
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Analysis &amp; Simulation of Dynamics in Supercooled Liquids

Permalink
https://escholarship.org/uc/item/8zc7g08w

Author
Elmatad, Yael Sarah

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zc7g08w
https://escholarship.org
http://www.cdlib.org/


Analysis & Simulation of Dynamics in Supercooled Liquids

by

Yael Sarah Elmatad

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemistry

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Chandler, Chair
Professor Phillip L. Geissler

Assistant Professor Jhih-Wei Chu

Fall 2011



Analysis & Simulation of Dynamics in Supercooled Liquids

Copyright 2011
by

Yael Sarah Elmatad



1

Abstract

Analysis & Simulation of Dynamics in Supercooled Liquids

by

Yael Sarah Elmatad

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor David Chandler, Chair

The nature of supercooled liquids and the glass transition has been debated by many
scientists. Several theories have been put forth to describe the remarkable properties of this
out-of-equilibrium material. Each of these theories makes specific predictions as to how the
scaling of various transport properties in supercooled materials should behave. Given access
to a large pool of high-quality supercooled liquid data we seek to compare these theories to
one another. Moreover, we explore properties of a pair of models which are the basis for one
particularly attractive theory - Chandler-Garrahan theory - and discuss the models’ behavior
in space-time and possible implications to the behavior of experimental supercooled liquids.

Here we investigate the nature of dynamics in supercooled liquids using a two pronged
approach. First we analyze the transport properties found in experiments and simulations
of supercooled liquids. Then, we analyze simulation trajectories for lattice models which re-
produce many of the interesting properties of supercooled liquids. In doing so, we illuminate
several glass universalities, common properties of a wide variety of glass formers.

By analyzing relaxation time and viscosity data for over 50 data sets and 1200 points [1],
we find that relaxation time can be collapsed onto a single, parabolic curve. This collapse
supports a theory of universal glass behavior based on facilitated models proposed by David
Chandler and Juan Garrahan in 2003. We then show that the parabolic fit parameters
for any particular liquid are a material property: they converge fast and are capable of
predicting behavior in regions beyond the included data sets. We compare this property to
other popular fitting schemes such as the Vogel-Fulcher, double exponential, and fractional
exponential forms and conclude that these three forms result in parameters which are non
predictive and therefore not material properties [2]. Additionally, we examine the role of
attractive forces in liquids by comparing simulations of a Lennard-Jones mixture, which
contains both attractions and repulsions, with that of a Weeks-Chandler-Andersen mixture,
which only retains repulsive forces. We show that within the framework of the parabolic
collapse, these two liquids behave identically. This suggests that attractive forces do not
play a key role in glassy dynamics. Rather, repulsive forces - as has been shown in dense
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liquids - play the largest contributing role in jamming systems into glassy states. We further
investigate the predicted fragile-to-strong crossover in glass formers and find no compelling
evidence for the crossover in bulk materials at this time [3].

Additionally, we study ensembles of trajectories for a specific class of kinetically con-
strained models which reproduce the dynamic heterogeneity found in real glass formers.
The one dimensional models we consider are the Fredrickson-Andersen (FA) model and the
east model. These two models have been shown to behave as supercooled liquids reproducing
properties such as the breakdown of the Stokes-Einstein equation relating diffusion constants
and relaxation times. We use transition path sampling in the s-ensemble to bias the system
into low activity regions. It has been previously shown that the FA model goes through
a first-order dynamical phase transition in trajectory space. We extend this to include a
slightly softened FA model, which we believe to be more representative of atomistic systems.
We have determined that this first order coexistence line ends in a critical point where the
surface tension between active and inactive trajectories in space-time disappears [4]. Beyond
this region as the softened FA model becomes unconstrained, the transition disappears and
no phase transition is detected. Beyond simulations, these results were verified by analytical
methods. This verification was achieved by mapping of soft FA model onto a model which
undergoes a quantum phase transition. Beyond the FA model, we consider the softened
east model. Unlike the FA model, however, the east model relaxes hierarchically and has
a particular directionality. Many of the same conclusions - such as the appearance of a
non-trivial critical point in space time - appear in the east model. Moreover, many of the
same analytical tools can be used to determine the symmetry line that separates the active
and inactive phases. However, the exact mapping of the critical point location is unknown
and the location of the critical point is determined numerically. We also investigate how the
inactive phase created by applying a dynamical field relaxes to the active state under no
external field and find that the process appears barrierless.

Lastly, we propose current and ongoing work which seeks to understand how to numeri-
cally quantify the degree to which a system is dynamically facilitated by looking at multipoint
correlation functions of endured kinks. We contrast this method with previously suggested
methods based on locating avalanches by testing both methods on kinetically constrained
models such as the east and FA models.
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1.4 Decoupling between the diffusion constant, D, and the relaxation time, τ , as
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1.5 Illustration of a 2D jammed system. Particles are colored according to their
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2.1 An example of fitting parameter convergence for B2O3. In the fragile regime,
47 data points ranging continuously over 11 orders of magnitude in η are
available for fitting. Including the liquid regime, there are 62 data points
in this set spanning 13 orders of magnitude in η. Initially, only the lowest
temperature points are considered and subsequent fits with more points come
from adding higher temperature points to the considered set. (A) shows the
convergence of To as a function of number of points used for fitting. (B) shows
the convergence of J as a function of number of points used for fitting. (C)
shows the convergence of ηo (analogous to τo) as a function of number of points
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2.2 An example of fitting parameter convergence for B2O3. Red points indicate
the minimal data set required to converge fitting parameters when beginning
from the low temperature data and extrapolating downward. Dashed lines
are guides to the eye to indicate the location of the onset of fragile behavior. 20

2.3 (A) Collapse to a parabolic form of the structural relaxation times, τ , and
viscosities, η, as functions of temperature T for fragile glass forming liquids.
Parameters τo, To and J are listed in Table 2.1. Inset shows the same data
when graphed in Angell-type plots, where Tg refers to the temperature at
which the viscosity of the liquid is 1013 Poise or when the relaxation time
reaches 102 seconds. (B) Data for temperatures T < To graphed as a function
of the square of the collapse variable. Key at right lists the 68 liquid data sets
considered in the graphs. The meaning of each acronym is given in Table 2.1. 21

2.4 Collapse to a parabolic form of the structural relaxation times, τ , as functions
of temperature T for simulations of models of fragile glass forming liquids.
Parameters τo, To and J are listed in Table 2.2. Inset shows the same data
when graphed as log τ vs 1/T . T is given in units of ε/kB and τ in units
of
√
mσ2/ε. Here, m is a particle mass, σ is a particle diameter, and ε is

an energy parameter that characterizes interparticle interactions. See Refs.
[7, 8, 9, 10, 11, 12] for the precise meaning in each particular case. The
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2.6 Examples of using Eq. 2.4 (A) or Eq. 2.5 (B) to fit viscosity, η, of a super-
cooled liquid as a function of reciprocal temperature, 1/T . The circles are
experimental data [14]. Three fits are shown for both equations. For one fit,
parameters are determined by minimizing the mean square deviation between
functional form and experiment for the full range of supercooled data, for the
other two, parameters are found by minimizing the mean square deviation
between the functional form and a subset of that data, the subset being either
the higher temperature range of data or the lower temperature range of data.
See Table 2.3 for specified ranges and parameters. The arrow indicates the
value of 1/To, marking the crossover between normal and supercooled liquid
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2.7 Examples of using Eq. 2.4 (A) or Eq. 2.6 (B) to fit viscosity, η, of a super-
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other two, parameters are found by minimizing the mean square deviation
between the functional form and a subset of that data, the subset being either
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2.9 Parabolic collapse for WCA & LJ binary mixture simulation data [17] for
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2.10 Fitting parameter trends using Eq. 2.4 for the Kob-Andersen LJ and corre-
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2.11 Transport properties as a function of Tg/T for two typical supercooled liquids.
Black circles in (A) and (B) represent experimental data considered in Section
2. Labeling here is consistent with Table 2.1 - that is to say that Sal-2 and
NBS refer to the same experimental measurements and fit parameters as in
the table. Red dashed line is the fit parabolic form for T < To, as in [1]. Blue
dashed line represents Arrhenius fit for lowest T points [18]. (A) Relaxation
time, τ , of Salol where Tg = 221 K is the glass transition temperature where
log(τg/s) = 2. (B) Viscosity, η (given in units of Poise, labeled P), of NBS
where Tg = 708 K is the glass transition temperature where log(ηg/Poise) =
13. It is generally assumed that τ ∝ η, and, with this assumption, (A) includes
data used in Ref. [18] (triangles). . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Schematic of a trajectory for the hard FA model. Vertical axis represents
space where N = 8 lattice sites. Horizontal axis represents time where tobs = 8
Monte Carlo time steps. Arrows indicate occupied sites and direction of dy-
namical facilitation. Yellow sites indicate sites which are facilitated at that
time slice. Blue boxes highlight locations where there has been a configura-
tional change between some time t − δt and the time t. For this trajectory,
the activity K = 4 as there have been 4 configurational changes. . . . . . . . 42

3.2 Schematic of a trajectory for the hard east model. Vertical axis represents
space where N = 8 lattice sites. Horizontal axis represents time where tobs = 8
Monte Carlo time steps. Arrows indicate occupied sites and direction of dy-
namical facilitation. Yellow sites indicate sites which are facilitated at that
time slice. Blue boxes highlight locations where there has been a configura-
tional change between some time t − δt and the time t. For this trajectory,
the activity K = 3 as there have been 3 configurational changes. . . . . . . . 43
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3.3 Flow diagram for s-ensemble TPS. At the top, one trajectory is generated.
Next, a shifting or shooting move is chosen with equal probability, as is a
direction (forward or backward). Green lines indicate the original config-
uration of the trajectory in space-and-time. These lines have replaced the
arrows in Figures 3.1 and 3.2. On the left, a forward shooting move is shown
where the initial trajectory is truncated and the remainder is regenerated
(red). For backward shooting moves (not shown), the beginning of the trajec-
tory is removed and regenerated by running the simulation backward from
the shooting point. The new trajectory is accepted with the probability
min

{
1, e−s∆K(traj+g[∆N (0)+∆N (tobs)]

}
. Here ∆ represents the difference in the

quantity between the new trajectory and the initial trajectory. If the new
trajectory is accepted, the new trajectory replaces the old trajectory and the
procedure is restarted. If the new trajectory is rejected, I revert to the old
trajectory and start again. On the right side, a backward shooting move is
shown. First, as in the shooting move, the trajectory is truncated. Then, the
beginning of the trajectory is moved to the end of the trajectory and the be-
ginning of the trajectory is regenerated by simulating the system “backward”.
For forward shooting moves, the beginning of the trajectory is removed and
the end is shifted to become the new beginning and the system is regener-
ated until tobs from the former endpoint of the old trajectory. The acceptance
criterion for moves generated by shifting is identical to that for shooting moves. 45

3.4 Space-time phase diagrams for KCMs. (A) shows the generic phase diagram
for standard, hard KCMs such as the FA and the east models introduced in
Chapter 1. The bold line indicates the first order phase boundary between the
active phase, which has large K and requires s < 0, and the inactive phase,
which has small K and requires s > 0. s = T = 0 is indicated with a filled
circle and is the trivial “critical” point where 〈K〉s no longer distinguishes
between the two phases and K = 0 for both phases. For hard systems the
first order line extends to infinite temperature [19, 20]. (B) Sketch of phase
diagram for softened system. The transition between the active and inactive
phase no longer occurs at s = 0 but rather at s > 0 for T > 0. Here, the
first order line terminates at a non-trivial finite-temperature critical point
indicated by an open circle. This critical point is distinct from the trivial
critical point at s = T = 0 and is analogous in scaling behavior near a liquid-
vapor transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Values of k = K/tobs for a simulation along a TPS simulation in TPS time
spanning 3 · 107 attempted new trajectories. Simulations spend the majority
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an inactive basin where k is small. Many barrier crossings with intermediate
values of k suggest good equilibration and ability of this data to produce a
high quality P (k)s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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3.6 (A) Phase diagram for the 1d soft FA model. Here, I show the (s, ε) plane -
varying the value of D but keeping β constant as described in the text. The
solid line is the phase boundary between the active and inactive phase. The
dashed line is continuation of symmetry line of Eq. 3.49 into 1 phase region
beyond the critical point. The red circle indicates the point simulated with
ε = 1.9 · 10−4 < εc along the coexistence line in the two phase region. The
blue triangle indicates a simulation point where ε = 1.9 · 10−2 > εc. The
black X indicates the critical point where ε = 6.3 · 10−3 = εc. (B) Coexistence
histograms of the intensive activity k = K/(Ntobs) simulations for points in
(A) where colors and line styles are the same as in (A). . . . . . . . . . . . . 51

3.7 Plots of average intensive activity 〈k〉 = 〈K〉/(Ntobs) as a function of field
s for soft FA model for various values of ε in the vicinity of points given in
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Chapter 1

Introduction

1.1 The Glass Transition

Glasses are materials that are formed when liquids are cooled below their melting point,
Tm, but do not undergo the first-order phase transition into a crystalline, ordered solid. In-
stead, these liquids transition into supercooled liquids. Using simple measures, supercooled
liquids appear to be structurally indistinguishable from ordinary liquids but possess inter-
esting dynamical properties [23, 24]. The change from a liquid to a supercooled liquid is a
reversible process and thus the supercooled liquid remains in equilbrium [1]. As the material
is further cooled it falls out of equilibrium and becomes an arrested amorphous solid, also
known as a glass at a glass transition temperature Tg. This temperature varies only slightly
with the rate of cooling.

At Tg the material does not undergo a static phase transition. For example, in Figure 1.1
the density as a function of temperature is shown for freezing as well as for a glass transition.
At Tm the density jumps discontinuously as the liquid undergoes a first order phase transition
from a liquid to a solid [25]. However, at Tg no such jump is detected [26]. In fact, no known
structural order parameters can distinguish between a liquid and a glass [23] and, therefore,
the glass transition does not appear to to be a manifestation of a first-order static phase
transition using any currently known order parameter.

1.2 Supercooled Liquid Phenomenology

1.2.1 Self-Intermediate Scattering Function

Two point correlation functions such as the density pair-correlation function g(r) in
supercooled liquids vary little from that of their normal liquid counterparts. However, there
is a dynamical signature in the self-intermediate scattering function, Fs(k, t). The self-
intermediate scattering function correlates a particle’s position at time 0 with its position at
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Figure 1.1: Schematic view of the glass transition. As a material is cooled through its melting
temperature Tm it either freezes into a crystalline solid causing a sharp, discontinuous jump
in the density, or it is supercooled. Eventually, when the supercooled liquid falls out of
equilibrium, the system can no longer be further supercooled and arrests into a glass at a
glass transition temperature, Tg. This temperature depends on the cooling rate. The a type
glass shown in the diagram here is produced via a faster cooling rate and thus falls out of
equilibrium sooner at Tg = Tg,a. Whereas glass b is cooled at a slower rate and has a glass
transition temperature of Tg,b which is less than Tg,a.

a later time t. The self-intermediate scattering function, Fs(k, t) is defined as:

Fs(k, t) = 〈exp[ik ·∆r(t)]〉 (1.1)

here, k is a wavevector and usually taken to be k = 2π/σ where σ is the average distance
between particles and ∆r(t) is the distance travelled by the particle in time t, and i =

√−1.
Where 〈.〉 indicates an ensemble average - here over all particles. This is equivalent to finding
the k which first maximizes Fs(k, 0) = S(k) where S(k) is the static structure factor.

For normal liquids, Fs(k, t) is well characterized by a single decaying exponential function
Fs(k, t) = exp(−t/τ). Here τ is the structural relaxation time where Fs(k, t) = 1/e [27]. Note,
this relaxation time depends on the choice of wavevector k and therefore on a particular
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Figure 1.2: Illustration of typical relaxation behavior of the self-intermediate scattering func-
tion Fs(k, t) as a function of t for a constant wavevector k for normal liquids and supercooled
liquids. Red line indicates normal liquid behavior characterized by a single exponential de-
cay. Black dashed line indicates typical behavior for a supercooled liquid. Labels show the
portion of relaxation dominated by either the α or β relaxation processes described in Sec-
tion 1.2.1. The blue dashed line indicates the 1/e line. The time point at which Fs(k, t)
intersects the 1/e line is typically taken to be the relaxation time, τ .

lengthscale, though, as noted before, k is often taken to be 2π/σ. In supercooled liquids,
however, the shape of the self-intermediate scattering function becomes stretched. The
stretched portion of the scattering function takes on the form Fs(k, t) = exp

[−(t/τ)β
]

where
β is some stretching parameter less than 1. This stretching is often discussed in terms of
two distinct processes in supercooled liquids: the α and the β processes. Here, the α process
is the dominant, slow relaxation of the glass former whereas the β process is determined by
the material and is usually thought to correspond to such processes as vibrations and side-
chain relaxation in molecular glass formers. The stretching is one of the main phenomena
associated with supercooled liquids [28], and the degree to which β 6= 1 is argued to be a
signature of dynamic heterogeneity [24] introduced in Section 1.2.3.
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Figure 1.3: Angell plot showing relaxation time τ as a function of temperature T rescaled by
the glass transition temperature Tg where τg = τ(Tg) = 100 seconds. Liquid abbreviations
are the same as those considered in [1] and Table 2.1.

1.2.2 Stokes-Einstein Breakdown

The Stokes-Einstein relation relates the diffusion constant, D, to the microscopic relax-
ation time, τ [27]. It is a mean-field result which accounts for a tagged particle in a viscous
medium [27, 29]. It is often written as:

D ∝ T

τ
(1.2)

here, T is temperature. The Stokes-Einstein equation implies that Dτ/T is a constant. This
relation is known to hold well for normal liquids, however in supercooled liquids it breaks
down. In the supercooled regime, the diffusion constant and the relaxation time decouple
[23]. Figure 1.4 shows this decoupling for the glass former tris-napthylbenzene (tNB). This
suggests that the mean-field approximations within the Stokes-Einstein relation no longer
hold in the supercooled regime as that region is known to be dynamically heterogeneous as
will be introduced in the following section.
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Figure 1.4: Decoupling between the diffusion constant, D, and the relaxation time, τ , as
a function of temperature, T , for tris-naphthylbenzene [5]. Red dots indicate experimental
data. Black dashed line indicates the high-temperature liquid regime where there is no
decoupling and Dτ/T is constant.

1.2.3 Dynamic Heterogeneity

While structural markers, such as the density pair-correlation function g(r), vary little as
a material is supercooled, recent works have shown that the dynamics of supercooled liquids
are markedly different from that of normal liquids. Supercooled liquids are characterized by
dynamic heterogeneity [30]. Dynamic heterogeneity is the property by which different spatial
regions of glasses relax on different timescales.

In Figure 1.5 a schematic view of a 2D jammed material made of binary hard spheres
is shown. In this illustration, particles which have moved a higher than average distance
in an interval, ∆t, are colored in red and are said to be very mobile. Particles that have
moved a less than average amount in the same time interval are colored in blue and are
called immobile. Particles with average mobility are shown in yellow. This characterization
clusters particles into mobile regions and immobile regions. This illustration is indicative of
the dynamic hetoeregeniety seen in various systems including granular materials [31], colloids
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Figure 1.5: Illustration of a 2D jammed system. Particles are colored according to their
displacements in a time interval, ∆t. Particles which have moved most are colored red.
Particles which have hardly moved are colored blue. Particles of average mobility are colored
yellow.

[32], and simulations of Lennard-Jones particles [11].

1.2.4 The Kauzmann Temperature, TK

At the freezing temperature Tm the entropy of a liquid is higher than the crystal with
which it is in equilibrium. Moreover, the heat capacity of that liquid is also higher than
the crystal. As a liquid is supercooled, the entropy of the supercooled liquid decreases more
rapidly than that of the crystal. When extrapolated, these two entropies eventually cross
at a non-zero temperature which is known as the Kauzmann Temperature, TK. At TK the
supercooled liquid and the crystal have the same entropy. In the literature, the existence
of this extrapolated crossing point is often referred to as the Kauzmann entropy crisis or
Kauzmann entropy paradox [24]. Above TK the entropy in excess of that of the crystal is
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known as the configurational entropy, sc, and in Section 1.3 I will introduce a theory related
to the configurational entropy known as Adam-Gibbs theory. Of course, the kinetic process
of the ‘glass transition’ at the temperature Tg intervenes at temperatures much higher than
TK and a supercooled liquid at TK cannot be experimentally observed. A schematic diagram
of the volume of a material undergoing a glass transition is shown in Figure 1.1.

One can determine the Kauzmann temperature through extrapolation of the difference
in the intensive heat capacities of the liquid and the crystal, ∆cp at pressure p

∆sm =

∫ Tm

TK

∆cp

T
dT (1.3)

here, ∆sm is the difference between the intensive entropy between the liquid and the crystal
at the melting temperature.

1.2.5 Fragile and Strong Supercooled Liquids

Supercooled liquids also show a marked increase in the rate of change of their transport
properties such as viscosity, η, and relaxation time, τ , as a function of inverse temperature,
1/T [1]. This is in contrast with the equilibrium liquid phase where there is little change
in the relaxation time as a function of decreasing temperature. In general, two classes of
supercooled liquids are considered: strong and fragile glass formers [6]. Strong glass formers
include materials such as silica [6] - also known as window glass. Strong glass formers are
characterized by Arrhenius relaxation, τ (or η) ∼ exp(Aβ) where, A is an activation energy
and β = 1/kBT [33]. Fragile materials are categorized by super -Arrhenius relaxation whose
exact form has been much debated amongst experimentalists and theorists [34, 14, 35, 36]. In
the coming section, some of the most popular modern theories regarding supercooled liquids
will be introduced, along with their predictions for the scaling of the transport properties
in supercooled liquids. Figure 1.6 demonstrates the two main types of scaling of transport
properties in supercooled liquids. Figure 1.3 highlights the variety of ‘fragilities’ which can
be found in fragile glass formers.

1.3 Theories of Supercooled Liquids and the Glass Tran-

sition

Many papers have been devoted to determining the underlying physics behind the glass
transition. Here, I present several of the most widely considered of these theories. In the
coming chapters, I will test the predictions of these theories in light of experimental data.
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Figure 1.6: Schematic view of the logarithm of transport properties of supercooled liquids
as functions of Tg/T . Here, Tg is the glass transition temperature where ηg = 1013 poise
or τg = 100 seconds. Strong liquids such as silica [6] follow Arrhenius behavior where the
relaxation time (τ) or viscosity (η) go as exp(Aβ) indicated by the solid, red line. Fragile
materials, such as toluene and orthoterphenyl [1] follow a super-Arrhenius form as indicated
by the black dashed line.

1.3.1 Mode Coupling Theory

Mode coupling theory (MCT) is a mean field theory for liquids at temperatures well
above the glass transition temperature, Tg [34]. Thus, MCT is a good theory for normal
liquid behavior approaching the supercooled regime. The basic idea of MCT (and also
random first order theory) is to analyze the behavior of a free energy, F , which represents
the configurational landscape of a material. However, it is not convenient to choose density
as an order paramter to explore this landscape because the various amorphous minima are
not distinguishable by density alone. Instead, MCT (and others) have tried to understand
the behavior in terms of the entire density field of the system. Mode coupling theory seeks to
derive an expression for the density fluctuations from basic equations of motion and begins
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with the exact equation [37]:

d2F (k, t)

dt2
+
k2kBT

mS(k)
F (k, t) +

∫ t

0

dτM(k, τ)
d

dt
F (k, t− τ) = 0 (1.4)

where F (k, t) is the dynamic structure factor, S(k) = F (k, 0) is the static structure factor, m
is the mass of a particle, T is temperature, k is a wavevector and M(k, t) is a memory kernel.
One can show that the memory kernel is related to the variance of the random forces on the
density field [26]. Therefore, M(k, t) captures the effects of other degrees which couple to the
density field. Eq. 1.4, though exact, is impossible to solve directly and therefore MCT seeks
to approximate this equation by identifying the slow, and therefore dominant, modes in the
system. This allows MCT to derive dynamical equations – though this task is not trivial.
This is done through a set of self-consistent MCT equations which are solved simultaneously
(see Ref. [26, 37]).

In its idealized form, MCT predicts a transition at a mode coupling temperature, TMCT,
where the supercooled liquid goes through a transition from being in an ergodic phase to a
non-ergodic phase. MCT predicts that for T ≤ TMCT correlation functions such as Fs(k, t)
for some wavevector k will never decay [34] and predicts that the relaxation time τ for
temperatures above, but close to, TMCT should go as:

τ(T ) ∼ (T − TMCT)−γ (1.5)

where γ is a positive exponent usually stated to be between 2 and 3 [34]. This power law
scaling holds near the mode coupling temperature TMCT. At the glass transition temperature,
TMCT, MCT predicts a divergence in the relaxation time τ [37]. MCT is successful at
predicting much of the behavior of supercooled liquids including the scaling of the β and α
relaxation processes [37]. However, it is well established that predictions of TMCT tend to
be greater than Tg. Since there is no divergence of τ in the supercooled regime, Eq. 1.5
cannot hold for TMCT ≥ T > Tg even though the material is still said to be in an ergodic,
relaxing state. The fact that no divergence is observed at TMCT has been one of the greatest
challenges to pure MCT [37].

1.3.2 Adam-Gibbs Theory

Adam and Gibbs [38] formulated a theory of the glass transition based on the idea
that there is a connection between thermodynamics and dynamics. They proposed that
glasses become more and more viscous because they sample fewer and fewer basins as their
energy is decreased via lowering temperature. Eventually, at the Kauzmann temperature,
TK, the material becomes “localized” in one ideal-glass minimum. This localization causes
the configurational entropy, sc, to vanish. The configurational entropy, sc is related to the
total number of basins the material can sample. Adam-Gibbs theory builds upon the idea
of cooperatively rearranging regions (CCRs). CCRs are regions in a glass former which
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can relax into another configuration, independent of the surrounding particles outside of
that region [38]. The main Adam-Gibbs equation for the relaxation time τ as a function of
temperature T is given by:

τ = A exp(B/Tsc) (1.6)

here, A and B are material dependent prefactors [24]. Adam-Gibbs theory has also been
used to support the empirical findings of Vogel, Fulcher, and Tamman [36, 39, 40] that

τ = AVFT exp(BVFT/(T − TVFT)) (1.7)

where AVFT and BVFT are constant prefactors. This equation is commonly referred to as
the VFT equation in honor of the scientists who originally noted its abilities to fit a wide
range of experimental, supercooled liquid transport data. TVFT is a temperature where there
is a predicted divergence similar to that predicted by MCT at TMCT. Unlike TMCT, TVFT is
often fit to be significantly lower than Tg [13]. Moreover, many have correlated TVFT with
the expected divergence due to the entropy crisis at TK. In fact, many go so far as to equate
TVFT and TK [41].

1.3.3 Random First Order Theory

Random first order theory (RFOT) patches several popular supercooled liquid theories
into one unified theory and suggests regimes in which each of these theories hold. RFOT, like
Adam-Gibbs theory and MCT, still seeks to understand the underlying free energy landscape
of density fields. To achieve this, RFOT combines ideas from Adam-Gibbs theory [42] as well
as MCT. RFOT views MCT as a good description of supercooled liquid behavior up until
the mode coupling temperature TMCT. Here, at TMCT, instead of observing a divergence in
transport properties (or an infinite plateau in Fs(k, t)), the transition is said to be avoided
and instead a crossover is observed. The MCT temperature is interpreted as a location at
which the change is purely dynamical, rather than thermodynamic. Beyond this initial MCT
regime but above the Kauzman temperature TK < T < TMCT, the material transitions into
a “mosaic state” – borrowing the cooperatively rearranging regions of Adam-Gibbs theory.
Here, the liquid is made of a mosaic of domains of width approximately ξ. The interpretation
is beyond this length scale, metastable states are no longer well defined [26].

Like Adam-Gibbs theory, RFOT predicts that the relaxation time τ goes as Eq. 1.7 be-
yond the mode-coupling regime where mean field theories breakdown. Further, like Adam-
Gibbs theory, there is a great importance placed on the configurational entropy in the su-
percooled liquid. However, unlike Adam-Gibbs theory, RFOT predicts a size for these co-
operatively rearranging regions (motivated by experiment) and estimates them to be about
the size of 100-200 molecules near the glass transition at Tg. Moreover, instead of being
dense and packed regions, RFOT purports that these cooperatively rearranging regions are
amorphous and fractal-like [42]. In RFOT there is a predicted thermodynamic transition and
‘spinodal decomposition’ at a temperature TRFOT which is higher than Tg. This corresponds
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to a transition between activated motion and glassy dynamics. The theory suggests, there-
fore, that there is a first order phase transition near Tg and that the dynamic heterogeneities
correspond to a nucleation process [42].

1.3.4 Other Empirical Fits to Transport Properties

Like the VFT fit, other fits have been proposed to fit supercooled liquid transport data.
One popular fit is the double exponential fit [14, 43]

log(τ/τ
(∞)
dx ) = (K/T ) exp(C/T ) (1.8)

where K, C, and τ
(∞)
dx are fitting constants. Unlike other forms, the double exponential form

predicts no divergence in relaxation time. Yet another proposed fit has been suggested for
polymeric glass formers and has a fractional exponential [44] form

log(τ/τc) = X(Tc/T − 1)1.57 (1.9)

where X, Tc, and τc are fit parameters. The fractional exponential form predicts a divergence
at Tc.

1.3.5 Chandler-Garrahan Theory

Chandler-Garrahan theory is based on dynamical facilitation [35, 45]. Dynamic facilita-
tion is the idea that relaxation propagates through a supercooled liquid and is clustered in
space and time. More specifically, dynamic facilitation implies that regions of a glass form-
ers cannot relax until a nearby “excitation” passes through them. The main predictions of
Chandler-Garrahan theory are captured by a set of kinetically constrained models (KCMs)
which have facilitation built into them via dynamical constraints.

Basic KCMs

The two most basic KCMs are the one dimensional east model and the one dimensional
Fredrickson-Andersen (FA) model. In both models, the underlying thermodynamics is that
of a lattice gas [25]. The one dimensional lattice gas is a model with N sites labeled i =
1, 2, · · · , N . Each lattice site can take on one of two values ni = {0, 1}. In the context of
Chandler-Garrahan theory, the interpretation is that at site i where ni = 0, the glass former
is in an unexcited state and cannot facilitate neighboring regions to relax. A region which
contains an excitation, where ni = 1, can facilitate neighboring regions to relax. Lattice
sites do not interact energetically. The total energy, E, of the system is therefore given by
the sum of the lattice occupancy

E =
N∑
i=1

ni (1.10)
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The equilibrium concentration c = 〈ni〉 of these excitations at inverse temperature β =
1/kBT is given by:

c = 〈ni〉 =
1

1 + eβ
. (1.11)

The east and the FA models are distinguished from the lattice gas model by their dynamical
rules. For unconstrained dynamics, at some time t any site can change state with some finite
rate [25] proportional to the detailed balance condition

k0→1

k1→0

= e−β (1.12)

here, k0→1 is the rate a site into ni = 0 becomes excited where ni = 1. k1→0 is the reverse
process where ni goes from an excited state to an unexcited state where ni = 0. For an
unconstrained process, we can take k0→1 = e−β and k1→0 = 1, though, as we will see in
the FA and east models, any rates which preserve the ratio in Eq. 1.12 are acceptable rate
choices.

Unlike for unconstrained dynamics, in KCMs only some sites are capable of changing
states at time t. These rules therefore take into account the ideas of facilitation.

FA Model

The FA model [46] is a model for a strong glass former and thus has Arrhenius relaxation
scaling as discussed in Section 1.2.5 [47]. In the FA model, sites where ni = 1 can facilitate
relaxation in either adjacent lattice site ni−1 or ni+1. This introduces a constraint function
Ci into the rate expressions. For the FA model the constraint function is:

Ci,FA = ni+1 + ni−1 (1.13)

and the rate expressions become:

k0→1 = e−βCi,FA (1.14)

k1→0 = Ci,FA. (1.15)

Since the detailed balance condition in Eq. 1.12 is preserved, the thermodynamics are
unchanged. The difference is entirely dynamical . A schematic view of facilitation in the FA
model is given in Figure 1.7. A sample trajectory for the FA model for some observation
time, tobs, is shown in Figure 1.8. Relaxation in the FA Model is said to be ‘diffusive’ as
there is only one characteristic barrier relaxation – the Arrhenius barrier [35].

East Model

The east model [48] is similar to the FA model except that the constraint function only
contains a term in one direction. Sites facilitate their neighbors to their “east.” Ci becomes

Ci,east = ni−1. (1.16)
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Figure 1.7: Schematic view of constraints in the 1-dimensional east and FA model. Panel
(A) shows a configuration of the FA model at some time t where lattice sites are labeled
from i = 1 to N where N = 20. Double arrows in filled, red sites indicate excitations where
ni = 1 as well as direction of facilitation. Sites containing no arrows indicate places where
ni = 0. Unfilled sites outlined in dashed lines indicate regions where Ci,FA 6= 0, and can
change state in the next time t+ δt where δt is an infinitesimal time step. Panel (B) shows a
configuration of the east model at some time t where lattice sites are labeled from i = 1 to N
where N = 20. Right pointing arrows in filled, blue sites indicate excitations where ni = 1 as
well as eastward direction of facilitation. Unfilled sites containing no arrows indicate places
where ni = 0. Sites outlined in dashed lines indicate regions where Ci,east 6= 0, and can
change state in the next time t+ δt where δt is some infinitesimal time step.

The rates in the east model are

k0→1 = e−βCi,east (1.17)

k1→0 = Ci,east. (1.18)

The east model relaxes hierarchically – that is to say that there is no single characteristic
barrier because the barriers are a function of distance between sites ` [35]. The east model is
a good model for fragile dynamics [47]. Again, like the FA model, the difference between the
east model and an unconstrained model is purely dynamical; the thermodynamics remains
unchanged. A schematic view of facilitation in the east model is given in Figure 1.7 and an
example trajectory for some observation time, tobs, is shown in Figure 1.9.

Crossover Model

Most glass formers’ behavior falls in between that of the east and the FA model. To
interpolate between these two extremes, Garrahan and Chandler consider the the crossover
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Figure 1.8: Sample FA model trajectory for β = 1, N = 60 and tobs = 1000 Monte Carlo
cycles. Grey squares indicate places in space-time where ni(t) = 1. White areas indicate
places in space-time where ni(t) = 0.

model [35] as a reference model for glass formers. The crossover model is an interpolation
between the east and FA models [49]. Here, the constraint function Ci,x is:

Ci,x = εni+1 + ni−1 (1.19)

where ε is an interpolating parameter that ranges from 0 to 1. ε = 0 returns the east model.
ε = 1 returns the FA model. For the crossover model the rates become

k0→1 = e−βCi,x (1.20)

k1→0 = Ci,x (1.21)

Chandler-Garrahan Theory

In KCMs (and atomistic systems [50]) for the length scale a which is not much larger
than the size of a particle diameter Chandler and Garrahan define an excitation which is
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Figure 1.9: Sample east model trajectory for β = 1, N = 60 and tobs = 1000 Monte Carlo
cycles. Grey squares indicate places in space-time where ni(t) = 1. White areas indicate
places in space-time where ni(t) = 0.

an irreversible particle displacement of size a. The concentration of such excitations on the
length scale a in a supercooled liquid goes as an ideal gas of uncorrelated excitations

ca ∝ exp[−Ja(1/T − 1/To)], T < To (1.22)

here, Ja is an energy barrier to produce the excitation of size a. And (1/T−1/To) is a reduced
temperature defined for temperatures below an onset temperature To to supercooled behav-
ior. Based on hierarchical KCMs, they argue that Ja has a weak length scale dependence
and grows logarithmically with the size of the excitation

(Ja − Ja′)/Ja′ = γ ln(a/a′) (1.23)

where γ is material dependent and near unity and a′ is some other length scale. For some
distance between elementary excitations, `a, the relaxation time τ goes as:

τ/τa ∼ eF`a/kBT (1.24)
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where T is temperature, kB is Boltzmann’s constant, τa is a proportionality constant, and Fa
is a free energetic barrier corresponding to the length scale, `a. Chandler-Garrahan theory
predicts that glassy relaxation includes a weak length scale dependence (Eq. 1.23) such that,

τ/τa ∼ eFo/kBT+[1/T−1/To]Jaγ ln `a/a, T < To (1.25)

where Fo is the free energetic barrier lacking length scale dependence and Ja ln ` is the length
scale dependent perturbation to that free energy below To where Ja is an energetic barrier
in units of k−1

B .
The distance between excitations of size a, `a depends on the concentration of excitations,

c. For kinetically constrained models these excitations are independent from one another
and the concentration therefore goes as

`a/a ∼ c−1/d
a /a ∼ (exp[−Ja(1/T − 1/To)])−1/d (1.26)

here, ca is the concentration of excitations of at least size a and d is the fractal dimensionality
[50]. The proportionality ln ca ∼ [−Ja(1/T − 1/To)] is a result from the analytical treatment
of KCMs [35]. Combining Eq. 1.26 and Eq. 1.25 we find

log τ/τo =

(
J

To

)2(
To

T
− 1

)2

(1.27)

where J =
√
J2

aγ/d and log τo is the relaxation time of the material at To (and has observed
all constant prefactors). This is known as the parabolic fit or, alternatively, in recent litera-
ture as the Elmatad-Chandler-Garrahan (ECG) fit [51]. Here, To is the onset to supercooled
liquid behavior where this form begins to hold and J is an energetic barrier. The values of
these parameters are material dependent. Unlike MCT, Adam-Gibbs theory, RFOT, or the
VFT equation, the parabolic form of Eq. 1.27 predicts no divergence in τ at a metaphysical
temperature. Moreover, the parabolic fit holds for all points where Tg ≤ T ≤ To.

Fragile-to-Strong Crossover

Chandler-Garrahan theory makes a further prediction that at some temperature Tx < To

the behavior of so-called “fragile” glass formers (those whose relaxation time follow a super-
Arrhenius form of Eq. 1.27) should cross over to the behavior of “strong” glass formers. For
strong glass formers the relaxation time follows a simple Arrhenius form, τ ∼ exp(−βA)
where A is an activation energy. Chandler-Garrahan theory suggests that this is a crossover
between hierarchical relaxation in fragile glass formers to diffusive relaxation in strong glass
formers. This is because hierarchical barriers grow as 1/T 2 whereas diffusive barriers grow
as 1/T . Eventually, hierarchical barriers will become too energetically expensive and the
system will switch to relaxing diffusively. This is confirmed in simulations of the crossover
model with various values of ε [49].
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Chapter 2

Supercooled Liquid Universality

2.1 Introduction

In Chapter 1 several common theories of the glass transition were presented as well as
their predictions for the temperature dependence of transport properties such as viscosity η
and relaxation time τ . Where η and τ are interchangeable as they are related to one another
by

η = G∞τ (2.1)

where G∞ is the instantaneous shear modulus [52] and is a constant that varies little with
changes of temperature. In this chapter, I will study the experimental temperature depen-
dence of transport properties.

While in irreversible or driven cases, transport properties can be singular [53, 20]. Here,
I will restrict myself to “equilibrium” relaxation time data in the region between liquid
behavior at high temperature and the glass transition temperature Tg where the system falls
out of equilibrium and into the glass state. This data is in “equilibrium” in the sense that
the sample has been cooled and warmed sufficiently slowly such that the process is reversible.

The most commonly used form in the literature is that of Vogel, Fulcher, and Tammann
(VFT) [36, 39, 40]. The VFT form is an empirical fit to supercooled transport data and is
often written as:

τ = AVFT exp(BVFT/(T − TVFT)) (2.2)

where AVFT, BVFT and TVFT are fitting constants. The VFT form predicts a singularity at
TVFT where τ becomes infinite and the material can no longer relax. In practice, experimen-
tally TVFT < Tg such that TVFT is a metaphysical temperature which can not be verified.
The VFT form is not the only form which predicts a singularity. Another popular form is
the Mode Coupling Equation

τ(T ) ∼ (T − TMCT)−γ (2.3)

where the divergence is at the mode coupling temperature TMCT. TMCT is usual predicted to
be higher than Tg despite no apparent divergence as T approaches TMCT.
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Recently, however, many have begun to question whether or not transport properties
should be fit with singular functions. In a recent work by Hecksher et al [54] they find no
compelling evidence for fitting with a singular function as compared with a form that goes
as log τ ∼ B/T n where B and n are fitting parameters. Moreover, in their work they found
that for most supercooled liquids n ≈ 2. Using this form, they found that they could fit
supercooled liquid transport properties as well as the VFT form thus suggesting that there
was no compelling evidence for fitting with a singular function over a continuous function.
In their study, they considered supercooled liquid transport properties for over 40 liquids,
all of which are also considered here.

Unlike these popular theories, Chandler-Garrahan [35] predicts no such divergence and
instead predicts the parabolic form

log τ/τo =

(
J

To

)2(
To

T
− 1

)2

(2.4)

where J , To, and log τo are fit parameters. This fit is motivated by Garrahan-Chandler
theory as derived at the end of Chapter 1 [35]. In the following sections we will apply this
form to over 58 distinct structural glass-forming liquids and find that this form is capable of
collapsing all fragile glass former data onto one, single curve [1].

We expect the range of validity of this quadratic behavior to be bounded [55]. In par-
ticular, it should not apply above a temperature To where excitations facilitating molecular
motions are present throughout the system. In that regime, correlated dynamics is not re-
quired for molecular motions, and accordingly, temperature variation of transport is nearly
negligible [56, 57]. The quadratic form should also not apply below another temperature,
which I call Tx. The reasoning here recognizes that correlated dynamics leading to super-
Arrhenius behavior [58] is the result of constraints due to intermolecular forces. At an
energetic cost, E, these constraints can be avoided. The time scale to pay that cost is
τx exp(E/T ). While this time can be very long, at a low enough temperature it will become
shorter than a super-Arrhenius time. This is the temperature Tx, below which relaxation
will be dominated by dynamics that avoid hierarchical constraints.

2.2 Fitting Procedure

Here, I summarize the procedure I employ to fit data with the parabolic form.

• First, I collect relaxation time or viscosity data spanning several orders of magnitude.

• Next, I examine the data to attempt to identify normal liquid and fragile regimes, and
thereby obtain an approximate location of the onset lying between the two.

• Then, I fit the data spanning several orders of magnitude starting with the lowest
temperatures available, using a least squares analysis to obtain a first estimate of J ,
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Figure 2.1: An example of fitting parameter convergence for B2O3. In the fragile regime,
47 data points ranging continuously over 11 orders of magnitude in η are available for fit-
ting. Including the liquid regime, there are 62 data points in this set spanning 13 orders of
magnitude in η. Initially, only the lowest temperature points are considered and subsequent
fits with more points come from adding higher temperature points to the considered set.
(A) shows the convergence of To as a function of number of points used for fitting. (B)
shows the convergence of J as a function of number of points used for fitting. (C) shows the
convergence of ηo (analogous to τo) as a function of number of points used for fitting. For
this system, To is 1066 K, J/To is 3.3, and log ηo is 2.9 Poise.

To and log τo. I begin with the lowest temperature data points because the highest
temperature points often have significant “mixing” with the liquid regime - where
transport properties have little temperature dependence - and deconvoluting these two
behaviors near the onset temperature is difficult. Moreover, including only the lowest
temperatures ensures that you are almost certainly fitting in a regime where T < To.

• With this estimate for To as an indication of the highest temperature point for which
to fit, I continue to add higher temperature points until the values of J , To and log τo
converge. (An illustration of the minimal amount of data needed to fit viscosity data
for B2O3 [15] is shown in Figure 2.2. An illustration of the parameter convergence for
the B2O3 fit is shown in Figure 2.1.) As points are added after convegence, it is not
uncommon to see very small, but systematic changes in the parameters. Generally, J
and To tend to rise together where as log ηo will decrease and vice versa. This may be
due to the nature of the large number of degrees of freedom and the presence of local
minima in fits of nearly equal standard deviation that swap from being local to global
as certain data points are added. However, these changes are barely perceivable and
only highlight that experimental data contains some error and it must be understood
that fits with large degrees of freedom cannot, therefore, be perfect.

Caveat:



CHAPTER 2. SUPERCOOLED LIQUID UNIVERSALITY 20

 2

 6

 10

 14

 0.5  1  1.5  2
1000 K/T

/P

Figure 2.2: An example of fitting parameter convergence for B2O3. Red points indicate
the minimal data set required to converge fitting parameters when beginning from the low
temperature data and extrapolating downward. Dashed lines are guides to the eye to indicate
the location of the onset of fragile behavior.

While in my B2O3 example I have chosen to start at the lowest temperature point and
add higher and higher temperature points until the parameters converge, it should be noted
that often the lowest temperature points are the hardest to measure and therefore sometimes
data in this region is not always as reliable as data taken from a more moderate, yet still
supercooled regime. It may be useful to check if a fit through such a moderate range properly
predicts the lowest temperature data as an estimate for the quality of the lowest temperature
data.

2.3 Fitting Experimental Data

In Figure 2.3 I demonstrate a universal collapse for over 68 data sets representing more
than 1200 data points. A similar collapse was noted a few years ago, when Rössler and
co-workers showed how seemingly varied behaviors for the transport properties of several
supercooled liquids could be represented by a single function of temperature [43]. The
fitting in Figure 2.3 differs mainly in the functional form adopted for the data collapse. This
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Figure 2.3: (A) Collapse to a parabolic form of the structural relaxation times, τ , and
viscosities, η, as functions of temperature T for fragile glass forming liquids. Parameters τo,
To and J are listed in Table 2.1. Inset shows the same data when graphed in Angell-type
plots, where Tg refers to the temperature at which the viscosity of the liquid is 1013 Poise or
when the relaxation time reaches 102 seconds. (B) Data for temperatures T < To graphed
as a function of the square of the collapse variable. Key at right lists the 68 liquid data sets
considered in the graphs. The meaning of each acronym is given in Table 2.1.
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difference enables a universal fit over a range of temperatures larger than the fit suggested by
Rössler [43]. For example, for liquid Ca-K-NO3, Rossler et al fit data for temperatures below
T = 381 K, while To for this material is 444 K. This percentage difference is similar for all
the liquids considered by Rossler et al. The onset-like temperatures for the fits reported by
Fischer [59] and by Sticklel et al [60] are somewhat closer to To than that of Rossler et al, but
here too, the boundaries for fitted data are lower than To. Kivelson and co-workers [61, 62]
have proposed another collapse to a non-singular function, but one with one more adjustable
parameter than I consider.

Table 2.1 collects the parameters obtained in the fitting data to Eq. 2.4 with To > T > Tx.
For each liquid considered, the data set for this regime contained five or more data points,
and most contained ten or more data points. This is the data shown in Figure 2.3. Some
of the data refer to viscosity measurements, others refer to relaxation time measurements.
For each liquid, the three fitting parameters are determined by minimizing the mean square
deviation, σ2, between the data and the quadratic form for temperatures that exceed a
preliminary estimate of the onset temperature. The standard deviations obtained by this
fitting are noted in Table 2.1.

The reference time, τo, is the time for relaxing a microscopic region of liquid at the onset
temperature. We expect these times to be no smaller than 1 ps. Similarly, I expect the
reference viscosity, ηo, to be not much smaller than 1 Poise. A much smaller value can be an
indication of treating a strong material as if it were fragile. For example, fitting available data
for liquid 3-phenyl-1-propanol (3Ph1P) [54, 63, 64] with Eq. 2.4 yields a seemingly acceptable
standard deviation of σ = 0.16, but the energy scale compared to the reference temperature
is curiously low, J/To ≈ 1.2, and the reference time is unreasonably short, τo ≈ 10−16 s.
Instead, by fitting to the Arrhenius form with log (τR/s) = −2.4 at T = TR = 200K, the
activation energy E and standard deviation σ have reasonable values of 40TR and 0.57,
respectively. Another similar case is the liquid triphenyl-ethylene (TPE) [65]. Again, while
the standard deviation σ = 0.0086 is small, the time is unreasonably short, τo ≈ 10−14 s. An
Arrhenius fit for these data yields log (τR/s) = −3.1, TR = 274K, E/TR = 58 and σ = 0.058.
The available data therefore suggests that these supercooled liquids are strong. That is,
the crossover temperature is larger than any temperature for which the data is available:
Tx > TR. Perhaps for these liquids, or others like them, relaxation could be studied at
higher temperatures to find evidence for a crossover temperature.

There is one outlying data point on the graphs of Figure 2.3 for so called NS 66 [66].
This occurs at a state point far separated from all the other state points for which other
data points exist. We suspect this point might be erroneous.

2.4 Fitting Numerical Data

Figure 2.4 shows quadratic data collapse for data from six numerical simulations of fragile
glassfomers. Here, the fitting was done using the same methods used to collapse the data
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Figure 2.4: Collapse to a parabolic form of the structural relaxation times, τ , as functions
of temperature T for simulations of models of fragile glass forming liquids. Parameters τo,
To and J are listed in Table 2.2. Inset shows the same data when graphed as log τ vs 1/T .
T is given in units of ε/kB and τ in units of

√
mσ2/ε. Here, m is a particle mass, σ is a

particle diameter, and ε is an energy parameter that characterizes interparticle interactions.
See Refs. [7, 8, 9, 10, 11, 12] for the precise meaning in each particular case. The meaning
of each acronym is given in Table 2.2.
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in Figure 2.3(a). Table 2.2 shows the parameters used for the data collapse. J/To for the
numerical simulation data is comparable in magnitude to the values obtained for many of the
experimental liquids. The simulation data extends over three or four orders of magnitude
while the experimental data extends over more than ten orders of magnitude.

2.5 Comparison with VFT

Also noted in Table 2.1 are the standard deviations obtained by fitting the VFT form
to the same data. Both the quadratic form and the VFT form have three independent
parameters. Considering all 67 liquid data sets, the mean standard deviation for the parabolic
form is 0.073± 0.073 and for the VFT form is 0.088± 0.14. While the standard deviations
are similar, there are at least two reasons to favor the quadratic form over the VFT form.
The first [54] is that the quadratic form does not require the introduction of a metaphysical
Kauzmann temperature – an implausible thermodynamic state point that by definition is
unobservable [67]. The second is that, for approximately half the liquids fitted, the VFT
form achieves small standard deviations with a pre-factor time that is less than 10 fs, which
is too short to coincide with structural relaxation at any reference state of a molecular liquid.
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2.6 Case Studies of Supercooled Liquid Theories

2.6.1 Introduction

In Chapter 1, I introduced several supercooled liquid theories and their predictions for the
temperature dependence of transport properties such as the relaxation time, τ , and viscosity,
η. In the previous sections, I showed that transport properties for over 50 liquids could be
collapsed to a single, parabolic, form given in Eq. 2.4.

Here, I will directly compare the predictions of some of these theories to the parabolic form
of Eq. 2.4. First, I will consider the connection between the VFT temperature, TVFT, and
the Kauzmann temperature, TK. Following, I will compare the fits predicted by Adam-Gibbs
theory presented in Section 1.3.2 as well as some of the empirical fits presented in Section
1.3.4. My goal is to distinguish fitting forms whose parameters are material properties from
those whose parameters are dependent on the temperature range fit and do not converge.
I will use the same procedure as outlined in Section 2.2. Then, I will examine the role of
attractive forces in the dynamics of supercooled liquids. Finally, I will investigate the recent
purported finding of a fragile-to-strong crossover in supercooled liquid transport data.

2.6.2 TVFT vs TK

The VFT formula for transport property τ is

log(τ/τ
(∞)
VFT) =

A

T − TVFT

, (2.5)

where τ
(∞)
VFT, A, and TVFT are fitting parameters. It is possibly the most common of all

expressions used in glass physics, often referred to as a law [94]. This formula is often invoked
to attribute slowing dynamics in a supercooled liquids to a thermodynamic transition at the
temperature TVFT. Adam-Gibbs theory [38] (Section 1.3.2) and random-first-order theory
[41] (Section 1.3.3) connect this transition to an entropy crisis, where TVFT is a recorder of
a Kauzmann temperature as introduced in Section 1.2.4. The latter, TK, is an extrapolated
temperature at which the entropy of the supercooled liquid equals that of the ordered solid.
(A formula analogous to Eq. 2.5 is an exact result for a class of stochastic models [95].)

It is often asserted that TVFT ≈ TK is a good approximation [41], but it has been observed
that experimental evidence is mixed [96]. To analyze the issue quantitatively, note that both
TVFT and TK are constrained to lie below the glass transition temperature, Tg, and the
relative difference from that reference temperature is the pertinent measure. According to
the tabulated temperatures for 33 different liquids [13], the quantities (Tg/TVFT − 1) and
(Tg/TK − 1) are typically a few tenths. Their ratio, R = (Tg/TVFT − 1) / (Tg/TK − 1), often
differs significantly from unity. In particular, averaging over the 33 different liquids yields
a mean value of 〈R〉 = 1.15 and a root-mean-square deviation 〈(R− 〈R〉)2〉1/2 = 0.613. In
other words, it is just as likely that TVFT and TK will differ significantly as it is that they
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Figure 2.5: Comparison of TK and TVFT. The main plot does so in units of Tg while the inset
does so in units of 100 K. The circles represent 33 liquids compiled by Angell [13].

will be similar. Figure 2.5 illustrates this point. Notice that the commonly used comparison,
shown in the inset to Figure 2.5, uses arbitrary units to plot TK and TVFT, which gives
the false impression that the two temperatures reliably track one-another. This impression
results from the fact that TK and TVFT are never very far from Tg, and Tg varies significantly
from one system to another.

2.6.3 Comparison of Fits with Parabolic Fit

The VFT Fit vs. the Parabolic Fit

Independent of an alleged connection to thermodynamics, the utility of the VFT formula
can be tested by examining whether its parameters are material properties. I do so for one
typical fragile liquid, o-terphenyl (OTP). What I illustrate with this system is representative
of what I generally find for a wide selection of supercooled liquids.

The onset temperature for OTP is about 350 K, and the glass transition temperature
is 239 K. Data exists over this entire range [97]. I omit the normal liquid range T > To,
and only remark that the deficiencies of VFT I am about to demonstrate are more severe
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when the temperature range is extended to include the normal liquid regime. With this
range of data, I have fit the parameters for the VFT formula and those for the parabolic
formula in three different ways: by including data from only the range of higher supercooled
temperatures (267 K < T < 350 K), by including data from only the range of lower super-
cooled temperatures (239 K < T < 267 K), and by including data from the entire range of
supercooled temperatures (239 K < T < 350 K). The fitting parameters obtained in these
ways are given in Table 2.3.

The entries to this table show a significant difference between parameters found from
fitting the full range of data and those found from fitting only the higher temperature data.
The VFT parameters found from fitting only the lower temperature data agree well with
those found from fitting all supercooled data at the expense of a larger fitting error. For
these cases, the error in reproducing the full range of supercooled liquid data is reasonably
small, but at the expense of an unphysical value for the reference viscosity, η

(∞)
VFT. Figure 2.6

shows poor agreement between experiment and the VFT formula for high temperature data
when only low temperature data is included in fitting (and vice versa). In the latter case,
when only the higher temperature range of supercooled data is used to fit VFT parameters,
the value of TVFT is close to Tg, causing the huge error reported in the second row of 2.3.
In contrast, the parameters and quality of fits found with the parabolic form change little
between the full set of data or either of the subsets of data.

Thus, parameters of the parabolic form appear to represent properties of the system, and
those determined over one range of temperatures can be used to reliably predict properties
over another range of temperatures at the same pressure. The parameters of the VFT form,
however, depend upon both the properties of the system and the range of data considered,
and as such the VFT form cannot predict properties outside the range over which it has
been fit.

Table 2.3: Comparison between VFT and parabolic fits for supercooled liquid OTP

VFT1 Parabolic1

Fitted range log η(∞)
VFT/P A/K TVFT/K Err2 J/K To/K log ηo/P Err2

239 K - 350 K -8.98 1.03 · 103 191 0.20 2.79 · 103 352 -1.88 0.064
267 K - 350 K -4.30 254 238 51 2.82 · 103 351 -1.86 0.087
239 K - 265 K -8.38 999 191 0.29 2.82 · 103 349 -1.60 0.13

1listed fitting parameters are determined by minimizing the mean square deviation between
the fitting function and experiment for the specified range of data.
2Root-mean-square deviation between fitted function and experiment over entire set of
supercooled data. That is, with the full set of data points, ηi at the respective temperature
Ti, i = 1, 2, ..., N , where N is the total number of supercooled liquid data points determined
by locating To, Err2 = (1/N)

∑N
i=1[log η(Ti) − log ηi]

2, where η(T ) is the fitting function
at temperature T with parameters determined by minimizing the mean square deviation of
the fitting function from experiment in the indicated range of experimental data.
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Figure 2.6: Examples of using Eq. 2.4 (A) or Eq. 2.5 (B) to fit viscosity, η, of a supercooled
liquid as a function of reciprocal temperature, 1/T . The circles are experimental data [14].
Three fits are shown for both equations. For one fit, parameters are determined by minimiz-
ing the mean square deviation between functional form and experiment for the full range of
supercooled data, for the other two, parameters are found by minimizing the mean square
deviation between the functional form and a subset of that data, the subset being either
the higher temperature range of data or the lower temperature range of data. See Table
2.3 for specified ranges and parameters. The arrow indicates the value of 1/To, marking the
crossover between normal and supercooled liquid behaviors.

The Double Exponential Fit vs. The Parabolic Fit

The double-exponential formula for transport property τ is

log(τ/τ
(∞)
dx ) = (K/T ) exp(C/T ) (2.6)

where τ
(∞)
dx , K, and C are fitting parameters. A special case, where K and C are of the

same order, is the behavior of two-spin (or two-particle) facilitated lattice models [98]. Over
the lower half of the temperature range between To and Tg, the double exponential has been
used to successfully collapse transport data [43]. Mauro and co-workers [14] and others [99]
have applied it to a broader range and report that Eq. 2.6 is superior to both the VFT form,
Eq. 2.5, and the parabolic form, Eq. 2.4. In fact, the double-exponential form suffers from the
same malady as the VFT form when applied to fit data over the full range of supercooled
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Table 2.4: Comparison between double exponential and parabolic fit for supercooled liquid
B2O3

Double Exponential1 Parabolic1

Fitted range log η(∞)
dx /P K/K C/K Err2 J/K To/K log ηo/P Err2

533 K - 970 K 0.524 511 1.41 · 103 0.13 3.51 · 103 1.07 · 103 2.96 0.087
675 K - 820 K 1.61 169 2.01 · 103 0.46 3.46 · 103 1.05 · 103 3.14 0.20
533 K - 675 K -0.940 974 1.12 · 103 0.25 3.74 · 103 1.01 · 103 3.14 0.14

1Listed fitting parameters are determined by minimizing the mean square deviation between
the fitting function and experiment for the specified range of data.
2As defined in Table 2.3.

temperatures. As a data set is enlarged, its parameters fail to converge, implying these
parameters are not material properties and the formula cannot be used to predict data not
yet measured. The problem is not as severe as it is for the VFT form, owing to the fact
that the double exponential is not singular while the VFT expression is singular. But the
deficiency of the double-exponential form is nonetheless significant, as illustrated in Figure
2.7 and Table 2.4.

My illustration considers the inorganic glass forming liquid B2O3 [15]. The behaviors
found for this system are typical of what I find for several other systems. For this particular
system, the onset temperature for this liquid is close to 1000K, and the glass transition
temperature for this liquid is about 500K. Fitting data over this entire range, the double-
exponential form proves reasonably accurate, but its parameters change markedly as the
range of fitted data changes. Fitting only higher temperature data, 675 K 6 T 6 820 K,
yields a function that inaccurately describes the lower temperature data, and fitting only
lower temperature data, 533 K 6 T 6 675 K, yields a function that inaccurately describes
the higher temperature data. In contrast, the parameters and excellent quality fits of the
parabolic form change little as the range of fitted supercooled data changes.

Thus, for the purpose of employing a particular functional form to predict low tempera-
ture properties from measured properties at higher supercooled temperatures (or vice versa),
Eq. 2.6 is superior to the VFT expression, but this double exponential form advocated by
Mauro and coworkers [14] is inferior to the parabolic form, Eq. 2.4.

The Fractional Exponential Fit vs. The Parabolic Fit

In both the VFT and double-exponential forms, temperature variations are more rapid
than in the parabolic form. What if temperature variation is taken to be less rapid? An alter-
native of this type is the specific fractional-exponent form suggested by numerical solutions
to Saltzmann and Schweizer’s theory for structural relaxation in polymer melts [44],

log(τ/τc) = X (Tc/T − 1)1.57 . (2.7)
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Figure 2.7: Examples of using Eq. 2.4 (A) or Eq. 2.6 (B) to fit viscosity, η, of a supercooled
liquid as a function of reciprocal temperature, 1/T . The circles are experimental data [15].
Three fits are shown for both equations. For one fit, parameters are determined by minimiz-
ing the mean square deviation between functional form and experiment for the full range of
supercooled data, for the other two, parameters are found by minimizing the mean square
deviation between the functional form and a subset of that data, the subset being either
the higher temperature range of data or the lower temperature range of data. See Table
2.4 for specified ranges and parameters. The arrow indicates the value of 1/To, marking the
crossover between normal and supercooled liquid behaviors.

I illustrate the performance of this expression in Figure 2.8 and Table 2.5. I do so with data
for the glass forming polymer melt polypropylene glycol (PPG) [16]. The onset temperature
for this liquid is about 264 K, and its glass temperature is about 199 K [1]. The data covers
most of this supercooled region, but not all the way up to the onset. As in the previous two
case studies, I consider three ranges of the existing data: the entire data set, which extends
up to about 10% of the onset temperature, To, a lower temperature subset of that data, and
a higher temperature subset of that data. As with the VFT and double-exponential forms, I
find that the fitting parameters for this fractional-exponential form depend upon the range
of data considered. My illustration of this fact is typical of what I find when treating other
materials with the same analysis.

Due to the nature of the fractional exponent, this functional form can be used to fit data
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Figure 2.8: Examples of using Eq. 2.4 (A) or Eq. 2.7 (B) to fit relaxation time, τ , of a
supercooled liquid as a function of reciprocal temperature, 1/T . The circles are experimental
data [16]. Three fits are shown for both equations. For one fit, parameters are determined by
minimizing the mean square deviation between functional form and experiment for the full
range of supercooled data, for the other two, parameters are found by minimizing the mean
square deviation between the functional form and a subset of that data, the subset being
either the higher temperature range of data or the lower temperature range of data. See Table
2.5 for specified ranges and parameters. The arrow indicates the value of 1/To, marking the
crossover between normal and supercooled liquid behaviors. The leftmost endpoints of the
fit lines in figure (B) indicate the upper-temperature end point for applying Eq. 2.7. This
temperature changes depending upon the range of data considered, and data for T > Tc

must be excluded from fits using Eq. 2.7.

for T > Tc. If the exponent were 2, rather than 1.57, this temperature would be the onset
temperature. When using an exponent of 1.57 with subsets of the data where temperatures
are all much smaller than To often one obtains Tc < To, so that less than the complete set
of supercooled data can be covered. Further, unlike the parabolic form with parameters
that vary little with changing data sets, the best fits of Eq. 2.7 produce parameters Tc and
X that vary widely from one subset of data to another. Moreover, the function obtained
fitting parameters to the higher temperature range of data, 222 K 6 T 6 240 K, provides an
inaccurate representation of the data at the lower temperatures, and the function obtained
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fitting parameters to the lower temperature range of data, 200 K 6 T 6 218 K, provides an
inaccurate representation of the data at the higher temperatures. In contrast, the excellent
quality of fits obtained with the parabolic form, Eq. 2.4, change little as the range of fitted
data change.

Thus, the fractional exponent 1.57 proves to be less satisfactory than that of the parabolic
form, Eq. 2.4.

2.6.4 The Role of Attractive Forces in Supercooled Liquids

The prior sections present evidence in support of Eq. 2.4 as a universal form for transport
properties of fragile supercooled liquids. In this section, I show that by accepting the validity
of this form I sensibly organize recent simulation results that might appear puzzling in the
absence of this organization. In particular, Berthier and Tarjus [17] have shown that at some
supercooled temperatures and densities relaxation in the Kob-Andersen Lennard-Jones (LJ)
mixture [100] is orders of magnitude slower than that in the corresponding Weeks-Chandler-
Andersen [101, 12] (WCA) mixture. The difference between the WCA and the LJ potential
reflects the significance of attractive forces, which are present in the LJ mixture and absent
in the WCA mixture. Does the Berthier-Tarjus finding reveal a new mechanism for glassy
physics, one that does not follow from constraints and local rigidity imposed by repulsive
forces?

The effects of attractive interactions uncovered by Berthier and Tarjus appear in dynam-

Table 2.5: Comparison of Fractional Exponential and Parabolic fit for PPG

Fractional Exponential1 Parabolic1

Fitted range log τ
(∞)
c /s X Tc/K Err2 J/K To/K log τo/s Err2

200 K - 240 K -5.49 72.4 244 0.068 2.26 · 103 264 -6.12 0.042
222 K - 240 K -6.66 41.8 265 0.33 2.27 · 103 265 -6.25 0.13
200 K - 218 K -3.73 116 227 0.113 2.29 · 103 265 -6.39 0.0883,4

1Listed fitting parameters are determined by minimizing the mean square deviation between
the fitting function and experiment for the specified range of data.
2As defined in Table 2.3.
3When the fit range is restricted to the lowest temperatures, Tc is lower than the lowest
data point available for PPG. Therefore, the Err is calculated only for T < 227 K for both
the fractional exponential and the parabolic fit for sake of comparison. This requires that
the seven highest temperature points be excluded from consideration. If those points are
included, the Err for the fractional exponent over the entire range considered would become
undefined.
4Over the entire range for which T < To = 264 K, the Error for the the parabolic fit using
the parameters for this range becomes 0.13.
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ics, but not structure. They show that the pair distribution functions of the two mixtures
differ little. Dynamics is associated with fluctuations away from mean local structure. Repul-
sive forces dominate the most likely equilibrium arrangements. They also constrain motions
of particles, so that any spatial reorganization is rare and requires the coordinated displace-
ments of several particles. As such, potential energy barriers to reorganization will have
contributions from the attractive interactions between several pairs of particles. The sums
of small attractive force contributions from these many particles can then become significant.

To pursue this idea, I have examined the effects of attractive forces on supercooled fluid
transport through the behaviors of J and To because these parameters characterize the
energetics of these collective displacements [35]. I have fit the simulation data [17] reported
to determine the values of these parameters as functions of the liquid-mixture density. These
results are shown in Figures 2.9 and 2.10 along with the reference time scale τo. While the
values of J , To, and log τo do vary slightly between the two types of mixtures at the same
density, their overall trends as functions of density are the same. Both liquid mixtures
therefore seem to behave as similar supercooled liquids.

One interesting feature revealed in Figure 2.10 is that increasing density causes both To

and J to increase. For the LJ mixture, they do so proportionally to within 15% of J/kBTo ≈
2.75 for all densities. This proportionality is expected for systems, like the supercooled LJ
mixture, that have behavior consistent with that of an inverse-power repulsion [102, 103].
This proportionality does not hold, however, for the WCA mixture, where J/kBTo changes
monotonically from about 1.5 at low density end of the graphs to about 3 at high density
ends. Thus, combinations of J and To seem to be system dependent.

Berthier and Tarjus remark on the “enormous” factor of 103.2 by which τ for the LJ mix-
ture differs from that for the WCA mixture at ρσ3

AA = 1.2 and kBT/εAA = 0.41. This effect
reflects differences in J/εAA and kBTo/εAA, which are 1.8 and 0.73 for the LJ mixture, and
0.92 and 0.60 for the WCA mixture, respectively. The onsets to supercooled behavior thus
appear at similar temperatures, and the activation energies for dynamics differ by less than
one intermolecular attractive energy. Moreover, as the density increases the characteristic
parameters for the two systems seem to converge to the same respective values. These find-
ings are consistent with empirically established fact that the basic principles of supercooled
liquids are well captured by models without attractive intermolecular forces [102, 103].

Thus, while dynamical effects of attractive forces are notable in a supercooled liquid,
temperature dependence of transport obeys the parabolic law with or without attractive
forces as would be expected for a universal underlying hierarchical dynamics. By considering
the numerical results of Berthier and Tarjus by using the picture of glassy physics as a class
of phenomena caused by local constraints rigidity I take a result which at first appears to
contradict my previous results and reorganize it in a way that shows that no contradiction
is actually present.
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Figure 2.9: Parabolic collapse for WCA & LJ binary mixture simulation data [17] for various
densities, ρ. Parameters of fit are described in Eq. 2.4. Dotted line is the universal parabolic
form.

2.7 Fragile-to-Strong Crossover in Supercooled Liquids

Garrahan-Chandler theory predicts that transport properties of fragile glass-formers
which follow the parabolic form of Eq. 2.4 to an Arrhenius form log τ ∼ A/T at a crossover
temperature Tx < To as presented in Section 1.3.5. The observation of this crossover is
apparent in studies of the crossover model described in Section 1.3.5 [49]. But this so-called
“fragile-to-strong” (FS) crossover at a temperature Tx < To has proved difficult to observe
because most bulk fluids fall out of equilibrium at a glass transition temperature Tg that
is higher than Tx. Certain systems seem to exhibit this phenomenon [104, 105]. In these
cases, the systems considered are confined nano-scale systems that may or may not reflect
the behaviors of macroscopic materials. More recently, Mallamace et al [18] report the ob-
servation of Tx for a large number of bulk supercooled liquids. In truth, they observe the
onset to supercooled behavior, and the reported values of Tx are poor lower-bound estimates
to onset temperatures To. This fact is consistent with transport decoupling appearing only
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Figure 2.10: Fitting parameter trends using Eq. 2.4 for the Kob-Andersen LJ and corre-
sponding WCA binary mixtures from [17] for various net particle densities, ρ. (A) The
inverse onset temperature, 1/To, as a function of density ρ. (B) Logarithm of relaxation
time at the onset temperature, log τo, as a function of ρ. (C) Transport energy parameter,
J , as a function of ρ. Lines connecting points in (A), (B) and (C) are guides to the eye.
Error estimates are the size of the symbols. The unit of time is ∆t = (mσ2

AA/48εAA)1/2.

below temperatures identified with the crossover in Ref. [18].
To illustrate this understanding about Ref. [18], I graph data in Figure 2.11 for two

typical supercooled liquids. The data is compared with the parabolic form for transport
property τ (denoting either relaxation time or viscosity) and with the straight-line fit that
would be associated with the Arrhenius temperature dependence. I consider data for liquid
salol in Figure 2.11A. This is the same liquid and the same temperature range considered
in Figure 1A of Ref. [18]. The two figures are strikingly different, due in part to Ref. [18]
showing an outlying data set [83] that is discredited by subsequent studies on the same liquid
[87, 88, 106, 82]. Unlike Figure 1A of Ref. [18], my graph shows excellent agreement between
reproducible experimental data and the parabolic form.

Figure 2.11B considers a second liquid to illustrate that the behavior for salol is consistent
with that of other systems. Indeed, the parabolic form, with its three material properties τo,
J and To, has been used to collapse data for more than 50 supercooled liquids (Figure 2.3
and Table 2.1) over the entire supercooled temperature range, To > T > Tg, and this form
appears to be universal for all fragile glass formers. Here, I have chosen to show two specific
examples to contrast with the obscuring clutter of data analyzed with six-parameter fits in
Figure 1C and 2 of Ref. [18].

The two graphs in Figure 2.11 here and those presented in Figures 2.3, 2.6, 2.7, and 2.8
indicate that all reliable reversible transport data for bulk supercooled liquids appear to be
smooth, with no compelling feature suggesting a change from parabolic to linear behavior.
Rather, it seems that the FS crossover reported in [18] results from confusing To with Tx,
and how, over a limited range, a parabola looks like a straight line. The search for the FS
crossover in bulk materials therefore remains elusive.
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Figure 2.11: Transport properties as a function of Tg/T for two typical supercooled liquids.
Black circles in (A) and (B) represent experimental data considered in Section 2. Labeling
here is consistent with Table 2.1 - that is to say that Sal-2 and NBS refer to the same
experimental measurements and fit parameters as in the table. Red dashed line is the fit
parabolic form for T < To, as in [1]. Blue dashed line represents Arrhenius fit for lowest
T points [18]. (A) Relaxation time, τ , of Salol where Tg = 221 K is the glass transition
temperature where log(τg/s) = 2. (B) Viscosity, η (given in units of Poise, labeled P), of
NBS where Tg = 708 K is the glass transition temperature where log(ηg/Poise) = 13. It is
generally assumed that τ ∝ η, and, with this assumption, (A) includes data used in Ref.
[18] (triangles).
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Chapter 3

Dynamical Phase Transitions in
KCMs

3.1 Introduction

In Chapter 2 I explored the validity of the parabolic form which can be used to collapse
transport properties of supercooled liquids onto a single curve [1] - a result predicted by
Garrahan-Chandler theory and is based on the idea of dynamic facilitation introduced in
Chapter 1. Furthermore, in Chapter 1 I introduced two of the most basic kinetically con-
strained models: The FA and east models. In this chapter, I will present a study of altered
versions of these models known as the soft FA and soft east models. They are known as
softened models because the kinetic constraints are not rigid. Moreover, I will investigate the
behavior of these softened models in space and time including the emergence of a nontrivial
space-time critical point and its implications to“real” glass formers.

3.2 Phase Transitions

Before I introduce dynamical phase transitions, it is important to have a reference point
to ordinary thermodynamic phase transitions. Dynamical phase transitions have much in
common with their thermodynamic counterparts. Thermodynamic first order phase transi-
tions are characterized by discontinuous jumps in a thermodynamic observable as a function
of an intensive field [25]. Common examples of such a phase transition are the abrupt change
in density of water as it boils off into gas and the spontaneous ordering of a paramagnet
in the presence of a magnetic field [25]. Moreover, at a first order phase transition the sus-
ceptibility, χ, of a system which is related to the derivative of an observable A with respect
to an intensive field h diverges at a particular value of h = h∗. At h∗ the first order phase
transition occurs. In the example of boiling water at 1 atm of pressure, h∗ would be the the
boiling temperature Tb = 100K [107].
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Figure 3.1: Schematic of a trajectory for the hard FA model. Vertical axis represents space
where N = 8 lattice sites. Horizontal axis represents time where tobs = 8 Monte Carlo time
steps. Arrows indicate occupied sites and direction of dynamical facilitation. Yellow sites
indicate sites which are facilitated at that time slice. Blue boxes highlight locations where
there has been a configurational change between some time t − δt and the time t. For this
trajectory, the activity K = 4 as there have been 4 configurational changes.

At h∗ the two phases (say, the high and low density phases of liquid and vapor) are in
equilibrium and both phases are equally probable. This occurs at the point at which the
free energy of the two phases are equal [25].

In principle these behaviors - the instantaneous jump in an extensive observable and the
divergence of the susceptibility - only occur in the thermodynamic limit of infinite system size.
In finite systems, the change in the observable, while large, is still continuous. Therefore,
the susceptibility cannot diverge. Unfortunately, the nature of computer simulations is finite
causing the distinction between a true first order phase transition and a continuous crossover
to not always be evident. Fortunately, there is a signature of a first order phase transition
in the scaling of the susceptibility as a function of system size. For a system of size N the
susceptibility scales linearly with N [108], Though the two phase are in coexistence at h∗,
a large surface tension between the phases means that if a large system is prepared in one
of the two phases, transitions to the other phase are rare because the free energy barrier to
nucleating the other phase is large. While methods have long existed for understanding the
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Figure 3.2: Schematic of a trajectory for the hard east model. Vertical axis represents space
where N = 8 lattice sites. Horizontal axis represents time where tobs = 8 Monte Carlo time
steps. Arrows indicate occupied sites and direction of dynamical facilitation. Yellow sites
indicate sites which are facilitated at that time slice. Blue boxes highlight locations where
there has been a configurational change between some time t − δt and the time t. For this
trajectory, the activity K = 3 as there have been 3 configurational changes.

thermodynamics of such systems (such as umbrella sampling [25]) methods for learning about
the kinetic aspects of these processes have only recently been developed. These methods
introduced to circumvent this problem are known as rare-event sampling techniques. This
has become a cottage industry among statistical physicists [109, 110]. The method I employ
in my simulations is a particular flavor of transition path sampling [111].

Thermodynamic critical points are another type of phase transition. Unlike first order
transitions, these higher order phase transitions (often called “second order” phase transi-
tions) have no discontinuities in extensive order parameters as functions of an intensive field
[25]. Nevertheless, there are interesting emergent properties that occur at critical points.
While first order transitions are usually categorized by two distinct, degenerate free-energy
basins separated by a large energetic barrier, a critical point is characterized by the first
disappearance of that barrier such that the surface tension between the two phases has van-
ished. Thus, critical points are often thought of as ends to first order phase transitions lines
(though a line of critical points can in fact terminate a plane of first order transitions and so
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on). One common such critical point is the liquid-vapor critical point of water at 647 K and
218 atm of pressure [107]. At this point, the density based distinction between liquid and
vapor disappears and there is only one fluid phase. This point is characterized by critical
opalescence due to the large, macroscopic fluctuations caused by the lack of surface tension
between the two once-distinct phases. The appearance of a critical point at the end of a
first order transition line also indicates that the two phases must have the same symmetry
(such as rotational or translational symmetries in liquid and vapor) because there can be
a continuous path that takes you from one phase to the other without ever undergoing the
symmetry breaking associated with a first order transition. In the context of renormalization
group theory, critical points are fixed points and self-similar such that there is length-scale
invariance [25] and the system is fractal-like.

For all the above thermodynamic phase transitions one typically considers an ensemble of
configurations. For an Ising ferromagnet that would be the instantaneous configuration. In
order to study phase transitions one must be able to study ensembles of such configurations
and their relative probability. For dynamical phase transitions, I will consider the dynamical
analog to configurations: Trajectories [53, 19, 20, 112, 113, 114].

3.3 Dynamical Phase Transitions

Observing a dynamical phase transition requires defining a space-time observable. Once
such observable is the activity K [53, 20, 112, 113, 115, 116]. K records the number of con-
figurational changes in a trajectory of size N and length tobs. I will define K mathematically
in the coming sections. Unlike a thermodynamic observable, such as the density or energy,
K is only defined as a function of a space-time trajectory. The trajectory has thus replaced
the configuration as the elements of the ensemble. At a first order dynamical transition in
K, one can expect a discontinuous jump in the value of K as well as diverging dynamic sus-
ceptibility. The existence of dynamical phase transitions in glass forming models has been
explored previously for several different models. Among these are kinetically constrained
lattice models such as the (hard) FA and east models [19, 20] as well as atomistic models
such as binary mixtures [117]. The existence of a first order phase transition between an
active trajectory phase with high K and an inactive one with low K has been shown ana-
lytically and numerically for lattice models. The phase diagram of these models is given in
Figure 3.4(A). The line of first order transitions is infinite, never ending in a critical point.
One possible explanation for the lack of a critical point is that the two phases do not have
the same symmetry. For example, the active phase is ergodic whereas the inactive phase
might be non-ergodic. Moreover, as I will introduce in Section 3.5 if one couples an intensive,
conjugate field s to K one finds that in the thermodynamic limit the transition value, s∗, is
exactly at s = 0 (corresponding to dynamics in our physical world).

For atomistic models such as WCA binary mixture and the Kob-Andersen binary mixture
[117, 118] qualitative evidence exists to suggest that a first order dynamical phase transition
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Figure 3.3: Flow diagram for s-ensemble TPS. At the top, one trajectory is generated.
Next, a shifting or shooting move is chosen with equal probability, as is a direction (forward
or backward). Green lines indicate the original configuration of the trajectory in space-
and-time. These lines have replaced the arrows in Figures 3.1 and 3.2. On the left, a
forward shooting move is shown where the initial trajectory is truncated and the remainder is
regenerated (red). For backward shooting moves (not shown), the beginning of the trajectory
is removed and regenerated by running the simulation backward from the shooting point. The
new trajectory is accepted with the probability min

{
1, e−s∆K(traj+g[∆N (0)+∆N (tobs)]

}
. Here ∆

represents the difference in the quantity between the new trajectory and the initial trajectory.
If the new trajectory is accepted, the new trajectory replaces the old trajectory and the
procedure is restarted. If the new trajectory is rejected, I revert to the old trajectory and
start again. On the right side, a backward shooting move is shown. First, as in the shooting
move, the trajectory is truncated. Then, the beginning of the trajectory is moved to the end
of the trajectory and the beginning of the trajectory is regenerated by simulating the system
“backward”. For forward shooting moves, the beginning of the trajectory is removed and
the end is shifted to become the new beginning and the system is regenerated until tobs from
the former endpoint of the old trajectory. The acceptance criterion for moves generated by
shifting is identical to that for shooting moves.
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Figure 3.4: Space-time phase diagrams for KCMs. (A) shows the generic phase diagram
for standard, hard KCMs such as the FA and the east models introduced in Chapter 1.
The bold line indicates the first order phase boundary between the active phase, which has
large K and requires s < 0, and the inactive phase, which has small K and requires s > 0.
s = T = 0 is indicated with a filled circle and is the trivial “critical” point where 〈K〉s no
longer distinguishes between the two phases and K = 0 for both phases. For hard systems
the first order line extends to infinite temperature [19, 20]. (B) Sketch of phase diagram for
softened system. The transition between the active and inactive phase no longer occurs at
s = 0 but rather at s > 0 for T > 0. Here, the first order line terminates at a non-trivial
finite-temperature critical point indicated by an open circle. This critical point is distinct
from the trivial critical point at s = T = 0 and is analogous in scaling behavior near a
liquid-vapor transition.

persists in these more complicated models. This qualitative evidence is corroborated with
some finite size scaling, however data are limited since simulating an ensemble of trajectories
for atomistic systems remains a challenging computational task.

My work seeks to bridge the gap between the lattice-based FA and east model simula-
tions and the continuous, atomistic simulations to determine if a first order phase transition
survives in models which are not fully kinetically constrained. If only completely constrained
models support two distinct phases, this suggests that “real” models - which are inherently
soft - cannot truly exhibit this behavior. However, if softened facilitated models support two
phases, this suggests that such a phenomenon could exist in real glass formers. Moreover, if
softened models show dynamical phase transitions, it is likely that a dynamical critical point
will exist for these models as the limit of infinite softness returns an unconstrained model
which is known to support only one dynamical phase.

3.4 Models

The two models that I will consider in this chapter are the softened FA and the softened
east models. The so-called “hard” versions of these models were presented in Section 1.3.5.
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Figure 3.5: Values of k = K/tobs for a simulation along a TPS simulation in TPS time
spanning 3 · 107 attempted new trajectories. Simulations spend the majority of computation
time in one of two basins, an active basin with large k and an inactive basin where k is small.
Many barrier crossings with intermediate values of k suggest good equilibration and ability
of this data to produce a high quality P (k)s.

In the hard models, the kinetic constraint function C only contained terms involving nearest
neighbors. In this chapter I will change the kinetics of the model by introducing a softness
parameter, ε, into C. The motivation behind softening KCMs is to better simulate “real”
systems and to investigate if the behavior of softened KCMs describes real glass formers.

3.4.1 1 Dimensional Soft FA Model

The 1 dimensional soft FA model retains the same thermodynamics as the lattice gas
introduced in Section 1.3.5. The only distinction is in the constraint function. Here, the
kinetic constraint at site ni is

Ci,FA = ni+1 + ni−1 + ε (3.1)
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where ε represents a large activation barrier, U , such that ε ∝ (−βU).
Moreover, for the soft FA model I also allow diffusive hops of an occupied site where

ni = 1 to an unoccupied site ni±1 = 0 with rate D. This does not change the behavior of
our model, however, this will be required to perform an analytical mapping to a quantum
phase transition to be introduced later on.

To recover the normal FA model of Section 1.3.5 one needs only to set ε = D = 0. In the
other limit, as ε becomes large, an unconstrained model is recovered.

3.4.2 1 Dimensional Soft East Model

The 1 dimensional soft east model retains the same thermodynamics as the lattice gas
introduced in Section 1.3.5. Again, the only distinction is in the constraint function. Here,
the kinetic constraint at site ni is

Ci,East = ni−1 + ε (3.2)

where ε represents a large activation barrier, U , such that ε ∝ (−βU).
To recover the normal east model introduced in Section 1.3.5 one needs only to set ε = 0.

In the other limit, as ε becomes large an unconstrained model is recovered.

3.4.3 Continuous Time Monte Carlo

Models which are meant to mimic supercooled liquids are usually labeled “slow”. When
simulating such systems using Metropolis Monte Carlo [108] one chooses any random site, i,
with equal probability, and then decides whether or not to change its state with probability
Ci ·min{1, e−β∆E} where Ci is the constraint function at site i and ∆E = Eattempt−Einitial is
the energy difference between the new, attempted configuration and the initial configuration.
However, for kinetically constrained systems, Cie

−β∆E is often a small number – especially for
“unfaciliated” moves. Therefore, many moves are rejected before a single move is accepted.
To circumvent this problem, I employ continuous time Monte Carlo [108]. Instead of choosing
a site with equal probability and then determining whether or not to accept the move,
continuous time Monte Carlo chooses sites with probability Ci · min{1, e−β∆E} and always
execute this state change. This selects sites that are more likely to have their next move
be accepted with a higher probability than those most likely to have their attempt rejected.
This works well for systems such as lattice models where the amount of possible subsequent
states is enumerable [108]. Computationally, this requires one to keep lists of each type of
move and their probabilities - which is tractable as my simulations consist of less than 10
distinct rate processes. While this adds a small amount of computational overhead, it is
negligible when compared to the computation cost of rejecting many moves.

Instead of increasing the time a time step δt for every attempted move, in continuous
time Monte Carlo time is advanced by randomly selecting a waiting time τ from a Poisson
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distribution whose average is given by

〈τ(t)〉 =
1∑N

i=1Ci(t) (ni(t) + (1− ni(t))e−β)
(3.3)

where the denominator is the sum over the rates of the system, ni(t) is the current value of
ni at time t, and 〈τ(t)〉 is the average waiting time to leave the state {ni(t)}. Once a time is
selected, it is added to the current time such that the new time becomes t + τ [108]. Time
is thus continuous and “exact” as no finite time discretization is required.

3.5 The s-ensemble

In order to study the dynamical ensemble of trajectories, I define a kink κ at site i as

κi(t) = [1− ni(t− δt)]ni(t) + ni(t− δt) [1− ni(t)] (3.4)

here, ni(t) is the occupancy {0, 1} of site i at time t and δt is an elementary time step. Thus
κi records whether or not a change in configuration has occured at site i at time t.

The extensive observable activity, K is simply the sum of these values of κ for the entire
system over an observation time tobs.

K =

tobs∑
t=0

N∑
i=1

κi(t) (3.5)

here, K is an extensive dynamical order parameter. For comparison, I will often consider
the intensive version of this order parameter, k = K/(tobsN), which is the activity per space
time volume unit (where tobs · N defines the space time volume, also known as the system
size).

In this chapter I will focus on two phases defined by their average values of k. A trajectory
is considered “active” for large values of k, whereas it is considered inactive when k is low.
Figures 3.1 and 3.2 show cartoon versions of a trajectory for an FA and an east model
respectively as well as the values of K for these examples. Examples of simulated trajectories
for the FA and east models are shown in Figures 1.8 and 1.9 respectively.

In order to investigate the dynamical phase behavior of these two models, it is convenient
to introduce a field s which is conjugate to K [19]. This field biases K such that as s grows
K is biased to lower values, or into an “inactive” state. As s becomes negative K is biased
toward larger values of K, or into an “active” state. Setting s = 0 recovers normal dynamics.
While the field s has no known physical interpretations, it is still a useful tool in simulations
to understand the behavior of the FA and east models. Moreover, it defines the equivalence
of ensembles between those with fixed K and those with fixed s. For some observable A,
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〈A〉s is the average value of A at some value of s. The equilibrium value is given by 〈A〉0.
These expectation values are related through:

〈A〉s = 〈Ae−sK〉0 1

Z(s, tobs)
(3.6)

where Z(s, tobs) = 〈exp(−sK)〉0 is the partition function for the s ensemble. The dynamical
free energy per unit time ψ(s) is defined as

ψ(s) = lim
t→∞

1

tobs

logZ(s, tobs) (3.7)

3.5.1 Transition Path Sampling

To sample the s-ensemble numerially, I use transition path sampling (TPS). TPS was
initially developed as a method for harvesting trajectories of rare events such as barrier
crossings in multi state systems [111]. The two basic moves of TPS are shooting and shifting
in both the forward and backward direction. After an initial trajectory of system size N and
length tobs is calculated, a new trajectory is created using the procedure described in Figure
3.3. New trajectories are accepted with probability proportional to exp(−sK) – analogous
to accepting and rejecting configurations with probability proportional to exp(−βE) where
β = 1/kBT is the inverse temperature in units of Boltzmann’s constant kB and E is the
energy in standard Monte Carlo dynamics of configurations [25].

3.6 Case Study: 1 Dimensional Soft FA Model

3.6.1 Analyzing the Soft FA Model via Master Equation

The soft FA model is a simple lattice model which can be studied analytically. To do so,
I start with the master equation for the soft FA model

∂tP (C, t) = −r(C)P (C, t) +
∑
C′
W (C ′ → C)P (C ′, t) (3.8)

here, P (C, t) is the probability of observing a configuration C of the soft FA system at time
t, r(C) =

∑
C′W (C → C ′) is the exit rate to leave the current configuration C. C ′ represents

all other possible configurations of the soft FA model, and W (C ′ → C) is the rate to enter C
from one of the other configurations C ′.

The soft FA model can also be represented using a spin-half representation of the master
equation. I denote the ground state (where all sites ni = 0) by the state |Ω〉 where sites {ni}
are now represented by N quantum spins. By doing so, I can represent any possible configu-
ration {ni} via Pauli matrices σx,y,zi [119] with the raising σ+

i and lowering σ−i operators are
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Figure 3.6: (A) Phase diagram for the 1d soft FA model. Here, I show the (s, ε) plane -
varying the value of D but keeping β constant as described in the text. The solid line is
the phase boundary between the active and inactive phase. The dashed line is continuation
of symmetry line of Eq. 3.49 into 1 phase region beyond the critical point. The red circle
indicates the point simulated with ε = 1.9 · 10−4 < εc along the coexistence line in the two
phase region. The blue triangle indicates a simulation point where ε = 1.9 · 10−2 > εc. The
black X indicates the critical point where ε = 6.3 · 10−3 = εc. (B) Coexistence histograms
of the intensive activity k = K/(Ntobs) simulations for points in (A) where colors and line
styles are the same as in (A).

defined as σ±i = 1
2
(σxi ± σyi ). Thus, a configuration in the soft FA model can be represented

as

|{ni}〉 =
N∑
i=1

(σ+
i )ni|Ω〉 . (3.9)

Note, that as usual I take σ−i |Ω〉 = 0. I can now construct a ket state

|P (t)〉 =
∑
C

P (C, t)|C〉 (3.10)

here, |P (t)〉 represents the probability distribution of all configurations of the soft FA system
occurring at time t. This allows us to rewrite the master equation given in Eq. 3.8

∂

∂t
|P (t)〉 = W|P (t)〉 (3.11)

where W is a linear operator whose matrix elements represent the transitions rates, W , in
the soft FA model. I define an operator W(s) whose largest eigenvalue value returns the



CHAPTER 3. DYNAMICAL PHASE TRANSITIONS IN KCMS 52

 0

 0.2

 0.4

 0.6

 0  0.005  0.01

Figure 3.7: Plots of average intensive activity 〈k〉 = 〈K〉/(Ntobs) as a function of field s for
soft FA model for various values of ε in the vicinity of points given in Figure 3.6 (A) for the
same values of ε given in Figure 3.6.

dynamical free energy ψ(s) as defined in Eq. 3.7. At s = 0, W(0) equals the standard linear
operator W defined as:

W =
∑
〈ij〉

{
(n̂j + ε/2)[(1− σ+

i )σ−i + e−β(1− σ−i )σ+
i ] +D[σ+

i σ
−
j − (1− n̂i)n̂j]

}
+ (i↔ j)

(3.12)
with 〈ij〉 representing a sum over distinct nearest neighbor pairs, n̂i = σ+

i σ
−
i , and (i ↔ j)

meaning that the previous expression needs to be symmetrized with respect to sites i and j.
In order to include the s-ensemble representation of the soft FA model I follow [120].

I write P (C, K, t) as the probability of being in configuration C at time t having already
accumulated an activity K in the time between time 0 and t. I can then write the probability
to be in configuration C at time t at a field strength s, P (C, s, t) as a reweighted sum over
over all possible accumulated K values

P (C, s, t) =
∑
K

P (C, K, t)e−sK . (3.13)

The equation of motion for |P (s, t)〉 =
∑
C P (C, s, t)|C〉 becomes

∂

∂t
|P (s, t)〉 = W(s)|P (s, t)〉 (3.14)
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Figure 3.8: Finite size scaling of average intensive activity 〈k〉 = 〈K〉/(Ntobs) as a function
of field strength s for soft FA model for ε = 1.9 · 10−4 < εc for 6 different system sizes.

where now the matrix elements of W include the biasing field s such that

W =
∑
〈ij〉

{(n̂j + ε/2)[(e−s − σ+
i )σ−i + e−β(e−s − σ−i )σ+

i ]+D[e−sσ+
i σ
−
j − (1− n̂i)n̂j]}

+ (i↔ j)

(3.15)

here, the notation is the same as in Eq. 3.12 with the addition of e−s modifying the rate
of changes of state. Note that for the purpose of activity K, a diffusive move is treated as
a single change even though diffusive moves change the state of two sites rather than one.
Because the energetics of the soft FA model obey detailed balance I can write an energy
function E =

∑
i ni. I define an energy operator E =

∑
i n̂i. Using this I can represent a

symmetrized operator version of W which will be denoted H.

H(s) = eE/2TWe−E/2T (3.16)
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Figure 3.9: Finite size scaling of average intensive activity 〈k〉 = 〈K〉/(Ntobs) as a function
of field strength s for soft FA model for ε = 6.3 · 10−3 = εc for 6 different system sizes.

H(s) =
∑
〈ij〉

{
(n̂j + ε/2)[(

√
e−1/T e−s − σ+

i )σ−i + (
√
e−1/T e−s − e−1/Tσ−i )σ+

i

+D[e−sσ+
i σ
−
j − (1− n̂i)n̂j]

}
+ (i↔ j) .

(3.17)

This new operator, H, is now Hermitian such that

〈C|H(s)|C ′〉 = 〈C ′|H(s)|C〉 . (3.18)

I now rewrite H in terms of Pauli matrices, σx,y,z to find

H(s) = −NC +
∑
i

(hxσ
x
i − hzσzi ) +

∑
〈ij〉

∑
µν

σµiM
µνσµj (3.19)

where N is the system size and

C = [D + (1 + e−1/T )(1 + ε)]d/2 (3.20)

where d is dimensionality and

hx = dz(1 + ε)
√
e−1/T (3.21)

hz = d[2 + ε− e−1/T ε]/2 (3.22)
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Figure 3.10: Scaling of the derivative of the activity, susceptibility, χ∗ = −d〈k〉/ds∣∣
s∗

for
various system sizes tobs ·N for 1d soft FA model. Labeling refers to same ε values as those
given in 3.6. Red dashed line indicates linear scaling associated with a first order phase
transition. Red circles indicate several system sizes for ε < εc. Black Xs indicate several
system sizes for ε = εc. Blue triangles indicate several system sizes for ε > εc.

with

M =
1

2

 zD 0 z
√
e−1/T

0 zD 0

z
√
e−1/T 0 D + e−1/T − 1

 . (3.23)

where I have used the shorthand notation z = e−s. Then, I make a rotation of the spins
with

R(α) = eiα
∑
j

σyj /2 (3.24)

such that

R(−α)

 σxi
σyi
σzi

R(α) =

 σxi cosα− σzi sinα
σyi

σzi cosα + σxi sinα

 . (3.25)
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Figure 3.11: Sample trajectories for the 1d soft FA model taken from the same state points
as in 3.6(A) from the middle of the distribution of 3.6(B). Thus, for ε ≤ εc these trajectories
represent “transition states” between basins. Active sites are colored (ni = 1) and inactive
sites are white (ni = 0). (A) Trajectory where ε < εc with space-time phase separation.
(B) Trajectory at ε = εc where the phases are still identifiable but the clusters no longer
have a sharp interface. (C) Trajectory at ε > εc where the two phases have merged into one
homogeneous phase.

I choose α

tan 2α =
2z
√
e−1/T

1− e−1/T −D(1− z)
(3.26)

so as to diagnolize M where

H′ ≡ R(−α)HR(α) (3.27)

= −NC +
∑
i

(Bσxi − hσzi ) +
∑
〈ij〉

∑
µ

Jµσ
µ
i σ

µ
j . (3.28)

Now,

B = hx cosα− hz sinα (3.29)

h = hz cosα + hx sinα (3.30)

and Jx,y,z are the eigenvalues of the matrix M .
Note, this diagonalization makes space and time symmetric. I use this expression to

avoid the symmetry breaking of the temporal boundaries described in Section 3.6.4.
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3.6.2 Interpretation as Quantum Transfer Matrices

I can analyze Eq. 3.19 using a mean-field approximation, as in Ref. [53]. First, I replace
the operators in 3.19 by their averages such that

σzi → 2ρ− 1 (3.31)

σxi → 2
√
ρ (3.32)

here, ρ � 1 is the mean density of excitations. For ease of computation, I take D = 0 and
e−1/T � 1. The result of this change gives a Landau free energy [20, 112]:

F(ρ) = dN(2ρ+ ε)
(
ρ+ e−1/T − 2e−s

√
ρe−1/T

)
(3.33)

where ψ(s) ≥ −minρF(ρ) is a bound to ψ(s) [53, 19]. This equation, which is fourth order in√
ρ, may have one or two minima. The point at which the equation transitions from having

a single solution to two is the critical point. Places where there are two degenerate minima
correspond to space-time coexistance along the symmetry line, Eq. 3.49. For a fixed tem-
perature I find that the critical point (ε, s) = (2e−1/T/5, log(

√
5/2)). with a corresponding

Landau free energy

F(ρ) = 2dN

[(√
ρ−

√
e−1/T/5

)4

+ (2e−1/T/5)2

]
. (3.34)

I can interpret [−H(s)] as a quantum hamiltonian. I diagonalize the matrix M via the
rotation described in Eq. 3.24 and the equations that follow. I can now interpret h and B
as magnetic field terms where h > 0, but B can have any sign. When B = 0, h aligns spins
in the −σz direction, while the ferromagnetic coupling Jx promotes ferromagnetic ordering
in the ±σx directions. When B = 0 and Jx/h is small there is only one ground state
whose average value of σx is 0. Contrastingly, when B = 0 but Jx/h is large there are two
degenerate states and the symmetry between σx → −σx of H′ is broken spontaneously. It is
these two regimes which are separated by a quantum phase transition [121, 122].

There is an exact mapping [123, 124, 125] between a quantum spin system in d dimensions
to a classical spin system (such as the soft FA model) in d + 1 dimensions [46]. First, I
discretize time using small increments δt. Then, I analyze the sequence of d dimensional
configurations at times 0, δt, 2δt . . .. Here, I interpret each configuration as a plane in the
(d + 1) dimensional space-time trajectory. This can be done by considering the operators
eH(s)δt and eH′(s)δt. These operators act as transfer matrices and they generate ensembles
of configurations for (d + 1) dimensional Ising systems. 〈C|eH(s)δt|C ′〉 is proportional to the
probability of finding the system in configuration C in the last time plane given that the
previous plane was C ′. In order to construct the ensemble S, I take the σz components of
the spins in C. This gives the classical Ising spins, as in the soft FA model.
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However, for the symmetrized ensemble, S ′ (formed via eH′(s)δt), I use a different mapping.
Instead, I associate up (down) spins in S ′ with spins in |C〉 that are aligned along the positive
(negative) σx direction thus ensuring that S ′ retains its symmetry when the σx component
of the H′(s) are inverted. Therefore, S ′ does not have a straightforward relationship with
trajectories in the soft FA model. However, I will relate expectation values in these two
ensembles using Dirac brackets in the coming sections.

Lastly, I consider the associated boundary conditions of the S ′ ensemble. In the d spatial
dimensions of the soft FA model there are periodic boundaries, just as one would have
in S ′. However, in the (d + 1)th dimension in S ′ the boundary conditions depend on the
initial and final conditions (“planes”) of the s-ensemble. These conditions are given by the
initial condition of the unbiased ensemble where averages are given by 〈.〉0 at s = 0. The
consequences of this are described in the following section. Note that in my interpretation,
I have taken the limit of large tobs before that of large N which has not generally been the
case [126].

In order to construct the symmetrized s-ensemble we consider an observable F (t) such
that the expectation value F (t) is distinguishable between distinct phases. As s is changed
through its coexistence value at s∗ the observable goes through a sharp jump. I will now
cast F (t) in the S ′ ensemble (the symmetrized s-ensemble) and demonstrate its superiority
to the unsymmetrized s-ensemble near coexistence. The expectation value of F (t) can be
expressed using Dirac brackets

〈F (t)〉s =
〈−|eW(s)(tobs−t)F̂ eW(s)t|eq〉

〈−|eW(s)tobs|eq〉 (3.35)

here F̂ is the operator that measures F . 〈−| is a projection state such that 〈−| = 〈Ω|R(−π/2)
and |eq〉 = R(2 tan−1 e−β)|Ω〉 is the equilibrium state.

Now, we transform the W operator into the H′ operator by applying

H′ = R(−α)eE/2TW(s)e−E/2TR(α) (3.36)

such that 〈F (t)〉s becomes:

〈F (t)〉s =
〈Ψ|eH′(s)(tobs−t)F̂ ′eH(s)t|Ψ〉

〈Ψ|eH′(s)tobs|Ψ〉 (3.37)

where now the ket state |Ψ〉 = R(2θ − α)|Ω〉, 〈Ψ| is now its Hermitian conjugate and

tan θ =
√
e−1/T

Another interpretation of this equation is that it is a transfer matrix representation of
an expectation value in the S ′ ensemble. Thus, I can also write the numerator of equation
3.37 as∑
C0...CM

h(Cm)

[
M−1∏
i=m+1

U(Ci+1, Ci)
]
U(Cm+1, Cm)F ′(Cm+1, Cm)

[
m−1∏
i=0

U(Ci+1, Ci)

]
h(C0) (3.38)
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here, Ci are the configurations of the “planes” of the system. M + 1 is the total number
of planes where M = tobs/δt and m is the current plane’s index at time t where m = t/δt.
h(C), U(C, C ′), and F̂ ′(C, C ′) are matrix elements of |Ψ〉, eH′(s)δt, and F̂ ′. F̂ ′ defines a new
operator F̂ ′ = R(−α)eE/2T F̂ e−E/2TR(α) corresponding to a new observable F ′.

Exactly at coexistence in the soft FA model the S ′ ensemble is also in coexistence. Thus,
H′(s) should be invariant under inversion of σx. In order for this to happen S ′ must be
invariant under a single spin flip as well as with respect to the boundary condition along
the transfer direction to ensure they do not break the symmetry in favor of one phase or
another. However, for the standard s-ensemble there is a definite boundary bias. Therefore,
|Ψ〉 is not invariant under inversion of σx since, generally, θ 6= 2α. This means that in this
ensemble, one phase is preferred over the other for conditions at which the phases should be
in coexistence.

To correct this, I define a new state that replaces |Ψ〉 and is symmetric. Thus I return
to |Ω〉 and the symmetrization is complete and takes the form:

〈F (t)〉s,symm =
〈−|egP

i n̂ieW(s)(tobs−t)F̂ eW(s)teg
P

i n̂i |eq〉
〈−|egP

i n̂ieW(s)tobseg
P

i n̂i |eq〉 (3.39)

where g is defined as

eg = tan(α/2)/
√
e−1/T . (3.40)

This now defines the expectation value of F (t) in the symmerized s-ensemble. This ensemble
allows more accurate characterization of phase coexistence as it removes the boundary bias
otherwise imposed by the standard s-ensemble.

Moreover, for d = 1 there is a special case. This occurs on the free fermion line where
B = Jz = 0. We use the so-called free fermion line because it is a particular mapping
which allows us to solve for the critical point exactly [124] At this point, the only remaining
couplings in H′(s) are (h, Jx, Jy). I then solve the model using a Jordan-Wigner [46, 115]
transformation. I find that symmetry is broken at h < Jx+Jy and the critical point occurring
when h = Jx + Jy. This allows me to calculate the exact location of the critical point along
this line by taking the determinant of M . This shows that Jz must be equal to 0. and that

D(D + e−1/T − 1) = ze−1/T . (3.41)

Solving for D returns the expression

D =
1

2

[
1− e−1/T +

√
(1− e−1/T )2 + 4e−se−1/T

]
. (3.42)

This equation, when combined with the symmetry line (given in Section 3.6.5) can be used
to solve for s∗ given a value of ε,D, and T . This establishes the phase diagram which is
shown in Figure 3.6.
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3.6.3 Construction of the Field Theory

As discussed earlier, phase transitions in the soft FA model are related to symmetry
breaking in Ising-like models in d + 1 dimensions. One way to show this is to generalize
the model to allow multiple occupancy, thus creating a bosonic model. This change from
a fermionic to a bosonic model allows me use a Doi-Peliti [123, 125] representation. This
approximation holds for smaller T because multiple occupancy in the bosonic model is en-
ergetically suppressed. See for example Ref. [120]. I write

Wb(s) =
∑
〈ij〉

{
(a†iai + ε/2)[(z − a†j)aj + e−1/T (a†j − z)] + (i↔ j)

}
+D[z(a†iaj + a†jai)− (a†iai + a†jaj)]

(3.43)

where, ai and a†i are the bosonic operators such that [ai, a
†
j] = σij. (D,T, ε) have the same

interpretation as the standard, fermionic model. The density of excitations is now determined
by the density of bosons given by a†ia

i.
I then use the coherent state path integral to represent the average value [120]. Arriving

at

Z(s, tobs) =

∫
D(φ, φ̄) exp

(
−
∫

ddxdtL[φ, φ̄]

)
(3.44)

where φ(x, t) and φ̄(x, t) are complex conjugate fields and

L(φ, φ̄) =φ̄
∂φ

∂t
− zD`2

0φ̄∇2φ+ 2dD(1− z)φ̄φ

− d(2φ̄φ+ ε`−d0 )[z(φ+ e−1/T φ̄)`
d/2
0 − (e−1/T + φ̄φ`d0)]

(3.45)

here `0 is the lattice spacing in the soft FA model. Now the bosonic operators ai and a†i have
become the fields φ and φ̄ and now φφ̄ gives the density of excitations in the soft FA model.
Putting this all together, I may now analyze the resulting field theory by locating the saddle
points in L[φ, φ̄] or by using the variational analysis that leads to a free energy F(φ), as
introduced in Eq. 3.33. This allows one to identify the phase properties of the system as
well as to determine the surface tensions between phases. The free energy further allows us
to obtain spinodal conditions [126].

3.6.4 Boundary Biasing Condition

For the soft FA model, time and space are not symmetric in the standard s-ensemble.
This is because periodic boundaries in time are not feasible. This forces a large boundary
effect which causes activity to tend toward the temporal ends of the trajectory. To counteract



CHAPTER 3. DYNAMICAL PHASE TRANSITIONS IN KCMS 61

this boundary effect I constrain the boundary in order to symmetrize the trajectory as per
Section 3.6.1. For convenience, I define a quantity α

tan 2α =
2e−s
√
e−β

1− e−β −D(1− e−s) . (3.46)

This then allows us to define the boundary term for the soft FA model:

gsFA [N (0) +N (tobs)] = eβ/2 tan(α/2)N (0)+N (tobs) (3.47)

here, N (t) =
∑N

i=1 ni(t) is the number of excited sites at time t. This symmetrizes the
ensembles and now the computed averages are not 〈A〉s as in Eq. 3.6 but rather:

〈A〉s,symm =
〈Ae−sK+gsFA[N (0)+N (tobs)]〉0

Zsym(s, tobs)
. (3.48)

In the limit where the observation time tobs is infinite the symmetrized boundary ensemble
is equivalent to the ensemble without boundary constraints. That is, 〈A〉s,symm = 〈A〉s as
t→∞.

This boundary biasing condition amends the transition path sampling technique de-
scribed in Section 3.5.1 as well as in Figure 3.3.

3.6.5 Symmetry Line

The soft FA model includes a symmetry line. When present, phase transitions between
inactive and active phases must occur along this symmetry line. This allows us to constrain
our simulations to the symmetry line because along the symmetry line the probability of
observing an inactive state equals the probability of observing an active state; ie P (active) =
P (inactive) = 0.5. This allows adequate sampling of both basins. The symmetry line is

1 + e−β

1 + ε
=
√

[1− e−β −D(1− e−s)]2 + 4e−βe−2s − (1− e−s)D . (3.49)

Given values of β, ε, and D this equation defines s = s∗, the value of the field at which the
two phases have the same symmetry. In the two phase region, s∗ is the field at which a phase
transition occurs.

I derive this equation by noting that H′(s) is invariant under σxi → −σxi and that for
Jz/h sufficiently large there is a spontaneous broken symmetry at

tanα =
2
√
e−1/T z(1 + ε)

2 + ε− εe−1/T
. (3.50)

Combining this equation with 3.26 I arrive at 3.49.
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3.6.6 Simulation Details

To simulate the dynamics within a given trajectory in the soft FA model I use continuous
time Monte Carlo [108]. Since the majority of the lattice of the soft FA model at any given
time is “not facilitated”, the probability of accepting moves is very low and thus simulation
is slow to evolve. Continuous time Monte Carlo increases efficiency tremendously and is
explained in Section 3.4.3. In order to harvest representative trajectories at a specified value
of s, I use TPS as introduced in Section 3.5.1 and in Figure 3.3 with the additional boundary
constraint introduced in Section 3.6.4. For ease of sampling, I constrain myself to simulations
at s = s∗ as defined in Eq. 3.49 to collect an ensemble of trajectories to compute P (k)s∗ .
Averages 〈k(s)〉 for arbitrary values of s are defined by reweighting the distribution at s∗

such that ∫ 〈k(s)〉

0

P (k′)s∗e
−(s−s∗)·k′dk′ =

∫ ∞
〈k(s)〉

P (k′)s∗e
−(s−s∗)·k′dk′ . (3.51)

This equation is numerically valid to the extent that a wide range of k values are sampled
and that s is not far from s∗ such that the overlap of P (k)s∗ and P (k)s is large.

In the two phase region, simulations are checked to ensure that there are many barrier
crossings in TPS “time”. TPS time is defined as the number of attempted new trajectories
from the first attempted trajectory. This is analogous to normal Monte Carlo time. Tra-
jectories close in TPS time are more correlated than those far apart in TPS time. See, for
example, Figure 3.5 which shows one such ensemble of TPS trajectories. Each data point
represents the k = K/tobsN value at the trajectory indexed by the current value of TPS
time which equals the current number of attempted moves in trajectory space.

Since the critical point can be analytically computed along the free fermion line. I
constrain my simulations to this line (Eq. 3.42) and choose appropriate values of D and
ε to do so given a particular choice of temperature β = 1.386 (e−β = 0.25). Under these
conditions, I can determine the phase diagram exactly and use the phase diagram to inform
my choice of simulation parameters to avoid sampling far from phase coexistence.

3.6.7 Numerical Results

In Figure 3.6(A), I show the phase diagram in the (ε, s) plane at a particular value of
T with corresponding values of D chosen to follow Eq. 3.42. This is analogous to Figure
3.4(B), however I simulate at fixed T rather than fixed ε. The symbols represent the three
simulation points demonstrated in the figures. The red circle sits on the symmetry-breaking
phase boundary, the black cross indicates the critical point, and the blue triangle indicates a
point that is on the symmetry line but exhibits no phase transition. In Figure 3.6(B) I show
the histograms, P (k) where k is the intensive kinks per space time volume k = K/tobsN
for the points indicated in Figure 3.6(A). The red histogram (ε < εc) is clearly bimodal,
indicating the presence of a phase transition. The black histogram (ε = εc) indicates the
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distribution at the critical point. This distribution is broad and flat due to the diminishing
surface tension. The blue histogram (ε > εc) shows only one phase and has an average k value
in between the k values of the inactive and active phases for ε > εc. The bimodality at s∗ for
ε < εc is analogous to the bimodal distribution of magnetization in a ferromagnetic model
where the temperature is below the critical temperature and the magnetic field strength is
set to zero.

By reweighting the histograms in 3.6(B) I can plot the value of 〈k〉 as a function of the
field strength s provided that a wide range of k values can be sampled as described in Eq.
3.51. This is shown in Figure 3.7. For ε < εc there is a sharp change in the average value
of k as a function of s. This is analogous to the jump in magnetization of a ferromagnetic
system as the magnetic field strength is varied through zero. At the critical value εc there
is still a precipitous jump, but it has become rounded. For values of ε larger than εc the
transition from a high average value of k to a low value becomes a smooth crossover.

To confirm that there is a true first order transition I measure the finite size scaling of the
susceptibility at s∗, χ∗ = −d〈k(s)〉/ds|s=s∗ . First, I compute 〈k(s)〉 for various system sizes
(N, tobs). This is shown in Figure 3.8 for ε < εc and in Figure 3.9 for ε = εc. I plot the value
of χ∗ as a function of N · tobs for ε < εc, ε = εc, and ε > εc. This is shown in Figure 3.10. For
ε ≤ εc the scaling is linear with system size. For a first order transition χ∗ = (∆k)2Ntobs/2,
where ∆k is the size of the discontinuity in 〈k(s)〉 at the s∗. At ε = εc the dependence of
the susceptibility on the system size is weaker, but still scales with system size. However,
for ε > εc the susceptibility χ∗ levels out and does not increase with increased system size.

I also show sample trajectories with k values from the middle of the distributions of
3.6(B) in Figure 3.11. Here, the trajectories contain approximately the same number of
kinks but they are distributed in varying ways. Figure 3.11(A) shows a trajectory taken
from the transition state where ε < εc. Here, there is a clear minimized surface between the
“inactive” part of the trajectory on the left hand side of the plot and the “active” part of
the trajectory on the right hand side. This is consistent with the system minimizing surface
tension at a first order phase transition. For Figure 3.11(B) a trajectory taken from the
middle of the distribution where ε = εc is shown. Here, there are still two distinct phases
but the surface tension has gone to zero so the cluster of “activity” spans the entire system.
Finally, for Figure 3.11(C) a trajectory is shown from the middle of the distribution where ε
is beyond the critical point. Here in the supercritical regime, the two phases have combined
to form one, homogenous phase with no phase separation.

3.7 Case Study: 1 Dimensional Soft East Model

The soft east model is a simple lattice model which can be studied analytically much in
the same way as the soft FA model. To do so, I start with the master equation for the soft
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east model
∂tP (C, t) = −r(C)P (C, t) +

∑
C′
W (C ′ → C)P (C ′, t) . (3.52)

Again, P (C, t) is the probability of observing a configuration C of the soft east system at time
t. r(C) =

∑
C′W (C → C ′) is the exit rate to leave the current configuration C, C ′ represents

all other possible configurations of the soft FA model and W (C ′ → C) is the rate to enter C
from one of those other configurations C ′.

The soft east model can also be represented using a spin-half representation of the master
equation. I denote the ground state (where all sites ni = 0) by the state |Ω〉 where sites {ni}
are now represented by N quantum spins. By doing so, I can represent any possible configu-
ration {ni} via Pauli matrices σx,y,zi [119] with the raising σ+

i and lowering σ−i operators are
defined as σ±i = 1

2
(σxi ± σyi ) Thus, a configuration in the soft east model can be represented

as

|{ni}〉 =
N∑
i=1

(σ+
i )ni|Ω〉 . (3.53)

Note that as usual I take σ−i |Ω〉 = 0. I can now construct a ket state

|P (t)〉 =
∑
C

P (C, t)|C〉 (3.54)

here, |P (t)〉 represents the probability distribution of all configurations of the soft east system
occurring at time t. This allows us to rewrite the master equation given in Eq. 3.52

∂

∂t
|P (t)〉 = W|P (t)〉 (3.55)

where W is a linear operator whose matrix elements represent the transitions rates, W , in
the soft east model. I define an operator W(s) whose largest eigenvalue value returns the
dynamical free energy ψ(s) as defined in Eq. 3.7. At s = 0, W(0) equals the bare linear
operator W defined as:

W =
∑
i

(n̂i−1 + ε)[(1− σ+
i )σ−i + e−β(1− σ−i )σ+

i ] . (3.56)

This equation bears much resemblance to Eq. 3.12, however it does not contain the sym-
metrized portion ( i ↔ j ) – as the east model is inherently asymmetric - nor the diffusive
portion of the equation because there is no convenient mean field mapping that would require
such a form. Furthermore, the diffusive moves would destroy the hierarchical barriers of the
east model.

In order to include the s-ensemble representation of the soft east model I follow [120].
I write P (C, K, t) as the probability of being in configuration C at time t having already
accumulated an activity K in the time between time 0 and t. I can then write the probability
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Figure 3.12: (A) Phase diagram for the 1d soft east model. Here, I show the (s, ε) plane -
varying the value of D but keeping β constant as described in the text. The solid line is
the phase boundary between the active and inactive phase. The dashed line is continuation
of symmetry line of Eq. 3.73 into 1 phase region beyond the critical point. The red circle
indicates a point simulated with ε = 5 · 10−4 < εc along the coexistence line in the two phase
region. The blue triangle indicates a simulation point where ε = 5 · 10−3 > εc. The black
X indicates a point near the critical point where ε = 1.5 · 10−3 ≈ εc. Analytical mapping
of the soft east model is not available as in the FA model, and thus the exact location of
the critical point along the symmetry line is estimated here but is not exactly known. (B)
Coexistence histograms of the intensive activity k = K/(Ntobs) simulations for points in (A)
where colors and line styles are the same as in (A).

to be in configuration C at time t at a field strength s, P (C, s, t) as a reweighted sum over
over all possible accumulated K values

P (C, s, t) =
∑
K

P (C, K, t)e−sK . (3.57)

The equation of motion for |P (s, t)〉 =
∑
C P (C, s, t)|C〉 becomes

∂

∂t
|P (s, t)〉 = W(s)|P (s, t)〉 (3.58)

where now the matrix elements of W include the biasing field s such that

W =
∑
i

(n̂i−1 + ε)[(e−s − σ+
i )σ−i + e−β(e−s − σ−i )σ+

i ] (3.59)

here, the notation is the same as in Eq. 3.56 with the addition of e−s modifying the rate of
changes of state. Because the energetics of the soft east model obey detailed balance I can
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Figure 3.13: Plots of average intensive activity 〈k〉 = 〈K〉/(Ntobs) as a function of field s for
soft east model for various values of ε in the vicinity of points given in Figure 3.12 (A) for
the same values of ε given in Figure 3.12.

write an energy function E =
∑

i ni. I define an energy operator E =
∑

i n̂i. Using this I
can represent a symmetrized operator version of W which I denote H.

H(s) = eE/2TWe−E/2T (3.60)

=
∑
i

(n̂i−1 + ε)[(
√
e−1/T e−s − σ+

i )σ−i + (
√
e−1/T e−s − e−1/Tσ−i )σ+

i ] (3.61)

This new operator, H, is now Hermitian such that

〈C|H(s)|C ′〉 = 〈C ′|H(s)|C〉 . (3.62)

I now rewrite H in terms of Pauli matrices, σx,y,z to find

H(s) = −NC +
∑
i

(hxσ
x
i − hzσzi ) +

∑
〈ij〉

∑
µν

σµiM
µνσµj (3.63)

where N is the system size and

C = (1 + e−1/T )(1 + 2ε)d/2 (3.64)

where d is dimensionality and

hx = dz(1 + 2ε)
√
e−1/T (3.65)

hz = d[2 + ε− e−1/T2ε]/2 (3.66)
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with

M =
1

2

 0 0 z
√
e−1/T

0 0 0

z
√
e−1/T 0 e−1/T − 1

 . (3.67)

where I have used the shorthand notation z = e−s. Next, I make a rotation of the spins with

R(α) = eiα
∑
j

σyj /2 (3.68)

such that

R(−α)

 σxi
σyi
σzi

R(α) =

 σxi cosα− σzi sinα
σyi

σzi cosα + σxi sinα

 . (3.69)

I choose α

tan 2α =
2z
√
e−1/T

1− e−1/T
. (3.70)

This expression diagnolizes M such that

H′ ≡ R(−α)HR(α) (3.71)

= −NC +
∑
i

(Bσxi − hσzi ) +
∑
〈ij〉

∑
µ

Jµσ
µ
i σ

µ
j (3.72)

where now,

B = hx cosα− hz sinα

h = hz cosα + hx sinα

and Jx,y,z are the eigenvalues of the matrix M .
Note, this diagonalization makes space and time symmetric. I use this expression to

avoid the symmetry breaking of the temporal boundaries described in Section 3.7.2.

3.7.1 Symmetry Line

As in the soft FA model there is a hidden symmetry in the soft east model where the
probabilities of being in either the inactive or active phases are equal. In other words, that
P (active) = P (inactive) = 0.5. The line is given by

1 + e−β

2ε+ 1
=
√

(1− e−β)2 + 4e−βe−2s∗ . (3.73)
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Figure 3.14: Finite size scaling of average intensive activity 〈k〉 = 〈K〉/(Ntobs) as a function
of field strength s for soft east model for ε = 5 · 10−4 < εc for 6 different system sizes.

I derive in this equation by noting that H′(s) is invariant under σxi → −σxi , therefore, if
symmetry is broken it must occur when

tanα =

√
e−1/T z(1 + 2ε)

1 + ε− εe−1/T
. (3.74)

Combining this equation with 3.70, I arrive at 3.73.

3.7.2 Boundary Biasing Condition

As in the soft FA model, time and space are not symmetric in the standard s-ensemble
for the soft east model. This is because periodic boundaries in time are not feasible. This
causes a large boundary effect which forces activity to tend toward the temporal ends of
the trajectory. To counteract this boundary effect I constrain the boundary in order to
symmetrize the two dimensions as per the previous section. For convenience, I define a
quantity ϑ

sinϑ = 2e−2s

√
e−β

(1 + e−β)2
+ 4(e−2s − 1)e−β . (3.75)
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Figure 3.15: Finite size scaling of average intensive activity 〈k〉 = 〈K〉/(Ntobs) as a function
of field strength s for soft FA model for ε = 1.5 · 10−3 ≈ εc for 6 different system sizes.

This then allows us to define the boundary term for the soft east model:

gsEast(N (0) +N (tobs)) = eβ/2 tan(ϑ/4)N (0)+N (tobs) (3.76)

here, N (t) =
∑N

i=1 ni(t) is the number of excited sites at time t. This symmetrizes the
ensembles and now the computed averages are not 〈A〉s as in Eq. 3.6 but rather:

〈A〉s,symm =
〈Ae−sK+gsEast[N (0)+N (tobs)]〉0

Zsym(s, tobs)
. (3.77)

In the limit where the observation time tobs is infinite, the symmetrized boundary ensemble
is equivalent to the ensemble without boundary constraints. That is, 〈A〉s,symm = 〈A〉s as
t→∞.

This boundary biasing condition amends the transition path sampling technique de-
scribed in Section 3.5.1 and in Figure 3.3.

3.7.3 Simulation Details

To simulate the dynamics within a given trajectory in the soft east model I use continuous
time Monte Carlo [108]. Since the majority of the lattice of the soft FA model at any given



CHAPTER 3. DYNAMICAL PHASE TRANSITIONS IN KCMS 70

0

1250

2500

tobs ·N
1.5·1050 3·105

≈

Figure 3.16: Scaling of the derivative of the activity, susceptibility, χ∗ = −d〈k〉/ds∣∣
s∗

for
various system sizes tobs ·N for 1d soft east model. Labeling refers to same ε values as those
given in 3.12. Red dashed line indicates linear scaling associated with a first order phase
transition. Similarly, black dashed line represents linear scaling near the critical point. Blue
dashed line indicates constant value of susceptibility across all values of system size for ε > εc.
Red circles indicate several system sizes for ε < εc. Black Xs indicate several system sizes
for ε ≈ εc. Blue triangles indicate several system sizes for ε > εc.

time is “not facilitated”, the probability of accepting moves is very low and thus simulation
is slow to evolve. Continuous time Monte Carlo increases efficiency tremendously and is
explained in Section 3.4.3. In order to harvest representative trajectories at a value of s I
use transition path sampling (TPS) as introduced in Section 3.5.1 and in Figure 3.3 with the
additional boundary constraint introduced in Section 3.7.2. For ease of sampling, I constrain
myself to simulations at s = s∗ as defined in Eq. 3.73, thus computing P (k)s∗ . Averages,
〈k(s)〉 for arbitrary values of s are defined by reweighting the distribution at s∗ such that
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Figure 3.17: Sample trajectories for the 1d soft east model taken from the same state points
as in 3.12(A) from the middle of the distribution of 3.12(B). Thus, for ε ≤ εc these trajectories
represent “transition states” between basins. Active sites are colored (ni = 1) and inactive
sites are white (ni = 0). (A) Trajectory where ε < εc with space-time phase separation.
(B) Trajectory at ε ≈ εc where the phases are still identifiable but the clusters no longer
have a sharp interface. (C) Trajectory at ε > εc where the two phases have merged into one
homogeneous phase.

∫ 〈k(s)〉

0

P (k′)s∗e
−(s−s∗)·k′dk′ =

∫ ∞
〈k(s)〉

P (k′)s∗e
−(s−s∗)·k′dk′ . (3.78)

This equation is numerically valid to the extent that a wide range of k values are sampled
and that s is not far from s∗ such that the overlap of P (k)s∗ and P (k)s is large.

As in the FA model, in the two phase region, simulations are checked to ensure there are
many barrier crossings in TPS time. See for example Figure 3.5 which shows one such TPS
simulation and Section 3.6.6 which goes into further detail regarding TPS time.

Unlike in the soft FA model, the soft east model cannot be mapped onto a quantum phase
transition via a convenient mean field theory. Therefore, although the symmetry line can
still be computed, the exact location of the critical point along the symmetry line cannot
be determined analytically and is only estimated here. I simulate the soft east model at
constant inverse temperature, β = 0.75.

3.7.4 Numerical Results

In Figure 3.12(A), I show the phase diagram in the (ε, s) plane at fixed T and correspond-
ing values of D to follow Eq. 3.42. This is analogous to Figure 3.4(B), however, I simulate at
fixed T rather than fixed ε. The symbols represent the three simulation points demonstrated
in the figures. The red circle sits (ε < εc) on the symmetry-breaking phase boundary, the
black cross when ε ≈ εc indicates a point near the critical point, and the blue triangle when
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ε > εc indicates a point that is on the symmetry line but exhibits no phase transition. In
Figure 3.12(B) I show the histograms, P (k) where k is the intensive kinks per space time
volume k = K/tobsN for the points indicated in Figure 3.12(A). Note that the red histogram
(ε < εc) is clearly bimodal indicating the presence of phase transition. The black histogram
(ε ≈ εc) indicates the histogram at the critical point. This distribution is broad and flat due
to the diminishing surface tension. The blue histogram (ε > εc) indicates only one phase
which has an average k value in between the k values of the inactive and active phases.
The bimodality at s∗ for ε < εc is analogous to the bimodal distribution of magnetization
in a ferromagnetic model where the temperature is below the critical temperature and the
magnetic field strength is set to zero.

By reweighting the histograms in 3.12(B) I can plot the value of 〈k〉 as a function of the
field strength s provided that a wide range of k values can be sampled as described in Eq.
3.78. This is shown in Figure 3.13. For ε < εc there is a sharp change in the average value
of k as a function of s. This is analogous to the jump in magnetization of a ferromagnetic
system as the magnetic field strength is varied through zero. At the critical value of ε, εc,
there is still a precipitous jump, but it has become rounded. For values of ε larger than εc
the transition from a high average value of k to a low becomes a smooth crossover.

To confirm that there is a true first over transition I measure the finite size scaling of
the susceptibility at s∗ χ∗ = −d〈k(s)〉/ds|s=s∗ . First, I compute 〈k(s)〉 for various system
sizes (N, tobs). This is shown in Figure 3.14 for ε < εc and in Figure 3.15 for ε ≈ εc. I plot
the value of χ∗ as a function of N · tobs for ε < εc, ε ≈ εc, and ε > εc. This is shown in
Figure 3.16. For ε ≤ εc the scaling is linear with system size. For a first order transition,
χ∗ = (∆k)2Ntobs/2 where ∆k is the jump in 〈k(s)〉 at the phase transition. At ε ≈ εc I
expect that the dependence of the susceptibility on the system size is weaker, but still scales
with system size. However, for ε > εc the susceptibility χ∗ levels out and does not increase
with increased system size.

I also show sample trajectories with k values from the middle of the distributions of
3.12(B) in Figure 3.17. Here, they contain approximately the same number of kinks but they
are distributed in varying ways. Figure 3.17(A) shows a trajectory taken from the transition
state where ε < εc. Here, there is a clear minimized surface between the “inactive” part of
the trajectory on the bottom half of the plot and the “active” part of the trajectory in the
upper half. This is consistent with the minimization of the surface tension indicative of a
first order phase transition. For Figure 3.17(B) a trajectory taken from the middle of the
distribution where ε ≈ εc is shown. Here, there are still two distinct phases but the surface
tension has decreased so that the cluster of “activity” spans the entire system. Finally, for
Figure 3.17(C) a trajectory is shown from the middle of the distribution where ε is beyond
the critical point. Here in the supercritical regime, the two phases have combined to form
one, homogenous phase with no phase separation.
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Figure 3.18: Two examples of trajectories nucleating the active phase from the inactive phase
in an east model with β = 1 and N = 200. Initial conditions are set such that there is only
one initial excitation

∑N
i=1 ni = 1 at time t = 0 corresponding to the equilibrium phase for

s larger than 0. The system is then allowed to evolve under s = 0. Blue squares indicate
structure where ni = 1.

3.8 Nucleating Activity from the Inactive Phase

We watch a system - prepared in an inactive state at s > s∗ - nucleate the active phase
at s = 0. In Figure 3.18 I show the east model (with ε = 0) at T = 1 nucleating from
an inactive state with only one excitation in the entire trajectory. Figure 3.18(A) shows a
trajectory whose growth towards the active state seems at first gradual, but then takes off
precipiticously at about t = 1000, whereas Figure 3.18(B) shows a trajectory whose growth
is more immediately but goes through an apparent plateau around t = 2000. I define two
waiting times. First, is the time from the beginning of the trajectory to first arrive at 5
excitations, that is

∑
i ni = 5 denoted t5. I also define a second waiting time which is the

time it takes to arrive at
∑

i ni = cN where N is the system size and c = 〈ni〉β,s=0 the
average concentration of excitations at s = 0 at a given value of inverse temperature, β. I
denote this waiting time as tw - the waiting time to arrive at the active state.

I have fit these distributions of waiting times using a Γ distribution of the form:

P (ta) = tka−1
a

e−ta/θ

Γ(ka)θka
(3.79)

here, ta is the waiting time to arrive at some condition “a” – for example a certain number of
excitations or to arrive at an equilibrium concentration. Where, ka and θa are fit parameters
and Γ(n) = (n − 1)! is the gamma function. The Γ distribution is often used to model
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Figure 3.19: Gamma distributions Γ(x) for t5 (A) and tw−5 (B) for an east model with
β = 1 and N = 200. Black circles are computed distribution from data, red line is fit using
equation 3.79. Fit parameters for (A) are k5 = 1.67 and θ5 = 36.1. Fit parameters for (B)
are kw−5 = 18.7 and θw−5 = 200.

waiting times with the interpretation that k is the number of independent events and θ is
the average time between these events (assuming the random variables are equally spaced
in time, on average) [127]. Figure 3.19 shows the distributions and resultant Γ distribution
fits to data for t5 as well as tw−5 = tw − t5 for a system with N = 200 and β = 1.

While the Γ distribution appears to capture dynamics near the peak of the distribution,
there is a significant fat tail which appears exponential towards the long time end of the
distribution as seen in Figure 3.19. This suggests that the assumption of independent events
with equally spaced waiting times breaks down for these long times. More work needs to be
done to further explore this break down from independent, Poisson statistics.

Figure 3.20 shows fit parameter trends for the fitted Γ distributions. I find that t5
(whose fit parameters are k5 and θ5) has no system size dependence, only T dependence.
k5 appears to decrease exponentially with increasing β whereas θ5 increases exponentially
with increasing β. This suggests that, while slightly fewer processes are needed to nucleate
the first five excitations as temperature is decreased, the average length of these processes is
longer. On the other hand, for fits of P (tw−5) the fit parameters kw−5 and θw−5 do depend
on the system size. Roughly speaking θw−5 does not change with system size, but only
with temperature whereas kw−5 grows exponentially with increasing N . That suggests that
in order to reach a certain absolute number of excitations more events are required which
have approximately the same average time between them corresponding with the growing
diffusion of the excitation front through the system.
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Figure 3.20: Trends for fits of Γ(x) with respect to system size and temperature where
β = 1/T for an east model nucleating from a state with only a single excitation. Symbols
indicate computed fit values and lines are guides to the eye. (A) θ5 as a function of inverse
temperature β. (B) k5 as a function of inverse temperature β. (C) θw−5 as a function of
system size N for two values of temperature. (D) kw−5 as a function of system size N for
two values of temperature.

At s = 0 nucleating the active phase from the inactive phase appears to grow relatively
unencumbered as the active phase is downhill in free energy from the inactive state. However,
as the system approaches the thermodynamic limit the amount of independent processes
needed to nucleate the phases grows exponentially. Moreover, as temperature decreases, the
time between independent events increases precipitously – from about θw−5 ≈ 75 for β = 0.7
to θw−5 ≈ 200 for β = 1.
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Figure 3.21: Imagined cooling protocol of a glass former in the T and s plane as in 3.4(B).
Real-world dynamics occurs along the s = 0 line. A material is cooled along the blue arrow.
As it approaches the supercooled regime in the vicinity of the critical point and first order
lines, fluctuations of the inactive phase within the active phase become larger (indicated by
dotted circles).

3.9 Implications to the Glass Transition

The two critical points I have uncovered appear only when the kinetic constraints in the
FA and east models are softened. They do not appear in the “hard” versions of these models.
Moreover, they occur only for s > 0 when ε > 0. Despite the lack of experimental methods
to access dynamical regions where s 6= 0, the critical points still have implications for natural
systems. To illustrate this, I will return to the analogy of the ferromagnetic system.

Below its critical temperature, a ferromagnetic spontaneously orders under a small mag-
netic field. One phase dominates and becomes the “majority phase” (say in an Ising model
the “up” phase). However, one observes small fluctuations in the majority phase of the
minority phase (the “down” phase). Dynamic heterogeneities may be a consequence of the
same fluctuation phenomenon. The dominant fluctuations in the active supercooled liquid
state are those of the inactive space-time phase which I have identified herein. If this is true,
then the probability of observing inactive behavior in a given region of space-time is pre-
scribed by several factors: The spatiotemporal extent of the region, the surface tension, and
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the free energy difference between dynamical phases. In the unbiased equilibrium dynamics,
one expects the main contributions to this probability to be of the form [19]

P (`d, τ) ∝ exp(−Γ1τ − Γ2`
d −∆Ψ`dτ) (3.80)

here, `d and τ are the spatial and temporal extents of the inactive domains, Γ1,2 are the
surface tensions, and ∆Ψ is the free energy difference between the active and inactive phases
evaluated at s = 0.

Previously, it has been shown that for KCMs [128] such as the hard east and hard FA
models (ε = s = 0), coexistence occurs exactly along the natural dynamics and the phase
diagram is consistent with Figure 3.4 such that ∆Ψ = 0 for these hard models at s = 0.
However, for the soft FA and soft east models, this is not the case. In these models s∗ > 0
when ε > 0 and thus ∆Ψ > 0. Therefore, observing large dynamical heterogeneities in the
system is determined by the space-time surface tensions and free energies. In it important
to note that by simply defining P (`d, τ) this assumes the existence of two dynamical phases.
On the other hand, one may still use a mean field spinodal condition analogy between the
classical spin system to estimate whether the minority (inactive) space-time phase is stable
enough to form fluctuation domains within the stable majority active phase, as is the case
in an Ising ferromagnet.

Figure 3.21 highlights this point. Imagine a cooling procedure whereby a liquid is cooled
slowly toward a supercooled liquid along the real world dynamics at s = 0. For high tem-
peratures, there is only a single, active phase – the simple liquid. As the system is cooled, a
second phase – the inactive phase – comes into existence for temperatures below the critical
temperature at the critical point (where s > 0). However, whether one can observe this
second phase at s = 0 depends on whether or not the majority phase can support significant
fluctuations of the inactive phase. In Figure 3.21 this is visualized by the circles which em-
anate from the critical point and the first order phase line causing large fluctuations of the
minority phase in the majority phase.

For my soft models, we can understand these fluctuations via mean-field arguments.
Using the theoretical picture presented here, Γ1,2 and ∆Ψ are the key numerical values that
determine the size of and nature of dynamical heterogeneities in supercooled liquids.

Furthermore, Figure 3.21 makes a connection between this work and other scenarios for
the glass transition. If cooling in a supercooled liquid is analogous to reducing both T
and ε in the soft FA model (I expect the quantity U to be a constant, material dependent
property), then I expect the dynamical free-energy difference as well as the surface tension
between the two phases to vanish at T → 0. This would correspond to a zero-temperature
ideal glass transition for a liquid [129]. These transitions are known to be accompanied by
increased dynamic heterogeneity because the probability of large regions of the minority,
inactive phase increases as described in Eq. 3.80.

Additionally, if a glass former supports a finite-temperature ideal glass transition similar
to those found in spin glasses [130, 131] one expects that the dynamical free-energy differ-
ence and surface tension should vanish at this point [132]. Moreover, if glass formers do
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support space-time phase transitions in the presence of a nonzero field s (as suggested by
several groups [132, 133, 134]), this does not imply the existence of any finite-temperature
thermodynamic transition – but it also does not preclude it.

Finally, in the softened models as shown in Figure 3.4(B) the first order phase line
terminates in a critical point. Thus, in the soft models the two phases must share the same
symmetry - much in the way of a liquid and a gas and unlike the first order line between a fluid
and a crystalline solid (for which a critical point is forbidden) [25]. In a molecular system, it
is not known whether the inactive phase is a true amorphous solid that spontaneously breaks
translational symmetry or rather a yet-to-be-observed liquid phase with an extremely large
(but finite) relaxation time. In the first case the critical point shown in 3.4(B) is forbidden
by symmetry, and if any line of transitions occurs it must separate the two phases for all
conditions in the (s, T ) plane. However, in the case of the yet-to-be-observed slow liquid
phase the critical point found here could be relevant with the (active)liquid-(inactive)liquid
transition [135, 136] being a non-equilibrium transition.
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Chapter 4

Future Work

4.1 Decoupling of Transport Properties

As described in Section 1.2.2, the Stokes-Einstein relation breaks down when there are
larger and larger dynamic fluctuations. One thing that remains to be checked is to see
how well the onset temperature To of the parabolic fit correlates to the decoupling of the
relaxation time and the self-diffusion constant.

In Ref. [137], Ediger et al considered two liquids: OTP and tNB (as defined in Chapter
2). For tNB (shown in Figure 1.4) the onset temperature is about 527 K, whereas the
decoupling begins around 425 K. For OTP the onset temperature is around 365 K, whereas
decoupling becomes dramatic at 285 K. The anecdotal evidence for these two liquids suggests
that decoupling becomes pronounced at temperatures about 20% lower than To. The reason
for this seems puzzling and requires a more careful examination of glass former data.

Moreover, Chandler-Garrahan theory makes another prediction based on KCMs [49] that
Ds ∼ τ−ξ. Where ξ is a constant estimated to be between 0.66-0.95 depending on the KCM
model and dimensionality [29]. This implies that logDs still follows a parabolic form as per
Eq. 1.27 but with a prefactor different from J . Moreover it implies that logDs as a function
of log τ or log η should follow a straight line. This has been illustrated by Mallamace et al
in Ref. [18] for many of the same glass formers I have considered [1] in their Figure 3 with
ξ ≈ 0.85 - well within the range predicted from KCMs. Therefore, since I have shown in
Chapter 2 that these fragile glass formers follow a parabolic form, if log τ and logDs are
linearly related then Ds must also follow a parabolic form.
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4.2 Measuring Dynamical Facilitation

4.2.1 Introduction

One pertinent question in understanding the microscopic origin of supercooled liquid
phenomena is the role of dynamical facilitation. As introduced in Chapter 1, dynamical
facilitation refers to the idea that local structural rearrangements or excitations allow for
the birth and death of excitations nearby in space [35]. The role of dynamic facilitation in
various theoretical scenarios of the glass transition varies widely – in the picture of Garrahan
and Chandler (GC), structural relaxation follows entirely from the facilitated motion of
excitations and the superposition of such dynamics leads to the formation of excitations
on longer length and time scales, resulting in dynamical heterogeneity [138]. Whereas in
other theories [139], dynamic facilitation plays an important, although non-central, role.
Determining the extent to which dynamic facilitation describes microscopic particle dynamics
is therefore an important factor distinguishing between different theories of supercooled
liquids and the glass transition and describing dynamical heterogeneity.

Several past studies have attempted to directly measure dynamic facilitation in atom-
istic supercooled liquids. Glotzer and coworkers [140, 141] provided evidence for dynamical
facilitation in the context of string-like motion and demonstrated an increasing effect of fa-
cilitation with decreasing temperature, as predicted by GC theory. Candelier, Biroli and
coworkers [21, 22] have studied facilitation in the context of simulations, and reported that
dynamic facilitation is only present over a small temperature range and disappears with de-
creasing temperature near the jamming or glass transition. These apparently contradictory
results stem from the lack an agreed-upon method for measuring dynamic facilitation in an
unequivocal way

Our aim is to determine a measurement of dynamic facilitation that can be applied to both
simulations as well as granular and colloidal experiments. In order to do so, we will study
kinetically constrained models (KCMs) and compare to recent measurements in atomistic
systems [50]. Dynamical facilitation is an inherent component of KCMs, so we can be
certain that methods applied to such models can detect dynamic facilitation unambiguously.
Furthermore, we will test the avalanche clustering method of Candelier et al [22] and likely
others [140]. In order to be a valid measurement of dynamic facilitation, the methods must
be able to detect an increase in dynamic facilitation with decreasing temperatures in KCMs
as they are constructed this way by design. If these methods fail to detect these behaviors,
that would suggest that any measurements in atomistic simulations or experiments is too
ambiguous to measure dynamic facilitation in any meaningful way.

We propose an alternative method for measuring dynamic facilitation and quantifying its
role based on recent attempts to do so in atomistic simulations of binary mixtures [50]. More-
over, we believe that the measurements of Candelier et al are simply reworkings of exchange
and persistence time distributions (as they are known in KCMs) and do not demonstrate
any new measurement [29].
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4.2.2 Models & Simulation

In order to test my measurements of dynamic facilitation I will consider two models, the
crossover model already introduced in Chapter 1 as well as the arrow model. I will review
the crossover model and introduce the arrow model here.

Kinetically constrained models (KCMs) are a set of simple models whose thermodynam-
ics are trivial, but whose dynamical constraints produce interesting supercooled liquid-like
behavior. These models are inherently facilitated based on their specific set of rules as all
other relaxation processes are forbidden [35, 45].

The two most basic of these models are the one dimensional east model [48] and the one
dimensional Fredrickson-Andersen (FA) model [46]. Relaxation in the FA Model is ‘diffusive’
as there is only one characteristic barrier relaxation – the Arrhenius barrier [35]. The FA
model, thus, is a good model for strong glass formers [35]. The east model [48] is similar
to the FA model except that the constraint function only contains a term in one direction.
Sites facilitate their neighbors to their “east” and the east model relaxing hierarchically –
that is to say that there is no single characteristic barrier because the barriers are a function
of distance between sites ` [35]. The east model is a good model for fragile dynamics [47].

Most glass formers’ behavior falls in between that of the east and the FA model. To
interpolate between these two extremes, we define the 1 dimensional crossover model as
a generalization of the east and FA models [49]. In the crossover model, the underlying
thermodynamics is that of a lattice gas [25]. The one dimensional lattice gas is a model with
N sites labeled i = 1, 2, . . . , N . Each lattice site can take on one of two values ni = {0, 1}.
In the context of Chandler-Garrahan theory, the interpretation is that at site i where ni = 0,
the glass former is in an unexcited state and cannot facilitate neighboring regions to relax.
A region which contains an excitation, where ni = 1, can facilitate neighboring regions to
relax. Lattice sites do not interact energetically. The total energy, E, of the system is given
by the sum of the lattice occupancy

E =
N∑
i=1

ni . (4.1)

The equilibrium concentration c = 〈ni〉 of these excitations at inverse temperature β =
1/kBT is given by:

c = 〈ni〉 =
1

1 + eβ
. (4.2)

The crossover model is distinguished from an unconstrained model by its dynamical rules.
In an unconstrained model, at some time t any site can change state with some finite rate
[25] proportional to the detailed balance condition

k0→1

k1→0

= e−β (4.3)
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here, k0→1 is the rate a site where ni = 0 becomes excited into a state where ni = 1. k1→0 is
the reverse process where ni goes from an excited state to an unexcited state where ni = 0.
For an unconstrained model, we will take k0→1 = e−β and k1→0 = 1, though, as we will see
in the crossover model, any rates which preserve the ratio in Eq. 4.3 are acceptable rate
choices.

Unlike in an unconstrained model, in KCMs only some sites are capable of changing
states at time t. These rules take into account the ideas of facilitation.

In the crossover model, sites where ni = 1 can facilitate relaxation in either adjacent
lattice site ni−1 or ni+1. This introduces a constraint function Ci into the rate expressions.
For the crossover model the constraint function is:

Ci,x = εni+1 + ni−1 + ε (4.4)

here, we have included a term that allows for a violation of the kinetic constraints, ε, where
ε = exp(−βU) and U is a large barrier to violating the constraints and β is the inverse
temperature in units where Boltzmann’s constant (kB) is set to unity. ε = 0 defines the
“hard” version of all the following models, whereas ε > 0 defines a “softened” version of
these models. “Softened” models are meant to mimic the less black-and-white nature of
molecular glass formers where it has been suggested that some excitations appear out of the
bulk without explicit facilitation [21, 22]. Generally we will take ε = 0 or very small. ε
(distinct from ε) is an interpolating parameter that ranges from 0 to 1. ε = 0 returns the
east model [48]. ε = 1 returns the FA model [46]. For the crossover model the rates become

k0→1 = e−βCi,x (4.5)

k1→0 = Ci,x (4.6)

Since the detailed balance condition in Eq. 4.3 is preserved, the thermodynamics are un-
changed. The difference between the unconstrained model and the crossover model is entirely
dynamical .

Another simple kinetically constrained model that was considered by Garrahan and
Chandler [35] is the 2-dimensional arrow model. The arrow model is the analog of the
1-dimensional crossover model in higher dimensions. The arrow model retains the ther-
modynamics of a simple lattice gas - that is that there are no energetic neighbor-neighbor
interactions - but adds dynamic facilitation in a set of rules similar to those in the crossover
model. Unlike the crossover model which is anisotropic for ε 6= 1, the arrow model is isotropic
under all conditions.

The motivation for the arrow model comes from considering a fluid where space is divided
into square regions whose lengths are comparable to (but no smaller than) bulk correlation
lengths. Therefore, equilibrium fluctuations in adjacent cells are uncorrelated. We then
discretize time into steps δt such that δt is sufficiently long to discriminate if mobility has
occurred in a site in the interval δt. We take an empty cell to be a location at which there can
be no activity in time δt, whereas a filled site supports an arrow and is a location where there
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is the possibility of rearrangement. The arrow supported by the filled site is antiparallel to
the direction of motion and thus indicates the direction of facilitation. The interpretation of
arrows as locations where there is a defect in the mobility field is distinct from the original
paper [35] where they interpreted a filled site as a location where rearrangement could be
detected in a real glass former, rather than a location where there was an underlying defect
where rearrangement can (but not certainly) be observed. This distinction will play an
important role in the implications for our results in real glass formers and represents a shift
in the theory supporting dynamic facilitation - though it does not change the basic findings
and predictions of Chandler-Garrahan theory.

Since this type of coarse-graining can be done on any system, in as sense it is an exact
course graining with no approximations. In an ordinary fluid, where dynamics is rapid and
homogenous we expect a typical configuration of the coarse grain arrow lattice to be com-
pletely occupied, whereas in a supercooled liquid with dynamic heterogeneity the occupancy
of arrows is low. For such a supercooled liquid, the thermodynamics of the arrow model are
that of a lattice gas (as in the crossover model). We take one approximation to the coarse-
graining - that the facilitation arrows are constrained to lie on one of the four diagonals of
the square lattice site. Using diagonal as opposed to edge based arrows allows for a cone of
influence with positive angle, ie that an arrow can facilitate a neighbor site if the dot product
between the arrow and the the vector connecting the two neighbor sites is positive.

Mathematically, the arrow model contains N2 sites where N is the length of each spatial
extent. The occupancy and arrow field is described by n(~x) = n(~x)v(~x) where n(~x) = 1 or
0 at location ~x depending on if there is an underlying defect in the mobility field in that cell
(n(~x) = 1) or not (n(~x) = 0). v(~x) is the unit vector pointing in the direction of facilitation of
cell ~x. For 2 dimensions, v(~x) can be one of four vectors (±1,±1)/

√
2 where we have set the

lattice spacing to unity. As in the crossover model we denote the equilibrium concentration of
excitations as c = 〈n(~x)〉 where 〈.〉 indicates an equilibrium ensemble average. Since 〈v(~x)〉 =
0 the system is isotropic (unlike the east model). Furthermore, for ~x 6= ~y, 〈n(~x)n(~y)〉 = 0
such that there are only trivial equal time correlation functions. The equilibrium distribution
for the vector field is P ({n(~x)}) =

∏
~x ρ(n(~x)) where

ρ(n) = g−n(1− c)1−ncn (4.7)

where g is the number of degeneracy of the equally likely arrow orientations (in 2 dimensions,
g = 4). Between time step t and t+ δt the arrow model proceeds via single site Monte Carlo
dynamics. Consider a transition at site ~x of the vector field n(~x) = n(~x)v(~x) from being in
an unexcited state (n(~x) = 0) to and from an excited state (n(~x) = 1,v(~x) = w) where w is
one of the g possible arrow directions.

n(~x) = 0
kf


kB

n(~x) = w (4.8)

where kf = C~x[w]c/g and kB = C~x[w](1− c) are the forward and backwards rates. Here, C~x
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represents the kinetic constraint given by

C~x[w] = f

1−
∏
〈~y,~x〉

(1− δ√d(~x−~y)·n(~y),1)


+ (1− f)

[
1−

d∏
i−1

(1− δn(~x−
√
dwi),w

]
+ ε

(4.9)

here, wi is the ith Cartesian component of w, and the first product is over nearest neighbor
sites denoted by 〈~y, ~x〉, d is the dimensionality, and ε allows for unfacilitated moves as
introduced in the description of the crossover model. δa,b is the Kronecker delta function
where δa,b = 1 if a = b and 0 otherwise. C~x[w] does not depend on the current state of
the site making the transition, only on the state of its nearest neighbors thus preserving the
detailed balance condition of Eq. 4.8 with respect to the distribution defined in Eq. 4.7.
f ∈ [0, 1] determines the probability p(f) that the newly created arrow will be parallel to
its facilitation arrow such that p(f) = [1 + f(g − 1)]−1. When f = 1 an excitation pointing
in any direction can be created or destroyed if it is facilitated by a neighbor (FA-like). On
the other end, if f = 0 only arrows parallel to its facilitating neighbors can be created or
destroyed (east-like).

The dynamics of the arrow model obey time-reversal symmetry as well as detailed bal-
ance. The arrow model is most realistic for small concentrations of excitations, c in the
vicinity of dynamical arrest for glass forming materials.

c and f have both energetic and entropic contributions. As described earlier, when c
is small excitations are uncorrelated. Therefore, for c small, -ln(c/g) is proportional to β.
Similarly, for real systems, f = acb where a is an entropic contribution and b defines an
energetic contribution [35].

4.2.3 Dynamics of KCMs

Since KCMs are lattice models, their structure is that of the underlying lattice gas and is
composed at any particular time, t, of the values of {ni(t)}. On the other hand, the dynamics
is governed by kinks. Where a kink κ at site i at time t corresponds to a structural change
from 0� 1 is defined as

κi(t) = [1− ni(t− δt)]ni(t) + ni(t− δt) [1− ni(t)] (4.10)

where δt is an elementary computational time step and the operator κ = 0 if no kink has
occurred at time t and κ = 1 if a change in configuration has occurred.

Facilitation is mostly propagated through long lived excitations, or sites where ni = 1
for long periods of time as this allows for the system to explore many configurations. These
correspond to defects in the mobility field. The interpretation is that a site where ni = 1 has
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Figure 4.1: Trajectory of an east model with T = 0.33. Space is shown on the y-axis and
time on the x-axis. Grey squares indicate structure where ni(t) = 1. Blue diamonds indicate
kinks where κi(t) = 1. Blowup in top right corner shows a zoomed in section highlighting
the difference between structure and dynamics.

the possibility to accommodate mobility, but may not necessarily do so at any particular time
point. Kinks, on the other hand, are locations where some kind of motion can necessarily be
detected and correlate with a reorganization of the underlying mobility defects. For atomistic
system, it is the kinks that are detected - not the defect “structure”. However, the majority
of kinks are located on an excitation front and are ephemeral. At first glance, these kinks
seem to carry no dynamic facilitation. This is related to the surges seen in atomistic systems
[50]. The challenge is to try to reconstruct the underlying mobility field to see dynamic
facilitation in action in a way such that the information is carried by the kinks (which act
as a recorder of this field) without directly detecting these defects.

Figure 4.1 highlights this challenge. For an east model, the kinks appear to be uncor-
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Figure 4.2: Candelier et al [21, 22] like analysis of the east model with an observation time of
1000 Monte Carlo time units, system size of 128 sites, and T = 2 showing seemingly uncorre-
lated avalanche events. (A) Avalanches in the east model. Different colors represent distinct
avalanches. Points indicate kinks. Inset to (A) is zoomed in portion to show connectivity.
(B) Fully connected structure of the same simulation used to generate (A).

related random events. Rather, it is the structure which carries the long time dynamic
facilitation and the two only appear the same on long time and length scales.

4.2.4 Measuring Avalanches in KCMs

Candelier et al [22] suggest a method for determining the role of dynamic facilitation
based on avalanches. An avalanche is a cluster of particles in space and time that relax
together and cooperatively. Each avalanche is thus made up of smaller, sequential motions.

In the Candelier et al [22] method, particles are clustered into avalanches based on
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Figure 4.3: ni = 0→ 1→ 0 Exchange time, τ 010, probability distribution, P (τ 010), for east
model with T = 0.5. Black circles represents the full distribution. Dark blue Xs depict the
short time population, red points indicate the long time population. Dark blue dotted line
is exponential fit to short time population, red dashed line is exponential fit to long time
population. Light blue vertical line represents 〈τ 010〉. Black vertical line represents crossover
between the two populations.

whether not they have made a cage escape - defined as when a particle’s vibrational center
of motion has moved. If such cage events happen to particles who are nearest neighbors and
within a time τcl much less than the structural relaxation time these two events are clustered
together into to what Candelier et al describe as an elementary excitation. Candelier et al
then measure the lag time τ1 between nearby clusters which are separated in time by more
than τcl to determine their distribution P (τ1). They find that τ1 follows a double exponential
distribution. They claim that the fast time part of the distribution is characterized by a time
τS which correlates to facilitated dynamics, whereas the longtime tail is characterized by a
lagtime τL which they believe corresponds to the birth of clusters which are not facilitated
and arise spontaneously. Nearby spatial clusters of mobility which are separated in time by
less than τS are said to belong to the same avalanche.

Candelier et al [22] report that as a supercooled liquid is lowered below its onset tempera-
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ture, their measure of dynamical facilitation seems to diminish. This apparent contradiction
arises because the two definitions of dynamic facilitation are incompatible. This is because
of the basic distinction between kinks and structure. What Candelier et al are measuring is
not the underlying mobility defects but rather the detectable kinks. This is expected even in
KCMs, as temperature is reduced the system does not have the energy to put together strings
of adjacent kinks and spends the majority of its time placing kinks adjacent to an important
structural defect and suggest that connecting these defects become even rarer. In order to
determine which method can truly distinguish facilitated from non facilitated dynamics, it
is useful to test the limits of these measures in models whose dynamics are extreme, such
as KCMs. In KCMs such as the hard crossover model, relaxation is by definition facilitated
as no ‘softness’ is permitted. Testing the cluster algorithm on such models can determine if
avalanche behavior is present even in models which are fully constrained. If the same trends
exists in hard KCMs, the avalanche method cannot truly distinguish between facilitated and
non facilitated motion.

Figure 4.2 shows that the appearance and trends of avalanches in an east model mirrors
the results of the atomic systems. This suggests that clustering avalanches does not discrim-
inate between models with facilitation and those whose relaxation follows some alternate
process. Moreover, preliminary evidence suggests that the same qualitative trends - namely
the seeming decrease in the avalanche measure of dynamic facilitation as temperature is
decreased - hold for KCMs. This is in light of the fact that KCMs have, built into their
nature, increased dynamic facilitation with decreased temperature. This suggests that not
only is the avalanche method poor at distinguishing between facilitated and non facilitated
motion, it may in fact be picking up on increased dynamical facilitation as T is decreased.

The Candelier et al measure of dynamic facilitation seems to be related to exchange times
where an exchange time in lattice system is the time between two kinks [29]. I define the
lifetime of an excitation as τ 010 - the time between a kink of type ni = 0→ ni = 1 at site i
until the next kink where ni = 1→ ni = 0. This is also known as the exchange time for an
excitation. Figure 4.3 shows the probability distribution for these lifetimes. This distribution
appear to follow double exponential distribution - akin to the lag time distributions reported
in Ref. [22]. In fact, in Ref. [22] they use these double exponetials and their temperature
depencence as evidence of a diminishing role of dynamic facilitation – even though, once
again, the same results can be found in fully facilitated model KCMs. The full exchange
time distribution is given by P (τ 010)/2 plus its inverse P (τ 101)/2 (the lifetime of a vacancy)
and also retains a double exponential distribution.

4.2.5 Measuring Facilitation

Since the avalanche picture for KCMs and atomistic models is identical, the presence
of avalanches cannot preclude pure dynamic facilitation. Instead, we seek an alternative
measure to describe the extent to which the system is facilitated. By definition, two point
correlation functions of kinks such as the conditional average number of kinks at a distance
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Figure 4.4: µ2(R, t)/(t · 〈κ0(0)〉) as a function of R for an east model with T = 0.5 and
t = 50. Red line indicates computed correlation function and black dashed line indicates the
uncorrelated value, (t · 〈κ0(0)〉).

R recorded during a time t given that a kink occurred at time t = 0 at the origin i = 0,
µ2(R, t) are given by

µ2(R, t) =

〈
κ0(0)

∑t
t′=0 κR(t′)

〉
〈κ0(0)〉 = 0, R 6= 0 . (4.11)

In Figure 4.4 a plot of µ2 divided by t · 〈κ0(0)〉 is shown for an east model with T = 0.5 and
t = 50 showing no interesting correlations. With (t · 〈κ0(0)〉) being the uncorrelated value
of µ2(∞, t) where we have used that all space and time points are equivalent. Here, R is
only taken in the positive direction from the origin as the east model is not symmetric with
respect to −R ↔ R. For all values of R > 0 there are no correlations consistent with the
underlying lattice gas thermodynamics of the system.

Instead, we will investigate correlation by using multipoint functions. We will look for
long lived changes that stick or what will be known as an enduring kink which lasts at least
a time ∆t (which has not exchanged over a time ∆t). This corresponds to finding kinks in
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the second population of the exchange time distribution.

Ki(t,∆t) = κi(t)
∆t∏

t′=t+δt

(1− κi(t′)) (4.12)

where Ki(t,∆t) is a binary function that is 0 when there has been no enduring kink that
first changed state at time t and 1 if there has been such an enduring kink at site i starting
at time t. The motivation behind considering only enduring kinks is related to work done
on measuring facilitation in atomistic systems where the short-lived surges are separating
from the longer lived motions that stick. Next, we define a doubly enduring kink given by
the function h(i, t, ta,∆t) which is also a binary function

h(i, t, ta,∆t) = Ki(t− ta,∆t)
[

1− δ
(

t−∆t∑
t′′=t−ta+∆t

Ki(t
′′,∆t)

)]
(4.13)

where ta is a time period at least twice as long as ∆t, t is a time, and δ(a) is the Dirac delta
function where δ(a) = 1 if a = 0 and δ(a) = 0 if a 6= 0. h(i, t, ta,∆t) = 1 at time t when
for a previous time period of ta there had been an enduring kink that started a time t− ta
and then, in the subsequent period between time t − ta + ∆t and time t there had been at
least one more such enduring kink at the same site. By detecting at least two changes that
enforces that at some point in the interval ta there was a change from ni = 0→ ni = 1 since
in experimental systems, a detection of a kink is unknown as to wether or not it corresponds
to a new defect (ni = 0 → ni = 1) or the death of an old defect (ni = 1 → ni = 0) and
only the defects can facilitate relaxation. Then, to detect correlations, I will compute the
following correlation function, µ(R, t, ta,∆t)

µ(R, t, ta,∆t) =
〈h(0, 0, ta,∆t)

∑t
0KR(t,∆t)〉

〈h(0, 0, ta,∆t)〉 (4.14)

where R is the distance from the origin. This correlation function states that given that
a double enduring kink event has finished at time 0 at the origin where i = 0 what is the
average number of enduring kinks at a distance R from the origin in a time period 0 to t
where now t is a counting time rather than an absolute time. We then define the facilitaiton
volume vF(t) as the sum over R of µ(R, t, ta,∆t) such that

vF(t) =
∞∑
R=0

(
µ(R, t, ta,∆t)

µ∞(t,∆t)
− 1

)
(4.15)

where µ∞ is the uncorrelated value of µ(R, t, ta,∆t) as R→∞ or simply the average number
of enduring kinks between time 0 and time t

µ∞(t,∆t) =

〈
t∑

t′=0

K0(t′,∆t)

〉
. (4.16)
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4.2.6 Conclusions

The measure of Candelier et al does not succeed in determining the true role of dynamic
facilitation as it fails the test for a class of completely understood models - KCMs. We believe
these measurements are trivially related to exchange and persistence processes already known
to highlight the role of dynamic facilitation. Preliminary evidence shows that measures
introduced here, such as the facilitation volume, can accurately capture the increasing role
of dynamic facilitation as temperature is decreased in KCMs such as the crossover and
arrow models. Moreover, these results appear to be consistent with recent measurements of
correlation functions in atomistic models [50]. In the future, we also hope to determine how
the facilitation changes as a function of the softness parameter ε where it will be interesting
to understand the role of dynamic facilitation in light of the finite-temperature critical point
found in Chapter 2.
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