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Rapid advances in imaging have made high-quality devices such as mobile phone cameras

easily accessible, opening the doors to new applications in image editing and augmentation. They

may allow an interior designer to visualize how a kitchen counter will appear after remodeling,

or a consumer to see whether a fabric or leather sofa looks better in a living room with color

bleeding from walls of various shades, or a real estate agent to demonstrate how a room imaged

under fluorescent lights at night will appear in the glow of a sunrise when a window is opened.

Achieving a high degree of photorealism in such applications remains extremely chal-

lenging in computer vision and graphics. They require a comprehensive understanding of all

the constituent factors of image formation — shape, material and lighting — which exhibit a
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wide spectrum of variations and interact in complex ways to create effects such as highlights,

shadows and interreflections. Reconstruction of these intrinsic scene components or the ability

to edit them is consequently an extremely ill-posed problem and especially so when only a

single or a few images are available. Classical measurement-based methods need expensive,

carefully calibrated setups. Prior model-based methods assume simplified physical models that

break down in the face of diverse real-world appearances. Thus, a learning paradigm merits

consideration, but even powerful deep learning methods suffer from a lack of generalization due

to the diversity, long-range interactions and paucity of ground truth data associated with complex

light transport.

The key insight of this thesis is to develop physically-motivated learning, which

incorporates the inductive bias of image formation to enable deep neural networks to reason

about shape, material and lighting in complex scenes. The success of our approach rests on three

advances. First, we develop neural differentiable rendering modules that model the full physics

of image formation, including non-local light transport effects such as shadows, interreflections

or refraction. Second, we devise physically-valid representations of material and light sources

that are compact enough to make learning tractable, yet expressive enough to model realistic

appearance such as spatially-varying reflectance or high-frequency specular highlights and light

shafts through an open window. Third, we exploit domain knowledge to create large-scale

photorealistic synthetic datasets which circumvent the difficulty of obtaining ground truth for

spatially-varying material and complex light paths that enable physically-motivated learning to

generalize well to real scenes. We demonstrate the success of our approach through results that

surpass the state-of-the-art or solve longstanding open challenges in reconstruction and editing of

shape, material and lighting in the presence of complex light transport in unconstrained scenes,

with just a single image as input.

This dissertation also democratizes research in vision and graphics through open frame-

works that allow creation of high-quality virtual environments. Indeed, a key practical impact is

to allow users to create realistic visual effects with only a few images captured with a mobile
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phone camera. Our high-quality predicted geometry, spatially-varying lighting and materials

enable several augmented reality (AR) applications at an unprecedented level of photorealism

— including virtual object insertion and material replacement with realistic shadows and color

bleeding, transparent shape reconstruction and light source editing (such as turning off lamps or

opening windows) with consistent non-local shadows, interreflections and highlights.
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Chapter 1

Introduction

1.1 Motivation

Image appearance is governed by complex interactions between the intrinsic components

that constitute a three-dimensional (3D) scene. The light emitted by light sources such as lamps

or the sun gets reflected or refracted by object surfaces composed of complex materials an

indefinite number of times, before reaching the observer to produce the sense of color. The

goal of this thesis is to attain a comprehensive understanding of shape, material and lighting in

complex 3D scenes by effectively incorporating inductive biases from image formation. Such

a decomposition of images, termed scene reconstruction or inverse rendering, has remained

a canonical challenge in computer vision and computer graphics for over five decades. Indoor

scenes present one of the hardest settings for this challenge due to the presence of complex visual

effects such as specular highlights, long-range interreflections, directional lighting, shadows and

objects in arbitrary layouts composed of myriad spatially-varying materials. This thesis achieves

significant advances towards solving this classical challenge in computer vision and graphics,

by bringing interdisciplinary insights from geometry, physics, and machine learning to develop

methods for scene reconstruction in unconstrained environments.
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(a) (b)

(c) (d)

(e)

Figure 1.1. Our physically-motivated deep learning enables photorealistic scene editing in
unconstrained images captured with a mobile phone camera, such as (a) single-image virtual
object insertion, (b) transparent shape relighting and view synthesis using 5–20 images, (c)
specular material editing and (d) novel view synthesis and relighting from a single image, (e)
various single-image light source editing effects, including turning off an indoor lamp, inserting a
virtual lamp, opening a window, or changing wall color with consistent color bleeding. The inset
in the second column of (e) shows the ground-truth after turning off the lamp, whose appearance
is closely matched by the neural rendering approaches proposed by this thesis. All these effects
require a comprehensive understanding of shape, material and lighting, as well as the complex
light transport effects manifested in indoor scenes.

1.1.1 Practical Impact

The rapid progress of mobile phone cameras has opened new potential avenues for

developing high-quality photorealistic applications for mobile devices. Compared to prior

methods that require expensive, calibrated setups or use a simplified image formation model,

our frameworks can recover realistic scene properties from even a single image captured by

a mobile phone camera in an unconstrained environment. Therefore, it may enable various

interesting applications that allow non-expert users to create realistic visual effects, such as

those shown in Figure 1.1. This may allow users to insert virtual furniture into their homes or
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virtually try-on different wall and floor materials with consistent color-bleeding and shadows

rendered realistically, or enable vendors selling products online to create realistic 3D models that

customers can visualize under different lighting and from different viewpoints, or allow game

developers to capture realistic materials and render them under novel conditions.

In addition, the rising popularity of augmented reality (AR) and virtual reality (VR) cre-

ates new requirements for appearance capture. That is, instead of recovering intrinsic properties

of a single object or character and rendering it realistically, users may now want to interact

with or edit an entire scene – such editing requires that the entire scene appearance be captured.

These new requirements may defy classical measurement-based methods, which usually need

controlled environments, as well as model-based methods, whose handcrafted priors may not be

powerful enough to model the entire scene. In contrast, the frameworks proposed by this thesis

can accurately reason about spatially-varying lighting, materials, geometry, and their complex

interactions in arbitrary indoor scenes, using only a single image captured in the wild as input.

We demonstrate their impact through realistic indoor scene editing applications that cannot be

accomplished by any prior works, such as those demonstrated in Figure 1.1 (e). Given the a

single real image (first column), we can turn off a lamp (second column) or insert a virtual lamp

into the scene (third column) with consistent highlights and shadows. We can also open a virtual

window to let high-frequency directional sunlight come into the room (fourth column) or change

the wall color with non-local color bleeding being rendered realistically, as shown on the inserted

virtual bunnies (fifth column).

In summary, the work described in this thesis will have significant practical impact by

democratizing inverse rendering to allow non-experts to easily create, edit, visualize and share

their content. It will thereby constitute the foundation for a next generation of AR and VR

techniques by enabling the creation of interactive virtual worlds at an unprecedented level of

photorealism. The accompanying video [4] summarizes various photorealistic AR applications

enabled by our research.
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Complex lighting,
such as high-
frequency
directional lighting,
spatially-varying
lighting, and diverse
light sources

Complex interactions,
such as non-local light
transport that caused
shadows, highlights
and color bleeding

Complex materials,
such as highly
specular materials,
transparent materials
or translucent
materials

Figure 1.2. The presence of spatially-varying materials, lighting and their complex interactions
makes inverse rendering an extremely challenging and ill-posed problem.

1.1.2 Fundamental Challenges

In this section, we further explain the fundamental challenges of scene reconstruction

with complex materials and lighting in the wild, which are exemplified in Figure 1.2.

Highly ill-posed

A challenge that immediately manifests is that inverse rendering is a highly ill-posed

problem, especially when the observed inputs are sparse. This is because image formation

involves infinite-dimensional data, namely spatially-varying lighting, materials and geometry,

while its output is just a 3-dimensional RGB color. Therefore, it is extremely difficult to

accurately disambiguate the constituent scene factors. Figure 1.3 shows an example where two

sets of intrinsic components can both explain the appearance of the input image equally well. The

first row consists of the ground truth shape, material and lighting, while the second row bakes

the image intensity completely into the diffuse albedo with flat geometry and lighting. However,

only the correct intrinsic components reconstructed in the first row can be used to achieve

photorealistic editing effects such as inserting a virtual sphere into the scene with consistent

shadows and highlights. Besides the dimensionality, a crucial challenge in scene reconstruction

with sparse inputs is that constituent factors are often invisible or confounded, yet contribute
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Image

Incorrect intrinsic components reconstruction  

Correct intrinsic component reconstruction Realistic AR effect

Unrealistic AR effect

Albedo Normal

Roughness

Roughness

Normal

Depth

Depth

Albedo

Per-pixel envmap

Per-pixel envmap

Figure 1.3. An illustration of the ill-posed nature of inverse rendering. While the intrinsic
components reconstructed in the first and second row can explain the appearance of the image,
only the correct inverse rendering results in the first row can generate realistic AR effects (the
shining sphere with realistic highlights and shadows).

significantly to image intensity – such as a ceiling lamp behind the camera or interreflections

from an occluded wall.

Complex materials

Real-world material appearance is diverse and complicated. It may exhibit strong high-

frequency signals in the angular domain, causing sharp specular highlights with various patterns.

A brute-force way to capture material appearance would be to densely sample every view and

lighting direction and measure the reflected intensity [132]. While this measurement-based

method is effective in a dark room with controllable lighting and cameras, it can be very time-

consuming, memory-intensive and infeasible in an unconstrained environment. In contrast, our

frameworks presented in Chapters 3, 4 and 7 can estimate complex spatially-varying material

appearance from a single image in a single forward pass of a deep neural network.

Transparency is an even more challenging material property to estimate, especially with

just a few input images – its appearance effects are highly view dependent and complex due to

non-local reflection and refraction. As such, although transparent materials are very common in

daily life, they are relatively less explored in prior works and largely limited to highly controlled
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and dense acquisition setups [133, 106, 214]. In contrast, in Chapter 5, we will present our

frameworks for reconstructing transparent shapes from just 5 to 20 views captured in arbitrary

indoor environments.

Complex lighting

Lighting estimation is another challenging problem in inverse rendering, primarily due to

missing information: (1) Many areas of the scene that contribute to the final radiance may not be

directly observed in the image. These areas may include light sources or surfaces that reflect

light. (2) Natural lighting has a high dynamic range (HDR) that cannot be directly captured in

a low dynamic range (LDR) image, leading to saturated pixels. However, this missing HDR

information is crucial for rendering realistic virtual appearances. Besides missing information,

heavy occlusions and strong shadows can lead to complex spatially-varying lighting, which is

especially true for indoor scenes. The brute-force way to recover spatially-varying HDR lighting

is to take multiple images covering every location and view direction, at different exposures to

recover the high dynamic range. This is too expensive for large-scale scenes. In contrast, our

framework proposed in Chapter 7 can reconstruct spatially-varying HDR indoor lighting from a

single LDR image.

What makes lighting estimation even more challenging is the diversity of light sources

present in the real world, such as flashlights on cameras, lamps in indoor scenes, sunlight, and

sky lighting, which need to be modeled with different representations for both geometry and

color spectra. Further, estimating them in images is challenging since their effects often manifest

as high-frequency information or distant interactions, even though their spatial extents might be

highly localized. In Chapter 3 and 4, we model flashlights on mobile phone cameras as point

light sources and utilize them to capture material appearance from a single image. In Chapter 8,

we propose different physically-based lighting representations for various indoor light sources.
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Complex interactions between scene factors

The interactions between lighting, materials and geometry usually cause non-local light

transport effects that make the inverse rendering problem extremely challenging in indoor scenes.

For example, the sunlight coming through a window can cause specular highlights on a table and

soft shadows on the floor, even though none of the three objects (window, table and floor) might

be close to each other in image space or 3D space. These long-range interactions imply that

global context information is crucial to accurately recover realistic material and lighting from

sparsely sampled images.

Moreover, the light coming from light sources may experience an indefinite number of

bounces before it finally reaches the camera. This phenomenon is known as global illumination

or interreflection. It can cause color bleeding between surfaces, which further adds difficulty

in disentangling lighting, materials and geometry. Although it is often ignored in prior works,

global illumination can contribute substantially to total illumination, especially when the scene

geometry is mostly concave (generally true for indoor scenes). In Chapters 4, 5 and 8, we

propose our physically-motivated learning frameworks that explicitly model multiple bounces of

light transport.

Inverse rendering in indoor scenes

From the above analysis, we may postulate that estimating realistic lighting and materials

for indoor scenes is much more challenging than estimating them for a single object in nearly

every aspect. Indoor scenes usually present spatially-varying diverse materials that span the

entire range of gloss from diffuse to specular, diverse lighting such as lamps of different shapes

and spectra and sunlight coming through windows, along with highly complex interreflections

and shadows due to visible and invisible objects. In Chapters 6, 7 and 8, we focus on a robust

and practical framework for indoor scene geometry, lighting and material reconstruction from a

single image, which enables a wide variety of previously intractable photorealistic scene editing

applications.
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1.1.3 A Computer Vision Perspective

A central goal of computer vision is to help computers understand the visual world. This

is an intuitive problem for humans. For example, given an image of an indoor scene, it is easy

for us to explain its constituent properties. From a physical perspective, we can easily discern

its underlying 3D structure, materials, and lighting that determine image appearances, while

reasoning about complex light transport effects. We understand that the shadow under a table is

because it occludes the light coming from a lamp, or the specular highlights on a vase are due to

its specular material reflecting sunlight coming through a window. However, these are extremely

hard problems for a computer to solve and have remained so despite the great progress computer

vision has achieved over the past fifty years [198].

This thesis advances physical understanding in computer vision by designing practical

frameworks to recover the underlying intrinsic factors – namely geometry, materials and lighting

– of images captured under unconstrained conditions. Due to its ill-posed nature, to disambiguate

these factors, we need priors that model the physical nature of these intrinsic factors and their

complex interactions. Many physically-based vision methods have developed numerous such

priors,to which we refer as model-based methods [123, 12, 13, 30, 34, 32, 31]. While model-

based methods have achieved promising success on various scene reconstruction problems, they

still have limitations. First, they usually make assumptions to simplify the complexity of image

formation, such as homogeneous material [123], diffuse materials [12, 13], low-frequency [168]

or directional lighting [30, 34, 32, 31]. While these assumptions can significantly simplify

the optimization process, they may fail to recover complex light transport effects commonly

seen in the real world, such as high-frequency directional lighting, interreflections and specular

highlights. Second, these methods may heavily depend on hand-crafted features, which limit

their ability to accurately model the true physics of real-world conditions. On the contrary,

our goal is to develop practical solutions that recover photorealistic materials and lighting of a

complex scene from images captured in an unconstrained environment, with complex interactions

8



between intrinsic factors modeled correctly.

The advent of deep learning brings significant progress to various computer vision

problems. Specifically, a convolutional neural network (CNN) possesses the properties that

make it a natural and powerful tool for accurately recovering materials, lighting and geometry

of complex scenes. It provides an effective way to learn high-quality priors from large-scale

data that are essential for solving highly ill-posed scene reconstruction problems. However,

directly adopting CNNs is non-trivial and can bring about new challenges, whereby complex,

non-local light transport effects such as hard and soft shadows, intereflections and color bleeding

may prevent even CNNs from accurately decomposing an image into its intrinsic factors. The

high dimensional spatially-varying materials and lighting may require high network capacity,

making networks memory intensive and difficult to train. Furthermore, large-scale datasets with

high-quality ground truth are essential for CNNs to generalize well, but collecting such a dataset

for complex scenes with ground-truth materials and lighting is extremely hard or even intractable.

As a result, most deep learning-based scene reconstruction methods typically focus solely on

geometry reconstruction [58, 57] or adopt an over-simplified image formation assumption, such

as intrinsic decomposition [114], which does not suffice to model complex light transport or

reconstruct photorealistic materials and lighting [63, 66].

1.1.4 A Computer Graphics Perspective

The task of recovering lighting, geometry, and materials and modeling complex light

transport from images is known as inverse rendering in computer graphics [131], which has

remained a central problem in computer graphics for over twenty years. While computer

vision has the goal of reconstructing the constituent factors of image formation, the purpose of

inverse rendering in computer graphics is to aid in synthesizing photorealistic images – since the

physics of image synthesis has been well-established, the next challenge in achieving greater

photorealism is to accurately capture real-world materials, lighting, and geometry. Therefore,

inverse rendering in computer graphics often seeks the highest possible accuracy of real-world
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Figure 1.4. A summary of existing inverse rendering frameworks. This thesis motivates a new
class of methods that occupy the top-right corner, by combining the advantages of physically-
based modeling and advanced deep learning, which achieves high-quality appearance capturing
with minimal acquisition difficulties.

intrinsic factors by building large, expensive and carefully calibrated devices, such as light

stages and gantries, that can densely sample views and lighting directions [53, 240, 67]. These

devices can create controlled environments where two of the three intrinsic factors are already

known, so the third component can be recovered accurately. We will refer to these methods

as measurement-based methods. As these measurement-based methods achieved tremendous

success, it is common nowadays to see virtual characters or scenery with realistic, complex

virtual appearances in movies and games nearly indistinguishable from the real world.

While the aforementioned inverse rendering methods are effective for creating realistic

effects in games and movies, they require expensive devices and controlled environments that

are only accessible to experts. This thesis solves an important challenge of computer graphics by

designing inverse rendering frameworks that can capture realistic appearances from a single or a

few images captured under unconstrained conditions. As a result, non-expert users can use such
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methods to recover complex scene appearance by simply taking photographs with their mobile

phone cameras.

In summary, inverse rendering remains a difficult problem for computer vision and

graphics. Prior methods either need carefully calibrated, constrained setups or utilize simplified

models that cannot model the full physics of the image formation process. Recent progress

in artificial intelligence, namely deep learning, brings us a new powerful tool to tackle this

classical challenge but still faces the issue of generalization ability and lack of training data.

In the next section, we will introduce our solution for this canonical challenge, which lays the

foundation of this thesis. We propose to build a framework of physically-motivated learning

for scene reconstruction with complex materials and lighting under unconstrained environments.

The key is to instill the inductive bias of the image formation process into the network design,

while exploiting domain knowledge to devise meaningful representations and create large-scale

photorealistic datasets that make learning tractable. Figure 1.4 summarizes inverse rendering

methods based on their acquisition ease and expressive power, where this thesis occupies the top

right corner by reasoning about photorealistic complex appearance with extremely sparse inputs,

such as a single image captured in the wild.

1.2 Principles of Physically-Motivated Deep Learing

Physically-motivated deep networks

Rather than adopting a purely data-driven approach with black-box CNNs, we propose to

create physically-motivated networks for complex scene reconstruction by instilling the domain

knowledge of image formation into the network design and training. Such choices allow us

to build networks whose outputs are more interpretable, which are better generalizable to real

scenes through incorporation of meaningful inductive biases that model the physical nature of

intrinsic scene factors and their non-local interactions. Specifically, we introduce in-network,

differentiable rendering modules, which allow computing a rendering loss by first synthesizing

images from the predicted intrinsic factors and then back-propagating the difference between
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Figure 1.5. A demonstration of our frameworks for solving inverse rendering problems for
complex scenes. They key insight is to follow the the physics of the image formation process
when creating synthetic datasets, design network architectures and representations so that our
framework can achieve high-quality predictions of complex materials and lighting from sparse
inputs captured in arbitrary environments. Through editing our predicted intrinsic factors, we
may enable photorealistic scene editing applications.

the rendered and input images. These neural rendering modules provide additional supervision

to balance the contributions of different intrinsic factors, enabling us to directly optimize for

photorealistic final appearance. More importantly, they enable networks to accurately model

non-local light transport effects, which are extremely challenging for conventional CNNs. Such

effects include color-bleeding due to interreflections in concave scenes (Chapters 4 and 8),

refraction and reflection for transparent objects (Chapter 5), and strong soft or hard shadows for

indoor scenes (Chapter 8).

Concise and effective representations

The high dimensionality of spatially-varying materials and lighting also present chal-

lenges for adopting deep learning-based methods – for example, a traditional representation for

lighting and materials as a large set of sampled points covering the whole sphere or hemisphere

makes training predictive networks highly memory-intensive. To solve this challenge, we bridge

classical works in physically-based rendering and appearance modeling with recent advances in
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deep learning, by proposing concise representations that can greatly reduce the dimensionality

while being expressive enough for creating photorealistic appearance. Such examples include

materials for which we use a physically-based parametric BRDF model [95] that only requires

4 parameters to represent realistic highly-specular materials (Chapters 3, 4 and 7), complex

spatially-varying indoor lighting which we represent with the sum of a small number of spherical

Gaussian lobes and physical light sources for which we estimate precise geometric extents and

color spectra (Chapters 8 and Chapter 7).

Photorealistic synthetic datasets

It is well-known that training CNNs successfully requires a large amount of data. How-

ever, collecting large-scale data with accurate ground-truth for spatially-varying materials and

lighting for complex scenes can be prohibitively difficult, if not impossible for complex effects

such as interreflections and shadows. Thereby, we propose to train on synthetic data where

ground-truth materials and light transport are easily available. However, one notorious challenge

of training CNNs on synthetic data is that the trained networks may not generalize well to real

data due to the differences in data distributions, known as domain gap. Such domain gaps have

been addressed in transfer learning with domain adaptation methods, which align the distributions

between real and synthetic data. While such approaches remain interesting future directions

to pursue, we propose to alleviate domain gaps through large-scale photorealistic synthetic

datasets that accurately model the physics of the image formation process. In this way, the priors

learned by CNNs on synthetic data are physically meaningful and therefore can generalize well

to real scenes. Our twofold contributions have wide potential impacts. Firstly, our open-source

tools and data allow even non-expert users to create large-scale datasets for inverse rendering

problems using their own images and scans. Secondly, CNNs trained on such photorealistic

synthetic datasets achieve high-quality scene reconstruction on real data to enable a wide variety

of photorealistic scene editing applications from even a single mobile phone image.
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Figure 1.6. Organization of this thesis. We start from relatively simpler setting, helping readers
to get familiar with import concepts, to the most difficult setting for inverse rendering.

1.3 Summary

In summary, this thesis develops physically-motivated deep learning frameworks for

scene reconstruction with complex lighting and materials, using only sparse inputs captured in

an unconstrained environment. The key is to incorporate the inductive bias of image formation

when designing physically-motivated networks, devising concise and expressive representations

for intrinsic scene components and complex light transport, and creating photorealistic synthetic

datasets that utilize such domain knowledge to allow generalization to real scenes. Our approach

is summarized in Figure 1.5. This explicit consideration of the physical basis of image for-

mation allows us to achieve high-quality scene reconstruction of geometry, spatially-varying

materials and complex lighting that cannot be adequately handled by prior measurement-based,

model-based, or learning-based methods. By editing our high-quality predicted intrinsic scene

components, we achieve photorealistic effects such as virtual object insertion, light source

editing, view synthesis and relighting, which may lay the foundation for the next generation of

augmented reality applications.

1.4 Organization of This Thesis

The organization of this thesis is as follows. In Chapter 2, we first introduce background

knowledge about image formation and its constituent factors, as well as the table of notation,

which is useful to understand this thesis. From Chapter 3 to 8, we introduce our physically-
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motivated deep learning frameworks for various inverse rendering problems, starting from the

relatively simpler setting of a planar surface, to the most difficult setting of an arbitrary indoor

scene.

In Chapter 3, we propose our framework for recovering spatially-varying material ap-

pearance of a planar surface from a single image. Even though the geometry is known, the

high-dimensional spatially-varying material, which we model as a bidirectional reflectance

distribution function (BRDF), is still very difficult to reconstruct. We follow the three above

principles to design our physically-motivated deep learning framework and achieve material

reconstruction accuracy better than prior state-of-the-art.

In Chapter 4, we move further to jointly estimate geometry and spatially-varying material

for a single object from a single image. Compared to planar surfaces, the concave geometry of an

arbitrary object can cause non-local interreflections, adding difficulty to disambiguate geometry,

materials and lighting. We propose a customized in-network rendering layer that can handle

global illumination efficiently and a cascade structure that can iteratively refine our predictions

utilizing global context information.

Transparent materials induce complex refraction and reflection, which can be considered

as an even more challenging scenario. In Chapter 5, we propose our physically-motivated

framework for transparent shape reconstruction from as few as 5 to 20 images captured in

arbitrary indoor environments. Two key advances in our framework are: (1) a novel representation

that enables an in-network differentiable rendering layer to model the full physics of two-bounce

light transport and (2) a cost-volume-based physically-motivated network architecture that can

regularize the shape reconstruction.

As discussed in Section 1.1.2, indoor scene appearance reconstruction presents one of

the steepest challenges in nearly every aspect. Chapter 6, 7 and 8 propose a practical framework

for this extremely difficult problem. We start from Chapter 6 by designing an open framework

for creating large-scale photorealistic synthetic indoor datasets. The created dataset is used to

train our physically-motivated networks in Chapter 7 and 8.
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In Chapter 7, we propose a framework that jointly estimates geometry, spatially-varying

material and spatially-varying lighting of an indoor scene from a single image. Directly predicting

lighting of every incoming direction at every location can be prohibitively expensive. We adopt a

spatially-varying spherical Gaussian (SVSG) that allows us to recover high-frequency directional

lighting with a much smaller number of parameters, with global illumination also being modeled

correctly. Our frameworks achieve high-quality inverse rendering results that enable various

photorealistic scene editing applications that cannot be as well achieved by prior methods, such

as virtual object insertion with realistic specular highlights and shadows.

Finally, we achieve the first result of its kind on editing of light sources in complex

indoor scenes with accurate non-local light transport – to create effects such as opening a virtual

window to let the sunlight in, putting a virtual lamp into the scene, or changing the wall color

with consistent color bleeding on all other furniture. This is presented in Chapter 8, where we

propose a reconstruction framework that can estimate physically-based visible and invisible

light sources in the scene and a neural rendering framework that can re-render the images from

our predictions with various complex light transport effects being handled explicitly, such as

shadows and global illumination, even with occluded and invisible scene surfaces.

We conclude in Section 9 by revisiting the philosophies espoused by this dissertation,

as well as highlighting the several directions of future research opened up by our study of

physically-motivated learning for photorealistic scene reconstruction and editing in the wild.
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Chapter 2

Background

In this chapter, we will briefly recap background knowledge that will be useful to

understand this thesis. We first present the formal definition of image formation by introducing

the rendering equation. This brings in the mathematical explanation of several complex light

transport effects that will be handled in later chapters. Then, we introduce properties of each

intrinsic factor. For materials, we discuss several physically-based parameterized material

appearance models that can represent appearance with only a small number of parameters. For

lighting, we first discuss several commonly used light sources, including physically-based light

sources and image-based lighting, and then introduce two lighting representations for reducing

high dimensional lighting. For geometry, we briefly talk about the geometry representation used

in this thesis while referring some very recent progress as future work. Finally, we write the

table of notation that will be used through the rest of the thesis.

2.1 Image Formation

The complex image formation process is probably best described mathematically by the

rendering equation, which was first proposed by Kajiya in his seminal work [93]. Let pi be the

surface point and p j →pi be the unit vector pointing from p j to pi. Then, the area integral form
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of the rendering equation can be written as

L(p1→p0) = Le(p1→p0)+
∫
A

ρ(p1→p0,p1→p2)G(p1,p2)L(p2→p1)dA (p2), (2.1)

where L(pi→p j) represents the total radiance coming from pi to p j, including reflection and

emission, and Le(pi→p j) represents radiance directly emitted by light sources. If surface point

pi is not on an emitter, then Le(pi→p j) should be 0. ρ is the function that decides how materials

reflect incoming radiance, namely the material appearance. A represents all the surface area of

the scene. Finally, G(pi,p j) is the geometric function that models the foreshortening and shadow

effects.

G(pi,p j) =
V (pi,p j)max

(
pi→ p j ·N(pi),0

)
max

(
p j→ pi ·N(p j),0

)
||pi −p j||22

(2.2)

where N(·) is the normal direction and V (·, ·) is the binary visibility function telling if a ray is

occluded. In the following, we explain several commonly seen complex light transport effects

based on the rendering equation (2.1).

Foreshortening

The foreshortening effect is modeled by
(

pi → p j ·N(pi)
)(

p j → pi ·N(p j)
)

in the

geometry function G(·, ·) (2.2). Intuitively, if the surface normal N orients towards perpendicular

to the view direction, the surface area will look smaller and its contribution to the final radiance

decrease. Figure 2.1 shows an example of foreshortening effect (first column). As we rotate

the area light source perpendicular to the surface below, the surface center becomes dark. This

effect is used by photometric stereo methods [198] to reconstruct the surface normal. In our

frameworks in Chapter 3, 4 and 7, we disambiguate the foreshortening effect from lighting and

material appearance by jointly reasoning lighting, geometry and material of scenes through

training physically-motivated deep networks.
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Shadows

Shadows are caused by the occlusion of light sources, which is modeled by the visibility

function V (·, ·) in (2.2). Most shadows in the real world are soft shadows, i.e., shadows with

soft boundaries. This is because the rendering equation is an integral of all incoming radiance –

light sources with area may only be partially occluded by scene geometry – causing the shadow

boundaries to be soft. Figure 2.1 (second column) demonstrates the shadow effects, which shows

that the larger the area of light sources, the softer the shadow boundaries.

Modeling shadows, especially soft shadows, is very challenging because it requires

accurate reconstruction of both light sources and occluders gometry and modeling of non-

local light transport. In Chapter 8, we solve this challenge by combining the advantages of

deep learning on hallucinating unseen geometry and physically-based rendering on accurately

modeling long-range occlusions.

Long range interactions

The integral in the rendering equation (2.1) involves the whole scene, which suggests

that surfaces not adjacent with each other may contribute significantly to the incoming radiance.

Modeling such complex long-range interactions may be too challenging even for recent advanced

CNN architectures. In this thesis, we propose in-network differentiable rendering modules to

help soling this challenge. In Chapter 3, 4, 7 and 8, such rendering modules are used to compute

rendering losses as additional supervision, which help instill networks with domain knowledge

of the image formation process.
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Global illumination

The rendering equation is actually a recursive function, where L(p2→p1) in (2.1) can be

further decomposed into emission and reflection.

L(p1→p0) = Le(p1→p0)+
∫
A

ρ(p1→p0,p1→p2)G(p1,p2)Le(p2→p1)dA (p2)

+
∫
A

∫
A

ρ(p1→p0,p1→p2)G(p1,p2)

ρ(p2→p1,p2→p3)G(p2,p3)Le(p3→p2)dA (p2)dA (p3)+ ...

The recursive form of the rendering equation describes how light coming from light sources

can experience multiple reflections before finally reaching the camera. We refer to this part

of lighting as global illumination or interreflection. Global illumination can cause non-local

color bleeding; once the light is reflected by the surface, its color will be modulated by the

surface material, causing the color from one surface to bleed onto another. This is shown in

the third column of Figure 2.1, where the green color from the outside box bleeds to the white

sphere. Since global illumination can take a substantial part in the total illumination, we need to

model it when solving scene reconstruction problems with concave geometry. However, due to

the computational difficulties of handling global illumination, most prior methods neglect this

phenomenon. In Chapter 4 and 8, we design physically-motivated network modules that can

render complex global illumination efficiently and accurately through a single forward pass. In

Chapter 7, we bake global illumination into our local lighting representation so that the color

bleeding effect can be rendered efficiently through local computation.

2.2 Materials

Material appearance is described by the function ρ(·, ·) in the rendering equation (2.1).

This function is called bidirectional reflectance distribution function, shortened as BRDF in

the rest of this thesis. Given the incoming and outgoing directions as inputs, it describes how
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Foreshortening effect Shadow effect Global illumination

Figure 2.1. A demonstration of some light transport effects, such as foreshortening, soft/hard
shadows, and global illumination.

Lambertian BRDF Phong BRDF Microfacet BRDF Transparent BRDF

Figure 2.2. A demonstration of some parameterized BRDFs, including Lambertian, phong,
microfacet and transparent BRDFs. We observe that microfacet BRDF can create the most
realistic specular highlights, while transparent BRDF leads to complex reflection and refraction.

the ray is reflected by materials. The most naive and brute-force way to represent BRDF will

be densely sampling every lighting and view direction covering the whole hemisphere [132],

which is computationally expensive. Fortunately, the angular distributions of natural real-world

BRDFs are not arbitrary. Instead, they usually lie on a low-dimensional manifold that can be

well-approximated through physically-based parameterized BRDF models. In the following,

we will introduce several popular parameterized BRDF models that allow us to model material

appearances with only a small number of parameters.

Lambertian BRDF

The simplest BRDF is a constant number. It means that the appearance of materials is

view independent, i.e. it looks the same as we change viewpoints. This BRDF model is known

21



as Lambertian model and the constant number is material’s diffuse albedo (A).

ρ(p1→p0,p1→p2;A) =
A
π

(2.3)

where A is a 3-channel variable in the range from 0 to 1. π is the normalization factor. Due

to its simplicity, Lambertian BRDF is assumed for many classical scene reconstruction tasks,

such as multi-view stereo and photometric stereo. However, real-world materials can be highly

view dependent, causing complex specular highlight and reflections that cannot be handled

by Lambertian BRDF. We will introduce two popular parameteric BRDF models for specular

materials.

Phong BRDF

One early attempt to model the view-dependent specularity of materials is the Phong

BRDF model [162]. The Phong BRDF model is based on the empirical observation that highly

specular materials have sharp and bright specular highlights while less specular materials have

blurry and smooth specular highlights. Its specularity is controlled by two variables, the specular

color variable (As) and the exponential variable s. The formal definition of the Phong BRDF

model is

ρ(p1→p0,p1→p2;A,As,s) =
A
π
+

As(s+2)
2π

(ωr ·p1→p2)
s (2.4)

where ωr is the reflection direction of p0→p1, i.e.

ωr = 2(p1→p0 ·N)N−p1→p0. (2.5)

Note that A+As has to be smaller than 1 for energy conservation. Intuitively, when s is large,

the value of the specular term will drop steeply as the p1→p2 moving away from the reflection

direction ωr, causing sharp and strong specular highlights.

While Phong BRDF model is widely used as a baseline model for specularity modeling,
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it is an empirical rather than a physically-based BRDF model. Comprehensive experiments find

that its error when fitting the real-world material appearance are consistently higher compared to

more advanced models with clear physical motivations [148]. In the following, we will introduce

a more advanced model that has been used through out the rest of the thesis.

Microfacet BRDF

The microfacet BRDF model [159] is a physically-based BRDF model that can model

specular reflectance realistically. It has Lambertian term and specular term. Similarly, its

Lambertian term is just the constant diffuse albedo (A). Its specular term is controlled by

roughness (R), which is a 1-channel variable. Intuitively, when the roughness value is small, the

material appearance will be more view-dependent, namely more specular. The specular term of

the microfacet BRDF model assumes that specular appearances can be represented by a large

collection of micro facets with different orientations. Therefore, material appearance is controlled

by three factors of these micro facets: the statistical distribution of facets’ orientations, how each

facet reflects light, and the foreshortening and shadow effects caused by the interactions between

facets. These three factors correspond to three functions in the specular term, the distribution

function (D), the Fresnel function (F), and the geometry function (G). Without diving into

details, the formal definition of the microfacet BRDF model [95] used in this thesis is

ρ(p1→p0,p1→p2;A,R) =
A
π
+

D(h,R)F(p1→p0,h)G(p1→p0,p1→p2,h,R)

4(N · l)(N ·v) (2.6)

D(h,R) =
R4

π [(N ·h)2(R4 −1)+1]2

F(p1→p0,h) = (1−F0)2−[5.55473(p1→p0·h)−6.8316](p1→p0·h)

G(p1→p0,p1→p2,N,R) =
N ·p1→p0

(N ·p1→p0)(1−κ)+κ

N ·p1→p2

(N ·p1→p2)(1−κ)+κ

Here κ = (R+1)2/8. h is the unit-length half-angle vector in the direction of (p1→p0 +p1→

p2)/2. For the Fresnel function, we set F0 = 0.05 as suggested in [95]. We use microfacet BRDF

for all frameworks in this thesis to reconstruct realistic specularity. Particularly, in Chapter 6,
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we build a new large-scale, synthetic indoor dataset by adopting microfacet BRDF for material

appearance, which helps us to achieve a new-level of photorealism that can hardly be achieved

by prior works. Figure 2.2 compares the appearance of an object rendered with the above three

BRDF models, where we observe that microfacet BRDF can model the most realistic specular

highlight. More comparisons can be found in Chapter 6.

Transparent BRDF

One special kind of BRDF is that of transparent materials. The BRDF of transparent

materials are the sum of two δ functions centered at refraction and reflection directions, i.e. only

lighting coming from the two directions can contribute to transparent material appearances. As a

result, the rendering equation will degrade into

L(p1→p0) = F(ωr,ωt ;η)L(ωr)+(1−F(ωr,ωt ;η))L(ωt)

F(ωr,ωt ;η) =
1
2

(
ωr ·N−ηωt ·N
ωi ·N+ηωt ·N

)2

+
1
2

(
ηωi ·N−ωt ·N
ηωi ·N+ωt ·N

)2

. (2.7)

where ωr is the reflection direction as computed in Eq. 2.5 and ωt is the refraction direction

computed following Snell’s law. η is the index refraction (IoR) of the transparent material.

Shape reconstruction with transparent materials is an extremely challenging problem

due to the complex light paths induced by reflection and refraction, as shown in Figure 2.2. In

Chapter 5, We propose the first physically-motivated network to recover 3D shape of transparent

objects using a few images, captured in unconstrained indoor scenes.

2.3 Lighting

In the following, we introduce four types commonly used light sources. We start from

physically-based emitters to image-based lighting. Finally, we introduce two concise and

expressive representations that can effectively reduce the dimensionality of lighting.
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Point light

Point light is a simplified model which assumes that the light source is infinite small.

Therefore, the surface integral of the rendering equation (2.1) will degrade into

L(p1→p0) = ρ(p1→p0,p1→p2)G(p1,p2)Le(p2) (2.8)

where p2 is the location of the point light sources and Le(p2) is its intensity. The geometry

function G now degrades into

G(p1,p2) =
V (p1,p2)max

(
p1→ p2 ·N(p1),0

)
||p1 −p2||22

(2.9)

Note that compared to Eq. (2.2), p2 → p1 ·N(p2) is removed because the point light source

has no surface normal. Point light source can be used to model the flashlight on cameras. In

Chapter 3 and 4, we turn on the flashlight when capturing spatially-varying BRDF of a planar

surface and a single object, to simplify the lighting condition and achieve more accurate BRDF

reconstruction. However, point light source is only a good approximation for very small light

sources and cannot be used for large light sources with arbitrary geometry. Besides, it cannot

create soft shadows, which is very common in natural environments. These issue can be solved

by using area light representation.

Area light

Area light model is a common and simple model for light sources with arbitrary geometry.

It assumes that light sources emit light uniformly in every direction covering the exterior

hemisphere of their arbitrary surfaces. In Chapter 6 and Chapter 8, we use this model to

approximate lamps in indoor scenes, with effects such as occlusion and soft shadows being

handled properly.

However, area light model cannot handle directional lighting, such as sunlight coming

through windows, which is very common for indoor scenes. To handle this, we will propose
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Figure 2.3. Environment map representation. From the left to right is a demonstration of the
parameterization of environment maps and a mirror sphere rendered with environment lighting.

a simple parameterized sky lighting model in Chapter 8 that explicitly models high-frequency

directional sunlight as well as more ambient lighting from sky and ground.

As discussed earlier, light coming from the above physically-based emitters may ex-

perience an indefinite number of bounces before reaching the camera. Directly modeling this

global illumination effect can be computationally expensive and may require a full reconstruction

of the scene’s geometry and materials, which is almost intractable when we only have sparse

observation of the scene. There are two potential methods to fix this issue. One is to utilize

the powerful hallucination ability of deep network to directly predict global illumination from

partial reconstruction of the scene, as proposed in Chapter 7 and Chapter 8. The other is that

instead of using physically-based emitter, we directly predict the total incoming radiance without

separating emission and reflection. We call this lighting representation environment map.

Environment map

Environment map is an HDR image that directly records the total incoming radiance

from every direction covering a sphere or a hemisphere. Therefore, it is also called image-based

lighting (IBL). Formally, let E be an environment map image covering the whole sphere, ωi

be the incoming direction and θ , φ be ωi’s elevation and azimuth angles in range of [0,π] and

[0,2π) respectively. The incoming radiance Le can be acquired as

Le(ωi) = E(
θ

π
,

φ

2π
) (2.10)
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Environment map 5 order SH (75 params)12 SG lobes (72 params)Spherical Gaussian Spherical Harmonics

1Figure 2.4. Two concise and expressive representations for environment lighting. We observe
that with similar number of parameters, Spherical Gaussian representation can better preserve
high-frequency lighting, leading to more realistic rendering for specular materials.

To help understanding, this parameterization is also visualized in Figure 2.3. The major advantage

of the environment map model is its simplicity. We no longer need to model light sources,

visibility and global illumination since they are all baked into the incoming radiance. With the

environment map representation, the rendering equation can be simplified as a single integral

over the unit sphere, rather than recursive integrals over the whole scene.

L(p1→p0) =
∫

Ω

ρ(p1→p0,ωi)Le(ωi)max(ωi ·N,0)dωi (2.11)

However, environment map can be an expensive representation because we may need

a large size image to record every ray. Furthermore, environment map does not contain any

geometry information. To capture spatially-varying lighting, we may need to sample multiple

environment maps at different locations. These above issues motivate us to adopt more concise

representations to model incoming radiance, which we will discuss in the following.

Low dimensional lighting representation

The essential reason why we can reduce the dimensionaity of environment lighting can

be seen from the rendering equation (2.11). The rendering equation is essentially a convolution
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between BRDF and the environment lighting. Therefore, if the BRDF is not extremely high-

frequency, such as δ function for transparent materials, some missing details in the environment

lighting may not cause significant errors in the final rendered appearance.

Based on this observation, several low dimensional representations have been proposed

to approximate environment lighting, which facilitate both lighting estimation and fast rendering

of the scene. One of such representations that is widely used in computer vision and graphics

is Spherical Harmonics (SH). Spherical Harmonics is the analog of Fourier basis for sphere

functions [167]. It allows us to represent an environment map with a smaller number of

coefficients of its basis function. Formally, let {Ynm(ωi)} be the basis functions. Their coefficient

{knm} are computed as

knm =
∫

Ω

Ynm(ωi)L(ωi)dωi . (2.12)

The environment lighting can then be approximated as

Le(ωi) =
N

∑
n=0

n

∑
m=−n

knmYnm(ωi) (2.13)

where N is the order of the Spherical Harmonics. With larger number of N, we can capture more

high-frequency signals of environment lighting.

Spherical Harmonics is good at recovering low-frequency signals but need a large number

of parameters for high-frequency directional lighting. Since our goal is to model realistic specular

highlights and shadows, we adopt a relatively less explored representation, Spherical Gaussian,

which better models high-frequency signals. In this representation, we approximate environment

lighting as the sum of a small number of Spherical Gaussian lobes. Each of them has its own

direction, intensity and bandwidth. Compared to Spherical Harmonics, this representation

offers us the flexibility to focus on small bright spots in the environment map so that we can

better model directional lighting with less parameters. Formally, let w, λ and d be the weight,

bandwidth and direction of a spherical Gaussian lobe respectively. An environment map can be
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Table 2.1. Table of notations

A Diffuse albedo N Normal R Roughness D Depth
E Environment map S Shadow H Diffuse shading I Image
L Light intensity M Mask η Index of refraction L Loss function
x,y,z Axis k Coefficient ρ BRDF c Center
W Window L Lamp ˆ Ground-truth ˜ Intermediate result
SG Spherical Gaussian w Intensity of SG λ Bandwidth of SG d Direction of SG
p,q 3D points ω Unit vector θ Elevation angle φ Ezimuth angle

approximated as

Le(ωi) =
N

∑
n=0

wn exp(λn(ωidn −1)) (2.14)

With some abuse of notation, N is the number of Spherical Gaussian lobes. Figure 2.4 compares

the SH and SG representations, where we observe that with similar number of parameters, SG

representation better preserve high-frequency signal and can be used to render sharper and more

realistic specular highlights and shadows. In Chapter 7, we use spatially-varying Spherical

Gaussian representation (SVSG) to model spaitally-varying lighting for complex indoor scenes

and achieve state-of-the-art accuracy. In Chapter 8, we use Spherical Gaussian to approximate

outdoor lighting coming through windows.

2.4 Geometry

In this thesis, we use the most commonly used geometry representation in this thesis,

including depth map and mesh. For transparent shape reconstruction specifically, we propose

a two-normal geometry representation that supports fast rendering of two-bounce refraction

and reflection, which we will discuss in more detail in Chapter 5. There is a recent trend of

representing scene geometry through implicit representation [137]. However, this is beyond the

scope of this paper and will be discussed more in the Chapter 9.

Table 2.1 summarizes the notations used in this thesis.
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Chapter 3

Planar Surface SVBRDF Reconstruction
from a Single Image

3.1 Introduction

In this chapter, we propose a deep learning-based material estimation approach to recover

the spatially-varying BRDF and normal map of a near-planar surface from a single image

captured by a handheld mobile phone camera. While the advent of convolutional neural networks

(CNNs) has recently led to significant advances in recovering shape using just a single image

[57, 45], material estimation has not seen as much progress, which might be attributed to multiple

causes. First, material properties can be more complex. Even discounting more complex global

illumination effects, materials are represented by a spatially-varying bidirectional reflectance

distribution function (SVBRDF), which is an unknown high-dimensional function that depends

on exitant and incident lighting directions. Second, while large-scale synthetic and real datasets

have been collected for shape estimation [36, 188], there is a lack of similar data for material

estimation. Third, pixel observations in a single image contain entangled information from

factors such as shape and lighting, besides material, which makes estimation ill-posed.

Conventional BRDF capture setups usually require significant equipment and expense

[53, 130]. In contrast, we address this challenge by proposing aphysically-motivated CNN

architecture that is specifically designed to account for the physical form of BRDFs and the

interaction of light with materials, which leads to a better learning objective. Specifically, We
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first encodes the input image into a latent representation, which is decoded into components

corresponding to surface normals, diffuse texture, and specular roughness. The key innovation

of our CNN is a differentiable rendering layer that recombines the estimated components with

a novel lighting direction. This gives us additional supervision from images of the material

rendered under arbitrary lighting directions, which helps us balance the contributions of different

material parameters and directly optimize for realistic appearance. We also observe that coarse

classification of BRDFs into material meta-categories is an easier task, so we additionally

include a material classifier to constrain the latent representation. The inferred BRDF parameters

from the CNN are quite accurate, but we achieve further improvement using densely-connected

conditional random fields (DCRFs) with novel unary and smoothness terms that reflect the

physical properties of the underlying BRDF model.

In addition, we also propose to use a dataset of microfacet SVBRDFs that has been

designed for perceptual accuracy of materials. This is in contrast to prior datasets that are limited

to homogeneous materials, or conflate material properties with other concepts such as object

categories.

Our approach – using our novel architecture and SVBRDF dataset – can outperform the

state-of-art. We demonstrate that we can further improve these results by leveraging a form

of acquisition control that is present on virtually every mobile phone – the camera flash. We

turn on the flash of the mobile phone camera during acquisition; our images are thus captured

under a combination of unknown environment illumination and the flash. The flash illumination

helps further improve our reconstructions. First, it minimizes shadows caused by occlusions.

Second, it allows better observation of high-frequency specular highlights, which allows better

characterization of material type and more accurate estimation. Third, it provides a relatively

simple setup for acquisition that eases the burden on estimation and allows the use of better

post-processing techniques.

In contrast to recent works such as [5] and [6] that can reconstruct BRDFs with stochastic

textures, we can handle a much larger class of materials. Also, our results, both with and without
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Figure 3.1. We propose a deep learning-based light-weight SVBRDF acquisition system. From
a single image of a near planar surface captured with a flash-enabled mobile phone camera under
arbitrary lighting, our network recovers surface normals and spatially-varying BRDF parameters
– diffuse albedo and specular roughness. Rendering the estimated parameters produces an image
almost identical to the input image.

flash, are a significant improvement over the recent method of Li et al. [112] even though our

trained model is more compact. Our experiments demonstrate advantages over several baselines

and prior works in quantitative comparisons, while also achieving superior qualitative results.

In particular, the generalization ability of our network trained on the synthetic BRDF dataset

is demonstrated by strong performance on real images, acquired in the wild, in both indoor

and outdoor environments, using multiple different phone cameras. Given the estimated BRDF

parameters, we also demonstrate applications such as material editing and relighting, which

is also shown in the accompanying video [4]. To summarize, we propose the following novel

contributions:

• A lightweight method for high quality acquisition of SVBRDF and normal map using a single

mobile phone image in an unconstrained environment.

• A physically-motivated CNN and DCRF framework for joint SVBRDF reconstruction and

material classification.
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• Use of a large-scale SVBRDF dataset specifically attuned to complex materials.

3.2 Related Work

BRDF Acquisition

The Bidirectional Reflection Distribution function (BRDF) is a 4-D function that charac-

terizes how a surface reflects lighting from an incident direction toward an outgoing direction. Al-

ternatively, BRDFs are represented using low-dimensional parametric models [26, 49, 209, 152].

In this work, we use a physically-based microfacet model [96] that our SVBRDF dataset uses.

Traditional methods for BRDF acquisition rely on densely sampling this 4-D space using

expensive, calibrated acquisition systems [53, 130, 132]. Recent work has demonstrated that

assuming BRDFs lie in a low-dimensional subspace allows for them to be reconstructed from

a small set of measurements [149, 225]. However, these measurements still to be taken under

controlled settings. We assume a single image captured under largely uncontrolled settings.

Photometric stereo-based methods recover shape and BRDF from images. Some of

these methods recover a homogeneous BRDF given one or both of the shape and illumination

[174, 175, 155]. Chandraker et al. [32, 31, 33] utilize motion cues to jointly recover shape and

BRDF from images under known directional illumination. Hui et al. [81] recover SVBRDFs and

shape from multiple images under known illuminations. All of those methods require some form

of controlled acquisition, while we estimate SVBRDFs and normal maps “in-the-wild”.

Recent work has shown promising results for “in-the-wild” BRDF acquisition. Hui et

al. [82] demonstrate that the collocated camera-light setup on mobile devices is sufficient to

reconstruct SVBRDFs and normals. They require over 30 calibrated images, while we aim to do

the same with a single image. Aittala et al. [6] propose using a flash and no-flash image pair to

reconstruct stochastic SVBRDFs and normals using an optimization-based scheme. Our method

can handle a larger class of materials and is orders of magnitude faster.
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Deep learning-based Material Estimation

Inspired by the success of deep learning for a variety of vision and graphics tasks,

recent work has considered CNN-based material recognition and estimation. Bell et al. [19]

train a material parsing network using crowd-sourced labeled data. However, their material

recongition is driven more by object context, rather than appearance. Liu et al. [121] demonstrate

image-based material editing using a network trained to recover homogenous BRDFs. Methods

have been proposed to decompose images into their intrinsic image components which are an

intermediate representation for material and shape [143, 184, 186]. Rematas et al. [170] train

a CNN to reconstruct the reflectance map – a convolution of the BRDF with the illumination

– from a single image of a shape from a known class. In subsequent work, they disentangle

the reflectance map into the BRDF and illumination [65]. Neither of these methods handle

SVBRDFs, nor do they recover fine surface normal details. Kim et al. [102] reconstruct a

homegeneous BRDF by training a network to aggregate multi-view observations of an object of

known shape.

Similar to us, Aittala et al. [5] and Li et al. [112] reconstruct SVBRDFs and surface

normals from a single image of a near-planar surface. Aittala et al. use a neural style transfer-

based optimization approach to iteratively estimate BRDF parameters, however, they can only

handle stationary textures and there is no correspondence between the input image and the

reconstructed BRDF [5]. Li et al. use supervised learning to train a CNN to predict SVBRDF

and normals from a single image captured under environment illumination [112]. Their training

set is small, which necessitates a self-augmentation method to generate training samples from

unlabeled real data. Further, they train a different set of networks for each parameter (diffuse

texture, normals, specular albedo and roughness) and each material type (wood, metal, plastic).

We demonstrate that by using our novel CNN architecture, supervised training on a high-quality

dataset and acquisition under flash illumination, we are able to (a) reconstruct all these parameters

with a single network, (b) learn a latent representation that also enables material recognition and

editing, (c) obtain results that are significantly better qualitatively and quantitatively.
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3.3 Acquisition Setup and SVBRDF Dataset

In this section, we describe the setup for single image SVBRDF acquisition and the

dataset we use for learning.

Setup

Our goal is to reconstruct the spatially-varying BRDF of a near planar surface from a

single image captured by a mobile phone with the flash turned on for illumination. We assume

that the z-axis of the camera is approximately perpendicular to the planar surface (we explicitly

evaluate against this assumption in our experiments). For most mobile devices, the position of

the flash light is usually very close to the position of the camera, which provides us a univariate

sampling of a isotropic BRDF [82]. We argue that by imaging with a collocated camera and

point light, we can have additional constraints that yield better BRDF reconstructions compared

to acquisition under just environment illumination.

Our surface appearance is represented by a microfacet parametric BRDF model [95],

whose definition was given in (2.6). It has three parameters, diffuse albedo (A), roughness (R)

and detailed normal map (N). Given an observed image I, captured under unknown illumination

L, we wish to recover the parameters A, N and R for each pixel in the image. Please refer to the

Chapter 2 for more details on the BRDF model.

Dataset

We train our network on the Adobe Stock 3D Material dataset1, which contains 688

materials with high resolution (4096× 4096) spatially-varying BRDFs. Part of the dataset is

created by artists while others are captured using a scanner. We use 588 materials for training

and 100 materials for testing. For data augmentation, we randomly crop 12, 8, 4, 2, 1 image

patches of size 512, 1024, 2048, 3072, 4096. We resize the image patches to a size of 256×256

for processing by our network. We flip patches along x and y axes and rotate them in increments

1https://stock.adobe.com/3d-assets
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Figure 3.2. Examples of our material types. We divide materials into 8 categories.

Table 3.1. Distribution of materials in our training and test sets.

Materials Train Test Materials Train Test
fabric 165 29 polymer 33 6
ground 23 4 stone-diff 177 30
leather 10 2 stone-spec 38 6
metal 82 13 wood 60 10

of 45 degrees. Thus, for each material type, we have 270 image patches.2 We randomly scale the

diffuse color, normal and roughness for each image patch to prevent the network from overfitting

and memorizing the materials. We manually segment the dataset into 8 materials types. The

distribution is in Table 3.1, with an example visualization of each material type in Figure 3.2.

3.4 Network Design for SVBRDF Estimation

In this section, we describe the components of our CNN designed for single-image

SVBRDF estimation. The overall architecture is illustrated in Figure 3.3.

3.4.1 Considerations for Network Architecture

Single-image SVBRDF estimation is an ill-posed problem. Thus, we adopt a data-driven

approach with a custom-designed CNN that reflects physical intuitions.

Our basic network architecture consists of a single encoder and three decoders which

2The total number of image patches for each material can be computed as (12+8+4+2+1)×(1+2+7)= 270.
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Figure 3.3. Our network for SVBRDF estimation consists of an encoder, three decoder blocks
with skip links to retrieve SVBRDF components, a rendering layer and a material classifier,
followed by a DCRF for refinement (not visualized). See Section 3.4 for how our architectural
choices are influenced by the problem structure of SVBRDF estimation.

reconstruct the three spatially-varying BRDF parameters: diffuse color A, normals N and

roughness R. The intuition behind using a single encoder is that different BRDF parameters are

correlated, thus, representations learned for one should be useful to infer the others, which allows

significant reduction in the size of the network. The input to the network is an RGB image,

augmented with the pixel coordinates as a fourth channel. We add the pixel coordinates since the

distribution of light intensities is closely related to the location of pixels, for instance, the center

of the image will usually be much brighter. Since CNNs are spatially invariant, we need the extra

signal to let the network learn to behave differently for pixels at different locations. Skip links

are added to connect the encoder and decoders to preserve details of BRDF parameters.

Another important consideration is that in order to model global effects over whole

images like light intensity fall-off or large areas of specular highlights, it is necessary for the

network to have a large receptive field. To this end, our encoder network has seven convolutional

layers of stride 2, so that the receptive field of every output pixel covers the entire image.
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3.4.2 Loss Functions for SVBRDF Estimation

For each BRDF parameter, we have an L2 loss for direct supervision. We now describe

other losses for learning a good representation for SVBRDF estimation.

Rendering layer

Since our eventual goal is to model the surface appearance, it is important to balance the

contributions of different BRDF parameters. Therefore, we introduce a differentiable rendering

layer that renders our BRDF model (Eqn. 2.6) under the known input lighting. We add a recon-

struction loss based on the difference between these renderings with the predicted parameters and

renderings with ground-truth BRDF parameters. The gradient can be backpropagated through

the rendering layer to train the network. In addition to rendering the image under the input

lighting, we also render images under novel lights. For each batch, we create novel lights by

randomly sampling the the point light source on the upper hemisphere. This ensures that the

network does not overfit to collocated illumination and is able to reproduce appearance under

other light conditions. The final loss function for the encoder-decoder part of our network is:

L = kaLa + knLn + krLr + krecLrec, (3.1)

where La, Ln, Lr and Lrec are the L2 losses for diffuse, normal, roughness and rendered image

predictions, respectively. Here, k’s are positive coefficients to balance the contributions of various

terms, which are set to 1 in our experiments.

Since we train on near planar surfaces, the majority of the normal directions are flat. Table

3.2 shows the normal distributions in our dataset. To prevent the network from over-smoothing

the normals, we group the normal directions into different bins and for each bin we assign a

different weight when computing the L2 error. This balance various normal directions in the loss

function.
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Table 3.2. The θ distribution of the normal vector in the dataset, where θ is the angle between
normal vector and z axis. To avoid the network from over-smoothing the normal map, we
group normal vectors into three bins according to θ . With probability Pi for bin i, its weight is
Wi = 0.7+1/10Pi.

Angle 0◦−10◦ 10◦−25◦ 25◦−90◦

Prob(Pi) 0.592 0.278 0.130
Weight(Wi) 0.869 1.060 1.469

Material Classification

The distribution of BRDF parameters is closely related to the surface material type.

However, training separate networks for different material types similar to [112] is expensive.

Also the size of the network grows linearly with the number of material types, which limits

utility. Instead, we propose a split-merge network with very little computational overhead.

Given the highest level of features extracted by the encoder, we send the feature to a

classifier to predict its material type. Then we evaluate the BRDF parameters for each material

type and use the classification results as (the output of softmax layer) weights. This averages

the prediction from different material types to obtain the final BRDF reconstruction results.

Suppose we have N channels for BRDF parameters and J material types. To output the BRDF

reconstruction for each type of material, we only modify the last convolutional layer of the

decoder so that the output channel will be J ×N instead of N. In practice, we set J to be 8, as

shown in Table 3.1.

The classifier is trained together with the encoder and decoder from scratch, with the

weights of each label set to be inversely proportional to the number of examples in Table 3.1 to

balance different material types in the loss function. The overall loss function of our network

with the classifier is

L = kaLa + knLn + krLr + krecLrec + kclsLcls, (3.2)
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where Lcls is cross entropy loss and kcls = 0.0005 to limit the gradient magnitude.

3.4.3 Designing DCRFs for Refinement

The prediction of our base network is quite reasonable. However, accuracy may further

be enhanced by post-processing through a DCRF (trained end-to-end).

Diffuse color refinement

For diffuse prediction, when capturing the image of specular materials, parts of the

surface might be saturated by specular highlight. This can sometimes lead to artifacts in the

diffuse color prediction since the network has to hallucinate the diffuse color from nearby pixels.

To remove such artifacts, we incorporate a densely connected continuous conditional random

field (DCRF) [171] to smooth the diffuse color prediction. Let Ai be the diffuse color prediction

of network at pixel i, pi be its position and Īi is the normalized diffuse RGB color of the input

image. We use the normalized color of the input image to remove the influence of light intensity

when measuring the similarity between two pixels. The energy function of the dense connected

CRF that is minimized over {A∗
i } for diffuse prediction is defined as:

N

∑
i=1

α
a
i (A

∗
i −Ai)

2 +
N

∑
i, j
(A∗

i −A∗
j)

2(
β

a
1 κ1(pi;p j)+β

a
2 κ2(pi, Īi;p j, Ī j)+β

a
3 κ3(pi,Ai;p j,A j)

)
.

Here κi are Gaussian smoothing kernels, while αa
i and {β a

i } are coefficients to balance the

contribution of unary and smoothness terms. Notice that we have a spatially varying αa
i to allow

different unary weights for different pixels. The intuition is that artifacts usually occur near the

center of images with specular highlights. For those pixels, we should have lower unary weights

so that the CRF learns to predict their diffuse color from nearby pixels.

Normal refinement

Once we have the refined diffuse color, we can use it to improve the prediction of

other BRDF parameters. To reduce the noise in normal prediction, we use a DCRF with two
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smoothness kernels. One is based on the pixel position while the other is a bilateral kernel based

on the position of the pixel and the gradient of the diffuse color. The intuition is that pixels

with similar diffuse color gradients often have similar normal directions. Let Ni be the normal

predicted by the network. The energy function for normal prediction is defined as

min
{ni}

:
N

∑
i=1

α
n(N∗

i −Ni)
2 +

N

∑
i, j
(N∗

i −N∗
j)

2(
β

n
1 κ1(pi;p j)+β

n
2 κ2(pi,∆A∗

i ;p j,∆A∗
j)

)

Roughness refinement

Since we use a collocated light source to illuminate the material, once we have the normal

and diffuse color predictions, we can use them to estimate the roughness term by either grid

search or using a gradient-based method. However, since the microfacet BRDF model is not

convex nor monotonic with respect to the roughness term, there is no guarantee that we can

find a global minimum. Also, due to noise from the normal and diffuse predictions, as well as

environment lighting, it is difficult to get an accurate roughness prediction using optimization

alone, especially when the glossiness in the image is not apparent. Therefore, we propose to

combine the output of the network and the optimization method to get a more accurate roughness

prediction. We use a DCRF with two unary terms, Ri and Ṙi, given by the network prediction

and the coarse-to-fine grid search method of [82], respectively:

min
{R∗

i }
:

N

∑
i=1

α
r
i0(R

∗
i − Ṙi)

2 +α
r
i1(R

∗
i −Ri)

2 +
N

∑
i, j
(R∗

i −R∗
j)

2(
β0κ0(pi;p j)+β1κ1(pi,A∗

i ;p j,A∗
j)

)

All DCRF coefficients are learned in an end-to-end manner using [171]. Here, we have

a different set of DCRF parameters for each material type to increase model capacity. During

both training and testing, the classifier output is used to average the parameters from different

material types, to determine the DCRF parameters.
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3.5 Experiments

In this section, we demonstrate our method and compare it to baselines on a wide range

of synthetic and real data.

Rendering synthetic training dataset

To create our synthetic data, we apply the SVBRDFs on planar surfaces and render

them using a GPU based renderer with the BRDF importance sampling suggested in [95]. We

choose a camera field of view of 43.35◦ to mimic typical mobile phone cameras. To better model

real-world lighting conditions, we render images under a combination of a dominant point light

(flash) and an environment map. We use the 49 environment maps used in [112], with random

rotations. We sample the light source position from a Gaussian distribution centered at the

camera to make the inference robust to differences in real-world mobile phones. We render linear

images, though clamped to (0,1) to mimic cameras with insufficient dynamic range. However,

we still wish to reconstruct the full dynamic range of the SVBRDF parameters. To aid in this,

we can render HDR images using in-our network rendering layer and compute reconstruction

error w.r.t HDR ground truth images. In practice, this leads to unstable gradients in training; we

mitigate this by applying a gamma of 2.2 and minor clamping to (0,1.5) when computing the

image reconstruction loss. We find that this, in combination with our L2 losses on the SVBRDF

parameters, allows us to hallucinate details from saturated images.

Training details

We use Adam optimizer [103] to train our network. We set β1 = 0.5 when training the

encoder and decoders and β1 = 0.9 when training the classifier. The initial learning rate is set

to be 10−4 for the encoder, 2×10−4 for the three decoders and 2×10−5 for the classifier. We

cut down the learning rate by half in every two epochs. Since we find that the diffuse color

and normal direction contribute much more to the final appearance, we first train their encoder-

decoders for 15 epochs, then we fix the encoder and train the roughness decoder separately for 8
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Figure 3.4. SVBRDF reconstruction results from our full method (clsCRF-pt in Table 3.3)
on the test set. We compare the ground truth parameters with our reconstructions as well as
renderings of these parameters under novel lighting. The accuracy of our renderings indicates
the accuracy of our method.

Figure 3.5. Materials estimated with our method and rendered under two environment lights and
three point lights (placed on a unit sphere at θ = 50◦ and various φ angles).

epochs. Next, we fix the network and train the parameters for the DCRFs, using Adam optimizer

to update their coefficients.
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Figure 3.6. Qualitative comparison of BRDF reconstruction results of different variants of our
network. The notation is the same as Table 3.3 and −env represents environment illumination.

3.5.1 Results on Synthetic Data

Qualitative results

Figure 3.4 shows results of our network on our synthetic test dataset. We can observe that

spatially varying surface normals, diffuse albedo and roughness are recovered at high quality,

which allows relighting under novel light source directions that are very different from the input.

To further demonstrate our BRDF reconstruction quality, in Figure 3.5, we show relighting results

under different environment maps and point lights at oblique angles. Note that our relighting

results closely match the ground truth even under different lighting conditions; this indicates the

accuracy of our reconstructions.

We next perform quantitative ablation studies to evaluate various components of our

network design and study comparisons to prior work.

Effects of material classifier and DCRF

The ablation study summarized in Table 3.3 shows that adding the material classifier

reduces the L2 error for SVBRDF and normal estimation, as well as rendering error. This

validates the intuition that the network can exploit the correlation between BRDF parameters
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Table 3.3. Left to right: basic encoder-decoder, adding material classifier, adding DCRF and a
pure material classifier. −pt indicates training and testing with dominant point and environment
lighting.

Method basic-pt cls-pt clsCRF-pt clsOnly-pt
Albedo (e−3) 7.78 7.58 7.42
Normal (e−2) 1.55 1.52 1.50
Rough (e−2) 8.75 8.55 8.53
Classify (%) 73.65 73.65 54.96

Table 3.4. BRDF reconstruction accuracy for different material types in our test set. Albedo-N
is normalized diffuse albedo as in [112], that is, the average norm of each pixel will be 0.5.

Albedo-N Normals Rough
(e−4) (e−3) (e−2)

[1
12

]

metal 91.8 27.2 –
wood 35.9 11.2 –
plastic 12.5 17.6 –
Total 56.1 19.7 –

c
l
s

-e
n
v metal 54.9 25.2 13.4

wood 13.7 11.1 19.5
plastic 7.96 14.2 25.3
Total 30.9 18.1 18.0

c
l
s

-p
t

metal 21.7 15.1 4.06
wood 3.53 8.75 4.40
plastic 1.64 9.10 7.24
Total 11.3 11.7 4.83

and material type to produce better estimates. We also observe that training the classifier

together with the BRDF reconstruction network results in a material classification error of

73.65%, which significantly improves over just our pure material classification network that

achieves 54.96%. This indicates that features trained for BRDF estimation are also useful for

material recognition. In our experiments, incorporating the classifier without using its output

to fuse BRDF reconstruction results does not improve BRDF estimation. Figure 3.6 shows the

reconstruction result on a sample where the classifier and the DCRF qualitatively improve the

BRDF estimation, especially for the diffuse albedo.
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Figure 3.7. The first two inputs rendered under different environment maps are very different.
Thus, the normals recovered using [112] are inaccurate. Our method uses point illumination
(third input) which alleviates the problem, and produces better normals.

Figure 3.8. SVBRDF estimation errors with respect to relative intensities of environment against
point light ranging from 0 to 0.8.

Effect of acquisition under point illumination

Next we evaluate the effect of using point illumination during acquisition. For this, we

train and test two variants of our full network – one on images rendered under only environment

illumination (-env) and another on images illuminated by a point light besides environment

illumination (-pt). Results are in Table 3.4 with qualitative visualizations in Figure 3.6. The

model from [112] in Table 3.4, which is trained for environment lighting, performs slightly

worse than our environment lighting network cls-env. But our network trained and evaluated

on point and environment lighting, cls-pt, easily outperforms both. We argue this is because a

collocated point light creates more consistent illumination across training and test images, while

also capturing higher frequency information. Figure 3.7 illustrates this: the appearance of the

same material under different environment lighting can significantly vary and the network has to

be invariant to this, limiting reconstruction quality.
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Figure 3.9. BRDF reconstruction results on real data. We tried different mobile devices to
capture raw images using the Adobe LightRoom Mobile app. The input images in were captured
using a Huawei P9 (first three rows), Google Tango (fourth row) and iPhone 6s (fifth row), all
with a handheld mobile phone where the z-axis of camera was only approximately perpendicular
to the sample surface.

Relative effects of flash and environment light intensities

In Figure 3.8, we train and test on a range of relative flash intensities. Note that as relative

flash intensity decreases, errors increase, which justifies our use of flash light. Using flash and

no-flash pairs can help remove environment lighting, but needs alignment of two images, which

limits applicability.

3.5.2 Results on Real Data

Acquisition setup

To verify the generalizabity of our method to real data, we show results on real images

captured with different mobile devices in both indoor and outdoor environments. We capture

linear RAW images (with potentially clipped highlights) with the flash enabled, using the Adobe

Lightroom Mobile app. The mobile phones were hand-held and the optical axis of the camera

was only approximately perpendicular to the surfaces (see Figure 3.1).
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Figure 3.10. A failure case, due to incorrect material classification into metal, which causes the
specularity to be over-smoothed.

Qualitative results with different mobile phones

Figure 3.9 presents SVBRDF and normal estimation results for real images captured with

three different mobile devices: Huawei P9, Google Tango and iPhone 6s. We observe that even

with a single image, our network successfully predicts the SVBRDF and normals, with images

rendered using the predicted parameters appear very similar to the input. Also, the exact same

network generalizes well to different mobile devices, which shows that our data augmentation

successfully helps the network factor out variations across devices. For some materials with

specular highlights, the network can hallucinate information lost due to saturation. The network

can also reconstruct reasonable normals even for complex instances.

A failure case

In Figure 3.10, we show a failure case. Here, the material is misclassified as metal which

causes the specular highlight in the center of image to be over-suppressed. In future work, we

may address this with more robust material classification, potentially exploiting datasets like

[19].

3.5.3 Further Comparisons with Prior Works

Comparison with two-shot BRDF method [6]

The two-shot method of [6] can only handle images with stationary texture while our

method can reconstruct arbitrarily varying SVBRDFs. For a meaningful comparison, in Figure

3.12, we compare our method with [6] on a rendered stationary texture. We can see that even

for this restrictive material type, the normal maps reconstructed by the two methods are quite

similar, but the diffuse map reconstructed by our method is closer to ground truth. While [6]
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Figure 3.11. Comparison of normal maps using our method and [112], with photometric stereo
as reference. Even with a lightweight acquisition system, our network predicts high quality
normal maps.

Figure 3.12. Comparison with [6], which requires two images, assumes stationary textures and
takes over 6 hours (with GPU acceleration), yet our result is more accurate.

takes about 6 hours to reconstruct a patch of size 192×192, our method requires 2.4 seconds.

The aligned flash and no-flash pair for [6] is not trivial to acquire (especially on mobile cameras

with effects like rolling shutter), making our single image BRDF estimation more practical.

Comparison of normals with environment light and photometric stereo

In Figure 3.11, we compare our normal map and the results from a) [112] (from a single

captured under environment lighting) and b) photometric stereo [81]. We observe that the

normals reconstructed by our method are of higher quality than [112], with details comparable

or sharper than photometric stereo.
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3.6 Conclusion

We have proposed a framework for acquiring spatially-varying BRDF using a single

mobile phone image. Our solution uses a CNN whose architecture is specifically designed

to reflect various physical insights into the problem of BRDF estimation. We propose to use

a dataset that is larger and better-suited to material estimation as compared to prior ones, as

well as simple acquisition settings that are nevertheless effective for SVBRDF estimation. Our

network generalizes very well to real data, obtaining high-quality results in unconstrained test

environments. A key goal for our work is to take accurate material estimation from expensive and

controlled lab setups, into the hands of non-expert users with consumer devices, thereby opening

the doors to new applications. In the next chapter, we will take the next step of reconstruction

SVBRDF with unknown shapes.

Chapter 3 is based on the material as it appears in European Conference on Computer

Vision (ECCV), 2018 (“Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone

Image”, Zhengqin Li, Kalyan Sunkavalli, Manmohan Chandraker). The dissertation author was

the primary investigator and author of this paper.
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Chapter 4

Opaque Object Shape and SVBRDF Re-
construction from a Single Image

4.1 Introduction

Estimating the shape and reflectance properties of an object using a single image acquired

“in-the-wild” is a long-standing challenge in computer vision and graphics, with applications

ranging from 3D design to image editing to augmented reality. But the inherent ambiguity

of the problem, whereby different combinations of shape, material and illumination might

result in similar appearances, poses a significant hurdle. Consequently, early approaches have

attempted to solve restricted sub-problems by imposing domain-specific priors on shape and/or

reflectance [25, 13, 155]. Even with recent advances through deep learning based data-driven

priors for inverse rendering problems, disentangling the complex factors of variation represented

by arbitrary shape and spatially-varying bidirectional reflectance distribution function (SVBRDF)

has, as yet, remained unsolved.

In this chapter, we take a step towards that goal by proposing a physically-motivated

deep learning framework to estimate shape — represented as depth and surface normals — and

SVBRDF — represented as diffuse albedo and specular roughness of the microfacet BRDF model

(Eq. (2.6)) — from a single mobile phone image captured under largely uncontrolled conditions.

This represents a significant advance over Chapter 3 that considers SVBRDF estimation from

near-planar samples, or other recent works that estimate shape for Lambertian or homogeneous
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(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 4.1. We propose a novel physically-motivated cascaded CNN architecture for recovering
arbitrary shape and spatially-varying BRDF from a single mobile phone image. (a) Input image
in unconstrained indoor environment with flash enabled. (b) Relighting output using estimated
shape and SVBRDF. (c) Rendering output in novel illumination. (d–g) Diffuse albedo, roughness,
depth and surface normals estimated using our framework. (h) Normals estimated using a single-
stage network. Our cascade design leads to accurate outputs through global reasoning, iterative
refinement and handling of global illumination.

materials [121, 64, 13]. The steep challenge of this goal requires a holistic approach that

combines prudent image acquisition, a photorealistic large-scale synthetic training dataset, and

novel physically-motivated networks that can efficiently handle this increased complexity.

In Chapter 3, we have demonstrated that a collocated source-sensor setup leads to

advantages for material estimation, since higher frequencies for specular components are easily

observed and distractors such as shadows are eliminated. Therefore, we use a mobile phone

for imaging and mimic this setup by using the flash as illumination. Note that our images

are captured under uncontrolled environment illumination, and not a dark room. Our only

assumption is that the flash illumination is dominant, which is true for most scenarios.

Previous inverse rendering methods have utilized 3D shape repositories with homoge-

neous materials [121, 170, 186] or large-scale SVBRDFs with near-planar geometries [116, 54].

While we utilize the SVBRDF dataset in Chapter 3, meaningfully applying them to 3D models

in a shape dataset is non-trivial. Moreover, category-specific biases in repositories such as

ShapeNet [36] might mitigate the generalization ability of our learned model. To overcome these

limitations, we procedurally generate random shapes by combining basic shape primitives on

which the complex SVBRDFs from our dataset are mapped. We generate a large-scale dataset of

216,000 images with global illumination that reflects the distribution of flash-illuminated images

under an environment map.
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Besides more descriptive datasets, disambiguating shape and spatially-varying material

requires novel network architectures that can reason about appearance at multiple scales, for

example, to understand both local shading and non-local shadowing and lighting variations,

especially in the case of unknown, complex geometry. We demonstrate that this can be achieved

through a cascade design; each stage of the cascade predicts shape and SVBRDF parameters,

but these predictions and the error between images rendered with these estimates and the input

image are passed as inputs to subsequent stages. This allows the network to imbibe this global

feedback on the rendering error, while performing iterative refinement through the stages. In

experiments, we demonstrate through quantitative analysis and qualitative visualizations that the

cascade structure is crucial for accurate shape and SVBRDF estimation.

The forward rendering model is well-understood in computer graphics, and can be used to

aid the inverse problem by using a fixed, in-network rendering layer to render the predicted shape

and material parameters and impose a “reconstruction” loss during training, as shown in Chapter

3. However, tractable training requires efficient rendering layers, while the in-network rendering

module in Chapter 3 only considers appearance under direct illumination. This is sufficient

for planar surface but insufficient when dealing with arbitrary shapes. An important technical

innovation of our network is a global illumination (GI) rendering layer that also accounts for

interreflections.1 While it is challenging to directly predict the entire indirect component of an

input image, we posit that predicting the bounces of global illumination using a CNN is easier

and maintains differentiability. Thus, our GI rendering is implemented as a physically-motivated

cascade, where each stage predicts one subsequent bounce of global illumination. As a result,

besides SVBRDF and shape, the individual bounces of global illumination are auxiliary outputs

of our framework. A GI rendering layer also allows us to isolate the reconstruction error better,

thereby providing more useful feedback to the cascade structure.

In summary, we make the following contributions:

1While it is possible to also consider shadows, global illumination is mainly manifested as interreflections in our
inputs due to the collocated setup.
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• The first approach to simultaneously recover unknown shape and SVBRDF using a single

mobile phone image.

• A new large-scale dataset of images rendered with complex shapes and spatially-varying

BRDF.

• A novel cascaded network architecture that allows for global reasoning and iterative refinement.

• A novel, physically-motivated global illumination rendering layer that provides more accurate

reconstructions.

4.2 Related Work

Inverse rendering — the problem of reconstructing shape, reflectance, and lighting from

a set of images — is an extensively studied problem in computer vision and graphics. Traditional

approaches to this problem often rely on carefully designed acquisition systems to capture

multiple images under highly calibrated conditions [53]. Significant research has also been

done on the subproblems of the inverse rendering problem: e.g., photometric stereo methods

that reconstruct shape assuming known reflectance and lighting [213], and BRDF acquisition

methods that reconstruct material reflectance assuming known shape and lighting [130, 132].

While recent works have attempted to relax these assumptions and enable inverse rendering

in the “wild”, to the best of our knowledge, this paper is the first to estimate both complex

shape and spatially-varying non-Lambertian reflectance from a single image captured under

largely uncontrolled settings. In this section, we focus on work that addresses shape and material

estimation from sparse images.

Shape and material estimation.

Shape from shading methods reconstruct shape from single images captured under

calibrated illumination, though they usually assume Lambertian reflectance [91]. This has been

extended to arbitrary shape and reflectance under known natural illumination [155]. Shape and

reflectance can also be estimated from multiple images by using differential motion cues [31],
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light field inputs [207, 113], or BRDF dictionaries [69, 82]. Recent works mitigate the challenge

of shape recovery by using depth maps from a Kinect sensor as input for BRDF estimation [104,

215]. Other methods assume near-planar samples and use physics-based optimization to acquire

spatially-varying BRDFs from sparse images captured under collocated illumination [6, 82,

172]. Yu et al. [233] assume known geometry to recover scene reflectance by modeling global

illumination. Barron and Malik [13] recover shape and spatially-varying diffuse reflectance

from a single image under unknown illumination by combining an inverse rendering formulation

with hand-crafted priors on shape, reflectance and lighting. In contrast to these works, our deep

learning approach recovers high-quality shape and spatially-varying reflectance from a single

RGB image by combining a rendering layer with purely data-driven priors.

Deep learning for inverse rendering.

Recently, deep learning-based approaches have demonstrated promising results for

several inverse rendering subproblems including estimating scene geometry [57, 11], material

classes [19], illumination [78, 61, 64], and reflectance maps [170]. In contrast, our work tackles

the joint problem of estimating shape and spatially-varying reflectance from just a single image.

In the context of reflectance capture, Aittala et al. [5] propose a neural style transfer

approach to acquire stochastic SVBRDFs from images of near-planar samples under flash

illumination. Similarly, Li et al. [112] acquire SVBRDFs from near-planar samples imaged under

environment lighting, using a self-augmentation method to overcome the limitation of learning

from a small dataset. Liu et al. [121] propose a CNN-based method, that incorporates an in-

network rendering layer, to reconstruct a homegenous BRDF and shape (from one of four possible

categories) from a single image under unknown environment illumination. [87] use deep networks

to decompose images into intrinsic components like diffuse albedo, irradiance, specular and

ambient occlusion, which are recombined to specify a render loss. We use a similar render loss,

though our decomposition is physically-based. Meka et al. [136] recover homogeneous BRDF

parameters of an arbitrary shape under environment lighting, and Chapter 3 and Deschaintre
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et al. [54] leverage in-network rendering layers to reconstruct SVBRDFs from near-planar

samples captured under flash illumination. Our work can be considered a generalization of

all these methods — we handle a broader range of SVBRDFs and arbitrary shapes. This not

only places greater demands on our network, but also necessitates the consideration of global

illumination, leading to two key aspects of our architecture. First, we progressively refine shape

and SVBRDF estimates through a novel cascade design. Second, while previous in-network

rendering layers [121, 116, 54] only consider direct illumination, our global rendering layer

accounts for indirect illumination too. This not only matches our inputs better, but is also the

more physically accurate choice for real scenes with complex shapes. Further, the rendering

error provided as input to our cascade stages improves estimation results, which is also possible

only with a rendering layer that computes global illumination. Together, these components leads

to state-of-the-art results on a significantly broader range of inputs.

Rendering layers in deep networks

Differentiable rendering layers have been used to aid in the task of learning inverse

rendering for problems like face reconstruction [187, 200, 182] and material capture [121, 116,

54]. However, these methods make simplifying assumptions — usually Lambertian materials

under distant direct lighting or planar surface with collocated point lighting — to make these

layers tractable. We also use rendering to introduce information from varied lighting conditions,

but in contrast to the above works, our rendering accounts for global illumination. Since

analytical rendering of global illumination is challenging, we rely on network modules to predict

bounces of global illumination. The idea of using a network to predict global illumination has

also been adopted by [142], but no prior method has done this for inverse problems. Further,

we use a physically meaningful network structure that divides global illumination into several

bounces instead of directly predicting indirect lighting, which may lead to better and more

interpretable results. A deep network is also used by [129] to compensate for global illumination

in time-of-flight measurements, but they use a black box network for depth prediction while
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we model global illumination explicitly. There is machinery to compensate for bounces in

optimization-based methods [68], but they do not render in real-time and there is no obvious

way to back-propagate gradients, making them unsuitable for our framework. We train a global

illumination CNN to predict multiple bounces using data generated using a novel simulation-

based strategy that renders random shapes with a large-scale SVBRDF dataset. The use of

random shapes is important, since we aim to recover arbitrary geometry, unlike previous methods

that might incorporate semantic category-level priors [170, 64, 121, 136, 36]. Besides higher

accuracy in SVBRDF estimation, a collateral benefit of our novel rendering layer is that it

can predict individual bounces of global illumination, in the same forward pass. These can be

subsequently used for scene analysis tasks [145, 153].

Cascade networks

For prediction tasks that demand sub-pixel accuracy, prior works have considered cascade

networks. For instance, convolutional pose machines [210] are devised to obtain large receptive

fields for localizing human body joints, while other architectures such as deep pose [201] and

stacked hourglass networks [147] also use cascades for multiscale refinement. Improved optical

flow estimates are obtained by FlowNet 2.0 [86] using cascaded FlowNet modules that accept

stage-wise brightness error as input. Similar to the above, we show that the cascade structure is

effective for SVBRDF estimation. Uniquely, we demonstrate that our cascade is sufficient to

recover high-quality shape and SVBRDF, while our global illumination prediction that enables

rendering error as input to the cascade stages also yields advantages for SVBRDF estimation.

4.3 Method

The input to our method is a single image of an object (with a mask) captured under (dom-

inant) flash and environment illumination. Reconstructing spatially-varying BRDF (SVBRDF)

and shape, in such uncontrolled settings, is an extremely ill-posed problem. Inspired by the

recent success of deep learning methods in computer vision and computer graphics, we handle
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Figure 4.2. Right: Overall structure of our physically-motivated deep learning framework.
Different colors specify different functions of the network (blue for initial estimation, green for
refinement and purple for global illumination prediction). We use a cascade of encoder-decoder
networks for global reasoning and iterative refinement. Different cascade levels do not share
parameters since the input statistics at each stage and the refinements needed are different. Each
cascade stage receives error feedback through the rendered output of the previous stage. Since
we handle arbitrary shapes, our rendering layer models individual bounces of global illumination.
Left: Details of hyperparameters in our physically-motivated network design. Here R represents
a residual block [76]. cX1−kX2−sX3−dX4 represents a conv/deconv layer of output channel
X1, kernel size X2, stride X3 and dilation X4. Our encoder has receptive fields large enough to
model global light illumination, skip links are added since we aim to recover fine details and
large kernels are used for global illumination prediction.

this problem by training a physically-motivated CNN specifically designed with intuition from

physics-based methods. In this section, we will describe each component of our network. The

overall framework is shown in Figure 4.2.

4.3.1 Basic Architecture

Our basic network architecture consists of a single encoder and four decoders for different

shape and SVBRDF parameters: diffuse albedo (A), specular roughness (R), surface normal

(N), and depth (D).2 For simplicity, we start by considering the input to be an image, Ip, of an

object illuminated by a dominant point light source collocated with the camera (we consider

additional environment illumination in Section 4.3.3). We manually create a mask, M, that we

2A specular albedo may be considered too, but we found it sufficient to consider just roughness to mimic most
real-world appearances.
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stack with the image to form a four channel input for the encoder. A light source collocated with

the camera has the advantages of removing cast shadows, simplifying the lighting conditions

and easing observation of high frequency specularities, which are crucial for solving the inverse

rendering problem. In our experiments, such input data is easily acquired using a mobile phone

with the flash light enabled. Similar to Chapter 3, our four decoders share features extracted

from the same encoder. The intuition behind this choice is that different shape and SVBRDF

parameters are closely correlated, thus, sharing features can greatly reduce the size of the network

and alleviate over-fitting. Let InverseNet(·) be the basic network architecture consisting of

the encoder-decoder block (shown in blue in Figure 4.2). Then the initial predicted shape and

SVBRDF estimates are given by:

A,N,R,D = InverseNet(Ip,M). (4.1)

4.3.2 Global Illumination Rendering Layer

Prior works on material capture or photometric stereo usually assume that the influence of

inter-reflections can be neglected, or consider near-planar samples where its effects are not strong,

as discussed in Chapter 3. However, that may not be the case for our setup, since we consider

complex shape with potentially glossy reflectance. Failing to model global illumination for

our problem can result in color bleeding and flattened normal artifacts. We initially considered

in-network global illumination rendering during training, but found it time-consuming and not

feasible for a large dataset. Instead we propose using CNNs to approximate global illumination.

CNNs can capture the highly non-linear operations that global illumination manifests. In addition,

they have the advantage of being differentiable and fast to evaluate.

In particular, we use a series of CNNs, each of which predict individual bounces of the

rendered image. Let GINetn be the n-bounce CNN. This network is trained to takes the (n−1)-

bounce image under point light illumination, Ip
n−1, and the shape and SVBRDF parameters, and
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render the n-bounce image, Ip
n , as:

Ip
n = GINetn(Ip

n−1,M,A,N,R,D) (4.2)

We use an analytical rendering layer to compute the direct illumination, i.e., first bounce image,

Ĩp
1 , given the predicted shape and SVBRDF parameters. Then we use two CNNs, GINet2(·) and

GINet3(·), to predict the second and third bounces, Ip
2 and Ip

3 respectively. The output, Ip
g , of

our full global illumination rendering layer (shown in purple in Figure 4.2) sums all the bounce

images as:

Ip
2 = GINet2(I

p
1 ,M,A,N,R,D),

Ip
3 = GINet3(I

p
2 ,M,A,N,R,D),

Ip
g = Ip

1 + Ip
2 + Ip

3 . (4.3)

As illustrated in Figure 4.3, most of the image intensity is contained within three bounces,

and so we only predict these, ignoring subsequent bounces. Also in Figure 4.3, we show second

and the third bounce images predicted by our network. We observe that even for objects with

very concave shape and highly glossy material, we can still generate rendering outputs that

closely match the ground truth.

Note that a CNN-based approach like ours only approximates true global illumination. It

operates in image space and does not explicitly model interreflections from surface points that are

not visible to the camera. However, our training data does include interreflections from invisible

surfaces and our collocated setup causes interreflections from visible regions to dominate. In

practice, we have found the network to be sufficiently accurate for inverse rendering. Compared

with the traditional radiosity method [47], our network-based global illumination prediction has

the advantage of being fast, differentiable and able to approximate reflections from invisible

surfaces. However, it is an approximation, since we do not have precise geometry, form factors

60



1st 2nd 3rd others
Energy ratio 95.83% 3.08% 0.89% 0.20 %

Figure 4.3. Global illumination prediction results. From left to the right are input images, the
predicted second bounce images, the ground truth second bounce images, the predicted third
bounce images and the ground truth third bounce images. Even for complex shapes with glossy
material, the predictions of our network are close to the ground truth. On the bottom, we show
the ratio between the average energy of separate bounces and the images illuminated by a point
light source across the test dataset.

or material (albedo) properties, as in conventional radiosity algorithms.

4.3.3 Environment Map Prediction

Although we use a dominant flash light, our images are also illuminated by unknown

environment illumination. This environment illumination can significantly affect the appearance

of globally illuminated complex shapes. This requires us to estimate the environment illumination

and account for it in our rendering networks. To do so, we approximate environment lighting

with low-frequency spherical harmonics (SH), and add another branch to our encoder-decoder

structure to predict the first nine SH coefficents for each color channel. We observe that

the background image provides important context information for the network to determine

environment lighting. So, unlike the point light source case, we add the image with background

as the third image to the input. Let E be environment lighting, Ipe be the image of the object

under both point and environmental lighting and M⊙ Ipe be its masked version. With some
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abuse of notation, now our shape and SVBRDF parameters are computed using

A,N,R,D,E = InverseNet(Ipe,M⊙ Ipe,M). (4.4)

Since now the input image is captured under environment illumination and the flash light source,

we modify our rendering layer to account for this. We follow the method of [167] to render an

image of the object, Ie, using the estimated spherical harmonics illumination. This only considers

the Lambertian shading and ignores high-frequency specular effects. In practice, this is sufficient

because most high-frequency effects are observed under flash illumination, and our experiments

show that this simple approximation suffices for achieving accurate BRDF reconstruction. Now

the output of the global illumination rendering layer (in place of Equation 4.3) is given by:

Ipe
g = Ip

1 + Ip
2 + Ip

3 + Ie. (4.5)

4.3.4 Cascade Structure

While a single encoder-decoder leads to good results for SVBRDF estimation with near-

planar samples in Chapter 3, it does not suffice when considering arbitrary shapes. This can be

attributed to the increased complexity of the problem and a need for more global reasoning. We

propose a cascade structure that achieves these aims by using iterative refinement and feedback

to allow the network to reason about differences between the image rendered with the predicted

parameters and the input image.

Let CascadeNetn be stage n of the cascade network. Each stage has the same single

architecture as InverseNet. Let the shape, reflectance and lighting parameters of cascade stage

n be An, Nn, Rn, Dn and En, and the result of rendering these parameters (using the global

illumination rendering network) be Ipe
g,n. Each cascade stage refines the predictions of the
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previous stage as:

Errn−1 = M⊙ Ipe − Ipe
g,n−1 (4.6)

An,Nn,Rn,Dn,En = CascadeNetn(Ipe,M⊙ Ipe,M,

An−1,Nn−1,Rn−1,Dn−1,Errn−1) (4.7)

The inputs to each cascade stage are the input image, the shape, SVBRDF, and lighting

predictions from the previous stage, and the rendering error associated with these previous

predictions (with respect to the input image). This allows each cascade stage to refine the

predictions by reasoning about the rendering error from the previous stage. Note that this is

possible only because of our network design that models global illumination and environment

lighting.

4.3.5 Training Details

Training Data:

To the best of our knowledge, there is no existing dataset of objects with arbitrary shape

rendered with complex SVBDRF. Complex SVBRDF datasets used in Chapter 3 assume near-

planar surfaces, and rich shape datasets like ShapeNet [36] have simple homogeneous BRDFs.

Thus, we generate our own synthetic dataset by procedurally adding shapes to build a complex

scene. Similar to [226], we first generate primitive shapes (cube, ellipsoid, cylinder, box and

L-shape) and then add a randomly generated height map to make them more complex and diverse.

We build scenes by randomly sampling 1 to 5 shapes and combining them. We create 3600

scenes, using 3000 for training and 600 for testing.

We use SVBDRFs from the Adobe Stock material dataset3, which contains 694 complex

SVBRDFs spanning a large range of material types. Each SVBRDF is comprised of 4K texture

maps for diffuse albedo, specular roughness, and surface normals. For data augmentation, we

3https://stock.adobe.com/3d-assets
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randomly crop, rotate and scale the texture maps to create different size patches and then resize

all the patches to the same size of 256×256. We create 270 patches for each material and use

these patches as the materials to render dataset. We use the physically motivated microfacet

BRDF model defined in (2.6). We remove the 6 transparent materials and use the remaining 688

materials. We classify the materials into 8 categories according to their reflectance properties as

shown in Figure 3.2 and proportionally sample 588 materials for training and 100 for testing. For

environment maps, we use the Laval Indoor HDR dataset [61] containing 2144 environmental

maps of indoor scenes, of which we use 1500 to render the training dataset and 644 for the test

dataset.

We use Optix for GPU-accelerated rendering, based on path tracing with multiple impor-

tance sampling. We render with 400 samples per-pixel for point light source illumination and

625 samples per-pixel when the environment map is also included. The average rendering time

is less than 2 seconds. For each scene, we sample 12 viewing directions, 5 groups of different

SVBDRFs and one environment map. When rendered with both point and environment lighting,

we scale the environment map by 0.5, to keep the average ratio between image intensities ren-

dered with only environment map and with point light to be 0.09285. This matches the statistics

of images captured using mobile phones in real indoor environments.

Network Design:

Our design makes several choices to reflect the physical structure of the problem. We use

the U-net architecture [176] for InverseNet. To model the global fall-off of the point light source,

it is necessary to have large receptive fields. Thus, each encoder has 6 convolutional layers with

stride 2, so that each pixel of the output can be influenced by the whole image. For the SVBDRF

parameters, we use transposed convolutions for decoding and add skip links to recover greater

details. For environment map estimation, we pass the highest level of feature extracted from the

encoder through two fully connected layers to regress the 9 spherical harmonics coefficients.

Each CascadeNet stage uses 6 residual blocks — 3 blocks for the encoder and 3 separate blocks
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for each decoder. We use dilated convolutions with a factor of 2 in the residual block to increase

the receptive field. We feed environment lighting predictions into the next cascade stage by

passing the nine SH coefficients through a fully connected layer and concatenate them with the

feature extracted from the encoder. We also use the U-net structure with skip-links for GINet.

To predict global illumination, the network must capture long range dependencies. Thus, we use

a convolutional layer with large kernel of size 6, combined with dilation by a factor of 2. The

network architecture of each component is shown on the right side of Figure 4.2.

Loss function:

We have the same loss function for both InverseNet and each CascadeNet stage. For

diffuse albedo, normal, roughness and environment illumination SH coefficients, we use the L2

loss for supervision. Since the range of depths is larger than that of other BRDF parameters, we

use an inverse transformation to project the depth map into a fixed range. Let D̃i be the initial

output of depth prediction network of pixel i; the final depth Di is given by

Di =
1

σ · (D̃i +1)+ ε
. (4.8)

We set σ = 0.4 and ε = 0.25, and use L2 loss to supervise Di. Finally, we add a reconstruction

loss based on the L2 distance between the image rendered with predicted and ground truth

parameters. Let La, Ln, Lr, Ld , Lenv and Lrec be the L2 losses for diffuse albedo, normal,

roughness, depth, environment map and image reconstruction, respectively. The loss function of

our network is:

L = kaLa + knLn + krLr + kdLd + kenvLenv + krecLrec, (4.9)

where ka = kn = krec = 1, kr = kd = 0.5 and kenv = 0.1 are parameters chosen empirically.
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Training Strategies:

Training multiple cascade structures is difficult since the enhanced network depth may

lead to vanishing gradients and covariate shift, preventing convergence to a good local minimum.

Further, batch sizes will need to be small when training all stages together, which can cause

instability. Thus, instead of training the whole network end-to-end, we sequentially train each

stage of the cascade. This allow us to use a relatively large batch size of 16. We use Adam

optimizer, with a learning rate of 10−4 for the encoder and 4× 10−4 for the decoders. We

decrease the learning rate by half after every two epochs. The three stages are trained for

15, 8 and 6 epochs, respectively. We use two CascadeNet stages and train InverseNet and

CascadeNet1 with 2500 shapes and add 500 shapes to train CascadeNet2.

GINet is trained prior to the BRDF prediction network, then held fixed and only used

for the rendering layer when training the network for shape and SVBRDF estimation. We use

Optix to render images with separate bounces and use them for direct supervision. We train for

15 epochs, with an initial learning rate of 2×10−4 and reduce it by half every two epochs.

4.4 Experiments

We first demonstrate the effectiveness of each design choice in our network architecture

through detailed comparisons on both synthetic and real datasets. Next, we compare with

previous methods for shape and material estimation to highlight the highly accurate shape and

SVBRDF recovered by our framework. The accompanying video demonstrates our high-quality

joint shape and material reconstruction through photorealistic editing applications, including

relighting and novel view synthesis.

Ablation study on synthetic data

We first justify the necessity of rendering a novel large-scale dataset with global illu-

mination for shape and SVBRDF estimation. We train InverseNet on images rendered with

direct illumination and test on images with global illumination. Column Im
p
d−C0 (trained on
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Figure 4.4. Comparison of SVBRDF and depth outputs of two networks, trained on directly
illuminated (top) and globally illuminated images (middle), when evaluated on an input with
global illumination. Not considering indirect lighting during training leads to flatter normals and
brighter albedo.

Table 4.1. Quantitative comparison on images rendered only with point light. Impd refers to input
images rendered with direct lighting only, while Impg means the input images are rendered with
global illumination.

Im
p
d−C0 Im

p
g−C0

Albedo(10−2) 5.911 5.703
Normal(10−2) 4.814 4.475
Roughness(10−1) 1.974 1.966
Depth(10−1) 1.842 1.772

images with direct point illumination with no cascade. ) in Table 4.1 reports the obtained errors,

which are clearly larger than those in column Im
p
g−C0 for the same network trained on images

with point lighting and global illumination. Thus, global illumination has a significant impact

on depth and SVBRDF estimation. The qualitative comparison in Figure 4.4 shows that the

network trained with direct lighting only predicts brighter diffuse albedo and flattened normals,

when evaluated on images with indirect lighting. This also matches intuition on the behavior of

inter-reflections [144].

Next we demonstrate that context information is important for the network to reconstruct
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Figure 4.5. For an input image with strong indirect lighting (top left), a network trained without
global illumination for the rendering layer (second column) retains more color bleeding artifacts
in the estimated diffuse albedo, than one trained with global illumination (third column). The
bottom left figure shows the net global illumination estimated by the final network.

shape and BRDF under environment lighting. We train two variants of our basic network, one

with masked image input, Impeg −C0, and the other with both masked and original image as

input, Impeg −bg−C0. Quantitative comparisons in the first two columns of Table 4.2 show that

predictions for all BRDF parameters improve when background is included.

To test the effectiveness of cascade structure, we first add one layer of cascade to our basic

network. We try two variants of cascade network. For the black-box cascade (C1), we stack the

input image and the predicted BRDF parameters and send them to the next stage of the cascade.

For the cascade network with error feedback (C1Er), we also send an error map as input by

comparing the output of our global illumination rendering layer with the input. The quantitative

numbers (third and fourth column of Table 4.2) suggest that having the error feedback improves

BRDF reconstruction. We then add another cascade stage with error feedback, which yields

even more accurate BRDF estimation (C2Er) that we deem the final output. Figure 4.9 shows the

visual quality of BRDF estimation from different stages of the cascade network. We observe that

for both synthetic and real data, the cascade reduces noise and artifacts. The final rendered result

using the BRDF parameters predicted by the second level of the cascade is very similar to the

input image, as shown in Figure 4.9 using both the environment map estimated by the network

and a novel environment map.
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Table 4.2. Quantitative comparisons L2 errors illustrating the influence of various network
choices. All input images Impeg here are illuminated by both point light source and environmental
lighting pe and rendered with global illumination g. bg means the images without masking the
background are added as an input. Cn shows the level of cascade refinement, where C0 means
we use our basic InverseNet without any refinement. Er behind Cn means we also send the
error maps by comparing the images rendered with the estimated BRDFs and the inputs to the
cascade refinement networks. The subscript NoE and NoG in the last two columns means that
when computing the error maps, we do not consider the influence of environmental lighting
and global illumination respectively. Here, Impeg −bg−C2Er is the error obtained with our final
two-cascade architecture with global illumination and error feedback.

Im
pe
g − Im

pe
g − Im

pe
g − Im

pe
g − Im

pe
g − Im

pe
g − Im

pe
g −

C0 bg−C0 bg−C1 bg−C1Er bg−C2Er C2ErNoE bg−C2ErNoG

Albedo(10−2) 6.089 5.670 5.150 5.132 4.868 4.900 4.880
Normal(10−2) 4.727 4.580 3.929 3.907 3.822 3.830 3.822
Roughness(10−1) 2.207 2.064 2.004 2.011 1.943 1.948 1.947
Depth(10−2) 1.945 1.871 1.631 1.624 1.505 1.512 1.511
Bounce 1(10−3) 3.526 3.291 2.190 2.046 1.637 1.643 1.643
Bounce 2(10−4) 2.88 2.76 2.47 2.47 2.45 2.45 2.46
Bounce 3(10−5) 6.6 6.4 5.9 5.9 . 5.8 5.8 5.8

Next, we analyze the effect of the global illumination rendering network. We train

two new variants of our global illumination rendering layer for the second cascade stage. For

Im
pe
g −bg−C2ErNoG, the rendering layer does not consider global illumination so that the error

feedback is computed by subtracting the sum of Ĩp
1 and Ĩe from the input M⊙ Ipe, i.e., Ipe

n =

Ip
1,n+ Ie

n. Similarly, for Impeg −bg−C2ErNoE, we remove the environmental map component of the

global illumination rendering layer. The error feedback for the cascade network is now computed

using Ipe
n = Ip

1,n + Ip
2,n + Ip

3,n. Table 4.2 shows that our full version of rendering layer performs

the best. The differences are measurable but subtle, since the remaining impact of environment

lighting and global illumination for the second stage is small. To better understand the behavior,

we show a qualitative example with global illumination in Figure 4.5. We observe that the global

illumination rendering layer alleviates color bleeding artifacts.

69



Input Di�use albedo Normal Depth Roughness Novel view 1 Novel view 2

Figure 4.6. Results rendered from novel views. We show the input image, the estimated shape
and BRDF parameters and the rendered output under an environment map from two novel
views. We observe high fidelity rendered images, as well as high quality recovery of shape and
spatially-varying BRDF.
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Figure 4.7. Comparison with SIRFS [13]. Our method accurately estimates the shape and diffuse
color, even in regions with specularity. In contrast, because of the complex shape and materials of
these objects, SIRFS, which assumes Lambertian reflectance, produces very inaccurate estimates.

Generalization to real data

We demonstrate our method on several real objects in Figures 4.10 and 4.6. All images

are captured in indoor scenes using an iPhone 10 with the flash enabled. We use the Adobe

Lightroom app to capture linear images and manually create the segmentation mask. For all

the examples, our rendered results closely match the input. Figures 4.10 and 4.6 also show

our predicted BRDF parameters can be used to render realistic images under new environment

lighting and camera pose. This demonstrates that our estimates of the surface normal and

spatially varying roughness are of high enough quality to render realistic specular effects of real

objects under novel illumination and viewing directions.
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Input Shi et al. 2017 Ours Ground truth

Figure 4.8. Comparison with [186]. While Shi et al. train to handle non-Lambertian reflectance,
the accuracy and visual quality of our diffuse albedo is significantly higher on both synthetic
(top) and real data (bottom).

Comparisons with previous methods

Since we are not aware of prior works that can use a single image for spatially varying

BRDF and shape estimation, our comparisons are to more restricted methods for shape and

material estimation, or to intrinsic image decomposition methods. We first compare with a

model-based method. SIRFS [13], which jointly reconstructs shape and diffuse color. Figure

4.7 compares the diffuse albedo and normal estimated using SIRFS with those obtained by

our framework, on both real and synthetic data. In both cases, our estimates are significantly

better. Notice that SIRFS tends to over-smooth both the diffuse color and the normal due to a

handcrafted regularization. In contrast, our method successfully recovers high-frequency details

for both diffuse albedo and surface normals, even in specular and shadowed regions.

We also compare with the recent deep learning-based intrinsic image decomposition

method of [186], which is trained to separate diffuse and specular components from a single

image of a ShapeNet object [36], rendered under the assumption of a parametric homogeneous

BRDF. We compare to their diffuse albedo prediction in Figure 4.8. Our physically-motivated

framework can better preserve occlusion boundaries and recover accurate diffuse color even in

specular regions. Our method also yields qualitatively superior results on real data.
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Figure 4.9. Effect of our cascaded design, illustrated for synthetic (left) and real data (right). We
visualize the absolute error for the BRDF parameters in the third column except the depth error.
The depth error is normalized so that the range of ground-truth depth is 1.

Limitations

A few challenges remain unaddressed. Our network does not explicitly handle improperly

exposed images. For example, saturations from the flash may cause the specular highlight to be

baked into the diffuse color (such as the orange in the third row of Figure 4.10). This problem

might be solved by adding more training data and using more aggressive data augmentation. As

discussed previously, long-range interactions might not be sufficiently modeled in our image-

space CNN, which may limit its ability to correctly handle interreflections. We find spatially

varying roughness prediction to be a challenging problem. The presence of specular highlights is
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Input Rendered result Di�use albedo Normal Depth Roughness Rendered Image

Figure 4.10. Results on real objects. For each example, we show the input image, the rendered
output using the estimated shape and BRDF parameters, as well as visualization under a novel
illumination condition. We observe high quality recovery of shape and spatially-varying BRDF.

important for it and the network may rely on connectivity priors to predict roughness. However,

this prior may fail, which results in the same material having different roughness values (such as

the owl in the second row of Figure 4.6). Such a prior might be explicitly enhanced to improve

performance by using a densely connected CRF [171] or bilateral filter [14]. Another possibility

would be to take shape-material correlations into account. From Figure 4.9, we can see that the

error of depth prediction is significantly larger than the normal prediction, which suggests that

we may use normal predictions to refine depth predictions [146]. Despite these limitations, we

note that our network achieves significantly better results than prior works on this challenging,

ill-posed problem.
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4.5 Conclusion

In this chapter, we demonstrate the first approach for simultaneous estimation of arbitrary

shape and spatially-varying BRDF, using a single mobile phone image. We make several

physically-motivated and effective choices across image acquisition, dataset creation and network

architecture. We use a mobile phone flash to acquire images, which allows observing high

frequency details. Our large-scale dataset of procedurally created shapes, rendered with spatially-

varying BRDF under various lighting conditions, prevents entanglement of category-level shape

information with material properties. Our cascaded network allows global reasoning through error

feedback and multiscale iterative refinement, to obtain highly accurate outputs for both shape and

material. We propose a novel rendering layer to incorporate information from various lighting

conditions, which must account for global illumination to handle arbitrary shape. Inspired by

the physical process of rendering bounces of global illumination, we devise a cascaded CNN

module that retains speed and simplicity. Extensive experiments validate our network design

through high-quality estimation of shape and SVBRDF that outperforms previous methods.

In the rest of this thesis, we will explore in two directions for solving inverse rendering

problems under more challenging setting. In the first direction, we will extend this framework

to larger scenes, i.e. indoor scenes, which has more diverse materials, more complex spatially-

varying lighting, shadows and global illumination (Chapter 6, 7 and 8). In the second direction,

we will model more complex global illumination that cannot be handled by the learning-based

rendering module proposed in this chapter – the refraction and reflection induced by transparent

materials, which will be discussed in the next chapter.

Chapter 4 is based on the material as it appears in ACM Transactions on Graphics,

2018 (“Learning to Reconstruct Shape and Spatially-Varying Reflectance from a Single Image”,

Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, Manmohan Chandraker). The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Transparent Shape Reconstruction from
Sparse Inputs

5.1 Introduction

Transparent objects abound in real-world environments, thus, their reconstruction from

images has several applications such as 3D modeling and augmented reality. However, their

visual appearance is far more complex than that of opaque objects as discussed in the prior two

chapters, because of complex light paths with both refractions and reflections. This makes image-

based reconstruction of transparent objects extremely ill-posed, since only highly convoluted

intensities of an environment map are observed. In this chapter, we propose that data-driven

priors learned by a deep network that models the physical basis of image formation can solve

the problem of transparent shape reconstruction using a few natural images acquired with a

commodity mobile phone camera.

While physically-based networks have been proposed in Chapter 4 to solve inverse

problems for opaque objects, the complexity of light paths is higher for transparent shapes and

small changes in shape can manifest as severely non-local changes in appearance. However,

the physical basis of image formation for transparent objects is well-known – refraction at the

interface is governed by Snell’s law, the relative fraction of reflection is determined by Fresnel’s

equations and total internal reflection occurs when the angle of incidence at the interface to a

medium with lower refractive index is below critical angle. These properties have been used to
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(a) (b)

(c) (d)

Figure 5.1. We present a novel physically-based deep network for image-based reconstruction of
transparent objects with a small number of views. (a) An input photograph of a real transparent
object captured under unconstrained conditions (1 of 10 images). (b) and (c): The reconstructed
shape rendered under the same view with transparent and white diffuse material. (d) The
reconstructed shape rendered under a novel view and environment map.

Input View 1 View 2 View 3

Figure 5.2. Reconstruction using 10 images of synthetic kitten model. The left image is rendered
with the reconstructed shape while the right image is rendered with the ground-truth shape.

delineate theoretical conditions on reconstruction of transparent shapes [108], as well as acquire

high-quality shapes under controlled settings [214, 231]. In contrast, we propose to leverage this

knowledge of image formation within a deep network to reconstruct transparent shapes using

relatively unconstrained images under arbitrary environment maps.

Specifically, we use a small number of views of a glass object with known refractive

index, observed under a known but arbitrary environment map, using a mobile phone camera.

Note that this is a significantly less restricted setting compared to most prior works that require

dark room environments, projector-camera setups or controlled acquisition of a large number of

images. Starting with a visual hull construction, we propose a novel in-network differentiable

rendering layer that models refractive light paths up to two bounces to refine surface normals
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corresponding to a backprojected ray at both the front and back of the object, along with a mask

to identify regions where total internal reflection occurs. Next, we propose a novel cost volume

to further leverage correspondence between the input image and environment map, but with

special considerations since the two sets of normal maps span a four-dimensional space, which

makes conventional cost volumes from multiview stereo intractable. Using our differentiable

rendering layer, we perform a novel optimization in latent space to regularize our reconstructed

normals to be consistent with the manifold of natural shapes. To reconstruct the full 3D shape,

we use PointNet++ [163] with novel mechanisms to map normal features to a consistent 3D

space, new loss functions for training and architectural changes that exploit surface normals for

better recovery of 3D shape.

Since acquisition of transparent shapes is a laborious process, it is extremely difficult to

obtain large-scale training data with ground truth [195]. Thus, we render a synthetic dataset,

using a custom GPU-accelerated ray tracer. To avoid category-specific priors, we follow the

strategy that has been shown successful in Chapter 4 by rendering images of random shapes

under a wide variety of natural environment maps. On both synthetic and real data, the benefits

of our physically-based network design are clearly observed. Indeed, we posit that such physical

modeling eases the learning for a challenging problem and improves generalization to real

images. Figures 5.1 and 5.2 show example outputs on real and synthetic data. All code and data

will be publicly released.

To summarize, we propose the following contributions that solve the problem of transpar-

ent shape reconstruction with a limited number of unconstrained views:

• A physically-based network for surface normal reconstruction with a novel differentiable

rendering layer and cost volume that imbibe insights from image formation.

• A physically-based 3D point cloud reconstruction that leverages the above surface normals

and rendering layer.

• Strong experimental demonstration using a photorealistically rendered large-scale dataset for

77



training and a small number of mobile phone photographs for evaluation.

5.2 Related Work

Multiview stereo

Traditional approaches [180] and deep networks [227] for multiview stereo have achieved

impressive results. A full review is out of our scope, but we note that they assume photoconsis-

tency for opaque objects and cannot handle complex light paths of transparent shapes.

Theoretical studies

In seminal work, Kutulakos and Steger [108] characterize the extent to which shape may

be recovered given the number of bounces in refractive (and specular) light paths. Chari and

Sturm [37] further constrain the system of equations using radiometric cues. Other works study

motion cues [20, 141] or parametric priors [203]. We derive inspiration from such works to

incorporate physical properties of image formation, by accounting for refractions, reflections

and total internal reflections in our network design.

Controlled acquisition

Special setups have been used in prior work, such as light field probes [211], polarime-

try [50, 83, 138], transmission imaging [101], scatter-trace photography [140], time-of-flight

imaging [199] or tomography [202]. An external liquid medium [73] or moving spotlights in

video [229] have been used too. Wu et al. [214] also start from a visual hull like us, to estimate

normals and depths from multiple views acquired using a turntable-based setup with two cameras

that image projected stripe patterns in a controlled environment. A projector-camera setup is

also used by [166]. In contrast to all of the above works, we only require unconstrained natural

images, even obtainable with a mobile phone camera, to reconstruct transparent shapes.

Environment matting

Environment matting uses a projector-camera setup to capture a composable map [245,

46]. Subsequent works have extended to mutliple cameras [133], natural images [212], frequency
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[244] or wavelet domains [158], with user-assistance [231], compressive sensing to reduce the

number of images [56, 164] or deep network to predict the refractive flow from a single image

[40]. In contrast, we use a small number of unconstrained images acquired with a mobile phone

in arbitrary scenes, to produce full 3D shape.

Reconstruction from natural images

Stets et al. [194] propose a black-box network to reconstruct depth and normals from

a single image. Shan et al. [183] recover height fields in controlled settings, while Yeung et

al. [230] have user inputs to recover normals. In contrast, we recover high-quality full 3D shapes

and normals using only a few images of transparent objects, by modeling the physical basis of

image formation in a deep network.

Refractive materials besides glass

Polarization [44], differentiable rendering [38] and neural volumes [124] have been used

for translucent objects, while specular objects have been considered under similar frameworks as

transparent ones [84, 246]. Gas flows [7, 90], flames [85, 218] and fluids [71, 165, 237] have

been recovered, often in controlled setups. Our experiments are focused on glass, but similar

ideas might be applicable for other refractive media too.

5.3 Method

Setup and assumptions

Our inputs are N images {In}N
n=1 of a transparent object with known refractive index

(IoR), along with segmentation masks {Mn}N
n=1. We assume a known and distant, but otherwise

arbitrary, environment map E. The output is a point cloud reconstruction {p} of the transparent

shape. Note that our model is different from (3-2-2) triangulation [106] that requires two

reference points on each ray for reconstruction, leading to a significant relaxation over prior works

[214, 231] that need active lighting, carefully calibrated devices and controlled environments.

We tackle this severely ill-posed problem through a novel physically-based network that models
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Figure 5.3. Our framework for transparent shape reconstruction.

the image formation in transparent objects over three sub-tasks: shape initialization, cost volume

for normal estimation and shape reconstruction.

To simplify the problem and due to GPU memory limits, we consider light paths with

only up to two bounces, that is, either the light ray gets reflected by the object once before hitting

the environment map or it gets refracted by it twice before hitting the environment map. This is

not a severe limitation – more complex regions stemming from total internal reflection or light

paths with more than two bounces are masked out in one view, but potentially estimated in other

views. The overall framework is summarized in Figure 5.3.

Shape initialization

We initialize the transparent shape with a visual hull [107]. While a visual hull method

cannot reconstruct some concave or self-occluded regions, it suffices as initialization for our

network. We build a 3D volume of size 1283 and project segmentation masks from N views to it.

Then we use marching cubes to reconstruct the hull and loop L3 subdivision to obtain smooth

surfaces.
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Figure 5.4. The network architecture for normal reconstruction. Yellow blocks represent NNet
and blue blocks represent FNet. IX1-OX2-WX3-SX4 represents a convolutional layer with input
channel X1, output channel X2, kernel size X3 and stride X4. UX5 represents bilinear upsampling
layer with scale factor X5.

5.3.1 Normal Reconstruction

A visual hull reconstruction from limited views might be inaccurate, besides missed

concavities. We propose to reconstruct high quality normals by estimating correspondences

between the input image and the environment map. This is a very difficult problem, since

different configurations of transparent shapes may lead to the same appearance. Moreover, small

perturbations of normal directions can cause pixel intensities to be completely different. Thus,

strong shape priors are necessary for a high quality reconstruction, which we propose to learn

with a physically-motivated deep network.

Basic network

Our basic network architecture for normal estimation is shown in Figure 5.4. The basic

network structure consists of one encoder and one decoder. The outputs of our network are two

normal maps N1 and N2, which are the normals at the first and second hit points p1 and p2 for a

ray backprojected from camera passing through the transparent shape, as illustrated in Figure

5.5(a). The benefit of modeling the estimation through N1 and N2 is that we can easily use a

network to represent complex light transport effects without resorting to ray-tracing, which is
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time-consuming and difficult to treat differentiably. In other words, given N1 and N2, we can

directly compute outgoing ray directions after passage through the transparent object. The inputs

to our network are the image I, the image with background masked out I⊙M and the Ñ1 and

Ñ2 of the visual hull (computed off-line by ray tracing). We also compute N̂1 and N̂2 of the

ground-truth shape for supervision. The definition of Ñ1, Ñ2 and N̂1, N̂2 are visualized in Figure

5.5(b). The basic network estimates:

N1,N2 = NNet(I,I⊙M, Ñ1, Ñ2) (5.1)

The loss function is simply the L2 loss for N1 and N2.

Ln = ||N1 − N̂1||22 + ||N2 − N̂2||22 (5.2)

Rendering layer

Given the environment map E, we can easily compute the incoming radiance through

direction l using bilinear sampling. This allows us to build a differentiable rendering layer to

model the image formation process of refraction and reflection through simple local computation.

As illustrated in Figure 5.5(a), for every pixel in the image, the incident ray direction li through

that pixel can be obtained by camera calibration. The reflected and refracted rays lr and lt can

be computed using N1 and N2, following Snell’s law. Our rendering layer implements the full

physics of an intersection, including the intensity changes caused by the Fresnel term F of the

refractive material, which is defined in (2.7)

Due to total internal reflection, some rays entering the object may not be able to hit the

environment map after one more bounce, for which our rendering layer returns a binary mask,

Mtr. With Ir and It representing radiance along the directions lr and lt , the rendering layer

models the image formation process for transparent shapes through reflection, refraction and
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Figure 5.5. (a) Illustration of the first and second normal (N1 and N2), the first and second hit
points (p1 and p2), and the reflection and refraction modeled by our deep network. (b) Illustration
of visual hull (Ñ1, Ñ2) and ground-truth normals (N̂1, N̂2).

total internal reflection:

Ir,It ,Mtr = RenderLayer(E,N1,N2). (5.3)

Our in-network rendering layer is differentiable and end-to-end trainable. But instead of just

using the rendering loss as an extra supervision, we compute an error map based on rendering

with the visual hull normals:

Ĩr, Ĩt ,M̃tr = RenderLayer(E, Ñ1, Ñ2), (5.4)

Ĩer = |I− (Ĩr + Ĩt)|⊙M. (5.5)

This error map is used as an additional input to our normal reconstruction network, to help it

better learn regions where the visual hull normals Ñ1 and Ñ2 may not be accurate:

N1,N2 = NNet(I,I⊙M, Ñ1, Ñ2, Ĩer,M̃tr) (5.6)

Cost volume

We now propose a cost volume to leverage the correspondence between the environment

map and the input image. While cost volumes in deep networks have led to great success for mul-

tiview depth reconstruction of opaque objects, extension to normal reconstruction for transparent
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Figure 5.6. We build an efficient cost volume by sampling directions around visual hull normals
according to their error distributions.
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Figure 5.7. Our method for point cloud reconstruction. AX1-SX2-L(X3,X4)-RX5 represents a set
abstraction layer with X1 anchor points, X2 sampled points, 2 fully connected layers with X3, X4
feature channels and sampling radius X5. IY1-L(Y2,Y3) represents a unit PointNet with Y1 input
channels and 2 fully connected layers with Y2, Y3 feature channels.

objects is non-trivial. The brute-force approach would be to uniformly sample the 4-dimensional

hemisphere of N1 ×N2, then compute the error map for each sampled normal. However, this

will lead to much higher GPU memory consumption compared to depth reconstruction due to

higher dimensionality of the sampled space. To limit memory consumption, we sample N1 and

N2 in smaller regions around the initial visual hull normals Ñ1 and Ñ2, as shown in Figure 5.6.

Formally, let u be the up vector in bottom-to-top direction of the image plane. We first build a

local coordinate system with respect to Ñ1 and Ñ2:

z = Ñi, y = u− (u · Ñi)Ñi,x = cross(y,z), (5.7)
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Table 5.1. Left: error distribution of visual normal. Right: the sampled angles for building cost
volume. We set the sampled angles according to the normal error of visual hull reconstructed by
different number of views.

(°) (°) (°)

5 views VH 10 views VH 20 views VH

{θ j}4
j=1 {φ j}4

j=1
5 view 0◦,25◦,25◦,25◦ 0◦,0◦,120◦,240◦

10 views 0◦,15◦,15◦,15◦ 0◦,0◦,120◦,240◦

20 views 0◦,10◦,10◦,10◦ 0◦,0◦,120◦,240◦

where y is normalized and i = 1,2. Let {θ j}J
j=1, {φ j}J

j=1 be the sampled angles. Then, the

sampled normals are:

Ñi
j = xcosφ j sinθ j +ysinφ j sinθ j + zcosθ j. (5.8)

We sample the angles {θ j}J
j=1, {φ j}J

j=1 according to the error distribution of visual hull normals.

In particular, we first randomly sample 100 scenes from our synthetic dataset and compute the

angles between visual hull normals and ground truth normals. We set one θ value to be 0 and the

other to larger than 85% of angles between the visual hull normal Ñ1 and ground truth normal

N̂1. The distribution of visual hull normal Ñ1 error for 5, 10 and 20 views and sampled angles

are presented in Table 5.1. Since we reconstruct N1 and N2 simultaneously, the total number of

configurations of sampled normals is J × J. Directly using the J2 sampled normals to build a

cost volume is too expensive, so we use a learnable pooling layer to aggregate the features from

each sampled normal configuration in an early stage. For each pair of Ñ1
j and Ñ2

j′ , we compute

their total reflection mask M̃tr
j, j′ and error map Ĩer

j, j′ using (5.4) and (5.5), then perform a feature

extraction:

F( j, j′) = FNet(Ñ1
j , Ñ

2
j′, Ĩ

er
j, j′,M̃

tr
j, j′). (5.9)

85



We then compute the weighted sum of feature vectors F( j, j′) and concatenate them with the

feature extracted from the encoder of NNet for normal reconstruction:

F =
J

∑
j

J

∑
j′

k( j, j′)F( j, j′), (5.10)

where k( j, j′) are positive coefficients with sum equal to 1, that are also learned during the

training process. The detailed network structure is shown in Figure 5.4.

Post processing

The network above already yields reasonable normal reconstruction. It can be further

improved by optimizing the latent vector from the encoder to minimize the rendering error using

the predicted normal N1 and N2:

L Opt
n = ||(I− (Ir + It))⊙Mtr||22, (5.11)

where It ,It ,Mtr are obtained from the rendering layer (5.3). For this optimization, we keep the

network parameters unchanged and only update the latent vector. Note that directly optimizing the

predicted normal N1 and N2 without the deep network does not yield comparable improvements.

This is due to our decoder acting as a regularization that prevents the reconstructed normal from

deviating from the manifold of natural shapes during the optimization. Similar ideas have been

used for BRDF reconstruction [60].

5.3.2 Point Cloud Reconstruction

We now reconstruct the transparent shape based on the predictions of NNet, that is, the

normals, total reflection mask and rendering error. Our idea is to map the predictions from

different views to the visual hull geometry. These predictions are used as input features for a

point cloud reconstruction to obtain a full 3D shape. Our point cloud reconstruction pipeline is

illustrated in Figure 5.7.
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Feature mapping

We propose three options to map predictions from different views to the visual hull

geometry. Let {p̃} be the point cloud uniformly sampled from visual hull surfaces and Pn(p̃,X)

be a function that projects the 3D point p̃ to the 2D image plane of view n and then fetches

the value of feature X defined on image coordinates using bilinear sampling. Let Vn(p̃) be a

binary visibility function that verifies if point p̃ can be observed from view n and Tn(p̃) be a

transformation that maps a 3D point or normal direction in view n to world coordinates. Let

cosn(p̃) be the cosine of the angle between the ray passing through p̃ and camera center.

The first option is a feature f that averages observations from different views. For every

view n that can see the point p̃, we project its features to the point and compute a mean:

p̃N1 =
∑n Tn(Pn(p̃,N1

n))Vn(p̃)
∑nVn(p̃)

, p̃Ier =
∑n Pn(p̃,Ier

n )Vn(p̃)
∑nVn(p̃)

,

p̃Mtr =
∑n Pn(p̃,Mtr

n )Vn(p̃)
∑nVn(p̃)

, p̃c =
∑n cosn(p̃)Vn(p̃)

∑nVn(p̃)
.

We concatenate to get: f = [p̃N1, p̃Ier , p̃Mtr , p̃c].

Another option is to select a view n∗ with potentially the most accurate predictions and

compute f using the features from only that view. We consider two view-selection strategies.

The first is nearest view selection, in which we simply select n∗ with the largest Cn(p̃). The

other is to choose the view with the lowest rendering error and no total reflection. Note that

although we do not directly map N2 to the visual hull geometry, it is necessary for computing the

rendering error and thus, needed for our shape reconstruction.

Point cloud refinement

We build a network following PointNet++ [163] to reconstruct the point cloud of the

transparent object. The input to the network is the visual hull point cloud {p̃} and the feature

vectors {f}. The outputs are the normals {Np} and the offset of visual hull points {δ p̃}, with the
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final vertex position is computed as p = p̃+δ p̃:

{δ p̃},{Np}= PNet({p̃},{f}). (5.12)

Our lost function, L CD
p , is based on the chamfer distance. Let {p̂} be the set of points

uniformly sampled from the ground-truth geometry, with normals N̂p. Let Ne(p,{p̂}) be a

function which finds the nearest point of p in the point set {p̂} and function Nen(p,{p̂}) return

the normal of the nearest point. The chamfer distance loss is defined as

L CD
p = ∑

{p},{Np}

k1

2
||p−Ne(p,{p̂})||+k2

2
||N−Nen(p,{p̂})||+

∑
{p̂},{N̂p}

k1

2
||p̂−Ne(p̂,{p})||+k2

2
||N̂p−Nen(p̂,{p})||. (5.13)

We set k1 = 200 and k2 = 5.

Our network, shown in Figure 5.7, makes several improvements over standard PointNet++.

First, we replace max-pooling with average-pooling to favor smooth results. Second, we

concatenate normals {N} to all skip connections to learn details. Third, we augment the input

feature of set abstraction layer with the difference of normal directions between the current and

center points. Section 5.4 show the impact of our design choices.

5.4 Experiments

Dataset

We procedurally generate random scenes following Chapter 4 rather than use shape

repositories [36], to let the model be category-independent. To remove inner structures caused

by shape intersections and prevent false refractions, we render 75 depth maps and use PSR [100]

to fuse them into a mesh, with L3 loop subdivision to smooth the surface. We implement a

physically-based GPU renderer using NVIDIA OptiX [157]. With 1499 HDR environment maps

of [61] for training and 424 for testing, we render 3000 random scenes for training and 600 for
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Table 5.2. Quantitative comparisons of normal estimation from 10 views. vh10 represents the
initial normals reconstructed from 10 views visual hull. wr and basic are our basic encoder-
decoder network with and without rendering error map (Ier) and total reflection mask (Mtr) as
inputs. wr+cv represents our network with cost volume. wr+cv+op represents the predictions
after optimizing the latent vector to minimize the rendering error. wr+cv var. IoR represents
sensitivity analysis for IoR, explained in text.

vh10 basic wr wr+cv
wr+cv wr+cv

+op var. IoR

N1 median (◦) 5.5 3.5 3.5 3.4 3.4 3.6
N1 mean (◦) 7.5 4.9 5.0 4.8 4.7 5.0
N2 median (◦) 9.2 6.9 6.8 6.6 6.2 7.3
N2 mean (◦) 11.6 8.8 8.7 8.4 8.1 9.1
Render Err.(10−2) 6.0 4.7 4.6 4.4 2.9 5.5

testing. The IoR of all shapes is set to 1.4723, to match our real objects. Our experiments also

include sensitivity analysis to characterize the behavior of the network when the test-time IoR

differs from this value.

Implementation Details

When building the cost volume for normal reconstruction, we set the number of sampled

angles J to be 4. Increasing the number of sampled angles will drastically increase the memory

consumption and does not improve the normal accuracy. We sample φ uniformly from 0 to 2π

and sample θ according to the visual hull normal error. We use Adam optimizer to train all our

networks. The initial learning rate is set to be 10−4 and we halve the learning rate every 2 epochs.

All networks are trained over 10 epochs.

5.4.1 Ablation Studies on Synthetic Data

Normal reconstruction

The quantitative comparisons of 10 views normal reconstruction are summarized in Table

5.2. We report 5 metrics: the median and mean angles of the first and the second normals (N1,

N2), and the mean rendering error (Ier). We first compare the normal reconstruction of the basic

encoder-decoder structure with (wr) and without rendering error and total reflection mask as
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5 views VH. 5 views Rec. 10 views VH. 10 views Rec. 20 views VH. 20 views Rec. Groundtruth
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Figure 5.8. Two examples of normal reconstruction from our synthetic dataset with different
input views. The region of total reflection has been masked out in the rendered images.

input (basic). While both networks greatly improve the normal accuracy compared to visual

hull normals (vh10), adding rendering error and total reflection mask as inputs can help achieve

overall slightly better performances. Next we test the effectiveness of the cost volume (wr+cv).

Quantitative numbers show that adding cost volume achieves better results, which coincides

with our intuition that finding the correspondences between input image and the environment

map can help our normal prediction. Finally we optimize the latent vector from the encoder by

minimizing the rendering error (wr+cv+op). It significantly reduces the rendering error and also

improves the normal accuracy. Such improvements cannot be achieved by directly optimizing
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5 views VH. 5 views Rec. 10 views VH. 10 views Rec. 20 views VH. 20 views Rec. Groundtruth

Figure 5.9. Our transparent shape reconstruction results from 5 views, 10 views and 20 views
from our synthetic dataset. The images rendered with our reconstructed shapes are much closer to
the ground-truth compared with images rendered with the visual hull shapes. The inset normals
are rendered from the reconstructed shapes.

Table 5.3. Quantitative comparisons of point cloud reconstruction from 10 views. RE, NE and AV

represent feature mapping methods: rendering error based view selection, nearest view selection
and average fusion, respectively. var. IoR represents sensitivity analysis for IoR, as described in
text. PSR represents optimization [100] to refine the point cloud based on predicted normals.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh10 5.14 7.19 4.90 15.2

NE 2.04 6.10 4.46 6.02
AV 2.03 6.08 4.46 6.09
RE 2.00 6.02 4.38 5.98
RE, var. IoR 2.13 6.24 4.56 6.11

PSR 5.13 6.94 4.75 14.7

the normal predictions N1 and N2 in the pixel space. Figure 5.8 presents normal reconstruction

results from our synthetic dataset. Our normal reconstruction pipeline obtains results of much

higher quality compared with visual hull method.

Point cloud reconstruction

Quantitative comparisons of the 10-view point cloud reconstruction network are summa-

rized in Table 5.3. After obtaining the point and normal predictions {p} and {N}, we reconstruct

3D meshes as described above. We compute the chamfer distance (CD), chamfer normal median

angle (CDN-med), chamfer normal mean angle (CDN-mean) and Metro distance by uniformly

sampling 20000 points on the ground-truth and reconstructed meshes. We test different feature
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Input (Real) VH rendered Rec rendered VH normal1 VH normal2Rec normal1 Rec normal2

Figure 5.10. Normal reconstruction of real transparent objects and the rendered images. The
initial visual hull normals are built from 10 views. The region of total reflection has been masked
out in the rendered images.

Input (Real) 12 views visual hull Our reconstruction

Input (Real) 10 views visual hull Our reconstruction

Figure 5.11. Comparison between visual hull initialization and our shape reconstruction on real
objects. Our method recovers more details, especially for concave regions.

mapping strategies, where the rendering error based view selection method (RE) performs consis-

tently better than the other two methods. This is because our rendering error can be used as a

meaningful metric to predict normal reconstruction accuracy, which leads to better point cloud

reconstruction.

The last row of Table 5.3 shows that an optimization-based method like PSR [100] to

refine shape from predicted normals does not lead to much improvement, possibly since visual

hull shapes are still significantly far from ground truth. In contrast, our network allows large

improvements.
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Table 5.4. Quantitative comparisons of point cloud reconstruction from 5 views and 20 views.
In both cases, our pipeline significantly improves the transparent shape reconstruction accuracy
compared with classical visual hull method.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh5 31.7 13.1 10.3 66.6
Rec5 6.30 11.0 8.7 15.2

vh20 2.23 4.59 2.71 6.83
Rec20 1.20 4.04 2.73 4.18

Table 5.5. Quantitative comparisons of transparent shape reconstruction on real data. We
observe that our reconstruction achieves lower average errors than the visual hull method on all
the metrics.

Views CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh Rec vh Rec vh Rec vh Rec

monkey 12 3.99 3.94 21.2 16.4 14.8 11.9 20.7 13.9
mouse 10 8.04 5.35 19.0 16.3 11.4 12.0 16.6 13.0
pig 10 5.58 4.87 19.0 18.3 14.0 14.6 13.0 7.4
dog 10 2.25 1.86 14.5 12.4 11.4 10.3 4.1 4.0
mean 10.5 4.97 4.00 18.4 15.9 12.9 12.2 13.6 9.6

Different number of views

We also test the entire reconstruction pipeline for 5 and 20 views, with results summarized

in Table 5.4. We use the setting that leads to the best performance for 10 views, that is,

wr+cv+op for normal reconstruction and RE for view selection, achieving significantly lower

errors than the visual hull method. Figure 5.8 and 5.9 shows examples from the synthetic test set

for normal and point cloud reconstructions with different number of views.

Sensitivity analysis for IoR

We also evaluate the model on another test set with the same geometries, but unknown

IoRs sampled uniformly from the range [1.3,1.7]. As shown in Tables 5.2 and 5.3, errors increase

slightly but stay reasonable, showing that our model can tolerate inaccurate IoRs to some extent.
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5.4.2 Results on Real Transparent Objects

We acquire RGB images using a mobile phone. To capture the environment map, we

take several images of a mirror sphere at the same location as the transparent shape. We use

COLMAP [179] to obtain the camera poses and manually create the segmentation masks.

Normal reconstruction

We first demonstrate the normal reconstruction results on real transparent objects in

Figure 5.10. Our model significantly improves visual hull normal quality. The images rendered

from our predicted normals are much more similar to the input RGB images compared to those

rendered from visual hull normals.

3D shape reconstruction

In Figure 5.12, we demonstrate our 3D shape reconstruction results on real world trans-

parent objects under natural environment map. The companion video [4] also shows renderings

of the reconstructed shapes under new lighting with different materials. We first demonstrate the

reconstructed shape from the same view as the input images by rendering them under different

lighting and materials. Even with very limited inputs, our reconstructed shapes are still of high

quality. To test the generalizability of our predicted shapes, we render them from novel views

that have not been used as inputs and the results are still reasonable. Figure 5.11 compares our

reconstruction results with the visual hull initialization. We observe that our method performs

much better, especially for concave regions. The quantitative numbers are summarized in Ta-

ble 5.5. We manually align ground-truth shapes with the predicted shapes using ICP method [21]

and then uniformly sample 20000 points on the both shapes to compute the four error metrics

(CD, CDN-mean, CDN-med, Metro). For all the 4 objects, our method consistently outperforms

the visual hull baseline, which again demonstrates the effectiveness of our transparent shape

reconstruction framework.
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Runtime

Our method requires around 46s to reconstruct a transparent shape from 10 views on a

2080 Ti, compared to 5-6 hours for previous optimization-based methods [214].

Limitations

Our limitations suggest interesting future avenues of research. A learnable multiview

fusion might replace the visual hull initialization. We believe more complex light paths of length

greater than 3 may be handled by differentiable path tracing along the lines of differentiable

rendering [110, 234]. While we assume a known refractive index, it may be jointly regressed.

Finally, since we reconstruct N2, future works may also estimate the back surface to achieve

single-view 3D reconstruction.

5.5 Conclusion

We present the first physically-motivated deep network to reconstruct transparent shapes

from a small number of views captured under arbitrary environment maps. Our network models

the properties of refractions and reflections through a physically-based rendering layer and cost

volume, to estimate surface normals at both the front and back of the object, which are used to

guide a point cloud reconstruction. Extensive experiments on real and synthetic data demonstrate

that our method can recover high quality 3D shapes.

Chapter 5 is based on the material as it appears in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2020 (“Through the Looking Glass: Neural 3D Reconstruction

of Transparent Shapes”, Zhengqin Li*, Yu-ying Yeh*, Manmohan Chandraker). The dissertation

author was the one of the primary investigators and author of this paper. Yu-ying Yeh is a co-first

author who contributed equally to the paper.
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Figure 5.12. Results on 3D reconstruction for four real transparent objects. All shapes are
reconstructed from 10 views, except the monkey in the last row that uses 12 views. The odd rows
show the input image and the reconstructed shapes under different lighting and materials while
the corresponding outputs using the ground-truth are shown in the even rows. We also render the
reconstructed shapes and ground-truth shapes from a novel view direction that has not been used
to build the visual hull (columns 7-8).
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Chapter 6

Indoor Scene Photorealistic Synthetic
Dataset Creation

6.1 Introduction

In the next three chapters, we will address a long-standing challenge for both computer

visiion and graphics, to reconstruct geometry, spatially-varying complex reflectance and spatially-

varying lighting and physically-based light sources from a single RGB image of an arbitrary

indoor scene captured under uncontrolled conditions, while supporting various photorealistic

scene editing applications, ranging from virtual object insertion to light source editing. This is an

extremely challenging problem – indoor scenes display the entire range of real-world appearance,

including arbitrary geometry and layouts, localized light sources that lead to complex spatially-

varying lighting effects and complex, non-Lambertian surface reflectance. Following our success

in modeling complex scene appearance from Chapter 3 to 5, we propose a physically-motivated

deep learning frameworks to regress these scene parameters holistically from an input image.

However, reasoning about these underlying, entangled factors requires large-scale high-

quality ground truth, which remains hard to acquire. While ground truth geometry can be

captured using a 3D scanner, it is extremely challenging (if not nearly impossible) to accurately

acquire the complex spatially-varying materials and lighting of indoor scenes. An alternative is

to consider synthetic datasets, but large-scale synthetic datasets of indoor scenes with plausible

geometry, materials and lighting are also non-trivial to create.

97



Therefore, in this chapter, we present OpenRooms, an open framework for synthesizing

photorealistic indoor scenes, with broad applicability across computer vision, graphics and

robotics. It has several advantages over prior works, summarized in Table 6.1.

First, rather than use artist-created scenes and assets, we ascribe high-quality material

and lighting to RGBD scans of real indoor scenes. Beyond just the data, we provide all the

tools necessary to accomplish this, allowing any researcher to inexpensively create such datasets.

While prior works can align CAD models to scanned point clouds [8, 88, 9], they do not explore

how to assign materials and lighting appropriately to build a large-scale photorealistic dataset.

Second, we provide extensive high-quality ground truth for complex light transport that

is unmatched in prior works. Our material is represented by a spatially-varying microfacet

bidirectional reflectance distribution function (SVBRDF), and our lighting includes windows,

environment maps and area lights, along with their per-pixel spatially-varying effects to account

for visibility, shadows and inter-reflections. As will be shown in Chapter 7 and 8, these high-

quality and extensive ground truth help better understand complex light transport in indoor

scenes and enable new applications in photorealistic augmented reality, where we demonstrate

virtual object insertion, material editing, light editing.

Third, we render photorealistic images with our data and tools, which include a custom

GPU-accelerated physically-based renderer. We create an instance of such a dataset by building

on existing repositories: 3D scans from ScanNet [51], CAD model alignment [8], reflectance [3]

and illumination [74, 77]. The resulting dataset contains over 100K HDR photorealistic images,

with various light transport effects being modeled accurately. Our dataset is publicly available

and can be significantly extended through future community efforts based on our tools. We also

demonstrate applicability of our method to other choices for material [2] and geometry [190].

In addition to inverse rendering, we believe that our effort will significantly accelerate

research in multiple areas. We demonstrate that OpenRooms may be used for training semantic

segmentation networks [239, 42], as well as multi-task learning to jointly estimate shape, material

and semantics. Studies in robotics may also benefit by using our ground truth to enhance
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Figure 6.1. Our framework for creating a synthetic dataset of complex indoor scenes with
ground truth shape, SVBRDF and SV-lighting, along with the resulting applications. Given
possibly noisy scans acquired with a commodity 3D sensor, we generate consistent layouts for
room and furniture. We ascribe per-pixel ground truth for material in the form of high-quality
SVBRDF and for lighting as spatially-varying physically-based representations. We render a
large-scale dataset of images associated with this ground truth, which can be used to train deep
networks for inverse rendering and semantic segmentation. We further motivate applications for
augmented reality and robotics, while suggesting that the open source tools we make available
can be used by the community to create other large-scale datasets too. The accompanying video
[4] demonstrates our high-quality rendered images, ground truths and the overall pipeline for
photorealistic synthetic indoor dataset creation.

existing simulation environments [216, 178, 219, 128]. We demonstrate this possibility by

combining OpenRooms assets with the PyBullet engine [1] and mapping our SVBRDFs to

friction coefficients, to motivate navigation and rearrangement under different material and

lighting. We also note that OpenRooms allows a one-to-one correspondence between real videos

and simulations, which can be valuable for sim-to-real transfer [92].

In this chapter, we will illustrate the OpenRooms framework for creating large-scale, high-

quality synthetic indoor datasets from commodity RGBD sensor scans, as shown in Figure 6.1.

We will also demonstrate how it can enable scene understanding and robotics research but will

present inverse rendering tasks, which is the focus of our research, in Chapter 7 and 8 in detail.
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Table 6.1. OpenRooms is distinct in providing extensive ground truth for photorealism (especially
material and lighting), with publicly available assets and tools. The tools in OpenRooms
framework allow generating synthetic counterparts of real scenes, with high-quality ground truth.

Dataset
Available annotations Publicly available assets Corresponding

real images
and scenes

Geometry Material Lighting Segmentation Images CAD Baseline Tool
Light sources Per-pixel Visibility

PBRS [238] ✓ diffuse ✗ shading ✗ ✓ ✗ ✗ ✓ ✓ ✗

Scenenet [134] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

CGIntrinsic [114] ✗ diffuse ✗ shading ✗ ✗ ✓ ✗ ✓ ✓ ✗

InteriorNet [111] ✓ diffuse ✗ shading ✗ ✓ ✓ ✗ ✓ ✓ ✗

CG-PBR [181] ✓ phong ✗ shading ✗ ✗ ✗ ✗ ✗ ✓ ✗

InvIndoor [115] ✓ microfacet ✗ envmap ✗ ✗ ✗ ✗ ✓ ✓ ✗

3D-Future [59] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

AI2-THOR [105] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

Structure3D [241] ✓ ✗ ✗ shading ✗ ✓ ✓ ✗ ✗ ✓ ✗

Hypersim [173] ✓ diffuse ✗ highlight ✗ ✓ ✓ ✗ ✗ ✓ ✗

OpenRooms ✓ microfacet ✓ envmap ✓ ✓ ✓ ✓ ✓ ✓ ✓

6.2 Related Work

The importance of indoor scene reconstruction and understanding has led to a number of

real datasets [188, 51, 35, 219, 185]. While they are by nature photorealistic, they only capture

some scene information (usually images, geometry and semantic labels). However, we are

interested in studying geometry, reflectance and illumination, where the latter two are particularly

challenging to acquire in real datasets. Synthetic datasets provide an alternative [134, 191, 111],

but prior ones are limited with respect to rendering arbitrary data [111], scene layout [134],

material [191], or baselines [173], as summarized in Table 6.1.

Several methods build 3D models for indoor scenes from a single image [88] or scans

[8, 9, 29, 41]. However, our focus is beyond geometry, to assign real-world materials and lighting

to create photorealistic scenes. To the best of our knowledge, the only existing dataset with

complex materials and spatially-varying lighting annotations is from Li et al. [115], but is built

on artist-created assets that are not publicly available [191]. We instead create photorealistic

indoor scene datasets that start with 3D scans to provide high-quality ground truth for geometry,

reflectance and lighting.

Several indoor virtual environments have also been proposed for robotics and embodied
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ScanNet image OpenRooms image Different lighting Different materials Different views

Figure 6.2. Images from ScanNet and our corresponding synthetic scene layouts rendered with
different materials, different lighting, and different views selected by our algorithm. The third
row shows the same scene as the second one, but rendered with freely available Substance Share
materials [2] instead of the public but non-free Adobe Stock materials [3].

vision [216, 178, 219, 185, 128, 105]. Our work is complementary, where our photorealistic

ground truth and suite of tools could be used to enhance existing virtual environments and

conduct new types of studies. In Section 6.4, we seek to motivate such adoption by illustrating

integration with a physics engine and computing ground truth for friction coefficients.

6.3 Building a Photorealistic Indoor Dataset

We now describe our framework for building a synthetic dataset of complex indoor

scenes. We demonstrate this using ScanNet, a large-scale repository of real indoor scans [51],

but our work is also applicable to other datasets [190, 80]. We briefly describe the geometry

creation, while focusing on our principal novelties of photorealistic material and lighting.

6.3.1 Creating CAD Models from 3D Scans

While recent methods such as [9] are possible alternatives, we demonstrate our dataset

creation example utilizing existing labels in ScanNet and initial CAD alignment [8] to create the

ground truth geometry robustly.
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Figure 6.3. UIs for annotating room layout (Left top) and material category (Right top). (Bottom)
Material examples from each category. Please zoom in for better visualization.

Reconstructing the room layout

We fuse the depth maps from different views of a scene to obtain a single point cloud.

We design a UI for fast layout annotation (Figure 6.3), which projects the 3D point cloud to the

floor plane and a polygon may be selected for the layout. While the annotation needs less than

a minute per scene, we also train a Floor-SP network [41] on these annotations that users may

employ for their own scenes. Next we use RANSAC to determine the horizontal floor plane.

Since ScanNet views generally do not cover the ceiling, we assign a constant room height of 3

meters.

Windows and doors

Special consideration is needed for doors and windows as they are important illuminants

in indoor scenes. We project the 3D points labeled as doors and windows to the closest wall, then

divide the wall into segments and merge connected segments with sufficient number of points, to

which a ShapeNet CAD model is assigned.
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Figure 6.4. The first row shows images rendered with materials from our dataset. The second
and third rows are images rendered with the original materials from SUNCG dataset using
Lambertian and Phong models. Images rendered with our materials have realistic specular
highlights.

Consistent furniture placement

We use initial poses from Scan2CAD [8] to align CAD models with furniture instances.

We do not require appearances to closely match the input images, but generate plausible layouts

and shapes with as much automation as possible. Our tool automatically moves bounding boxes

for furniture perpendicular to the floors and walls to resolve floating objects and intersections.

Such geometric consistency is important since our dataset may also be used for tasks such as

navigation.

Semantic labels

Given our geometry ground truth, it is straightforward to obtain labels for semantic and

instance segmentation based on PartNet annotations, as shown in Figure 6.5. We demonstate in

experiments that our labels can be used to train single and multi-task deep networks.

6.3.2 Assigning Complex Materials to Indoor Scenes

One of the major contributions of our dataset is ground-truth annotation of complex

material parameters for indoor scenes. Previous works typically provide material annotations as
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simple diffuse or Phong reflectance [191, 186], while we provide a physically-based microfacet

SVBRDF. As shown in

Assigning materials to ShapeNet

Many ShapeNet CAD models do not have texture coordinates, so we use Blender’s [48]

cube projection UV mapping to compute texture coordinates for them automatically. Inspired

by Photoshape [156], we split CAD models into semantically meaningful parts and assign a

material to each part. While Photoshape does this for only chairs, we do so for all furniture

types in indoor scenes, using the semantically meaningful part segmentation of 24 categories of

models provided by PartNet [139].

Material annotation UI

We design a custom UI tool to annotate material category for each part, as shown in

Figure 6.3. It allows merging over-segmented parts which should be assigned the same material.

To allow material annotation, we group 1,078 SVBRDFs into 9 categories based on their

appearances, similar to Chapter 3, as shown in Figure 6.3. Annotators label a material category

for each part, with a specific material sampled randomly from the category. While we do not

pursue mimicking input appearances, we do seek that photorealism and semantics be respected

in the dataset. Experiments show that our dataset created following the above choices enables

state-of-the-art inverse rendering performances. Note our distinction from domain randomization,

since arbitrary choices for material and lighting might not allow generalization on real scenes for

extremely ill-posed problems like material and lighting estimation. Our tools and the annotations

will be released for future research.

6.3.3 Ground Truth Lighting for Indoor Scenes

Lighting plays one of the most important roles in image formation. However, prior

datasets usually only provide diffuse shading as their lighting representation [114, 238]. Recent

work provides per-pixel environment maps by rendering the incoming radiance at every surface
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Figure 6.5. One of our rendered images with ground-truth geometry, spatially-varying material
and segmentation labels.
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Figure 6.6. Our ground-truth light source annotations. From left to right: input and for each
light source, its instance segmentation, and direct shading with and without occlusion. Our
annotations reveal rich information about light transport in indoor scenes.

point in the camera frustum [115], which allows modeling shadows and specular highlights, but

not the complex interactions among global light sources, scene geometry, materials and local

lighting. On the contrary, OpenRooms provides extra supervision for visible and invisible light

sources, the contribution of each individual light source to the local lighting, direct and indirect

lighting, as well as visibility. Such rich supervision may help better understand the complex

light transport in indoor scenes and enable new applications such as editing of light sources and

dynamic scenes.

Light sources

We model two types of light sources in OpenRooms—windows and lamps—and we

provide ground-truth annotations for them. The annotations include instance segmentation

105



!"#$%

&'(%)*+,-#.'/$&'(%)*+'"#$%

0-#.'/$ 1%(2 3'4%5+%/6"#3,

1%(2 3'4%5+.'(%)*+%/6"#3,

Figure 6.7. We provide various types of supervision for lighting analysis of indoor scenes,
including per-pixel environment maps with only direct illumination, or including indirect illumi-
nation.

masks for visible light sources and a consistent parameterized representation for both visible

and invisible light sources. More specifically, for each window, we model its geometry using

a rectangular plane and the lighting coming through the window using an environment map

rendered at its center. We represent each lamp as a 3D bounding box following the standard

area light model. We visualize our light source annotations in Figure 6.6. Our light source

representation has clear physical meaning and can model the full physics of image formation in

indoor scenes.

Light source colors

For environment maps, we use 414 high-resolution HDR panoramas of natural outdoor

scenes, from [77] and [74]. For indoor lamps, unlike previous synthetic datasets that randomly

sample the spectrum of area lights [115, 238, 114], we follow a physically plausible black-body

model to determine the spectrum of the light source by its temperature, chosen between 4000K

to 8000K.

Per-pixel lighting

To enable tasks such as object insertion or material editing, we must estimate lighting at

every spatial. We render per-pixel environment maps and shading as a spatially-varying lighting
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Input image Diffuse albedo

Roughness Friction coefficientSimulated reflectance disks Captured reflectance disks

Figure 6.8. Left: Comparisons of randomly sampled reflectance disks captured by the system
of Zhang et al. [236] and rendered by our virtual environment. Right: Visualization of friction
coefficient in OpenRooms dataset. We map diffuse albedo and roughness parameters to friction
coefficient based on nearest neighbor search. We observe that specular materials usually have
smaller friction coefficients.

representation. For per-pixel environment map specifically, we render a 16×32 environment

map at the corresponding 3D point on object surfaces at every pixel. We render both with direct,

as well as combined direct and indirect illumination. This will help to separately analyze the

direct contribution from light sources and indirect reflections from the indoor scene. We visualize

an example in Figure 6.7.

Per-light direct shading and visibility

In order to understand complex light transport in indoor scenes, we also provide the

separate contribution of every individual light source and its visibility map. For each image, we

render the direct shading of each light source, with and without considering the occlusion term,

by turning on only that particular light source. The visibility map can be computed as the ratio of

the two direct shading images. We visualize these annotations in Figures 6.6. These will allow

new challenging light editing tasks not possible with prior datasets, such as turning on and off a

light or opening a window, which we will be discussed in Chapter 8.
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6.3.4 Ground Truth Friction Coefficient

We follow the concept of reflectance disks from Zhang et al. [236] for predicting friction

coefficients for various materials. The acquisition setup of [236] includes a beam splitter, an

orthographic camera and a parabolic mirror, to capture material appearances by densely sampling

from a large range of view directions and a small range of lighting directions (please see Figure 3

of [236]). We mimic this capture system to render the reflectance disk using our physically-based

renderer. We uniformly sample the parameter space of our microfacet BRDF model and render a

reflectance disk for each sampled point. Figure 6.8 left compares the reflectance disks rendered

under our virtual environment and captured by the system. We observe that the distribution of

specular highlights and intensities of the two sets of reflectance disks can match well.

After obtaining the reflectance disk, Zhang et al. [236] use a pretrained deep network to

map the reflectance disk to a low dimensional latent space, which is termed a deep reflectance

code. Due to the dense down-sampling operations, the deep reflectance code is robust to

translation and rotation, which makes it a suitable representation for modeling intrinsic properties

of materials, including the friction properties. Thereafter, they use K-nearest neighbor method to

map deep reflectance code to friction coefficients. Following their implementation, we also map

our reflectance disks to a deep reflectance code, to the friction coefficients using nearest neighbor

search for each of our sampled microfacet BRDF parameters. This gives us a table that allows us

to map our microfacet BRDF parameters to friction coefficients through bilinear interpolation

or nearest neighbor search. Figure 6.8 right show some examples of our friction coefficient

predictions. We observe that specular materials are more likely to have small coefficients of

friction, which is consistent with physical intuition.

6.3.5 Rendering with a Physically-based Renderer

To render high quality images with realistic appearances, it is necessary to use a physically

based renderer that models complex light transport effects such as global illumination and soft
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Mitsuba, path, 900 samples,
time 164.5s, PSNR 24.88

Mitsuba, bdpt, 625 samples,
time 165.0, PSNR 26.01

Our renderer, path, 16354 samples,
time 162.44s, PSNR 37.06

Reference, path, 65546 samples

Figure 6.9. Comparisons of images rendered with Mitsuba and our GPU renderer in the same
amount of time using path tracing. The quality of the image rendered by our renderer in less than
three minutes is much better. It takes about 50 minutes for Mitsuba to achieve similar results.

shadows. However, current open source CPU renderers are too slow for creating a large dataset,

especially to render per-pixel environment map. Thus, we implement our own physically-based

GPU renderer using Nvidia OptiX [157], which models interreflection up to 7 bounces. To

render a 480 × 640 image with 16384 samples per pixel, our renderer on Tesla V100 GPU needs

3-6 minutes, while Mitsuba on 16 cores of Intel i7-6900K CPU needs around 1 hour. Figure 6.9

compares images rendered with Mitsuba [89] and with our renderer using the same amount of

time. Our renderer support ground-truth per-light contribution.

View selection

ScanNet provides the camera pose of each RGBD image. However, their distribution is

biased towards views close to the scene geometry, to optimize scanning. On the contrary, we

prefer views covering larger regions, matching typical human viewing conditions. To achieve

this, we first sample different views along the wall, facing the center of the room. For each view,

we render its depth and normal maps. Let Di and Ni be the depth and normal of pixel i, Grad(Ni)

be the sum of absolute gradients of the normal in the three channels. We choose the view based
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on computing a score defined as

∑
i

Grad(Ni)+0.3log(Di +1). (6.1)

Views with higher scores are used to create the dataset. An example of our view selection results

is shown in Figure 6.2 (bottom right).

Other renderers

While our renderer will be publicly released, our assets (geometry, material maps, lights)

are in a standard graphics format that could be used in other rendering environments. For example,

common real-time rasterization engines like Unity or Unreal could be used for applications

(such as robotics) which prefer real-time performance and do not require fully accurate global

illumination. Furthermore, our per-pixel spatially-varying lighting maps could be used as

high-quality precomputed lighting probes for photorealistic real-time rendering [135].

6.3.6 OpenRooms Dataset Statistics

Scene, image, semantic label distribution

We pick 1,287 of the 1,506 ScanNet scenes to instantiate our dataset, discarding those

which cover very small portions of rooms. We randomly choose 1,178 scenes for training and

109 scenes for validation. For each scene, we choose views using our view selection method.

For each rendered image, we render two others with different materials and lighting, as shown in

Figure 6.2 (bottom-left). We render 118,233 HDR images at 480×640 resolution, with 108,159

in the training set and 10,074 in the validation set. We render semantic labels of all 44 classes

of CAD models in OpenRooms. The distributions of scene categories and images, number of

objects per class and the percentage of pixels per class are summarized in Figure 6.10. Note that

the class distribution follows that of real scans in ScanNet indoor scenes.
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Figure 6.10. Dataset statistics for scene categories, images, materials, lighting and semantic
labels.

Material distribution

We use 1,075 SVBRDFs from [3] to build OpenRooms, corresponding to the 9 categories

shown in Figure 6.3. The number of materials per-category and their pixel distributions are

summarized in Figure 6.10.

Lighting distribution

Figure 6.10 shows the distribution of the two types of light sources (windows and lamps).

Each image has at least one light source “on” for rendering. For all the 118K images, we

render spatially-varying environment maps and shading, with direct illumination only and with

combined direct and indirect illumination. Moreover, we provide a parameterized representation

for every visible and invisible light source, as well as render their individual direct shading

contribution and visibility map. Compared to all prior works, OpenRooms provides significantly
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SUNRGBD Image View 1 View 2

Figure 6.11. Synthetic scene reconstruction results using scanned indoor scenes from SUNRGBD
dataset. We visualize the reconstructed scenes rendered from different views with different
material assignments.

more extensive and detailed supervision for complex lighting, which may allow new applications

such as light source detection and editing.

Asset cost

Almost all the assets used for creating our dataset are publicly available and free for

research use. The only non-free (but also publicly available) assets are the raw material maps

from Adobe Stock [3] that cost less than US$500, while the material parameters annotated with

our scenes are freely available. Note that photorealistic appearances may also be achieved using

our tools with freely available materials, such as Substance Share [2] in Figure 6.2.

Dataset creation time

It takes 30s to annotate one scene layout and 1 minute to label materials for one object,

leading to 64 hours for labeling the whole dataset, which was accomplished by students with

knowledge of computer vision. Almost all rendering time is spent to render images and spatially-

varying per-pixel environment maps, which takes 600s and 100s per image, respectively, for our

custom renderer on a single 2080Ti GPU. In principle, we can render the dataset in 1 month

using 40 GPUs.
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6.3.7 Generalization to Another Dataset

To demonstrate that our framework can generalize to other datasets, we present our scene

reconstruction results based on scanned indoor scenes from the SUNRGBD dataset. Unlike

ScanNet [51], SUNRGBD only contains partial scans of the rooms with extremely incomplete

and sparse point clouds. Moreover, unlike Scan2CAD [8], SUNRGBD only has 3D bounding box

annotations for furniture locations and lacks full poses. Using this as initialization, we adjust the

pose of the CAD models by simply using grid search to minimize the chamfer distance between

the CAD model and the point cloud in the bounding box. Then we assign appropriate materials

and lighting to the CAD models, as described before. In our experience, differing qualities of

scans need to be addressed for geometry creation in different datasets, but our material and

lighting mapping transfer across datasets with minimal effort. In Figure 6.11, we visualize the

reconstruction results for SUNRGBD by rendering the created scenes from different viewpoints,

with different material assignments. The rendered images present diverse appearances with

plausible material and lighting assignments, with complex visual effects such as soft shadows

and specularity being correctly handled.

6.4 Applications

In this section, we will demonstrate the scene understanding and robotic applications

enabled by our OpenRooms framework and focus inverse rendering tasks in the next two chapters.

Light source detection

We use a ResNeXt101 [221] and FPN [120] pretrained model from Detectron2 [217]

to train an instance segmentation network for light source detection (windows and lamps). We

evaluate on OpenRooms and NYUv2 [188]. As shown in Table 6.2 and Figure 6.12, training on

OpenRooms boosts accuracy on NYUv2 testing by around 5%, for both bounding box regression

and segmentation.
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Table 6.2. Bounding box regression and mask AP on OpenRooms and NYU2 [188] for light
source (windows and lamps) detection.

Test on OpenRoom NYU2
Train on OR/NYU2 Yes/ No No/ Yes Yes/ Yes

bbox seg bbox seg bbox seg
AP(0.5:0.95) 80.2 70.1 17.1 15.3 23.5 21.6
AP-windows 85.8 63.2 11.9 12.7 20.5 20.6

AP-lamp 74.7 76.9 22.2 18.0 26.6 22.7

25��Z��ILQH�WXQLQJ�RQ�25� 1<8��Z��ILQH�WXQLQJ�RQ�25��1<8��Z�R�ILQH�WXQLQJ�RQ�25�

Figure 6.12. Light source detection on OpenRooms (OR) and NYUv2 [188]. Windows are
better detected with OR training.

Semantic segmentation

We use DeepLabV3 [42] and PSPNet(50) [239] to pre-train semantic segmentation

models on OpenRooms, then finetune and evaluate on NYUv2 [188] with 40 labels [72]. We also

compare the results pre-trained on InteriorNet [111] with the same number of training images.

As shown in Table 6.3 and Figure 6.13, results are comparable for the two models and register

improvements with greater number of images for the two pre-training datasets.

Robotics and Embodied Vision

To facilitate research in robotics and embodied AI, OpenRooms supports transforming a

rich 3D indoor scene model into an interactive environment, with realistic physical simulation

through PyBullet [1]. A URDF file describe physical properties, such as mass and friction

coefficients, for CAD models. This feature of OpenRooms establishes direct connections

between appearance and physical properties of the environment, to provide a learning testbed

for a range of topics including physics understanding from perception and policy generalization

across environment and configuration changes. As an example, Figure 6.14 shows a classroom

scenario where a robot from the iGibson dataset [185] is inserted into the scene and may perform
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OpenRooms PSPNet(50)

NYUv2 PSPNet(50) DeepLabV3

DeepLabV3

OpenRooms PSPNet(50)

NYUv2 PSPNet(50) DeepLabV3

DeepLabV3

Figure 6.13. Semantic segmentation on OpenRooms and NYUv2 [188] using PSPNet(50) [239]
and DeepLabV3 [42].

Table 6.3. Semantic segmentation trained on OpenRoom (OR) and InteriorNet (IN) [111] and
fine-tuned on NYU [188] with PSPNet and DeepLabV3, using different number of images.

PSPNet(50) [239] DeepLabV3 [42]
mIoU mAcc mIoU mAcc

10K 50K 10K 50K 10K 50K 10K 50K
IN 41.1 41.2 53.3 53.4 41.7 42.2 53.6 54.4
OR 40.8 41.1 53.0 52.5 42.5 42.9 54.5 55.1
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Figure 6.14. OpenRooms is integrated with a physics engine to create virtual scenes for
robotics, potentially enabling studies for navigation and rearrangement across varying lighting
and material, with possible correspondence to real scenes.

Figure 6.15. OpenRooms enables novel studies in navigation and rearrangement with material
and lighting variations.

a navigation task. Furniture in the scene can be rearranged, while the lighting and material

properties can also be changed. In Figure 6.15, we show navigation and rearrangement where

different frictions of coefficient for the same scene lead to different pushing outcomes. Since we
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create the scene from scans, correspondence is available to real scenes, which may be useful for

sim-to-real transfer studies [92].

6.5 Conclusion

We have proposed methods that enable user-generated photorealistic datasets for complex

indoor scenes, starting from existing public repositories of 3D scans, shapes and materials. We

illustrate the process on over 1000 indoor scenes from ScanNet. In contrast to prior works, we

provide high-quality ground truth for complex materials and spatially-varying lighting, including

direct and indirect illumination, light sources, per-pixel environment maps and visibility. We

also show our dataset can be integrated with physics engines and provide friction coefficients,

which suggest interesting future studies in navigation, rearrangement and sim-to-real transfer.

Our dataset and all tools used for its creation are publicly released.

In the next two chapters, we will introduce inverse rendering methods for indoor scenes

built based on the OpenRooms dataset. We will start with reconstructing SVBRDF and SV-

lighting of indoor scenes in Chapter 7 and then move one-step forward in Chapter 8, reconstruct-

ing the physically-based light sources to enable a full relighting of an indoor scene from a single

image.

Chapter 6 is based on the material as it appears in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2021 (“OpenRooms: An Open Framework for Photorealistic

Indoor Scene Datasets”, Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan

Liu, Yu-Ying Yeh, Rui Zhu, Nitesh Gundavarapu, Jia Shi, Sai Bi, Zexiang Xu, Hong-Xing Yu,

Kalyan Sunkavalli, Miloš Hašan, Ravi Ramamoorthi, Manmohan Chandraker). The dissertation

author was the primary investigators and author of this paper.
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Chapter 7

Indoor Scene Shape, SVBRDF and SV-
Lighting Reconstruction from a Single
Image

7.1 Introduction

In this chapter, we propose a deep inverse rendering framework for indoor scenes. From

a single RGB image of an arbitrary indoor scene, we obtain a complete scene reconstruction,

estimating shape, spatially-varying lighting, and spatially-varying, non-Lambertian surface

reflectance. This is a significant advance compared to object-level appearance capturing method

proposed in Chapter 4, because indoor scene present much more complex and diverse spatially-

varying lighting and material appearance. Our high-quality reconstruction enables a range

of photorealistic scene editing tasks. For example, in Figure 7.1 and Figure 7.2, we use our

reconstruction to enable photorealistic virtual object insertion in a real image. Note how the

inserted glossy spheres have realistic shading, shadowing due to scene occlusions and even

reflections from the scene.

Training deep neural networks requires large-scale, labeled training data. While datasets

of real-world geometry exist [51, 35], capturing real-world lighting and reflectance at scale is

non-trivial. We use the OpenRooms dataset built in Chapter 6. As have been discussed in Chapter

6, OpenRooms is currently the only dataset that provides a large number of photorealistic images

117



Real Input Image

Albedo Normal

Depth Roughness

Spatially-varying lighting Virtual object insertion

Material editing

Figure 7.1. Given a single image of an indoor scene, we recover its diffuse albedo, normals,
specular roughness, depth and spatially-varying lighting. By incorporating physical insights into
deep learning, our high-quality predictions support applications like object insertion and material
editing, even for specular materials and in real images. Note the completely shadowed sphere on
the extreme right.

Figure 7.2. Photorealistic object insertion enabled by our indoor scene SVBRDF and SV-lighting
prediction framework. The accompanying video [4] shows that our framework achieves close to
spatially-consistent lighting prediction even without any smoothness prior.

with high-quality ground truth spatially-varying materials and lighting, making it the best choice

for solving our indoor scene inverse rendering challenge.

An inverse rendering network would have to learn a model of image formation. The

forward image formation model is well understood, and has been used in simple settings like
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planar scenes and single objects [55, 118, 117, 121]. Indoor scenes are more complicated and

exhibit challenging light transport effects like occlusions and inter-reflections. We address this

by using a local lighting model—spatially-varying spherical gaussians (SVSGs). This bakes light

transport effects directly into the lighting and makes rendering a purely local computation. We

leverage this to design a fast, differentiable, in-network rendering layer that takes our geometry,

SVBRDFs and SVSGs and computes radiance values. During training, we render our predictions

and backpropagate the error through the rendering layer; this fixes the forward model, allowing

the network to focus on the inverse task.

To the best of our knowledge, our work is the first demonstration of scene-level inverse

rendering that truly accounts for complex geometry, materials and lighting, with effects like

inter-reflections and shadows. Previous methods either solve a subset of the problem or rely on

simplifying assumptions (Table 7.1). Despite tackling a much harder problem, we obtain strong

results on the individual tasks. Most important, by truly decomposing a scene into physically-

based scene factors, we enable novel capabilities like photorealistic 3D object insertion and

scene editing in images acquired in-the-wild. Figure 7.2 shows object insertion examples on

real indoor images, where our method achieves superior performance compared to [12, 61, 63].

Figure 7.1 shows a material editing example, where we replace the material of a surface in a

real image, while preserving spatially-varying specular highlights. Such visual effects cannot be

handled by previous intrinsic decomposition methods.

7.2 Related Work

The problem of reconstructing shape, reflectance, and illumination from images has

a long history in vision. It has been studied under different forms, such as intrinsic images

(reflectance and shading from an image) [15] and shape-from-shading (shape, and sometimes

reflectance, from an image) [79]. Here, we focus on single image methods.
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Table 7.1. A summary of scene-level inverse rendering. Karsch14’s parametric lights cannot han-
dle effects like shadowing [99]. Gardner17 [61] and Sengupta19 [181] predict a single lighting
for the scene, thus, cannot handle spatial variations. Li18’s shading entangles geometry and light-
ing [114]. Barron13 uses RGBD input and non-physical image formation [12]. Azinović19 [10]
needs multiple images with 3D reconstruction as input. Our spherical Gaussians representation
for local lighting is demonstrably better than spherical harmonics in Barron13 [12], Sengupta19
[181] and Garon19 [63]. Song19 [189] and several others do not handle complex SVBRDF.

Karsch
2014

Barron
2013

Eigen
2015

Gardner
2017

Li
2018

LeGendre
2019

Azionvi�́�
2019

Garon
2019

Song
2019

Sengupta
2019

Ours

Geometry ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Reflectance Diffuse Diffuse ✗ ✗ Diffuse ✗ Microfacet ✗ ✗ Phong Microfacet

Lighting Local Local ✗ Global ✗ Global Local Local Local Global Local

Single objects

Many inverse rendering methods focus on reconstructing single objects. Even this

problem is ill-posed and many methods assume some knowledge of the object in terms of

known lighting [154, 91] or geometry [123, 175]. Recent methods have leveraged deep networks

to reconstruct complex SVBRDFs from single images of planar scenes [55, 117], objects of

a specific class [121] or homogeneous BRDFs [136]. Other methods address illumination

estimation [64]. We tackle the much harder case of large-scale scene modeling and do not

assume scene information. Barron and Malik [13] propose an optimization-based approach

with hand-crafted priors to reconstruct shape, Lambertian reflectance, and distant illumination

from a single image. In Chapter 4, we tackle the same problem with a deep network and an

object-specific rendering layer. Extending these methods to scenes is non-trivial because the

light transport is significantly more complex.

Indoor scenes

Previous work recognizes materials in indoor scenes [19] and decomposes indoor images

into reflectance and shading layers [17, 114]. Techniques have also been proposed for single

image geometric reconstruction [57] and lighting estimation [78, 61]. Those methods estimate

only one scene factor. Barron and Malik [12] reconstruct Lambertian reflectance and spatially-
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Figure 7.3. Our network design consists of a cascade, with one encoder-decoder for material and
geometry prediction and another one for spatially-varying lighting, along with a physically-based
differentiable rendering layer and a bilateral solver for refinement.

varying lighting but require RGBD input. Karsch et al. [98] estimate geometry, Lambertian

reflectance and 3D lighting, but rely on extensive user input to annotate geometry and initialize

lighting. An automatic, rendering-based optimization is proposed in [99] to estimate all these

scene factors, but using strong heuristics that are often violated in practice. Recent deep networks

also do not account for either spatially-varying lighting [181] or complex SVBRDF [242]. In

contrast to all those methods, our network learns to predict geometry, complex SVBRDFs and

spatially-varying lighting in an end-to-end fashion.

7.3 Network Design

Estimating spatially-varying lighting, complex SVBRDF and geometry from a single

indoor image is an extremely ill-posed problem, which we solve using priors learned by our

physically-motivated deep network (architecture shown in Figure 7.3). Our network consists of

cascaded stages of a SVBRDF and geometry predictor, a spatially-varying lighting predictor and

a differentiable rendering layer, followed by a bilateral solver for refinement.

Material and geometry prediction

The input to our network is a single gamma-corrected low dynamic range image I.

Inspired by Chapter 3 and 4, we use a single encoder to capture correlations between material
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and shape parameters, obtained using four decoders for diffuse albedo (A), roughness (R),

normal (N) and depth (D). Skip links are used for preserving details. Then the initial estimates

of material and geometry are given by

A,N,R,D = MGNet0(I). (7.1)

Spatially Varying Lighting Prediction

Inverse rendering for indoor scenes requires predicting spatially varying lighting for

every pixel in the image. Directly using an environment map as the lighting representation leads

to a very high dimensional output space, that causes memory issues and unstable training due

to small batch sizes. Spherical harmonics are a compact lighting representation that have been

used in recent works [94], but do not efficiently recover high frequency lighting necessary to

handle specular effects [167, 16]. Instead, we follow pre-computed radiance transfer methods

[204, 70, 223] and use isotropic spherical Gaussians that approximate all-frequency lighting

with a smaller number of parameters. As have been introduced in Chapter 2, we can model the

lighting as a spherical function L(ω) approximated by the sum of spherical Gaussian lobes:

L(ω) =
N

∑
n=1

wn exp(λn(dnω −1)) (7.2)

where ω and {dn} are vectors on the unit sphere, {wn} controls RGB color intensity and {λn}

controls the bandwidth.

Each spherical Gaussian lobe is represented by 6 dimensional parameters {wn,λn,dn}.

Figure 2.4 compares the images rendered with a 12-spherical Gaussian lobes approximation (72

parameters) and a fourth-order spherical harmonics approximation (75 parameters). It is evident

that even using fewer parameters, the spherical Gaussian lighting performs better, especially

close to specular regions.

Our novel lighting prediction network, LightNet0(·), accepts predicted material and

geometry as input, along with the image. It uses a shared encoder and separate decoders to
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predict {wn},{λn},{dn}.

{wn},{λn},{dn}= LightNet0(I,A,N,R,D). (7.3)

Our predicted lighting is HDR, which is important for applications like relighting and

material editing.

Differentiable rendering layer

Our OpenRooms dataset in Chapter 6 provides ground truth for all scene components.

But to model realistic indoor scene appearance, we additionally use a differentiable in-network

rendering layer to mimic the image formation process, thereby weighting those components in

a physically meaningful way. We implement this layer by numerically integrating the product

of SVBRDF ρ and spatially-varying lighting L over the hemisphere. Let ω j j′ = ω(φ j,θ j′) be

a set of light directions sampled over the upper hemisphere, with ωo the view direction. The

rendering layer computes diffuse Id and specular images Is as:

Id = ∑
j, j′

ρa(ωo,ω j j′;A)L
(
ω j j′

)
cosθ jdω, (7.4)

Is = ∑
j, j′

ρs(ωo,ω j j′;R)L
(
ω j j′

)
cosθ jdω, (7.5)

where dω is the differential solid angle. ρa and ρs are the Lambertian term and the specular term

of the microfacet BRDF model defined in (2.6). We sample 16×8 lighting directions. While

this is relatively low resolution, we empirically find, as shown in Figure 2.4, that it is sufficient

to recover most high frequency lighting effects.

Loss Functions

Our loss functions incorporate physical insights. We first observe that two ambiguities

are difficult to resolve: the ambiguity between color and light intensity, as well as the scale

ambiguity of single image depth estimation. Thus, we allow the related loss functions to be scale
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invariant. For material and geometry, we use the scale invariant L2 loss for diffuse albedo (La),

L2 loss for normal (Ln) and roughness (Lr) and a scale invariant log-encoded loss for depth

(L (d)) due to its high dynamic range:

Ld = ∥log(D+1)− log(cdD̂+1)∥2
2, (7.6)

where cd is a scale factor computed by least squares regression. For lighting estimation, we

supervise with the final reconstructed environment maps (Ll). We also add a a scale invariant L2

rendering loss:

Lren = ||(I− caIa − csIs)||22 (7.7)

where Id and Is are rendered using (7.4) and (7.5), respectively, while ca and cs are positive scale

factors computed using least square regression. The final loss function is a weighted summation

of the proposed losses:

kaLa + knLn + krLr + kdLd + klLl + krenLren (7.8)

Refinement using bilateral solver

We use an end-to-end trainable bilateral solver to impose a smoothness prior [14, 114].

The inputs include the prediction, the estimated diffuse albedo A as a guidance image and

confidence map C. We train a shallow network with three sixteen-channel layers for confidence

map predictions. Let BS(·) be the bilateral solver and BSNetX(·) be the network for confidence

map predictions where X ∈ {A,R,D}. We do not find refinement to have much effect on normals.

The refinement process is:

CX = BSNet(X,I), X ∈ {A,R,D} (7.9)

X∗ = BS(X;CX,A) (7.10)
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Synthetic Input Albedo0 Albedo1 AlbedoBS1 Normal0 Normal1

Roughness0

Albedo Gt Normal Gt

Rendered Roughness1 RoughnessBS1 Depth0 Depth 1 Roughness Gt Depth Gt 

 Synthetic Input Albedo0  Albedo1 AlbedoBS1 Normal 0  Normal1

Rendered Roughness0 Roughness1 RoughnessBS1 Lighting 0 Lighting 1

Albedo Gt Normal Gt

Lighting GtRoughness Gt

Figure 7.4. Results on synthetic images. Given a single image, our estimated albedo, normals,
depth, roughness and lighting are close to ground truth. We observe that cascade structure helps
remove noise and increase details, while bilateral solver can enhance smoothness prior.

where we use (∗) for predictions after refinement.

Cascade Network

Akin to recent works on high resolution image synthesis [97, 43] and inverse rendering in

Chapter 4, we introduce a cascaded network that progressively increases resolution and iteratively

refines the predictions through global reasoning. We achieve this by sending both the predictions

and the rendering layer applied on the predictions to the next cascade stages, MGNet1(·) for

material and geometry and LightNet1(·) for lighting, so that the network can reason about their

differences. Cascade stages have similar architectures as their initial network counterparts.

7.4 Experiments

We now conduct studies on the roles of various components in our pipeline, compare to

prior works and illustrate applications such as high quality object insertion and material editing

in real images that can only be enabled by our holistic solution to inverse rendering.
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Figure 7.5. Results on real images, for single-image depth, normals, spatially-varying material
and lighting. Improvements are observed due to the cascade structure and bilateral solver.

Table 7.2. Ablation study for the network architecture on our proposed dataset. We report the
scale invariant L2 loss for albedo (A), L2 loss for normal (N), scale invariant log L2 loss for depth
(D), L2 loss for roughness (R) and scale invariant log(x+1) L2 loss for per-pixel lighting (L).
We observe both cascade structure and bilateral solver can improve the prediction accuracy.

A(10−3) N(10−2) D(10−2) R(10−2) L
Cascade0 9.99 4.51 5.18 6.59 0.150
Cascade1 9.43 4.42 4.89 6.64 0.146

Bilateral solver 9.29 - 4.86 6.57 -

7.4.1 Analysis of Network and Training Choices

We study the effect of the cascade structure, joint training and refinement. Quantitative

results for material and geometry predictions on the proposed dataset are summarized in Table

7.2, Figure 7.4 and Figure 7.5

Cascade

The cascade structure leads to clear gains for shape, BRDF and lighting estimation by

iteratively improving and upsampling our predictions in Tables 7.2 and Figure 7.4. This holds
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Table 7.3. Left: intrinsic decomposition on IIW dataset [18]. Right: normal and depth prediction
on NYU dataset [188].

Training WHDR↓
Ours Ours + IIW 16.4

Li18[114] CGI + IIW 17.5
Sen.19[181] CGP + IIW 16.7

Method Mean(◦)↓ Med.(◦)↓ Depth↓
Ours 25.3 18.0 0.171

Sen.19[181] 21.1 16.9 –
Zhang17[238] 21.7 14.8 –

for real data too, as shown in Figure 7.5. We observe that the cascade structure can effectively

remove noise and preserve high frequency details for both materials and lighting. The errors in

our shape, material and lighting estimates are low enough to photorealistically edit the scene to

insert new objects, while preserving global illumination effects as shown in Figure 7.2.

Refinement

Finally, we study the impact of the bilateral solver. Quantitative improvements over the

second cascade stage in Table 7.2 are modest, which indicates that the network already learns

good smoothness priors by that stage. But we find the qualitative impact of the bilateral solver to

be noticeable on real images (for example, diffuse albedo in Figure 7.5), thus, we use it in all our

real experiments.

Qualitative examples

In Figure 7.4 and Figure 7.5, we use a single input image from our synthetic test set to

demonstrate depth, normal, SVBRDF and spatially-varying lighting estimation. The effectiveness

is further illustrated by low errors with respect to ground truth Figure 7.4.

7.4.2 Comparisons with Previous Works

We address the problem of holistic inverse rendering with spatially-varying material and

lighting which has not been tackled earlier. Yet, it is instructive to compare our approach to prior

ones that focus on specific sub-problems.
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[Barron et al. 13] [Gardner et al. 17] [Garon et al. 19] Ours Ground-truth

Figure 7.6. Comparisons of object insertion on real images of Garon et al. [63]. Our overall
appearances look more realistic. For example, note the bunny under bright light (top right) in the
top row and in the shadow (bottom middle) in bottom row. Also see Table 7.4.

Figure 7.7. Material editing on real images. Left is the original image and right is the rendered
one with the material replaced in a part of the scene. We observe that the edited material looks
photorealistic and even high frequency details from specular highlights and spatially-varying
lighting are rendered well.

Intrinsic decomposition

We compare our method with two prior works Li18 [114] and Sen.19[181] on the IIW

dataset [17] for intrinsic decomposition evaluation. The results are tabulated in Table 7.3, left.

Our method is comparable to prior state-of-the-art based on artist-created SUNCG dataset [191].

Depth and normal estimation

We fine-tune our network, trained on our synthetic dataset, on NYU dataset [188]. The

test error on NYU dataset is summarized in Table 7.3, right. Zhang et al. [238] achieve state-

of-the-art performance for normal estimation using a more complex fine-tuning strategy and
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Table 7.4. User study on object insertion indicating the % of pair-wise comparisons where
human annotators thought we outperformed an alternative method; we outperform all prior
methods.

Barron13 [12] Gardner17 [61] Garon19 [63] Li20 [115]
Ours vs. 88.19% 66.16% 56.53% 54.77%

with more than six times as much training data. Although we do not achieve state-of-the-art

performance on this task, it’s not our main focus. Rather, we aim to show the wide utility of

our proposed dataset and demonstrate estimation of factors of image formation good enough to

support photo-realistic augmented reality applications.

Object insertion

Given a single real image, we insert a novel object with photorealistic shading, specularity

and global light transport effects. This is a crucial ability for high quality augmented reality

applications. To simplify the demonstration, we estimate the shape, material and lighting using

our cascade network, then select a planar region of the scene to insert an object. We relight

the object using the estimated lighting. It may be observed on qualitative examples in Figures

7.1), 7.2, 7.6 (all containing real images) that even complex visual effects such as shadows and

reflections from other parts of the scene are faithfully rendered on the inserted object.Further,

[63] provides a dataset of 20 real indoor images with ground truth spatially-varying lighting. For

each image, we render a virtual bunny into the scene lit by ground-truth or predicted lighting

(Figure 7.6). We also performed an AMT user study on these images. Following the protocol

in [63], users are shown image pairs, and asked to pick which is more realistic. As shown in

Tab. 7.4, we outperform prior methods by a large margin.

Material Editing

Editing material properties of a scene using a single photograph has applications for

interior design and visualization. Our disentangled shape, material and lighting estimation allows

rendering new appearances by replacing materials and rendering using the estimated lighting.

In Figure 7.7 (all real images), we replace the material of a planar region with another kind of
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material and render the image using the predicted geometry and lighting, whose spatial variations

are clearly observable. We can see the specular highlight in the is rendered after changing to

specular materials. This is not possible for intrinsic decomposition methods, which cannot

determine incoming lighting direction.

7.5 Conclusion

We have presented the first holistic inverse rendering framework that estimates disentan-

gled shape, SVBRDF and spatially-varying lighting, from a single image of an indoor scene.

Insights from computer vision, graphics and deep convolutional networks are utilized to solve

this challenging ill-posed problem. A GPU-accelerated renderer is used to synthesize a large-

scale, realistic dataset with complex materials and global illumination. Our per-pixel SVSG

lighting representation captures high frequency effects. Our network imbibes intuitions such as a

differentiable rendering layer, which are crucial for generalization to real images. Design choices

such as a cascade structure and a bilateral solver lead to further benefits. Despite solving the

joint problem, we obtain strong results on various sub-problems, which highlights the impact of

our dataset, representations and network. We demonstrate object insertion and material editing

on real images that capture global illumination effects, motivating applications in augmented

reality and interior design.

However, the framework proposed in this chapter cannot be used for indoor scene light

editing, such as turning off a lamp or open a virtual window. The essential reason is because

our (SVSG) spatially-varying lighting representation does not separate direct lighting and global

illumination. While this facilitate virtual object insertion, it is not sufficient for scene editing

applications with non-local changes, such as light editing, where the global illumination needs to

be modeled and edited explicitly. We will present our solution in the next chapter.

Chapter 7 is based on the material as it appears in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2020 (“Inverse Rendering for Complex Indoor Scenes: Shape,
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Spatially-Varying Lighting and SVBRDF from a Single Image”, Zhengqin Li, Mohammad

Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, Manmohan Chandraker). The dissertation author

was the primary investigators and author of this paper.
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Chapter 8

Indoor Scene Light Sources Reconstruc-
tion and Editing with Complex Light
Transport

8.1 Introduction

Light sources of various shapes, colors and types, such as lamps and windows, play an im-

portant role in determining indoor scene appearances. Their influence leads to several interesting

phenomena such as light shafts through a window on a sunlit day, highlights on specular surfaces

due to incandescent lamps, interreflections from colored walls, or shadows cast by furniture in

the room. Correctly attributing those effects to individual visible or invisible light sources in

a single image enables abilities for photorealistic augmented reality that have previously been

intractable — virtual furniture insertion under varying illuminations with consistent highlights

and shadows, virtual try-on of wall paints with accurate global interreflections, or morphing a

room under fluorescent lights into one reflecting the sunrise through a window (Figure 8.1).

In Chapter 7, we estimate lighting in indoor scenes, but achieving the above outcomes

requires estimating and editing light sources. While both are highly ill-posed for single-image

inputs, we posit that the latter presents fundamentally different and harder challenges. First, it

requires disentangling the individual contributions of both visible and invisible light sources,

independent of the effects of geometry and material. Second, it requires reasoning about
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Figure 8.1. We present the first method that can edit indoor lighting from a single LDR image.
Given the input (a), our framework first estimates physically-based light source parameters, for
both visible and invisible lights, and then renders their direct contributions and interreflections
through a neural rendering framework (b). Our framework can turn off visible and invisible light
sources (c and d) with results that closely match the ground truths (c.1 and d.1). It can insert
virtual objects at arbitrary locations (e) with consistent changes of highlight and shadow and edit
materials with color bleeding being correctly rendered, as shown in the rendered image (f) and
shading (f.1). It can also insert virtual lamps (g and h) and open a virtual window to let sunlight
(i.1 and j.1) shine into the room.

long-range effects such as interreflections, shadows and highlights, while also being precise

about highly localized 3D shapes, spectra, directions and bandwidths of light sources, where

minor errors can lead to global artifacts due to the above distant interactions. Third, it requires

photorealistic re-rendering of the scene despite only partial observations of geometry and material,

while handling complex light transport.

We solve the above challenges by bringing together a rich set of insights across physically-

based vision and neural rendering. Given a single LDR image of an indoor scene, with predicted

depth map and masks for visible lights, we propose an inverse rendering method to estimate a

parametric model of both visible and invisible light sources (in addition to a per-pixel SVBRDF).

Beyond a 3D localization of light sources, our modeling accurately supports their physical prop-

erties such as geometry, color, directionality and fall-off. Next, we design a neural differentiable

renderer that judiciously uses classical methods and learned priors to synthesize high-quality

images from predicted reflectance and light sources. We accurately model long-range light
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Figure 8.2. An illustration of desiderata for photorealistic single-image scene editing, where in
contrast to prior works, global effects are handled by our method through explicit estimation of
light sources. These include the global influence of inserted objects to create distant shadows
and interreflections, edited materials leading to color bleeding on far surfaces, light shafts by
opening a window or darkening of the room by turning off a lamp.

transport through a physically-based Monte Carlo ray tracer with a learned shadow denoiser

to render direct irradiance and visibility, which combines with an indirect irradiance network

to predict local incoming lighting at every pixel. Our neural renderer injects the inductive bias

of physical image formation in training, while allowing rendering and editing of global light

transport from partial observations, as well as optimization to refine editing outputs.

Our parametric light source estimation and physically-based neural renderer allow full

scene relighting with intuitive editing of multiple lamps and windows. In Figure 8.1(c,d), we turn

off individual visible and invisible lamps. Beyond standard object insertion of prior works (e), we

visualize inserted objects by “turning on” a new lamp (g,h) or “opening” a window with incoming

sunlight (i,j). In each case, global effects such as highlights, shadows and interreflections are

accurately created for the entire scene by the neural renderer, and are also properly handled when

we edit material properties of scene surfaces (f). In the accompanying video [4], we show that

these editing effects are consistent as we move virtual objects and light sources, or gradually

change materials.
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Table 8.1. Compared to prior works on inverse rendering, ours enables full scene relighting with
global effects for inserted objects, edited materials or light sources. Also see Figs. 8.1 and 8.2.

Input
Object insertion Material editing Light editing

Position Non-local Specular Non-local Lamp Window

Auto, Karsch 14 Single Any ✓ ✗ ✗ ✓ ✗
CGI, Li 18 Single ✗ ✗ ✗ ✗ ✗ ✗

DeepPara, Gardner 19 Single Any ✓ ✗ ✗ ✗ ✗
InvIndoor, Li 20 Single Surface ✗ ✓ ✗ ✗ ✗

Lighthouse, Srinivasan 20 Stereo Any ✗ ✗ ✗ ✗ ✗
FreeView, Philip 21 Multi. ✗ ✗ ✗ ✗ ✓ ✗

Ours Single Any ✓ ✓ ✓ ✓ ✓
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Figure 8.3. Overview of our method. We start from an RGB image. The depth map and visible
light source masks can be estimated from the RGB image or given as additional inputs. We
estimate per-pixel material parameters (albedo, normal, roughness) using a network (blue). Next,
we estimate light sources (windows and lamps, visible and invisible) using four networks (green).
At this point, we can edit the scene representation (lights, materials, depth). To render the edited
representation back into an image, we use a neural renderer consisting of three modules: direct
shading, shadow (yellow), and indirect shading module (orange). The result is per-pixel shading
(diffuse irradiance), which can be turned into per-pixel lighting (a grid of incoming radiance
environment maps) using another network (red).

8.2 Related Work

Lighting estimation and representation.

Many single image approaches estimate lighting globally as an environment map [52,

61, 109], which cannot express the complex spatial variation of indoor illumination. Some
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recent works model spatial variations as per-pixel environment maps [13, 243, 63], including our

method in Chapter 7, or volumes [193, 208]. However, these are non-parametric representations,

which can mainly be used for object insertion, while we estimate editable windows and lamps

(visible and invisible) with physically meaningful properties (such as position, direction, shape,

size and intensity). Gardner et al. [62] predict a fixed number of spherical Gaussian lobes to

approximate indoor light sources but do not handle light editing or its global effects. Zhang

et al. recover the geometry and radiance of an empty room but cannot handle furniture inside

[235]. Karsch et al. reconstruct geometry, reflectance and lighting but do not model windows and

invisible scene contributions, require extensive user inputs [98] or face artifacts from imperfect

heuristics or optimization [99]. In contrast, our physically-based neural renderer synthesizes

photorealistic images with complex light transport, to enable relighting, light source insertion

and removal from a single image.

Neural rendering and relighting.

NeRF [137] and other volumetric neural rendering approaches have achieved photo-

realistic outputs, but usually limited to view synthesis [137, 232, 122]. A few recent works

[23, 22, 27, 192, 220] handle relighting, but use a per-object optimization from a large set of

images. Philip et al. [160] demonstrate relighting for outdoor scenes but require multiple images.

Concurrent to our work, Philip et al. [161] consider indoor relighting, but require a large number

of high-resolution RAW images, cannot reconstruct complex directional sunlight and do not

support material editing and object insertion with their neural renderer. As shown in Figure 8.2

and Table 8.1, our modeling and neural rendering enable applications not possible for prior

works, such as light source insertion and removal, or insertion of virtual objects and changing of

materials with non-local effects, with a single LDR image.
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8.3 Material and Light Source Prediction

Our overall framework is summarized in Figure 8.3. In this section, we describe our

novel, physically meaningful and editable representations, while Sec. 8.4 describes our neural

renderer that is differentiable with respect to light sources to facilitate training and editing of

complex light transport.

Per-pixel normal and material prediction

We first train a U-net similar to [115] to predict material parameters per pixel of the input

image: diffuse albedo (A), normal (N) and roughness (R), following the SVBRDF model of [95].

The input to the network is a 240×320 LDR image (I) and its corresponding depth map (D),

which in our case can be predicted by a state-of-the-art monocular depth prediction network [169].

We predict the normals directly, instead of computing them as the normalized gradient of depth

to avoid artifacts and discontinuities. Thus, our prediction is given by {A,N,R}= MNet(I,D).

8.3.1 Light Source Representation

To enable indoor scene relighting from a single LDR image, we need light source

representations that are editable, expressive enough for different types of lighting and realistic

enough for convincing rendering of complex scenes. We model the radiance and geometry of two

types of common indoor light sources with very different properties: (a) windows that usually

cover large areas and may induce strong directional lighting from the sun, and (b) lamps that

tend to be small but with more complex geometry.

Radiance

The emitted radiance of lamps can be modeled by a standard Lambertian model, where

every surface point with intensity w emits light uniformly into its hemisphere. However, the

radiance distribution of windows can be strongly directional due to sunlight coming through

on a clear day, which is important for capturing realistic indoor lighting but often neglected by

prior methods [196, 161, 193]. A recent work [208] models directional lighting with a single
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Visible window

Synthetic image 1 SG, MIS, 200 spp GT direct shading

3 SG, MIS, 200 spp3 SG, Area, 2000 spp3 SG, Area, 200 spp

L1 Err = 0.282

L1 Err = 0.209L1 Err = 0.414L1 Err = 0.985

Figure 8.4. Comparisons of direct shading rendered from different window representations with
different sampling methods. We show that our 3 SGs models ambient lighting much better than
a single SG, as shown in the green circle, and MIS sampling leads to much less noise compared
to sampling window area uniformly.

spherical Gaussian (SG), but as shown in Figure 8.4, cannot recover ambient effects leading to

suboptimal rendering. Instead, we model the directional distribution of window radiance with 3

SGs corresponding to the sun, sky and ground. For a ray in direction ω that hits the window, its

intensity is:

LW(ω) = ∑
n∈{sun, sky, grd}

wn exp
(
λn(dn ·ω −1)

)
. (8.1)

Each SG is defined by three parameters SGn = (wn,λn,dn), for intensity, bandwidth and direction

of lighting. Figure 8.4 shows that our representation with multiple importance sampling leads to

direct shading close to the ground-truth.

Geometry

Window geometry can be simply approximated by a rectangle {c,x,y}, where c is the

center and x,y are the two axes. However, indoor lamps present more diverse geometry. Naively

representing a lamp with a 3D bounding box {c,x,y,z} works for invisible lamps in the scene, but

it often leads to artifacts for visible lamps, as the imperfect shape generates incorrect highlights.

Therefore, we carefully design a new visible lamp representation as shown in Figure 8.5. We first
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Figure 8.5. A demonstration of our visible lamp geometry representation. Our representation
for visible lamps is much less likely to cause highlight artifacts and wrong shadows compared to
a standard 3D bounding box.

identify the visible surface based on the depth D and lamp segmentation mask ML, reconstruct

the invisible surface by reflecting the visible surface with respect to the lamp center c and then

add the boundary area. As shown in Figure 8.5, our new representation can effectively constrain

the lamp geometry and achieve realistic rendering without highlight artifacts for difficult real

world examples.

8.3.2 Light Source Prediction

We use four neural networks to predict visible and invisible light sources for the lamp

and window categories. For visible light sources, the inputs to the network include extra instance

segmentation masks for visible lamps and windows that are turned on in the scene. We can

obtain the instance segmentation mask by either fine-tuning a Mask R-CNN[75] for our dataset,

combined with a graph-cut based post processing to refine the boundaries, or manually draw the

masks. Let MW be a mask for a window and ML be a mask for a lamp. For each visible window
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and lamp, we have

{c,w} = VisLampNet(I,A,D,ML),

{c,x,y,SGsun,SGsky,SGgrd} = VisWinNet(I,A,D,MW).

We assume one invisible lamp as a 3D bounding box and one invisible window. These are

deliberate simplifications: while invisible lights can contribute significant illumination, they are

hard to infer using only indirect cues. We limit the expressivity of the representation to account

for this ill-posedness and find it to be a good choice in practice1. When a scene has no invisible

light sources, their predicted intensity is close to zero, as shown in Figure 8.3 and Figure 8.8. To

learn a better separation of the contributions of visible and invisible light sources, we provide a

mask M = ∑WMW+∑LML of all visible sources to the invisible light estimation networks:

{c,x,y,z} = InvLampNet(I,A,D,M),

{c,x,y,SGsun,SGsky,SGgrd} = InvWinNet(I,A,D,M).

8.4 Neural Rendering Framework

In order to achieve photorealistic editing of indoor lighting, we need a rendering frame-

work that can handle complex light transport typical for indoor scenes, including sharp directional

lighting, hard and soft shadows, global illumination and specular materials. While existing dif-

ferentiable path tracers can handle all these effects, they are computationally expensive. Even

more importantly, they require the full reconstruction of material, geometry and lighting of the

entire indoor scene, including its invisible parts.

To address these limitations, we introduce a neural rendering framework that combines

the advantages of physically-based rendering and learning-based rendering, which works with

1The real scene in Figure8.1 has four invisible lamps and the last real scene in Figure 8.6 has 2 invisible lamps.
In both cases, our method achieves reasonable approximation with one single invisible lamp.
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our novel light source representations, does not require reconstruction of invisible scene sur-

faces, achieves high performance, and supports differentiability. Our framework, illustrated in

Figure 8.3 (right), has 3 modules:

1. A physically-based direct shading module that computes the direct irradiance at a surface

point from each light source through Monte Carlo sampling, with shadows rendered by casting

rays against a mesh constructed from depth information.

2. An indirect shading module that predicts indirect shading (global illumination) from direct

shading.

3. A per-pixel lighting reconstruction module that turns the shading, materials and geometry pre-

dictions into per-pixel lighting (i.e. a spatially-varying grid of incoming radiance environment

maps) which can be used to render specular materials and insert objects.

Thus direct diffuse shading and occlusion is computed using classical techniques, while

global illumination is added through neural rendering. The reason for this separation is that in

the absence of full scene reconstruction (i.e. invisible parts), global illumination can only be

computed heuristically, which is a task suited for neural networks. Conversely, direct illumination

and non-local shadowing can be efficiently computed by standard techniques, but remain tricky

for neural methods.

8.4.1 Direct Shading Rendering Module

We use inspiration from physically-based rendering [159] to sample the surface of each

light source and connect those samples to the scene points. Formally, let p be a shading point

and q be a point uniformly sampled on the light surface, with p→q the unit vector from p to q.

The direct shading H j caused by light source j is computed as:

H j(p) =
area( j)

N j
∑
q

L j(q→p)max(cosθp cosθq,0)
||q−p||22

, (8.2)
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Table 8.2. Shadow rendering error with or w/o network inpainting.

Ray traced Ours
L2 0.011 0.005

where cosθp = p→q ·N(p), cosθq = q→p ·N(q) and N j is the number of samples for light

source j. While our Monte Carlo estimation in (8.2) converges fast for lamps, it is not optimal for

high-frequency directional sunlight coming through windows, since only when q→p aligns with

the sun direction, will the L(q→p) return a significant contribution. To tackle this issue, with

Pr(l) the probability of sampling direction ω from SGsun, we also generate samples according

to the angular distribution of SGsun:

H j(p) = ∑
l

L j(ω)I j(ω)max(cosθp,0)
N jPr(l)

, (8.3)

where I j(ω) is an indicator function to detect if ray ω starting from p can hit the window plane.

Note that both (8.2) and (8.3) are unbiased but with different variances, which we combine

with multiple importance sampling (MIS) [205]. Figure 8.4 compares the direct shading of a

window, where we observe that our MIS method can render high-quality direct shading with

fewer samples.

8.4.2 Depth-based Shadow Rendering Module

Recall that in the above shading computation, H j, j ∈ {W} ∪ {L} does not consider

visibility and therefore cannot handle shadows. We could check visibility by ray-tracing during

the Monte Carlo sampling above, but this causes artifacts due to incomplete geometry, as shown

in Figure 8.6. We instead design a depth-based shadow rendering framework that combines

Monte Carlo ray tracing with deep network inpainting and denoising. Note that our shadow

modules are not differentiable, as this is not necessary for our application: we train our network

on a synthetic dataset, where it is provided with the ground-truth supervision of direct shading

without the shadow effects, so back-propagation of error through the shadow renderer is not used
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Figure 8.6. Our depth-based shadow rendering results. Direct rendering shadows from depth
with ray tracing leads to boundary artifacts as shown in the red color in the third column. Our
trained deep network successfully fixes the boundary issues and achieve high-quality shadows
for both real and synthetic scenes, leading to re-rendered images that closely match the input
images.

during training.

Our approach first creates a mesh from the depth map, and then uses a GPU-based

ray-tracer to cast shadow rays from surfaces to light sources. To address the boundary artifacts,

we first modify the renderer to detect the occlusion boundaries, then train a CNN to fill in the

shadow at these regions. This hybrid approach outperforms both pure ray-tracing and a CNN

trained to clean up the entire ray-traced shadow image. Formally, let SInit be the initial shadow

image rendered from depth map D and let MS be the mask for occlusion boundaries. We have:

S = MS ·DShdNet(SInit,D,N)+(1−MS) ·SInit. (8.4)

The total direct shading from all sources is Hd = ∑ j H jS j. As seen in Figure 8.1, 8.6 and 8.7, our

framework can render higher quality soft and hard shadows that are closer to the ground-truths

compared to a standard ray tracer. Table 8.2 shows that our CNN reduces the shadow error by
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Our rendered image
with interreflection

L1 Err = 0.043L1 Err = 0.169

L1 Err = 0.042L1 Err = 0.115

L1 Err = 0.043

GT

Figure 8.7. Comparisons of images directly rendered from standard path tracer using partial
observation from a single view and from our neural rendering framework. We show quantitatively
and qualitatively that our renderer renders both direct and indirect illumination accurately, while a
path tracer cannot model indirect illumination without complete reconstruction of scene geometry
and materials and has artifacts near the occlusion boundaries.

more than 50%.

8.4.3 Indirect Shading Prediction

To render indirect shading with a standard physically-based renderer, we would need

to reconstruct invisible geometry and materials, which is challenging. Instead, we train a 2D

CNN to predict indirect shading in screen space. A similar idea has been adopted by recent

work [222]. We use a network with large receptive field covering the entire image to model

non-local inter-reflections. Our indirect shading is HInd = IndirectNet(Hd,D,N,A), which is

added to the direct shading for the final shading prediction. In Figure 8.7, we compare the

indirect illumination rendered by our network and by a standard path tracer by first building a

mesh from the depth map and then texturing the mesh with predicted materials. Quantitative and

qualitative results on real and synthetic examples show that our neural rendering layer renders

both direct and indirect illumination accurately, while a standard path tracer cannot handle

indirect illumination with partial geometry, leading to an image with similar intensity as one
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Figure 8.8. Comparisons of light source prediction and rendering before and after the opti-
mization on a real image. Our differentiable neural rendering framework allows us to use the
rendering loss to learn and refine light source intensity, angular distribution and direction, leading
to more realistic rendering of the scene.

with direct illumination only.

8.4.4 Predicting Lighting From Shading

The above framework cannot yet handle specular reflectance, which motivates us to add

another network to infer spatially and directionally varying incoming lighting L, taking the above

shading (irradiance) H as input. We follow [115] to predict a grid of environment maps. We use a

similar network architecture but replace the input image I with the shading H so that the predicted

local lighting is a function of our lighting representation: L = LightNet(H,M,A,N,R,D). The

resulting incoming radiance field L can be used to render specular materials, as shown in Sec. 8.6.

8.5 Implementation Details

Dataset

We train our framework on OpenRooms proposed in Chapter 6, which is a large-scale

synthetic indoor dataset for inverse rendering. It provides all ground truths for all our outputs,

including some unique ones such as light source geometry, per-light source shadings (with and

w/o occlusion) and per-light source shadows. Thus, it allows us to train each module separately,
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which significantly simplifies the training.

Optimized light source parameters

We augment the OpenRooms dataset with optimized light source parameters SGsun,

SGsky and SGgrd for windows, leading to sharper and more interpretable predictions. To compute

those, we minimize the L1 difference between the rendered direct shading without occlusion H j,

j ∈ {W} and its corresponding ground truth, through our differentiable Monte Carlo rendering

module (Sec 8.4.1). The optimized direct shading is seen in Figure 8.4 to closely match the

ground truth.

Losses

To train MNet, we use L2 loss on the albedo, normal and roughness. The loss function

for light source prediction is the sum of a rendering loss (Lren), a geometry loss (Lgeo), and a

light source loss (Lsrc). For Lren, we define it to be the L1 distance between the rendered direct

shading H j and its ground-truth direct shading, both without shadows applied so that we can

avoid the relatively time-consuming shadow rendering during training (Table 8.3). For Lgeo, we

uniformly sample sets of points {q} from the ground-truth and predicted light source geometry

to compute their L1 Chamfer distances and add an L1 loss for the area of the light sources to

encourage sharper lighting. Finally, for Lsrc, we use L2 loss for direction d, logL2 loss for

intensity w and bandwidth λ . To train the shadow network, we use scale-invariant gradient loss

proposed in [150] and find that it leads to many fewer artifacts compared to a simple L2 loss. We

supervise indirect shading with L1 loss and per-pixel lighting with rendering loss and logL2 loss

similar to [115].

Training

We use Adam [103] with learning rate 10−4 and β (0.9, 0.999). We first train the MNet,

then we fix it and use its predictions as inputs to train the light source prediction networks

InvLampNet, InvWinNet, VisLampNet and VisWinNet separately. We then train rendering
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Input image Albedo Normal Roughness Direct shading Shading Per-pixel lighting Re-rendered

Figure 8.9. Material predictions and neural rendering results on the OpenRooms synthetic
testing set. The ground-truths are shown in the insets on the up-right corner. We observe that our
method can render high-quality direct shading, shading, per-pixel environment map and final
image from our light source and material predictions, with non-local shadows and interreflection
being correctly modeled.

Table 8.3. Inference time of each step of our framework.

Material
Light Direct

Shadow
Indirect Per-pixel

Total
source shading shading lighting

299ms 19.7ms 595ms 1309ms 19.1ms 19.35ms 2.26s

modules independently by providing them with ground-truth Hd and S whenever they are

required as inputs.

Inference time

The inference time for the network to process one image is summarized in Table 8.3. The

most time consuming stage is to render shadows from depth using path tracing. Note that while

our framework handles many complex light transport effects, the total time for it to reconstruct

and re-render an indoor scene is less than 3 s.

Refinement

While so far our framework can achieve high-quality light source prediction and indoor

lighting editing in many cases, our differentiable neural rendering framework enables us to

further refine the light source parameters by minimizing the rendering loss between the rendered

image and the input image, leading to more robust and more realistic rendering. Figure 8.8 shows

an example where we correct the intensity of an invisible lamp with our rendering loss-based
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Figure 8.10. Light source prediction results on the synthetic dataset for various types of light
sources. We visualize the predicted and ground-truth light source geometry and their rendered
direct shading H j without occlusion. Our method can recover both the geometry and radiance
for the four types of light sources reasonably well, leading to rendered direct shading H j similar
to the ground-truths.

refinement. Note that this is an extremely ill-posed problem. A good initialization from our light

source prediction networks is essential for the refinement to achieve good results. We only apply

the refinement to real images shown in the paper, not to the synthetic images.

8.6 Experiments

We first present extensive quantitative and qualitative evaluations on the synthetic Open-

Rooms dataset [119]. Then, we focus on qualitative demonstrations of light source predictions

and various scene editing applications, especially light editing, on real indoor scene images. For

synthetic examples, we use ground-truth depths and segmentation masks. For real examples, we

generate depth predictions using DPT [169] and manually label the light source segmentation

masks.
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No render loss No src lossGT direct shading All losses

Input

Figure 8.11. Ablation studies on different loss combinations for window light source prediction.
Our network trained with both rendering loss L j

ren and light source loss L j
src predicts the most

accurate radiance, with both high-frequency directional lighting and ambient lighting closely
matching the ground-truth.

Table 8.4. Material predictions on the OpenRooms testing set. We report L2 error of our material
predictions.

Albedo 10−2 Normal 10−2 Roughness 10−2

Ours 1.81 1.39 6.22
Chapter 7 - 4.51 6.59

8.6.1 Experiments on Synthetic Images

Material prediction

Our material prediction errors are summarized in Table 8.4. Note that unlike in Chapter 7,

which first uses scale-invariant loss for albedo prediction and adopts a linear regression to solve

the scale ambiguity, we use the absolute loss for both diffuse albedo and light intensity prediction.

The reason is that our method needs to recover the radiance of multiple light sources in the

scene and it is difficult to recover consistent intensities across multiple light sources through

simple linear regression. Table 8.4 compares our material prediction with [119]. Since we use

ground-truth depth as an input, our normal prediction is much more accurate compared to [119].

The roughness accuracies are very similar. In Figure 8.9, we present material predictions on our

synthetic testing set. On synthetic data, we show that both our diffuse albedo and roughness

predictions are very similar to the ground-truths.
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Table 8.5. Light source prediction losses on our synthetic testing set. We report L1 Chamfer
distance for geometry and L1 error of direct shading H j for rendering.

Geometry Rendering
Chamfer (m) Direct shading H j
Cham(q j, q̂ j) H j

Vis. lamp 0.351 0.318
Vis. window 0.857 0.849

Inv. lamp 1.582 0.289
Inv. window 5.500 0.312

Table 8.6. Ablation studies on window light source prediction. We report L1 loss for direct
shading H j, L2 loss for direction d and logL2 loss for intensity w and λ .

Visible Rendering Light source
window Direct Intensity Direction Bandwidth

H j w d λ

w/o L j
ren 1.276 7.972 0.386 4.369

w/o L j
src 0.859 17.73 0.503 7.492

All 0.849 10.28 0.369 4.419
Invisible Rendering Light source
window Direct Intensity Direction Bandwidth

H j w d λ

w/o L j
ren 1.786 10.817 0.545 4.770

w/o L j
src 0.334 44.04 1.432 70.48

All 0.312 18.15 0.536 8.168

Light source prediction

Figure 8.10 shows qualitative results of our light source predictions on the synthetic

testing set. For each of the four types of light sources, we pick up two examples from the testing

set to visualize their predicted and ground-truth geometry and their rendered direct shading H j

without occlusion. We observe that our method can recover both the geometry and radiance

for all 4 types of light sources reasonably well, which enables us to render their direct shading

quite close to the ground-truths. We notice that the major errors in our rendered direct shading

are caused by global shifts of colors and intensities, while the locations of highlight are usually

correct. This is reasonable given the scale ambiguity between albedo and lighting. However,

even with these global shifts in albedo and light intensity predictions, as shown in both Figure
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Table 8.7. Quantitative errors for our neural rendering framework. We report L1 loss for direct
shading Hd and shading H. We report logL2 loss for per-pixel lighting L.

Direct shading Shading Per-pixel lighting
Hd H L

0.256 0.317 0.091

Real image Albedo Normal Direct shading Shading Per-pixel lighting Light sources

Synthetic

Re-rendered image

Figure 8.12. Our reflectance, geometry, lighting and rendering predictions two real examples.
We observe that even for invisible light sources, our framework accurately reconstructs their
geometry and intensities, which enables realistic rendering of the scene irradiance, shadows,
interreflection and per-pixel lighting.

8.9 and Figure 8.12, our final rendered images can closely match the input images, for both

real and synthetic examples. Table 8.5 summarizes the quantitative errors for all types of light

sources. We see that the errors for windows are always larger than those of lamps because the

outdoor lighting coming through windows is much more complicated compared to indoor area

lighting. We also observe that the direct shading errors for invisible light sources are lower. This

is because their overall contributions are usually lower since some of them can be far away from

the camera location.

Table 8.6 and Figure 8.11 verifies the effectiveness of our loss functions for window light

source prediction. We observe that while training with light source loss L j
src can lead to the

prediction closest to our optimized ground-truth light source parameters, the rendering error is

significantly higher because it is difficult to find the best balance across different parameters that

can minimize the rendering error. Training with L j
ren alone leads to reasonable direct shading

prediction. However, the light source parameters are less interpretable, as shown in Table 8.6 and

the rendered direct shading tends to be oversmoothed, as shown in Fig 8.11. Combining the two

losses together, on the contrary, allows us to render direct shading closer to the ground-truth, with
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Our object insertion Garon et al. Li et al. Ours Ground-truth

Figure 8.13. Comparions with prior lighting estimation methods on Garon et al. [63] dataset for
object insertion on the surface of the scenes. Our method achieves results with similar quality
compared to the state-of-the-arts. Specifically, our method accurately reconstructs the complex
lighting from windows and therefore can render more realistic highlights and shadows.

Table 8.8. User study on Garon et al. dataset. We require users to compare our object insertion
results with prior results and report the percentage of users who believes ours are better.

Gardner et al. [61] Garon et al. [63] Chapter 7
72.4% 69.2% 52.0%

high-frequency lighting being correctly modeled, as shown in both Table 8.6 and Figure 8.11.

Neural rendering

Quantitative and qualitative results of our neural rendering framework on the synthetic

testing set are summarized in Table 8.7 and Figure 8.9 respectively. We see that from a single

LDR image, our method first predicts both the geometry and radiance of the light sources

accurately, which enables us to render direct shading with both shadow and intensity very similar

to the ground-truths. Our shadow prediction network combined with Monte-Carlo ray tracing

allows for rendering distant shadows from a single depth map without boundary artifacts, and our

indirect shading prediction network models non-local interreflection from only partial observation
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Object insertion (surface) Object insertion (floating)

Insert vis lamp, close window

Insert vis lamp, close inv lamp

Edit materials Turn on inv lamp, close window

Open window, turn off inv lampEdit materials

Object insertion (floating)Object insertion (surface)

Figure 8.14. Various editing applications demonstrated on 2 real examples. In addition to
high-quality object insertion results (a and b), our light source representations combined with our
neural rendering framework allows us to edit geometry, material and lighting of indoor scenes
with non-local effects being effectively modeled. This includes distant shadows projected to the
bed or table (c and d) or to the entire room when the object blocks the light source (e and f),
changing color of walls that causes non-local color bleeding (g and h) and adding virtual light
sources into the scene (e, f, i, j), including turning on a lamp or opening a virtual window.

of geometry and materials. All this combined together leads to accurate reconstruction of shading,

per-pixel lighting and re-rendered images that closely matches the input images.

8.6.2 Experiment on Real Images

Light source predictions and neural rendering

Figure 8.12 shows a complete set of our material predictions, light source predictions and

neural rendering results on two real examples. Even though we do not have ground-truths, we

observe that the light source position, the highlight in the direct shading and the color bleeding in

shading caused by interreflection from walls are all visually consistent. The re-rendered images

with appearance closely matching the input images further demonstrate that our framework

can correctly reconstruct both radiance and geometry of light sources, generalizes well to real

examples and re-render the image by explicitly considering various challenging light transport

effects, which allows us to achieve much higher quality compared to a standard physically-based

renderer under incomplete observation.
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Input image Predicted light sources Turn off the visible lamp Turn off the invisible lamp
Invisible 

lamp

Visible 
lamp

Direct
shading

GT GT

Input image Turn off the visible window Turn off the invisible lamp

Direct
shading

Invisible 
lamp

Visible 
window

Predicted light sources

Figure 8.15. Our accurate reconstruction of visible/invisible light sources allows us to separate
their contributions and turn them on and off. We show two examples here. For the first example
captured by ourselves, we observe that our editing results closely match the ground-truth insets.
For the second example from the internet, even though we do not have ground-truths, we see that
our editing results are realistic and visually consistent.

Comparisons with prior works

We compare with prior state-of-the-art lighting estimation methods on object insertion

using the Garon et al. dataset, which is a real dataset containing ground-truth HDR spatially-

varying lighting annotation. Even though we are solving a harder problem, both qualitative and

quantitative results in Figure 8.13 and Table 8.8 show that our method achieves performance

comparable to the prior state-of-the-arts which only handle local editing of the scene. Our

per-pixel lighting prediction can be used to render specular objects realistically, with highlights,

shadows and spatial consistency being correctly modeled as shown in Figure 8.13 and 8.14.

Specifically, our 3 SG sunlight representation and MIS based rendering layer allow us to better

handle high-frequency, complex sunlight coming from the window, leading to rendering results

closer to the ground-truths, as presented in Figure 8.13.

Novel scene editing applications

In addition to high-quality object insertion with local highlights and shadows, the true

advantage of our framework is its ability to handle non-local effects in scene editing application,
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which is only made possible by our accurate reconstruction of indoor light sources and high-

quality neural rendering that models multiple complex light transport effects, such as hard/soft

shadows, interreflection and directional lighting. These non-local effects include distant shadows

and highlights, which is shown in (c and d) of Figure 8.14 where the inserted bunnies block

the sunlight coming from the visible window and the sphere blocks the light from the invisible

lamp, projecting shadows to the bed, floor and table respectively. This is further demonstrated in

(e and f), where the inserted virtual lamp causes highlights on the surface of nearby geometry

and causes shadows that cover the whole wall behind the inserted virtual bunny and sphere.

Moreover, our framework also allows non-local interreflection to be accurately modified. As

shown in (g and h), as we change the color of walls to orange and blue, our indirect shading

network paints the inserted white objects with correct color bleeding. In (i and j), we further

demonstrate our framework’s ability to turn on an invisible lamp or open a virtual window. Note

that in j, we use the 3 SG approximation of the environment map shown in j.1. Our representation

combined with our neural renderer can render realistic sharp directional sunlight.

Our accurate reconstruction of indoor light sources further allows us to separate their

contributions. As shown in both Figure 8.1 and 8.15, our framework allows us to turn off both

visible and invisible, windows and lamps in the scene, with realistic changed appearance that are

very similar to the ground-truths.

8.7 Conclusions

We presented a method that enables full indoor scene relighting and other editing oper-

ations from a single LDR image with its predicted depth and light source segmentation mask.

A key innovation in our solution is our lighting representation; we estimate multiple global

3D parametric lights (lamps and windows), both visible and invisible. A second important

component is our hybrid renderer, capable of producing high-quality images from our scene

representation using a combination of Monte Carlo and neural techniques. We demonstrated that
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this careful combination of an editable lighting representation and neural rendering can handle

challenging scene editing applications including object insertion, material editing, light insertion

and light editing, with realistic global illumination effects.

Chapter 8 is based on the material currently under submission (“Physically-Based Edit-

ing of Indoor Scene Lighting from a Single Image”, Zhengqin Li1 Jia Shi, Sai Bi, Rui Zhu,

Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Ravi Ramamoorthi, Manmohan Chandraker). The

dissertation author was the primary investigators and author of this paper.
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Chapter 9

Conclusion and Future Work

This dissertation has inspired significant related research on scene reconstruction and

inverse rendering, including measurement-based [127], model-based [125, 151] and learning-

based methods [182, 197, 224], spanning material estimation [60], joint shape and material

estimation [28, 177], lighting estimation [193] and holistic indoor scene understanding [208, 181].

Also notable are lines of work that build upon this progress to consider differentiable rendering

for inverse rendering problems [27, 24, 23, 125, 151]. In this chapter, we will first describe

a few other directions in which future works might extend this thesis (Section 9.1), before

concluding with perspectives gained through our approach of physically-motivated learning for

reconstruction and editing in complex scenes (Section 9.2).

9.1 Future Work

Consistency in scene reconstruction

This thesis has largely considered the most challenging input for scene reconstruction

problems, namely a single image captured in an unconstrained environments. Having multiple

images of the scene as input makes the problem better-posed, but also requires consistency of

predictions across those inputs. This includes multiview consistency – given multiple images

of the same scene, the reconstructed intrinsic components at the overlapping regions should be

the same, as well as temporal consistency – given a video taken across a time span, the ideal

predictions should be stable between frames without flickering artifacts. A classical way to
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achieve consistency is to formulate it as an optimization problem [126], where the consistency

constraint can be used to compute a loss term. Our differentiable rendering module allows back-

propagating gradients to the network for optimization purposes, which may offer a powerful and

effective tool for achieving consistent scene reconstruction.

More complex appearances

In this thesis, we have largely assumed that material appearance can be modeled by an

opaque BRDF where rays only get reflected when they hit surfaces, or by a perfectly transparent

material. This does not allow modeling translucent objects such as jade, where a ray can travel

into the surface while experiencing an infinite number of scattering and absorption events before

emerging. The appearance of such materials must be modeled by a bidirectional scattering

distribution function (BSDF) and to render such appearance, we need volume rendering, which is

computationally expensive. Similarly, volumetric scattering to represent participating media such

as fog or mist is not handled by this dissertation. Measurement-based methods develop systems

with controllable lighting to capture the appearance of translucent objects [67]. Recently, Che et

al. [39] make the first attempt to build a deep learning-based framework with a physically-based

Monte Carlo rendering layer for recovering subsurface scattering parameters. However, there is

still large space for improvement to make translucent material reconstruction more robust and

practical.

Neural scene representations

Recently, neural implicit representations have become popular in computer vision and

graphics, for view synthesis [137], geometry reconstruction [206], pose estimation [228] and

appearance modeling [22]. Instead of explicitly representing geometry as points and faces in

3D space, they use a multi-layer perceptron that outputs an RGB color and a density value

to indicate whether a 3D point in space is occupied [137]. A significant advantage of this

representation is infinite resolution – one may densely sample points in a region without worrying

about the memory consumption, which is not possible for explicit representations such as
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meshes, point clouds or volumes. In addition, neural scene representations can be combined

with differentiable volume rendering, which yields a powerful tool to directly optimize scene

appearance with occlusion and reflection being easily handled. However, most recent inverse

rendering frameworks based on this representation are still computationally expensive and face

difficulties handling complex light transports such as multi-bounce interreflections in large-

scale scenes. The combination of such neural scene representations with the advantages of

generalization ability, scalability and high-quality intuitive editing enabled by our physically-

motivated design principles promises to be a highly impactful direction of future research in

computer vision, computer graphics and machine learning.

9.2 Perspectives

This thesis has considered a fundamental challenge in computer vision and computer

graphics: recovering geometry, lighting, and material of the whole scene from a single or a few

images captured under constrained conditions, despite the presence of complex light transport.

It builds upon and serves as a counterpoint to multiple distinguished lines of work in those

fields, which have sought to measure various intrinsic scene properties, or model the underlying

physical basis of image formation. While classical methods provide valuable insights into what

is needed to succeed at scene reconstruction, they have not lent themselves to robust and practical

optimization for the highly ill-posed nature of the problem. Data-driven priors learned by deep

neural networks, thus, emerged as viable means of regularization.

But modern deep networks are extremely data-hungry, while the challenges of inverse

rendering necessitate reasoning about diverse scene appearances and light transport effects

for which ground truth supervision might be difficult or well nigh impossible to obtain. The

philosophy espoused by this dissertation is that the rich history of insights into the geometric and

physical processes that govern image formation and constrain light transport can be valuable in

establishing a learning paradigm that overcomes the fundamental limitations of both physically-
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based and data-driven approaches. Such a paradigm must encompass all aspects of a learning

problem, namely, architecture, representation and data. This dissertation has systematically

addressed those aspects to solve problems in scene reconstruction that were hitherto considered

intractable.

Physically-motivated neural architectures

A key advance achieved by this dissertation is the development of differentiable in-

network rendering modules that rely on physically-based models of image formation to accurately

model non-local, complex light transport effects such as specularity, shadows and interreflections.

This overcomes the significant challenge of generalization by imbibing inductive biases of the

physics of light transport, with the additional benefit of network outputs that are interpretable

and physically meaningful. While the former is an important need for the solution to be tractable,

the latter is equally important for scene understanding outputs to be useful in a downstream

applications such as editing, AR or 3D modeling where users must interact with images or 3D

content in tangible and intuitive ways. While the ever-increasing volume of data and the power of

even newer architectures like transformers will continue to enhance the capabilities of black-box

machine learning, we believe that the advantages of generalizability and intuitive interpretability

achieved by the proposed physically-motivated learning paradigm transcend advances in base

neural architectures.

Physically-based representations

Representations for shape amenable to deep learning have seen tremendous progress

over the years, but inverse rendering must deal with a next level of challenges due to complex

material and lighting. Early works in computer graphics and vision have established models for

material behavior that are highly descriptive yet compact enough for real-time rendering. Such

material representations have proven to be influential in our physically-motivated learning where

in-network rendering plays an important role. Similarly, lighting representations have a long

history in computer graphics, where they have been studied to understand tradeoffs with respect
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to representation power, storage and computational expense. We build upon this history, but go

beyond it to devise representations that are efficient for the particular nature of computations

that dominate learning with deep neural networks. In some cases, such as light sources in indoor

scenes, the dual needs of extremely accurate localization and modeling of long-range effects

across distant parts of the scene necessitates carefully-designed new representations. The ones

we develop are the first of their kind to accurately model geometry and color, while being able to

leverage a rich set of classical approaches such as Monte Carlo ray tracing, shadow denoising

and modeling of indirect irradiance.

Open frameworks for physically-motivated data and environments

An equally important perspective gained from this dissertation is on the importance of

data that is not just relevant, but accessible. The nature of inverse rendering problem requires

diverse ground truth, while our physically-based modeling benefits from supervision for spatially-

varying properties or complex light paths that are difficult to measure in real scenes. This points

to photorealistic synthetic datasets that are designed with physically-based rendering to aid the

proposed learning paradigm. However, we quickly realized that data of this nature is extremely

difficult to procure and often of a proprietary nature that only a few research groups can afford.

This led to the development of OpenRooms, which aims to democratize data generation and

curation for inverse rendering to the extent that anyone with a conventional scanner or camera

can create photorealistic datasets of their own. We believe this will be a significant step in

making augmented reality truly mainstream, where consumers are not just users of proprietary

content, but freely generating photorealistic and interactive content of their own.

Physically-based applications

The above advances herald a new era for scene reconstruction where shape, material and

lighting have been estimated to a high degree of accuracy despite partial observations of complex

light transport. Our frameworks outperform traditional methods significantly for capturing

realistic SVBRDF and lighting from minimal inputs captured in the wild, while accurately
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modeling various challenging visual effects such as color bleeding, hard and soft shadows,

global illumination and refraction. This will lead to intuitive applications where images can

be edited and augmented for downstream applications with unprecedented photorealism, using

minimal acquisition effort. This thesis showcases several such applications, including virtual

object insertion with consistent specular highlights and shadows, transparent shape relighting,

novel view synthesis and relighting for specular objects, changing wall colors with realistic color

bleeding on furniture, as well as photorealistic local and long-range effects from turning a lamp

on or off, or opening a window to let in the sunlight to illuminate a complex indoor scene.
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[110] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable Monte
Carlo ray tracing through edge sampling. ACM ToG (SIGGRAPH Asia), 37(6):222:1 –
222:11, 2018.

[111] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark, Dimos Tzoumanikas, Qing Ye,
Yuzhong Huang, Rui Tang, and Stefan Leutenegger. Interiornet: Mega-scale multi-sensor
photo-realistic indoor scenes dataset. arXiv preprint arXiv:1809.00716, 2018.

170



[112] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Modeling surface appearance from
a single photograph using self-augmented convolutional neural networks. ACM Trans.
Graphics, 36(4), 2017.

[113] Z. Li, Z. Xu, R. Ramamoorthi, and M. Chandraker. Robust energy minimization for
brdf-invariant shape from light fields. In CVPR, 2017.

[114] Zhengqi Li and Noah Snavely. Cgintrinsics: Better intrinsic image decomposition through
physically-based rendering. In ECCV, pages 371–387, 2018.

[115] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. Inverse rendering for complex indoor scenes: Shape, spatially-varying
lighting and svbrdf from a single image. In CVPR, 2020.

[116] Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. Materials for masses:
Svbrdf acquisition with a single mobile phone image. In ECCV, 2018.

[117] Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. Materials for masses:
Svbrdf acquisition with a single mobile phone image. In ECCV, pages 72–87, 2018.

[118] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chan-
draker. Learning to reconstruct shape and spatially-varying reflectance from a single
image. In SIGGRAPH Asia, page 269. ACM, 2018.

[119] Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, Yuhan Liu, Yu-Ying
Yeh, Rui Zhu, Nitesh Gundavarapu, Jia Shi, Sai Bi, Zexiang Xu, Hong-Xing Yu, Kalyan
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[148] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental analysis of brdf models.
Rendering Techniques, 2005(16th):2, 2005.

[149] Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ramamoorthi. On optimal, minimal
brdf sampling for reflectance acquisition. ACM Trans. Graphics, 34(6), 2015.

[150] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3D ken burns effect from a single
image. ACM Transactions on Graphics (TOG), 38(6):1–15, 2019.

[151] Merlin Nimier-David, Zhao Dong, Wenzel Jakob, and Anton Kaplanyan. Material and
lighting reconstruction for complex indoor scenes with texture-space differentiable render-
ing. 2021.

173



[152] Michael Oren and Shree K Nayar. Generalization of the lambertian model and implications
for machine vision. IJCV, 14(3), 1995.

[153] Matthew O’Toole and Kiriakos N. Kutulakos. Optical computing for fast light transport
analysis. ACM Trans. Graphics, 29(6), 2010.

[154] Geoffrey Oxholm and Ko Nishino. Shape and reflectance from natural illumination. In
ECCV, 2012.

[155] Geoffrey Oxholm and Ko Nishino. Shape and reflectance estimation in the wild. PAMI,
38(2):376–389, 2016.

[156] Keunhong Park, Konstantinos Rematas, Ali Farhadi, and Steven M Seitz. Photoshape:
photorealistic materials for large-scale shape collections. ACM Transactions on Graphics
(TOG), 37(6):192, 2019.

[157] Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David
Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, and Martin
Stich. Optix: a general purpose ray tracing engine. Acm transactions on graphics (tog),
29(4):1–13, 2010.
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