
UCLA
UCLA Electronic Theses and Dissertations

Title
Enhancing Local Derivative-Free Optimization with Curvature Information and Inspection
Strategies

Permalink
https://escholarship.org/uc/item/8z24w59c

Author
Kim, Bumsu

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8z24w59c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Enhancing Local Derivative-Free Optimization

with Curvature Information and Inspection Strategies

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Bumsu Kim

2023

© Copyright by

Bumsu Kim

2023

ABSTRACT OF THE DISSERTATION

Enhancing Local Derivative-Free Optimization

with Curvature Information and Inspection Strategies

by

Bumsu Kim

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Stanley J. Osher, Chair

Derivative-Free Optimization (DFO) problems naturally arise in various domains, from

engineering design to hyperparameter optimization and beyond. This thesis introduces two

methodologies for improving local DFO methods. Curvature-Aware Random Search (CARS)

uses the approximate second-order information of the objective function in computing the

step size to enhance the speed of local convergence. We prove the linear convergence of

CARS for strongly convex objective functions and propose two variants of CARS: CARS

with Cubic Regularization (CARS-CR), which has an O(k−1) convergence rate without the

assumption of strong convexity, and CARS with Numerical Quadrature (CARS-NQ), which

offers robustness against oscillatory noise. We also introduce a novel randomized matrix

inversion method to leverage more curvature information. The second method, Inspect as

You Run (IR), can be integrated into any iterative DFO method. It aids in escaping spurious

local optima while preserving local convergence properties. We also prove that IR assists

in verifying R-local optimality, an intermediate between the local and global optimality.

Extensive numerical results are provided, demonstrating the efficacy of these methods.

ii

The dissertation of Bumsu Kim is approved.

Quanquan Gu

Guido F. Montufar Cuartas

Deanna M. Hunter

Wotao Yin

Stanley J. Osher, Committee Chair

University of California, Los Angeles

2023

iii

To my parents,

for whom my respect and love remain throughout my life.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Categories of Derivative-Free Optimization Methods 1

1.2 Preliminary Insights . 3

1.3 Contributions . 4

2 Curvature-Aware Derivative-Free Optimization 5

2.1 Introduction . 5

2.1.1 Assumptions and Notation . 8

2.1.2 Prior Art . 9

2.1.3 Main Contributions . 14

2.2 Curvature-Aware Random Search . 14

2.2.1 Convergence Guarantees . 16

2.2.2 Further Results on the Sampling Distribution 18

2.3 CARS with Cubic Regularization for General Convex Functions 22

2.4 Incorporating Numerical Quadrature . 24

2.5 More on Curvature: Randomized Matrix Inversion and SHIPS 30

2.5.1 Discussion on SHIPS . 31

2.5.2 Enhancing the Quality of Estimation via Adaptive Sampling 32

2.6 Proofs . 34

2.6.1 Proofs for Results in Section 2.2.1 . 34

2.6.2 Proofs for Results in Section 2.3 . 39

2.6.3 Proofs for Results in Section 2.5 . 46

v

2.7 Experimental Results . 48

2.7.1 Convex Functions . 49

2.7.2 Benchmark Problem Sets with Non-Convex Functions 50

2.7.3 Problems with Highly Oscillatory Noise 51

2.7.4 Black-box Adversarial Attacks . 51

2.7.5 Benchmarking the Performance of SHIPS 55

3 Bridging the Gap Between Local and Global DFO Method Through In-

spection Strategy . 57

3.1 Introduction . 57

3.1.1 The gap between global optimization and local optimization 58

3.1.2 DFO and R-local optimization . 60

3.1.3 Assumptions and Notation . 61

3.2 Main Results . 61

3.2.1 Analysis on the High Probability Guarantee 62

3.2.2 Discussion on IR . 64

3.3 Experimental Results . 65

3.3.1 Sensitivity to IR Hyperparameters 74

3.3.2 Integration with Augmented Random Search (ARS) 76

4 Conclusion . 83

4.1 Summary . 83

4.2 Future Research Directions . 84

A Details on Numerical Experiments . 86

vi

A.1 Experimental Settings for Chapter 2 . 86

A.2 Visualization of Attacked Images . 90

References . 92

vii

LIST OF FIGURES

2.1 Performance of each algorithm on a convex quartic function f(x) = 0.1
∑d

i=1 x
4
i +

1
2
x>Ax+ 0.01‖x‖2, where A = G>G with Gij

i.i.d∼ N (0, 1). The problem dimension

d = 30. 49

2.2 Performance profiles on Moré-Garbow-Hillstrom problems (left) and CUTEst

problems (right), for various target accuracies ε = 10−1 (top), 10−3 (middle), and

10−5 (bottom). Our results demonstrate that CARS and CARS-CR consistently

outperform other methods in terms of both efficiency (ρ at low τ values) and

robustness (ρ at high τ values.) at all levels of accuracy. 52

2.3 Performance of each algorithm on Moré-Garbow-Hillstrom Problems with sinu-

soidal noise fosc(x) = ψ 1
d

∑d
i=1(1 − cos(φxi)), where ψ = 0.05ε(f(x0) − f?) and

φ = 100π. The target accuracy ε is set to 10−3. 53

2.4 Adversarial examples with misclassified labels on MNIST generated with CARS.

More pictures are available in Appendix A.1. 54

2.5 The x-axis denotes the number of iterations, not the number of function queries.

Among all the methods, SHIPS shows the best convergence rate, outperforming

even Exact GD, as it effectively utilizes the curvature information. 56

3.1 A function with spurious local minima introduced in [CSY19]. When R is suffi-

ciently large, an R-local minimum is a global minimum. 60

3.2 Comparison of CARS and the Inspect-as-Running version of CARS for the

quadratic function with sinusoidal noise. 66

3.3 Comparison of CARS and the Inspect-as-Running version of CARS for the Ackley

function . 68

viii

3.4 Comparison of CARS and the Inspect-as-Running version of CARS for the asym-

metric Ackley function . 69

3.5 Comparison of CARS and the Inspect-as-Running version of CARS for the K-

means clustering problem of synthetic Gaussian data 71

3.6 Comparison of CARS and the Inspect-as-Running version of CARS for the K-

means clustering of the Iris dataset . 72

3.7 Comparison of CARS and the Inspect-as-Running version of CARS for hyperpa-

rameter tuning for training a convolutional neural network for MNIST dataset . 73

3.8 Comparison of CARS with IR and the RBFOpt in 300-dimensional problem

with spurious local minima. Computation for RBFOpt is terminated after 1,000

iterations due to the computational cost. 75

3.9 The coordinate descent (CD) version of CARS with IR for the 10,000-dimensional

problem with spurious local minima. This shows the scalability of IR and CD

variant when applied to problems with uncorrelated variables. 76

3.10 Sensitivity to R and n with budget of 600 function evaluations. 77

3.11 Sensitivity to R and n with budget of 3,000 function evaluations. 78

3.12 Sensitivity to R and n with budget of 9,000 function evaluations. 79

3.13 Sensitivity to R and n with budget of 15,000 function evaluations. 80

3.14 Comparison of ARS and its IR variant for the quadratic function with sinusoidal

noise. The problem dimension is 10. 81

3.15 Comparison of ARS and its IR variant for the Ackley function. The problem

dimension is 10. 82

A.1 Adversarial examples with misclassified labels on MNIST generated with CARS.

For every two rows, a row of original images are shown, and the adversarial

examples are right underneath them, with the misclassified labels in between. . . 91

ix

LIST OF TABLES

2.1 Comparison of various line-search based ZO algorithms, all of which use random

search directions. We refer to algorithms without an agreed-upon name by

the paper in which it first appeared. If a quantity (e.g. queries per iteration,

convergence rate) is not explicitly computed we denote this with “—”. Notes: †:

refers to CARS-CR variant. 11

2.2 Comparison of success rates, and median and average function queries for the

successful black-box adversarial attacks on MNIST with `∞-perturbation bound

0.2. CARS, equipped with the Square Attack’s distribution, shows the best

performance in successful attacks, while reaching the second best success rate.

The results marked with ∗ are cited from [YHF18]. 51

x

ACKNOWLEDGMENTS

I wish to express my sincerest gratitude to my advisor, Professor Wotao Yin, for his guidance

and support throughout my graduate studies. His vast knowledge and wisdom, paired with his

remarkable personality, have been a constant source of inspiration. I have profound respect for

him, both as an academic mentor and as an individual. I extend my thanks to Professor Stan

Osher for mentoring me and fostering intriguing discussions, and my committee members,

Professors Guido Montufar, Quanquan Gu, and Deanna Needell, for their valuable feedback

and insightful suggestions.

Special thanks to Professors Daniel McKenzie and HanQin Cai who co-advised me and

provided unwavering support during both personal and academic challenges. Without their

help, attaining this degree wouldn’t have been possible. I also appreciate my colleagues at

UCLA; Fei Feng, Howard Heaton, Qiuwei Li, Samy Wu Fung, Yuejiao Sun, Jialin Liu, Yanli

Liu and Lisang Ding, for the inspiring weekly group meetings.

I’m grateful to my friends Dohyun Kwon, Wonjun Lee, Younghak Kwon, Bohyun Kim,

and Kyung Ha for their companionship and shared passion for math. My thanks also go to

Donghun Noh, Won Ho Chung, Seungmin Jung, Minho Lee, Kijun Bang, Jounghwan Choi

for their support and friendship. In addition, my gratitude goes out to the LAUC family.

Their love and prayer have provided me with a cherished community during my studies.

To my dear friends in Korea: Jisu Choi, Yohan Choi, Hojun You, June Hyuk Park,

Youngsuk Lee, Dongeon Kim, Byungmin Oh, and Hyun Chae Loh - the invaluable memories

we’ve created since 2007 have immeasurably enriched my life.

Lastly, I express my deepest gratitude to my family for their unconditional love and

support. At my elementary school graduation, I declared my parents to be the most respectable

individuals in the world, a sentiment that has never changed, nor will it. I dedicate my

deepest love to my parents and my beloved sisters, Geonhui and Jihee.

All glory to God, the creator of the world, whose love is everlasting.

xi

VITA

2015 B.S. in Mathematics, Korea Advanced Institute of Science and Technology.

2017 M.S. in Mathematics, Korea Advanced Institute of Science and Technology.

2017–Present Teaching and Research Assistant, Department of Mathematics, UCLA.

PUBLICATIONS

Bumsu Kim, HanQin Cai, Daniel McKenzie, and Wotao Yin. Curvature-Aware Derivative-Free

Optimization. arXiv preprint arXiv:2109.13391 (2021).

Bumsu Kim, and Wotao Yin. Bridging the Gap Between Local and Global Derivative-Free

Optimization. In Preparation.

xii

CHAPTER 1

Introduction

Derivative-Free Optimization (DFO) is an important area of optimization that aims to

minimize an objective in situation where where derivative information or internal structures

are inaccessible. Also referred to as black-box optimization, simulation-based optimization,

or zeroth-order optimization, these kinds of problems have emerged organically in diverse

fields including natural sciences, engineering, computer science, economics, as well as business

and social sciences.

A range of major applications for DFO includes model-free reinforcement learning [SHC17,

MGR18, CPP20], hyperparameter tuning [BB12, HKV19, YS20, KGG18], engineering designs

such as wing planform design [AD04], and biomedical imaging [Oeu05], among others. The

sheer diversity of applications signifies that these problems fall into various categories, where

each might require different approaches. The domain of a DFO problem can be continuous,

discrete, or a blend of both, and the function query can also be noisy. This thesis is primarily

centered around unconstrained continuous optimization without noise. That is, minimizing a

function f : Rd → R, where the function queries at an arbitrary point give the exact function

values.

1.1 Categories of Derivative-Free Optimization Methods

DFO methods can be broadly classified into two categories: global and local. Typically, global

DFO methods are designed to set up a model that approximates the function across the

1

entire search space, which makes them a powerful tool for thorough exploration. Due to their

comprehensive approach, they often require substantial computational resources. A standard

workflow for global DFO methods encompasses several steps, primarily the exploration and

exploitation stages. During the exploration phase, the search space is surveyed to improve

the model’s accuracy. In the exploitation phase, the accumulated information is harnessed to

pinpoint a viable candidate for the minimum.

Among the spectrum of global DFO methods, Bayesian optimization [SSW15] is one

of the most popular choices. It incrementally updates the probabilistic model to estimate

the objective using Bayes’ rule. Another well-regarded model-based approach is built on

radial basis functions, such as RBFOpt [CN18]. RBFOpt works very well in practice,

making it favourable among others. Although these global methods tend to show better

sample complexity in a complex non-convex problem due to their effectiveness in maximizing

information usage, they suffer from poor scalability issue; the search space grows exponentially

with the dimension.

In constrast, local methods usually follow a more focused approach. They sample points

near the current iterate and use these points to inform next steps. Local methods generally

estimate derivative information through specific techniques such as finite difference [NS17] or

smoothing methods [ZTL20] and replicate their first- or second- order counterparts.

Interestingly, with careful handling of these estimated derivatives, it’s often possible to

demonstrate local convergence properties similar to methods with access to exact derivative

information, up to a linear factor in the dimension d. As such, local DFO methods are less

affected by scalability issues. However, they face challenges when dealing with non-convex

objectives, as they are frequently caught in local minima from which they cannot escape.

This often significantly degrades the performance of local DFO, leading to the development

of various approaches to overcome this, such as random initializations, multiple restarts, and

many other heuristics [JS01, Kwe15, YLD23].

2

1.2 Preliminary Insights

One of the key insights to understand the role of the finite difference in DFO is to see that it

is a stochatstic, unbiased estimator of the gradient of smoothed version of f [NS17]. Namely,

for r > 0 and u ∼ N (0, Id), define the smoothed function fr as

fr(x) = Eu∼N (0,Id)f(x+ ru).

Then the directional finite difference of f along u,

δ+ =
f(x+ ru)− f(x)

r
and δ0 =

f(x+ ru)− f(x− ru)

2r
,

provide the unbiased estimators of ∇fr(x) when multiplied to u:

E[δ+ u] = E[δ0 u] = ∇fr(x).

Hence, the finite difference essentially provides a stochastic gradient for the smoothed function

fr. This gives two important insights:

1. The existing analysis on stochastic gradient descent can be applied, as long as we can

also handle the error due to the smoothing. This is well illustrated in the proof of

convergence results of CARS and its variant CARS-CR in Chapter 2.

2. While the accuracy of the finite difference to ∂f
∂u

is degraded as r increases, larger

sampling radius r leads to more smoothing effect, which is beneficial under the presence

of oscillatory noise. This is the key idea behind CARS-NQ, instroduced in Chapter 2,

using an alternative to the finite difference, numerical quadrature, to estimate directional

derivatives of the smoothed function.

The term local in local minimum of a function can mean an arbitrarily small neighborhood.

When the function is convex, it necessarily is a global minimum, but this is not the case for

3

non-convex functions. This is, however, to some extent resolved in the smoothing nature of

DFO methods discussed above. Nevertheless, we cannot control the size of the guaranteed

region of minimality. This is where the notion of R-local minimum comes in. An R-local

minimum is defined to be a minimum within a ball of radius R around itself:

f(x̄) = min
x∈B(x̄,R)

f(x).

This notion was first introduced in [CSY19], and this notion makes the inspection strategy

to be a useful tool to fill the gap between local and global methods. We focus more on this

in Chapter 3.

1.3 Contributions

This thesis augments local DFO methods in two significant ways: enhancing local convergence

property and enabling local DFO methods to escape local minima while preserving the local

convergence property.

In Chapter 2, we develope a local DFO method that utilizes approximate second-order

information to determine a better step size for a given search direction. It is capable of

accepting a wide variety of distributions for the search direction, making it suitable at

exploiting the known structure of the problem.

In Chapter 3, we propose a method to find R-local minima [CSY19] to bridge the gap

between local and global methods. This simple add-on method that can be incorporated into

any iterative DFO methods, preserving the same local convergence rate, up to a constant,

while also having the capability to escape local minima. The inspection stage in each iteration

can be utilized either to improve the solution or verify its R-local optimality.

4

CHAPTER 2

Curvature-Aware Derivative-Free Optimization

2.1 Introduction

We consider minimizing a function f : Rd → R, with only access to function evaluations

f(x), and no access to gradients or directional derivatives. This setting is commonly referred

to as Derivative-Free Optimization (DFO). DFO has a rich history and has recently gained

popularity in various areas such as reinforcement learning [SHC17, MGR18, CPP20], hy-

perparameter tuning [BB12, HKV19] and adversarial attacks on neural network classifiers

[CZS17, CMY22b]. In all of these applications, evaluating f(x) is either expensive, time-

consuming, or inconvenient, and therefore, it is desirable for DFO algorithms to minimize

the number of function evaluations required.

Classical methods for DFO include the Nelder-Mead simplex method [NM65], direct

search methods [KLT03], and model-based methods [CSV09]. However, these methods tend

to scale poorly with the problem dimension d, although recent works [CR22, CMO22, CO22]

have made progress in this direction. Due to the demands of large-scale machine learning

applications, zeroth-order (ZO) methods for DFO have gained increasing attention [LCK20].

ZO methods mimic first-order methods like gradient descent but approximate all derivative

information using function queries.

At each iteration, the algorithm selects a direction uk and takes a step xk+1 = xk + αkuk.

While the selection of uk has been well studied (see [BCC21] and references therein), this

thesis focuses on the selection of αk, allowing for uk to be either randomly selected or an

5

approximation to the negative gradient (i.e., uk ≈ −∇f(xk)).

The first part of this thesis, Chapter 2, focuses on the development of a novel ZO method

in this direction. Intelligently choosing αk can lead to convergence in fewer iterations, but

this gain may be offset by the number of queries it takes. If we compute uk ≈ −∇f(xk),

techniques such as backtracking line search from first-order optimization can be employed

[BCS21]. However, obtaining a sufficiently accurate approximation to −∇f(xk) requires Ω(d)

queries per iteration [BCC21], which is not ideal to generate just one step when the dimension

d is large. On the other hand, when we take uk as a random vector, with high probability

uk is almost orthogonal to −∇f(xk). Hence, αk in [GL13, NS17, BGR20] is very small to

guarantee descent at every iteration (possibly in expectation).

In this chapter, we propose using finite difference approximations to the first and second

derivatives of the univariate function α 7→ f(xk + αuk) to compute a candidate α+ for αk.

Specifically, we set

α+ =
dr

L̂hr
,

where

dr :=
f(xk + ruk)− f(xk − ruk)

2r
, (2.1)

hr :=
f(xk + ruk)− 2f(xk) + f(xk − ruk)

r2
, (2.2)

and L̂ is a user-specified parameter. Computing α+ requires only three queries per iteration.

This simple modification to the well-known Random Search algorithm [GL13, NS17] (which

takes αk = dr/L̂ or similar) can be viewed as an inexact one-dimensional Newton’s method

at each iteration. When encountering low curvature directions, hr is small and α+ is large, so

this α+ may occasionally fail to guarantee descent. To remedy this, we combine our step-size

rule with a simple safeguarding scheme based on the recently introduced Stochastic Three

6

Point method [BGR20], which guarantees f(xk+1) ≤ f(xk) at every iterate. Importantly,

we show that α+ is a good candidate, i.e., f(xk+1) is significantly smaller than f(xk) a

positive proportion of the time. From this, we can quantify the expected total number

of function queries required to reach a target solution accuracy. Because our method is a

natural extension of Random Search that incorporates second derivative information, we dub

it Curvature-Aware Random Search, or CARS.

In addition to CARS, we propose an extension called CARS-CR (CARS with Cubic

Regularization) and CARS-NQ (CARS with Numerical Quadrature). CARS-CR modifies

the stochastic subspace cubic Newton method [HDN20] into a zeroth-order method, and it is

essentially CARS with an adaptive parameter L̂ and achieves O(k−1) convergence for convex

functions. CARS-NQ, on the other hand, incorporates Gauss-Hermite quadrature to estimate

the derivatives of the smoothed function. It allows larger sampling radius and is particularly

effective for non-convex functions of the form f = fcvx + fosc where fcvx is strongly convex

and fosc is rapidly oscillating.

Our numerical experiments show that both CARS and its variants outperform state-of-the-

art algorithms on benchmarks across various problem dimensions, demonstrating efficiency

and robustness. Furthermore, our results on adversarial attacks show that CARS can be

adapted to different sample distributions of uk. We demonstrate that CARS performs well

with a tailored distribution for a particular problem, an adversarial attack on a pre-trained

neural network.

Organization. This chapter is laid out as follows. In the rest of this section, we fix the

notation and discuss prior art. In Section 2.2, we introduce the main algorithm, namely

Curvature-Aware Random Search (CARS), along with its convergence analysis. Section 2.3

extends CARS with Cubic Regularization (CARS-CR) for general convex functions. In

Section 2.4 we introduce CARS with Numerical Quadrature (CARS-NQ), which replaces

finite difference with numerical quadrature. Section 2.5 brings forth a novel approach to

7

randomized matrix inversion, resulting in the development of the Stochastic Hessian Inversion

for Projected Search (SHIPS) that makes use of more curvature information. In Section 2.6,

we provide mathematical proofs to support our technical claims. Section 2.7 contains extensive

numerical experiments that empirically verify our technical claims.

2.1.1 Assumptions and Notation

In developing and analyzing CARS, we assume that f is a convex and twice continuously

differentiable function. We use g(x) = ∇f(x) andH(x) = ∇2f(x) in the theoretical analysis of

Section 2.2.1. For a fixed initial point x0, we define the level-set Q = {x ∈ Rd : f(x) ≤ f(x0)},
‖ · ‖ as the Euclidean norm, and f? := minx∈Rd f(x). We say xk is an ε-optimal solution if

f(xk)− f? ≤ ε. We use D to denote a probability distribution on Rd. For any measurable

set S ⊆ Rd with finite measure, Unif(S) denotes the uniform distribution over S. The unit

sphere is written as Sd−1 := {u : ‖u‖ = 1} ⊆ Rd, and e1, · · · , ed represent the canonical basis

vectors in Rd. For two matrices A and B, we write A � B if B − A is positive semi-definite.

Definition 1. We say f is L-smooth, L > 0, if H(x) � LId for all x ∈ Q.

Definition 2. We say f is µ-strongly convex, µ > 0, if µId � H(x) for all x ∈ Q.

Under strong convexity, H(z) is positive definite for all z ∈ Q; hence the following inner

product and induced norm are well-defined for all z ∈ Q:

〈x, y〉H(z) := 〈H(z)x, y〉 and ‖x‖2
H(z) := 〈x, x〉H(z).

Strong convexity also implies the following [GKL19, Proposition 2].

Lemma 2.1.1 (L̂-Relative Smoothness and µ̂-Relative Convexity). If f is µ-strongly convex,

then f is µ̂-relatively convex and L̂-relatively smooth for some L̂ ≥ µ̂ > 0, i.e. for all x, y ∈ Q

µ̂

2
‖x− y‖2

H(y) ≤ f(x)− f(y)− 〈g(y), x− y〉 ≤ L̂

2
‖x− y‖2

H(y).

8

We also make the following regularity assumption on H.

Assumption 1. H is a-Hölder continuous for some a > 0, i.e.

|u>(H(x)−H(y))u| ≤ La‖x− y‖a (2.3)

for any unit vector u ∈ Sd−1 and x, y ∈ Q.

Hölder continuity reduces to Lipschitz continuity when a = 1. Assumption 1 can be used

to refine the relative smoothness and relative convexity constants in a smaller region.

2.1.2 Prior Art

For a comprehensive introduction to DFO we refer the reader to [CSV09] or the more recent

survey article [LMW19]. As mentioned above, our interest is in ZO approaches to DFO

[LCK20], as these have low per-iteration query complexity (with respect to the dimension of

the problem) and have been successfully used in modern machine learning applications, such

as adversarial attacks on neural networks [CZS17, LKC18, CSC19, CMY22b, CLM21] and

reinforcement learning [SHC17, CRS18, FGK18]. Of particular relevance to this work is ZO

algorithms based on line search:

Sample uk from D,

αk ≈ α? = arg min
α∈R

f(xk + αuk), (2.4a)

xk+1 = xk + αkuk, (2.4b)

which may be thought of as zeroth-order analogues of coordinate descent [Nes12]. All of

the complexity results discussed below assume noise-free access to f(x). The noisy case is

more complicated, see [JNR12]. The first papers to use this scheme were [Kar74, Kar75],

9

where convergence is discussed under the assumptions that uk is a descent direction1 for

all k and (2.4a) is solved sufficiently accurately. Assuming (2.4a) is solved exactly, [MR64]

proves this scheme finds an ε-optimal solution in O(log(1/ε)) iterations when f is a quadratic

function (see also [SC76] for a discussion of these results in English). In [Kru83], O(log(1/ε))

iteration complexity was proved assuming access to an approximate line search oracle that

solves (2.4a) sufficiently accurately, for any strongly convex f , as long as uk are cyclically

sampled coordinate vectors. Similar ideas can be found in [GLL88, GS07, GR15]. More

recently, [SMG13] studied (2.4) under the name Random Pursuit which assumes access to an

approximate line search oracle satisfying either additive (α?−δ ≤ α̃ ≤ α?+δ) or multiplicative

((1− δ)α? ≤ α̃ ≤ α? and sign(α̃) = sign(α?)) error bounds. They show Random Pursuit finds

an ε-optimal solution in O(log(1/ε)) (resp. O(1/ε)) iterations if f is strongly convex (resp.

convex). The use of O(·) above suppresses the dependence of the query complexity on the

dimension d. In all results stated, the query complexity scales at least linearly with d. This is

unavoidable in DFO for generic f ; see [WDB18, BG21, CMY22b, CMY22a, CLM21, CR21]

for recent progress in overcoming this.

We highlight a shortcoming of the aforementioned works: Although they provide essentially

optimal bounds on the iteration complexity, they do not bound the query complexity. Indeed,

the true query complexity will depend on the inner workings of the solver employed to

solve (2.4a). For example, [SMG13] reports each call to the line search oracle requires an

average of 4 function queries when d ≤ 128 which increases to 7 when d = 1024. In contrast,

CARS requires only three queries per iteration, independent of d. The recently introduced

Stochastic Three Point (STP) method [BGR20, BBS20] also uses only three queries per

iteration. However, STP is not scale invariant, and in practice we find its performance

compares poorly against CARS (see Section 2.7).

We are partially motivated by ZOO-Newton [CZS17], which is essentially CARS with

D = Unif({e1, · · · , ed}). In [CZS17], it is demonstrated empirically that ZOO-Newton

1u>k∇f(xk) < 0.

10

Algorithm Strg. Convex Convex Queries/Iter Use Line Search?

[Kar75] O(log(1/ε)) O(1/ε) — Yes
[Kru83] O(log(1/ε)) — — Yes
NDFLS [GR15] — — <∞ No
Random Pursuit [SMG13] O(log(1/ε)) O(1/ε) 4–7 (empirical) Yes
ZOO-Newton [CZS17] — — 3 No
Stochastic 3 Points [BGR20] O(log(1/ε)) O(1/ε) 3 No
CARS (proposed) O(log(1/ε)) O(1/ε)† 3 or 4† No

Table 2.1: Comparison of various line-search based ZO algorithms, all of which use random
search directions. We refer to algorithms without an agreed-upon name by the paper in which
it first appeared. If a quantity (e.g. queries per iteration, convergence rate) is not explicitly
computed we denote this with “—”. Notes: †: refers to CARS-CR variant.

performs well but no theoretical guarantees are provided. Our convergence guarantees for

CARS imply convergence of ZOO-Newton as a special case. Many other works consider

adapting Newton’s method to the derivative-free setting. However, obtaining an estimate

of the d × d Hessian ∇2f(xk) for general (i.e. unstructured) f(x) is difficult. Thus, one

needs to either use Ω(d2) queries [Fab71] in order to obtain an accurate estimate of ∇2f(xk)—

far too many for most applications—or use a high-variance approximation to ∇2f(xk)

[Spa00, YHF18, GK20, ZWS19, Zhu20]. CARS sidesteps this dichotomy, as it applies

Newton’s method to a one-dimensional function. Thus the “Hessian” to be estimated is 1× 1.

Connection to Evolution Strategies. Evolution strategies (ES) are a class of derivative-

free optimization strategies inspired by biological evolution. Surprisingly, recent works

[SHC17] have shown that many ES algorithms are in fact equivalent to Random Search

algorithm [NS17] with Monte Carlo estimation of smoothed gradient. In this section we

show how CARS can also be viewed as an ES. First, recall that the defining feature of an

ES algorithm is that it maintains and iteratively updates a population distribution, i.e. a

distribution over the search space Rd, pθ. The goal of any ES is to find

θ? = arg min{F (θ) = Ex∼pθ [f(x)]}.

11

Now consider a Gaussian population distribution: pθ = N (ψ, r2A2) where θ = (ψ,A).

and r > 0 is a small, fixed, constant. We assume A is symmetric and positive definite. F (θ)

can be written as

F (ψ,A) = Eu∼N (0,Id)[f(ψ + rAu)] =

∫
f(ψ + rAu)φ(u) du,

where φ(u) = (2π)−d/2 exp(−‖u‖2/2) denotes the density of the d-dimensional standard

normal distribution. Thus, we can regard F as a smoothed version of f . Integration by parts

reveals:

∇ψF (ψ,A) = r−1E
[
f(ψ + rAu)A−1u

]
. (2.5)

Noticing that E[f(ψ)A−1u] = 0 and E[f(ψ − rAu)A−1u] = −E[f(ψ + rAu)A−1u], we can

also write (2.5) as

∇ψF (ψ,A) = E
[
r−1(f(ψ + rAu)− f(ψ))A−1u

]
= E

[
(2r)−1(f(ψ + rAu)− f(ψ − rAu))A−1u

]
= E

[
dr(ψ;Au)A−1u

]
Fixing A to be a constant matrix, and using a single sample to estimate ∇ψF (ψ) we

obtain the NRS gradient estimator [NS17]. Setting A = Id and using a population of size

greater than one for the Monte Carlo approximation of the expectation, it becomes the

evolution strategy introduced in [SHC17]. Allowing A to vary and using additional samples

to approximate A ≈ H−1 yields the gradient estimator employed in [YHF18, SY20]. Note

that they use the estimated Newton vector: A2∇ψF (ψ,A) as their descent direction.

We now show the connection between this evolution strategy and CARS. Again by

integration by parts2:

2This can also by deduced from Stein’s formula [Ste72, Ste81]

12

∇2
ψF (ψ,A) = r−2A−1E[f(ψ + rAu)(uu> − Id)]A−1. (2.6)

For simplicity define M := r−2E[f(ψ + rAu)(uu> − Id)]. Then, fixing A, the Newton vector

~n(ψ) for F at ψ is

~n(ψ) = −(∇2
ψF)−1(∇ψF) = AM−1E[dr(ψ;Au)u]. (2.7)

Note that E[uu>−Id] = 0, so we can subtract 2f(ψ)(uu>−Id) fromM inside the expectation.

Using symmetry:

M = E[hr(ψ;Au)(uu> − Id)/2].

Finally, if we use a single sample u for each expectation in (2.7),

~n(ψ) ≈ −2
dr(ψ;Au)

hr(ψ;Au)
A(uu> − Id)−1u

(a)
= −2

dr(ψ;Au)

hr(ψ;Au)

1

‖u‖2
2 − 1

Au,

where (a) follows as u is an eigenvector of uu> − Id with eigenvalue ‖u‖2
2 − 1. For A = Id,

we recover CARS, up to a constant factor coming from the difference between the Gaussian

distribution and the uniform distribution on the unit sphere. Thus, CARS can be thought

of as an ES maintaining an isotropic population distribution (as Id is the covariance) but

taking a Newton step each iteration to update the mean. This interpretation suggests the

following modification to CARS: one can also update A using the stochastic gradient:

∇AF (ψ,A) = A−1E[f(ψ + rAu)(uu> − Id)], (2.8)

Another natural extension of CARS in this direction is to use a population of size greater

than one to estimate the Newton vector in (2.7). This yields

~n(ψ) ≈ −2A

(
m∑
i=1

hr(ψ;Aui)(uiu
>
i − Id)

)−1(m∑
i=1

dr(ψ;Aui)ui

)
, (2.9)

13

where the inverse of the sum of m matrices in (2.9) can be efficiently computed through, for

instance, the Woodbury matrix formula. We leave the exploration of thes ideas to future

work.

2.1.3 Main Contributions

We propose a simple and lightweight zeroth-order algorithm: CARS. To derive convergence

rates for CARS we use a novel convergence analysis that hinges on the insight that CARS

need only significantly decrease the objective function on a positive proportion of iterations.

Our results allow for a Hölder continuous Hessian—a weaker assumption than the Lipschitz

continuity typically considered in such settings. We also propose a cubic-regularized variant,

CARS-CR. The analysis of CARS-CR extends that of the Stochastic Subspace Newton method

[HDN20] to the zeroth-order setting. The key ingredient is a careful handling of the errors

introduced by replacing directional derivatives with their finite difference counterparts. We

further propose an additional variant, CARS-NQ, in combination with numerical quadrature.

This variant facilitates obtaining more precise approximation, thus permitting a larger

smoothing parameter. Our theoretical results are corroborated by rigorous benchmarking

on two datasets: Moré-Garbow-Hillstrom [MGH81] and CUTEst [GOT15]. The benchmark

results demonstrate that CARS outperforms existing line-search based ZOO algorithms. Our

result is accompanied by an open-source implementation of CARS (and its variant), available

online at https://github.com/bumsu-kim/CARS.

2.2 Curvature-Aware Random Search

Given uk sampled from D, consider the one-dimensional Taylor expansion:

T2(α;xk, uk) := f(xk) + αu>k gk +
α2

2
u>kHkuk ≈ f(xk + αuk). (2.10)

14

https://github.com/bumsu-kim/CARS

CARS selects αk ≈ arg minα T2(α;xk, uk). The exact minimizer u>k gk/u>kHkuk depends on

unavailable quantities. CARS uses αk = drk/hrk , where dr and hr are finite difference

approximations:

drk(xk;uk) :=
f(xk + rkuk)− f(xk − rkuk)

2rk
= u>k gk +O(r2

k‖uk‖2), (2.11)

hrk(xk;uk) :=
f(xk + rkuk)− 2f(xk) + f(xk − rkuk)

r2
= u>kHkuk +O(r2

k‖uk‖2). (2.12)

(We write drk and hrk , in place of drk(xk;uk) and hrk(xk;uk) when xk and uk are clear from

context.) Thus each iteration of CARS is a zeroth-order analogue of a single iteration of

Newton’s method applied to f restricted to the line spanned by uk. As is well-known [NP06],

pure Newton’s method may not converge. So, following [GKL19] we add a fixed step-size

1/L̂ and define:

xCARS,k = xk −
drk
L̂hrk

uk. (2.13)

We allow the distribution D to be iteration dependent, i.e. uk can be sampled from Dk.
In computing drk(xk) and hrk(xk), CARS queries f at the symmetric points xk + rkuk and

xk − rkuk. We extend STP [BGR20] into a safeguarding mechanism for CARS and choose

the next iterate

xk+1 = arg min{f(xCARS,k), f(xk), f(xk − rkuk), f(xk + rkuk)},

which ensures monotonicity: f(x0) ≥ f(x1) ≥ f(x2) ≥ · · · . CARS requires two input param-

eters, L̂ and C. Ideally, L̂ should be the relative smoothness parameter (see Lemma 2.1.1),

although CARS-CR (see Section 2.3) introduces a mechanism for selecting L̂ adaptively. The

selection of C is the subject of the next section.

15

Algorithm 1 Curvature-Aware Random Search (CARS)
1: Input: x0: initial point; L̂: relative smoothness parameter, C: scale-free sampling radius

limit.
2: Get the oracle f(x0).
3: for k = 0 to K do
4: Sample uk from Dk.
5: Set rk ≤ C/‖uk‖.
6: Evaluate and store f(xk ± rkuk).
7: Compute drk and hrk using (2.11) and (2.12).
8: Compute xCARS,k = xk − drk

L̂hrk
uk.

9: xk+1 = arg min{f(xCARS,k), f(xk), f(xk − rkuk), f(xk + rkuk)}.
10: end for
11: Output: xK : estimated optimum point.

2.2.1 Convergence Guarantees

Before proceeding we list two necessary assumptions on Dk. To describe the assumptions,

introduce:

η(g,H;D) = Eu∼D
[

(u>g)2

(u>Hu)(g>H−1g)

]
. (2.14)

By Cauchy-Schwarz η(g,H;D) ≤ 1 for all g, D, and positive definite H. We use η to measure

the quality of the sampling distribution D with respect to the Newton vector H−1g, and it is

exactly 1 when all u ∼ D are parallel to H−1g. Our analysis assumes η(g,H;D) is bounded

away from zero, and this property holds for common choices of D as shown in Lemma 2.2.3.

Since replacing (rk,Dk) by (β−1rk, βDk), for any β > 0, will not affect CARS, we use the

scale-free sampling radius, rk‖uk‖, and define the following constants depending on the Hölder

continuity of H:

C1,a =

(
(a+ 1)(a+ 2)

21/2+aLa

)1/(1+a)

and C2,a =

(
(a+ 1)(a+ 2)

4(
√

2 + 1)La

)1/a

.

16

Our analysis requires us to define the following sampling radius limit, C, which also depends

on the target accuracy ε and a free parameter γ ∈ (0, 1]:

C := min{C1,a(γ
√

2µε)1/(1+a), C2,aµ
1/a}. (2.15)

CARS uses C to choose the sampling radius rk‖uk‖ after sampling uk (see Line 6 of Algo-

rithm 1). For instance, when H is Lipschitz continuous, this rule gives rk‖uk‖ = O(ε1/4).

Note that C is scale-invariant, i.e. replacing (f, ε) by (λf, λε) for any λ > 0 does not change

C.

Theorem 2.2.1 (Expected descent of CARS). Suppose f is µ-strongly convex and its Hessian,

H, is a-Hölder continuous. Suppose further that η(gk, Hk;Dk) ≥ η0 > 0. Let γ ∈ (0, 1] and ε

be the target accuracy. Take the scale-free limit of sampling radius C in (2.15). Let xCARS,k

be as in (2.13) and let Ak denote the event:

γ‖uk‖
√

2µε ≤ |u>k gk|. (2.16)

Then,

E [f(xCARS,k)− f? | Ak] ≤
(

1− η0
µ̂

2L̂

)
(f(xk)− f?). (2.17)

In words, by limiting the sampling radius to C, and conditioning on uk being “good

enough” (i.e. Ak occurs,) we obtain linear descent in expectation. The proof of Theorem 2.2.1

can be found in Section 2.6. Although Ak does not occur with probability 1, we show Ak
occurs for a positive fraction of CARS iterations. When Ak does not occur, the safeguarding

mechanism (Line 10 of Algorithm 1) still ensures monotonicity: f(xk+1) ≤ f(xk). This reveals

the key idea behind CARS: it exploits good search directions uk when they arise yet is robust

against poor search directions. Carefully quantifying this intuition, we have:

Corollary 2.2.2 (Convergence of CARS). Take the assumptions of Theorem 2.2.1. Suppose

17

further that there exists γ ∈ (0, 1] such that

pγ := inf
k≥0

Puk∼Dk
[
|u>k gk| ≥ γ‖uk‖‖gk‖

]
> 0 (2.18)

for all k ≥ 0, and use γ to define C in (2.15). Then, Algorithm 1 converges linearly. More

specifically, for any

K ≥ 2L̂

η0pγµ̂
log

(
f(x0)− f?

ε

)
,

we have E[f(xK)]− f? ≤ ε.

The additional assumption on Dk i.e. the existence of γ, is very mild, and is discussed in

Sec. 2.2.2.

2.2.2 Further Results on the Sampling Distribution

The speed of convergence of CARS depends crucially on the lower bounds η0 and pγ (see (2.14)

and (2.18)). The following Lemma computes η0 for several commonly used distributions.

Lemma 2.2.3. 1. (Isotropic distributions) When

D = Unif(Sd−1), Unif({e1, · · · , ed}), N (0, Id), or Unif({±1}d),

we have η(g,H;D) ≥ µ/(dL). The distributions in the above equation are uniform on

sphere, coordinate directions, Gaussian, and Rademacher, respectively.

2. (Approximate gradient direction) If D satisfies

Eu∼D

[(
|u>g|
‖u‖‖g‖

2
)]
≥ β > 0 (2.19)

for some β > 0, then η(g,H;D) ≥ βµ/L.

18

3. (Newton direction) When u is parallel to H−1g with probability 1, we have η(g,H;D) =

1.

Proof. Since u>Hu ≤ L‖u‖2 and g>H−1g ≤ µ−1‖g‖2,

η(g,H;D) ≥ µ

L
Eu∼D

[(|u>g|
‖u‖‖g‖

)2
]
. (2.20)

1. When D = N (0, Id) or Unif(Sd−1), we can replace g by the standard basis vector

e1 by symmetry, and it immediately follows that η(g,H;D) ≥ µ/(dL). When D =

Unif({e1, · · · , ed}),

Eu∼D

[(|u>g|
‖u‖‖g‖

)2
]

=
1

d

d∑
i=1

|gi|2/‖g‖2 =
1

d

and when D = Unif({±1}d),

Eu∼D

[(|u>g|
‖u‖‖g‖

)2
]

=
1

2d

∑
u∈{±1}d

∑d
i=1 |gi|2 +

∑
i 6=j uiujgigj

d‖g‖2
=

1

d
.

Hence, again from (2.20), we have the same lower bound µ/(dL).

2. When (2.19) holds, (2.20) provides the lower bound η(g,H;D) ≥ βµ/L. In particular,

when u is parallel to g (i.e. gradient direction) with probability p, then η ≥ pµ/L.

3. When u is the Newton direction, i.e. u is parallel to H−1g with probability 1, u>g =

u>Hu = g>H−1g, and so η(g,H;D) = 1.

This finishes the proof.

Lemma 2.2.3 suggests that assuming η(gk, Hk;Dk) ≥ η0 > 0 for all k ≥ 0 is reasonable

in practice. Note Case 3 yields the best possible η, as η ≤ 1 by Cauchy-Schwarz. The next

Lemma suggests that assuming pγ > 0 is also reasonable in practice.

19

Lemma 2.2.4 (Estimation and Lower Bounds of pγ for Various Distributions).

1. (Uniform on sphere and Gaussian) When D = N (0, Id) or Unif(Sd−1) we have

Pu∼D
[
|u>g| ≥ γ‖u‖‖g‖

]
= I1−γ2

(
d− 1

2
,
1

2

)
. (2.21)

In particular, for d ≥ 2, Pu∼D
[
|u>g| ≥ ‖u‖‖g‖/

√
d
]
≥ 0.315603.

2. (Random coordinate direction) When D = Unif({e1, · · · , ed}) we have

Pu∼D
[
|u>g| ≥ ‖u‖‖g‖/

√
d
]
≥ 1/d.

Proof. 1. First note that we can assume ‖u‖ = 1 in (2.21), and thus we only need to

consider the case D = Unif(Sd−1). In this case, D is invariant under rotation so we can

take g = e1 and

Pu∼D
[
|u>g| ≥ γ‖u‖‖g‖

]
= P[|u1| ≥ γ] = I1−γ2

(
d− 1

2
,
1

2

)

where I is the regularized incomplete Beta function as in [CMY22a, Theorem 2.3]. In

particular, when γ = 1/
√
d, the function d 7→ I1−1/d

(
d−1

2
, 1

2

)
is decreasing for d ≥ 2

and bounded below by 0. Thus pγ ≥ limd→∞ I1−1/d

(
d−1

2
, 1

2

)
= 0.315603 · · · .

2. When D = Unif{e1, · · · , ed},

Pu∼D
[
|u>g| ≥ γ‖u‖‖g‖

]
=

1

d

d∑
i=1

1|gi|≥γ‖g‖.

Recall that ‖g‖2 =
∑

i |gi|2. Hence, we have maxi |gi| ≥ ‖g‖/
√
d, which implies

Pu∼D
[
|u>g| ≥ ‖u‖‖g‖/

√
d
]
≥ 1/d. Note that this bound is tight; the equality holds

when, for example, g = (1, 0, · · · , 0).

This finishes the proof.

20

When γ is small enough and Dk approximates the gradient or Newton direction close

enough, both ηDk and pγ do not depend on d, leading to dimension independent convergence

rates. So, CARS can be combined with other derivative-free techniques that estimate the

gradient (or Newton direction)—at the cost of two additional function queries per iteration

CARS will choose an approximately optimal step-size in this computed direction. Our analysis

easily extends to such combined methods, and we sketch how to do so for the widely used

[NS17, SHC17, CRS18, FGK18] variance-reduced Nesterov-Spokoiny gradient estimate:

g̃k :=
1

m

m∑
i=1

dr(xk;uk)uk ≈ gk. (2.22)

For simplicity, we assume access to exact directional derivatives (as in [NS17]).

Corollary 2.2.5. Let f be µ-strongly convex and H be a-Hölder continuous. Suppose, at

each step, uk is generated by first sampling v1, · · · , vm from Gaussian distribution N (0, Id)

and defining:

uk =
1

m

m∑
j=1

(g>k vj)vj.

Then CARS (Algorithm 1) finds xK with E[f(xK)]− f? ≤ ε if

K ≥ 2L̂L(m+ d+ 1)

µ̂µmpγ
log

(
f(x0)− f?

ε

)
.

Proof. From Lemma 2.2.3 (part 2) we obtain:

ηD ≥
µm

L(m+ d+ 1)
.

Combining this with Corollary 2.2.2 yields the claim.

21

2.3 CARS with Cubic Regularization for General Convex Functions

Here, we adopt cubic regularization [NP06, HDN20], a technique to achieve global convergence

of a second-order method for convex functions, in CARS and prove convergence. We drop

strong convexity and assume only L-smoothness. We assume Lipschitz continuity of the

Hessian (i.e. a = 1 in Assumption 1) and let M = L1 be the Lipschitz constant. Instead of

using the second-order Taylor expansion (2.10), we now use

P (α; d, h) := dα +
1

2
hα2 +

M

6
|α|3, (2.23)

with the exact derivatives P (· ; d0, h0) and the finite difference approximations P (· ;±drk , hrk).
The method of Stochastic Subspace Cubic Newton (SSCN) [HDN20] takes exact derivatives

and uses the following inequality [HDN20, Lemma 2.3]

f(xk + αuk) ≤ f(xk) + P (α; d0(xk;uk), h0(xk;uk)) (2.24)

to derive the algorithm xk+1 = xk + α̂kuk, where α̂k = arg minα P (α; d0, h0). We propose

using α±k = arg minα P (α;±drk , hrk) in place of α̂k. By solving P ′(α;±drk , hrk) = 0 we obtain

α±k = − ±2drk

hrk +
√
h2
rk

+ 2M |drk |
.

This step-size is equal to − ±drk
hrk L̂k

with

L̂k =
1

2
+

√
1

4
+
M |drk |
2h2

rk

, (2.25)

so it is CARS with this varying relative smoothness constant. We formalize this as Algorithm 2.

To analyze CARS-CR (Algorithm 2), we make a boundedness assumption.

Definition 3. Recall that Q = {x ∈ Rd : f(x) ≤ f(x0)}. We say f has an R-bounded level

22

Algorithm 2 CARS with Cubic Regularization (CARS-CR)
1: Input: ε: target accuracy; x0: initial point; r0: initial sampling radius; M : Lipschitz

constant of Hessian.
2: Get the oracle f(x0).
3: for k = 0 to K do
4: Sample uk from Dk.
5: Set rk ≤ ρ

√
ε/
√
k + 2 where ρ = R/

√
2B as defined in Theorem 2.3.3.

6: Evaluate and store f(xk ± rkuk).
7: Compute drk and hrk using (2.11) and (2.12).
8: Compute L̂k using (2.25).
9: Compute xCR±,k = xk ± drk

L̂khrk
uk.

10: xk+1 = arg min{f(xCR+,k), f(xCR−,k), f(xk), f(xk − rkuk), f(xk + rkuk)}.
11: end for
12: Output: xK : estimated optimum point.

set if the diameter of Q is R <∞.

Without loss of generality, we may assume the distribution is normalized (i.e. ‖u‖ = 1

w.p. 1.) This is because we only need to bound the scale-free sampling radius rk‖uk‖, as
before. To ensure that the finite difference error is insignificant, the sampling radius needs

to be small enough. However, for a more concise analysis, it is helpful to have an upper

bound that can be chosen arbitrarily. Let R > 0 be an upper bound of rk for all k ≥ 0. Note

that any rk selected by CARS-CR automatically satisfies rk ≤ R (see line 5 of Algorithm 2).

Using this notation, we get:

Lemma 2.3.1 (Finite difference error bound for the minimum of P). Let P (·) = P (· ; d0, h0).

Then for any 0 ≤ rk ≤ R,

min(|P (α̂k)− P (α+
k)|, |P (α̂k)− P (α−k)|) ≤ 2B

R2
r2
k, (2.26)

where B = max(LR2,MR3, f(x0)− f?).

If the sampling distribution is isotropic in expectation, i.e. it satisfies E
[
uku

>
k

]
= 1

d
Id,,

we get the following descent lemma:

23

Theorem 2.3.2 (Expected descent of CARS-CR). Suppose f is convex, L-smooth, and has

M-Lipschitz Hessian. If Dk is isotropic in expectation, then with Algorithm 2, we have

E [f(xk+1) | xk] ≤
(

1− 1

d

)
f(xk) +

1

d
f(xk + z) +

L

2d
‖z‖2 +

M

6d
‖z‖3 +

2B

R2
r2
k (2.27)

for any z ∈ Rd.

Finally, with decreasing rk as given in Algorithm 2, we obtain the O(k−1) convergence

rate for CARS-CR.

Theorem 2.3.3 (Convergence of CARS-CR). Under the assumptions of Theorem 2.3.2,

further assume f has an R-bounded level set. Set rk ≤ ρ
√
ε√

k+2
where ρ = R√

2B
. Then, with

Algorithm 2, we have

E[f(xK)]− f? ≤
ss(f(x0)− f?)(1 + log(K + 2))

(K/d)s+1
+
es/K(s+ 1)2LR2

2s(K/d)

+
e(s−1)/K(s+ 1)3MR3

6(s− 1)(K/d)2
+
e2(s+1)/K

s+ 1
ε

(2.28)

for any s > 1. That is, for any 0 < p < 1 there exists Cp > 0 such that E[f(xK)]− f? ≤ ε if

K ≥ Cpdmax

{
LR2

ε
,

√
MR3

ε
,

(
f(x0)− f?

ε

)p}
. (2.29)

2.4 Incorporating Numerical Quadrature

Recall that the Gaussian smoothing of f is defined as

Gr[f](x) = Eu∼N (0,Id)[f(x+ ru)].

As discussed in [NS17] and elsewhere

∇Gr[f](x) = r−1E[f(x+ ru)u] = E[dr(x;u)u],

24

thus dr(x;u)u is an unbiased estimator of ∇Gr[f]. This fact is key in proving the convergence

of NS random search [NS17]. Consider a single step of Newton’s method to a smoothed, one-

dimensional function, by slicing f in a fixed direction ûk ∈ Sd−1. That is, consider uk = tkûk

with tk ∼ N (0, 1), and define the one-dimensional function f̃(t;xk, ûk) = f(xk + tûk). Then

its Gaussian smoothing is given by

Gr[f̃(·;xk, ûk)](s) = Et∼N (0,1)[f̃(s+ rt;xk, ûk)].

For simplicity, we omit xk and ûk when they are clear from context. Note that dr is an

unbiased estimator of Gr[f̃]′(0), and hr is a (biased) estimator of Gr[f̃]′′(0). Thus, the CARS

step xCARS = xk − dr/L̂hr actually mirrors a single step of Newton’s method, starting at

s = 0 for Gr[f̃](s).

In this section we propose a variant of CARS which uses better estimators of Gr[f̃]′(0)

and Gr[f̃]′′(0). By integration by parts3:

Gr[f̃]′(s) = r−1Et∼N (0,1)

[
tf̃(s+ rt)

]
, (2.30)

Gr[f̃]′′(s) = r−2Et∼N (0,1)

[
(t2 − 1)f̃(s+ rt)

]
. (2.31)

As these integrals are one-dimensional they may be accurately approximated using as few as

three queries with Gauss-Hermite (GH) quadrature. The following is a simple consequence of

[AS64].

Lemma 2.4.1. Let {(ti, wi)}qi=1 be the GH quadrature points and weights. Define

dNQ
r,q =

1

r
√
π

q∑
i=1

wi
√

2tif̃(
√

2rti), (2.32)

hNQ
r,q =

1

r2
√
π

q∑
i=1

wi(2t
2
i − 1)f̃(

√
2rti). (2.33)

3Again, this can also by deduced from Stein’s formula [Ste72, Ste81]

25

Then dNQ
r,q − Gr[f̃]′(0) = O(r2q−2) and hNQ

r,q − Gr[f̃]′′(0) = O(r2q−4).

Here the constant for the O-notation depends on f̃ and q. See [AS64] for numerical

expressions for ti and wi. Notice that when q is odd, we only need q− 1 new function queries,

since t = 0 is one of the quadrature points. Using dNQ
r,q , h

NQ
r,q allows one to obtain extremely

accurate approximations to Gr[f̃]′(s) and Gr[f̃]′′(s) while using a much larger r. Although

large r is not necessarily desirable when f is strongly convex, it can be very useful when f is

non-convex of the form

f(x) = fcvx(x) + fosc(x), (2.34)

where fcvx is strongly convex while fosc is rapidly oscillating, i.e. fosc(x) = ψ(x) cos(λφ(x))

where ψ and φ are smooth and ‖ψ‖∞ <∞.

Theorem 2.4.2. Suppose f is non-convex of the form (2.34). For any fixed û consider

f̃cvx(t;x, û) = fcvx(x + tû) and Gr[f̃cvx](s) = Et∼N (0,1)[f̃cvx(s + rt;x, û)]. If φ̃(t) = φ(x + tû)

satisfies |φ̃′(t)| ≥ c and φ̃′ is monotone, then

|dNQ
r,q − Gr[f̃cvx]′(0)| = O(r2q−2 +

1

r
), (2.35)

|hNQ
r,q − Gr[f̃cvx]′′(0)| = O(r2q−4 +

1

r2
). (2.36)

Proof. Note that, thanks to Lemma 2.4.1, we only need to show Gr[f̃osc]
′(0) = O(r−1) and

Gr[f̃osc]
′′(0) = O(r−1). Denote ψ̃(t) = ψ(x+ tû). Then f̃osc(t) = ψ̃(t) cos(λφ̃(t)). Then

∣∣∣Gr[f̃osc]
′(0)
∣∣∣ = (2π)−1/2r−1

∣∣∣∣∫ ∞
−∞

te−t
2/2ψ̃(rt) cos(λφ̃(rt))dt

∣∣∣∣
≤ (2π)−1/2r−1

∣∣∣∣∫ ∞
−∞

te−t
2/2ψ̃(rt)eiλφ̃(rt)dt

∣∣∣∣ .
Because ‖ψ̃(t)‖∞ < ∞, we can bound the tail part of the integral arbitrarily small by a

26

smooth bump function aR(t) that vanishes for |t| > R, and taking a sufficiently large R > 0:

∣∣∣Gr[f̃osc]
′(0)
∣∣∣ ≤ (2π)−1/2r−1

∣∣∣∣∫ ∞
−∞

aR(t)te−t
2/2r2ψ̃(rt)eiλφ̃(rt)dt

∣∣∣∣+O(r−1)

Then we apply Lemma 2.6 of [Tao07] with φ(t) = φ̃(rt) and the first term is also bounded by

O(r−1). Similarly, for the second derivative,

∣∣∣Gr[f̃osc]
′′(0)

∣∣∣ = (2π)−1/2r−2

∣∣∣∣∫ ∞
−∞

(t2 − 1)e−t
2/2ψ̃(rt) cos(λφ̃(rt))dt

∣∣∣∣
and we get Gr[f̃osc]

′′(0) = O(r−2).

Thus a judicious choice of r “smoothes out” the oscillatory part, while still accurately

estimating the first and second derivatives of the strongly convex part. Each iterate of CARS

with Numerical Quadrature (CARS-NQ, see Algorithm 3) effectively applies (one step of)

Newton’s method to fcvx, while ignoring fosc. This suggests, but does not prove, CARS-NQ is

robust towards local minima induced by fosc and will converge towards the global minimum

of f (assuming it is close to the global minimum of fcvx). This intuition is supported by our

empirical results, which are presented in Section 2.7.

Algorithm 3 CARS with Numerical Quadrature (CARS-NQ)
1: Input: x0: initial point; r: sampling radius; q: number of quadrature points.
2: Get the oracle f(x0).
3: for k = 0 to K do
4: Sample uk from D.
5: Compute xi := xk + r

√
2tiuk for i = 1, · · · , q.

6: Compute dNQ
r,q and hNQ

r,q using (2.32) and (2.33).
7: Compute L̂uk using (2.37).
8: Compute xCARS = xk − dNQ

r,q

L̂ukh
NQ
r,q

.

9: xk+1 = arg min{f(x1), · · · , f(xq), f(xk), f(xCARS)}.
10: end for
11: Output: xK : estimated optimum point.

[ZBZ21, TZ20] also suggest using GH quadrature in DFO. However the underlying

27

principle of their proposed algorithms, DGS and AdaDGS, respectively, is quite different

from CARS-NQ. They apply GH quadrature in each coordinate direction. The resulting

estimates are then stacked into a vector, which they refer to as the Directional Gaussian

Smoothed (DGS) gradient. The DGS gradient is not easily interpretable as the gradient of

a function, hence analyzing the convergence of AdaDGS and DGS is tricky. Nevertheless,

in practice both AdaDGS and DGS converge in relatively few iterations, although we note

their per-iteration query complexity is Ω(d), making them unsuitable for high-dimensional

problems.

Bounding the relative smoothness. Both CARS and CARS-NQ require the knowledge

of the relative smoothness constant, L̂, so as to set the step-size appropriately. Using NQ a

proper value of L̂ may be suggested.

Proposition 2.4.3. Let f : R→ R satisfy f ′′(0) > 0. Assume f is three times continuously

differentiable and M = supx∈R |f ′′′(x)| <∞. Then f satisfies

f(t)− f(0)− tf ′(0) ≤ L̃

2
t2f ′′(0)

at t = −f ′(0)/(L̃f ′′(0)), where

L̃ =
1

2
+

√
1

4
+
M |f ′(0)|
3f ′′(0)

.

Proof. From Taylor’s theorem,

f(t)− f(0)− tf ′(0) =
t2

2
f ′′(0) +

t3

6
f ′′′(ζt).

28

for some ζt ∈ (0, t). Therefore, dividing both sides by t2f ′′(x)/2, we only need to show that

1 +
tf ′′′(ζt)

3f ′′(0)
≤ L̃.

Since t = −f ′(0)/L̃f ′′(0), this is equivalent to

L̃2 − L̃ ≥ −f
′(0)f ′′′(ζt)

3f ′′(0)

However, from the definition of L̃,

(
L̃− 1

2

)2

≥ 1

4
+
M |f ′(0)|
3f ′′(0)

and it follows that

L̃2 − L̃ ≥ M |f ′(0)|
3f ′′(0)

≥ −f
′(0)f ′′′(ζt)

3f ′′(0)
.

Although Proposition 2.4.3 does not upper bound the relative smoothness parameter over

the whole domain, it provides the desired inequality at the desired point. As in (2.30) and

(2.31), also the higher order derivatives of Gr[f̃] can be easily estimated using NQ. Hence, we

suggest the following approximation to the relative smoothness parameter for each direction

u:

L̂u ≈
1

2
+

√
1

4
+
|dNQ
r,q |mNQ

r,q

(hNQ
r,q)2

, (2.37)

where mNQ
r,q denote the NQ estimator of Gr[f̃]′′′(0).

29

2.5 More on Curvature: Randomized Matrix Inversion and SHIPS

Recall that the Newton vector is the solution of the linear system Ax = b, where A = H(xk)

and b = −g(xk). As we have discussed in Sections 2.2.1 and 2.4, for any z ∈ Rd, the scalar

measurements z>Az and b>z can be easily estimated via finite difference ((2.1) and (2.2),

respectively) or numerical integration (Lemma 2.4.1).

Previously, the reconstruction of the covariance matrix A from quadratic measurements

of the form u>Au has been studied, for instance, in [CCG15]. However, the proposed method

necessitates a low-rank assumption on the covariance matrix and involves solving an expensive

sub-problem. Contrarily, we introduce a novel approach that is easy to compute, and provides

an unbiased estimator for the inverse of a matrix, up to a scalar factor. Remarkably, this is

achieved through quadratic measurements without any need for additional assumptions on

the matrix, apart from symmetry and positive definiteness.

In this section we present a novel randomized matrix inversion method that estimates

A−1 and A−1b using only those scalar measurements. For the rest of this section, we assume

A is a general symmetric positive definite (SPD) matrix.

Theorem 2.5.1 (Randomized Matrix Inversion). Let A ∈ Rd×d be SPD, and p = d/2 + 1.

If u ∼ N (0, Id) is a Gaussian random vector, and w = u/‖u‖ ∼ Unif(Sd−1), then

E
[‖u‖d

(u>Au)p
uu>

]
= E

[
ww>

(w>Aw)p

]
=

A−1

d
√

det(A)
. (2.38)

In fact, the determinant of the right-hand-side of (2.38), det(d−1A−1/
√

det(A)), computes

to d−d(det(A))−p. Therefore, provided that the estimation of the expectation is accurate

enough, we can estimate det(A) and also recover A−1 without additional scalar factor.

However, we don’t need to perform this because we only need the direction of the Newton

vector. Recall that (2.13) is invariant under scalar multiplication on u.

And the following Corollary provides the direction of the Newton vector.

30

Corollary 2.5.2 (Solution of the linear system through scalar measurements). Let A, p, u

and w be as defined in Theorem 2.5.1. Then

E
[‖u‖du>b

(u>Au)p
u

]
= E

[
w>b

(w>Aw)p
w

]
=

A−1b

d
√

det(A)
. (2.39)

When the direction u that we sample is parallel to the Newton vector, ~n, CARS recovers

the full Newton’s method, assuming that the finite difference approximation for directional

derivatives are exact. Combining this fact with the above stochastic Hessian inversion, which

can provide u whose direction is close to ~n, we propose the following algorithm, coined

Stochastic Hessian Inversion for Projected Search (SHIPS).

2.5.1 Discussion on SHIPS

One immediate advantage of SHIPS is the algorithm’s potential for parallelization. The

oracles at each iteration can be computed in parallel effortlessly. Furthermore, unlike other

Newton-type methods, it does not need to store the whole Hessian (or its inverse) in memory.

The gradient estimation gk in line 6 of Algorithm 4 can be achieved via several method-

ologies, including linear interpolation or smoothing method. For example, when the number

of samples m ≤ d, an estimation through linear interpolation can be given by solving

2rUkgk = Fk, where Uk is an m× d matrix with the i-th row being uk.i, and Fk is a d-vector

whose i-th entry is f(xk + ruk,i)− f(xk− ruk,i). When a solution exists for this linear system,

u>k,igk is just the directional finite difference, (Fk)i/(2r). In such a case, there is no need to

solve the linear system; the line 6 can be bypaseed, and directly proceeding to line 7.

Alternatively, gk can be estimated via a smoothing method incorporating Monte Carlo

estimation. We have [BCC21]

∇F (x) =
d

r
EUnif(Sd−1)[f(x+ µu)u],

31

Algorithm 4 Stochastic Hessian Inversion for Projected Search (SHIPS)
1: Input: x0: initial point; µ: sampling radius; M : the number of samples per iteration; L̂:

relative smoothness parameter
2: Get the oracle f(x0).
3: for k = 0 to K do
4: Sample i.i.d. directions uk,i ∼ Unif(Sd−1), i = 1, · · · ,m.
5: Get oracles f(xk ± ruk,i) for i = 1, · · · ,m (2m queries).
6: Estimate gk using the 2m measurements above.
7: Compute the sample mean of (2.39) to estimate the direction of the Newton vector

ûk =
1

m

m∑
i=1

u>k,igk

(hr(xk;uk,i))p
uk,i.

8: Set uk = ûk/‖ûk‖.
9: Perform additional queries along uk to conduct CARS(-CR) (finite difference, 3(or 4)

more queries)

xk,CARS = xk −
dr(xk;uk)

L̂hr(xk;uk)
uk,

or CARS-NQ (GH quadrature, 2q + 1 more queries)

xk,CARS = xk −
Gr[f̃]′(0)

L̂ukGr[f̃]′′(0)
uk.

10: xk+1 = arg min{f(xk), f(xk ± ruki), f(xk,CARS)}.
11: end for
12: Output: xK : estimated optimum point.

where F (x) = E v∼Unif(Bd)[f(x+ rv)] is smoothed version of f on a ball of radius r. We refer

the interested reader to [BCC21] for a comparison between the interpolation method and the

smoothing method.

2.5.2 Enhancing the Quality of Estimation via Adaptive Sampling

Let B be a SPD matrix and consider v ∼ N (0, B−2) by taking v = B−1u, where u is

sampled from the standard normal distribution. Then Theorem 2.5.1 can be rewritten as an

expectation over v.

32

Algorithm 5 Randomized Inversion with Adaptive Sampling (RIAS)
1: Input: M : the number of samples per iteration;
2: Get M0 ≈ A−1 using (2.38).
3: for k = 0 to K do
4: Find B−1

k = M
1/2
0 .

5: Get Mk ≈ A−1 using (2.40) with B = Bk.
6: end for
7: Output: MK : estimated inverse of A.

Corollary 2.5.3 (Randomized Matrix Inversion with N (0, B−2)). Let A, p, u be as defined

in Theorem 2.5.1. If B is SPD and v = B−1u, then

Ev∼N (0,B−2)

[‖Bv‖d
(v>Av)p

vv>
]

=
det(B)

d
√

det(A)
A−1. (2.40)

Proof. Let v = B−1u. Then v ∼ N (0, B−2) and

Ev∼N (0,B−2)

[‖Bv‖d
(v>Av)p

vv>
]

= Eu∼N (0,In)

[‖u‖d
(u>B−>AB−1u)p

B−1uu>B−1

]
=

1

d
√

det(B−>AB−1)
A−1

=
det(B)

d
√

det(A)
A−1.

An intriguing case occurs when B = A1/2 = PD1/2P>. This results in a similar approach

to evolution strategies where the covariance matrix approximates the inverse Hessian [YHF18,

SY20]. We propose the adaptive sampling procedure based on this idea in Algorithm 5.

However, the significance of the improvement resulting from this adaptive sampling

remains uncertain in higher dimensions. This may be due to a large variance in estimating

the inverse matrix. This aspect is left for future investigation.

33

2.6 Proofs

Here we collect the proofs of the results of Sections 2.2.1 and 2.3, and state and prove some

auxiliary lemmas needed in the proofs of the main results. We begin with a lemma quantifying

the expected descent given access to exact derivatives.

2.6.1 Proofs for Results in Section 2.2.1

Lemma 2.6.1 (Expected descent of CARS with exact derivatives). Let uk ∼ Dk and xED,k

be the CARS step with exact derivatives

xED,k = xk −
u>k gk

L̂u>kHkuk
uk. (2.41)

Then letting ηk = η(gk, Hk;Dk),

E [f(xED,k) | xk]− f? ≤
(

1− ηk
µ̂

L̂

)
(f(xk)− f?). (2.42)

Remark 2.6.2. Lemma 2.6.1 is similar to [GKL19, Corollary 1] and [KBD21, Corollary 1

part (ii)]. However, Lemma 2.6.1 allows for more general sampling distributions D.

Proof. From µ̂-relative strong convexity we have

f? − f(xk) ≥ 〈gk, x? − xk〉+
µ̂

2
‖x? − xk‖2

Hk
≥ − 1

2µ̂
‖gk‖2

H−1
k
, (2.43)

where the second inequality follows by taking x = x? − xk and c = µ̂ in the following general

inequality [GKL19, Lemma 9]:

arg min
x∈Rd

〈g, x〉+
c

2
‖x‖2

H = −1

c
H−1g if H � 0 and c > 0.

Rearranging (2.43) yields −‖gk‖2
H−1
k

≤ 2µ̂(f? − f(xk)). Let Mk :=
uku
>
k

u>k Hkuk
. Then, from

34

L̂-relative smoothness and [GKL19, Lemma 5],

f(xED,k) ≤ f(xk)−
1

2L̂
‖gk‖2

Mk
= f(xk)−

1

2L̂

〈uku>k gk, gk〉
u>kHkuk

= f(xk)−
1

2L̂

(u>k gk)
2

u>kHkuk
. (2.44)

Now let Ek[·] := E[·|xk] and take the conditional expectation of both sides of (2.44):

Ek [f(xED)] ≤ f(xk)−
1

2L̂
Ek
[

(u>k gk)
2

u>kHkuk

]
= f(xk)−

η(gk, Hk;Dk)
2L̂

‖gk‖2
H−1
k

≤ f(xk)− ηk
µ̂

L̂
(f(xk)− f?)

Subtracting f? from both sides yields the desired result.

Proof of Theorem 2.2.1. In this proof, for notational convenience let d0 = g>k uk for the first-

order directional derivative, and h0 = u>kHkuk for the second-order, and denote rk by r. From

the definition of L̂-relative smoothness, how much we progress at each step can easily be

described by a quadratic function q(t):

f(xk)− f(xk + tuk) ≥ q(t) := −d0t−
1

2
L̂h0t

2.

As in the exact derivatives case, the maximizer of q is t? = −d0/(L̂h0), with corresponding

maximum q(t?) = d2
0/(2L̂h0) = ‖gk‖Mk

/(2L̂), where Mk :=
uku
>
k

u>k Hkuk
as before. Recall that

xCARS,k = xk − dr/(L̂hr)uk. Our goal is to show that the finite difference estimate tr :=

−dr/(L̂hr) approximates t? well enough so that q(tr) ≥ q(t?)/2. Observe that if

|tr/t? − 1| ≤
√

1− c ⇐⇒ |tr − t?|2 ≤ (1− c)t2? (2.45)

35

holds for some 0 < c < 1, then by completing the square in q(t):

q(tr) = − L̂h0

2
(tr − t?)2 + q(t?) ≥ −(1− c)q(t?) + q(t?) = cq(t?).

Because we want to show q(tr) ≥ q(t?)/2, it suffices to show (2.45) holds for c = 1/2, i.e.,

∣∣∣∣ trt? − 1

∣∣∣∣ =

∣∣∣∣ dr/d0

hr/h0

− 1

∣∣∣∣ ≤
√

1− 1

2
=

1√
2
. (2.46)

To prove (2.46), we further bound the left-hand side by the two separate (relative) finite

difference errors. Let ed and eh be the absolute errors in estimating d0 and h0, respectively,

i.e. ed = |d0 − dr| and eh = |h0 − hr|. Then, when eh < h0, which will be shown shortly,

∣∣∣∣ dr/d0

hr/h0

− 1

∣∣∣∣ =

∣∣∣∣∣−
d0−dr
d0

+ h0−hr
h0

1− h0−hr
h0

∣∣∣∣∣ ≤ ed/|d0|+ eh/h0

1− eh/h0

,

and thus, for (2.46) we only need to prove

ed
|d0|

+

(
1 +

1√
2

)
eh
h0

≤ 1√
2
. (2.47)

Now we bound ed and eh using Taylor’s theorem and Assumption 1. Because we have

f(xk ± ruk) = f(xk)± rg>k uk + r2

∫ 1

0

(1− t)u>kH(xk ± truk)uk dt, (2.48)

we get the following representation for the error of the first-order directional derivative:

dr − d0 =
f(xk + ruk)− f(xk − ruk)

2r
− g>k uk

=
r

2

∫ 1

0

(1− t)u>k [H(xk + truk)−H(xk − truk)]uk dt.

36

By Assumption 1,
∣∣u>k [H(xk + truk)−H(xk − truk)]uk

∣∣ ≤ La(2tr)
a‖uk‖a+2 and therefore,

ed = |dr − d0| ≤ 2a−1Lar
a+1‖uk‖a+2

∫ 1

0

(1− t)ta dt =

(
r‖uk‖
C1,a

)1+a ‖uk‖
2
√

2
. (2.49)

Similarly, for the second-order directional derivative,

eh = |hr − h0| ≤ 2Lar
a‖uk‖a+2

∫ 1

0

(1− t)ta dt =

(
r‖uk‖
C2,a

)a ‖uk‖2

2
√

2 + 2
(2.50)

We see that r‖uk‖ ≤ C = min{C1,a(γ
√

2µε)1/(1+a), C2,aµ
1/a} implies two separate bounds

ed ≤
γ
√
µε‖uk‖

2

(a)

≤ |d0|
2
√

2
and eh ≤

µ‖uk‖2

2
√

2 + 2

(b)

≤ h0

2
√

2 + 2
, (2.51)

where (a) holds assuming Ak occurs and (b) follows from strong convexity:

h0 = u>kHkuk ≥ µ. (2.52)

As (2.51) implies (2.47) we have proved the theorem.

We now are ready to prove the convergence of CARS (Algorithm 1).

Proof of Corollary 2.2.2. From strong convexity we have

f? − f(x) ≥ 〈g(x), x? − x〉+
µ

2
‖x? − x‖2 ≥ − 1

2µ
‖g(x)‖2,

for any x ∈ Rd, where the second inequality comes from

arg min
x∈Rd

〈g, x〉+
c

2
‖x‖2 = −1

c
g.

Thus ‖g(x)‖2 ≥ 2µ(f(x)−f?). Taking expectation on both sides E[‖g(xk)‖2] ≥ 2µ(E[f(xk)]−
f?).

37

If ‖g(xk)‖2 ≤ 2µε at the k-th step with k ≤ K, then f(xK) − f? ≤ ε as f(xk) is

monotonically decreasing by definition (See line 9 of Algorithm 1.) Thus we need only

consider the case where ‖g(xk)‖2 > 2µε for all k < K; because if the expectation of f(xK)

conditioned on this event is less than or equal to f? + ε, then the total expectation is also

bounded by the same value.

The key of the proof is that Ak occurs with probability at least pγ > 0. Indeed, we have

|u>k gk| ≥ γ‖uk‖‖gk‖ with probability at least pγ, and since ‖gk‖ >
√

2µε,

P[Ak] ≥ P
[
|u>k gk| ≥ γ‖uk‖‖gk‖ ≥ γ‖uk‖

√
2µε
]
≥ pγ.

If Ak occurs then by Theorem 2.2.1, we get

E[f(xk+1)|Ak]− f? ≤
(

1− ηD
µ̂

2L̂

)
(f(xk)− f?).

If Ak does not occur then, as CARS is non-increasing, f(xk+1) ≤ f(xk). Thus

E [f(xk+1) | xk]− f? = E[f(xk+1)− f?|Ak]P[Ak] + E[f(xk+1)− f?|Ack]P[Ack]

≤
(

1− ηD
µ̂

2L̂

)
(f(xk)− f?)P[Ak] + (f(xk)− f?) (1− P[Ak])

=

(
1− ηDP[Ak]

µ̂

2L̂

)
(f(xk)− f?)

≤
(

1− ηDpγ
µ̂

2L̂

)
(f(xk)− f?)

⇒ E[f(xk+1)]− f? ≤
(

1− ηDpγ
µ̂

2L̂

)k+1

(f(x0)− f?),

whence solving for K in (
1− ηDpγ

µ̂

2L̂

)K
(f(x0)− f?) ≤ ε (2.53)

completes the proof.

38

2.6.2 Proofs for Results in Section 2.3

Recall that:

P (α; d, h) := dα +
1

2
hα2 +

M

6
|α|3

(we write P (α) in place of P (α; d, h) when d and h are clear from context.) Define the map

φ : R× R≥0 → R:

φ(d, h) := arg min
α

P (α; d, h).

Note that not only h0 ≥ 0, but also hrk ≥ 0 due to the convexity of f :

hrk(xk;uk) =
2

r2
k

(
f(xk + rkuk) + f(xk − rkuk)

2
− f(xk)

)
≥ 0.

Then α̂k = φ(d0, h0) and α±k = φ(±drk , hrk) by their definition. Along the way, we have useful

identities for φ:

φ(d, h) =
sign(d)

M

(
h−

√
h2 + 2M |d|

)
=

−2d

h+
√
h2 + 2M |d|

, (2.54)

and

M

2
|αmin|αmin = −d− hαmin. (2.55)

Note that (2.54) shows that φ is well-defined. We first describe the perturbation of φ, and

how P behaves near its minimum.

Lemma 2.6.3 (Perturbation of φ). Let d, d′ ∈ R have the same sign and h, h′ ≥ 0. Defining

S =
√
h2 + 2M |d| and S ′ =

√
(h′)2 + 2M |d′|,

|φ(d, h)− φ(d′, h′)| ≤ |h− h
′|

M
+

2|d− d′|
S + S ′

. (2.56)

Proof. Because d and d′ have the same sign, from (2.54), we obtain that φ(d, h) and φ(d′, h′)

39

have the same sign and so |φ(d, h)− φ(d′, h′)| = 1
M
|S − S ′ − (h− h′)|, whence

|φ(d, h)− φ(d′, h′)| = 1

M

∣∣∣∣(S − S ′) S + S ′

S + S ′
− (h− h′)

∣∣∣∣ =
1

M

∣∣∣∣S2 − (S ′)2

S + S ′
− (h− h′)

∣∣∣∣
=

1

M

∣∣∣∣(h− h′)(h+ h′)

S + S ′
+

2M(|d| − |d′|)
S + S ′

− (h− h′)
∣∣∣∣

≤ 1

M

(
1− h+ h′

S + S ′

)
|h− h′|+ 2|d− d′|

S + S ′
≤ |h− h

′|
M

+
2|d− d′|
S + S ′

,

where the last inequality comes from that 0 ≤ h+ h′ ≤ S + S ′.

We now analyze the effect of perturbations to αmin on P (α), under the assumption that

the perturbed value of α has the same sign as αmin.

Lemma 2.6.4 (Perturbation of P (α) near minimum). Let d ∈ R and h ≥ 0. Define

αmin = φ(d, h), and let α′ ∈ R have sign(α′) = sign(αmin). Then

0 ≤ P (α′; d, h)− P (αmin; d, h) ≤ 1

2
(αmin − α′)2(h+M |αmin|+

M

3
|αmin − α′|). (2.57)

Proof. Let σ = sign(αmin) = sign(α′). We write P (αmin), resp. P (α), for P (αmin; d, h), resp.

P (α′; d, h). Then,

P (α′)− P (αmin)

= d(α′ − αmin) +
h

2
(α′ − αmin)(α′ + αmin) +

σM

6
(α′ − αmin)((α′)2 + α2

min + αminα
′)

= (α′ − αmin)

(
d+

h

2
(α′ + αmin) +

σM

6
((α′)2 + α2

min + αminα
′)

)
.

40

Using (2.55), we get

P (α′)− P (αmin) = (α′ − αmin)

(
h

2
(α′ − αmin) +

σM

6
((α′)2 − 2α2

min + αminα
′)

)
=

1

2
(α′ − αmin)2

(
h+

M

3
|α′ + 2αmin|

)
≤ 1

2
(α′ − αmin)2

(
h+M |αmin|+

M

3
|α′ − αmin|

)
.

Noting that P (α′)−P (αmin) ≥ 0 as αmin minimizes P (α) we obtain the desired statement.

From (2.54) we see that if sign(drk) = sign(d0) then sign(α̂k) = sign(α+
k), whence we

may use the perturbation bounds of Lemmas 2.6.3 and 2.6.4. If sign(drk) = −sign(d0)

then sign(α̂k) = sign(α−k) and the conclusions of Lemmas 2.6.3 and 2.6.4 still apply. We

conclude that at least one of α+
k and α−k is a good approximation for α̂k, and formalize this

as Lemma 2.3.1.

Proof of Lemma 2.3.1. First, assume that sign(d0) = sign(drk), so sign(α̂k) = sign(α+
k) by

(2.54). Thus, by Lemma 2.6.4,

|P (α̂k)− P (α+
k)| ≤ 1

2
(α+

k − α̂k)2

(
h0 +M |α̂k|+

M

3
|α+
k − α̂k|

)
. (2.58)

Since h0 = u>kHkuk ≤ L, it only remains to find appropriate bounds for |α+
k − α̂k| and α̂k.

For notational convenience, define Sr :=
√
h2
r + 2M |dr| for r ≥ 0. As f is convex we know

that |d0| ≤ ‖gk‖ ≤
√

2L(f(xk)− f?), see [Ber97, Prop. B.3] and so

M |α̂k|
(2.54)
= |S0 − h0| ≤

√
S2

0 − h2
0 =

√
2M |d0| ≤

√
2M‖gk‖

≤
√

2M
√

2L(f(xk)− f?) =

√
2

R3
(MR3)

√
2

R2
(LR2)(f(xk)− f?) ≤

23/4B

R2
,

using the definition of B = max(LR2,MR3, f(xk)− f?). Defining the finite difference errors

41

edk = drk − d0 and ehk = hrk − h0, Lemma 2.6.3 implies

|α̂k − α+
k | ≤

|ehk|
M

+
2|edk|

S0 + Srk
. (2.59)

As ‖uk‖ = 1 and H is assumed Lipschitz continuous (i.e. a = 1), from (2.50), we have

|ehk| ≤ Mrk
3

and the first term on the right-hand side of (2.59) is bounded by rk
3
. Appealing

to (2.49) we obtain |edk| ≤
Mr2k

6
. We use this and the fact that sign(d0) = sign(dk) to bound

the second term on the right-hand side of (2.59):

2|edk|
S0 + Srk

=
2|dk − d0|
S0 + Srk

≤
2
(√
|d0|+

√
|dk|
) ∣∣∣√|d0| −

√
|dk|
∣∣∣√

2M |d0|+
√

2M |dk|

=
2
∣∣∣√|d0| −

√
|dk|
∣∣∣

√
2M

≤ 2
√
|d0 − dk|√

2M
≤ 2

√
1

2M

Mr2
k

6
=

rk√
3
.

This provides a nice bound independent of L, M , and R; |α̂k − α̂k| ≤ (1/3 + 1/
√

3)rk < rk.

Combining everything with (2.58), we get

∣∣P0(α̂k)− P0(α+
k)
∣∣ < 1

2
r2
k

(
L+

23/4B

R2
+
M

3
rk

)
≤ 1

2
r2
k

(
B

R2
+

23/4B

R2
+

B

3R2

)
≤ Br2

k

R2

(
2

3
+

1

21/4

)
≤ 2B

R2
r2
k.

If sign(d0) = −sign(drk) then sign(α̂k) = sign(α−k), again by (2.54). Lemma 2.6.3 and

Lemma 2.6.4 now yield

|α̂k − α−k | ≤
|ehk|
M

+
2|d0 − (−drk)|
S0 + Srk

(2.60)

|P (α̂k)− P (α−k)| ≤ 1

2
(α−k − α̂k)2

(
h0 +M |α̂k|+

M

3
|α−k − α̂k|

)
.

The first term in (2.60) can be bounded as before. Because |d0 + drk | ≤ |d0 − drk | ≤ |edk| as
d0 and drk have opposite signs, the second term in (2.60) is bounded by rk/

√
3 as before.

42

Following the proof of the sign(d0) = sign(drk) case we conclude that,

∣∣P0(α̂k)− P0(α−k)
∣∣ ≤ 2B

R2
r2
k,

thus proving the theorem.

Proof of Theorem 2.3.2. First, fix uk ∈ Rd drawn from Dk. Then, for σ = −sign(d0(xk;uk))

and any z ∈ Rd,

f(xk+1)− f(xk)

≤ f(xk + ασku)− f(xk) ≤ P (ασk ; d0(xk;uk), h0(xk;uk)) (Eq. (2.24))

≤ P (α̂k; d0, h0) +
2B

R2
r2
k (Lemma 2.3.1)

≤ P (u>k z; d0, h0) +
2B

R2
r2
k (minimality of α̂k)

= (z>uk)(u
>
k gk) +

1

2
(z>uk)(u

>
kHkuk)(u

>
k z) +

M

6
|u>k z|3 +

2B

R2
r2
k

holds. Now taking the expectation and using the isotropy condition:

E [f(xk+1) | xk]− f(xk) ≤
1

d
z>gk +

1

2
z>E

[
uku

>
kHkuku

>
k

]
z +

M

6
E
[
|u>k z|3

]
+

2B

R2
r2
k.

Note that the expectations above satisfy 1
2
z>E

[
uku

>
kHkuku

>
k

]
z ≤ 1

2
z>E

[
Luku

>
k

]
z = L

2d
‖z‖2

and E
[
|u>k z|3

]
≤ E

[
|u>k z|2

]
‖z‖ = 1

d
‖z‖3, respectively. Therefore,

E [f(xk+1) | xk]− f(xk) ≤
1

d
z>gk +

L

2d
‖z‖2 +

M

6d
‖z‖3 +

2B

R2
r2
k. (2.61)

Finally, using convexity of f , namely f(xk + z)− f(xk) ≥ z>gk, we obtain (2.27).

Proof of Theorem 2.3.3. Let δ(x) denote the optimality gap f(x) − f?, and δk := E[δ(xk)].

Since Algorithm 2 has non-increasing δk, we may assume δ0 > ε. Note that δ is convex.

Letting x? be any fixed minimizer (i.e. f(x?) = f?), we note that δ(x?) = 0. For any

43

tk ∈ (0, 1), setting z = tk(x? − xk) in Theorem 2.3.2 and defining ∆k = ‖x? − xk‖ yields

E [f(xk+1) |xk]− f?

≤ (1− 1

d
)f(xk) +

1

d
f((1− tk)xk + tkx?)− f? +

L

2d
t2k∆

2
k +

M

6d
t3k∆

3
k +

2B

R2
r2
k

and

δk+1 ≤ (1− 1

d
)f(xk) +

1− tk
d

f(xk) +
tk
d
f? − f? +

L

2d
t2k∆

2
k +

M

6d
t3k∆

3
k +

2B

R2
r2
k (2.62)

δk+1 ≤ (1− 1

d
+

1

d
− tk
d

)f(xk)− (1− tk
d

)f? +
L

2d
t2k∆

2
k +

M

6d
t3k∆

3
k +

2B

R2
r2
k (2.63)

δk+1 ≤ (1− tk
d

)δk +
L

2d
t2k∆

2
k +

M

6d
t3k∆

3
k +

2B

R2
r2
k, (2.64)

where in (2.62) we use the convexity of f , in (2.63) we use f(x?) = f?, and in (2.64) we use the

definition of δk. We adopt an auxiliary sequence {βk} to make (2.64) telescoping. Let s > 1,

and define γk = ks and βk = β0 +
∑k

j=1 γj with β0 = ssds+1/(s+ 1), then tk = d γk+1

βk+1
∈ (0, 1),

and 1− tk
d

= βk
βk+1

. We further note that:

ks+1

s+ 1
≤ β0 +

∫ k

1

1

xs
dx ≤ βk ≤ β0 +

∫ k+1

2

1

xs
dx = β0 +

(k + 1)s+1

s+ 1
(2.65)

Then by multiplying βk+1 on both sides of (2.64), we get

βk+1δk+1 ≤ βkδk +
Ld

2

γ2
k+1

βk+1

∆2
k +

Md2

6

γ3
k+1

β2
k+1

∆3
k +

2B

R2
βk+1r

2
k,

and summing up from k = 0 to K − 1, we have

δK ≤
β0

βK
δ0 +

Ld

2βK

K∑
k=1

γ2
k

βk
∆2
k−1 +

Md2

6βK

K∑
k=1

γ3
k

β2
k

∆3
k−1 +

2B

R2βK

K∑
k=1

βkr
2
k−1. (2.66)

First, β0
βK
≤ β0

βK−β0
≤ ss

(K/d)s+1 . Because the sequence f(xk) is non-increasing, xk ∈ Q for all

44

k ≥ 0 and so ∆k ≤ R (see Definition 3). Using (1 + 1
K

)s ≤ es/K ,

1

βK

K∑
k=1

γ2
k

βk
∆2
k−1

(2.65)
≤ R2(s+ 1)2

Ks+1

K∑
k=1

k2s

ks+1
=
R2(s+ 1)2

Ks+1

K∑
k=1

ks−1

≤ R
2(s+ 1)2

Ks+1

(K + 1)s

s
≤ R

2es/K(s+ 1)2

sK

and

1

βK

K∑
k=1

γ3
k

β2
k

∆3
k−1

(2.65)
≤ R3(s+ 1)3

Ks+1

K∑
k=1

k3s

k2s+2
=
R3(s+ 1)3

Ks+1

K∑
k=1

ks−2

≤ R
3(s+ 1)3

Ks+1

(K + 1)s−1

s− 1
≤ R

3e(s−1)/K(s+ 1)3

(s− 1)K2
.

Lastly, the error due to the finite difference is controlled by the sampling radius:

2B

R2βK

K∑
k=1

βkr
2
k−1

(2.65)
≤ 2(s+ 1)Bερ2

R2Ks+1

K∑
k=1

(k + 1)s

s+ 1
+

2Bερ2β0

R2βK

K∑
k=1

1

(k + 1)

≤ εe2(s+1)/K

s+ 1
+
εβ0 log(K + 2)

βK
.

Combining the above with ε < δ0 we get

δK ≤
ssδ0(1 + log(K + 2))

(K/d)s+1
+
es/K(s+ 1)2LR2

2s(K/d)

+
e(s−1)/K(s+ 1)3MR3

6(s− 1)(K/d)2
+
e2(s+1)/K

s+ 1
ε. (2.67)

When K > s, bounding the first three term in (2.67) by s−1
6(s+1)

, and the last term by s+3
2(s+1)

gives the sufficient conditions on K:

K

d
≥ max

{
3(s+ 1)3e

s(s− 1)

LR2

ε
,
(s+ 1)2

√
e

(s− 1)

√
MR3

ε
, s

(
6(s+ 1)

s− 1

)1/s(
δ0

ε

)1/s
}

and K ≥ 2(s+1)
log(1+s/2)

, respectively. These immediately give (2.29).

45

2.6.3 Proofs for Results in Section 2.5

Proof of Theorem 2.5.1. We first show (2.38) for a diagonal matrix A = diag(λ1, · · · , λd),
and then extend the result to general SPD matrices. Let u = (u1, · · · , ud) be a Gaussian

vector and q(u) denote the matrix in the expectation:

q(u) =
‖u‖d

(u>Au)p
uu>.

Then the (i, j)-th component (q(u))ij is ‖u‖duiuj/(u>Au)p. To see the off-diagonal entries

are zero, let ũ denote the vector obtained by flipping the sign of ui, (u1, · · · ,−ui, · · · , ud).
Note that ũ is also a Gaussian vector. Then for i 6= j, E[(q(u))ij] = 0 follows from

E[(q(u))ij] = E[(q(ũ))ij] = −E[(q(u))ij].

For the diagonal elements, it suffices to prove

E[(q(u))ii] = E

[
‖u‖du2

i

(
∑d

j=1 λju
2
j)
p

]
=

1

dλi

√∏d
j=1 λj

=
(A−1)ii

d
√

det(A)
. (2.68)

We compute the expectation directly as follows, using that ui’s are i.i.d. with the density

f(x) = exp(−x2/2)/
√

2π:

E[(q(u))ii] = E

[
‖u‖du2

i

(
∑d

j=1 λju
2
j)
p

]

=

∫
Rd

u2
i(∑d

j=1 λju
2
j

)p
(

d∑
j=1

u2
j

)p−1

f(u1) · · · f(ud) du,

and with the change of variables vj =
√
λjuj for j = 1, · · · , d, it computes

(2π)−d/2

λi

√∏d
j=1 λj

∫
Rd

v2
i(∑d

j=1 v
2
j

)p
(

d∑
j=1

v2
j

λj

)p−1

exp(−
d∑
j=1

v2
j

2λj
) dv. (2.69)

46

Thus we only need to prove the integral equals d−1(2π)d/2. By rearranging (interchanging vi

and v1) and using a spherical coordinate,

v1 = r cos(φ1)

vj = r sin(φ1) · · · sin(φj−1) cos(φj), 2 ≤ j ≤ d− 1

vd = r sin(φ1) · · · sin(φd−1),

we have
(∑d

j=1 v
2
j

)p
= r2p = rd+2 and

dv1 · · · dvd = rd−1

d−2∏
j=1

sind−1−j(φj) dr dφ1 · · · dφd−1.

Therefore, the integral in (2.69) becomes

∫ 2π

0

∫ π

0

· · ·
∫ π

0

∫ ∞
0

rd−1 cos2(φ1)αdexp(−r
2α2

2
)×

d−2∏
j=1

sind−1−j(φj) dr dφ1 · · · dφd−1,

where

α2 := r−2

d∑
j=1

v2
j

λj

=
cos2(φ1)

λ1

+
sin2(φ1) cos2(φ2)

λ2

+ · · ·+ sin2(φ1) · · · sin2(φd−1)

λd
.

Notice that the integral is the product of two quantities (A) and (B), where

(A) :=

∫ ∞
0

rd−1αdexp(−r
2α2

2
) dr,

47

which computes (A) = 2d/2−1Γ(n/2), and

(B) :=

∫ 2π

0

∫ π

0

· · ·
∫ π

0

cos2(φ1)
d−2∏
j=1

sind−1−j(φj) dφ1 · · · dφd−1.

For the notational simplicity, let Pm denote the definite integral
∫ π

0
sinm(θ)dθ. Then

(B) = 2πP1P2 · · ·Pd−3(Pd − Pd−2),

from cos2(φ1) = 1− sin2(φ1). Also note that from integrating by parts,

Pd =
d− 1

d
Pd−2

and thus (B) = 2πd−1P1P2 · · ·Pd−2. But the product 2πP1 · · ·Pd−2 is exactly the surface area

of the unit sphere, 2πd/2Γ(d/2)−1. Therefore, the integral in (2.69) is precisely d−1(2π)d/2 and

this proves the proposition for diagonal A.

Finally, let A be a general SPD matrix. Then A admits the eigendecomposition A =

PDP>, where PP> = P>P = Id, and D is diagonal. Then v = P>u still follows the standard

normal distribution. Therefore,

E[q(u)] = P>E
[‖v‖d

(v>Dv)p
vv>

]
P =

PD−1P>

d
√

det(D)
=

A−1

d
√

det(A)
.

This finishes the proof.

2.7 Experimental Results

For a detailed description of all experimental settings and hyperparameters, see Appendix A.1.

The code for all the experiments can be found online at https://github.com/bumsu-kim/

CARS.

48

https://github.com/bumsu-kim/CARS
https://github.com/bumsu-kim/CARS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Function Queries 10
5

10
-8

10
-6

10
-4

10
-2

10
0

CARS

CARS-CR

STP-vs

SMTP

Nesterov

SPSA

2-SPSA

AdaDGS

Figure 2.1: Performance of each algorithm on a convex quartic function
f(x) = 0.1

∑d
i=1 x

4
i + 1

2
x>Ax + 0.01‖x‖2, where A = G>G with Gij

i.i.d∼ N (0, 1).
The problem dimension d = 30.

2.7.1 Convex Functions

We compared the performance of CARS and CARS-CR to STP [BGR20], SMTP [GBS19],

Nesterov-Spokoiny [NS17], SPSA [Spa92], 2SPSA [Spa00], and AdaDGS [TZ20] on the

following convex quartic function:

f(x) = α
d∑
i=1

x4
i +

1

2
x>Ax+ β‖x‖2,

where α, β > 0 and A = G>G with Gij
i.i.d∼ N (0, 1) for i, j = 1, 2, · · · , d. We show in

Figure 2.1 the objective function value versus the number of function queries.

49

2.7.2 Benchmark Problem Sets with Non-Convex Functions

The test results in this section are presented in the form of performance profiles [DM02], which

is a commonly used tool for comparing the performance of multiple algorithms over a suite

of test problems. Performance profiles tend to be more informative than single-dimensional

summaries (e.g. average number of iterations required to solve a problem). Formally, consider

fixed sets of problems P and algorithms S. For each p ∈ P and s ∈ S the performance ratio

rp,s is defined by

rp,s =
tp,s

mins′∈S tp,s′
,

where tp,s is the number of function queries required for s to solve p. This is the relative

performance of s on p compared to the best algorithm in S for p. The performance profile of

s, ρs : [1,∞)→ [0, 1] is defined as

ρs(τ) =
|{p ∈ P : rp,s ≤ τ}|

|P| .

Therefore, ρs(1) is the fraction of problems for which s performs the best, while ρs(τ) for

large τ measures the robustness of s. For all τ , a higher value of ρs(τ) is better. We use a

log-scale on the horizontal access when plotting ρs(τ).

Moré-Garbow-Hillstrom Problems. We tested the same set of algorithms using the

well-known non-convex Moré-Garbow-Hillstrom 34 test problems [MGH81]. For each target

accuracy ε, a problem is considered solved when we have f(xk)− f? ≤ ε(f(x0)− f?) within

the budget of 20,000 queries. We used the recommended starting point x0 as in [MGH81]

for all the tested algorithm, and repeated each test 10 times. The results are presented in

Figure 2.2.

CUTEst Problems. We further assessed the performance of CARS and CARS-CR to the

same suite of algorithms on the CUTEst [GOT15] problem set, which contains various convex

and non-convex problems. As before, we compared the methods using performance profiles

50

Algorithm Success Rate (%) Median Queries Average Queries

ZOO∗ 93.95 11,700 11,804
PGD-NES∗ 88.39 2,450 4,584
ZOHA-Gauss∗ 91.69 1,400 2,586
ZOHA-Diag∗ 91.06 1,656 3,233
STP 53.64 2,193 3,141
SMTP 65.68 1,415 2,250
Nesterov 67.72 1,105 2,044
Square Attack 98.21 1,060 1,297
CARS (Square) 97.09 717 1,169

Table 2.2: Comparison of success rates, and median and average function queries for the
successful black-box adversarial attacks on MNIST with `∞-perturbation bound 0.2. CARS,
equipped with the Square Attack’s distribution, shows the best performance in successful
attacks, while reaching the second best success rate. The results marked with ∗ are cited
from [YHF18].

for the 146 problems with dimension less than or equal to 50. The query budget for each

problem was set to be 20, 000 times the problem dimension. The target accuracies were again

set to ε(f(x0)− f?). The results are reported in Figure 2.2.

2.7.3 Problems with Highly Oscillatory Noise

We also evaluated the performance of the algorithms, including CARS-NQ, on the same set

of problems, but this time with additional highly oscillatory noise. The results are depicted

in Figure 2.3. The experiment notably showcases the efficacy of an increased sampling radius

for CARS-NQ.

2.7.4 Black-box Adversarial Attacks

Suppose N is an image classifier. The problem of generating small perturbations x that, when

added to a natural image xnat, fool the classifier (i.e. N (xnat + x) 6= N (xnat)) is known as

finding an adversarial attack [GSS14]. As described in [CZS17], when no access to the internal

workings of the classifier is available, this problem becomes a black-box, or derivative-free,

51

0 2 4 6 8 10 12

log
2
()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12

log
2
()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12

log
2
()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

log
2
()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

log
2
()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12

log
2
()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.2: Performance profiles on Moré-Garbow-Hillstrom problems (left) and CUTEst
problems (right), for various target accuracies ε = 10−1 (top), 10−3 (middle), and 10−5

(bottom). Our results demonstrate that CARS and CARS-CR consistently outperform other
methods in terms of both efficiency (ρ at low τ values) and robustness (ρ at high τ values.)
at all levels of accuracy.

52

0 2 4 6 8 10 12

log
2
()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2.3: Performance of each algorithm on Moré-Garbow-Hillstrom Problems with sinu-
soidal noise fosc(x) = ψ 1

d

∑d
i=1(1 − cos(φxi)), where ψ = 0.05ε(f(x0) − f?) and φ = 100π.

The target accuracy ε is set to 10−3.

53

Figure 2.4: Adversarial examples with misclassified labels on MNIST generated with CARS.
More pictures are available in Appendix A.1.

optimization problem. In order to ensure the attacked image xnat + x appears natural, a

pixel-wise bound ‖x‖∞ ≤ εatk is usually enforced. CARS showed state-of-the-art performance

in generating black-box adversarial attacks for N trained on the MNIST digit classification

dataset [LCB10].

In our experiments, N is a two-layer CNN achieving 99% test accuracy on unperturbed

images. We use εatk = 0.2 and consider all 10, 000 images from the test set of MNIST. We

consider an attack a success if it fools N before a budget of 10, 000 queries is met. The

success rates, median and average queries for successful attacks are shown in Table 2.2. The

results from ZOO [CZS17], PGD-NES [IEA18], and ZOHA-type algorithms [YHF18] are cited

from [YHF18]. As pointed out in Section 2.2.1, the choice of sampling directions for CARS

is not restrictive. Hence we used a similar initialization and distribution D as the Square

Attack [ACF20], which is known to be particularly well-suited for attacking CNN models.

Visualization of attacked images is partly shown in Figure 2.4. More pictures and detailed

settings can be found in Appendix A.1.

54

2.7.5 Benchmarking the Performance of SHIPS

In this section we present a numerical result for SHIPS, which is a combination of CARS

and the randomized matrix inversion presented in Section 2.5. The main purpose of this

comparison is to assess SHIPS’ ability to generate effective search directions. Thus, we

contrast it with Exact Gradient Descent (Exact GD), and variance-reduced version of CARS

and Nesterov-Spokoiny (CARS-VarRed and NS-VarRed, respectively.)

For a fairer comparison with methods based on exact derivatives, we, in the case of DFO

methods, sample d directions and use 2d queries to estimate the directional derivatives per

iteration.

Variance reduction, achieved by utilizing multiple samples when calculating the expecta-

tion, has shown to work well for Nesterov-Spokoiny [SHC17, MGR18]. In contrast, CARS,

does not have a known reduced variance version yet. For this, we apply a multi-sample

extension (2.9) as introduced in Section 2.1.2.

The test function for our benchmark is given by:

f(x) =
1

2
x>Ax+

1

12

d∑
i=1

αix
4
i , (2.70)

where A is a random positive definite matrix with A = G>G with Gij
i.i.d∼ N (0, 1), and

αi
i.i.d∼ Unif(0, 1).

For each iteration, we used d uniformly random directions on the unit sphere, and

consumed 2d queries to estimate the respective directional derivatives. The methods labeled

Exact GD and Exact SHIPS are provided with the exact gradient and Hessian for comparative

purposes. As demonstrated in Figure 2.5, SHIPS deivers superior convergence speed.

55

0 50 100 150 200 250 300 350 400 450 500

Iterations

10-15

10-10

10-5

100

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

Convex Quartic, d = 6

SHIPS

CARS-VarRed

NS-VarRed

Exact GD

Figure 2.5: The x-axis denotes the number of iterations, not the number of function queries.
Among all the methods, SHIPS shows the best convergence rate, outperforming even Exact
GD, as it effectively utilizes the curvature information.

56

CHAPTER 3

Bridging the Gap Between Local and Global DFO

Method Through Inspection Strategy

3.1 Introduction

In this chapter, we discuss the inspection strategy for DFO methods, with an emphasis on

filling the gap between global and local optimization strategies. When the objective function

is non-convex and has spurious local minima, it is generally very challenging to find the

global minimum. In such cases, both global and local DFO methods may fail to deliver

a satisfactory solution, as global method may be too computationally expensive and local

methods may be trapped in a local minima.

We delve into the dichotomy between these two optimization strategies and discuss the

R-local optimization approach [CSY19], designed to bridge this gap. R-local optima lie

between local and global optima, and often ensures a suitable solution quality by providing

an adjustable radius for the solution’s local neighborhood.

We also explore how R-local optimization interacts with DFO methods. Despite their

advantages, the Run-and-Inspect method, the first proposed R-local optimization method,

can be computationally expensive, especially when the cost of sampling the objective function

is not significantly cheaper than the gradient. However, in the context of DFO, the addition

of inspections may not substantially impact the overall sample complexity.

Our proposed framework directs local DFO methods towards an R-local minimum, by

escaping a local minima if possible. This algorithm doesn’t rely on a global surrogate model,

57

which can be computationally demanding in high-dimensional scenarios. Instead, it can

be integrated with any local DFO method that generates a sequence of iterates, thereby

capitalizing on the strengths of existing local DFO methods to leverage the known structures

of the problem.

3.1.1 The gap between global optimization and local optimization

The majority of the optimization methods are either global optimization or local optimization

methods. They approach these problems in very different ways, which creates a gap between

them.

Global Optimization This class of methods aims to find the absolute best solution (up to

a small tolerance) in the entire solution space for an optimization problem. In other words, it

searches for the overall minimum or maximum. The techniques used for global optimization

are typically exhaustive, as they have to explore the entire problem space to ensure they

have found the best possible solution up to the tolerance. This is because there may be

many local optima, but only one (or a few) global optima. As a result, these methods can be

computationally expensive, particularly for complex, high-dimensional problems.

Local Optimization This class of methods, on the other hand, focuses on finding a good

solution in a neighborhood, no matter how small it is, of a specific point in the solution space.

This does not necessarily mean that the solution will be the best overall; instead, it means

that there is no better solution in some vicinity of the found one. Thus, local optimization

methods can be faster and less computationally expensive than global ones, but they may

miss the global optimum if it lies outside of the selected neighborhood.

Gap between these two types of optimization The gap can be understood through

the following perspectives.

58

Global optimization guarantees the best solution, while local optimization only guarantees

the best solution within a local neighborhood. However, the size of the neighborhood is

not known or controllable. Due to the need to explore the entire solution space, global

optimization usually requires much more computational effort, causing much longer running

time, than local optimization.

In practice, the choice between local and global optimization often depends on the specific

problem, the resources available, and the acceptable trade-offs. For low-dimensional problems

where it is crucial to find the absolute best solution, global optimization becomes necessary.

However, for many problems, a solution that is “good enough” is sufficient.

Local methods, despite only producing local solutions, may be preferred and sometimes are

only the choice due to their efficiency. To improve the solution quality of local methods, meta-

heuristics were introduced. They include using multiple starting points, simulated annealing,

genetic algorithms that allow occasional moves in the worse direction, etc. However, neither

local methods nor their meta-heuristic improvements could quantify how “good enough” their

solutions are.

Bridging the gap by R-local optimization According to [CSY19], an R-local minimizer

is a type of local minimizer that specifies a radius of the local neighborhood around the

minimizer.

More specifically, suppose we would like to minimize a function f : Rn → R. We say

that x? ∈ Rn is an R-local minimizer of f if that x? is a minimizer of f in the closed ball

x ∈ Rn : ‖x− x?‖ ≤ R. This means x? is a local minimizer in the neighborhood of radius R

around it.

The concept of an R-local minimizer is often used when we want to guarantee the solution

found to have a sufficient quality in a vicinity of a defined size. This can be helpful when

the global minimizer cannot be easily found or when the function is too complex to optimize

over its entire domain. The value of R could be chosen based on some prior knowledge or

59

−1 0 1 2 3 4 5

0

2

4

6

8

f(x) = (x− 2.15)2 + sin(2π(x− 2.65)) + 1

Figure 3.1: A function with spurious local minima introduced in [CSY19]. When R is
sufficiently large, an R-local minimum is a global minimum.

through a process of trial and error.

3.1.2 DFO and R-local optimization

R-local optimization offers clear advantages over purely local methods in terms of discovering

better solutions. However, it often incurs a higher computational cost to escape from a local

minima. This can become prohibitively expensive in certain scenarios, particularly when

the cost of sampling the objective function is not necessarily much lower than its gradient.

However, in derivative-free optimization, unless there are special structures (such as sparse

gradients described in [CMY22b]), an additional factor of d, compared to its gradient-based

counterpart, in the sample complexity is unavoidable. Consequently, performing inspections

may not significantly impact the overall sample complexity in this case.

60

3.1.3 Assumptions and Notation

Our proposed method, Inspect-as-you-Run (IR) is a framework that can be applied to any

local DFO method that generates a sequence of iterates. We assume that the local DFO

method A is given, and the objective function f satisfies the conditions for A to converge to

a local minimum. We also assume that f is L̄-Lipschitz continuous. Note that, however, if

∇f is already assumed to be Lipschitz, as in the analyses of many methods, this assumption

implies the Lipschitz continuity of f .

Also, as in the previous chapter, let ‖ · ‖ denote the Euclidean norm, Unif(S) be the

uniform distribution over S, and the unit sphere be written as Sd−1. In addition, the closed

ball of radius R centered at x is denoted as B(x,R) = {y ∈ Rd : ‖y − x‖ ≤ R}.

We then introduce a notion of an approximate R-local minimizer, which generalizes the

R-local minimizer:

Definition 4. Given a descent threshold ν, a point x̄ is said to be an approximate R-local

minimizer if f(x̄) ≤ f(x) + ν for all x ∈ B(x̄, R).

Furthermore, defining the following notion of trapping would be useful, because we want

to restrict how far the iterates wander around while we inspect nearby points.

Definition 5. Let {xk}Kk=0 be a sequence in Rd. We say {xk} is trapped in a D-ball for

k0 ≤ k ≤ k1 if ‖xk − xk′‖ ≤ D for all k0 ≤ k, k′ ≤ k1.

3.2 Main Results

One of the core ideas in IR is, at each iteration, to restrict the cost of inspection up to the same

order of magnitude as A. This ensures that if both A and A with IR are stuck at the same

local minimum, the overall sample complexity differs only by a constant factor. Moreover,

this restriction simplifies the complexity analysis imposed by the inspection as it mainly

focuses on the iteration counts. For line-search type methods, like Nesterov-Spokoiny (NS)

61

[NS17], Stochastic Three Point (STP) and its momentum variant (SMTP) [BGR20, GBS19],

and CARS from the previous chapter, the number of queries per iteration is O(1). On the

other hand, for local methods requiring more queries per iteration, such as SPSA [Spa92],

2SPSA [Spa00], DGS [ZTL20], AdaDGS [TZ20] and others using an adjustable size of batch

of sample directions [MGR18, SHC17], more inspections can be performed each iteration.

Algorithm 6 Inspect as You Run
1: Input: x0: initial point; r: sampling radius; R: inspection radius; A: One step of a

DFO method, generating the next iterate; nk: maximum number of inspections at k-th
iteration; ν: descent threshold

2: Get the oracle f(x0).
3: for k = 1, · · · , K do
4: Compute xk,0 = A(xk)
5: for j = 1, · · · , nk do
6: Compute f(xk,j)
7: if f(xk,j) < f(xk,0)− ν then
8: Set xk+1 = xk,j and break
9: end if

10: end for
11: If no successful inspections, set xk+1 = xk,0
12: end for
13: Output: xK : estimated optimum point.

Comparison to the Run-and-Inspection Method We first make clear that RUn-and-

Inspection can be applied to any optimization methods, while IR is designed for mainly

the combination with DFO methods. Also, while Run-and-Inspection waits until the local

method converges, IR performs inspections in every iteration, which can result in an earlier

escape from a basin of a (non-global) local minima.

3.2.1 Analysis on the High Probability Guarantee

This section presents an analysis of the point derived from Algorithm 6. The main result

states that if the recent iterations are trapped in a small region without successful inspections,

then it is an R0-local minimum with high probability, for some R0 < R.

62

Theorem 3.2.1. Let {xk}Kk=1 be the sequence of points obtained from Algorithm 6. Assume

that no successful inspections occur for all k ≥ k0, and let m be the total number of inspections

for k ≥ k0. Suppose

‖xk − xK‖ ≤ D < R for all k ≥ k0.

Define R0 = R−D and choose a positive r̃ < D. Then, xK is an R0-local minimum up to

η = L̄r̃ + ν with probability at least 1− exp(−m(r̃/R)d).

Proof. Begin by noting that the ball B(xK , R0 + r̃) is a subset of B(xk, R) for all k ≥ k0.

Hence, for a random variable z ∼ Unif(B(xk, R)), the conditioned random variable z|A,
where A is the event z ∈ B(xK , R0 + r̃), follows the uniform distribution over B(xK , R0 + r̃).

At iteration k = K, define S = {yi}Mi=1 as the subset of the recent m inspection points con-

tained within B(xK , R0 + r̃). Then M follows the binomial distribution M ∼ Binomial(m,φ1)

with φ1 =
(
R0+r̃
R

)d.
We now demonstrate that if S is sufficiently dense, xK becomes an approximate R0-local

minimum. Consider

x̃ := arg min
x∈B(xK ,R0)

f(x).

If there exists yi ∈ S ∩B(x̃, r̃), knowing yi is not a successful inspection, we obtain

f(xK) ≤ f(x̃) + (f(yi)− f(x̃)) + ν ≤ min
x∈B(xK ,R0)

f(x) + L̄r̃ + ν,

implying that xK is an R0-local minimum up to η = L̄r̃ + ν.

Finally, we need to find the probability bound for S ∩B(x̃, r̃) not being empty. As each

yj ∼ Unif(B(xK , R0 + r̃)) and B(x̃, r̃) ⊆ B(xK , R0 + r̃), we get φ2 := P[yj ∈ B(x̃, r̃)] =

63

(
r̃

R0+r̃

)d
. Consequently,

P[yj 6∈ B(x̃, r̃) for all j = 1, · · · ,M]

=
∞∑

M ′=0

(1− φ2)M
′
P[M = M ′]

= EM(exp (M log(1− φ2)))

(a)
= (1− φ1 + φ1 exp (log(1− φ2)))m

= (1− φ1φ2)m

≤ exp(−mφ1φ2), (1− x ≤ exp(−x))

where (a) is from the moment generating function of binomial distributions. And since

φ1φ2 = (r̃/R)d, S∩B(x̃, r̃) is nonempty with a probability of at least 1−exp(−m(r̃/R)d).

A direct implication of Theorem 3.2.1 is that if the iterates get trapped and no further

successful inspections are found since then, the solution obtained is an approximate R0-local

minimum with probability at least 1 − δ, given the count of such consecutive inspections

exceeds log(δ−1)
(
R
r̃

)d.
3.2.2 Discussion on IR

Unlike global DFO methods that constructs a surrogate model in the entire domain, it is

easier for local methods to exploit the structure of the problem. For instance, if most variables

are not highly correlated, Coordinate Descent (CD) [Wri15] or Block Coordinate Descent

(BCD) [Tse01] analogue of DFO methods can be extremely useful. For instance, such variants

can be easily obtained by replacing the sampling distribution in CARS. This room for the

choice depending on the problem structure is one of the advantages of our method and really

fills the gap between the local and global DFO methods.

64

3.3 Experimental Results

In this section we present the experimental results for supporting the effectiveness of inspection

strategy for improving the solution quality of local DFO methods. As discussed in the previous

section, we also provide the comparison between the local method equipped with inspection

strategy and a global method, to emphasize the ease of problem structure exploitation. We

benchmark a vanilla CARS and its IR version unless specified otherwise.

Spurious Local Minima

We start with a simple quadratic function with added sinusoidal noise. An 1-D illustration

is shown in Figure 3.1. This function has spurious local minima, whose number grows

exponentially with the problem dimension d.

f(x) =
d∑
i=1

(
x2
i + 0.2 sin

(
10π(xi −

1

20
)

)
+ 0.2

)

As depicted in Figure 3.2, the inspection strategy consistently identifies superior local minima,

often reaching the global minima in a relatively lower dimension of 6. We will revisit this

example with a substantially higher dimension (d = 300) for the comparison with global

methods.

Ackley’s Functions

Ackley’s functions are well-known non-convex functions with numerous spurious local minima:

f(x) = −20 exp
(
−0.2

√
‖x‖2/d

)
− exp

(
d∑
i=1

cos(2πxi)/d

)
+ e+ 20.

65

Figure 3.2: Comparison of CARS and the Inspect-as-Running version of CARS for the
quadratic function with sinusoidal noise.

66

[CSY19] also introduced an asymmetric variant:

f(x, y) = −20 exp(−0.04(x2 + y2))− exp(0.7(sin(xy) + sin y) + 0.2 sin(x2)) + 20

We test both functions and again, and observe that the IR version consistently found better

minima, while the vanilla CARS frequently got trapped in a non-global local minima.

Figure 3.3 depicts the result for the Ackley function, and Figure 3.4 shows the result for

the asymmetric Ackley function.

K-means Clustering

Let {xi}ni=1 be a set of n points in Rd and {zj}Kj=1 be K points in Rd. Let the variable

Z = [z1, · · · , zK] ∈ Rd×K be the matrix of the cluster centers. The K-means clustering

problem is to find the optimal Z that minimizes the following objective function:

f(Z) =
1

2n

n∑
i=1

min
j=1,··· ,K

‖xi − zj‖2.

We tackle this problem with derivative-free methods by treating Z as a vector in RdK .

Synthetic Gaussian Data from [YPO18]

The first problem has synthetic Gaussian data, which is a mixture of four multivariate

Gaussian distributions with n = 1000 each. This problem is introduced in [YPO18]. We use

the same means and covariance matrices:

µ1 = [−5,−3], µ2 = [5,−3], µ3 = [0, 5], µ4 = [2.5, 4],

67

Figure 3.3: Comparison of CARS and the Inspect-as-Running version of CARS for the Ackley
function

68

Figure 3.4: Comparison of CARS and the Inspect-as-Running version of CARS for the
asymmetric Ackley function

69

and

Σ1 =

0.8 0.1

0.1 0.8

 ,Σ2 =

1.2 0.6

0.6 0.7

 ,Σ3 =

 0.5 0.05

0.05 1.6

 ,Σ4 =

 1.5 0.05

0.05 0.6

 .
See Figure 3.5 for the result.

Iris Dataset

The second K-means clustering problem consists of the Iris dataset. This dataset contains

150 samples of three different species of Iris flowers. Each sample has four features: sepal

length, sepal width, petal length, and petal width. We illustrate the results from 500 runs

and the histogram of the final objective values in Figure 3.6. The figures demonstrate that

the IR version of CARS finds better minima in most cases, and more rapidly.

Hyperparameter Tuning

We apply the two versions of CARS to hyperparameter tuning for training a convolutional

neural network on the MNIST dataset. The hyperparameters includes the L2 regularization

parameter in the loss, the learning rate for the optimizer (AdaDelta), and the annealing rate

for the scheduler (StepLR) as in [HKV19]. To show the ability to escape the local minima

more clearly, we start from a suboptimal initial point x0 = (0.5, 0.5, 0.5).

To reduce the variance, the objective function for the hyperparameter is set to be the

mean of two samples, which measures the misclassification rate of the trained model with the

given set of hyperparameters. The result can be found in Figure 3.7.

Handling Spurious Local Minima in Higher Dimensions

We turn our attention back to the function with spurious local minima, but this time in a

higher dimension, d = 300. Here we compare the performances of CARS and its IR variant

70

Figure 3.5: Comparison of CARS and the Inspect-as-Running version of CARS for the
K-means clustering problem of synthetic Gaussian data

71

Figure 3.6: Comparison of CARS and the Inspect-as-Running version of CARS for the
K-means clustering of the Iris dataset

72

Figure 3.7: Comparison of CARS and the Inspect-as-Running version of CARS for hyperpa-
rameter tuning for training a convolutional neural network for MNIST dataset

73

with RBFOpt [CN18], which is one of the most efficient the global methods. RBFOpt employs

the Latin Hypercube Sampling (LHS) as its default initialization strategy; we apply the same

initialization for CARS and its IR variant.

RBFOpt’s computational cost for 1,000 iterations (amounting to 1,241 function evaluations)

is 15,073 seconds, while CARS completes 30,000 function evaluations in a mere 1.474 seconds.

This discrepancy highlights that the computational expenses of the solver itself (sub-problems)

can often make global methods impractical for high-dimensional problems.

To leverage the problem’s structure, specifically the independence of each variable, we

adopt a coordinate descent version. This is done by simply replacing the sampling directions

from Unif(Sd−1) to Unif(e1, · · · , ed) for both CARS and the inspections. Figure 3.8 presents

the results.

We further test the same problem in an even higher dimension of d = 10000, and the

results are depicted in Figure 3.9. For both experiments, the inspection radius R is set at 2,

and the number of inspection points is capped at 5 per iteration. The sensitivity to these

hyperparameters is discussed in the next subsection.

3.3.1 Sensitivity to IR Hyperparameters

We carry out an additional investigation to understand how the IR hyperparameters — the

inspection radius R and the maximum number of inspection points per iteration n — affect

performance. For this experiment, we use the sphere function with sinusoidal noise, which is

the same as the first experiment, but with a different magnitude and frequency of noise, in a

moderate dimension of d = 30:

f(x) =
d∑
i=1

(
x2
i + sin

(
2π(xi −

1

4
)

)
+ 1

)
.

In this setup, the distance between two adjacent local minima near the global minimum x = 0

is approximately 1.

74

0 200 400 600 800 1000 1200

Number of function evaluations

103

104

O
b
je

c
ti

v
e
 f

u
n
c
ti

o
n
 v

a
lu

e

10 Experiments

0 5000 10000 15000 20000 25000 30000

Number of function evaluations

10 9

10 7

10 5

10 3

10 1

101

103

105

f(
x
)

10 Experiments

Figure 3.8: Comparison of CARS with IR and the RBFOpt in 300-dimensional problem with
spurious local minima. Computation for RBFOpt is terminated after 1,000 iterations due to
the computational cost.

75

0.0 0.2 0.4 0.6 0.8 1.0
Number of function evaluations 1e6

102

103

104

105

f(x
)

f(x) vs oracles, 100 Experiments

CARS (10.0%-90.0%)
CARS-RnI (10.0%-90.0%)
CARS (median)
CARS-RnI (median)

Figure 3.9: The coordinate descent (CD) version of CARS with IR for the 10,000-dimensional
problem with spurious local minima. This shows the scalability of IR and CD variant when
applied to problems with uncorrelated variables.

We conduct 200 experiments for each combination of R and n, varying from 0.25 to

128, and 0 to 128, respectively, with the budget of 600, 3,000, 9,000, and 15,000 function

evaluations. The results, presented as median objective function values for each R and n,

are depicted in both linear scale (upper figures) and log scale (lower figures) in Figures 3.10,

3.11, 3.12, and 3.13.

These results demonstrate that the performance of IR is relatively insensitive to the

specific choice of R and n, provided that R is large enough to escape the local minima and n

is not excessively large to make the inspection step too expensive.

3.3.2 Integration with Augmented Random Search (ARS)

Augmented Random Search (ARS) [MGR18] is one of the prominent derivative-free approaches

in the field of reinforcement learning, where the objective function (reward) is often noisy

76

100 101 102
Inspection Radius

25

50

75

100

125

150

175

200
Fin

al
 O
bj
ec
tiv
e
Va
lu
e

Budget = 600, median of 200 experiments

No IR 1 pt 2 pts 4 pts 8 pts 16 pts 32 pts 64 pts 128 pts

100 101 102
Inspection Radius

102

Fin
al
 O
bj
ec
tiv

e
Va

lu
e

Budget = 600, median of 200 experiments

Figure 3.10: Sensitivity to R and n with budget of 600 function evaluations.

77

100 101 102

Inspection Radius

0

20

40

60

80

100

120
Fin

al
 O

bj
ec

tiv
e

Va
lu

e
Budget = 3000, median of 200 experiments

No IR 1 pt 2 pts 4 pts 8 pts 16 pts 32 pts 64 pts 128 pts

100 101 102

Inspection Radiu

10−9

10−7

10−5

10−3

10−1

101

Fin
al
 O

bj
ec

tiv
e
Va

lu
e

Budget = 3000, median of 200 experiment

Figure 3.11: Sensitivity to R and n with budget of 3,000 function evaluations.

78

100 101 102

Inspection Radius

0

20

40

60

80

100

120
Fin

al
 O

bj
ec

tiv
e

Va
lu

e
Budget = 9000, median of 200 experiments

No IR 1 pt 2 pts 4 pts 8 pts 16 pts 32 pts 64 pts 128 pts

100 101 102

Inspection Radius

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

Fin
al

 O
bj

ec
tiv

e
Va

lu
e

Budget = 9000, median of 200 expe iments

Figure 3.12: Sensitivity to R and n with budget of 9,000 function evaluations.

79

100 101 102

Inspection Radius

0

20

40

60

80

100

120
Fin

al
 O

bj
ec

tiv
e

Va
lu

e
Budget = 15000, median of 200 experiments

No IR 1 pt 2 pts 4 pts 8 pts 16 pts 32 pts 64 pts 128 pts

100 101 102

Inspection Radiu

10−27

10−23

10−19

10−15

10−11

10−7

10−3

101

Fin
al
 O

bj
ec

tiv
e
Va

lu
e

Budget = 15000, median of 200 experiment

Figure 3.13: Sensitivity to R and n with budget of 15,000 function evaluations.

80

0 2000 4000 6000 8000 10000
Number of function evaluations

101

102

f(x
)

Problem dimension = 10
ARS (10.0%-90.0%)
ARS-RnI (10.0%-90.0%)
ARS (median)
ARS-RnI (median)

Figure 3.14: Comparison of ARS and its IR variant for the quadratic function with sinusoidal
noise. The problem dimension is 10.

and non-convex. This experiment aims to contrast the performance of the original ARS with

its IR version, thereby evaluating the impact of the inspection strategy on identifying better

local minima for a different DFO algorithm.

We use ARS-V1 as the baseline algorithm, where the update is given by

xk+1 = xk −
α

NσR

N∑
i=1

(f(xk + hui)− f(xk − hui))ui,

where α is the step size, N is the number of samples per iteration, h is the sampling radius,

{ui}Ni=1 are independently sampled from N (0, Id), and σR is the standard deviation of the

2N objective function values.

The results shown in Figures 3.14 and 3.15 corroborate the utility of the inspection

strategy in enabling ARS to find better minima.

81

0 2000 4000 6000 8000 10000
Number of function evaluations

101

2 × 100

3 × 100

4 × 100

6 × 100

f(x
)

f(x) vs oracles, 100 Experiments

ARS (10.0%-90.0%)
ARS-RnI (10.0%-90.0%)
ARS (median)
ARS-RnI (median)

Figure 3.15: Comparison of ARS and its IR variant for the Ackley function. The problem
dimension is 10.

82

CHAPTER 4

Conclusion

In this concluding chapter, we summarize the key findings of this thesis and suggest potential

future research directions.

4.1 Summary

This thesis presents two novel approaches designed to enhance local Derivative-Free Opti-

mization (DFO) methods, along with novel theoretical analyses and numerical experiments

that underscore their efficacy.

In the first approach, we introduce a DFO method coined as Curvature-Aware Random

Search (CARS), which leverages curvature information to optimize the step size along the

search direction. We further refine CARS to develop the variants CARS-CR and CARS-

NQ, creating a suite of lightweight, query-efficient DFO algorithms that can be easily

implemented. Our analysis establishes the convergence on strongly convex functions for

CARS and convex functions for CARS-CR. Specifically, we develop a novel and rigorous

analysis on the finite difference errors and the probability of significant descents of the

objective function. CARS-NQ utilizes Gauss-Hermite quadrature to more accurately estimate

the directional derivatives, thereby improving robustness against highly oscillatory noise.

The adaptability of the CARS family to various distributions enables their use in a wide

range of problem-specific distributions. Furthermore, we present a novel randomized matrix

inversion method that provides an unbiased estimator of an inverse matrix, computed via only

83

quadratic measurements. This is the cornerstone of Stochastic Hessian Inversion for Projected

Search (SHIPS) approach for more curvature information, wherein quadratic measurements

are estimated by finite differences. We demonstrate the efficacy of CARS and its variants

through benchmark tests, where they outperform existing methods in minimizing non-convex

functions as well.

In the subsequent chapter, we outline an inspection strategy for DFO methods, Inspect

as you Run (IR), which can be applied to any DFO method that generates a sequence

of iterates. Our analysis establishes a high probability guarantee for approximate R-local

minima, without compromising the local convergence property of the original DFO method.

Extensive benchmark tests have shown the exceptional effectiveness of the inspection strategy,

affirming its ability to bridge the gap between local and global DFO methods.

4.2 Future Research Directions

• Variance Reduction While the cost-effectiveness of sampling a single direction per

iteration is beneficial, it does lead to a higher variance at each iteration. This challenge

can be addressed by sampling multiple directions per iteration, as suggested in [LCK20].

However, unlike DFO methods that mimic first-order methods, CARS involves a ratio of

two estimators. The viewpoint introduced in Section 2.1.2 could provide useful insights

into this issue and facilitate the multi-sample extension of CARS. Additionally, when a

gradient estimate is available, combining it with finite difference estimates could further

mitigate the variance.

• Adaptive Sampling Distribution We showed in Section 2.1.2 that CARS corre-

sponds to an evolution strategy on the isometric population, solely shifting its mean.

We also suggest updating the distribution’s covariance (2.8). This concept has strong

ties to randomized matrix inversion and adaptive sampling, as demonstrated in Al-

gorithm 5. Although the latter approach appears to be less competitive in higher

84

dimensions at present, further exploration may yield improvements.

• Use of Inspection Points Inspection strategy proposed here, while fundamentally

simple in its approach of selecting random points and comparing them to the current

minimum, could potentially be enhanced by more intelligent utilization of the inspection

point. One possibility is to treat the inspection points as a batch of random perturbations

with a larger sampling radius. This multiscale strategy may be slightly more complex,

but it has the potential to improve performance.

85

APPENDIX A

Details on Numerical Experiments

A.1 Experimental Settings for Chapter 2

In this Section, we list the hyperparameters we used for each experiment. The code for all

experiments can be found in https://github.com/bumsu-kim/CARS. We ran experiments

on several machines to distribute the load. We used Intel i5-9400F with Nvidia RTX 2060

and i9-9940X with two RTX 2080.

Moré-Garbow-Hillstrom Problems. The Moré-Garbow-Hillstrom Problem set consists

of 34 non-convex smooth functions, where the problem dimensions lie between 2 and 100.

This experiment is conducted in Matlab.

We consider a problem solved when f(xk)− f? ≤ ε(f(x0)− f?). The target accuracies

used here are ε = 10−1, 10−3 and 10−5. We used the recommended x0 for each problem.

For CARS and CARS-NQ, we used the sampling radius rk = 0.01/
√
k + 1, L̂ = 2. For

CARS-NQ, the number of quadrature points q = 5 is used. Having larger q increases the

accuracy of the approximation of smoothed derivatives, but it also increases the cost (i.e.

function queries required) at each step. Recall from Section 2.4 that using odd q is always

more efficient than even q. Since q = 3 is essentially less accurate than CARS, we used several

values of q ≥ 5 and found that q = 5 is the best.

For STP [BGR20] and NSRS [NS17] we used the same hyperparameters as given in

Section 8.1 of [BGR20]. We also used the same decreasing step-size for Stochastic Momentum

86

https://github.com/bumsu-kim/CARS

Three Points method (SMTP) [GBS19]. For the momentum parameter β for SMTP, we

followed [GBS19] and used β = 0.5. Namely, following the notations in [BGR20] and [GBS19],

D = Unif(Sd−1) and

αk =
1√
k + 1

, (STP)

αk =
1

4(n+ 4)
and µk = 10−4, (NSRS)

γk =
1√
k + 1

, and β = 0.5. (SMTP)

For SPSA [Spa92] and 2SPSA [Spa00], we used the Rademacher distribution (i.e. (uk)i =

±1 with probability 0.5) for D, α = 0.602, γ = 0.101, A = 100, a = 0.16, and c = 10−4.

For AdaDGS [TZ20], we used the code provided by the authors, by implementing the

original Python code in Matlab. Some modifications on hyperparameters are made due to the

difference in the scale of problem dimension, and the lack of domain width. First, the original

AdaDGS code performs experiments on high dimensional problems (e.g. d = 1000), whereas

2 ≤ d ≤ 100 in this experiment. Also, the problems are unconstrained, and ‖x0 − x?‖ varies
from order of 100 to 106. Thus we used the following modified hyperparameters (following

the notation of [TZ20]):

1. The number of points used for line search S = 100, since the suggested value 0.05d(M−1)

is too small for our experiments.

2. The initial smoothing(sampling) radius σ0 = 10−2. We tested σ0 = 5, 1, 10−1, 10−2 and

10−3 and chose the best value. When σ0 ≤ 10−1 then the results were similar.

For plotting the performance profile, we set the performance ratio rp,s = rM when p is

not solved by s. Having rM =∞ is ideal, but setting it by a sufficiently large number does

not make any difference. We used rM = 1020.

87

Problems with Highly Oscillatory Noise. For the presence of oscillatory noise scenario,

we performed experiments, by adding the noise to Moré-Garbow-Hillstrom Problems. For

each function in the benchmark set, we used the same noise

fosc(x) = ψ
d∑
i=1

(1− cos(φixi)),

with different noise level ψ = 0.1ε(f(x0)− f?), and the same frequency φi = 100π.

We used the same hyperparameters for Moré-Garbow-Hillstrom Problems as in the

previous experiment, except for CARS-NQ, where we used 50 times larger r.

Black-box Adversarial Attacks. In this section, we explain the experiment setting for

black-box adversarial attacks and also provide the hyperparameters that we used. The CNN

model we attack has two 5× 5 convolutional layers with 6 and 16 output channels, followed

by a 4× 4 convolutional layer with 120 output channels. Then two fully connected layers

with 84 and 10 units follows. Between layers we use ReLU, and between convolutional layers

we use 2× 2 max-pooling as well. Finally we apply log softmax to the output layer. The test

accuracy of the trained model is 98.99%.

For more readable description, let the images have width and height both equal to s. Then

the problem dimension d is s2. For this particular experiment, we make three modifications to

CARS. First, since the problem is highly non-convex (hr < 0 at around 50% of the iteration),

we don’t compute xCARS when hr < 0 at k-th iteration. The second modification is due to

the constraint of the problem. Let F be the feasible set:

F = {x ∈ [0, 1]d : ‖x− x0‖ ≤ εatk}.

Inspired by [ACF20], we also compute xbdry = xk − tmaxdruk, where

tmax = max{t > 0 : xk − tdruk ∈ F}.

88

This is especially useful when hr < 0 so we don’t compute xCARS. Therefore, CARS now

requires either 3 (f(xk ± rkuk) and f(xbdry)) function queries or 4 (f(xCARS) in addition) per

iteration. To sum up,

xk+1 =


arg min{f(xk ± rkuk), f(xCARS), (xbdry)} if hr > 0

arg min{f(xk ± rkuk), (xbdry)} otherwise.

Lastly, we perturbed x0 by adding horizontal stripes. That is,

x0 = projF(xorig + εatkv),

where vi,: = ±(1, · · · , 1) for i = 1, · · · , s and xorig is the image to be attacked. This choice of

initialization is found to be very effective in [ACF20].

We use the same sampling distribution as Square Attack [ACF20], which is known to be

particularly well-suited for attacking CNN models. Identifying s× s images and d-vectors,

this distribution generates a square block of all 1 or −1, i.e. ur+1:r+w,c+1:c+w = ±1, where

0 ≤ r, c ≤ s− w and w is the window size. See [ACF20] for more details.

The window size w is determined by p, the fraction of the pixels changed by attack. Namely,

w is the closest positive integer to √ps, and thus this p is an important hyperparameter in

this distribution. In [ACF20], the authors used p = 0.8 in the initial stage and halve the

value of p when the number of iteration k reaches 10, 50, 200, 1000, 2000, 4000, 6000 and 8000,

respectively.

For CARS, we used the initial p = 0.2 and halved it at k = 2, 10, 40, 250, 500, 800, 1200

and 1600. Note that the Square Attack only uses one function query at each iteration and

CARS for black-box attack uses 3 or 4 queries, and thus p is being halved at similar stage of

the algorithms, in terms of the function queries.

Finally, the sampling radius rk is fixed by 1 for every iteration.

89

A.2 Visualization of Attacked Images

In this section we present the visualization of the attacked images, comparing them with the

original images. To be more clear, the images in Figure A.1 have Testset ID (TID)’s from

100 to 109. When an image with label n has TID t, this means it is the t-th n appearing in

the test set. See the code for more details on TID.

90

Figure A.1: Adversarial examples with misclassified labels on MNIST generated with CARS.
For every two rows, a row of original images are shown, and the adversarial examples are
right underneath them, with the misclassified labels in between.

91

REFERENCES

[ACF20] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias
Hein. “Square attack: a query-efficient black-box adversarial attack via random
search.” In European Conference on Computer Vision, pp. 484–501. Springer,
2020.

[AD04] Charles Audet and John E Dennis Jr. “A pattern search filter method for
nonlinear programming without derivatives.” SIAM Journal on Optimization,
14(4):980–1010, 2004.

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth Dover
printing, tenth GPO printing edition, 1964.

[BB12] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter opti-
mization.” Journal of Machine Learning Research, 13(1):281–305, 2012.

[BBS20] Adel Bibi, El Houcine Bergou, Ozan Sener, Bernard Ghanem, and Peter Richtarik.
“A Stochastic Derivative-Free Optimization Method with Importance Sampling:
Theory and Learning to Control.” In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3275–3282, 2020.

[BCC21] Albert S Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. “A
theoretical and empirical comparison of gradient approximations in derivative-free
optimization.” Foundations of Computational Mathematics, pp. 1–54, 2021.

[BCS21] Albert S Berahas, Liyuan Cao, and Katya Scheinberg. “Global convergence
rate analysis of a generic line search algorithm with noise.” SIAM Journal on
Optimization, 31(2):1489–1518, 2021.

[Ber97] Dimitri P Bertsekas. “Nonlinear programming.” Journal of the Operational
Research Society, 48(3):334–334, 1997.

[BG21] Krishnakumar Balasubramanian and Saeed Ghadimi. “Zeroth-Order Nonconvex
Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle
Points.” Foundations of Computational Mathematics, pp. 1–42, 2021.

[BGR20] El Houcine Bergou, Eduard Gorbunov, and Peter Richtarik. “Stochastic three
points method for unconstrained smooth minimization.” SIAM Journal on Opti-
mization, 30(4):2726–2749, 2020.

[CCG15] Yuxin Chen, Yuejie Chi, and Andrea J Goldsmith. “Exact and stable covariance
estimation from quadratic sampling via convex programming.” IEEE Transactions
on Information Theory, 61(7):4034–4059, 2015.

92

[CLM21] HanQin Cai, Yuchen Lou, Daniel McKenzie, and Wotao Yin. “A Zeroth-Order
Block Coordinate Descent Algorithm for Huge-Scale Black-Box Optimization.”
In Proceedings of the 38th International Conference on Machine Learning, pp.
1193–1203. PMLR, 2021.

[CMO22] Coralia Cartis, Estelle Massart, and Adilet Otemissov. “Global optimization using
random embeddings.” Mathematical Programming, pp. 1–49, 2022.

[CMY22a] HanQin Cai, Daniel Mckenzie, Wotao Yin, and Zhenliang Zhang. “A One-bit,
Comparison-Based Gradient Estimator.” Applied and Computational Harmonic
Analysis, 60:242–266, 2022.

[CMY22b] HanQin Cai, Daniel Mckenzie, Wotao Yin, and Zhenliang Zhang. “Zeroth-Order
Regularized Optimization (ZORO): Approximately Sparse Gradients and Adaptive
Sampling.” SIAM Journal on Optimization, 32(2):687–714, 2022.

[CN18] Alberto Costa and Giacomo Nannicini. “RBFOpt: an open-source library for black-
box optimization with costly function evaluations.” Mathematical Programming
Computation, 10:597–629, 2018.

[CO22] Coralia Cartis and Adilet Otemissov. “A dimensionality reduction technique for
unconstrained global optimization of functions with low effective dimensionality.”
Information and Inference: A Journal of the IMA, 11(1):167–201, 2022.

[CPP20] Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang,
Deepali Jain, Yuxiang Yang, Atil Iscen, Jasmine Hsu, and Vikas Sindhwani.
“Provably robust blackbox optimization for reinforcement learning.” In Conference
on Robot Learning, pp. 683–696, 2020.

[CR21] Coralia Cartis and Lindon Roberts. “Scalable Subspace Methods for Derivative-
Free Nonlinear Least-Squares Optimization.” arXiv preprint arXiv:2102.12016,
2021.

[CR22] Coralia Cartis and Lindon Roberts. “Scalable subspace methods for derivative-
free nonlinear least-squares optimization.” Mathematical Programming, pp. 1–64,
2022.

[CRS18] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and
Adrian Weller. “Structured evolution with compact architectures for scalable
policy optimization.” In International Conference on Machine Learning, pp.
970–978. PMLR, 2018.

[CSC19] Minhao Cheng, Simranjit Singh, Patrick Chen, Pin-Yu Chen, Sijia Liu, and
Cho-Jui Hsieh. “Sign-opt: A query-efficient hard-label adversarial attack.” arXiv
preprint arXiv:1909.10773, 2019.

93

[CSV09] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-
free optimization. SIAM, 2009.

[CSY19] Yifan Chen, Yuejiao Sun, andWotao Yin. “Run-and-Inspect Method for nonconvex
optimization and global optimality bounds for R-local minimizers.” Mathematical
Programming, 176:39–67, 2019.

[CZS17] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. “ZOO:
Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models.” In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, pp. 15–26, 2017.

[DM02] Elizabeth D Dolan and Jorge J Moré. “Benchmarking optimization software with
performance profiles.” Mathematical Programming, 91(2):201–213, 2002.

[Fab71] Václav Fabian. “Stochastic approximation.” In Optimizing methods in statistics,
pp. 439–470. Elsevier, 1971.

[FGK18] Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. “Global con-
vergence of policy gradient methods for the linear quadratic regulator.” In
International Conference on Machine Learning, pp. 1467–1476. PMLR, 2018.

[GBS19] Eduard Gorbunov, Adel Bibi, Ozan Sener, El Houcine Bergou, and Peter Richtárik.
“A stochastic derivative free optimization method with momentum.” arXiv preprint
arXiv:1905.13278, 2019.

[GK20] Tobias Glasmachers and Oswin Krause. “The Hessian Estimation Evolution
Strategy.” In International Conference on Parallel Problem Solving from Nature,
pp. 597–609. Springer, 2020.

[GKL19] Robert Gower, Dmitry Koralev, Felix Lieder, and Peter Richtárik. “RSN: Random-
ized subspace newton.” In Advances in Neural Information Processing Systems,
pp. 616–625, 2019.

[GL13] Saeed Ghadimi and Guanghui Lan. “Stochastic first-and zeroth-order methods for
nonconvex stochastic programming.” SIAM Journal on Optimization, 23(4):2341–
2368, 2013.

[GLL88] Luigi Grippo, F Lampariello, and S Lucidi. “Global convergence and stabiliza-
tion of unconstrained minimization methods without derivatives.” Journal of
Optimization Theory and Applications, 56(3):385–406, 1988.

[GOT15] Nicholas IM Gould, Dominique Orban, and Philippe L Toint. “CUTEst: a con-
strained and unconstrained testing environment with safe threads for mathematical
optimization.” Computational optimization and applications, 60(3):545–557, 2015.

94

[GR15] Luigi Grippo and F Rinaldi. “A class of derivative-free nonmonotone optimiza-
tion algorithms employing coordinate rotations and gradient approximations.”
Computational Optimization and Applications, 60(1):1–33, 2015.

[GS07] Luigi Grippo and Marco Sciandrone. “Nonmonotone derivative-free methods for
nonlinear equations.” Computational Optimization and Applications, 37(3):297–
328, 2007.

[GSS14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
harnessing adversarial examples.” arXiv preprint arXiv:1412.6572, 2014.

[HDN20] Filip Hanzely, Nikita Doikov, Yurii Nesterov, and Peter Richtarik. “Stochastic
Subspace Cubic Newton Method.” In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 4027–4038. PMLR, 13–18
Jul 2020.

[HKV19] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine
learning: methods, systems, challenges. Springer Nature, 2019.

[IEA18] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. “Black-box adver-
sarial attacks with limited queries and information.” In International Conference
on Machine Learning, pp. 2137–2146. PMLR, 2018.

[JNR12] Kevin G Jamieson, Robert Nowak, and Ben Recht. “Query Complexity of
Derivative-Free Optimization.” In Advances in Neural Information Processing
Systems, volume 25, 2012.

[JS01] Arun Jagota and Laura A Sanchis. “Adaptive, restart, randomized greedy heuris-
tics for maximum clique.” Journal of Heuristics, 7:565–585, 2001.

[Kar74] VG Karmanov. “Convergence estimates for iterative minimization methods.”
USSR Computational Mathematics and Mathematical Physics, 14(1):1–13, 1974.

[Kar75] VG Karmanov. “On convergence of a random search method in convex mini-
mization problems.” Theory of Probability & Its Applications, 19(4):788–794,
1975.

[KBD21] David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. “A stochastic
subspace approach to gradient-free optimization in high dimensions.” Computa-
tional Optimization and Applications, 79(2):339–368, 2021.

[KGG18] Patrick Koch, Oleg Golovidov, Steven Gardner, Brett Wujek, Joshua Griffin, and
Yan Xu. “Autotune: A derivative-free optimization framework for hyperparameter
tuning.” In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 443–452, 2018.

95

[KLT03] Tamara G Kolda, Robert Michael Lewis, and Virginia Torczon. “Optimization by
direct search: New perspectives on some classical and modern methods.” SIAM
review, 45(3):385–482, 2003.

[Kru83] VN Krutikov. “On the rate of convergence of the minimization method along
vectors in a given directional system.” USSR Computational Mathematics and
Mathematical Physics, 23(1):154–155, 1983.

[Kwe15] Wojciech Kwedlo. “A new random approach for initialization of the multiple
restart EM algorithm for Gaussian model-based clustering.” Pattern Analysis
and Applications, 18:757–770, 2015.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database.” ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2,
2010.

[LCK20] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III,
and Pramod K Varshney. “A primer on zeroth-order optimization in signal
processing and machine learning: Principals, recent advances, and applications.”
IEEE Signal Processing Magazine, 37(5):43–54, 2020.

[LKC18] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa
Amini. “Zeroth-order stochastic variance reduction for nonconvex optimization.”
Advances in Neural Information Processing Systems, 31, 2018.

[LMW19] Jeffrey Larson, Matt Menickelly, and Stefan M Wild. “Derivative-free optimization
methods.” Acta Numerica, 28:287–404, 2019.

[MGH81] Jorge J Moré, Burton S Garbow, and Kenneth E Hillstrom. “Testing unconstrained
optimization software.” ACM Transactions on Mathematical Software (TOMS),
7(1):17–41, 1981.

[MGR18] Horia Mania, Aurelia Guy, and Benjamin Recht. “Simple random search of static
linear policies is competitive for reinforcement learning.” In Proceedings of the
32nd International Conference on Neural Information Processing Systems, pp.
1805–1814, 2018.

[MR64] VA Mutsenieks and LA Rastrigin. “Extremal control of continuous multi-
parameter systems by the method of random search.” Akademiia Nauk SSSR,
Izvestiia1, Tekhnichekaia Kibernetika, pp. 101–110, 1964.

[Nes12] Yu Nesterov. “Efficiency of coordinate descent methods on huge-scale optimization
problems.” SIAM Journal on Optimization, 22(2):341–362, 2012.

[NM65] John A Nelder and Roger Mead. “A simplex method for function minimization.”
The computer journal, 7(4):308–313, 1965.

96

[NP06] Yurii Nesterov and Boris T Polyak. “Cubic regularization of Newton method and
its global performance.” Mathematical Programming, 108(1):177–205, 2006.

[NS17] Yurii Nesterov and Vladimir Spokoiny. “Random gradient-free minimization of
convex functions.” Foundations of Computational Mathematics, 17(2):527–566,
2017.

[Oeu05] Rodrigue Oeuvray. “Trust-region methods based on radial basis functions with
application to biomedical imaging.” Technical report, EPFL, 2005.

[SC76] Günther Schrack and Mark Choit. “Optimized relative step size random searches.”
Mathematical Programming, 10(1):230–244, 1976.

[SHC17] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. “Evolu-
tion strategies as a scalable alternative to reinforcement learning.” arXiv preprint
arXiv:1703.03864, 2017.

[SMG13] Sebastian U Stich, Christian L Muller, and Bernd Gartner. “Optimization of con-
vex functions with random pursuit.” SIAM Journal on Optimization, 23(2):1284–
1309, 2013.

[Spa92] James C Spall et al. “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation.” IEEE Transactions on Automatic Control,
37(3):332–341, 1992.

[Spa00] James C Spall. “Adaptive stochastic approximation by the simultaneous pertur-
bation method.” IEEE Transactions on Automatic Control, 45(10):1839–1853,
2000.

[SSW15] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. “Taking the human out of the loop: A review of Bayesian optimization.”
Proceedings of the IEEE, 104(1):148–175, 2015.

[Ste72] Charles Stein et al. “A bound for the error in the normal approximation to the
distribution of a sum of dependent random variables.” In Proceedings of the
Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2:
Probability Theory. The Regents of the University of California, 1972.

[Ste81] Charles M Stein. “Estimation of the mean of a multivariate normal distribution.”
The annals of Statistics, pp. 1135–1151, 1981.

[SY20] Ofer M Shir and Amir Yehudayoff. “On the covariance-hessian relation in evolution
strategies.” Theoretical Computer Science, 801:157–174, 2020.

[Tao07] Terence Tao. “Lecture Notes 8 for 247B.”
https://www.math.ucla.edu/∼tao/247b.1.07w/notes8.pdf, 2007.

97

[Tse01] Paul Tseng. “Convergence of a block coordinate descent method for nondifferen-
tiable minimization.” Journal of optimization theory and applications, 109(3):475,
2001.

[TZ20] Hoang Tran and Guannan Zhang. “AdaDGS: An adaptive black-box optimization
method with a nonlocal directional Gaussian smoothing gradient.” arXiv preprint
arXiv:2011.02009, 2020.

[WDB18] Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. “Stochastic
zeroth-order optimization in high dimensions.” In International Conference on
Artificial Intelligence and Statistics, pp. 1356–1365. PMLR, 2018.

[Wri15] Stephen J Wright. “Coordinate descent algorithms.” Mathematical programming,
151(1):3–34, 2015.

[YHF18] Haishan Ye, Zhichao Huang, Cong Fang, Chris Junchi Li, and Tong Zhang.
“Hessian-aware zeroth-order optimization for black-box adversarial attack.” arXiv
preprint arXiv:1812.11377, 2018.

[YLD23] Jie You, Zhaoxuan Li, and Junli Du. “A new iterative initialization of EM
algorithm for Gaussian mixture models.” Plos one, 18(4):e0284114, 2023.

[YPO18] Penghang Yin, Minh Pham, Adam Oberman, and Stanley Osher. “Stochastic
backward Euler: an implicit gradient descent algorithm for k-means clustering.”
Journal of Scientific Computing, 77:1133–1146, 2018.

[YS20] Li Yang and Abdallah Shami. “On hyperparameter optimization of machine
learning algorithms: Theory and practice.” Neurocomputing, 415:295–316, 2020.

[ZBZ21] Jiaxin Zhang, Sirui Bi, and Guannan Zhang. “A directional Gaussian smooth-
ing optimization method for computational inverse design in nanophotonics.”
Materials & Design, 197:109213, 2021.

[Zhu20] Jingyi Zhu. “Hessian Inverse Approximation as Covariance for Random Perturba-
tion in Black-Box Problems.” arXiv preprint arXiv:2011.13166, 2020.

[ZTL20] Jiaxin Zhang, Hoang Tran, Dan Lu, and Guannan Zhang. “A novel evolution
strategy with directional gaussian smoothing for blackbox optimization.” arXiv
preprint arXiv:2002.03001, 2020.

[ZWS19] Jingyi Zhu, Long Wang, and James C Spall. “Efficient implementation of second-
order stochastic approximation algorithms in high-dimensional problems.” IEEE
Transactions on Neural Networks and Learning Systems, 31(8):3087–3099, 2019.

98

	Introduction
	Categories of Derivative-Free Optimization Methods
	Preliminary Insights
	Contributions

	Curvature-Aware Derivative-Free Optimization
	Introduction
	Assumptions and Notation
	Prior Art
	Main Contributions

	Curvature-Aware Random Search
	Convergence Guarantees
	Further Results on the Sampling Distribution

	CARS with Cubic Regularization for General Convex Functions
	Incorporating Numerical Quadrature
	More on Curvature: Randomized Matrix Inversion and SHIPS
	Discussion on SHIPS
	Enhancing the Quality of Estimation via Adaptive Sampling

	Proofs
	Proofs for Results in Section 2.2.1
	Proofs for Results in Section 2.3
	Proofs for Results in Section 2.5

	Experimental Results
	Convex Functions
	Benchmark Problem Sets with Non-Convex Functions
	Problems with Highly Oscillatory Noise
	Black-box Adversarial Attacks
	Benchmarking the Performance of SHIPS

	Bridging the Gap Between Local and Global DFO Method Through Inspection Strategy
	Introduction
	The gap between global optimization and local optimization
	DFO and R-local optimization
	Assumptions and Notation

	Main Results
	Analysis on the High Probability Guarantee
	Discussion on IR

	Experimental Results
	Sensitivity to IR Hyperparameters
	Integration with Augmented Random Search (ARS)

	Conclusion
	Summary
	Future Research Directions

	Details on Numerical Experiments
	Experimental Settings for Chapter 2
	Visualization of Attacked Images

	References

