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ABSTRACT OF THE DISSERTATION

A High-Performance Domain-Specific Language and Code Generator for
General N-body Problems

By

Laleh Aghababaie Beni

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Professor Aparna Chandramowlishwaran, Chair

General N -body problems are a set of problems in which an update to a single element in the

system depends on every other element. N -body problems are ubiquitous, with applications

in various domains ranging from scientific computing simulations in molecular dynamics,

astrophysics, acoustics, and fluid dynamics all the way to computer vision, data mining and

machine learning problems [1, 2, 3, 4, 5, 6, 7, 8, 9]. Different N -body algorithms have been

designed and implemented in these various fields. However, there is a big gap between the

algorithm one designs on paper and the code that runs efficiently on a parallel system. It is

time-consuming to write fast, parallel, and scalable code for these problems. On the other

hand, the sheer scale and growth of modern scientific datasets necessitate exploiting the

power of both parallel and approximation algorithms where there is a potential to trade-off

accuracy for performance [10]. The main problem that we are tackling in this thesis is how

to automatically generate asymptotically optimal N -body algorithms from the high-level

specification of the problem. We combine the body of work in performance optimizations,

compilers and the domain of N -body problems to build a unified system where domain

scientists can write programs at the high level while attaining performance of code written

by an expert at the low level.
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In order to generate a high-performance, scalable code for this group of problems, we take

the following steps in this thesis; first, we propose a unified algorithmic framework named

PASCAL in order to address the challenge of designing a general algorithmic template to

represent the class of N -body problems. PASCAL utilizes space-partitioning trees and user-

controlled pruning/approximations to reduce the asymptotic runtime complexity from linear

to logarithmic in the number of data points. In PASCAL, we design an algorithm that

automatically generates conditions for pruning or approximation of an N -body problem

considering the problem’s definition. In order to evaluate PASCAL, we developed tree-

based algorithms for six well-known problems: k-nearest neighbors, range search, minimum

spanning tree, kernel density estimation, expectation maximization, and Hausdorff distance.

We show that applying domain-specific optimizations and parallelization to the algorithms

written in PASCAL achieves 10× to 230× speedup compared to state-of-the-art libraries on

a dual-socket Intel Xeon processor with 16 cores on real-world datasets.

Second, we extend the PASCAL framework to build PASCAL-X that adds support for

NUMA-aware parallelization. PASCAL-X also presents insights on the influence of tuning

parameters. Tuning parameters such as leaf size (influences the shape of the tree) and cut-off

level (controls the granularity of tasks) of the space-partitioning trees result in performance

improvement of up to 4.6×.

A key goal is to generate scalable and high-performance code automatically without sacri-

ficing productivity. That implies minimizing the effort the users have to put in to generate

the desired high-performance code. Another critical factor is the adaptivity, which indicates

the amount of effort that is required to extend the high-performance code generation to new

N -body problems. Finally, we consider these factors and develop a domain-specific language

and code generator named Portal, which is built on top of PASCAL-X. Portal’s language

design is inspired by the mathematical representation of N -body problems, resulting in an

intuitive language for rapid implementation of a variety of problems. Portal’s back-end is
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designed and implemented to generate optimized, parallel, and scalable implementations

for multi-core systems. We demonstrate that the performance achieved by using Portal is

comparable to that of expert hand-optimized code while providing productivity for domain

scientists. For instance, using Portal for the k-nearest neighbors problem gains performance

that is similar to the hand-optimized code, while reducing the lines of code by 68×. To the

best of our knowledge, there are no known libraries or frameworks that implement parallel

asymptotically optimal algorithms for the class of general N -body problems and this thesis

primarily aims to fill this gap. Finally, we present a case study of Portal for the real-world

problem of face clustering. In this case study, we show that Portal not only provides a fast

solution for the face clustering problem with similar accuracy as the state-of-the-art algo-

rithm, but also it provides productivity by implementing the face clustering algorithm in

only 14 lines of Portal code.
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Chapter 1

Introduction

The main problem that we are tackling in this thesis is how to automatically generate

asymptotically optimal N -body algorithms from a high-level specification of the problem

that is natural for domain scientists. This is especially useful in rapidly growing fields such

as machine learning and data mining where new models are created at a much faster rate

than their optimal algorithms and implementations for the models.

1.1 Motivation

The critical role of N -body problems in a vast spectrum of scientific applications brings

the need for optimized and scalable solutions. For example, one N -body problem, named

k-nearest neighbors, has been used by researchers for early detection of Alzheimer disease.

Alzheimer’s Disease (AD) is a pathological form of dementia that degenerates brain struc-

tures. AD affects millions of older adults over the world and the number of people with AD

doubles every year. While treatments focus on slowing the progression of this disease and

controlling its symptoms, early diagnosis is vital. Today, researchers can detect AD using

the Magnetic Resonance Imaging (MRI) of the brain by examining the biomarkers found

in structural MRI. Techniques such as k-nearest neighbors have been employed to predict

and discriminate AD and mild AD from healthy examples [4, 11, 12]. Also, the k-nearest

1



neighbors method has been used in the diagnosis of breast cancer in digitized mammograms.

Breast cancer is one of the most dangerous cancers in the world, and the k-nearest neighbors

classifier is one of the well-known methods used to distinguish between normal and abnormal

tissues to classify tumors as malignant or benign [5, 13, 14].

Another influential N -body problem, named k-means, has been used widely in image pro-

cessing and computer vision [15, 16, 17, 18]. For example, dealing with medical images, k-

means clustering can provide efficient image segmentation for pre-surgery and post-surgery

decisions helping in the recovery process. k-means is a useful method for automatic brain

tumor segmentation for the extraction of tumor tissues from MRI images [8]. In another

case, k-means clustering provides automatic detection of Malaria parasite tissues. Manual

diagnosis of Malaria parasites by the pathologists is considered cumbersome; however, usage

of k-means produces an efficient and accurate detection of Malaria parasite tissues [19].

Kernel Density Estimation (KDE) is another N -body problem which influences many appli-

cations such as crime prediction. The KDE method improves crime prediction performance

by considering linguistic analysis to identify discussion topics and crimes automatically [9].

Moreover, KDE has been used in detecting violence and in general, detecting aggressive

behaviors in videos, which is extremely useful in some video surveillance systems such as

those used in psychiatric or elderly centers [20]. The adoption of KDE algorithm expands in

applications such as profiling road accident hotspots [21]. Finding the road accident hotspots

has a crucial role in deciding effective strategies for the reduction of high-density accidents’

areas.

Above, I presented a few examples of N -body problems in different fields and the practical

use cases of these problems in people’s lives. Moreover, N -body problems have many more

use cases and are prevalent in many other disciplines. For instance, k-nearest neighbors, ex-

pectation maximization, k-means, and näıve Bayes are four of the top ten algorithms having
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the highest impact in data mining research according to a survey conducted in 2006 [22].

Furthermore, N -body methods were identified as one of the original seven dwarfs which are

believed to be the computational kernels of many applications (A dwarf is an algorithmic

method that captures a pattern of computation and communication) [23].

On the other hand, modern machines are becoming more and more complex causing even

the most advanced compilers to fail in generating optimized code. Moreover, Proebsting’s

Law [24] states that improvements in compiler technology double the performance of typical

programs every 18 years. This leads to the trend of high-performance expert programmers

who desire the best possible performance to write hand-tuned and hand-optimized code that

outperforms compiler generated code. Unfortunately, this typically doesn’t scale beyond

implementing a single algorithm or problem, for one or a small subset of architectures. Even

if we only consider the domain of interest for this thesis, there are hundreds of N -body

problems, and it is practically impossible to generate hand-optimized code for every single

one of them. Furthermore, hand-tuning is not only tedious but also highly machine-specific.

Moreover, as the underlying architecture of the machines evolves, these hand-written codes

become obsolete.

Domain scientists, who are experts in their particular domain, often lack expertise in parallel

programming. In general, scientists prefer to program in high-level languages which allow

concise expression of their problem. Matlab and Python are two examples that are widely

used in data analytics [25]. However, achieving performance requires computation at a low

level and in-depth knowledge of the underlying architecture. These are two examples of

the natural tension between the software goals of performance and productivity. In the

former, we have performance programmers who sacrifice productivity for performance and

in the latter, we have productivity programmers whose primary goal is rapid prototyping.

This motivates the need for an infrastructure to enable both high performance and high

productivity. While facing the problem of productivity and performance in each domain, one
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solution is to have domain specific languages and compilers fix this gap. There is potential

for significant impact in this domain, and today general N -body applications are still orders

of magnitude from optimal performance. To provide a high performance implementation for

general N -body problems, we first present PASCAL, an algorithmic framework that brings

all the N -body problems under one umbrella, then improve its performance in PASCAL-X,

and finally introduce Portal, a domain-specific language and compiler embedded in C++ for

general N -body problems which also provides productivity.

1.2 Summary of Contributions

In this thesis, we apply the knowledge and expertise gained from optimizing and tuning

scientific N -body computations in order to provide high-performance, optimized, and parallel

code for general N -body problems. The contributions of this thesis are as follows.

1.2.1 PASCAL

• [Design of PASCAL Framework] We design an algorithmic framework for general

N -body problems, PASCAL, to automatically generate pruning and approximate con-

ditions from a high-level user specification. PASCAL provides O(N logN) and O(N)

algorithms if the operators satisfy the decomposability property over subsets and kernel

function monotonically decreases with distance. (Section 3.3)

• [Optimization and Parallelization] We apply domain-specific optimizations and

then parallelize the algorithms developed in PASCAL. An asymptotically optimal al-

gorithm developed in PASCAL combined with optimizations and parallelization results

in 10−230× speedup compared to state-of-the-art libraries and software such as Weka,

Scikit-learn, MLPACK, and MATLAB. (Sections 3.5)

• [Visit Order] We introduce the concept of visit order while traversing the multi-tree.
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The key idea is to prioritize visiting branches of the tree that have a higher likelihood of

providing the right answer. This could result in better performance due to the increased

pruning of sub-trees, depending on the N -body problem and the distribution of the

dataset. We analyze the impact of visit order for six algorithms and five real-world

datasets. (Section 3.9.2)

• [Design of Nested Prune Generator] PASCAL is the first framework that gener-

alizes beyond two operators by the design of a Nested Prune generator. PASCAL is

able to generate a nested prune condition for Hausdorff distance. To the best of our

knowledge, this is the first multi-tree algorithm for Hausdorff distance. (Section 3.4)

1.2.2 PASCAL-X

• [NUMA-aware Parallelization] We extend the parallelization of PASCAL to pro-

vide better load balance for Non-Uniform Memory Access (NUMA) machines. PASCAL-

X’s NUMA-aware parallelization results in better scalability on systems with multiple

NUMA nodes. We use parallel-producer multiple-executer task creation pattern in

order to divide the task on different NUMA nodes. (Section 4.2)

• [Analysis of Tuning Parameters] We empirically evaluate the impact of algorithmic

tuning parameters such as (1) leaf size, which influences the shape and granularity of

the nodes in the tree and (2) cut-off level, which influences the number and granularity

of tasks created during parallelization. Our results show these two parameters play a

critical role in the performance, and by carefully tuning them, one could expect up to

4.6× speedup. (Section 4.3)

1.2.3 Portal

• [Portal Language] We design the Portal language, inspired by the mathematical

formulation of N -body problems. Our high-level representation enables the compiler

5



not only to apply transformations and optimizations but also to choose an optimal

algorithm. (Section 5.3)

• [Real Code] We develop a domain-specific compiler that chooses the optimal algo-

rithm and generates optimized and parallel vector code for x86 architectures. Ex-

perimental results on six well-known problems show that the programs generated by

Portal are within 5% (on average) of expert hand-tuned code in terms of performance.

Additionally, we compare the lines of code of Portal programs against hand-optimized

and library codes. For example, the Portal version of k-nearest neighbors is written

in 13 lines of code and achieves approximately similar performance (within 2 − 5%)

compared to the hand-tuned code. (Section 5.5)

• [Portal Validation] We also validate Portal against three separate N -body problems

(namely, 2-point correlation, näıve Bayes classifier, and Barnes-Hut) that are not hand-

optimized by us but that are part of state-of-the-art optimized libraries/frameworks.

The parallel code generated by Portal using optimal tree-based algorithms outperforms

libraries/packages such as scikit-learn [26] and MLPACK [27] by a factor of 15− 165×

for the computation of 2-point correlation and näıve Bayes classifier. For the Barnes-

Hut computation, we compare the performance of Portal against FDPS [28], which

is a high-performance hand-optimized particle simulation framework in C++. Portal

achieves 70% better performance compared to FDPS on a dual-socket AMD EPYC

processor. (Section 5.5)

1.2.4 Case Study

• [Extending Face Clustering] In our case study, we consider a face clustering algo-

rithm developed by [29] which includes two N -body problems as (1) computing the

k-nearest neighbor for each face, and (2) clustering faces based on a defined metric

distance. We extend the distance computation in face clustering algorithm [29] by
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removing its unnecessary normalization, resulting in ∼ 2× speedup. (Section 6.3.4)

• [Extending Portal] The distance metric used in the face clustering does not satisfy

the kernel property (monotonically decreasing with distance). Therefore, we extended

Portal to use the cover tree, resulting in tree implementation for face clustering. Also,

we extended Portal to include intersection and exist functionalities for this case study.

We option an additional 10% performance improvement compared to using a C++

external function for metric distance. By using this case study we evaluate the ability

of Portal to deliver high-performance implementation for N -body problems. (Sec-

tion 6.3.5)
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Chapter 2

Generalized N-body Problems

In this chapter, we describe the class of generalized N-body problems, and their common

structure. Generally, these are a group of problems which can be solved by considering each

pair or N -tuples of points in a metric space. We review these N -body problems in different

fields such as physics, machine learning, data mining, and computational geometry.

We also review different space partitioning trees, as the primary data structure used for the

computation of general N -body problems in this thesis. These trees are sensitive to the

intrinsic dimension of the data rather than their explicit dimension.

2.1 Problem Definition

In physics, the N -body problem can be defined as the problem of predicting the motion

of N individual bodies or particles interacting with each other under a force law. The

historical motivation comes from understanding the motion of celestial bodies in space, such

as various planets of the solar system. Depending on the type of the force there are numerous

applications such as the simulation of proteins and cellular assemblies in structural biology,

or Coulomb force [30] which has the same form as gravitational force, with positive and

negative charges resulting in repulsive as well as attractive forces. One of the most common
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forms of these problems, which arises in physical simulations is as follows.

f(xq) = ∀q
∑

r

K(xq, xr) s(xr) (2.1)

where f(xq) is the desired potential at query point xq; s(xr) is the density at reference point

xr, and K(xq, xr) is an interaction kernel that specifies the physics of the problem. For

instance, the single-layer Laplace kernel,

K(xq, xr) =
1

||xq − xr||
,

might model electrostatic or gravitational interactions. There are different algorithms for

computing this force exerted on all of the query particles (xq), and a direct calculation of

this force results in O(N2) computation complexity.

General N -body problems are those in which an update to a single element in the system

depends on every other element. The general form applies a set of operators {op1, ..., opm}

to m datasets using a kernel function, K, as follows.

op1, ..., opm K(x1, ..., xm) (2.2)

where x1 ∈ D1,..., xm ∈ Dm and D1...Dm are the m datasets. The näıve computation of

these problems is asymptotically O(Nm) which is expensive, especially for large datasets. For

the rest of this thesis, for any N -body problem, we use the name operator for the operators

(for example, in Equation 2.1 the set of operators are op1 = ∀ and op2 =
∑

), and kernel

function for the main computation function K between points.

There are computationally less expensive algorithms to reduce the complexity of these prob-

lems, which are called tree-methods [31]. Tree-method algorithms use tree data structures

to decompose the particles or data points hierarchically. In this work, we will focus on tree-
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based algorithms; other N -body methods such as particle mesh methods [32] are outside the

scope of this thesis.

2.2 Data Structure: Space-partitioning Trees

Space-partitioning trees are a large class of tree data structure and are used as one of the

primary methods in representing geometrical data [33]. These trees are usually built by

recursively dividing a metric space into disjoint or non-overlapping subsets.

A powerful class of space-partitioning tree-based algorithms exists that can reduce the com-

plexity of N -body problems from O(N2) to O(N logN) or even O(N) [34, 2]. These algo-

rithms use techniques such as approximation and pruning to estimate or discard regions of

the space. Below we present some of the space-partitioning trees used in different N -body

problems. Note the specific criteria of an ideal tree will depend on the type of problem as

well as the distribution of the underlying data.

2.2.1 k-d tree

A k-d tree, short for k-dimensional tree, is a binary space-partitioning data structure for

organizing data points in k-dimensional space. One of the significant advantages of this data

structure is its ability to efficiently handle many types of queries, which are used in data

analytics and mining [35].

This binary tree structure maintains bounding boxes for all the nodes in each level. The

root node contains all the data points. Children are formed by recursively subdividing the

bounding box space based on some splitting criterion. Each non-leaf node has two children,

which has been defined by splitting dimension and splitting values presented by the splitting

criterion. The splitting criterion results in a hyperplane which divides each space into two
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parts. The points in the left side of the hyperplane are represented by the left subtree of that

node, and similarly, the points on the right side represent the right child. The partitioning

stops when each child node contains no more than l points (l > 0).

There are many different splitting criteria for constructing a k-d tree and generating splitting

planes such as median of widest dimension and midpoint of widest dimension [36]. In this

thesis, at each step, we chose the widest dimension of each node and use the median point

as the splitting value. Choosing the median point leads to a more balanced k-d tree, in

which each leaf node is approximately the same level distance from the root. This splitting

criterion leads to generating k-d trees that are sensitive to the shape of the data density, in

contrast to the fixed-size hypercubes provided by other data structures such as grids.
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Figure 2.1: A visualization of the k-d tree constructed from a uniform random point distri-
bution. The k-d tree is built by considering median partitioning over the widest dimension
in each level for every bounding box.

These simple yet effective space-partitioning trees use bounding boxes, known as hyperrect-

angles, to define distinct data regions in the metric space. The bounding box information

allows us to efficiently compute the minimum and maximum node-to-point or node-to-node

distances during evaluation without accessing the actual points in each node, which is critical

for performance. For the computation of bounding box information, since the hyperrectan-

gles are axis-aligned, as we are building each node in the k-d tree we can store the minimum

11



and maximum values for each dimension and hence compute the minimum and maximum

distance information. For problems which we need the center point or the number of data

points in each node, a post-order traversal is used to compute this information.

An example of k-d tree construction is presented in Figure 2.1 for a uniform random point

distribution of two-dimensional data using a median splitting condition. In Figure 2.1, the

red vertical line is the median splitting plane (data point 12) on the widest dimension (x-

axis), which results in two children. In the next recursion, the blue lines divide each child

on their rectangles widest dimension (y-axis), which occur at data points 6 and 18. This

recursive process continues until it reaches the stopping criteria (no more than l points in

each leaf node). Each level of the tree is denoted by a different color.

2.2.2 Ball-tree

A ball-tree or metric tree is another space-partitioning tree for saving multi-dimensional data,

with a wide range of practical applications [37, 38, 39, 40, 41]. In this tree, we recursively

partition data points into a nested set of hyperspheres, known as balls. Similar to the k-d

tree, ball-tree is a binary tree, and each node is defined as a d-dimensional hypersphere. Each

hypersphere partitions the data points into a disjoint set. Even though, the hyperspheres

may intersect, each data point is assigned to one or the other ball in the partition according

to its distance from the ball’s center.

There are several different construction algorithms available for ball-trees [42]. Omohun-

dro [43] represented five different construction methods, which could be useful in different

situations such as offline or online constructions. A similar method to k-d tree construction

has been developed for ball-trees called the k-d construction algorithm, which is an offline

top-down algorithm. This algorithm hierarchically splits each hypersphere into two sets from

which ball-trees are recursively built as the right and left children of that node. The splitting
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dimension is the one in which the data points are most extended, and the splitting value is

the median data point. The recursive partitioning stops when each child node contains no

more than l points (l > 0).

For computing bounding box information, as we are building the ball-tree, each node stores

the centre and radius of its hypersphere. Using the centre and radius of each hypersphere

allows us to find the minimum and maximum distance to each node. If a median split

method has been used to build the ball-tree, the number of data points in each node is easily

known by dividing the parent’s node size into half. Otherwise, a post-order traversal is used

to compute the number of data points in each node as well as the center. Here, the centre

refers to a point with equidistant from the surface of hypersphere [44], and the center refers

to the actual center computed using the data points in each node.

Figure 2.2 represents the construction of a ball-tree for a two-dimensional uniform random

point distribution. The red ball represents the root of the ball-tree; the two children of the

root, represented with blue balls, are made by splitting on the median of data points in the

widest dimension.

Figure 2.2: A visualization of the ball-tree constructed from a uniform random point distri-
bution. The ball-tree is built by considering median partitioning over the widest dimension
of data points in each level for every hypersphere.

13



2.2.3 Quadtree and Octree

Two well-known algorithms in physics N -body simulations are Fast Moltipole Method [2]

and Barnes-Hut [34], which make use of low-dimensional spatial trees such as quadtrees in

2-dimension and octrees in 3-dimension. An octree is based on a similar principle as the

k-d tree. The octree most often is used for partitioning 3-dimensional space by recursively

subdividing the space into eight octants (or, four quadrants for 2-dimensional quadtree [45]).

Similar to a k-d tree, the partitioning stops when each child node contains no more than

l points (leaf size, l > 0). Octrees and quadtrees are different from k-d trees as they split

around a point and into equal subregions, while k-d trees split along a dimension.

Figure 2.3: A visualization of quadtree constructed from a uniform random point distribu-
tion. The quadtree is built by dividing each region into four quadrant recursively.

For computing the bounding box information, as we are building the octree, we compute

the side length of each octant node as the half side length of the parent node. We use a

post-order traversal on the tree to measure the center and number of data points for each

node. Same is true for quadtree in 2-dimension. Figure 2.3 illustrates the visualization of

a quadtree (for 2-dimensional data), where each node is subdivided into four children (the

octree in 3-dimension is analogous). A dedicated color denotes each level of the tree.
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2.2.4 Cover tree

Another tree data structure used for partitioning metric space is cover tree. A cover tree T

on a data set S is a leveled tree data structure of which each level is a cover for the levels

beneath it. Each level is indexed by an integer scale i which decreases as the levels in the

tree descend. Each node in the cover tree is associated with one data point in S, and covers

a set of data points which are associated with the descendants of the node [46]. Each data

point in S may associate with more than one node; however, any data point appears at most

once in each level of the tree. Let Ci be the set of data points in S associated with the nodes

in the level i of the cover tree, the following three invariants are true for all i in cover tree:

• Nesting: This rule implies that when a data point v ∈ S appears at Ci, then every

lower level of the tree has a node associated with data point v, as Ci ⊂ Ci−1.

• Covering: For every data point v ∈ Ci−1, there exist another data point w ∈ Ci such

that d(v, w) < 2i. Also, the node in the level i associated with data point w is a parent

of the node in level i− 1 associated with data point v.

• Separation: For all the distinct data points v, w ∈ Ci, the following rule applies:

d(v, w) > 2i

The original explanation of the tree requires an implicit tree representation with an infinite

number of levels, but an explicit tree with a limited number of nodes gets implemented [47].

A recursive algorithm could be used to build the explicit cover tree from a data set S. In

each recursion, a root node for each sub cover tree is built, then qualified child nodes and

their covered data points are found. The recursion stops when there are no more than l

points covered by the node (leaf size). The separation invariant is applied by disqualifying

data points that are too close to the last root node.
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Figure 2.4: A visualization of cover tree constructed from a uniform random point dis-
tribution. Ci represents the set of data points in level i, and 2i shows the radius of level
i.

Each node and its covered data points compose a boundary ball, which is similar to hyper-

rectangle in the k-d tree or hypersphere in the ball-tree. For computation of bounding box

information, during the construction of the cover tree, each node stores the centre and radius

of the boundary/cover ball. The radius for each node is half of its parent’s radius. Using the

centre and radius of each boundary/cover ball allows us to find the minimum and maximum

distance to each node in our computation. A post-order traversal is used to compute the

number of data points in each node as well as the center. Similar to ball-tree, the centre

represents the point with equidistant from the surface of boundary/cover ball, and the center

refers to the actual center computed using the data points in each boundary/cover ball.

Notably, a cover tree only relies on the metrics of a data set, and subsequently, depends

on the intrinsic dimensions [48] of the data set and not the explicit dimension. Thus, the

cover tree is a useful data structure when dealing with high dimensional data set with lower

intrinsic dimensionality. Figure 2.4 shows a visualization of a cover tree (for 2-dimensional

data), where each node is subdivided into various number of children (in the cover tree the

number of children could be different from node to node). A dedicated color denotes each
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level of the tree. The root node has a bounding circle with a large radius, R, in a way that

would cover all the data points, R = 2a (first the radius R is measured from the dataset and

a is computed as a = log2R). The next level of the tree provides a bounding circle with a

radius of 2a−1, and so on. In each layer, the three invariants of the cover tree are valid.

2.2.5 Bounding Box Information

Table 2.1 represents the bounding box information for all the trees mentioned in Section 2.2.1

through 2.2.4. The details for computation of each bounding box information is explained

in the corresponding section of each tree.

Tree bounding box information

k-d tree min, max, center

ball-tree centre, radius, center

quadtree side length of quadrant, center

octree side length of octant, center

cover tree centre, radius, center

Table 2.1: List of the trees and their bounding box information. Note that centre refers
to the point with equidistant from surface of a ball, and center refers to the actual center
computed using the data points in each node. Also, all the trees keep information about the
number of data points in each node.

2.3 N-body Problems in Physics

N -body algorithms in physics are some of the most well-studied parallel computing problems.

The original N -body problem was the problem of predicting the individual motion of celestial

objects interacting with each other under the gravitational law, which has been motivated by

the desire of understanding the motions of planets and stars. One of popular and widely used

fast algorithms for classical gravitational N -body problems is Barnes-Hut [34] developed in

1986. Another well-studied problem in physics is the 2-point correlation function, which
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describes the distribution of galaxies. In this section, we overview the Barnes-Hut algorithm

as well as the 2-point correlation problem.

This style of N -body problem arises in other significant domains and the common theme

that brings these problems under a single umbrella is the insight that their inner-loop com-

putations are analogous and naively require O(N2) operations for the all-pairs computation.

2.3.1 Barnes-Hut

The Barnes-Hut algorithm, introduced by J. Barnes and P. Hut in 1986 [34], employs a space-

partitioning tree to approximately compute the potential of particles in the gravitational

N -body problem. The key idea is to approximate the long-range forces by replacing a group

of distant particles/bodies with their center of mass. A particle is considered long-range

from a mass (square region as shown in Figure 2.5), if the distance r between the particle

and center of mass is larger than a constant times the side length of the node, named E.

This ratio is called the Multipole Acceptance Criterion (MAC) as θ = E
r

.

This algorithm approximates a set of particles in each node by its center of mass (as shown

in the Figure 2.5). A smaller θ would result in better accuracy, meaning that the potential

evaluated at a point is more accurate when it is far away from the node containing the

particles [49]. Detailed analysis on the influence of θ on the accuracy is presented by Blelloch

et al. [50].

At a high-level, the Barnes-Hut algorithm has the following main steps:

• Construct the space-partitioning tree for the particles as described in Section 2.2.3 by

choosing a leaf size l.

• Compute the center of mass and total mass of particles for each node in the tree.

• For each target particle, traverse the tree to compute the force on it. If a node is far
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Figure 2.5: The potential of a set of particles (presented with black circles) in a node (square
region of size E) from a single target particle (presented with blue circle) at distance r from
the target particle could be approximated by the center of mass (presented with red circle).

from the target particle, we compute the potential considering the center of mass and

total mass of that node. We decide to approximate if a node’s computed MAC is less

than a user-defined threshold. Otherwise, we continue to traverse the children of the

node for non-leaf nodes or compute a direct evaluation for leaf nodes.

If we consider the depth of the tree in this algorithm as O(logN), then generating the tree

takes O(N logN) in time, and the computation of centers of mass and total mass costs

O(N logN) time using a post-order traversal of the tree. Finally, the algorithm traverses

the tree to compute the potential on each particle, resulting in O(N logN) time complexity.

Considering these main computations of the Barnes-Hut algorithm, the overall time com-

plexity of this algorithm is O(N logN). Hence, this algorithm reduces the computational

complexity of the N -body problem from O(N2) to O(N logN).

2.3.2 2-Point Correlation

In astronomy and physical cosmology, a correlation function is used for describing the dis-

tribution of galaxies in the universe. For quantifying the clustering of galaxies, we need to

both survey the galaxies in clusters as well as the entire galaxy density distribution. The

most commonly used quantitative measure of large scale structure is the 2-point correlation
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function. The 2-point correlation function traces the amplitude of galaxy clustering as a

function of scale.

Using the 2-point correlation function, one can trace the dependence of large scale structure

on galaxy properties such as luminosity, color, and stellar mass, and track its evolution [51].

Alternatively, given a random galaxy in a location, the correlation function describes the

probability of another galaxy being found within a given distance [52]. Some prominent

applications of the correlation function can be found in areas such as galaxy clustering

and weak lensing [53]. In general, the 2-point correlation can be considered as roughly the

measure of the clumpiness of a set of points, and could be measured as the number of pairs

of points in a dataset within a given radius from each other [54, 55].

The 2-point correlation function is defined as,

∑

q

∑

r

I(||xq − xr|| < h), (2.3)

which counts the pair of points with a distance lower than a defined threshold h.

Both Barnes-Hut and 2-point correlation follow the general N -body problem representation

in Equation (2.2).

2.4 N-Body Problems in Machine Learning and Data Mining

There are several significant problems in the machine learning (ML) field which have a similar

pattern to physical N -body problems and can be categorized as examples of general N -body

problems. It appears that these kinds of problems naturally arise across different fields. Here

we address five examples of N -body problems as well their mathematical formulation, which

follows the general representation of N -body problems in Equation (2.2).
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2.4.1 k-Nearest Neighbors Search

One of the most ubiquitous N -body problems is k-nearest neighbors (k-NN) search, which

appears in many fields such as machine learning, computational geometry, pattern recog-

nition, computer vision, database, chemical similarity and many more [56]. It is a form of

proximity search, for finding the points in a given set that are closest or most similar to a

given point [57].

The mathematical representation of k-NN is defined as,

∀q, arg minkr ||xq − xr|| (2.4)

where, for each query point xq we want to find its k nearest neighbors and arg minkr returns

the k reference points xr whose distance to xq is minimal. Comparing this to our familiar

physical summation in Equation (2.1), we see that the kernel function in this case is the

Euclidean distance function and the operator sum has been replaced by another operator,

arg min. Various solutions to this problem have been proposed. The usefulness of these

approaches are determined by the time complexity of the queries of any search data struc-

tures that must be maintained in this search. In this thesis, we use space-partitioning trees

in order to optimize the computation of this problem.

2.4.2 Kernel Density Estimation

Another example of sum-based accumulations from statistics is kernel density estimation

(KDE), which is a widely used method to estimate the probability density function of data

from an unknown distribution. The common approach to density estimation is parametric,

meaning that we assume that the data are drawn from one of a known parametric family of
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distributions, for example the Gaussian normal distribution. The underlying density of the

data could be estimated by using kernel density estimation method [58, 59, 60, 61]. The goal

is to estimate the probability density at each xq, using a kernel function Kσ and the kernel

estimator is defined as,

∀q, 1

|Rsize|
∑

r

Kσ

( ||xq − xr||
σ

)

where Kσ is a zero-centered probability density function (e.g., a Gaussian); Rsize is the size

of reference dataset, and σ is called the bandwidth of the kernel. When the distance between

two points ||xq − xr|| is very large, the contribution of the kernel function to the probability

density at xq is small. Therefore, we can approximate the kernel sum at the expense of

reduced precision to achieve a faster algorithm similar to Barnes-Hut.

2.4.3 Minimum Spanning Tree

Minimum Spanning Tree (MST) is one of the oldest and most well-studied problems in ma-

chine learning and computational geometry. Given a set of points S ∈ Rd, the goal is to

find the lowest weight spanning tree in the complete graph G, where the edge weights are

given by the Euclidean distance between two points. Generally, any edge-weighted connected

undirected graph has a minimum spanning tree which has the minimum possible total edge

weight. There are different use cases for minimum spanning trees, such as telecommunica-

tions companies trying to lay out cables in a new neighborhood while constrained to use

cables only on certain paths. There exist different algorithms for finding the MST such as

Boruvka’s algorithm [62, 63], Prim’s algorithm [64], Kruskal’s algorithm [65], and reverse-

delete algorithm (reverse of Kruskal’s algorithm) which are considered to be greedy algo-

rithms. In this thesis, we consider the iterative Boruvka’s algorithm for minimum spanning

tree (MST), which proceeds as a sequence of stages:
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1. Initially all the edges of graph G are uncolored, and we assume each vertex of G is a

single-node blue-colored tree.

2. Repeat the following coloring step until we find only one blue tree that includes all the

nodes of G.

3. For every blue tree, select the minimum-weight uncolored edge incident to that blue

tree. Color all selected edges blue.

Borukva’s MST is an iterative algorithm that connects each component to its nearest vertex

until only a single component, the MST, remains. The computational bottleneck in MST

is finding the nearest neighbor component, which is identical to k-nearest neighbors search.

Thus, calculating all neighbor pairs effectively results in an efficient Boruvka’s algorithm.

2.4.4 Expectation Maximization

EM is a popular algorithm used in mixture models. Here, we consider a problem where EM

is used to learn the parameters of a multivariate Gaussian Mixture Model (GMM). Consider

a dataset D = {x1, x2, .., xN}, where xi ∈ Rd generated independently from an underlying

distribution p(x). If p(x) is a Gaussian distribution, we can define a GMM as,

p(x|θ) =
H∑

j=1

πjf(x|µj,Σj), (2.5)

f(xi|θj) =
1√

2π|Σj|
e−

1
2

(xi−µj)T Σ−1
j (xi−µj) (2.6)

where H is the number of Gaussian mixture components, and θj = {µj,Σj} are the param-

eters of Gaussian component j, with mean vector µj and covariance matrix Σj. The πj are

called the mixture weights (
∑H

j=1 πj = 1).
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EM starts with an initial estimate of θ, generated randomly, and iteratively updates θ until

convergence as follows.

1. Initialize θ randomly.

2. Repeat until convergence (convergence condition is checked by log-likelihood, the third

step).

i. E-step: Compute the responsibility, rnj (which is representable as the weight

factor of data point n for cluster j)

rnj =
πjf(xn|µj,Σj)∑H
i=1 πif(xn|µi,Σi)

(2.7)

ii. M-step: Re-estimate θ using the responsibilities computed in the previous step.

πnew
j =

Zj
Rsize

, (2.8)

µnew
j =

1

Zj

Rsize∑

n=1

rnjxn, (2.9)

Σnew
j =

1

Zj

Rsize∑

n=1

rnj(xn − µnew
j )(xn − µnew

j )T , (2.10)

where Zj =
∑Rsize

n=1 rnj, Rsize is the size of reference dataset, πnewj is the new mix-

ture weight for component j, and µnewj ,Σnew
j are the new parameters of Gaussian

component j.

iii. Compute the log-likelihood for convergence check.

ll(θ) =

Rsize∑

n=1

log
H∑

j=1

πjf(xn|µj,Σj) (2.11)

The E-step and log-likelihood computation are the two N -body problems in EM.
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2.4.5 Näıve Bayes Classifier

The näıve Bayes classier is from the family of probabilistic classifiers, which use Bayes the-

orem while applying a strong independence assumption over the features provided. Näıve

Bayes has been used in different tasks such as text categorization, automatic medical diag-

nosis, and systems performance management [66, 67, 68].

Bayesian classifiers assign the most likely class to a given example described by its feature

vector. Learning such classifiers can be significantly simplified by assuming that features are

independent given class, that is

P (X|A) =
n∏

i=1

P (Xi|A) (2.12)

where X = (X1, · · · , Xn) is a feature vector, n is the size of feature vector, and A is a

class. Despite this unrealistic assumption, the resulting classifier known as näıve Bayes

is remarkably successful in practice, often competing with much more sophisticated classi-

fiers [69, 70, 71, 72, 73].

The success of näıve Bayes in the presence of feature dependencies can be explained by

observing that optimality in terms of zero-one loss (classification error) is not necessarily

related to the quality of the fit to a probability distribution (i.e., the appropriateness of

the independence assumption). Rather, an optimal classifier is obtained as long as both the

actual and estimated distributions agree on the most-probable class [69]. The näıve Bayes

classifier is defined as follows.

∀q, arg max
r
N (xq|µr,Σr),
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where {µr,Σr} are the parameters of Gaussian component r, and for each query point xq we

want to classify it to the class r with the highest probability.

2.5 N-Body Problems in Computational Geometry

Computational geometry includes algorithms that solve problems involving the relationship

between geometric objects, such as points, lines, and planes. Among the first canonical

problems studied in computational geometry is the proximity problems, which involve the

relative positions of points in space. Many of the problems in computational geometry follow

the same pattern of general N -body problems. Previously we mentioned examples from this

category such as k-nearest neighbors and minimum spanning trees, and here we will explain

two more examples: range search and Hausdorff distance.

2.5.1 Range Search

A central problem in computational geometry, range searching arises in many applications

such as range query which is a common database operation [74]. Another example happens

in image analysis for pattern recognition, where after preprocessing an image, one needs to

analyze pattern primitives each given by several properties, and range searching in this data

is a standard procedure [75]. In this thesis, for the range search (RS) problem, the kernel

function is defined as a delta function [76]. In this problem we want to find all the reference

points that fall within a range (hmin, hmax) of a query point, xq defined as,

∀q,
⋃

argr I(hmin ≤ ||xq − xr|| ≤ hmax), (2.13)

where I(hmin ≤ ||xq − xr|| ≤ hmax) is a delta function and the equation above returns the

reference points that satisfy the given functionality.
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2.5.2 Hausdorff Distance

Our last example N -body problem is Hausdorff distance (HD) calculation, which has many

applications in computer vision such as comparing images or finding a given template in

target images [77]. Another application of Hausdorff distance is in object matching, which

introduces possible distance measures between two point sets of objects [78]. In the field of

computer vision, a typical problem is matching a given image with a model, in order to find

all the locations in the image which match that model. This is also similar to the problem

of matching protein motifs within protein sequences [79].

In general, the Hausdorff distance is used as a shape comparison metric based on binary

images. Unlike most shape comparison methods, it is able to build a point-to-point cor-

respondence between a model and a test image and is calculated without explicit point

correspondence. Moreover, Hausdorff distance for binary image matching is more tolerant

to perturbations in the locations of points than other correlation techniques as it measures

proximity rather than exact positions [80].

Two sets are close in the Hausdorff distance if every point of either set is close to some point

of the other set. In other words, it is the largest of all the distances from a point in one set to

the closest point in the other set. The Hausdorff distance between two subsets is computed

as follows.

maxq, minr||xq − xr||,

where the kernel function ||xq − xr|| is the Euclidean distance between the query data point

xq and the reference data point xr, and the set of operators includes max, min.
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Chapter 3

PASCAL: A Parallel Algorithmic

SCALable Framework for N-body

3.1 Introduction

This chapter proposes PASCAL, a parallel unified algorithmic framework for generalized

N -body problems. PASCAL utilizes tree data structures and user-controlled pruning or

approximations to reduce the asymptotic runtime complexity from being linear in the number

of data points to be logarithmic. In PASCAL, the domain scientists express their N -body

problem in terms of application-specific operations, and PASCAL generates the pruning and

approximation conditions automatically. In order to evaluate PASCAL, we generate solutions

for six problems detailed in Chapter 2: k-nearest neighbors, range search, minimum spanning

tree, kernel density estimation, expectation maximization, and Hausdorff distance, chosen

from various domains.

We show that applying domain-specific optimizations and parallelization to the algorithms

generated by PASCAL achieves 10× to 230× speedup compared to state-of-the-art libraries

on a dual-socket Intel Xeon processor with 16 cores on real-world datasets. We also obtain

a novel out-of-the-box asymptotically optimal algorithm for Hausdorff distance calculation.
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PASCAL introduces the concept of visit order while traversing the multi-tree. The key idea

is to prioritize visiting branches of the tree that have a higher likelihood of resulting in the

right answer. This could result in a lower runtime due to the increased pruning of sub-trees

depending on the N -body problem and the distribution of the dataset. Analysis of the

impact of visit order for the six algorithms and five datasets considered in this chapter is

presented in Section 3.9.2.

3.2 Related Work

One of the most popular and widely used fast algorithms for classical N -body problems is

Barnes-Hut [34] developed in 1986. It uses trees to approximate distance computations and

achieve sub O(N2) asymptotic time. There has been a lot of effort in parallelizing tree codes

particularly for quad- and octrees [81, 82, 83, 84, 85, 86, 87, 88, 89].

PASCAL differs from the previous work in many ways. First, PASCAL supports algo-

rithms and operations beyond what is usually considered in classical physics, such as ma-

chine learning and data mining. This makes PASCAL more general. Second, we consider

high-dimensional trees (e.g., kd-trees [35]), which are required to handle high-dimensional

datasets. Third, our approach is more portable and easily extensible compared to previous

approaches which focus on optimizing a specific algorithm for a specific architecture.

While parallel N -body algorithms in physics have received significant attention, the same is

not true in machine learning. There are several freely accessible machine learning libraries;

however, they lack one or both of the two following features: (a) efficient optimal algorithms

and (b) parallelism and scalability on modern machines. For instance, MLPACK [27], which

is a state-of-the-art C++ machine learning library offers a limited set of fast algorithms but

is not parallel or distributed. Other popular libraries emphasize ease of use but scale poorly,
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such as Weka toolkit [90] and SHOGUN toolbox [91]. Some others implement fast algorithms

but in languages such as Python giving poor performance, such as Scitkit-learn [26] and

mlpy [92].

The few instances of projects that implement a faster algorithm [93, 94, 95] are also limited

to a small subset of N -body problems, and most do not employ parallelism or domain-

specific optimizations. PASCAL is developed considering a theory on generalized N-body

algorithms [1, 54, 96] which are similar in spirit to long-studied physics algorithms. This

theory is a stepping stone to our work, but it is limited in two ways: (a) the pruning and

approximation conditions are designed manually for each and every problem considered, and

(b) the theory is limited to problems with only two operators. Although this is a useful first

step, this approach is not scalable.

In PASCAL, we address the above limitations by proposing an algorithm to automate the

design of pruning and approximation conditions for two or more operators. To the best of

our knowledge, PASCAL is the first truly generalized N -body framework.

3.3 PASCAL Framework

Leveraging the commonalities between N -body problems gives rise to the PASCAL frame-

work shown in Figure 3.1, which consists of space partitioning trees, a prune/approximate

condition generator, and a tree-traversal scheme. We then apply domain specific transfor-

mations and parallelize the algorithms generated by PASCAL to produce an efficient code

for comparison against other state-of-the-art libraries and software. The blue shaded boxes

represent the contributions which we will discuss in more detail in the rest of this chapter.

The N -body definition is shown as one of the inputs to the PASCAL framework in Figure 3.1

represents a C++ implementation of the operators and kernel function for each N -body
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Multi-tree Traversal
Ø Base Case
Ø Prune/Approx
Ø Approx Compute
Ø Visit Order

Space-Partitioning Trees
Ø k-d tree

Prune/Approximate Condition 
Generator

Ø Prune Condition
Ø Approximate Condition
Ø Approximate Compute
Ø Visit Order

Domain-Specific Optimizations

Parallelization

Datasets

N-body 
Definition 

Optimized Code

Figure 3.1: Block diagram outlining the overall approach. The dotted box represents the
PASCAL framework and the blue shaded boxes are the contributions. The N -body definition
represents the definition of the problem by its operators and kernel function written in C++.

problem. These operators are defined by sepearte classes in C++. The implementation

includes classes for a set of operators such as forall, min, max, mink, maxk, argmin, argmax,

argmink, argmaxk, sum, prod, union, and unionarg which are representative of mathematical

operators ∀, min, max, mink, maxk, arg min, arg max, arg mink, arg maxk, Σ, Π, ∪, and ∪ arg

respectively. For example, in the case of k-NN, the N -body definition includes the operators

∀ and arg mink, which are represented using the classes forall and argmink. The kernel

function is passed to PASCAL as a pointer to the C++ function definition of Euclidean

distance (kernel function of k-NN as shown in Equation (2.4)) which is shown in Code 3.1.

3.3.1 Classification of N -body Problems

We classify N -body problems into two main categories based on their model of computation

and properties: (a) pruning, and (b) approximation problems.
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float EuclideanDistance(float* s1 , float* s2, int dim)  
{ 
 float sum = 0; 
 for (size_t i = 1; i < dim; i++) { 
   sum += (s1[i] - s2[i]) * (s1[i] - s2[i]) 
 } 
 return sqrt(sum); 
} 
 
 

 

Code 3.1: Euclidean distance as the kernel function for k-NN as part of N -body definition,
inputed to the PASCAL framework

Pruning Problems

Pruning problems are those in which a part of the data and its associated computation can

be discarded. One example is nearest neighbors, whose inner operator is min and which

only returns the minimum value. This provides opportunities to prune parts of the datasets

where the minimum value can not be located, without any loss of accuracy. Such pruning

opportunities are deduced based on the set of operators and kernel function. Comparative

operators such as min or max result in a pruning problem, as do comparative kernel functions

such as (xr − xq < h).

Approximation Problems

Approximation problems are those in which the contribution by a subset of the data to the

solution can be approximated by a smaller subset. This group of problems only encompass

arithmetic operators and non-comparative kernels, such as kernel density estimation. For

example, operators such as Σ or Π require the contribution of all the points. In such ap-

proximation problems, as the name suggests, there is a trade-off between performance and

desired accuracy. PASCAL exposes this trade-off to the user as a tuning knob which can be

customized based on the target application.
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3.3.2 Tree Construction

The space partitioning tree we consider in PASCAL framework is k-d tree, described in

Section 2.2.1, with the median point as the splitting value and widest dimension as splitting

dimension. As explained in Section 2.2.1, we preserve information for each node such as

the high and low boundaries in each dimension as we split the nodes, resulting in fast

computation of minimum and maximum distances. In median splitting, the number of data

points in each node is easily computed, since each child node contains half of its parent’s

data points. The center value is calculated by post-order traversal of the tree. This is based

on the idea of cached statistics in tree which are efficient in practice [97, 98].

3.3.3 Multi-tree Traversal

After building the space-partitioning trees, we use a multi-tree traversal in order to compute

the N -body problem. Algorithm 3.1 describes the multi-tree traversal given two inputs: a set

of nodes, N all and a rule set, R. The rule set provides three main functionalities described

in the sequel, and the corresponding functions are highlighted in blue in algorithm 3.1. Note

that the traversal is called recursively on the children at each level of the tree as seen by the

green function call in line 11. The rule set consists of the following three functions.

Base Case

This function implements the direct point-to-point computation on leaf nodes of the tree,

and is called when there is no opportunity to discard the computation on the leaf nodes.

The computational complexity of this function for two trees is O(l2) which l is the leaf size,

and for multiple trees, it is O(lm) which m is the number of trees. For instance, for the

nearest neighbors problem, this would be equivalent to finding the corresponding point in

the reference node which has the minimum distance for every point in the query node.
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Algorithm 3.1 MultiTreeTraversal

Input: Nodes set {N1,N2, ...,Nm} ≈ N all, rule set R.

1: if R.Prune/Approximate(N1, N2, ..., Nm) then

2: return R.ComputeApprox(N1, N2,..., Nm)

3: if (∀Ni ∈ N all is leaf) then

4: R.BaseCase(N1, N2,..., Nm)

5: else

6: for all Ni ∈ N all do

7: if Ni is leaf then N split
i = Ni

8: else N split
i = {Ni.right, Ni.left}

9: PowerSet-Tuples = R.VisitOrder({(N ′1, ...,N ′m)|N ′i ∈ N split
i })

10: for all (N ′1, ...,N ′m) ∈ PowerSet-Tuples do

11: MultiTreeTraversal((N ′1, ...,N ′m),R)

Prune/Approximate

This function checks if the computation for a set of nodes can be approximated or pruned

based on the N -body problem definition, using a prune/approximate generator. If so, the

node and its descendants will not be visited. For approximating the contribution of a node,

we check if the minimum and maximum contribution of that node are very close (i.e., less

than a user-defined threshold). If so, we know that all the data points in that node have

a similar contribution. In the case of pruning problems, PASCAL first builds a pipeline

of pruning opportunities (deduced from comparative operators and kernel) which are then

evaluated on the boundary points of each hyper-rectangle node to decide whether to prune

that node or not. In some cases, the algorithm prunes entire sub-trees, so the nodes and

their descendants will not be visited.
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Visit Order

This function returns the order in which the children of a node should be visited while

traversing the tree. For instance, Visit Order will return whether the left child or the right

child should be visited first during k-NN search on k-d trees. To do so, Visit Order checks

which reference subtree is closest to the query subtree. Visiting the reference subtree with

the minimum distance to the query subtree results in a higher probability of finding the

nearest neighbors. Additionally, this results in visiting fewer nodes of the tree (additional

pruning) which in turn results in lower runtime. n this thesis, the visiting order is only used

for pruning problems. For approximation problems, the visiting order function, Visit Order,

returns an arbitrary default order.

Compute Approximate

This function replaces the computation with the center contribution of each node multiplied

by the density of that node which is equivalent to the number of data points in that node.

This is only for approximation problems.

While the operations above are not completely orthogonal, they are convenient and powerful

to express the range of N -body algorithms. Not only does this representation abstract the

actual computation from the traversal, it also abstracts the tree type, which gives us the

freedom to plug and play with different trees. Moreover, we are able to express both pruning

and approximation algorithms in the same framework, which enables us to translate our

optimizations and parallelization to a much larger class of algorithms.

Note that the N -body problems must satisfy two properties to enable one to choose the

tree-based optimal algorithm: (1) operators must satisfy the decomposability property over

datasets. Decomposability applies to an operator if the dataset is decomposable across its

subsets. For instance, the Σ operator adheres to the decomposability property because the
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sum of all interactions over the dataset can be decomposed into the sum of smaller subsets of

that data; (2) the kernel function should decrease monotonically with distance. For example,

the Gaussian kernel decreases monotonically with distance, while the Cosine kernel doesn’t

decrease monotonically with the distance.

3.3.4 Prune/Approximate Condition Generator

In order to generate a prune or approximate condition, we extend the classification of N -body

problems into 3 categories, namely: (a) approximation, (b) single pruning, and (c) nested

pruning. Approximation problems are those in which the contribution by a subset of the

data to the solution can be approximated by a smaller subset. Two examples are KDE and

EM. Pruning problems are those in which a part of the data and associated computation can

be discarded. The main distinction between single and nested pruning is that the former has

only one pruning opportunity (e.g., k-NN) while the latter has more than one opportunity

for pruning (e.g., Hausdorff distance).

Algorithm 3.2 generates one of three conditions and distinguishes the category of problems

by maintaining a queue of possible prune opportunities called PrunePipeline (Line 1). We

iterate through the operators’ set, OP and kernel function, K and check if there is any

pruning opportunity. If so, we push the reverse of OP and/or K into the PrunePipeline

(Lines 2 - 6). The reverse function is defined for operators and kernel function, and defines

the reverse of their functionality. For example, the reverse of ||xq−xr|| < h is ||xq−xr|| > h,

and the reverse of min operator is the relational operator greater than (>).
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Algorithm 3.2 Prune/Approximate Condition Generator

Input: Node set {N1,N2, ...,Nm} ≈ N all, kernel function K, operators set OP , threshold

σ, tree type ψ.

Output: The prune/approximate condition

1: queue<Function> PrunePipeline

2: for all (opi ∈ OP ) do

3: if (opi.isComparative()) then

4: PrunePipeline.push(reverse(opi))

5: if K.isComparative() then

6: PrunePipeline.push(reverse(K))

7: // Approximation category

8: if (PrunePipline.size == 0) then

9: Kmin ← min{K(N1,N2, ...,Nm)}

10: Kmax ← max{K(N1,N2, ...,Nm)}

11: (N c
1 ,N c

2 , ...,N c
m)← tuple of node centers

12: Kcenter ← K(N c
1 ,N c

2 , ...,N c
m)

13: return Kmax −Kmin < σ ×Kcenter

14: // Single prune category

15: if (PrunePipline.size == 1) then

16: τ ← threshold based on the operator or kernel

17: N border
m ← set of border points based on the tree type ψ

18: op⊕ ← PrunePipeline.pop()

19: return op⊕(τ,K(x1, ..., xm))

20: {∀xi ∈ Ni(i = 1, ...,m− 1),∀xm ∈ N border
m }

21: // Nested Prune category

22: if (PrunePipline.size > 1) then

23: return NestedPrune(PrunePipeline)
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The problem falls under approximation if the size of PrunePipeline is zero (Lines 8-13).

For approximating the contribution of a node, we check if the minimum and maximum

contribution of that node are very close (i.e., less than a threshold). If so, we know that all

the data points in that node have a similar contribution and therefore, PASCAL uses the

center to approximate the computation of that node. Note that (N c
1 ,N c

2 , ...,N c
m) defined in

line 11, represents the centers of nodes Ni ∈ (N1,N2, ...,Nm) and this is pre-computed as

metadata information during tree construction.

The problem falls under the single prune category if the size of PrunePipeline is one (Lines

15-19). First, we define a threshold for pruning. To do so, we randomly choose points in

each set and compute a temporary value using the kernel function. We define N border
r as the

set of border data points which result in the minimum and maximum computations for each

node and is defined based on the tree type ψ. Line 18 pops the prune operator and Line

19 generates the prune condition by applying the operator on the tuple of points from the

nodes in N1, ...,Nm1 , and border points of Nm.

Note that in algorithm 3.2, the notation op⊕ is similar to non-member function operators

in C++ language. For instance, op≤(xr, xq) is equal to xr ≤ xq. When the size of the

PrunePipeline is greater than one, the problem belongs to the nested prune category and

the nested prune algorithm 3.3 is called in line 22. In Line 2 of algorithm 3.3, for each

node, we calculate the border data points using the information of templated tree type ψ.

Line 3 pops the prune operator from the PrunePipeline. Initially, a temporary threshold

τ is defined for each prune operator based on its definition. Subsequently, τ is refined as

the computation progresses. For example, for the min operator, the temporary threshold is

set to the highest value for that specific numeric type (e.g., DBL MAX for double precision

data), and each time we find a smaller minimum during computation we refined it with the

new minimum. The refining continues till the end of the computation.
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Line 5 returns the nested prune condition that we generate. For generating this condition,

first, we apply the innermost operator to the border points in the innermost dataset. The

result of this is used to call the next innermost operator, and so on. We will continue this

process from the innermost operator to the outermost operator in the PrunePipeline and

apply each operator on the corresponding node borders with the computed thresholds. Each

prune operator corresponds to one level in the multi-tree. Note that single prune can be

considered as a special case of nested prune with a nesting level of one.

Algorithm 3.3 NestedPrune(PrunePipeline)

Input: Node set N1...Nm, kernel function K, tree type ψ.

Output: The nested pruning condition

1: for all Nj ∈ N1...Nm do

2: N border
j ← set of border points based on the tree type ψ

3: op⊕j
← PrunePipeline.pop()

4: τj ← K(x′1, ..., x
′
m) or defined by K

5: return op⊕1(τ1,K(x1, ..., xm)|op⊕2(τ2, ...

|op⊕m(τm,K(x1, ..., xm)...)

s.t.{∀x1 ∈ N border
1 , ...,∀xm ∈ N border

m }

3.4 Case Studies

In this section, we show how N -body algorithms are generated using PASCAL. Specifically,

we consider the six N -body problems discussed with details in Chapter 2 as case studies.

The choice of these six problems is because they cover

• Approximation, single pruning, and nested pruning problems
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• Both direct and iterative algorithms

• Problems from multiple domains

In all the problems, the BaseCase is the direct point-to-point kernel computation at the leaf

nodes and ComputeAprox is a kernel computation on the center of a subset (for approximate

problems). Bellow, we demonstrate how the prune/approximate condition is generated by

PASCAL for each of the six N -body problems.

k-Nearest Neighbors Search

Recall that the problem is to find ∀q, arg minkr ||xq − xr||, meaning for every query point

xq we want to return its k closest neighbors. k-nearest neighbors (k-NN) has only one

pruning opportunity, arg min, so it is classified as a single prune problem by PASCAL.

PASCAL generates the prune condition using a algorithm 3.2. The prune operator that is

pushed into PrunePipeline is arg min and the reverse is ≥. This reverse helps the prune

generator in discarding data points that do not contribute in the final answer. The reverse

of arg min is similar to the reverse of min since they both compute the minimum. The

difference is the return value: the latter returns the value of the minimum while the former

returns the argument of it. The threshold τ is initialized at the beginning with a temporary

computation of the kernel (or a default value such as the maximum value of double precision)

and is updated through the algorithm.

PASCAL evaluates K, the kernel function, for each reference point in N border
r with respect

to the query point xq. Then, it checks to see if it is greater than or equal to τ . So, the prune

condition is

op⊕(τ,K(xq, xr)) =⇒ K(xq, xr) ≥ τ, ∀xr ∈ N border
r , (3.1)

where the kernel function K is Euclidean distance in the case of k-NN and op⊕ is ≥ operator.
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Range Search

The goal of range search problem is to find all the reference points xr that fall under a range

(hmin, hmax) of a query point xq. Range search has only one pruning opportunity via its

kernel function, I(hmin ≤ ||xq − xr|| ≤ hmax). The reverse of this kernel function that is

saved in PrunePipeline is hmin > ||xq − xr|| or ||xq − xr|| > hmax which is used as op⊕

to generate the prune condition (op⊕1 is >, op⊕2 is <). The two thresholds, τ1 and τ2 are

defined by the kernel function as hmax and hmin. We evaluate the kernel function on the

points in N border
r for each xq and name it as δ, K(xq, xr) = δ. Then, the prune condition is

defined as follows.

op⊕1(τ1,K(xq, xr)) or op⊕2(τ2,K(xq, xr)) =⇒ δ > τ1|δ < τ2,∀xr ∈ N border
r (3.2)

Similar to k-NN, the kernel function K is the Euclidean distance for range search.

Kernel Density Estimation

The goal of kernel density estimation is to estimate the probability density function at each

query point xq using a kernel function Kσ and is defined as ∀q, 1
|Rsize|

∑
rKσ

(
||xq−xr||

σ

)
. Here

we consider the kernel to be a Gaussian normal distribution. Thus, KDE is an approximation

problem since there is no pruning opportunity by considering Gaussian normal distribution

as the kernel function, and the PrunePipeline queue is empty. ComputeApprox will return

the probability density at the center of the node, Kcenter, multiplied by the number of data

points in that node. We use Kcenter to represent the result of evaluating kernel function Kσ

on the center of a node. In this problem, τ is a default constant that can be overridden

by the user to adjust the overall accuracy. PASCAL uses algorithm 3.2 to generate the

approximation condition,
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(Kmax −Kmin) < τ ×Kcenter (3.3)

Minimum Spanning Tree

MST is an iterative algorithm and in each iteration, it uses the same operations as k-NN

search. So PASCAL generates exactly the same prune condition and rule set as k-NN. Since

iterative algorithms appear in many fields, we consider the minimum spanning tree example

as one of our iterative algorithms in the evaluation of PASCAL.

Expectation Maximization

EM is an approximation problem. EM has three steps, the E-step, M-step, and Log-

likelihood, where 99% of the time is spent in E-step and Log-likelihood. Moore [99] proposed

a powerful space-partitioning tree-based algorithm to reduce the complexity of E-step from

O(HN) to O(H logN), where N is the number of data points and H is the number of clus-

ters. We extend Moore’s idea and propose a fast algorithm for estimating both the E-step

and log-likelihood computation in O(H logN).

The first N -body computation in EM is the E-step. In the E-step, if the difference between

the maximum and the minimum responsibility of the points i from cluster j, rij detailed

in Equation (2.7), is less than a threshold, we can approximate the influence of these data

points. This is because all the data points in that node will approximately have a similar

responsibility to the cluster. PASCAL generates the approximation condition

(rmax
j − rmin

j ) < τ × rcenter
j , j = 1, ..,H (3.4)

where τ is the threshold parameter, rcenter
j is the responsibility of the center data points
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in the node from cluster j, rmin
j and rmax

j are the minimum and maximum responsibilities

between all the data point from cluster j.

ComputeApprox will return the value of responsibility at the center of the node multiplied

by the number of data points in that node. Note that in this algorithm, the distance we

compute is the Mahalanobis distance which is defined as (x− µ)TΣ−1(x− µ) for a Gaussian

with θ = (µ,Σ).

The second N -body computation in EM is the log-likelihood computation. In order to

calculate the log-likelihood, we traverse the same tree as in the E-step. The computation

pattern is similar in style to E-step albeit with a different approximation condition generated

by PASCAL presented below.

log
H∑

i=1

πif(xmax|θi)− log
H∑

i=1

πif(xmin|θi) < σ| log(
H∑

i=1

πif(xcenter|θi))|

Hausdorff Distance

One of the N -body problems with more than one pruning opportunity is Hausdorff distance.

In this problem, the kernel function is the Euclidean distance with the operators set {max,

min} both of which provide pruning opportunities. PASCAL generates the prune condition

using the nested prune algorithm, algorithm 3.3.

First, PASCAL constructs the tree data structure and applies each of its operators on one

of the levels of the tree. The PrunePipeline queue consists of the reverse of max and

min which are ≤ and ≥. Therefore, op⊕1 is ≤ and op⊕2 is ≥. To form the prune condition,

PASCAL creates two nested loops. The inner loop runs over the borders of the inner tree (for

example, reference dataset) applying the inner operator which is ≥. The outer loop covers

the borders of the second tree (for example, the query dataset), applying the ≤ operator.

43



Considering the general definition of the N -body problem in Equation (2.2), each operator

that is applied to a dataset is regarded as the operator that is applied to the tree built for

that dataset. We define two thresholds, τ1 and τ2 and the nested prune condition generated

is shown below.

op⊕1(τ1,K(xq, xr)|op⊕2(τ2,K(xq, xr))) =⇒ τ1 ≥ (K(xq, xr)|τ2 ≤ K(xq, xr)),

s.t. ∀xq ∈ N border
q ,∀xr ∈ N border

r

(3.5)

This condition is generated by nested prune algorithm 3.3 detailed in Section 3.3.4.

3.5 Domain-Specific Optimizations

In order to achieve an optimized code, we first apply numerous optimizations to both the

tree construction and the computational core of the evaluation. Then, we parallelize the

tree traversal defined by algorithm 3.1, and finally tune empirically for the associated tuning

parameters (e.g., leaf size).

3.5.1 Incremental Bounding Box Calculation

During the tree construction described in Section 2.2, we associate each node with its bound-

ing box data. This is critical for efficient evaluation during traversal. For instance, during

range search, we check if the reference node is within a specified range of the query node

and if not, the entire node is pruned. This check requires computing the minimum and

maximum node-to-point and node-to-node distances. Pre-computing the bounding box in-

formation significantly reduces the time to compute these distances since we do not have to

access the actual data points each time.

For k-d trees, this is essentially computing the hyper-rectangle boundary information in each
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dimension. At the start of the computation, the root bounding box is computed from all

the N points. During partitioning, we only incrementally update the bounding box of the

dimension that is being split at each node based on the splitting value, resulting in a total

complexity of O(Nd). d is the dimension of data points in vector space.

3.5.2 Optimal Metric Calculation

The evaluation can be performed using a variety of distance metrics. We consider the

following metrics intended for real-valued vector spaces:

• Euclidean:
√∑d

i=1(xi − yi)2

• Manhattan:
∑d

i=1 |xi − yi|

• Chebyshev: maxdi=1 |xi − yi|

• Mahalanobis: (−→x −−→µ )TΣ−1(−→x −−→µ ), where µ and Σ are distribution’s parameters.

Outlined below are two techniques to efficiently compute these metrics which are repeatedly

used in all phases of the algorithm. Additionally, we ensure that the compiler generates

vectorized code for the metric calculation.

• Each metric defines both a distance and a reduced distance, which is often faster

to compute and is used whenever possible. For example, in the case of Euclidean

distance, the reduced distance is squared Euclidean distance. All the intermediate

distances are computed as squared distances, and this eliminates the expensive sqrt

instruction which has long latencies and not pipelined.

• Partial distance between two d-dimensional points x and y is defined as the distance

computed on a subset of the d dimensions. For example, when searching for k-nearest
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neighbors, we compute the distance between two points and insert the reference point

into our neighbor list only if the computed distance is smaller than the kth largest

distance in our sorted list. When d is large as in the case for some of our datasets, this

optimization offers additional savings in processing time where we can terminate the

computation earlier if the computed partial distance exceeds our threshold.

3.5.3 Incremental Distance Calculation

This idea was introduced by Arya and Mount [100] where the node-to-point distance at each

node during single-tree traversal is incrementally computed from the parent’s distance in

constant time independent of dimension. For datasets with large d, this has the potential

for significant savings in computation at the cost of minimal additional storage of distance

information.

3.6 Tree Construction

There are numerous studies on parallel tree construction [101, 102, 103]. In this thesis, we

focus on accelerating the evaluation phase for two main reasons. First, the tree construc-

tion time initially constituted a small fraction of the total execution time for most of the

datasets. Second, in many real applications, the tree once built for a particular dataset can

be reused for multiple different queries. One of the algorithms considered in this thesis -

expectation maximization - iterates over the same tree until convergence, which amortizes

the tree construction time. EM also uses the same trees for both its N -body algorithms

(E-step and Log-likelihood computation).
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3.7 Parallelization

After applying serial optimizations, we parallelize the multi-tree traversal using Cilk [104].

Since there are dependencies across the recursion, we exploit a combination of data and task

parallelism. At first, we spawn Cilk tasks recursively until all the threads are saturated,

at which point we switch to data parallelism, as seen in Figure 3.2. Note that different

fast scheduling methods and frameworks have been introduced in the literature [105, 106,

107, 108]; however, we use Cilk because of its work-stealing scheduler to provide better load

balance in our implementation. Since the tree traversal is abstracted from the actual compu-

tation, parallelizing the tree traversal leads to parallel implementations of all six algorithms.

Moreover, for any new algorithm expressed in PASCAL, we can obtain parallel multi-tree

implementations at no additional cost. This greatly accelerates the ability to scale new

problems in rapidly growing domains.

Algorithmically, the tree is parametrized by the maximum number of points per leaf node,

l. As l increases, the cost of tree construction decreases at the expense of increased cost in

performing the BaseCase. On the other hand, small l results in a large number of nodes and

an increase in the cost of tree traversal. We exhaustively tune l for all implementations.

3.8 Experimental Setup

Here we provide details on the setup we used for our experiments in this chapter, including

the libraries, architecture and compilers, and the benchmarks.

3.8.1 Libraries

We compare PASCAL’s performance against state-of-the-art software, namely, WEKA [90],

Scitkit-learn [26], MLPACK [27], and MATLAB. Table 3.1 summarizes the algorithms sup-
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Q
Tasks

Figure 3.2: The parallelization happening on the query tree. We generate tasks until the
number of tasks is equal to the number of the cores on the system.

ported by them.

• WEKA: The Waikato Environment for Knowledge Analysis data mining suite is one

of the most popular and widely used open-source ML software. It is written in Java

and includes tree-based nearest neighbor search.

• Scikit-learn: This is a Python module for medium scale supervised and unsupervised

algorithms built on top of NumPy and SciPy. It is largely written in Python, with some

core algorithms written in Cython for performance. Among its various algorithms are

k-d tree and ball-tree based k-nearest neighbors, radius search, and KDE.

• MLPACK: This is the state-of-the-art machine learning library with emphasis on

scalability, speed, and ease of use. It is written in C++ on top of Armadillo matrix

library and makes heavy use of templates for optimization.

• MATLAB: This is considered one of the best numerical computing environments. The

functions corresponding to the algorithms considered are knnsearch, rangesearch,

fitdist, and graphminspantree that are part of the Statistics and Bioinformatics

toolboxes.
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k-NN KDE RS EMST EM HD

Weka 3 7 7 7 3 7

Scikit-learn 3 3 3 7 3 7

MLPACK 3 3 3 3 3 7

MATLAB 3 3 3 3 3 7

Table 3.1: Algorithms considered in our study and their support in other libraries.

3.8.2 Architecture and Compilers

We evaluate our implementations on a dual-socket Intel Xeon E5-2630 v3 processor (Haswell-

EP) with a 2.4 GHz clock frequency, 59 GB/s of DRAM bandwidth, and 32/256/20480 KB

of L1/L2/L3 cache. Each socket has 8 cores, for a total of 16 cores (32 threads with hyper-

threading) and a theoretical double precision peak performance of 614.4 GFlop/s. We use

Intel C++ compiler (icpc version 15.0.2) with C++11 feature support. We use Python v2.7.6

for scikit-learn and Java v1.8.0 for Weka.

3.8.3 Benchmarks

We present results on five real-world datasets characterized in Table 3.2. These include Ya-

hoo! Front Page Module User Click Log Dataset, version 1.0 taken from Yahoo! (Yahoo!),

HIGGS bosons signals and background process dataset (HIGGS), Individual Household Elec-

tric Power Consumption dataset (IHEPC), US Census data from 1990 (Census), and KDD

Cup 1999 dataset (KDD) from UCI machine learning repository [109].

3.9 Results and Discussion

The combined benefits of asymptotically optimal algorithms, optimizations, and paralleliza-

tion are substantial. In this section, we first compare our performance against state-of-the-
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Dataset Number of data points d

Yahoo! 41904293 11

IHEPC 2075259 9

HIGGS 11000000 28

Census 2458285 68

KDD 4898431 42

Table 3.2: Description of the datasets. d: dimensionality.

art ML libraries and software. Then, we break down the performance gain step by step and

finally, evaluate the scalability of our algorithms.

3.9.1 Performance Summary

Figures 3.3 and 3.4 present the speedup of EM and k-NN on the five datasets characterized in

Table 3.2. We compare against Scikit-learn (Sklearn), MLPACK, MATLAB, and Weka. The

choice of these two algorithms is because they are the only ones supported by all competing

libraries and therefore make good candidates for a comprehensive comparison. Moreover,

because the former is a direct pruning algorithm while the latter is an iterative approximation

algorithm, together they represent two ends of the spectrum.
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Figure 3.3: Speedup summary of single-tree EM with a threshold value of 0.1. The slowest
library is used as the baseline for comparison.

Across the board, our implementation shows significantly better performance compared to

Scikit-learn, MLPACK, MATLAB, and Weka. Census is the dataset with the largest di-
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Figure 3.4: Speedup summary of dual-tree k-NN for k = 3. The slowest library is used as
the baseline for comparison.

mension (d = 68) among the ones considered in this chapter. PASCAL shows a staggering

104× speedup against Weka (slowest) and 17.03× speedup compared to MLPACK (fastest)

for dual-tree k-nearest neighbors. Note that PASCAL and MLPACK show 104× and 6.1×

speedup against Weka respectively, therefore PASCAL shows a 17.03× (104/6.1) speedup

against MLPACK. Since the numbers in Figures 3.3 and 3.4 present the speedup numbers

against the slowest library, for the rest of this analysis, for calculating the speedup of PAS-

CAL against MLPACK we divide PASCAL’s speedup by MLPACK’s speedup. Similarly, we

observe speedups of 231× and 10× against Weka and MLPACK respectively for single-tree

EM. Yahoo! is the dataset with the largest number of data points (41904293) considered

in this chapter. For this dataset, we achieve 201× and 9× speedup against Weka (slowest)

and MLPACK (fastest) respectively for dual-tree k-nearest neighbors, also 63× and 10×

speedup against Weka (slowest) and MLPACK (fastest) respectively for EM. MLPACK is a

C++ library that applies many optimizations as well as tree implementation of the N -body

problems, resulting in a better speedup compared to other libraries. However, PASCAL is

able to provide better speedup compared to MLPACK because it provides parallelization to

the tree implementation of the tested N -body problems.

3.9.2 Impact of Visit Order in Tree Traversal

The order of tree traversal or Visit Order in the multi-tree traversal algorithm 3.1 helps

PASCAL framework make smart decisions while traversing the tree to reduce the total
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number of nodes visited. For example, in k-NN search, while deciding which child to visit

first, Visit Order will return the closest child. This ordering in the visit pattern results in

finding the nearest neighbors sooner than a random visit pattern, which in turn leads to

better performance.

In this section, we analyse the performance of the Visit Order function by comparing the

results of experiments that do and do not use Visit Order. Each N -body problem, implying

the operators’ set, defines if the Visit Order function can result in better performance. For

example, in a problem such as k-NN with operator set {∀,min}, the VisitOrder function does

not have any impact on the ∀ operator, but it will influence the min operator. Therefore,

in the k-NN example, the VisitOrder function is only beneficial when it is applied to the

reference tree (tree with the data for the min operator).

Figure 3.5 shows the additional speedup gain when we apply the Visit Order function on

different datasets. The blue bar shows the speedup gain for applying the Visit Order function

on the reference tree. Another example, Hausdorff distance with the operator set {max,min},

can benefit from the Visit Order function in both datasets. The green bar in Figure 3.5 shows

the additional performance gain by applying Visit Order on the query tree as well. Overall,

the order of traversal improves the performance of PASCAL. For approximation algorithms

such as EM and KDE, the VisitOrder function does not have any influence since all nodes

of the tree have to be visited, so the order of traversal does not matter.

3.9.3 Performance Breakdown

Furthermore, to obtain a better understanding of the factors contributing to the performance

improvement, we break down the speedups in Table 3.3 and 3.4. Specifically, this speedup

breakdown helps distinguish the improvements that are purely algorithmic (k-d tree algo-

rithm) from improvements via optimization and parallelization. For example, for the Census
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Figure 3.5: Influence of the Visit Order function for the five datasets – KDD, Yahoo!, Census,
HIGGS, and IHEPC from top to bottom. The blue bar shows the speedup from applying
the Visit Order function on the reference tree and the green bar (applicable only to HD)
shows the additional performance gain from using Visit Order on the query tree as well.
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dataset, we observe a 1.4× speedup from an asymptotically faster algorithm, a 6.5× speedup

when applying optimizations on top of the tree algorithm, and a combined 90.8× speedup

by adding parallelization for k-NN.

Yahoo! is the dataset with the largest number of data points (41904293) considered in this

chapter. The performance breakdown for this dataset is 3.1× due to a tree-algorithm, 12.1×

due to both optimizations and the asymptotically-optimal tree-algorithm, and 173.1× with

adding parallelization for k-NN on top of optimizations and tree-algorithm. Similarly, the

breakdown for the EM algorithm is 1.6×, 3.2×, and 53.7× respectively for the same dataset.

Note that the speedup numbers presented in Table 3.3 and 3.4 are cumulative, meaning that

the numbers for +Opt are speedup results for both tree-algorithm and optimization, and

+Par represents the cumulative speedup of adding parallelization on top. We observe that

each dataset benefits differently from algorithmic changes, optimizations, and parallelization

based on the number, dimensionality, and distribution of the data points.

k-NN EM KDE

Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par

Yahoo! 3.1 12.1 173.1 1.6 3.2 53.7 2.1 9.1 92.1

HIGGS 2.1 7.3 108.1 1.5 6.8 117.6 1.7 4.7 50.1

Census 1.4 6.5 90.8 1.3 11.2 190.0 1.4 8.1 75.6

KDD 1.6 6.8 100.7 1.4 4.1 70.9 1.5 3.1 33.5

IHEPC 3.0 4.3 61.5 1.5 7.6 127.6 2.0 5.4 53.6

Table 3.3: Speedup breakdown for k-NN, EM, and KDE algorithms. Alg stands for algo-
rithmic improvement, +Opt refers to optimization on top of Alg, and +Par is parallelization
on top of Opt. The baseline for these computations is our implementation of each problem
without any tree-algorithm, optimization, and parallelization.
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HD RS MST

Alg +Opt +Par Alg +Opt +Par Alg +Opt +Par

Yahoo! 2.5 11.5 161.1 2.2 9.1 126.8 2.9 11.9 166.7

HIGGS 1.9 6.1 89.6 1.9 6.3 86.5 2.0 6.9 102.8

Census 1.3 10.2 141.8 1.3 10.4 144.9 1.4 10.9 151.6

KDD 1.4 3.8 54.4 1.4 5.1 70.5 1.5 3.8 55.5

IHEPC 2.5 6.8 101.3 2.1 6.3 94.1 2.9 7.1 107.1

Table 3.4: Speedup breakdown for HD, RS, and MST algorithms. Alg stands for algorithmic
improvement, +Opt refers to optimization on top of Alg, and +Par is parallelization on top
of Opt. The baseline for these computations is our implementation of each problem without
any tree-algorithm, optimization, and parallelization.

3.9.4 Scalability

Figure 3.6 shows the scalability of the six algorithms, namely: (1) k-nearest neighbors with

k = 3, (2) range search with range between 0 and 2, (3) kernel density estimation for

Gaussian kernel, K with bandwidth, σ = 0.1 and relative error tolerance set to 0.1, (4)

Expectation Maximization with error tolerance of 0.1, (5) minimum spanning tree, and (6)

Hausdorff distance.

We observe that our implementation delivers very good scalability on all the six algorithms.

Note that 32 threads is with hyper-threading enabled where we assign two threads per core,

in which they share the same hardware. In all cases, hyper-threading further improves the

performance resulting in 14×, 16×, 13×, 14×, 10×, and 14× speedup (average 13.5×) for

Yahoo! and 15×, 17×, 13×, 15×, 9×, and 15× speedup (average 14×) for IHEPC over

the serial optimized code for k-nearest neighbors, expectation maximization, range search,

minimum spanning tree, kernel density estimation, and Hausdorff distance respectively.
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Figure 3.6: Multicore scalability using Cilk for the k-nearest neighbors (k-NN), expectation
maximization (EM)range search (RS), Euclidean minimum spanning tree (EMST), and ker-
nel density estimation (KDE) algorithms on a dual-socket Intel Xeon E5-2630 v3 processor
for five datasets in Table 3.2.
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Scalability Difference in Multi-trees

Tree algorithms used for N -body problems in this thesis are irregular [110]. The dynamic

nature of pruning/approximation of sub-trees during tree-traversal makes these problems

challenging to parallelize. This load-balancing problem is further exacerbated in dual-tree

traversal. As a result, we observe that EM, which uses single-tree traversal with one tree (we

use single-tree over a dual-tree traversal for EM because of the small number of clusters),

shows better scalability compared to the other five algorithms, which use dual-tree traversals.

We currently defer to Cilk to manage scheduling of tasks using its work-stealing scheduler.

In the next chapter, we will explore NUMA-aware parallelization for better load balance,

which is critical especially on NUMA machines. In summary, these results show the potential

of our approach to achieve orders of magnitude improvement in performance through the

use of tree data structures, optimizations, and parallelization.

3.10 Conclusions

In this chapter, we proposed PASCAL, a parallel unified algorithmic framework for N -

body problems. PASCAL generates prune and approximation conditions from the N -body

definition in C++, which is one the most challenging components in the design of these

algorithms. We evaluated PASCAL with six N -body problems from different domains and

observe 10 − 230× speedup compared to state-of-the-art libraries/software. The broader

impact is to enable scientific discovery not only for N -body problems in scientific computing

and machine learning but also to a number of related problems in other unexplored domains

that can be expressed in the same style of execution to obtain an out-of-the-box parallel

optimized implementation.
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Chapter 4

PASCAL-X: Extending PASCAL for

Higher Performance

4.1 Introduction

In the previous chapter, we proposed PASCAL as a parallel unified algorithmic framework for

generalized N -body problems. In this chapter, we propose PASCAL-X, which is an extension

of PASCAL for NUMA architectures. PASCAL-X also introduces additional performance

improvement opportunities. Moreover, PASCAL-X provides an analysis of the influences of

tuning parameters. We show that by applying NUMA-aware parallelization, and empirically

tuning the algorithm parameters, PASCAL-X achieves 10× to 309× speedup compared to

state-of-the-art libraries on a dual-socket Intel Xeon processor on various real-world datasets.

Also, we empirically evaluate the impact of algorithmic tuning parameters such as (a) leaf

size, which influences the shape and granularity of the nodes in the tree and (b) cut-off level,

which influences the number and granularity of tasks created during parallelization. Our

results show that tuning these parameters combined could result in up to 4.6× speedup,

thus it is essential to tune these parameters in order to achieve high performance.
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4.2 NUMA-aware Parallelization

After applying serial optimizations, we parallelize the multi-tree traversal using the OpenMP

tasking model. Both the Cilk and OpenMP task model provide similar performance in

PASCAL. However, we switch from Cilk used in PASCAL to OpenMP in PASCAL-X, be-

cause OpenMP provides opportunities to develop NUMA-aware parallelization for task mod-

els [111]. The OpenMP task model has been designed to provide an abstraction for recursive

algorithms and irregular problems [111]. Moreover, OpenMP tasking is able to deliver per-

formance comparable to OpenMP work-sharing implementations [112] which makes it a good

model for parallelization of multi-tree traversal in PASCAL-X.

Modern SMPs are based on non-uniform memory access. There are two main task creation

patterns for NUMA machines [111, 113, 114]: (a) single-producer multiple-executors, and

(b) parallel-producer multiple-executors. We employ the parallel-producer multiple-executer

pattern on an Intel OpenMP runtime which generates local task queues for each thread.

The producers are the higher levels of recursion in the tree traversal. The number of task

producers is equal to the number of NUMA sockets (for instance, on a machine with two

NUMA sockets we will have two producers), and each task producer generates local tasks on

its own socket which is located on the local queue of each thread. We recursively generate

OpenMP tasks until we reach a cut-off threshold in the recursion, at which point we switch

to data parallelism. The cut-off level controls the parallel task granularity, which is one of

the important tuning parameters.

We also use the first-touch page allocation policy of the operating system to parallelize the

data initialization loops. We use the same domain decomposition for both the tree construc-

tion and the evaluation. Consequently, each thread initializes the sub-tree that it evaluates

on, and the data are initialized on their local DRAM. Because of the irregular nature of
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tree traversal, there is load imbalance, which is dynamic and highly input-dependent. In the

Intel runtime system, each thread has its local task queue where it enqueues and dequeues

tasks. It starts to dequeue from other queues when its queue is empty (commonly known as

work-stealing). Threads always steal work from the same socket before stealing from remote

sockets, ensuring a NUMA-aware load-balanced parallel implementation.

4.3 Tuning

In this chapter, we consider two tuning parameters – points per leaf node or leaf size and

parallel task granularity or cut-off level. Algorithmically, the tree is parametrized by the

maximum number of points per leaf node, l. Similarly, the degree of parallelism and parallel

task granularity, which is critical for load balance, is parametrized by the cut-off level. This

is the tree level when we switch from task parallelism to data parallelism. We exhaustively

tune l and cut-off level for all implementations and datasets.

4.3.1 Impact of Leaf Size and Cut-off Level

In this section, we analyze the impact of two tuning parameters, namely: (a) the leaf size

of the space partitioning trees, and (b) the cut-off level to control the number of tasks

generated while parallelizing the tree traversal. Both parameters influence performance

differently based on the algorithm and the distribution of data points.

To analyse the combined influence of these two tuning parameters, we vary leaf sizes from

32 to 512 in multiples of 2, and cut-off levels from 5 to 13 in increments of 2. Since a k-d

tree is a binary tree, each successive level effectively doubles the number of tasks compared

to the previous level. We begin our experiments with 5 as the starting cut-off level, which

results in 32 tasks (i.e., one per OpenMP thread). Each increment of 2 in cut-off level results

in 4× more tasks. Higher cut-off levels result in more fine-grained tasks which help in load
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Figure 4.1: Each heatmap presents the influence of leaf size (x-axis) and cut-off level (y-axis)
for six algorithms on the Yahoo! dataset on a dual-socket Intel Xeon E5-2630 v3 processor.

balancing highly irregular trees. However, there is a trade-off between this effect and the

overhead of creating too many tasks to achieve an optimal load balance.

Figures 4.1 to 4.5 show heat-maps of the six algorithms for five datasets. For example,

in the k-NN search on the Yahoo! dataset, we gain 2.7× speedup when changing the leaf

size from 512 to 64 (decreasing the size of leaves) and increasing the cut-off level from 5 to

13 (increasing the number of tasks created). The hotter spectrum in the heat-map figures

denotes higher performance compared to slower configurations shown by a cooler spectrum.

We observe different configurations of best leaf size and cut-off levels based on the algorithm
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Figure 4.2: Each heatmap presents the influence of leaf size (x-axis) and cut-off level (y-axis)
for six algorithms on the IHEPC dataset on a dual-socket Intel Xeon E5-2630 v3 processor.

and dataset, which result in up to 4.6× speedup over a slower configuration. For example

for k-NN, a smaller setting of leaf sizes with a large number of tasks results in higher

performance across the different datasets, while EM shows better performance for larger leaf

sizes. This shows the varying influence of the tuning parameters on the final performance of

the algorithm and the potential of using an autotuner to expedite the current tuning process.

For these set of experiments, we execute all the combinations, however, ML methods similar

to what is used in [115] could be leveraged here to reduce the number of experiments.

In summary, these results show the potential of our approach to achieve improvement in

performance by adding NUMA-aware parallelization and tuning. New algorithms can be ex-
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Figure 4.3: Each heatmap presents the influence of leaf size (x-axis) and cut-off level (y-axis)
for six algorithms on the HIGGS dataset on a dual-socket Intel Xeon E5-2630 v3 processor.

pressed in PASCAL-X with minimal programming effort, resulting in out-of-the-box NUMA-

aware parallel optimized implementations.

4.4 Results and Discussions

The combined benefits of asymptotically optimal algorithms, optimizations, NUMA-aware

parallelization, and tuning are substantial. In this section, we analyze the performance of

PASCAL-X similar to PASCAL, and finally, we compare PASCAL-X performance against

PASCAL.
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Figure 4.4: Each heatmap presents the influence of leaf size (x-axis) and cut-off level (y-axis)
for six algorithms on the Census dataset on a dual-socket Intel Xeon E5-2630 v3 processor.

4.4.1 Comparison with PASCAL

As mentioned in Chapter 3, PASCAL provides state-of-the-art performance against Weka,

MATLAB, MLPACK, and scikit-learn. Hence, we compare PASCAL-X performance against

PASCAL. Table 4.1 presents the speedup of PASCAL-X over PASCAL for the six algorithms

on the five datasets characterized in Table 3.2. The speedup in Table 4.1, shows the combined

improvement of NUMA-aware parallelization and tuning, in some cases, PASCAL-X can

result in up to ∼ 3× speedup compared to PASCAL.

64



Figure 4.5: Each heatmap presents the influence of leaf size (x-axis) and cut-off level (y-axis)
for six algorithms on the KDD dataset on a dual-socket Intel Xeon E5-2630 v3 processor.

k-NN EM KDE HD RS EMST

Yahoo! 1.54 1.19 1.16 1.22 1.75 1.30

HIGGS 1.20 1.18 1.21 1.06 1.56 1.06

Census 1.46 1.14 1.32 1.15 1.38 1.15

KDD 1.50 1.24 1.26 1.25 1.53 1.76

IHEPC 2.94 1.40 1.42 1.07 1.31 1.30

Table 4.1: Speedup of PASCAL-X against PASCAL for the six algorithms on the five datasets
intentioned in Table 3.2.
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4.4.2 Scalability

Tables 4.2, 4.3, 4.4, 4.5, 4.6 , and 4.7 show the scalability of the six algorithms namely, (i)

k-NN with k = 3, (ii) RS with range between 0 and 2, (iii) KDE for Gaussian kernel, K with

bandwidth, σ = 0.1 and relative error tolerance set to 0.1, (iv) EM with error tolerance of

0.1, (v) EMST, and (vi) Hausdorff distance with and without NUMA-aware parallelization.

Without NUMA-aware parallelization we gain 14×, 16×, 13×, 14×, 10×, and 14× speedup

for Yahoo! over the serial optimized code for k-NN, EM, RS, EMST, KDE, and Hausdorff

distance respectively, while NUMA-aware parallelization improves that scaling to 16.23×,

17.1×, 15.23×, 16.11×, 11.94×, and 16.14× speedup respectively. We observe better scaling

using NUMA-aware parallelization for all the algorithms as expected, which could be even

more beneficial when we use machines with more NUMA nodes.

2 4 8 16 32

noN +N noN +N noN +N noN +N noN +N

Yahoo! 1.83 1.85 3.66 3.82 6.08 6.97 11.92 13.11 14.31 16.23

HIGGS 1.73 1.73 3.86 3.92 6.98 7.17 12.02 13.89 14.81 16.93

Census 1.79 1.79 3.41 3.54 6.19 6.82 11.72 13.02 13.97 16.14

KDD 1.83 1.83 3.36 3.68 5.9 7.01 11.92 13.91 14.51 17.09

IHEPC 1.87 1.87 3.41 3.65 6.38 7.08 12.12 14.01 15.1 17.21

Table 4.2: k-d tree scalability of the k-NN algorithms for five different datasets for both
NUMA-aware (+N) and non NUMA-aware (noN) parallelization. The first column shows
the number of threads.

4.5 Conclusions

In this chapter, we proposed PASCAL-X as a NUMA-aware extension of PASCAL for N -

body problems. We evaluated PASCAL-X experientially in a manner similar to PASCAL,

with six N -body problems from different domains, and observe 10 − 309× speedup com-
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2 4 8 16 32

noN +N noN +N noN +N noN +N noN +N

Yahoo! 1.82 1.83 3.71 3.75 7.3 7.41 12.1 12.98 16.8 17.41

HIGGS 1.72 1.72 3.7 3.83 7.25 7.42 11.92 13.94 17.3 18.42

Census 1.79 1.79 3.61 3.66 7.01 7.32 11.85 12.35 16.97 17.87

KDD 1.8 1.8 3.69 3.81 6.98 7.12 12.3 14.02 16.86 17.91

IHEPC 1.87 1.87 3.89 3.92 7.3 7.48 12.69 13.97 17.9 18.89

Table 4.3: k-d tree scalability of the EM algorithms for five different datasets for both
NUMA-aware (+N) and non NUMA-aware (noN) parallelization. The first column shows
the number of threads.

2 4 8 16 32

noN +N noN +N noN +N noN +N noN +N

Yahoo! 1.8 1.8 3.07 3.24 6.92 7.02 11.09 12.92 13.94 15.23

HIGGS 1.73 1.73 3.91 3.95 7.24 7.35 11.7 13.67 13.74 15.59

Census 1.8 1.8 3.73 3.78 6.89 6.99 10.9 12.39 13.94 15.24

KDD 1.8 1.8 3.17 3.48 6.12 6.52 10.84 12.41 13.84 15.97

IHEPC 1.84 1.84 2.87 3.71 6.88 6.92 11.84 13.78 14.94 16.82

Table 4.4: k-d tree scalability of the RS algorithms for five different datasets for both NUMA-
aware (+N) and non NUMA-aware (noN) parallelization. The first column shows the number
of threads.

2 4 8 16 32

noN +N noN +N noN +N noN +N noN +N

Yahoo! 1.83 1.83 3.52 3.64 6.04 6.73 11.9 13.2 14.01 16.11

HIGGS 1.74 1.74 3.78 3.86 6.94 7.03 12.01 13.91 14.9 16.95

Census 1.81 1.81 3.42 3.48 6.24 6.56 11.74 13.15 13.91 16.02

KDD 1.82 1.82 3.32 3.42 5.91 6.81 11.9 13.64 14.61 16.73

IHEPC 1.86 1.86 3.39 3.68 6.34 6.94 12.01 13.82 15.09 16.91

Table 4.5: k-d tree scalability of the EMST algorithms for five different datasets for both
NUMA-aware (+N) and non NUMA-aware (noN) parallelization. The first column shows
the number of threads.
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2 4 8 16 32

noN +N noN +N noN +N noN +N noN +N

Yahoo! 1.8 1.81 2.5 2.75 4.93 5.13 8.61 9.86 10.13 11.94

HIGGS 1.72 1.72 2.99 3.19 5.35 6.21 7.9 9.31 10.68 12.87

Census 1.81 1.81 3.27 3.32 6.27 6.48 8.06 9.23 9.34 11.34

KDD 1.82 1.82 3.19 3.33 6.67 6.92 8.54 9.46 10.81 12.91

IHEPC 1.85 1.85 3.24 3.47 5.99 6.99 8.01 10.11 9.94 12.24

Table 4.6: k-d tree scalability of the KDE algorithms for five different datasets for both
NUMA-aware (+N) and non NUMA-aware (noN) parallelization. The first column shows
the number of threads.

2 4 8 16 32

noN +N noN +N noN +N noN +N noN +N

Yahoo! 1.81 1.81 3.59 3.61 6.3 6.58 11.51 13.14 14.01 16.14

HIGGS 1.69 1.69 3.74 3.83 6.89 7.01 12.1 13.82 14.69 16.98

Census 1.75 1.75 3.43 3.52 6.15 6.83 11.65 13.52 13.91 16.22

KDD 1.81 1.81 3.29 3.42 5.87 6.97 11.84 13.74 14.32 16.85

IHEPC 1.86 1.86 3.39 3.47 6.29 7.19 12.1 13.91 14.9 17.13

Table 4.7: k-d tree scalability of the HD algorithms for five different datasets for both
NUMA-aware (+N) and non NUMA-aware (noN) parallelization. The first column shows
the number of threads.

pared to state-of-the-art software libraries. This improvement in the performance and scal-

ability stems from implementing the NUMA-aware parallelization as well as tuning. We

also analyzed the influence of tuning parameters (such as leaf-size and the cut-off level of

parallelization) in the final performance.
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Chapter 5

Portal: A High-Performance Language

and Compiler for Parallel N-body

Problems

In this chapter, we present Portal [116], a domain-specific language and compiler built on

top of PASCAL-X that is designed to enable high-performance implementations of N -body

problems on modern multicore systems. Our goal in the development of Portal is three-fold:

(a) to implement scalable, fast algorithms that have O(N logN) and O(N) complexity, (b)

to design an intuitive language to enable rapid implementations of a variety of problems,

and (c) to enable parallel large-scale problems to run on multicore systems. We target

N -body problems in various domains from machine learning to scientific computing that

can be expressed in Portal to obtain an out-of-the-box optimized parallel implementation.

Experimental results on six N -body problems show that Portal is within a factor of 5% on

average of expert hand-optimized C++ code on a dual-socket AMD EPYC processor. To our

knowledge, there are no known libraries or frameworks that implement parallel asymptotically

optimal algorithms for the class of generalized N-body problems and Portal aims to fill this

gap. Moreover, the Portal language and intermediate algorithm representation are portable

and easily extensible to different platforms.
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5.1 Introduction

Modern machines are becoming increasingly more complex resulting in even the most ad-

vanced compilers failing to generate the best-optimized code despite many efforts in optimiz-

ing performance for compilers [117, 118, 119, 120]. Moreover, Proebsting’s Law [24] states

that improvements in compiler technology double the performance of typical programs every

18 years, showing the slow progress of general compilers in improving performance. This

has resulted in the trend of expert high-performance programmers who desire the best pos-

sible performance writing hand-tuned and hand-optimized code that outperforms compiler

generated code. Unfortunately, this typically results in implementing a single algorithm or

problem, for one or a small subset of architectures. Even if we just consider the domain of

interest in this thesis, there are hundreds of N -body problems and it is practically impossible

to generate hand-optimized code for every single one of them. Furthermore, hand-tuning

is not only tedious but also highly machine-specific. Given the trend that architectures are

constantly evolving, these hand-written codes quickly become obsolete.

Scientists who are experts in their particular domain often lack expertise in parallel program-

ming. In general, scientists prefer to program in high-level languages which allow concise

expression of their problem. MATLAB and Python are two examples that are widely used

in data analytics [25]. However, achieving performance requires computation at a low level

and in-depth knowledge of the underlying architecture.

These are two examples of the natural tension between the software goals of performance and

productivity. In the former, we have performance programmers who sacrifice productivity for

performance and in the latter, we have productivity programmers whose main goal is rapid

prototyping. This motivates the need for an infrastructure to enable both high-performance

and high productivity. To that end, we present Portal, a domain-specific language and com-

piler embedded in C++ for domain of N -body problems. There is potential for significant
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impact in this domain and general N -body implementations today are still orders of magni-

tude from optimal. The first goal in the development of Portal is to choose optimal algorithms

with time/accuracy guarantees. Big data motivates fast approximate algorithms. Portal is

built on the top of the PASCAL-X which utilizes tree data-structures and user-controlled

pruning or approximations to reduce the asymptotic runtime complexity from being linear

in the number of data points to be logarithmic.

5.2 Related Work

In the past few years many domain-specific languages (DSLs) such as DeepDSL [121] for

deep learning, Diesel [122] for linear algebra and neural nets, Saiph [123] for computational

fluid dynamics, Indigo [124] for image reconstruction, and Halide [125] for image processing

have demonstrated that DSLs not only produce terse, extensible, and composable programs

but also achieve state-of-the-art performance across different hardware. This is due to a rep-

resentation where the choices for how to execute a program are separated from the definition

of what to compute. This distinction shows in part the separation between the computation

from the problem specification, which gives the compiler flexibility to do the computation in

the most efficient manner. Portal, a DSL for domain of N -body problems is inspired by the

same philosophy.

DSLs can be stand-alone or embedded. For instance, OptiML [126], DeepDSL [121], and

Saiph [123] are embedded in a host language, Scala, while SCOPE [127] is a stand-alone

DSL. Embedded DSLs inherit the language constructs of their host language and add do-

main specific primitives that allow programmers to express their problem at a higher level

of abstraction. Embedding also enables ease-of-adoption. For these reasons we choose to

develop Portal as an embedded DSL in C++.
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5.3 Portal DSL

The design of the Portal DSL is inspired by the mathematical formulation in Equation

2.2. It aims to describe N -body problems in a well-structured high-level form that allows

domain experts to focus on the specification of the problem rather than the algorithm or its

associated implementation on a target platform.

Recall that an N -body problem is defined using a set of m operators applied to m datasets

(D1...Dm) using a kernel function, K, as seen in Equation (2.2) in Chapter 2. Each operator,

dataset, and/or kernel function can be associated with a layer. Problems are built up by

chaining multiple layers to specify a query. Changing the operator, dataset, or the order of

layers can change the specification and meaning of the problem. Note that the same dataset

may be reused in multiple layers. We explain the structure and semantics of the Portal

language using nearest neighbor, which has the following form.

∀q arg min
r
||xq − xr|| (5.1)

Code 5.1 shows the Portal specification of the nearest neighbor problem ∗. PortalExpr in

line 3 is the main object that holds the problem definition. The first or outer-most layer

applies the ∀ (FORALL) operator over the query (q) dataset. The second or inner-most

layer applies the argmin (ARGMIN) operator over the reference (r) dataset, as well as the

Euclidean distance kernel function, which calculates the distance between two points. A

layer is added to the PortalExpr using the addLayer() method, which allows a user to

build the structure of the problem (lines 4-5). The execute() function in line 6 generates

and runs the tree-based N -body algorithm, and getOutput() in line 7 returns the result of

the computation in the format of a Storage object.

∗Appendix 5.6 describes the grammar of the Portal language
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1 Storage query("query_file.csv");

2 Storage reference("reference_file.csv");

3 PortalExpr expr;

4 expr.addLayer(PortalOp::FORALL, query);

5 expr.addLayer(PortalOp::ARGMIN, reference, PortalFunc::EUCLIDEAN);

6 expr.execute();

7 Storage output = expr.getOutput();

Portal code 5.1: Portal language spec of the nearest neighbor problem using pre-defined

Euclidean distance metric.

As seen from code 5.1, each layer can consist of three components: (a) portal operator, (b)

storage object, and (c) kernel/modifying function. We explain each component in detail in

the subsequent sections.

5.3.1 Portal Operators

Portal operators are a set of distinct operators that filter the results of their layer and pass

it to the next outer layer or the output. A list of these operators is defined in Table 5.1.

Each layer requires an operator to specify what sort of filtering happens on the data that

layer computes on. We categorize operators into three groups:

• Single variable reduction operators

• Multi variable reduction operators

• All operator

This categorization is helpful in deciding the type of intermediate storage required for each

layer. It allows Portal to allocate just the right amount of storage to propagate to outer
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layers.

Category Mathematical Operator Portal Operator

All ∀ FORALL

Single
∑

SUM

Single
∏

PROD

Single argmin ARGMIN

Single argmax ARGMAX

Single min MIN

Single max MAX

Multi ∪ UNION

Multi ∪ arg UNIONARG

Multi argmink KARGMIN

Multi argmaxk KARGMAX

Multi mink KMIN

Multi maxk KMAX

Table 5.1: Mathematical operators supported in Portal along with their categorization into
Single, Multi, and All operators.

Single variable reduction operators

These operators take a set of values as input and reduce the set to a single output. These

operators are listed in the Single category in Table 5.1. For example, when the min operator

is applied to a reference dataset, it returns the minimum value which is a single output.

Multi variable reduction operators

These operators take a set of values as input and reduce them to a smaller set of values,

typically with a specified length, k. These operators include argmink , argmaxk, mink , maxk,

∪, and ∪ arg. Each multi variable reduction operator requires us to specify a number k,

which limits the number of values that get filtered, except ∪ and ∪ arg operators. In our
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nearest neighbor example, using argmin is the same as using argmink when k = 1. If one

desires to compute the k closest reference points to each query point, the Portal operator

in the inner addLayer() method in line 5 of code 5.1 has to be modified to apply a multi

variable reduction operator as shown below.

expr.addLayer((PortalOp::KARGMIN, k), reference, PortalFunc::EUCLIDEAN);

All operator

The ∀ operator does not filter any values and given an input, it returns all the data. In the

nearest neighbor example, the ∀ operator is applied to the outermost layer to compute the

nearest neighbors of all query points.

5.3.2 Storage

Each layer includes a Storage object, which corresponds to a dataset. Storage objects are

designed to be the primary user-facing data structure. Storage objects can be created from

C++ vectors (as shown below) or from CSV files (as shown in lines 1-2 of code 5.1).

/* Construct Storage from C++ data-structure */

std::vector<std::vector<float>> input;

// fill in the input data structure with values

Storage query(input);

Portal determines the data layout of the Storage objects based on the dimensionality of the

dataset to further optimize performance. Portal can choose between column- or row-major

data layout. When the dataset has a smaller dimensionality (less than or equal to 4), Portal

chooses a column-major layout. Datasets with a larger dimensionality default to a row-major
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layout. Portal makes this decision to enable efficient compiler auto-vectorization which is

discussed in more detail in Section 5.4.

Portal generates a space-partitioning tree for each input Storage object. The output Storage

object will be returned by calling the execute() function. Both input and output storage

objects are available after execute() function. The programmer can delete the input/output

storage objects using the clear() function as shown below.

PortalExpr expr;

// do some computation for expr

expr.clear();

5.3.3 Kernel/Modifying Function

The last component constituting a layer is the kernel/modifying function. This function

is required for the inner-most layer and is commonly known as the kernel function in the

literature [54]. Other layers can also specify functions, however; we call these modifying

functions. The kernel function specifies the science of the problem which depends on the

distance between pairs of points in the chosen parameter space. Portal implements a set

of commonly used distance metrics (for ease of use), which can be used to compose kernel

functions.

1 expr.addLayer(PortalOp::FORALL, reference, PortalFunc::MANAHATTAN));

2 expr.addLayer(PortalOp::FORALL, reference, PortalFunc::CHEBYSHEV));

3 expr.addLayer(PortalOp::FORALL, reference, PortalFunc::MAHALANOBIS));

4 expr.addLayer(PortalOp::FORALL, reference, PortalFunc::SQREUCDIST));

Portal code 5.2: Examples of pre-defined distance metrics.
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For instance, code 5.1 uses the pre-defined Euclidean distance metric to specify the kernel

function for nearest neighbors which in this case is equal to the distance between points

in sets q and r in Euclidean space. Code 5.2 shows examples of other pre-defined distance

metrics such as the Manhattan, Chebyshev, Mahalanobis, and Square Euclidean distances.

Portal also allows the user to define custom kernel functions. Code 5.3 shows how Euclidean

distance, the same function used in our nearest neighbor example, can be defined using the

Expr object in line 5. Expr can be specified using Var objects as input variables. These Vars

can be used in a wide variety of calculations using a specified set of operations that can be

compiled and optimized by Portal. The Var objects are then linked to specific layers using

the addLayer method as shown in code 5.3.

1 Storage query("query_file.csv");

2 Storage reference("reference_file.csv");

3 Var q;

4 Var r;

5 Expr EuclidDist = sqrt(pow((q-r), 2));

6 PortalExpr expr;

7 expr.addLayer(PortalOp::FORALL, q, query);

8 expr.addLayer(PortalOp::ARGMIN, r, reference, EuclidDist);

9 expr.execute();

10 Storage output = expr.getOutput();

Portal code 5.3: Portal spec for user-defined distance metric and kernel function for nearest

neighbors.

To allow for greater flexibility, users can also define their own external C++ functions. For

example, if the user wants to use another library to specify a kernel function, the addLayer

method accepts C++ functions. Since Portal is an embedded DSL, we can take advantages

of these libraries and infrastructures provided by our host language. Although external
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C++ functions will not be optimized in the same way the internally specified Portal kernel

functions are, they allow for greater flexibility on what problems Portal can solve. Additional

bindings to other languages, such as MATLAB or Python, can be added in the future.

5.4 Portal Compiler

To synthesize optimal machine code from the high-level Portal language, the Portal compiler

proceeds through the major stages as illustrated in Figure 5.1. First, Portal builds space-

partitioning trees for the input datasets. The next step is to synthesize code for the three

key functions in the multi-tree traversal (Algorithm 3.1). The Prune/Approximate and

ComputeApprox functions in the tree traversal are generated using a modified version of the

prune generator supported by the PASCAL algorithmic framework [128]. To use the prune

generator in Portal, we modified it to take the Portal operators and kernel function as input

and emit the Prune/Approximate and ComputeApprox functionality in Portal IR.

The Portal core compiler lowers and synthesizes loops for the BaseCase given a PortalExpr

and automatically manages the intra-layer storage injection. Then, it flattens multi-dimensional

store, load, and allocations. After flattening, we perform numerical and strength reduction

optimizations specific to N -body problems. Figures 5.2 and 5.3 illustrates the IR for the key

functions in the tree-traversal (Algorithm 3.1) and walk through the different stages of the

compiler transformations for two N -body problems, namely nearest neighbor and kernel den-

sity estimation respectively. The reason for choosing these two problems is to illustrate the

IR and Portal stages for both prune (nearest neighbor) and approximation (kernel density

estimation) examples from the two categories of N -body problems.

Finally, back-end code generation emits x86 machine code using LLVM. The parallelization

is applied in the tree traversal which applies to all the N -body problems expressed in Portal.
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Ø ApproxCompute
Ø Visit Order

Space-Partitioning Trees

Extended from PASCAL

Figure 5.1: Portal block diagram. The core of the compiler lowers the N -body problem
defined in the Portal language to imperative code. Portal constructs a loop nest and injects
storage for each layer of the loop according to their corresponding operators. Portals back
end code generator emits machine code via LLVM.

Note that in addition to the asymptotically optimal tree algorithm, Portal also generates

the code for the brute-force algorithm. This is currently used for correctness checks. In the

rest of this section, we describe each of these major compiler steps in detail.

5.4.1 Lowering

The first step of our compiler is the lowering process that synthesizes a set of nested loops

given a PortalExpr object. The order of the loops follows the same sequence as the language

specification (e.g., the outermost layer mapping to the outermost loop), since the ordering

defines the structure of the N -body computation. Loops are defined by their minimum and

maximum values, and all loops implicitly stride by 1.

Next, Portal builds an argument list for each layer and assigns the initial values for each

operator and reduction filter. For all inner layer operators, intermediate values of operations

are stored in the intermediate storage objects, which are initially assigned with their opera-

tors default values. For example, for the min operator, the initial value of the intermediate

storage is set to the highest value for that specific numeric type (e.g., DBL MAX for double

precision data).

After that, the kernel/modifying functions are lowered into Portal IR. Finally, Portal lowers
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/* Storage injection for outer layer */ 
alloc storage0[q.size] 
for q in query.start ... query.end 
  /* Storage injection for inner layer */ 
  alloc storage1 = max_numeric_limit 
  for r in reference.start ...reference.end 
    alloc t = 0 
    /* Lowering the kernel function */ 
    for d in 0 ... dim 
      t += pow((load(q,d)-load(r,d)),2) 
    t = sqrt(t) 
    /* Lowering the min functionality */ 
    storage1 = storage1<t?storage1:t 
  storage0[q] = storage1 

 

∀q ∈ Q, arg min
r∈R

∥xq − xr∥
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Storage query("query_file.csv"); 
Storage reference("reference_file.csv"); 
Var q,r; 
Expr EuclidDist = sqrt(pow((q-r), 2)); 
PortalExpr expr; 
expr.addLayer(PortalOp::FORALL, q, query); 
expr.addLayer(PortalOp::ARGMIN, r, reference,  
EuclidDist); 
expr.execute(); 
Storage output = expr.getOutput(); 

/* Prune/Approximate condition for the two tree nodes 
N1  (from query) and N2 (from reference) */ 
for d in 0 ... dim  
   t += pow((load(N1min,d)-load(N2min,d)),2) 
t = sqrt(t) 
return (t>current_min_distance) 

 /* There is no approximation for pruning problems */ 
return 0; 

 

t += pow((load((q×q.stride)- 
     (q.start×q.stride)+d)- 
     load((r×r.stride)- 
     (r.start×r.stride)+d)),2) 

 
storage0[(q×q.stride)-  
(q.start×q.stride)] = storage1 

 

t = 1/fast_inverse_sqrt(t) 
 

t = 1/fast_inverse_sqrt(t) 
 

t += pow((load((N1min×N1min.stride)- 
     N1min.start×N1min.stride)+d)-  
     load((N2min×N2min.stride)-  
    (N2min.start×N2min.stride)+d)),2) 
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/* Node N2 (from reference) */ 
return min_distance(N2left) < min_distance(N2right); 

 

VO

Figure 5.2: The IR representation of the nearest neighbor problem illustrating the IR of the
three main functions in the tree traversal (BaseCase, Prune/Approximate, and ApproxCom-
pute) along with the different transformation applied to it. The nearest neighbor returns
zero for ApproxCompute since it is a prune N -body problem (shown by the AC red box).
Note that there is no numerical optimization applied for this problem since nearest neighbor
doesn’t use Mahalanobis distance. Portal uses metadata information from the tree, such as
min, max, and center of the nodes of the tree for computing the Prune/Approximate condi-
tion efficiently; see Chapter 3 for more details on the generation of the Prune/Approximate
conditions. The blue colored rectangles (middle) show the IR after lowering and storage
injection (Sections 5.4.1 and 5.4.2), while yellow and green colored rectangles (right) present
the IR after flattening and strength reduction respectively (Sections 5.4.3 and 5.4.5). The
VO red box shows the Visit Order function.

the mathematical functionality of each operator at the end of the corresponding synthesized

loop. For example, for the min operator, Portal generates a comparison imperative code at

the end of loop synthesis, to update the minimum computation of that layer.

5.4.2 Storage Injection

Storage injection creates the output and all intermediate data storage for each layer. The

intermediate storage is necessary to pass data between layers; each inner layer filters and

passes its results to the next outer layer as an intermediate storage. As Portal recursively
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/* Storage injection for outer layer */ 
alloc storage0[q.size]   
for q in query.start...query.end  
  /* Storage injection for inner layer */ 
     alloc storage1 = 0 
  for r in reference.start ... reference.end      
    /* Lowering the kernel function */  
    storage1 += 1/sqrt(2×M_PI×Det(cov))× 
              exp(-0.5×Mahalanobis(q,r,cov)) 
  storage0[q] = storage1 

 /* Prune/Approximate condition for the two tree nodes 
with their min, max and center as metadata */ 
 1/sqrt(2×M_PI×Det(covmax))×exp(-0.5× 
  Mahalanobis(qmax,rmax,covmax))- 
 1/sqrt(2×M_PI×Det(covmin))×exp(-0.5× 
  Mahalanobis(qmin,rmin,covmin)) 
 <tau×1/sqrt(2×M_PI×Det(covcenter))× 
 exp(-0.5×Mahalanobis(qcenter,rcenter,covcenter)) 
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/* KDE is an approximation problem, hence Portal 
approximates with the center of node multiplied by 
its size */ 
return 1/sqrt(2×M_PI×Det(covcenter))×   
        exp(-0.5×Mahalanobis(qcenter,rcenter,covcenter))× 
        Nsize 

 

storage0[(q×q.stride)- 
         (q.start×q.stride)] = storage1 

 

storage1 = fast_inverse_sqrt(2×M_PI  
     ×Det(cov))×exp(-0.5× 
      Forward_subs(q,r,Cholesky(cov))) 

 

fast_inverse_sqrt(2×M_PI×Det(covmax))... 
 

∀q ∈ Q,
∑

r

Kσ

(∥xq − xr∥
σ

)

fast_inverse_sqrt(2×M_PI× 
                  Det(covcenter))×... 

 

storage1 += 1/sqrt(2×M_PI×Det(cov)) 
          ×exp(-0.5×Forward_subs 
          (q,r,Cholesky(cov))) 

 

...×exp(-0.5×Forward_subs(qmax,rmax, 
                    Cholesky(covmax))) 

 

...×exp(-0.5×Forward_subs(qcenter,rcenter, 
              Cholesky(covcenter)))×... 
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 Storage query("query_file.csv"); 
Storage reference(“ref_file.csv"); 
Var q,r,cov;��
Expr Kernel = 1/sqrt(2×M_PI×Det(cov))    
      ×exp(-0.5×Mahalanobis(q,r,cov));�
PortalExpr expr;�
expr.addLayer(PortalOp::FORALL,q,query); 
expr.addLayer(PortalOp::SUM,r, 
reference,Kernel); 
expr.execute();  
Storage output = expr.getOutput(); 

Figure 5.3: The IR representation of kernel density estimation (KDE) problem illustrating
the IR of the three main functionalities in the tree traversal (BaseCase, Prune/Approximate,
and ApproxCompute) along with the different transformation applied to it. The Kernel (K)
in the mathematical equation is the Gaussian kernel. KDE also benefits from the numerical
optimizations provided for the Mahalanobis distance computation. Portal uses metadata
information from the trees such as min, max, center, and size of the node for computing
Prune/Approximate condition and the associated approximation, ApproxCompute. This
metadata is denoted with the subscript notation. For example, the metadata qcenter shows
the center of a node of the tree built on the dataset corresponding to the variable q in the
Portal code for KDE. The blue colored rectangles (middle) show the IR after lowering and
storage injection level (subsections 5.4.1 and 5.4.2), while yellow, purple, and green colored
rectangles (right) present the IR after flattening, numerical optimization, and strength reduc-
tion respectively (Section 5.4.3, 5.4.4, and 5.4.5). Since KDE is an approximation problem,
the Visit Order returns an arbitrary output.

moves across layers in order to synthesize nested loops, it dedicates storage for each layer

depending on the layer’s operator and category listed in Table 5.1. The storage injected for

single variable reduction operators is only one unit of data, as the output of that layer is only

a single value, while the storage for multi-variable reduction operators is equal to the size of

the multi-variable defined by the operator, such as k for KARGMIN (argmink) multi-variable

reduction operator. As a special case, the ∀ operator injects a storage object equal to the

size of that layer’s dataset. This is because ∀ operator outputs all the calculations.
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For example in the nearest neighbor problem, the inner layer searches for the argmin on

the reference dataset. Since argmin is a single reduction variable, we inject one memory

location per output of this layer. The outer layer applies a ∀ operator on the query data,

which results in a storage injection as large as the query set.

5.4.3 Flattening

The Portal compiler flattens multi-dimensional loads and stores into one-dimensional load

and store operations. Similarly, for nested loop arguments, Portal flattens the arguments

using the base offset and strides from each loop to compute a one-dimensional version of its

arguments.

5.4.4 Numerical Optimization

After flattening, Portal performs two optimization passes that exploit domain (N -body)

specific knowledge. The first such pass is numerical optimization, which implements a fast

calculation between a point x and a distribution Γ, for the Mahalanobis distance. It gener-

alizes the measure of how many standard deviations away x is from the mean of distribution

Γ. About 60% of basic statistical inference N -body problems presented in a list of N -body

problems mentioned in Grey’s Ph.D. thesis [1] have a form of Mahalanobis distance cal-

culation. Therefore, optimizing this distance metric can benefit a large subset of N -body

problems.

The Mahalanobis distance between two points i and j is defined as,

(xi − µj)TΣ−1(xi − µj), (5.2)

where µ and Σ are the mean and covariance respectively. Näıvely evaluating this distance

82



requires computing the inverse of the covariance matrix which is an expensive linear algebra

operation that can take on the order of d3 operations where d is the matrix dimension.

However, we can exploit the fact that the covariance matrix Σ is symmetric positive semi-

definite.

That is, we rewrite the covariance matrix with a combination of Cholesky decomposition and

forward substitution which reduces the complexity to d2/2. First, we factorize the covariance

matrix using Cholesky decomposition to obtain a lower triangular matrix as follows.

(xq − µr)TΣ−1(xq − µr) = (xq − µr)T (LLT )−1(xq − µr)

where L is a lower triangular matrix. If Y = xq − µr, we can further re-write the above

equation as,

Y T (LLT )−1Y = (L−1Y )TL−1Y

Since L is a lower triangular matrix, we can use forward substitution to compute X = L−1Y ,

in turn, reducing the original computation to XTX, a simple and cheap inner product.

Moreover, we can now compute the determinant of the covariance matrix, |Σ|, by simply

multiplying the diagonal entries of the lower triangular matrix L, which is another expensive

operation that arises in such computations.

5.4.5 Strength Reduction

Operations such as power (pow), square-root (sqrt), and reciprocal square-root (1/
√
x) that

arise in many N -body problems [1] have long latencies. The second optimization pass is

strength reduction, which replaces such expensive operations with faster, albeit less accurate

versions. If the pow operation has an exponent less than 4, Portal replaces this with a chained
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multiplication. For computing 1/
√
x, we use the fast inverse square root that is provided

by LLVM, which can result in up to 4× faster performance compared to the näıve version

with an error of 0.17% [129]. For approximation problems with an inherent time/accuracy

trade-off, this optimization pass can provide an additional tuning knob.

There are two potential ways of calculating
√
x: (1) to multiply x with its fast inverse square

root (x∗1/√x =
√
x), or (2) take the inverse of the fast inverse square root (1/(1/

√
x) =

√
x).

The former choice is faster; however when x = 0, it returns NaN, while the latter returns 0

as desired. So, we used the latter in this pass.

5.4.6 Code Generation

Finally, we perform low-level optimizations and emit machine code for the defined N -body

problem. The Portal back-end uses LLVM for low-level code generation. We first perform

a set of standard passes, such as constant-folding and dead-code elimination. The Portal

IR is then lowered to LLVM IR. For the most part, there is a one-to-one mapping between

Portal and the LLVM IR. However, for some filters, we provide additional data-structures.

For example in the case of multi-variable reduction filters such as mink, we implement

an ordered array of size k to provide this functionality. After generating LLVM IR, the

compiler links external functions, including user-defined external kernel functions. Before

finishing compilation, this function is finally wrapped around another function that the user

and our methods can easily call upon.

The parallelization happens in the tree traversal using OpenMP. Portal uses task paralleliza-

tion provided by OpenMP and supported by the clang compiler in order to provide scalable

N -body computations. The generated code is also auto-vectorized by the compiler. To en-

able efficient auto-vectorization, Portal chooses between column- and row-major data layout

based on the dimensionality of the dataset.
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To explain Portal choice for column- and row-major data layout, we break down our nearest

neighbor example. The BaseCase computation between two leaf nodes consists of three

nested loops; the outermost loop iterates over all the points in the query set, the middle loop

iterates over all the points in the reference set, and the innermost loop iterates through all

the elements within the two chosen query and reference data points to calculate the distance.

The loop extent of the innermost loop is determined by the dimensionality of the datasets.

For low dimensional data, the compiler can unroll the innermost loop, thereby exposing

vectorization opportunities at the level of the middle loop. To exploit this, we store the data

in a column-major layout such that every row stores values from the same dimension for

different points. In other words, each data point is stored as a column while in row-major

layout, each data point is stored as a row. When using column-major layout, each cache line

loads data from different data points. Since the middle loop is the target of vectorization

for low dimensional data, this results in less wait for memory loads and consequently better

vectorization performance. On the other hand, for high dimensional data, the compiler does

not unroll the innermost loop due to large loop counts. Therefore, to exploit vectorization in

the innermost loop, we use a row-major data layout where every row stores one data point.

5.5 Evaluation and Discussion

In this section, we first evaluate the code generated by Portal against hand-optimized

PASCAL-X implementations of six N -body problems. We then demonstrate Portal’s ability

to generate optimal code on three additional N -body problems not implemented in PASCAL-

X. For the ML problems, we compare their performance against widely used open-source

libraries and frameworks such as MLPACK [27] and scikit-learn [26]. For Barnes-Hut com-

putation, we compare against hand-optimized C++ code from the FDPS framework [28].

All evaluations are performed on the state-of-the-art AMD EPYC 7551 multicore processor
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with a total of 128 cores.

5.5.1 Experimental Setup

Architecture and Compiler. For our evaluation, we choose a dual-socket AMD EPYC

7551 processor. Each socket has 64 cores, for a total of 128 cores (256 threads with hyper-

threading) and a theoretical double precision peak performance of 2611.2 GFlops/s. We use

clang compiler version 6.0.0 and LLVM version 6.0.0. We use Python v3.7.0 for scikit-learn

v0.20.0 and MLPACK 3.0.3.

Benchmarks. We present results on six real-world datasets characterized in Table 5.2

which is extending the Table 3.2. These include Yahoo! front page module user click log

dataset, v1.0 (Yahoo!), Higgs boson’s signals and background process dataset (HIGGS),

Individual Household Electric Power Consumption dataset (IHEPC), US Census data from

1990 (Census), and KDD Cup 1999 dataset (KDD) from the UCI ML repository [109]. The 3-

dimensional dataset (Elliptical) is generated for evaluating the Barnes-Hut algorithm, where

particles are angularly uniformly (in spherical coordinates) distributed on the surface of an

ellipsoid with an aspect ratio 1:1:4. The elliptical dataset generates an adaptively refined

octree.

Dataset Number of data points d

Yahoo! 41904293 11

IHEPC 2075259 9

HIGGS 11000000 28

Census 2458285 68

KDD 4898431 42

Elliptical 10000000 3

Table 5.2: Description of the datasets. d: dimensionality.
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N -body Problems Operators Kernel Function Pruning/Approximation Condition

k-Nearest Neighbors ∀, arg min ||xq − xr|| Prune⇔ ||xq − xr|| ≥ τ, ∀xr ∈ N border
r

Range Search ∀,⋃ arg I(hmin < ||xq − xr|| < hmax)
Prune⇔ ||xq − xr|| > hmax or ||xq − xr|| < hmin

∀xr ∈ N border
r

Hausdorff Distance max,min ||xq − xr||
Prune⇔ τ1 ≥ (K(xq, xr)|τ2 ≤ K(xq, xr)),

∀xq ∈ N border
q ,∀xr ∈ N border

r

Kernel Density Estimation ∀,∑ K( ||xq−xr||
σ

) Approximate⇔ Kmax −Kmin < τ ×Kcenter

Minimum Spanning Tree? ∀, arg min ||xq − xr|| Prune⇔ ||xq − xr|| ≥ τ, ∀xr ∈ N border
r

E-step in EM? ∀, ∀ rnj =
πjN (xn|µj ,Σj)∑H
i=1 πiN (xn|µi,Σi)

Approximate⇔ (rmaxj − rminj ) < τ × rcenterj ,

j = 1, ..,H

Log-likelihood in EM?
∑
, log

∑
πjN (xn|µj,Σj)

Approximate⇔

log

H∑

j=1

πjN (xmax|θj)− log
H∑

j=1

πjN (xmin|θj)

< τ × |log(
H∑

j=1

πjN (xcenter|θj))|

2-Point Correlation
∑
,
∑

I(||xq − xr|| < h) Prune⇔ ||xq − xr|| ≥ h, ∀xr ∈ N border
r

Näıve Bayes Classifier ∀, arg max N (xn|µk,Σk) Prune⇔ N (xn|µk,Σk) > τ

Barnes-Hut ∀,∑ f =
GM1M2

(||xq − xr||)2

Approximate⇔
E < τ × ||xq − xr||, xr : N center

r , E : N diameter
r

Table 5.3: Summary of the characteristics of the eightN -body problems chosen for evaluation
(EM consists of two N-body sub-problems: E-step and log-likelihood). The kernel functions
are evaluated on the border points given by N border

r and N border
q . τ , τ1, τ2, and σ represent

threshold values defined based on the N -body problem or controlled by the user, E represents
the side length of a node. ? denotes iterative algorithms.

5.5.2 Comparison with PASCAL-X

Table 5.3 shows a summary of key characteristics of the six N -body problems chosen for

comparison namely, k-nearest neighbor (k-NN), range search (RS), kernel density estima-

tion (KDE), Hausdorff distance (HD), minimum spanning tree (MST), and expectation max-

imization (EM). These six problems cover a variety of different N -body problems including

pruning vs. approximation and direct vs. iterative problems. They also include problems

from different metric spaces (e.g., Euclidean vs. Mahanalabois space). PASCAL-X improves

the performance of PASCAL, which achieves orders of magnitude higher performance com-

pared to widely used libraries and frameworks such as MLPACK, scikit-learn, MATLAB, and

Weka [128] for all six problems. Therefore, we compare against PASCAL-X’s hand-optimized

implementations.
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k-NN KDE RS

Census

Expert 22.83 1087.42 42.4

Portal 23.94 1129.31 44.3

% Difference 4 3 5

Yahoo!

Expert 84.63 133.75 214.52

Portal 85.24 139.52 223.17

% Difference 2 4 4

IHEPC

Expert 8.72 39.24 15.01

Portal 9.11 41.72 16.11

% Difference 4 6 7

HIGGS

Expert 186.02 411.82 122.32

Portal 191.01 430.91 130.12

% Difference 3 4 6

KDD

Expert 21.42 926.53 20.12

Portal 22.63 945.98 21.13

% Difference 5 2 4

Line of Code

Expert 867 626 673

Portal 13 15 13

× Shorter 67 42 52

Table 5.4: Comparison of the Portal running time (in seconds) against PASCAL for k-
Nearest Neighbor(k-NN), Kernel Density Estimation(KDE), and Range Search (RS) across
5 datasets. Each dataset spans 3 rows that report their respective performance and %
difference. The last 3 rows show Lines of Code(LOC) as an indicator for user productivity.
The last row (× shorter) shows the factor that Portal code is shorter than PASCAL.

Table 5.4 and 5.5 present the running time across five datasets for the code generated by

Portal and hand-optimized PASCAL-X implementations for the six problems. Both imple-

mentations use the same k-d tree data-structure (built using median partitioning strategy

by splitting along the widest dimension) and the same multi-tree traversal template (Algo-

rithm 3.1). For both Portal and PASCAL-X, we use the number of cores that deliver the

highest performance for each dataset and problem combination. We also empirically tune

the algorithmic parameters, leaf size and cut-off level in parallelization, which control the
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MST EM HD

Census

Expert 374.11 76.32 40.94

Portal 391.74 82.61 43.13

% Difference 4 8 5

Yahoo

Expert 918.47 224.53 122.84

Portal 946.13 242.82 129.76

% Difference 3 8 5

IHEPC

Expert 200.87 78.61 38.42

Portal 211.02 85.35 40.14

% Difference 5 8 4

HIGGS

Expert 478.37 198.81 236.65

Portal 486.26 216.71 243.83

% Difference 2 9 3

KDD

Expert 273.65 32.44 36.26

Portal 281.07 35.32 38.34

% Difference 3 8 5

Line of Code

Expert 956 1681 689

Portal 54 104 13

× Shorter 17 16 53

Table 5.5: Comparison of the Portal running time (in seconds) against PASCAL for Minimum
Spanning Tree (MST), Expectation Maximization(EM), and Hausdorf Distance(HD) across
5 datasets. Each dataset spans 3 rows that report their respective performance and %
difference. The last 3 rows show Line of Code (LOC) as an indicator for user productivity.
Note that MST and EM in Portal only require 12 and 30 lines respectively for specifying
the N -body problem. The rest of the code implements the iterative logic which is written
in native C++ code. The last row (× shorter) shows the factor that Portal code is shorter
than PASCAL.

89



size and number of tasks created. Since we rely on the OpenMP work-stealing scheduler to

balance the work across all 256 threads (at the highest concurrently) across eight NUMA

domains, it is critical to tune these parameters to achieve scalability, especially at this scale

on a multicore system.

Across a range of problems and datasets, our Portal language is able to express and our Portal

compiler is able to generate implementations using optimal tree-based algorithms that are

within 5% (on average) of state-of-the-art performance. We observe the largest deviation of

8 − 9% for EM because of external function calls of matrix calculations of covariance that

are required for evaluating the kernel function.

In addition to running time, we also report the number of lines of code (LOC) in the last

three columns of Table 5.4 and 5.5. Portal programs require significantly fewer code lines

than hand-written hand-optimized code. For example, the Portal version of k-nearest neigh-

bors was written in 13 lines of code and achieves within 2− 5% of PASCAL-X performance.

EM, a soft clustering algorithm composed of two N -body sub-problems is the longest Portal

program, is written in 104 LOC, consisting of 30 lines of Portal code and 74 lines of native

C++ code; this is 16× fewer LOC compared to PASCAL-X. Note that we do not report the

tree construction, tree traversal, and prune generator LOC for PASCAL-X since these mod-

ules can be reused when implementing a new problem. In summary, these results show the

potential of Portal to express a wide range of N -body problems while achieving competitive

performance with reduced programming effort.

5.5.3 Validation

We also validate Portal with three other N -body problems, namely 2-point correlation, näıve

Bayes classifier and Barnes-Hut, that are not implemented in PASCAL-X. We refer the

reader to the last three rows of Table 5.3 for the operators and the kernel functions defining
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2-PC NBC BH

Census

State-of-the-art 3529.23 1337.14 –

Portal 53.12 87.22 –

Speedup 66 15 –

Yahoo!

State-of-the-art 37043.52 3629.73 –

Portal 250.28 198.49 –

Speedup 4 3 –

IHEPC

State-of-the-art 4281.84 1699.92 –

Portal 26.36 88.07 –

Speedup 162 19 –

HIGGS

State-of-the-art 17823.58 5231.31 –

Portal 151.39 261.14 –

Speedup 117 20 –

KDD

State-of-the-art 5134.82 981.61 –

Portal 31.14 47.22 –

Speedup 165 21 –

Elliptical

State-of-the-art 5412.42 1026.81 473.51

Portal 94.01 194.52 278.13

Speedup 57 5 1.7

Table 5.6: Comparison of the Portal performance (in seconds) against state-of-the-art
libraries/packages. state-of-the-art for 2-point correlation (2-PC), naive Bayes classifier
(NBC), and Barnes-Hut (BH) are scikit-learn[26], MLPACK [27], and FDPS [28] respec-
tively. Note that Barnes-Hut is limited to 3-dimensional data, hence there is a dash(-)
for higher dimension datasets. The elliptical dataset is a 3-dimensional dataset specifically
generated for Barnes-Hut.

these three problems. Since no framework like Portal exists at this time for generalized N -

body problems (to the best of the author’s knowledge), we compare against open-source ML

libraries/packages and an optimized Barnes-Hut implementation. Specifically, we compare

against scikit-learn [26] for 2-point correlation, and MLPACK library [27] for näıve Bayes

classifier. This is due to the fact that MLPACK does not implement 2-point correlation, but

both MLPACK and scikit-learn implement the näıve Bayes classifier. However, MLPACK

delivers the best performance among the two, so we only report MLPACK performance.
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Scikit-learn is an open source project with more than 170,000 downloads, with 85 releases by

913 contributors. MLPACK is a C++ machine learning library with emphasis on speed and

ease of use with more than 118 contributors. Both scikit-learn and MLPACK implement a

tree-based algorithm for 2-point correlation and näıve Bayes respectively. For Barnes-Hut

computation, we compare against FDPS, a high-performance framework for particle simula-

tions which provides a hand-optimized C++ implementation [28]. The FDPS framework is

designed specifically for parallel particle simulations.

We choose k-d tree as the tree type for fair comparison across all implementations, and

octree for Barnes-Hut. Table 5.6 shows that Portal achieves 66− 165× better performance

than scikit-learn for 2-point correlation and 15 − 47× faster than MLPACK for the näıve

Bayes classifier across different datasets. Portal achieves 1.7× better performance compared

to FDPS for a Barnes-Hut computation on 10 million particles.

In summary, these results validate the potential of our approach resulting in performance that

is orders of magnitude faster than state-of-the-art libraries. Additional algorithms can be

expressed in this style with minimal programming effort resulting in out-of-the-box parallel

optimized implementations.

5.6 Appendix

The Portal grammar is presented in listing 5.4. The <name> in the grammar is the same

as variable names in the C++ language. The <call> function in the grammar is for pre-

defined functions defined in Portal such as Mahalanobis, Cholesky, etc. as well as user-defined

function calls (similar to C++ function calls).
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<PortalProgram> → <StorageDef>+ <VarDef>*

<PortalExprDef>

<StorageDef> → "Storage" <name> "("<file_name> ")"

|"Storage" <name> "("<std_vector>")"

<VarDef> → "Var" <name>

<PortalExprDef> → <ExprDef> <AddLayer>+ <Execute>

<ExprDef> → "PortalExpr" <name>

<AddLayer> → <name>".addlayer("<OP>"," <name> ","

<name> "," <Kernel>? ")"

<Kernel> → sqrt(Kernel) | pow(Kernel) |

<expression> | <call> (a*) |...

<Execute> → <name>".execute()"

<OP> → "FORALL" | "SUM" | "PROD" | "ARGMIN" |

"ARGMAX" | "MIN" | "MAX" | "UNION" |

"UNIONARG" | "KARGMIN" | "KARGMAX" |

"KMIN" | "KMAX"

Portal code 5.4: Grammar specification for Portal.

5.7 Conclusions

Portal is a high-performance domain-specific language and compiler for generalized N -body

problems. We show how a DSL with an appropriately high-level mathematical formulation

leads directly to both asymptotically fast algorithms and their efficient parallel implemen-

tations on x86 platforms. Moreover, Portal enables terse expression of the problem, thereby

reducing the line of code written by experts up to 67× while obtaining performance compa-

rable to expert tuned code. Portal DSL and intermediate representation are independent of

underlying architecture which makes it easily extensible to different platforms.

We hope Portal will enable scientific discovery not only for N -body problems in scientific
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computing and machine learning but to a number of related problems in domains such as

computer graphics, computational geometry, and applied mathematics that can be expressed

in Portal to obtain an out-of-the-box parallel optimized implementation.
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Chapter 6

Case Study

In this chapter, we present a real-world example of using Portal for implementing a face

clustering algorithm. In other words, the face clustering example is used as a case study to

evaluate the ability of Portal to deliver high-performance solutions for N -body problems in

different domains.

6.1 Introduction

In this chapter, we consider the face clustering problem, which categorizes a large number

of unlabelled faces into individual identities presented in a data set. This problem occurs

in many applications such as social media, forensics, and law enforcement. In many of

these applications, the number of faces could be in orders of thousands and millions. For

examples, Facebook revealed in a white paper [130] that its users are uploading 350 million

images per day on average, and a large portion of these images are face images. However,

some identity information has been provided by tagging, but many of the images are missing

identity information. Clustering algorithms provide opportunities to organize these face

images into identities and auto-tagging. For instance, Facebook’s tag-suggestion method

suggests possible name tags for identity considering similar faces with tagging information.
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In law enforcement, finding the suspects or perpetrators requires an investigation in large

media collections. Meanwhile, FBI is including over 50 million face photographs in the Next

Generation Identification (NGI) dataset, in order to enable investigator leads the searching

ability for images similar to a suspect’s photo∗. The large scale of data in different domains

rises the need for high-performance scalable face clustering implementations. Some of the

images in these datasets do not have the desired quality in terms of pose, illumination, and

occlusion. In order to mitigate the mentioned issues, recent progress in face recognition

leverage a state-of-the-art convolutional neural network for face representation [29, 131].

Using this state-of-the-art face representation, the face clustering accuracy is still not perfect,

especially with difficult datasets which contain faces with pose variation, occlusion, mask,

expression, and change of illumination. [132].

Zhu et al. [133] developed a rank-order distance-based clustering algorithm for face tagging,

which introduces a distance measure based on shared nearest neighbors of face images.

Another challenge in face clustering is scalability and performance, considering the high

volume of data. Otto et al. [29] developed a version of the rank-order clustering which

improves scalability and simplifies the actual clustering procedure by considering a smaller

set of nearest neighbors in their distance metric. We extend the Otto et al. rank-order

clustering method to a fast simplified version and implement it using Portal. We evaluate

our implementation in Portal using a well-known LFW dataset [134]. By simplifying the

Otto et al. method we get even faster results preserving similar accuracy.

6.2 Related Work

Clustering is well known in data analysis and has been used in many different fields such as

statistics, machine learning, and pattern recognition [135, 136, 137]. Clustering for images

∗http://goo.gl/UYlT8p
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and faces becomes more challenging when the number of images and clusters are very large.

In clustering faces, there have been different face representation methods such as scale invari-

ant feature transform (SIFT) [138] and convolutional neural networks (CNN) [139], as well

as various distance metrics such as cosine similarity [140] and chi-squared distances [141].

Hence, the quality of clustering not only depends on the choice of the clustering algorithm

but also on the metric distance and face representation method.

6.2.1 General Image Clustering

A substantial amount of research work has been done for clustering images in general [142,

143, 144, 145]. Foo et al. [146] address the detection of near-duplicate images. Their al-

gorithm identifies similarities between images considering different image processing opera-

tions including cropping, rotation, and conversions. For image representation, they applied

a visual word approach to the local PCA-SIFT descriptors and indexed it with a Locality

Sensitive Hashing scheme. Gong et al. [147] design a version of k-means clustering which

encodes images feature vectors to binary vectors, and use an indexing method to support

constant-time lookup for cluster centers of k-means. Moëllic et al. [148] present a method

for extracting meaningful and representative clusters based on a shared nearest neighbors

approach, which considers both content-based features and textual descriptions (tags). By

using the nearest neighbor method, their approach is able to build representative clusters.

6.2.2 Face Clustering

Different methods have been proposed for clustering faces specifically. Cui et al. [149] ex-

tract features from the detected faces and apply spectral clustering in order to develop a

semi-automatic tool for annotating photographs. They use a human operator for manually

adjusting the clustering results. This algorithm is further improved by Tian et al. [150]

via using a probabilistic clustering model, including an additional class to discard clusters
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with not enough tightly distributed data. Zhao et al. [151] combined a variety of contextual

information such as time and the probability of faces of certain people to appear in one im-

age, as well as identity estimates to cluster personal photograph collection using hierarchical

clustering. Zhu et al. [133] designed a similarity measure based on the ranking of faces in

each other’s nearest neighbor lists. These nearest neighbors lists are formed using a simple

distance metric such as Euclidean distance. They applied a hierarchical clustering on the

calculated rank-order distance function.

6.3 Case Definition

As mentioned in the previous section, many different clustering methods have been devel-

oped in the literature. Considering the evaluation presented by Otto et al. [152] for different

face clustering approaches we chose the approximate version of rank-order clustering for

Portal’s case study due to its high performance and high accuracy. After explaining the face

representation method (Section 6.3.1), we present the original rank-order clustering (Sec-

tion 6.3.2), then approximate rank-order clustering (Section 6.3.3) and finally its symmetric

version implemented in Portal (Section 6.3.4 & 6.3.5).

6.3.1 Face Representation

Following the success of deep convolutional neural networks for face representation by various

researchers†, we consider a deep learning approach for our face representation in clustering.

In this chapter, we use the architecture described in [131]. For extracting the feature, given

an input image, 68 facial landmarks are detected using the DLIB library implementation

method by Kazemi and Sullivan [153]. Each image is normalized based on the detected

keypoints, by rotating based on the angle between the eyes and locating the eye lines at 45

†http://vis-www.cs.umass.edu/lfw/results.html
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percent of image height from the top of the image; similarly the mouth line is located at 25

percent of the image height from the bottom of the image, and the midpoint of all the key

points is centered in the X dimension. The final aligned image is scaled to 110 × 110, and

the center 100× 100 is the normalized image.

In the next step, the normalized image is inputted to a deep convolutional neural net-

work [154] with a total of 10 convolutional layers and small 3× 3 filters. The neural network

architecture consists of pairs of convolutional layers followed by max-pooling layers, repeated

four times and finally two convolutional layers followed by an average pooling layer, with

ReLU neurons following all convolutional layers, except for the last one. The output of the

final average pooling layer is a 320-dimensional vector used as our feature vector, which

during training is fed into a fully connected layer followed by a softmax loss. The final 320-

dimensional output of the average-pooling layer is used as a feature vector in our clustering

experiment.

6.3.2 Rank-Order Clustering

Zhu et al. [133] developed the rank-order clustering algorithm as a form of agglomerative

hierarchical clustering [155], which uses the nearest neighbor based distance metric. The

general approach in this algorithm is to initialize all samples to be separate clusters, then

compute distances between pairs of clusters, and merge clusters with a distance below a pre-

defined threshold. It iteratively computes the cluster-to-cluster distance in each iteration and

merges the clusters based on the recomputed distances. They defined the distance between

two clusters to be the minimum distance between any two samples in the pair of clusters.

The distance defined in rank-order clustering between two images a and b is as follows.

dist(a, b) =

Oa(b)∑

i=1

Ob(fa(i)), (6.1)
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where fa(i) is the ith face in a’s neighbor list; Oa(b) represents the ranking of face b in

a’s neighbor list, and Ob(fa(i)) represents the ranking of face fa(i) in b’s neighbor list.

These nearest neighbors lists are generated using Euclidean distance. The distance in Equa-

tion (6.1) is asymmetric, therefore a symmetric distance measure is build upon it, which is

considered as the final distance between a and b, as

distsym(a, b) =
dist(a, b) + dist(b, a)

min(Oa(b),Ob(a))
(6.2)

The symmetric rank order distance in Equation (6.2) generates low value if the two faces are

close to each other and have neighbors in common. As mentioned before, the clustering is

performed by initializing each face image as its own cluster, computing the symmetric dis-

tance between each cluster, and merging clusters with distance below the specified threshold.

The iterations continue until no further cluster can be merged considering the threshold. In

this clustering algorithm, rather than specifying the desired number of clusters, the threshold

specifies the final number of clusters.

6.3.3 Approximate Rank-Order Clustering

Otto et al. [29] developed approximate rank-order clustering, which uses a short list of

nearest neighbors for each image instead of computing all neighbors for nearest neighbor

list of every sample in the dataset. Applying their method requires some modification of

the original rank-order clustering algorithm. They use the k top nearest neighbors under

the assumption that cluster formation relies on local neighborhoods. Moreover, they enforce

locality by only computing the approximate rank-order distance between pairs of samples

for which both are within each other sample’s top nearest neighbors.

Also, they note that considering a short list of top-k neighbors, the presence or absence of
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a particular example on the short nearest neighbors list may be more significant than the

sample’s numerical rank. Hence, they consider a distance measure based on summing the

absence/presence of shared nearest neighbors, rather than their ranking, which results in a

distance function between images a and b as follows.

dist′(a, b) =
k∑

i=1

Ia(Ob(fa(i), k)), (6.3)

where Ib(x, k) represents an indicator function resulting in 0 if face x is in face b’s top-k

nearest neighbors list, and 1 otherwise. This distance function implies that the presence

or absence of shared neighbors towards the top of the nearest neighbors list is important,

while the numerical value or the ranks are not adding additional information (based on

their empirical experiments). The same normalization process as in the original rank-order

clustering is applied as given below.

dist′sym(a, b) =
dist′(a, b) + dist′(b, a)

min(Oa(b),Ob(a))
(6.4)

Furthermore, in order to improve the runtime of the clustering step, they only compute

distances between samples which appear in each other’s nearest neighbors list and only

perform one round of merges of individual faces into clusters, rather than performing multiple

merge iterations as in the original rank-order algorithm.

The final approximate rank-order clustering algorithm is summarized as:

• Extract deep features for each face

• Compute the k-nearest neighbors for each face

• Compute the pairwise distance between each face and the faces in its top k-nearest
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neighbors list for which the face is also on the neighbor’s nearest neighbors list

• Merge all the pairs of faces with distances below a pre-defined threshold

The selected threshold determines the number of clusters and is one of the challenging tasks

in data clustering. We consider different thresholds in our experiments and present the best

result for the chosen dataset. For building the k-nearest neighbors list in the computation of

approximate rank-order, we use a space-partitioning tree named randomized k-d tree similar

to [29] for direct comparison with state-of-the-art. The randomized k-d tree is built similar to

the k-d tree algorithm explained in Section 2.2.1. The only difference is that the randomized

k-d tree improves efficiency by generating multiple k-d trees by choosing the first splitting

dimension randomly, and simultaneously searches among the different generated k-d trees.

The search will stop when a specified number of tree nodes has been visited [156].

6.3.4 Symmetric Approximate Rank-Order Clustering

The normalization in the original rank-order distance measure in Equation (6.2) was designed

to eliminate the asymmetry of the distance measure in Equation (6.1). This normalization is

also applied to the approximate rank-order in [29]. However, in approximate rank-order dis-

tance measure (Equation (6.3)), we are essentially counting the number of shared neighbors

in each other’s nearest neighbors list (equal to the size of the intersection of the two lists).

This count of shared neighbors in the two lists is symmetric, which essentially eliminates the

need for the normalization. Hence, in our experiment, we use the Equation (6.3) which is

symmetric. Note that, we are changing the approximate rank-order algorithm, however, we

are able to gain similar accuracy.
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Portal Implementation

In order to implement this face clustering algorithm in Portal, we observe that there are

two N -body problems embedded in the approximate rank-order clustering outlined in Sec-

tion 6.3.3 as depicted in Figure 6.1.

Extract face 
representation

Top k-nearest 
neighbor for 

each face

Compute the 
pairwise image 

distance

Merge all pairs 
with distance 

below threshold

N-body  N-body

Figure 6.1: Steps for approximate rank-order algorithm

The first N -body problem is calculating the top k-nearest neighbors for all the images in

the dataset, which has been detailed in Chapter 5. The second N -body problem is defined

with ∀ and ∪ arg as the operators, and the kernel function is the intersection of the two

lists of k-nearest neighbors for each face image. The intersection kernel function does not

satisfy the requirement for Portal’s kernel function (monotonically decreasing with distance);

hence, Portal uses a brute force solution for the second N -body problem instead of the tree

method. Since Portal is embedded in C++ we are still able to provide this kernel function

as a external C++ function as presented in Figure 6.1.

6.3.5 Improved Symmetric Approximate Rank-Order Clustering

For supporting the kernel function mentioned in Section 6.3.4, we can extend Portal to

further improve the face clustering algorithm. In order to extend Portal for implementing

face clustering algorithm we need to consider two main steps: (1) adding the functionalities

needed for face clustering kernel function and (2) adding a space-partitioning tree such as

cover tree which supports different distance metrics including the distance metric used in

the face clustering algorithm.
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PortalExpr rankOrder; 
rankOrder.addLayer(PortalOp::FORALL, q, image); 
rankOrder.addLayer(PortalOp::UNIONARG, r, image, 
reinterpret_cast<void*>(&RankDistance)); 
rankOrder.execute(); 
Storage output = rankOrder.getOutput(); 
 
 

 

External C++ kernel function
Storage query("image_features.csv"); 
Storage reference("image_features.csv"); 
PortalExpr expr; 
expr.addLayer(PortalOp::FORALL, query); 
expr.addLayer((PortalOp::KARGMIN,k), reference,  
PortalFunc::EUCLIDEAN); 
expr.execute(); 
Storage image = expr.getOutput(); 
 
 

 

float RankDistance(float *s1 , float *s2) { 
 int intersect = 0, find = 0, threshold = 30, 
                      d = K; 
 for (size_t i = 1; i < K+1; i++) { 
   for (size_t j = 1; j < K+1; j++) { 
    if (s1[i] == s2[j]) 
    intersect++; 
   } 
   if ((s1[0] == s2[i]) || s2[0] == s2[i]) 
    find++; 
 } 
 if (find == 2) 
   d = K-intersect; 
 return (d < threshold); 
} 
 
 

 

Portal code 6.1: Face clustering algorithm in Portal using an external function as the kernel.
The left side shows portal implementation for the two N -body problems in Figure 6.1: k-
nearest neighbor (top) and final clustering (bottom). The right side shows the external
function used as the kernel function for computing the approximate rank distance.

For adding the functionality we extend Portal to include the intersection and exist function-

alities. The intersection functionality will count the size of the intersection between two lists

of numbers similar to the mathematical operation intersection (∩). In the face clustering

example intersection is used to count the number of shared nearest neighbors in each other’s

list. The exist functionality checks if a value exists in a list of numbers, and in the face

clustering example it is used to check if one image exists in the list of nearest neighbors of

another image. So we can write the kernel function for face clustering outlined in Figure 6.2.

Var r,q; 
Expr RankDistance = exist(r,q) && exist(q,r) && (intersection(r,q) < threshold); 
PortalExpr rankOrder; 
rankOrder.addLayer(PortalOp::FORALL, q, image); 
rankOrder.addLayer(PortalOp::UNIONARG, r, image, RankDistance); 
rankOrder.execute(); 
Storage output = rankOrder.getOutput(); 
 
 

 

Portal code 6.2: Face clustering algorithm in Portal using Portal’s functionalities.This code
represents the second N -body problem in Figure 6.1.

We also extend Portal to use the cover tree for the computation of face clustering algorithm.

The cover tree’s ability to support different metric spaces [46] allows utilization of Portal
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for algorithms with different distance metrics such as approximate rank order distance. Por-

tal’s prune generator algorithm is developed in a modular templated way, meaning that it

gets the type of the tree as a template parameter. This design helps to modularized and

separate the functionalities which are specific to each tree from prune generator. The prune

generator is calling functionalities for computing the minimum and maximum distances on

the inputted tree template (the tree type that has been used as the template parameter of

prune generator). The implementation of these functionalities is provided for each tree type

in their corresponding class. As a result, for face clustering extension, we develop our cover

tree considering the approximate rank order distance as the metric distance. In the cover

tree, the center and radius of each node are used to compute the minimum and maximum

distances as mentioned in Section 2.2.4.

6.4 Face Clustering Evaluation

For Portal implementation of face clustering, we use a similar evaluation of clustering per-

formance as Otto et al. [29]. They use a predefined definition of correct clustering, which

considers the identity, and evaluates accuracy in terms of clusters corresponding to known

identity labels. They evaluate the clustering quality using pairwise precision/recall.

Pairwise precision is defined as the fraction of pairs of samples within a cluster which are of

the same class, over the total number of same-cluster pairs in the datasets. Pairwise recall is

defined as the fraction of pairs of samples within a class which are placed in the same cluster,

over the total number of same-class pairs in the dataset. The pairwise precision/recall are

able to address two types of errors; as a method that clusters all the samples as individual

clusters will have high precision, but low recall, while a method that clusters all samples in

the same cluster will have high recall but low precision. These two measures are combined
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to define the F-measure as follows.

F = 2× Precision×Recall
Precision+Recall

(6.5)

We use F-measure to evaluate the accuracy of the clustering implementation. We use

LFW [134] dataset, which contains 13,233 face images of 5,749 individuals. The dataset

was compiled by searching for images of celebrities and public figures while retaining only

images with an automatically detectable face. For our evaluation, we choose a dual-socket

Intel Xeon E5-2630 processor. Each socket has 8 cores, and a theoretical peak performance

of 614.4 Gflops/s. We use clang compiler version 6.0.0 and LLVM version 6.0.0. For the ex-

periments, we use our implementation of the original and approximate rank-order clustering

algorithm.

Clustering method Image distance k-NN Clustering Performance (Sec) Accuracy

Rank-order [133] dist(a, b) =
∑Oa(b)

i=1 Ob(fa(i)) Naive Naive 21134 0.66

Approximate rank-order [29] dist′(a, b) =
∑k

i=1 Ia(Ob(fa(i), k)) R-kdtree Naive 655 0.87

Symmetric approximate rank-order dist′(a, b) =
∑k

i=1 Ia(Ob(fa(i), k)) R-kdtree Naive 343 0.86

Improved symmetric approximate rank-order dist′(a, b) =
∑k

i=1 Ia(Ob(fa(i), k)) R-kdtree Cover tree 308 0.86

Table 6.1: The evaluation of the three clustering algorithm mentioned in this chapter in
terms of performance and accuracy. k-NN column refers to the underlying algorithm used
for the computation of k-NN. the R-kdtree refers to randomized k-d tree.

Table 6.1 shows the performance and cluster accuracy (F-measure) for each of the clustering

algorithms mentioned in this chapter. As we can see the Portal implementation achieves

similar accuracy to the approximate rank-order distance. The performance improvement of

symmetric approximate rank-order clustering (about 2× speedup) in Portal implementation

stems from eliminating the normalization part, as mentioned in section 6.3.4. The additional

performance improvement in the improved symmetric approximate rank-order clustering

stems from the use of the cover tree for the clustering N -body computation.

Note that in the previous chapters we represented results for k-d tree which is built very
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well-balanced by using median splitting, resulting in a better opportunity for parallelization

and consequently higher performance. In some of the N -body problems, the pruning causes a

load imbalance in the tree which is mitigated using the work-stealing. However, for Barnes-

Hut, we use the octree, which doesn’t have a well-balanced structure due to its splitting

method (details in Section 2.2.3), gaining only 70% improvement against the state-of-the-art

framework FDPS. Using unbalanced trees could influence the final performance. Another

factor influencing the performance is the underlying dataset and the distribution of data in

the metric space. Factors such as the nature of the cover tree, which could be very imbalanced

because of its structure to satisfy the three invariants mentioned in Section 2.2.4, and the

underlying distribution of data influence the final performance gain for clustering algorithm

which is 10% for the LFW dataset.

6.5 Conclusion

We have shown the feasibility of using Portal in a real-world problem namely, face cluster-

ing. The face clustering problem is of practical interest for organizing large collections of

unlabelled face images, especially in forensic investigation and social media. Being able to

express this problem in only 14 lines of code in Portal while maintaining high-performance

and accuracy results in better productivity for scientists.
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Chapter 7

Conclusions and Future directions

7.1 Conclusion

In this thesis, we proposed high-performance parallel solutions for the domain of N -body

problems by developing an algorithmic framework as well as a domain-specific compiler. The

main contributions and results of this thesis can be summarized as follows.

• PASCAL: In Chapter 3, we addressed the design and development of PASCAL, a

unified Parallel Algorithmic SCALable framework for general N-body problems. PAS-

CAL provides space partitioning trees as well as user-controlled pruning or approxi-

mations in order to reduce the runtime complexity of N -body problems from O(N2)

to O(N logN) and even O(N). The automatic generation of pruning and approxima-

tion conditions by PASCAL for each N -body problem makes this framework a suitable

choice for fast prototyping of new N -body problems. For example, we produced the

first pruning condition for the Hausdorff distance using the PASCAL prune generator

algorithm, and hence achieve an high-performance solution for its calculation. Also,

PASCAL introduced the visit order functionality. Adding the visit order results in

more opportunities to prune and consequently, better performance.

• PASCAL-X: In Chapter 4, we address some of the opportunities for improving the
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performance of the PASCAL framework. PASCAL-X is an extension of PASCAL which

provides better scalability of tree traversal on NUMA systems. Moreover, we analyse

the influence of tuning parameters such as leaf size and cut-off level in generating tasks.

We show that by exploring tuning parameters, we can improve the performance up to

4.5×.

• Portal: In Chapter 5, we take a step further in providing high-performance code for

N -body problems by developing a domain specific language and code generator named

Portal. We show how a DSL with an appropriately high-level mathematical formula-

tion leads directly to both asymptotically fast algorithms and their efficient parallel

implementations on x86 platforms. Portal enables terse expression of an N -body prob-

lem, thereby reducing the lines of code written by experts up to 67× while obtaining

performance comparable to expert hand-tuned code. The Portal DSL and intermediate

representation are independent of the underlying architecture, which makes it easily

extensible to different platforms.

• Case Study: In Chapter 6, we use a face clustering example as a case study for

evaluation of Portal to deliver high-performance solutions for real-world N -body prob-

lems. In order to support the face clustering case study, we extend Portal by adding

cover tree as well as functionalities such as intersection and exist. We generate a high-

performance solution for face clustering in only 14 lines of Portal code while attaining

an accuracy similar to the state-of-the-art.

The code for this thesis is open-source∗ and available to enable domain scientists for har-

nessing the performance power of parallel computing.

∗https://gitlab.com/Nbody-Portal/Code
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7.2 Future Directions

Currently, our work assists domain scientists to generate high-performance, optimized, and

scalable codes for a large group of problems. However, we believe there are still opportuni-

ties for improving performance and increasing coverage of our framework to support a larger

class of problems. For instance, one could extend Portal to support many types of trees, or

add more splitting criteria for each tree in order to gain more pruning and better perfor-

mance. Additionally, it is possible to add an auto-tuner to either systematically explore the

parameter spaces or intelligently tune the parameters in Portal.

7.2.1 Extending Tree Data Structures

Portal is easily extensible to support different types of trees and their various splitting

criteria. By plugging different space-partitioning trees with different splitting criteria in

Portal, we could obtain new opportunities for higher performance and better scalability. For

instance, Figures 7.1 and 7.2 represent the k-d tree for the KDD dataset (shown in Table 3.2)

with two different splitting criteria: (1) median splitting, which divides the widest dimension

on the median data point, and (2) mid-point splitting, which divides the data in the middle

of the widest dimension (similar to the concept of quadtree and octree). We can see that

the median splitting results in a more balanced tree which could be more beneficial for

load balancing, while mid-point splitting results in a less balanced tree but could provide

different pruning opportunities. Their influence on performance depends on the dataset, the

distribution of the data, and the N -body computation to be performed. Tuning and analysis

of different trees and their splitting criterion represent an interesting future direction of this

work.

In the Figures 7.1 and 7.2, each level of tree is shown with a different color, and each node is

divided into two, since k-d tree is a binary tree. Each rectangle represents a hyper-rectangle
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Figure 7.1: Visualization of k-d tree for KDD dataset with median splitting criterion on the
widest dimension.

Figure 7.2: Visualization of k-d tree for KDD dataset with mid-point splitting criterion on
the widest dimension.
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in the k-d tree showing the node’s ID followed by a colon and the size of that node.

7.2.2 Autotuner

By supporting more tree data structures and alternative splitting criteria, the tuning pa-

rameters will expand even further. This reinforces the need to select the optimal tuning

parameters such as the tree structure, splitting criterion, leaf size, and cut-off level. An

autotuner could be designed or included off-the-shelf in Portal in order to select the optimal

tuning parameters for the execution. Each of the tuning knobs has its own set of distinct

parameters that have to be adjusted for a specific architecture. The autotuner could explore

the tuning space and the interaction between high-level algorithm and low-level architecture.

7.2.3 Back End

Portal only generates code for the x86 architecture. As a future direction, the back end

of Portal could be extended to generate code for GPUs. In order to make the best use of

this extension, there is a need for expanding the autotuner, to select the best performing

tree on a given architecture (CPU or GPU) or a hybrid system. Furthermore, GPU-specific

optimizations and transformations could be added to the back end of the Portal compiler.

In extending Portal for GPU back end, there is a need to address the challenges of running

the irregular tree traversal algorithm on the GPU. There are several interesting bodies of

work for implementing the tree traversal on GPUs [110, 157, 158, 159] and Portal’s back end

could be extended to support GPU execution as well.

7.2.4 Wrapper for Other Languages

We can extend Portal’s front-end to support other languages such as Python and MATLAB.

This would be useful because many domain scientists write their code in such high-level
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languages and extending the Portal’s front-end to support these languages would increase

the adoptability of this work.
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Chapter 8

Appendix

The table below represents all the variables used in this thesis, accompanied by their related

sections, Equations, and definitions.

Variable Section Equation Explanation

xr 2.1 2.1 the reference point

xq 2.1 2.1 the query point

f(xq) 2.1 2.1 the desired potential at the query point xq

s(xr) 2.1 2.1 the density at the reference point xr

K(xq, xr) 2.1 2.1 a kernel function with two inputs xr and xq

opi 2.1 2.2 the ith operator in N -body definition

Di 2.1 2.2 the ith dataset in N -body definition

m 2.1 2.2 the number of datasets

K(x1, ..., xm) 2.1 2.2 a kernel function K with m inputs

l 2.2 – the number of data points in the leaf node

T 2.2.4 – the cover tree, as a leveled tree data structure
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S 2.2.4 – the data set used in building the cover tree T

Ci 2.2.4 – the set of data points in S associated with the

nodes in the level i of the cover tree T

v 2.2.4 – a data point in dataset S

w 2.2.4 – a data point in dataset S

d(v, w) 2.2.4 – distance between two data points v and w in

cover tree

θ 2.3.1 – Multipole Acceptance Criterion (MAC) ratio

r 2.3.1 – the distance between the interested particle and

center of mass

E 2.3.1 – the side length of the node

I(||xq − xr|| < h) 2.3.2 2.3 the step function used for 2-point correlation

with threshold h

Rsize 2.4.2 2.4.2 the size of the reference dataset

Kσ 2.4.2 2.4.2 a zero-centered probability density function

πk 2.4.4 2.6 the mixture weight for cluster k

H 2.4.4 2.6 the number of Gaussian mixture components

or clusters

θj = {µj,Σj} 2.4.4 2.6 the parameters of Gaussian component j, with

mean vector µj and covariance matrix Σj
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rnj 2.4.4 2.7 the responsibility, as the weight factor of data

point n for cluster j

Zj 2.4.4 2.10 the sum of all the weight factors for cluster j

πnewj 2.4.4 2.10 the new mixture weight for component j

µnewj ,Σnew
j 2.4.4 2.10 the new parameters of Gaussian component j

ll(θ) 2.4.4 2.11 the log-likelihood computation

X 2.4.5 2.12 a feature vector

n 2.4.5 2.12 the size of the feature vector

A 2.4.5 2.12 a class in näıve Bayes classifier

(hmin, hmax) 2.5.1 2.13 the range used in the range search

N all 3.3.1 – a set of nodes

R 3.3.1 – a rule set

Ni 3.3.1 – a node from the tree build on the dataset i

N split
i 3.3.1 – a node generated by splitting node Ni

N c
i 3.3.1 – the center of node Ni

N border
i 3.3.1 – the set of border data points for the node Ni

τ 3.4 – a threshold

op⊕ 3.4 – a general representation for an operator

δ 3.4 3.2 the evaluation of the kernel function on the

points in N border
r for each xq

116



Kcenter 3.4 3.3 calling the kernel function on the center of a

node

rcenter
i 3.4 3.4 the responsibility of the center data point from

cluster i

rmax
i 3.4 3.4 the maximum responsibility between all the

data points from cluster i

rmin
i 3.4 3.4 the minimum responsibility between all the

data points from cluster i

τi 3.4 3.5 the nested prune threshold for level i

d 3.5.2 – the dimension of data points in vector space

Y 5.4.4 – the difference between a data point and center

of distribution

L 5.4.4 – the lower triangular matrix in Cholesky decom-

position

G 5.5 – the gravitational constant in Newton’s law of

universal gravitation

Mi 5.5 – the mass of object i

a, b 6.3.2 6.1 variables used for representing image indexes

dist(a, b) 6.3.2 6.1 distance defined in rank-order clustering be-

tween two images a and b

distsym(a, b) 6.3.2 6.2 symmetric distance defined in rank-order clus-

tering between two images a and b
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dist′(a, b) 6.3.2 6.3 approximate distance defined in rank-order

clustering between two images a and b

dist′sym(a, b) 6.3.2 6.4 approximate symmetric distance defined in

rank-order clustering between two images a and

b

Table 8.1: List of variables in this thesis.
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rand, and Saman Amarasinghe. Halide: A language and compiler for optimizing par-
allelism, locality, and recomputation in image processing pipelines. In Proceedings
of the 34th Conference on Programming Language Design and Implementation, pages
519–530, 2013.

[126] Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan Chafi, Michael
Wu, Anand Atreya, Martin Odersky, and Kunle Olukotun. OptiML: an implicitly
parallel domain-specific language for machine learning. In Proceedings of the 28th
International Conference on Machine Learning, pages 609–616, 2011.
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