC OPLS SC PB GAFF

2.21 2.25 1.82 1.93 1.66

Cl 0.28 0.45 -0.08 -0.02 0.42

Cl

Cl

-0.13 -0.25 -0.93 -0.93 0.19

Cl

Cl -1.25 -1.16 -1.45 -0.42 -0.64

Cl

Cl

Cl 0.35 0.47 -0.07 -0.07 0.81

Cl Cl

Cl

-0.69 -1.84 -1.63 -0.82 -0.30

Cl

Cl

Cl

Cl -0.27 -0.40 -0.54 -0.68 0.41

Cl

ClCl

Cl

-0.96 -0.84 -2.38 -2.55 -0.27

Cl

Cl

Cl

Cl

Cl -0.10 -0.03 -0.61 -0.68 0.81

Cl

Cl

lC lC

Cl

Cl

1.59 1.49 1.19 1.12 2.02
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Table S2b Our SAMPL3 hydration free energy submissions, continued. All values

are in kcal/mol. The first four columns are SEA predictions, using the indicated

forcefield. Multi-conformer SEA submissions are marked as “MC”, single-conformers

as “SC”. The last column contains multi-conformer PB results.

Molecule GAFF MC GAFF SC OPLS MC OPLS SC PB GAFF

-2.99 -2.76 -1.01 -0.91 -1.41

Cl

-2.57 -2.41 -1.25 -1.32 -0.98

Cl

Cl

-2.10 -1.64 -1.60 -1.31 -0.43

Cl

Cl

Cl

-1.51 -1.60 -1.98 -2.22 0.11

Cl

Cl

Cl

Cl

-1.38 -1.80 -3.53 -3.49 0.46

Cl

ClCl

Cl

-2.14 -2.09 -1.93 -1.89 -0.46

Cl

ClCl

Cl

Cl -1.78 -1.62 -3.60 -3.82 0.55

Cl

Cl

Cl

Cl

Cl

-1.38 -1.42 -1.74 -1.74 0.33

Cl

ClCl

Cl

Cl

Cl -1.39 -1.46 -4.69 -4.72 0.95
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Table S2c Our SAMPL3 hydration free energy submissions, continued. All values

are in kcal/mol. The first four columns are SEA predictions, using the indicated

forcefield. Multi-conformer SEA submissions are marked as “MC”, single-conformers

as “SC”. The last column contains multi-conformer PB results.

Molecule GAFF MC GAFF SC OPLS MC OPLS SC PB GAFF

Cl

Cl

Cl

Cl

Cl

Cl

-1.89 -1.73 -5.34 -5.39 0.82

Cl

Cl Cl

Cl

Cl

Cl

Cl

-1.24 -1.22 -5.62 -5.98 1.17

Cl

Cl

Cl

Cl

ClCl

Cl

-1.32 -1.09 -6.42 -5.93 1.42

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

-0.37 -0.40 -4.98 -4.76 1.92

Cl

Cl Cl

lC lC

Cl Cl

Cl

Cl Cl 1.24 1.31 -5.52 -5.97 3.11

O

O

-3.56 -3.43 -1.95 -2.16 -1.34

O

O

Cl

-4.05 -3.77 -2.23 -2.16 -1.33

O

Cl O

-3.21 -3.60 -2.02 -2.15 -0.91

OCl

OCl

-2.65 -2.96 -2.47 -2.53 -0.45
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Table S2d Our SAMPL3 hydration free energy submissions, continued. All values

are in kcal/mol. The first four columns are SEA predictions, using the indicated

forcefield. Multi-conformer SEA submissions are marked as “MC”, single-conformers

as “SC”. The last column contains multi-conformer PB results.

Molecule GAFF MC GAFF SC OPLS MC OPLS SC PB GAFF

O

O Cl

Cl

-2.74 -2.69 -2.10 -2.05 -0.48

O

O

Cl

Cl

Cl

-3.30 -3.23 -3.22 -3.35 -0.44

O

O

Cl

Cl

Cl

Cl

-2.43 -2.37 -4.27 -4.29 0.15

O

O ClCl

Cl

Cl
-2.35 -2.43 -3.82 -3.86 0.24

O

O

Cl

Cl

Cl

Cl

-2.13 -2.18 -3.85 -4.01 0.49

O

Cl

Cl

Cl

Cl

Cl

O

-2.16 -2.16 -4.96 -4.92 0.64

O

O

Cl

Cl

Cl

Cl

Cl

Cl

-1.81 -1.68 -6.01 -6.30 1.07

O

ClCl

ClCl

ClCl

ClCl O
-1.59 -1.62 -9.42 -9.20 1.65
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Table S3a Explicit solvent hydration free energy calculations. All values are in

kcal/mol. Our errors are 0.10 or less, except as indicated. Experimental values, as

reported by the SAMPL3 organizers, are included for reference.

Molecule GAFF FEP OPLS FEP Experiment

2.47 2.27 1.87

Cl 0.80 0.57 ± 0.14 -0.39

Cl

Cl

0.26 0.01 -0.88

Cl

Cl -0.46 -0.66 -1.80

Cl

Cl

Cl 0.54 0.44 -0.26

Cl Cl

Cl

-0.61 ± 0.16 -1.23 ± 0.27 -1.97

Cl

Cl

Cl

Cl -0.07 -0.22 -1.43

Cl

ClCl

Cl

-0.65 ± 0.11 -1.16 ± 0.18 -2.37

Cl

Cl

Cl

Cl

Cl 0.12 -0.30 -1.23

Cl

Cl

lC lC

Cl

Cl

0.94 0.82 -0.64
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Table S3b Explicit solvent hydration free energy calculations, continued. All values

are in kcal/mol. Our errors are 0.10 or less, except as indicated. Experimental values,

as reported by the SAMPL3 organizers, are included for reference.

Molecule GAFF FEP OPLS FEP Experiment

-3.21 -1.49 ± 0.42 -2.23

Cl

-2.58 -1.22 -2.69

Cl

Cl

-1.93 -1.56 -2.46

Cl

Cl

Cl

-1.21 -2.53 -2.16

Cl

Cl

Cl

Cl

-1.42 -4.18 ± 0.13 -3.48

Cl

ClCl

Cl

-1.31 -1.06 ± 0.12 -2.28

Cl

ClCl

Cl

Cl -1.11 -3.47 -3.61

Cl

Cl

Cl

Cl

Cl

-0.57 -1.46 ± 0.11 -1.96

Cl

ClCl

Cl

Cl

Cl -0.71 -4.97 -4.38
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Table S3c Explicit solvent hydration free energy calculations, continued. All values

are in kcal/mol. Our errors are 0.10 or less, except as indicated. Experimental values,

as reported by the SAMPL3 organizers, are included for reference.

Molecule GAFF FEP OPLS FEP Experiment

Cl

Cl

Cl

Cl

Cl

Cl

-1.11 -5.60 -3.04

Cl

Cl Cl

Cl

Cl

Cl

Cl

-0.76 -6.29 -4.40

Cl

Cl

Cl

Cl

ClCl

Cl

-0.81 -7.03 -3.17

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

-0.09 -6.41 -4.61

Cl

Cl Cl

lC lC

Cl Cl

Cl

Cl Cl 0.78 -8.79 -2.98

O

O

-3.95 -1.45 -3.15

O

O

Cl

-4.00 -1.67 -3.52

O

Cl O

-3.41 -1.46 -3.10

OCl

OCl

-3.06 -2.22 -3.56
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Table S3d Explicit solvent hydration free energy calculations, continued. All values

are in kcal/mol. Our errors are 0.10 or less, except as indicated. Experimental values,

as reported by the SAMPL3 organizers, are included for reference.

Molecule GAFF FEP OPLS FEP Experiment

O

O Cl

Cl

-2.95 -1.76 -3.67

O

O

Cl

Cl

Cl

-3.18 -3.25 -4.05

O

O

Cl

Cl

Cl

Cl

-2.95 -4.94 -3.81

O

O ClCl

Cl

Cl
-2.75 -4.00 -3.84

O

O

Cl

Cl

Cl

Cl

-2.51 -3.76 -3.37

O

Cl

Cl

Cl

Cl

Cl

O

-2.60 -5.69 -4.15

O

O

Cl

Cl

Cl

Cl

Cl

Cl

-2.45 -7.03 -3.71

O

ClCl

ClCl

ClCl

ClCl O
-2.19 -10.70 -4.53
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Table S4a Multi-conformer SEA predictions, using two different forcefields, for

molecules from the SAMPL2 challenge. All values are in kcal/mol. Experimental

values are included for comparison.

Molecule SEA/GAFF SEA/OPLS Experiment

5-bromouracil -16.29 -10.74 -18.39

5-chlorouracil -16.18 -10.61 -17.82

5-flurouracil -16.20 -12.12 -17.01

5-iodouracil -17.53 -10.85 -18.57

5-trifluoromethyluracil -16.85 -9.76 -15.46

6-chlorouracil -13.72 -9.36 -16.00

acetylsalicylic acid -10.86 -8.79 -12.33

butyl paraben -8.34 -5.75 -8.74

caffeine -13.72 -7.98 -12.82

cyanuric acid -18.76 -12.18 -18.39

d-glucose -20.12 -18.43 -25.44

d-xylose -16.44 -13.81 -20.50

diflunisal -6.95 -9.98 -7.63

ethyl paraben -8.68 -6.29 -9.20

flurbiprofen (racemic) -7.90 -7.34 -8.68

ibuprofen (racemic) -5.58 -5.54 -7.01

ketoprofen (racemic) -10.20 -8.45 -10.83

methyl paraben -9.11 -6.66 -9.52

naproxen -9.75 -7.94 -10.35

phthalimide -11.40 -9.18 -9.73

propyl paraben -8.66 -6.14 -9.35

sulfolane -9.09 -10.12 -9.17

uracil -16.08 -10.36 -16.06
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Table S4b Multi-conformer SEA predictions, using two different forcefields, for

molecules from the SAMPL1 challenge. All values are in kcal/mol. Experimental

values are included for comparison.

Molecule SEA/GAFF SEA/OPLS Experiment

1-amino-4-anilino-anthraquinone -11.41 -9.12 -7.44

1-amino-anthraquinone -11.38 -6.99 -7.97

1,2-dinitroxypropane -4.70 -4.76 -4.95

1,4,5,8-tetramino-anthraquinone -21.28 -15.69 -8.94

2-butyl nitrate -1.48 -1.01 -1.82

4-amino-4-nitroazobenzene -11.70 -7.85 -11.24

4-dimethylamino-azobenzene -6.65 -2.47 -6.66

alachlor -8.11 -6.21 -8.21

aldicarb -7.70 -7.70 -9.84

ametryn -10.06 -5.58 -7.65

azinphosmethyl -14.94 -8.74 -10.03

benefin -1.29 -4.43 -3.51

bensulfuron -29.06 -28.16 -17.17

bromacil -12.11 -7.03 -9.73

butyl nitrate -1.39 -1.27 -2.09

captan -7.25 -6.22 -9.01

carbaryl -8.87 -5.80 -9.45

carbofuran -9.62 -5.67 -9.61

carbophenothion -14.18 -5.91 -6.50

chlordane -0.35 -1.38 -3.44

chlorfenvinphos -8.36 -5.74 -7.07

chlorimuronethyl -25.21 -22.20 -14.01

chloropicrin 0.41 -2.45 -1.45

chlorpyrifos -11.13 -8.01 -5.04

dialifor -20.32 -8.69 -5.74

diazinon -9.26 -6.85 -6.48

dicamba -8.32 -7.74 -9.86

dichlobenil -4.23 -4.43 -4.71

dinitramine -9.45 -7.08 -5.66

dinoseb -5.56 -7.21 -6.23

endosulfan alpha -8.30 -9.32 -4.23
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Table S4c Multi-conformer SEA predictions, using two different forcefields, for

molecules from the SAMPL1 challenge (continued). All values are in kcal/mol. Ex-

perimental values are included for comparison.

Molecule SEA/GAFF SEA/OPLS Experiment

endrin -3.50 -3.48 -4.82

ethion -16.80 -8.48 -6.10

ethyleneglycol mononitrate -6.72 -6.67 -8.18

fenuron -10.62 -6.57 -9.13

heptachlor -0.27 -1.22 -2.55

isobutyl nitrate -1.21 -1.19 -1.88

isophorone -3.69 -2.30 -5.18

lindane -1.54 -4.02 -5.44

malathion -13.64 -8.11 -8.15

methomyl -9.53 -6.22 -10.65

methyparathion -10.35 -7.46 -7.19

metsulfuronmethyl -26.21 -27.66 -15.54

nitralin -9.04 -12.85 -7.98

nitroglycol -4.86 -5.89 -5.73

nitroxyacetone -6.91 -6.74 -5.99

oxamyl -13.14 -9.10 -10.18

parathion -8.77 -6.96 -6.74

pebulate -3.81 -2.32 -3.64

phorate -10.82 -5.11 -4.37

pirimor (pirimicarb) -12.32 -6.23 -9.41

profluralin -1.19 -3.99 -2.45

prometryn -9.66 -4.62 -8.43

propanil -9.55 -8.15 -7.78

pyrazon -17.68 -10.60 -16.43

simazine -10.65 -5.39 -10.22

sulfometuron-methyl -24.61 -28.63 -20.25

terbacil -11.22 -6.83 -11.14

terbutryn -10.12 -4.51 -6.68

thifensulfuron -26.25 -29.09 -16.23

trichlorfon -12.15 -9.59 -12.74

trifluralin -1.39 -4.10 -3.25

vernolate -3.47 -2.16 -4.13
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Table S4d Multi-conformer SEA predictions, using two different forcefields, for

molecules from the SAMPL0 challenge. All values are in kcal/mol. Experimental

values are included for comparison.

Molecule SEA/GAFF SEA/OPLS Experiment

1,1-diacetoxyethane -6.81 -3.15 -4.97

1,1-diethoxyethane -2.00 -1.78 -3.28

1,2-diethoxyethane -3.03 -1.78 -3.54

1,4-dioxane -3.05 -1.69 -5.05

benzyl bromide -1.60 -2.91 -2.38

benzyl chloride -1.34 -1.31 -1.93

bis-2-chloroethyl ether -3.36 -2.05 -4.23

diethyl propanedioate -6.74 -3.79 -6.00

diethyl sulfide -0.17 -0.43 -1.43

dimethoxymethane -4.37 -2.18 -2.93

ethylene glycol diacetate -7.97 -3.61 -6.34

glycerol triacetate -10.76 -5.81 -8.84

imidazole -8.38 -7.42 -9.81

m-bis(trifluoromethyl)benzene -0.81 -0.40 1.07

N,N-4-trimethylbenzamide -8.38 -4.11 -9.76

N,N-dimethyl-p-methoxybenzamide -6.75 -4.83 -11.01

phenyl formate -5.54 -2.75 -3.82
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Figure 4.6: Fig. S1 Overall performance of the SAMPL3 submissions, as compared to
our retrospective explicit solvent FEP results. Multi-conformer SEA submissions have
been omitted for clarity. RMSEs are bootstrapped numbers for SAMPL submissions,
and averages for FEP calculations. For our SEA submissions, the bootstrap vs.
average difference was less than a tenth of a kcal/mol.
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Abstract

Here we present a new solvation visualization tool, aimed at showing the energetic

behavior of water on the surface of a solute. Dubbed SurfMap, the system can be used

with any solvation model capable of producing the relevant energetic and geometric

information. We show SurfMap results with our Semi-Explicit Assembly (SEA) water

model, along with some Poisson-Boltzmann results for comparison. SurfMap illus-

trates how SEA provides more detailed and accurate information about solvation,

for both small and large molecules. SurfMap, like the SEA water model, is fast and

widely applicable. SEA visualization provides dramatically faster performance and

more information than similar explicit-solvent-based methods.

5.1 Introduction

Accurate solvation is one of the most important and difficult problems in molecular

simulation. Many water models are available, varying widely in speed and accuracy.

Because of the inherent complexity of solvation, water models often work well on

some classes of molecules, and cause serious problems with others. It can often be

very difficult to understand why this happens or how it might be fixed.

To address these and other problems, we developed a solvation visualization tool

named SurfMap, which generates three-dimensional colored maps showing where sol-
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vent molecules are on a solute surface, and how energetically favorable their placement

is. This makes it immediately apparent how and where the solvent’s interaction with

the molecule results in a molecular solvation energy. Using SEA, SurfMap can gen-

erate maps for any molecule using any combination of forcefield and explicit water

model. It is also compatible with any implicit solvent model that generates per-

atom energetic information; we have adapted it to map results from the PB solvation

model, for example. This allows direct comparisons between solvation models, as we

will show below.

Because solvation is so important, this system has many other potential applications

as well. Both ligand and protein interactions often depend heavily on solvent behavior,

which can be difficult and expensive to quantify. Being able to directly see water’s

behavior in these situations could be of immense value. This graphical system makes it

easier to understand, assess, and learn from solvent models. Energetics are displayed

visually, in up to sub-atomic resolution, providing much more information than typical

residue- or molecule-based assessments. Map construction is nearly as fast as the

implicit solvent modeling itself.

Other approaches for mapping the behavior of water in molecular systems exist, such

as Schrodinger’s WaterMap system.3 However, WaterMap typically entails several

million steps of Monte Carlo simulation in full explicit solvent, followed by a complex

statistical analysis. In the protein systems to which it is often applied, this can be

quite computationally expensive. Furthermore, the end product is not a full distri-
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bution of water behavior, as provided by our system, but a few highlighted spots

in which waters are alleged to localize at various energy levels. Focusing on a few

small, fixed waters sites may be conceptually convenient, but it is not as realistic or

informative as a full-surface analysis of molecular solvation at sub-atomic resolution.

This is the result that SEA and SurfMap, working together, can provide.

5.2 Methods

Structure Preparation

All small molecules were parameterized with GAFF and AM1-BCC charges, using

the ANTECHAMBER program in AmberTools 1.4.138 For a more realistic solvation

surface, zero-size hydrogens were given an atomic radius of 1.2 Å . Molecules were

first relaxed in explicit solvent with the TIP3P water model,64 following the practices

of Mobley et al.95

We performed all molecular dynamics (MD) calculations with GROMACS 4.0.4.12,55

We switched off Lennard-Jones interactions between 8 and 9 Å and applied long-

ranged energy and pressure corrections. We used smooth particle-mesh Ewald for

long-ranged electrostatics accumulation,35 this with a real-space cutoff of 10 Å, a

spline order of 6, fourier spacing of 1 Å, and a real-space energy tolerance parameter

of 10−6 kJ/mol. We used the SETTLE algorithm to constrain the geometry of water

molecules in explicit-solvent simulations,91 and the LINCS algorithm to constrain

covalent bonds to hydrogen atoms on solute molecules.53
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We solvated the target solutes in a rhombic dodecahedral box with a 10 Å buffer of

explicit water between the atoms of the solute and the edges of the box. We relaxed

these systems in two steps, first with 1000 steps of steepest descent minimization

followed by 10 ps of constant energy MD with a 1 fs timestep. All timesteps after

this relaxation phase were 2 fs. We followed relaxation with 100 ps of constant

temperature LD (300 K), 100 ps of constant pressure (1 atm) equilibration using the

Berendsen thermostat, and 700 ps of constant pressure dynamics using the Parrinello-

Rahman barostat. We rescaled the simulation box to the average volume from last

500 ps of this constant pressure trajectory, and equilibrated this system with 500 ps of

constant volume simulation before recording our fully relaxed structure. We stripped

the waters from this structure and fed it into SEA for analysis.

We obtained the BphC structure from RCS PDB structure 1DHY. We cut out just do-

main 1 (residues 1-135) and restored missing structure using Swiss-PdbViewer 4.0.4.49

The pdb2gmx program from GROMACS 4.0.4 then assigned GAFF forcefield param-

eters, using ffamber.31,122

Solvation

For the small molecules, we ran 100 iterations of SEA using a surface segmentation

detail of 5. For BphC, we used only 10 iterations.
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We performed our PB tests by combining a polar term and a non-polar term. For

the polar term, we solved the linearized Poisson equation using APBS.6 We used a

probe radius of 0.65 Å , a solvent dielectric constant of 78, and a 65 x 65 x 65 grid

with 0.25 Å spacing. We calculated a Weeks-Chandler-Andersen nonpolar term using

APBS, with γ = 0.0085 kJ per mol-Å .

We then needed to convert our PB results to a water-energy point cloud of the

type that SEA outputs. To begin, we generated molecular hydration surfaces in

the same way SEA does, with a surface segmentation detail of 12, but at a uniform

distance of 1.4 Å from the Lennard-Jones surface. APBS provides an electrostatic

potential distribution, as well as nonpolar contributions and exposed surface areas

for each atom. We calculated the polar solvation energy contributed by each atom

by multiplying its charge by the (interpolated) electrostatic potential at the atomic

center. To this we added the atom’s nonpolar contribution. But we still wanted a

per-water energy, as opposed to a per-atom measurement.

To solve this problem, we recalled from our work with SEA that the first solvation

shell lies within approximately 2 Å of the atomic surface. Using the exposed surface

area for each atom, we can estimate the volume of the partial solvation shell. The

shell volume for a fully exposed atom with radius ri angstroms would be

Vi0 =
4

3
π((ri + 2)3 − r3

i ) = 8π(r2
i + 2ri +

4

3
)
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This corresponds to a fully exposed surface, with area

Ai0 = 4πr2
i

We can then estimate the volume of the partial solvation shell by taking the portion

of the volume indicated by the exposed area Ai:

Vi =
Ai
Ai0

Vi0 =
Ai
ri

(2ri + 4 +
8

3ri
)

Multiplying by the density ρ0 of bulk water (at 300K and 1 atm) then gives an

estimate of the number of waters solvating the atom. We use this estimate to scale

the PB per-atom solvation energy to a per-water number.

Mapping

For each solvation method, we collected all water locations generated to locate the

solvation surface. We estimated surface normals by fitting a plane to the 30 nearest

neighbors of each point. We then ran these sets of points through the Poisson Surface

Reconstruction algorithm68 as implemented in the Computer Graphics Algorithms

Library.1 This produced an implicit surface function, which CGAL then tessellated

to generate a triangle mesh. Tessellation used a maximum triangle radius of 0.2 Å, a

maximum surface approximation error of 0.5 Å, and a minimum triangle angle of 20

degrees.
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Because of the way the surface reconstruction works, the mesh vertices we get out

are not usually related to the surface points we put in. We are then left with the

task of assigning colors to all the mesh vertices to represent energies. To do this,

we locate the 5 nearest original points pi for each mesh vertex v, and estimate the

water energy at v by weighting the energies of the nearby pi according to their inverse

square distance from v. Each vertex is then assigned a color to represent the water

energy at that point, and our 3D viewer blends the colors across the surface. For

reference, we make the solvation surface partially transparent, and display the solute

atoms as sphere (using neutral colors) underneath.

5.3 Results

Our results show how SEA is able to model water behavior similar to explicit solvent,

resulting in more correct solvation energies than other lightweight solvent models.

SEA provides high-resolution information about water energies and water-solute dis-

tances. It also shows asymmetric charge behavior, and can solvate large molecules.

SEA provides localized, realistic solvation behavior

Figure 5.1 shows solvations of phenol, illustrating how SEA produces correct, detailed

water behavior, and our solvation visualizer clearly shows what various solvent models
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SEA PB

Figure 5.1: Phenol as solvated by SEA and PB. SEA highlights the exposed pro-
ton on the hydroxyl group, the center of the aromatic plane, and the back of the
hydroxyl oxygen. PB, however, is unable to provide detail any more fine-grained
than individual atoms, so we get only a general indication that the hydroxyl is favor-
able. However, this is juxtaposed against a strikingly unfavorable spot on the carbon
nearest the hydroxyl group. This unphysical behavior underscores PB’s inability to
provide detailed solvation information, and may help to explain why SEA’s solva-
tion free energies are around 1 kcal/mol closer to explicit solvent (and experimental)
results for this molecule.
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are doing. SEA is able to highlight very specific spots that contribute to favorable

solvation, such as the exposed protons on hydroxyl groups. Notice also the favorable

spots in the center of the aromatic planes, and behind the hydroxyl oxygens, where

lone pairs would attract hydrogen bonds.

Figure 5.2 shows how SEA is able to capture the non-additive solvation behavior

exhibited by the isomers of dihydroxybenzene.37 These isomers have sharply different

solvation free energies, due to the relative positioning of their hydroxyl groups. A

simple additive solvation approach would not pick up on these differences. However,

SEA clearly shows how the water has full access to some hydroxyls, and only partial

access to others. This difference has important energetic consequences.

SEA adjusts water distances for accurate solvation

Figure 5.3 shows two solvations of dimethylamine, from both SEA and PB. Again,

SurfMap reveals vivid geometric and energetic differences between solvation models.

SEA provides information about how close waters get to solute atoms, while PB does

not. As a result, SEA calculates a solvation free energy much closer to that of explicit

solvent.
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-6.2 kcal/mol-8.0 kcal/mol

OH

OH

HO OH

Figure 5.2: 1,4-dihydroxybenzene and 1,2-dihydroxybenzene as solvated by SEA. The
1,4 isomer has hydroxyl groups on opposite ends of the molecule, as shown, and
SEA highlights the favorable tips of both of them. In the 1,2 isomer, however, the
first hydroxyl proton is exposed to solvent while the second is occluded by the first.
Accordingly, SEA highlights the first much more strongly than the second. The
favorable regions on the aromatic plane and backs of the oxygens are still present.
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SEA: -2.2
kcal/mol

PB: -0.1
kcal/mol

Explicit: -2.7 kcal/mol

Figure 5.3: Diethylamine as solvated by SEA and PB. SEAs solvation plot shows
the waters tightening around the nitrogen and its proton, in response to their strong
charges. But PB is unable to report anything but a generic solvation (probe) radius,
so the waters attraction is not as evident in the center of the molecule. This results
in much less accurate results for the solvation free energy.
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Figure 5.4: SEA solvation of charge asymmetry “bracelets”. These molecules, shown
schematically on the left, are identical, except that all charges are reversed. As SEA
correctly predicts, waters protons are able to get closer to the negative charge than its
oxygen can get to the positive one, so the negative bracelet is more favorably solvated.
This difference can also be seen in explicit solvent, but most implicit models (like PB)
treat these molecules identically.
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SEA reproduces water asymmetry

The two molecules in Figure 5.4 do not really exist, but they vividly illustrate the

serious charge-asymmetry problem suffered by many implicit solvation models. We

have studied these hexagonal bracelets before:92 they consist of a full formal charge

bonded to five partial, opposing charges in a planar hexagonal ring, forming a neutral

molecule. While most implicit solvent models will calculate identical solvation free

energies for these molecules, SEA and explicit are able to uncover several kcal/mol

of differences caused by water’s asymmetric charge behavior.

SEA handles large molecules

Figure 5.5 shows a SEA solvation of a 135-residue domain from the protein BphC.

This map took several minutes to produce, but provides as much solvation information

as a multi-day explicit solvent simulation. BphC folds into two separate domains,

whose inner hydrophobic faces then stick together. A comparison to a map of residue

hydrophobicities shows SEA’s accuracy, and the additional information it provides

over coarser approaches.
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Figure 5.5: Pictured are two maps of the hydrophobic (dimerizing) side of BphC,
domain 1. On the left is the SEA solvation map, showing detailed solvent behavior
at sub-atomic resolution. Hydrophobic faces and pockets are clearly highlighted,
as are solvent-facing edge regions. In the upper-right groove, surrounding charges
collude to create an extremely favorable spot for water, or possibly salt bridging. On
the right is a simpler solvation map, with residues colored by the Kyte & Doolittle
hydropathy.72 The map generally concurs with SEA, including several brighter spots
on the solvent-facing edges, but clearly cannot match SEA’s level of detail.
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5.4 Conclusions

We have shown results from SurfMap, a new solvation visualization tool, which is

able to show solvation energetics and geometry in sub-atomic detail. We have used

it to compare and contrast solvation model performance, and to understand factors

that may lend accuracy to one model or another. We have been able to see how the

SEA water model applies explicit solvent physics at implicit solvent speeds. SurfMap

is fast and easy to apply to molecules large and small, from individual ligand and

functional groups to full proteins. Since solvent effects play such an important role in

all molecular behavior and interactions, SurfMap could prove to be of immense value

to the molecular modeling and design community.
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