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Abstract 
 

 
Sustained neuronal activity in human prefrontal cortex links perception and action 

 
by 

Matar Haller 

Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Robert T. Knight, Chair  
 

The prefrontal cortex (PFC) is critical for organizing thought and behavior in 
accordance with internal goals. Patients with prefrontal lesions do not exhibit easily 
observable sensory deficits or simple behavioral deficits, but instead are unable to 
select appropriate responses based on internal representations. Neuroimaging in 
humans and single unit studies in non-human primates show PFC involvement 
across many task contexts requiring higher order control of behavior. However, 
despite converging evidence from neuroimaging and electrophysiology, the neuronal 
mechanism of flexible thought and behavior remains one of the most fundamental 
and elusive questions in neuroscience. One hypothesis posits that the PFC 
functionally bridges stimulus evaluation and response execution across time and 
cortical space, yet how this region implements the stimulus-to-response 
transformation is unknown. The first study described here defines how response 
selection is implemented during goal-directed behavior by examining the timing, 
magnitude, and spatial distribution of local cortical activation in humans. These 
results demonstrate that intrinsically sustained stimulus-to-response activation 
provides the foundation for binding stimulus processing with response execution on 
a single trial basis. Notably, this effect is seen across multiple tasks and sensory 
modalities. The second study introduces a novel method for probing how oscillations 
contribute to cognitive control by algorithmically extracting the center frequencies 
and bandwidths of oscillatory components in electrophysiological power spectra. The 
results demonstrate that the use of individualized frequency bands, which account 
for oscillatory heterogeneity, unmasks relationships between task and behavior that 
are hidden when using predefined, canonical frequency bands. Oscillatory dynamics 
support neuronal communication, and as such the method presented here is a 
critical step in understanding how the PFC exerts cognitive control over distributed 
cortical and subcortical regions supporting goal-directed behavior.  
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Chapter 1 

Introduction 
 
 

1.1 Background 
 
Nearly 150 years ago, David Ferrier concluded that prefrontal cortex lesions in 
monkeys were “not followed by any definite physiological result”, yet they instead 
caused “a very decided alteration in the animal’s character and behavior… while 
not actually deprived of intelligence, they had lost, to all appearance, the faculty of 
the attentive and intelligence observation” (Ferrier, 1878). A century later, 
Alexander Luria declared that the frontal lobes “are in fact a superstructure above 
all other parts of the cerebral cortex, so that they perform a far more universal 
function of general regulation of behavior than that performed by the posterior 
associative center” (Luria, 1973). 
 
Situated anterior to the precentral gyrus and to premotor cortex, prefrontal cortex 
(PFC) is fundamental to cognition and behavior, enabling humans to flexibly 
respond to ever-changing environmental demands. Anatomically, the PFC can be 
defined as the region receiving projections from the mediodorsal nucleus of the 
thalamus (Fuster, 2015). Disproportionately large in humans, PFC encompasses 
nearly one third of the neocortex (Preuss, 2011). It is ideally situated for 
coordinating neuronal processing and integrating information, with connections to 
nearly all cortical and subcortical areas (Fuster, 2015 ; Miller & Cohen, 2001). 
Developmentally, the PFC is the slowest region to develop of all brain regions, 
reaching maturity in humans only in early adulthood (Diamond, 2002). The PFC in 
humans can be grossly subdivided into: 1) Lateral prefrontal cortex (LPFC), 2) 
Orbitofrontal (OFC), and 3) Medial PFC. This thesis will focus on the lateral 
prefrontal cortex.  
 

1.2 Lateral PFC anatomical organization and connectivity 
 
The lateral PFC spans the region adjacent to premotor cortex (Brodmann area 6; 
BA) to the frontal pole (BA 10). The LPFC can be further subdivided into 
dorsolateral, ventrolateral and rostral PFC subregions. Dorsolateral PFC contains 
BA 9, 46 and 9/46, as well as BA 8 (frontal eye fields). It is adjacent to premotor 
cortex, covers the superior and middle frontal gyri, and extends to the frontal pole 
(rostral PFC; BA 10). Ventrolateral PFC lies on the inferior frontal gyrus and 
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consists of BA 44, 45 and 47 (Petrides, 2005). In addition to these anatomical 
subdivisions, lesion, neuroimaging, and electrophysiological evidence also support a 
functional subdivision of lateral PFC along a rostro-caudal axis, ranging from dorsal 
premotor cortex (BA 6/8) to the frontal pole (Badre, 2008 ; Badre & D'Esposito, 
2009 ; Voytek, et al., 2015a). 
 
The LFPC has direct and indirect connectivity with many cortical and subcortical 
areas, making it ideally situated for integrating information from diverse sites and 
influencing processing in posterior regions. The parvocellular portion of the 
mediodorsal nucleus of the thalamus relays information from other subcortical 
structures to the LPFC via subcortical afferents (Fuster, 2015). The LPFC also 
receives cortical afferents from multimodal association areas via multiple white 
matter fiber tracts. The superior longitudinal fasiculus connects the parietal lobe 
with the LPFC, and conveys visuospatial information to the dorsolateral PFC and 
higher order somatosensory input to ventrolateral PFC (Petrides & Pandya, 2002). 
The uncinate fasiculus conveys visual object information to ventrolateral PFC from 
inferotemporal cortex, while the arcuate fasiculus and extreme capsule convey 
auditory information from the superior temporal gyrus. The dorsolimbic pathway 
links the medial temporal lobe with the dorsolateral PFC, providing a pathway for 
memory processing. In addition to providing sensory and multimodal information to 
the LPFC, these fiber pathways are bidirectional, enabling the LPFC to modulate 
processing in posterior association cortices (Petrides, 2005).  
 
There is also extensive reciprocal connectivity within the PFC in addition to 
connections with subcortical and posterior cortical regions. This local connectivity 
includes short U-shaped fibers linking adjacent gyri as well as intralobar fiber 
tracts linking distant regions within the PFC (Catani et al., 2012). This extensive 
connectivity between the PFC and cortical and subcortical regions as well as within 
the PFC ideally positions this region to modulate and influence processing across 
diverse brain networks. 
 

1.3 Neuropsychology – PFC lesion studies 
 
Much of the initial understanding of the role of LPFC came from observations of 
humans and nonhuman primates with damage to this region. Lesion evidence 
suggests that damage to dorsolateral PFC results in multiple cognitive deficits in 
attention, working memory, planning, rule learning and motivation (Szczepanski & 
Knight, 2014).  
 
Patients with dorsolateral PFC damage exhibit problems with allocating attention 
and are distractible. In an auditory delayed-match-to-sample task, patients with 
dorsolateral PFC damage were impaired by the presence of distractors during the 
delay and exhibited enhanced primary auditory event related potentials (ERPs) to 
distracting sounds, suggesting that the dorsolateral PFC acts as an inhibitory 
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gating mechanism for distracting information (Chao & Knight, 1998). Other studies 
have found that patients with unilateral dorsolateral PFC damage exhibit 
decreased contralateral extrastriate neuronal responses (Barceló, Suwazono, & 
Knight, 2000 ; Voytek, et al., 2010b), suggesting that the dorsolateral PFC can also 
support attention by facilitating processing in posterior cortical areas.  
 
In addition to problems allocating attention, lesions to dorsolateral PFC also result 
in working memory deficits. These are manifest as problems in monitoring and 
manipulating representations in working memory but with intact maintenance and 
rehearsal, likely because of compensation by the intact hemisphere (Barbey, 
Koenigs, & Grafman, 2013 ; D'Esposito, Cooney, Gazzaley, Gibbs, & Postle, 2006). 
Patients with dorsolateral PFC damage are also impaired in source memory and 
temporal ordering of learned events, suggesting that the dorsolateral PFC is 
important for linking facts to context (Szczepanski & Knight, 2014). Patients with 
dorsolateral PFC damage also do not exhibit memory facilitation for novel stimuli, 
probably due to lack of preferential attention to novel stimuli (Daffner et al., 2000 ; 
Kishiyama, Yonelinas, & Knight, 2009 ; Knight, 1984). In addition, patients with 
dorsolateral PFC damage often exhibit “goal neglect”; they disregard task 
requirements, although they know and remember them (Duncan et al., 2008), 
suggesting this region is central to planning and maintaining sequences of actions 
and goals. 
 
Patients with lesions to ventrolateral PFC exhibit problems with allocating spatial 
attention, language processing, and response inhibition (Szczepanski & Knight, 
2014). Right-handed individuals with damage to the right inferior frontal gyrus 
(IFG) or right frontal eye-field exhibit symptoms of visiospatial neglect, failing to 
orient and attend to the contralesional side of space. Damage to the right IFG also 
affects response inhibition during motor control tasks. One theory posits that the 
right IFG acts as a brake over response tendencies (Aron, Robbins, & Poldrack, 
2014). For example, during a Stop-Signal task, patients with right IFG lesions were 
slower to initiate stops than controls, and their lesion volume predicted stop 
initiation time (Aron, Fletcher, Bullmore, Sahakian, & Robbins, 2003). However, 
there is also evidence of unimpaired stop-signal performance in lateral PFC 
patients, with no correlation between extent of right IFG damage and reaction time 
(Krämer et al., 2013). Instead, patients committed more errors and had more 
variable reaction times in both Go/Nogo and Stop-Signal tasks, suggesting a role for 
PFC in action restraint but not actual action cancellation. In contrast, the left IFG 
(Broca’s area BA 44/45) is part of a hemispheric language production, 
comprehension and monitoring network (Riès, Xie, Haaland, Dronkers, & Knight, 
2013 ; Toga & Thompson, 2003). Damage to this network results in nonfluent 
aphasia, in which patients exhibit word-finding impairments, speak in short 
phrases with simple syntactic structure, and omit grammatical markers and 
function words (Szczepanski & Knight, 2014).  
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In addition to the anatomical subdivision discussed above, lesion evidence suggests 
that the PFC is functionally organized along a rostro-caudal axis, such that 
posterior to anterior PFC progressively mediates more abstract, higher-order 
control (Azuar et al., 2014 ; Badre, Hoffman, Cooney, & D'Esposito, 2009). In a 
decision-making task requiring actions at different degrees of rule abstraction, PFC 
damage impaired actions at a level of abstraction based on lesion location. This 
suggests that rostral PFC engages when task demands are abstract, while caudal 
PFC independently controls simple sensorimotor transformations when higher 
order control is not required. 
 

1.4 Electrophysiology and neuroimaging 
 
Lesion studies are essential to providing a causal link between the PFC and higher 
order cognitive function. However, the brain is composed of multiple interacting 
networks that engage in a task specific manner, and there is not always a direct 
mapping between the deficit that occurs with damage to a region and the role of 
that region. Electrophysiology and neuroimaging research have complemented and 
extended lesions studies by revealing the mechanisms underlying the role of the 
PFC in influencing and regulating cognition and behavior. 
 
Decades of single and multi unit studies in nonhuman primates have enabled 
researchers to identify neuronal correlates of a wide range of cognitive control 
cognitive processes in PFC. Individual neurons in monkey PFC can encode abstract 
rules that are not explicitly tied to particular stimuli (Wallis, Anderson, & Miller, 
2001). In addition to encoding novel and abstract stimulus-response mappings, PFC 
neurons exhibit plasticity and adapt their response properties to encode information 
relevant for the current task (Cromer, Roy, & Miller, 2010 ; Freedman & Assad, 
2006 ; Roy, Riesenhuber, Poggio, & Miller, 2010). There is evidence that PFC 
neurons also act as a gateway for task information along the sensorimotor pathway. 
During a flexible visuomotor categorization task, neurons in higher sensory cortex 
(inferior temporal and V4) were first to encode task information. Following this 
transient encoding burst, neurons in PFC and lateral intraparietal area (LIP) 
represented sustained task information before it spread to other cortical regions 
(Siegel, Buschman, & Miller, 2015), suggesting that PFC modulates task 
information before it reaches response circuitry. 
 
Cortical recordings from nonhuman primates have been essential to furthering our 
understanding of PFC function. However, nonhuman primate recordings are limited 
in their ability to inform about naturalistic behaviors that go beyond learned 
stimulus-response contingencies. Monkeys are over-trained and are experts in the 
experimental task, often performing at nearly 90% accuracy before recording 
begins. Yet the PFC is critical for situations where the stimulus-response mapping 
is ill defined or changing (Miller & Cohen, 2001). This fundamental PFC role can 
best be studied in human subjects, who are able to perform complex tasks without 
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requiring extensive training in a specific experimental paradigm. 
Electroencephalography (EEG), magnetoencephalography (MEG), and functional 
magnetic resonance imaging (fMRI) are noninvasive methods used to study PFC 
processing in humans.  
 
EEG and MEG have millisecond temporal resolution, measuring neuronal activity 
as it unfolds. However, both EEG and MEG have a number of limitations (Cohen & 
Halgren, 2009 ; Lachaux, Axmacher, Mormann, Halgren, & Crone, 2012 ; Luck, 
2014 ; Nunez & Srinivasan, 2006). Measured at the scalp, both EEG and MEG 
measure activity from postsynaptic currents in pyramidal cells mainly in cortical 
layers III and V. However, the current as measured at the scalp may be generated 
by an infinite number of underlying generators, idealized as dipoles (the “inverse 
problem”). Solving the inverse problem requires a number of assumptions, and 
source localization for these two methods is problematic. This problem is somewhat 
alleviated by the use of lesion studies, which can provide important insights into the 
role of PFC in regulating EEG and MEG signals (see Neuropsychology above). 
However, even in lesion studies the current sources for intact regions can only be 
inferred. Further complicating matters, the magnetic fields of radially oriented 
dipoles cancel, so MEG is only sensitive to tangentially oriented dipoles, largely 
located in the sulci. Meanwhile, current flow measured with EEG is dominated by 
radially oriented dipoles located on gyri close to the skull. In addition, spectral 
power is inversely proportional to frequency (1/f power law scaling) and decreases 
with distance from the cortical surface. This means that the EEG signal is largely 
insensitive to local cortical activation reflected in high frequency power. The skull 
also acts as a low-pass filter, which results in spatial smearing of the EEG signal 
and further amplitude attenuation. Finally, due to signal-to-noise constraints, both 
methods rely on averaging of activity over multiple trials with respect to a repeated 
event to produce a reliable signal and can miss trial-by-trial dynamics. 
 
With broad anatomical coverage and better spatial localization than either EEG or 
MEG, fMRI has deepened our understanding of the role of lateral PFC in regulating 
information processing. In a perceptual decision-making task, activity in 
dorsolateral PFC correlated with differences between signals in sensory regions and 
increased proportional to the strength of the sensory signal (Heekeren, Marrett, 
Bandettini, & Ungerleider, 2004), suggesting that dorsolateral PFC integrates 
information from upstream sensory regions to compute perceptual decisions. A more 
recent study reported a network of brain regions that engaged across seven 
different tasks, all involving executive processes including attention, goal 
maintenance, and performance monitoring (Fedorenko, Duncan, & Kanwisher, 
2013). This network of brain regions included the dorsolateral PFC, suggesting that 
this region is functionally general and engaged in a broad range of cognitive 
processes requiring control.  
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Neuroimaging also supports a role for ventrolateral PFC in cognitive control. The 
right ventrolateral PFC supports both attention and response inhibition processes 
(Aron et al., 2014 ; Bari & Robbins, 2013). An fMRI meta-analysis found that right 
inferior frontal junction (IFJ) is recruited by reflexive orienting tasks and supports 
detection of behaviorally relevant stimuli, while neighboring subregions are active 
during motor inhibition (Levy & Wagner, 2011). Left ventrolateral PFC also 
exhibits functional heterogeneity, with studies identifying both language-selective 
and memory control regions within IFG (Badre & Wagner, 2007 ; Fedorenko, 
Duncan, & Kanwisher, 2012). Furthermore, left IFG subregions activated by 
diverse cognitive control tasks border language-selective subregions, suggesting a 
fine structure within left IFG for domain-general cognitive control and language 
production.  
 
Neuroimaging converges with lesion evidence to support a rostro-caudal gradient of 
abstraction in lateral PFC. As the context for response selection becomes more 
abstract and relevant over a longer time window, progressively more anterior 
subregions become active, with activation moving from dorsal premotor regions to 
mid-dorsolateral PFC (Koechlin, Ody, & Kouneiher, 2003). In a task manipulating 
priming at the response, decision, and semantic levels, repetition suppression 
occurred in progressively anterior regions of ventrolateral PFC with increasing 
representational abstraction (Race, Shanker, & Wagner, 2009). Thus, there is 
evidence for a functional rostro-caudal gradient along both dorsolateral and 
ventrolateral PFC. 
 
Although fMRI overcomes the spatial limitations inherent in EEG and MEG, it 
cannot track cortical dynamics as they unfold on a subsecond scale due to the time 
lag in neurovascular coupling (4-6 seconds). Furthermore, fMRI only indirectly 
measures neuronal function through hemodynamics (blood oxygen level-dependent 
signal; BOLD) and cannot disentangle local cortical processing from inter-regional 
interactions (Hermes et al., 2011).  
 
Direct cortical recording with subdural electrode arrays (electrocorticography; 
ECoG) provides an opportunity to record neuronal activity directly from human 
cortex and circumvents many of the issues of noninvasive methods. ECoG provides 
a high fidelity signal with a spectrum (DC to 200Hz) unattainable with noninvasive 
techniques (Buzsaki, Anastassiou, & Koch, 2012). The ECoG signal is also an order 
of magnitude stronger than signal obtained from scalp recordings, circumventing 
the high frequency signal loss compromising scalp EEG data (discussed above). 
Direct cortical recordings provide source localization typically at 1cm, and 
occasionally at 4-5mm. With its superb temporal resolution and high spatial 
resolution, ECoG bridges the spatial and temporal resolution gaps in noninvasive 
methods. 
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The ECoG signal contains two primary components, each carrying unique 
information – low frequency oscillations (<40Hz) and broadband spectral power 
change (Miller, Sorensen, & Ojemann, 2009). Broadband spectral power change can 
be observed as a change in high-frequency power (70-200Hz), and is also known as 
broadband high gamma (HG; (Crone, 1998 ; Miller, 2010). Local field potential 
power in the HG range indexes local cortical activation, and has been linked to both 
neuronal firing rate and to the fMRI BOLD signal (Manning, Jacobs, Fried, & 
Kahana, 2009 ; Mukamel et al., 2005 ; Ray & Maunsell, 2011 ; Ray, Crone, Niebur, 
Franaszczuk, & Hsiao, 2008).  
 
While high frequency power reflects local information processing, low frequencies 
are generated by large neuronal groups and coordinate information across distant 
brain regions (Buzsaki & Draguhn, 2004). Oscillating neuronal groups have 
rhythmic fluctuations in their excitability, which constitute reoccurring temporal 
windows for communication and define networks. Coherent oscillations with 
overlapping windows of communication and a constant phase lag enable 
communication within a network, while the absence of coherence prevents 
communication and segregates networks (Fries, 2005 ; Siegel, Donner, & Engel, 
2012). Cross-frequency coupling between the phase of a low frequency and the 
amplitude of a high frequency can provide a mechanism of local integration of 
interregional communication (Canolty & Knight, 2010 ; Sadeh, Szczepanski, & 
Knight, 2013). There is evidence that phase-amplitude coupling (PAC) between the 
phase of low frequency oscillations and the amplitude of HG is modulated in a 
behaviorally relevant manner (Canolty et al., 2006 ; Miller et al., 2010 ; 
Szczepanski, Crone, & Kuperman, 2014 ; Voytek, Canolty, et al., 2010a ; Voytek, 
Kayser, et al., 2015a), similar to the biasing of neuronal spiking activity by local 
field potential phase (Kayser, Montemurro, Logothetis, & Panzeri, 2009 ; Sirota et 
al., 2008) 
 
ECoG studies about the role of PFC in cognitive control have extended and 
expanded the findings from noninvasive studies in humans and single unit studies 
in nonhuman primates. Broadband HG centered in dorsolateral PFC and regions of 
the fronto-parietal attention network is sustained throughout the duration of both 
top-down and bottom-up visual search (Ossandon et al., 2012). This suggests that 
dorsolateral PFC exerts top-down control of attention even during salient, pop-out 
search. This result contradicts previous fMRI studies that reported no dorsolateral 
PFC involvement during bottom-up visual search, perhaps because pop-out search 
durations are too short to elicit a detectable BOLD signal. Noninvasive 
neuroimaging also lacks the temporal resolution to discern the temporal sequence of 
activations underlying memory encoding. A recent ECoG study of subsequent 
memory reported that regions identified in fMRI as associated with successful 
memory encoding in fact invoke two distinct networks, one associated with bottom-
up perceptual processing and the second reflecting top-down control, with activation 
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in the IFG, posterior parietal, and ventrolateral temporal cortex (Burke et al., 
2014).  
 
Analysis of low frequency oscillations in ECoG enables the investigation how 
networks engage in a task-dependent manner in a way that is unattainable with 
fMRI. For example, a recent ECoG study found that interactions between PFC, 
parietal, and parhippocampal regions are mediated by coupling in distinct 
frequency bands during spatial or temporal memory (Watrous, Tandon, Conner, 
Pieters, & Ekstrom, 2013). Specifically, spatial recall is supported by coherence in a 
1-4 Hz frequency band, while temporal recall is supported by coherence between 7-
10 Hz. Furthermore, analysis of the electrophysiological signal also enables insights 
into the direction of information flow between nodes in this network. In a memory 
task, 4-8 Hz coherence between PFC and the medial temporal lobe increased during 
free recall relative to a baseline condition. Granger causality analysis suggested 
bidirectional information flow between these two regions, but with a greater 
influence of medial temporal lobe oscillations on driving the coherence than PFC 
oscillations (Anderson, Rajagovindan, Ghacibeh, Meador, & Ding, 2010). 
 
The spatiotemporal resolution of ECoG also enables the temporal dissociation of 
dorsolateral versus ventrolateral PFC in planning and stopping actions. 
Dorsolateral and ventrolateral PFC exhibit different temporal profiles while 
subjects prepare to stop action, with dorsolateral PFC activity representing task 
goals and ventrolateral PFC implementing action control (Swann, Tandon, Pieters, 
& Aron, 2013). There is also evidence for middle frontal gyrus (MFG) involvement in 
online action evaluation, with increased post-response HG activity in anterior MFG 
to unsuccessful versus successful stops in a Stop-Signal task. Notably, HG was 
absent for successful stops (Fonken et al., 2016). This study also reported stop-
related beta activity in left PFC, in contrast to previous reports of lateralization of 
stop-related activity to right IFG (Aron et al., 2014). 
 
ECoG also supports a functional subdivision of frontal cortex based on cognitive 
control requirements. As task demands require increasing levels of cognitive 
control, broadband HG in PFC is greater relative to HG in premotor regions and 
predicts reaction times (Voytek, et al., 2015a). Furthermore, theta-HG PAC 
increases for progressively anterior sites, with no PAC within motor cortices but 
increased PAC between PFC theta and motor cortex HG. This suggests that theta 
phase encoding biases local neuronal processing across frontal subregions along a 
rostro-caudal gradient. These ECoG studies extend the conclusions drawn from 
previous fMRI studies and point to a critical role for ECoG in examining the 
spatiotemporal profile of cognitive control in the PFC. 
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1.5 Outline 
 
The first part of this thesis utilizes ECoG and leverages the temporal and spatial 
specificity of the HG signal to examine goal-directed behavior, specifically how 
stimulus perception is translated into response selection. We identify a robust 
domain and modality independent pattern of neuronal activation centered in PFC 
that predicts motor output on a trial-by-trial basis with near perfect accuracy. We 
suggest that this activation reflects a functional substrate for domain-general 
spatiotemporal integration of information, critical for flexible, goal-directed 
behavior. The second part of this thesis describes a novel method for algorithmically 
extracting the oscillatory components of electrophysiological signals on an 
individual basis. We validate the algorithm against synthetically generated data 
and then apply it to data recorded at different electrophysiological scales: local field 
potential recordings in nonhuman primates and scalp EEG from humans. We utilize 
this method to extrapolate novel relationships between oscillatory parameters and 
working memory. This method will enable us to examine how the PFC exerts 
cognitive control in a more fine-grained manner. Future planned work will use 
custom oscillatory components to identify PFC-centered networks and the 
mechanisms of PFC control. 
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Chapter 2 

Sustained neuronal activity in human prefrontal cortex 
links perception and action 
 
 
 
Abstract 
 
How do humans flexibly respond to changing environmental demands on a sub-
second temporal scale? Extensive research has highlighted the role of the prefrontal 
cortex in diverse cognitive processes, yet the core mechanism that translates 
sensory information into behavior remains undefined. Utilizing direct human 
cortical recordings, we investigated the temporal and spatial evolution of neuronal 
activity, indexed by the broadband gamma signal, while sixteen participants 
performed an array of cognitive tasks. Here we describe a robust domain- and 
modality-independent pattern of sustained stimulus-to-response neural activation 
that encodes stimulus features and predicts motor output on a trial-by-trial basis 
across all tasks with near-perfect accuracy. This sustained activation, centered in 
the prefrontal cortex, is required for successful response selection and provides a 
functional substrate for domain-general transformation of perception into action, 
critical for flexible behavior. 
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2.1 Introduction 
 
The neural mechanism of flexible thought and behavior in humans remains one of 
the most fundamental and elusive questions in neuroscience. Much research has 
been dedicated to examining how humans and other animals process stimulus 
information and execute a behavioral response. Yet, how the brain binds stimulus 
processing with response execution remains poorly understood, exemplifying a core 
"black box" problem in neuroscience. Fuster and colleagues propose that neuronal 
spatiotemporal integration may be a potential mechanism of such stimulus-
response binding (Fuster, 2002 ; Fuster, Bodner, & Kroger, 2000). Specifically, they 
suggest that while initial stimulus processing happens in sensory areas, the 
prefrontal cortex (PFC) integrates stimulus information over time, culminating in 
response selection. However, how the PFC implements this stimulus-to-response 
translation is unknown.  

 
Profound deficits in goal maintenance, decision-making and response execution 
have been reported across species following PFC lesions (Fuster, 2015 ; Stuss & 
Knight, 2012 ; Szczepanski & Knight, 2014). Likewise, numerous neurological, 
psychiatric and developmental disorders are also characterized by compromised 
PFC functioning(Callicott et al., 2000 ; Just, Cherkassky, Keller, & Minshew, 2004 ; 
Mayberg, 2001), highlighting the importance of understanding the role of the PFC 
in human cognition.  Studies in non-human primates suggest that PFC neurons 
coordinate activity across functionally linked brain regions through temporally and 
spatially distributed neuronal computation. In particular, sustained neural 
activation has been shown to support decision-making, working memory, and 
response selection in non-human primates (Hernandez, Zainos, & Romo, 2002 ; Kim 
& Shadlen, 1999 ; Rainer, Rao, & Miller, 1999 ; Siegel et al., 2015 ; Stokes, 2015), 
and has also been reported in studies utilizing direct cortical recordings in humans 
during visual search and verb generation (Edwards et al., 2010 ; Ossandon et al., 
2012). Similarly, human neuroimaging studies have identified the PFC as the core 
element in a distributed network of brain regions exhibiting sustained activation 
during tasks requiring domain-general cognitive processing and response selection 
(Curtis & Lee, 2010 ; D'Esposito & Postle, 2015).  

 
Most studies have examined sustained neural activation during experimentally 
constrained delay periods; however naturalistic behaviors are typically self-paced 
and rely on self-determined response windows. Thus, it is unknown how 
intrinsically sustained neuronal activation in the PFC functionally links stimulus 
processing with response selection and execution. Multiple key questions remain. 
First, the spatiotemporal evolution of intrinsically sustained activation that links 
sensory and motor processing during complex cognitive tasks is undefined. Second, 
the generalizability of sustained activation across species, tasks, modalities, and 
cortical regions has not been established. For example, studies in non-human 
primates typically rely on data obtained from well-trained animals performing 
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highly structured tasks, which limits the ability to inform about domain-general 
cognitive processing during diverse naturalistic human behavior. Finally, it is 
unknown whether sustained activity observed in human neuroimaging and single 
unit animal studies reflects a single cognitive process (e.g., memory engram 
representation in working memory) or whether it reflects multiple task-specific sub-
processes, unfolding in the stimulus-to-response temporal window, but each with 
unique temporal and spatial distributions.   

 
To examine how intrinsically sustained activation in the PFC functionally bridges 
stimulus evaluation and response execution in time and across cortical space, we 
analyzed electrocorticography (ECoG) data recorded from multiple cortical areas 
(1344 electrodes) in 16 participants performing eight tasks, ranging in stimulus 
modality, cognitive demand, and response execution requirements (Figs. 2.1a, 2.2). 
Broadband high gamma signal (HG; 70-150 Hz) was used to index local cortical 
activation (Crone, 1998 ; Lachaux et al., 2012 ; Miller et al., 2014). The large 
number of tasks encompassing varied cognitive processes, along with the superb 
temporal resolution and broad neuroanatomical coverage afforded by ECoG 
methodology, enabled us to define the neural process by which flexible response 
selection processing is implemented in humans during goal-directed behavior. 
 

 
Figure 2.1 Full electrode coverage and distribution of HG activation. (a) Data were 
recorded from 1344 electrodes across 16 subjects performing between 1-6 tasks (average 2 
tasks per participant). (b) 37% of all recorded sites exhibited a significant increase in HG 
activity (stimulus- or response-locked active electrodes).  
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2.2 Methods 
 
Participants 
Eighteen participants undergoing neurosurgical evaluation for refractory epilepsy 
were initially recruited. Participants were implanted with one or more subdural 
electrode arrays (2.3 mm exposed electrode diameter with 10 mm inter-electrode 
spacing) for approximately one week to determine epileptogenic focus (see Methods 
for electrode localization procedures). Electrode number and placement was dictated 
by clinical needs. Electrode coverage for most brain areas was represented in 
multiple participants (Fig. 2.1a), which limits the potential influence of any single 
pathology and enables broad generalization of results. Participants willing to 
participate in the study during lulls in clinical treatment provided written informed 
consent. All procedures were carried out in accordance with protocols approved by 
the Institutional Review Boards of University of California (UC) Berkeley, UC San 
Francisco, the Stanford School of Medicine, California Pacific Medical Center 
(CPMC), and the Johns Hopkins University School of Medicine. One participant 
was excluded due to a stroke-related cortical lesion and one participant was 
excluded because we were unable to obtain electrode localization information. All 
remaining participants had normal IQ and were fluent in English, except for one 
Spanish-speaking participant who completed a Spanish version of the Visual 
Categorization task. See Table 2.1 for participant information.  
 
Tasks and stimuli 
Eight tasks, varying in difficulty and stimulus modality, were used. Task selection 
for each participant was determined by electrode location, time availability, and 
participant’s willingness and ability to perform the task. Each participant 
performed 1-6 tasks (43 recording sessions, each corresponding to a single dataset 
used for analyses). Visual stimuli for all tasks were presented using a laptop (15.6" 
LCD screen) placed in front of participants at a comfortable distance (0.5-1 m). 
Auditory stimuli (50-60 dB HL) were presented through two speakers placed in 
front of participants. Onsets and offsets of stimuli were detected via an analog 
photodiode (visual) or the analog speaker channel (auditory). Participants made 
responses either by pressing the appropriate key on the laptop keyboard or by 
speaking into a microphone (response times were extracted from the analog 
microphone channel). See Table 2.2 for task and stimulus information. 
 
Auditory Categorization task: Participants were asked to verbally categorize gender 
morph utterances (the word “town”) as being spoken by a female or a male speaker 
adopted from the Carnegie Mellon University Arctic Database (Kominek & Black, 
2004) Gender morphed versions of the category prototypes were constructed at steps 
of 20, 40, 60, and 80% along the shortest trajectory between formant boundaries 

(Kawahara & Irino, 2005). Participants were presented with a visual cue (blue 
cross) for 600 ms, followed by an aurally presented morphed stimulus (524 ms), and 
were given 1500 ms to respond followed by jittered 1000 ms inter-trial interval 
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(ITI). Stimuli were presented randomly using E-Prime2 (Psychology Software Tools, 
Inc., Sharpsburg, PA). 
 
Visual Categorization task: Participants were asked to verbally categorize morphed 
visual images as representing a cat or a dog. Cat and dog prototype images and 
morphed stimuli (20, 40, 60, and 80% morphs) were adapted from (Freedman, 
Riesenhuber, Poggio, & Miller, 2001). Participants were presented with a visual cue 
(blue cross) for 500 ms, followed by a visually presented morphed stimulus (600 ms), 
and were given 1500 ms to respond followed by a jittered 1000 ms ITI. Stimuli were 
presented randomly using E-Prime2. 
 
Auditory Word Repetition task: Participants were asked to verbally repeat aurally 
presented words, which were selected from the Affective Norms for English Words 

(Bradley & Lang, 1999). Stimulus duration range was 295-1013 ms (mean = 645 ms, 
s.e.m. = 4.1), and were matched on length, emotional content (valence and arousal), 
and word frequency. Words were presented using MATLAB (The MathWorks, Inc., 
Natick, MA) in a pseudo-random order (no more than two words of the same part of 
speech presented in a row) with a jittered 4000 ms ITI.   
 
Auditory Antonym Generation task: Participants were asked to verbally generate an 
antonym to an aurally presented word stimulus. Word stimuli and task structure 
were identical to those used for the Auditory Word Repetition task, but stimuli were 
presented in a different pseudo-randomized order. Participants always performed 
the Word Repetition task first, but the two tasks were never performed back-to-back 
in a recording session to avoid habituation effects. 
 
Visual Face Categorization tasks: Participants were asked to categorize facial 
stimuli (NimStim dataset; (Tottenham et al., 2009)) either on the dimension of 
emotion (angry vs. neutral or sad vs. happy, presented in separate blocks) or gender 
(female vs. male, across the two blocks of emotional faces). Stimuli were presented 
using E-Prime2 in a randomized order on a white background. Each trial started 
with a black fixation cross (1500 ms) followed by a face stimulus (300 ms), which 
was replaced by a fixation cross (3000 ms), during which participants made the 
response. The trial was terminated after the response or timed out if no response 
was detected. Emotion and gender categorization blocks were presented in a 
counter-balanced order. Stimuli from the two blocks within each categorization 
condition were combined. 
 
Auditory and Visual Self-Referential tasks: Participants were asked to verbally 
respond whether each aurally or visually presented word could be used to describe 
them (“yes” or “no” responses). Positive and negative adjectives were selected from 
the ANEW set and were matched on arousal, valence intensity, word length, and 
word frequency. Audio stimuli duration range was 305-1024 ms (mean = 690 ms, 
s.e.m. = 4.5 ms) and were presented using MATLAB. Visual stimuli (400 ms) were 
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presented using E-Prime2. In each task, stimuli were presented with a jittered 4000 
ms ITI in a unique pseudo-random order with no more than two stimuli of the same 
valence presented sequentially. Task order was counter-balanced across 
participants.   
 
 

 
 
Figure 2.2 Reaction time distributions across tasks. Reaction time histogram distributions 
(50 ms bin spacing) are shown for each task, superimposed across participants. Face 
Gender Categorization N = 2, Face Emotion Categorization N = 4, Visual Categorization  
N = 2, Word Repetition N = 8, Visual Self Referential N = 5, Auditory Categorization N = 2, 
Auditory Self Referential N = 10, Antonym Generation N = 4. 
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Data acquisition 
At UCSF and Stanford, ECoG data were acquired using a TDT recording system 
(Tucker-Davis Technologies, Alachua, FL), filtered online at 0.5-300 Hz and 
sampled at 3052 Hz (1526 Hz for one participant). At Johns Hopkins, ECoG data 
were recorded at 1000 Hz with a low-pass 300 Hz analog anti-aliasing filter using a 
128-channel Stellate Harmonie system (Stellate Systems, Inc., Montreal, Canada). 
At CMPC, data were recorded at 1000 Hz using a Nihon-Kohden Neurofax EEG-
1200 system (Tokyo, Japan). Analog channels (microphone, photodiode, speaker 
output) were recorded synchronously with ECoG signals at 24.4 kHz (UCSF, 
Stanford) or 1000 Hz (Johns Hopkins, CPMC). ECoG data were recorded using a 
subdural electrode as reference (an electrode with minimal or stable signal located 
away from cortical areas of interest) and a scalp electrode as ground. Sampling 
rates, online filters, and amplification across all recording systems were set to allow 
comparability across sites for the broadband gamma (70-150 Hz) signal.   

 
Electrode Localization 
A structural preoperative magnetic resonance imaging (MRI) and a post-
implantation computed tomography (CT) were acquired for all participants. After 
confirming the MR and CT were in the lateral posterior superior orientation, the 
skull was stripped from the brain in the MR image. Electrode coordinates were 
located on the CT using Bioimage Suite (Papademetris et al., 2006). To transform 
the CT to brain-extracted MR space, linear and nonlinear affine and rigid 
registrations were run between the MR and CT. The registration best matching 
neurosurgeon notes and intra-operative photos was used, rendered in three 
dimensions and assessed for anatomical accuracy. MNI electrode localization 
followed similar procedures, with the brain-extracted MR registered to the MNI 
space. Accuracy of MNI co-registration was assessed manually for each subject by 
matching electrode locations to anatomical landmarks in the native MR space. 
 
Data preprocessing 
Data were recorded from 1365 ECoG electrodes. Line and equipment noise was 
removed using an iteratively fit zero-phase Butterworth filter. First, power spectral 
densities were estimated for each electrode using the multi-taper spectral 
estimation method from the Chronux toolbox (Bokil, Andrews, Kulkarni, Mehta, & 
Mitra, 2010) (tapers N = 5, time-bandwidth product W = 3). Zero-crossings in the 
derivative identified sharp noise peaks in the power spectrum. The filter was then 
iteratively fit to the noise bandwidth until the difference between the filtered and 
the surrounding signal was less than 0.05uV. This method ensured that each 
electrode was free of non-physiological noise in the specific frequencies of interest. 
 
Data channels with poor signal quality or those located on subsequently resected 
tissue were excluded, leaving 1344 electrodes for further analyses. Since multiple 
participants completing several tasks, the total number of analyzed data channels 
across all datasets was 3051. Each remaining channel was down-sampled to 1000 



 17 

Hz and re-referenced to a common average reference within each dataset. Data 
were visually inspected for periods of transient epileptiform activity or residual 
artifacts, which were subsequently removed from analyses.  
 
Spectral decomposition 
The analytic amplitude of the broadband high gamma signal (HG) was extracted 
from the raw ECoG data across the full duration of each recording session. First, a 
two-way, zero phase-lag, finite impulse response filter (eegfilt.m function, EEGlab 
toolbox (Delorme & Makeig, 2004)) was applied to extract signal in the 70-150 Hz 
range. This bandwidth was selected as it excludes any residual line noise and 
captures most of the HG power (Crone, 1998 ; Lachaux et al., 2012 ; Miller et al., 
2014). Analytic amplitude was calculated by taking the absolute value of the Hilbert 
transform of the filtered signal. This method is comparable to other filtering 
techniques (e.g., wavelets; (Bruns, 2004)). 
 
Task-active channel selection 
Following spectral decomposition, HG signals were smoothed with a 10 Hz low-pass 
Butterworth filter and were segmented, with each trial starting 500 ms before 
stimulus onset and lasting until 500 ms past the maximum RT for that dataset. To 
assess response-related activity, trials were segmented from 500 ms before RT to 
500 ms post-RT. HG signals were z-score normalized within each trial relative to 
the 500 ms pre-stimulus baseline (for the Visual and Auditory Categorization tasks, 
the baseline was taken before the cue). Trials overlapping with artifact epochs or 
having RTs longer than three standard deviations from the task mean were 
excluded. Trials on which participants did not respond, made an error, or responded 
with hesitation (producing pre-response vocalizations) were also excluded. No-
response trials in the Antonym Generation task were analyzed separately. Data 
quality was confirmed through visual inspection of averaged event-related spectral 
perturbation (ERSP) and single-trial images, and channels with residual artifacts 
were removed. To identify task-active channels within each dataset, z-score 
normalized HG signal was subjected to a 1-sample t-test performed across trials for 
each time point. P-values were corrected for multiple comparisons (number of time 
points) using the False Discovery Rate correction (FDR; q = 0.05; (Benjamini & 
Hochberg, 1995)). Channels were considered task-active if they contained at least 
one 100 ms segment of contiguous significant FDR-corrected values with 10% signal 
change from baseline.  

 
Channel clustering based on temporal morphology of the HG signal 
To identify channels with common temporal patterns of HG activation, Principal 
Component Analysis (PCA) and hierarchical clustering were used. Each dataset was 
analyzed separately. PCA (correlation matrix, varimax rotation) was conducted on 
stimulus-locked HG time series, averaged across trials for each active channel, 
treating channels as features and time-points as observations. The number of 
significant PCs was determined using a variant of parallel analysis, whereby 
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comparison data were generated for increasing numbers of components until the 
observed eigenvalues failed to show significant improvement (Ruscio & Roche, 
2012). Channels were clustered based on their principal component (PC) weights. 
Hierarchical clustering on a correlation distance matrix was used to identify 
clusters by minimizing the maximum distance between observations. In order to 
partition the tree into electrode groups during hierarchical clustering, the 
inconsistency coefficient, which compares the height of a link with the average 
height of links below it, was calculated for each link of the hierarchical cluster tree. 
Inconsistent links indicate a natural division in the data, so the median 
inconsistency coefficient of the tree was used as the threshold to partition the data 
into electrode groups. Stimulus- and response-locked cluster-wide HG activation 
was determined by averaging HG signal across all channels within each cluster. 
Clusters with low signal-to-noise ratio (<15% signal change from baseline for at 
least 100 ms) were excluded from further analyses. Remaining clusters were 
classified based on the temporal pattern of HG activity.  
 
Cluster classification based on temporal patterns of HG activity 
To identify clusters with Sustained Stimulus-to-Response HG activation, a binary 
0/1 design matrix (trials x time points) was constructed, with 1s corresponding to 
each time point from HG onset, calculated for that cluster, through the RT for each 
trial. To account for potential variability in HG offsets relative to response, a 
dictionary of design matrices was constructed for each cluster by creating multiple 
versions of the original design matrix with offsets shifted from 300 ms pre-response 
to 450 ms post-response in 25 ms steps. Each entry in the design matrix dictionary 
was correlated (using Pearson’s correlation) with the HG time series for that 
cluster. To avoid spurious significant results, non-parametric surrogate 
distributions (N = 10,000 achieved by randomly time-shifting HG data series 
relative to the design matrix entries) and an effect size threshold (R >0.1) were used 
to determine significance level for each correlation coefficient. Clusters with 
Sustained Stimulus-to-Response HG activation were defined as those with a 
significant above-threshold correlation for any design matrix in the dictionary given 
the following conditions: to ensure that HG activity was not driven primarily by 
response execution, the HG amplitude peak had to occur no later than 50 ms pre-
response in the response-locked trace or 150 ms pre-response in the stimulus-locked 
trace.  
 
Clusters that did not pass the correlation threshold were classified as Sensory if 
transient HG increases were present both post-stimulus and post-response for 
auditory tasks, or if HG increases were time-locked to stimulus onset and stimulus 
offset for visual tasks. Stimulus Evaluation clusters were classified as such if they 
exhibited transient stimulus-locked activity, with HG activation offset occurring at 
least 300 ms pre-response. Clusters exhibiting response-locked activity peaking 50 
ms prior to response or later were classified as Response. Cluster classification was 
not possible for five datasets due to insufficient RT ranges to discriminate among 
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different types of HG activation (<100 ms min-to-max spread; see Fig. 2.9 for 
temporal overlap between activation types at short RTs). These datasets were 
excluded from further analyses, leaving 38 usable datasets (Table 2.2).  
 
For each cluster and each active channel, activation windows were defined using 
the onset and offset of significant HG increases (stimulus- or response-locked), 
smoothing over gaps in activation less than 100 ms. For sustained stimulus-to-
response clusters and channels, activation windows for each trial were defined from 
stimulus-timed HG onset to response-timed HG offset. For subsequent analyses, 
distributions of HG latencies (onset, offset, peak) and amplitudes (peak and mean) 
were tested for normality. When normality was confirmed, differences between 
conditions were tested with 2-sample, 2-tailed t-tests. When normality was 
compromised, non-parametric tests (Kruskal-Wallis test or Mann-Whitney U test) 
were employed. 

 
Behavioral relevance of HG signal parameters across datasets  
HG parameters (onset, offset, and amplitude peak latency) were calculated on mean 
stimulus-locked data traces based on activation windows and were then averaged 
across all channels (by activation type) within each dataset. HG peak amplitude for 
Sensory and Stimulus Evaluation channels was calculated as the maximum HG 
value within the activation window. To avoid biased latency estimation for the 
Sustained Stimulus-to-Response and Response channels (due to RT-dependent 
activation window length), HG peak amplitude and latency for these channels were 
calculated using a window from stimulus onset through 500 ms past the latest 
response within each dataset. To assess whether time-to-response across datasets 
was linked to latency parameters of HG activity within each activation pattern, HG 
onset and peak latency values were correlated with median RTs using Pearson’s 
correlation.   
 
Behavioral relevance of HG signal parameters across trials 
Given that RT variability (Fig. 2.2) may affect within-dataset HG parameters, we 
implemented an RT-based bin analysis across trials, subjects, and tasks. First, for 
each HG activation pattern, all trials across all datasets were pooled together and 
sorted by RT. Bins were constructed in steps of 50 ms from the minimum RT, and 
all trials within each bin were averaged together. Bins with low signal-to-noise ratio 
(<100 Sustained Stimulus-to-Response trials or <50 trials in other categories) were 
discarded. Thirty RT bins common across all HG activity patterns were included in 
further analyses. Activation windows were determined for each bin based on onsets 
and offsets of significant HG increases (1-sample t-test, FDR corrected). Since 
sustained stimulus-to-response activity was characterized by a plateau rather than 
a distinct peak (see Fig. 2.8a), additional parameters of the first plateau peak, last 
plateau peak, and the crossover point (the time at which the Sustained Stimulus-to-
Response and Response traces intersected in each bin) were identified. Although 
both the Sustained and Response activity patterns were defined by their temporal 
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relation to the RT, the crossover point was an independent measure not derived 
from RT information.  
 
To evaluate the relative contributions of different parameters of the HG signal to 
behavior, we conducted three separate stepwise regressions. The first regression 
assessed the contribution of temporal parameters of the HG signal to RTs across 
bins. The following predictors and their interactions were entered in the regression: 
HG onset, offset, and peak latency for Sensory and Stimulus Evaluation activity, as 
well as the latency of the first peak and the crossover point for Sustained Stimulus-
to-Response activation. The second regression related stimulus offset and temporal 
parameters (HG onset, offset, and peak latency) of Sensory and Stimulus 
Evaluation activity to the latency of the first peak of Sustained Stimulus-to-
Response activation. The final regression related HG amplitude parameters to 
normalized RTs. The following parameters were entered as predictors: HG peak 
amplitude values for Sensory, Stimulus Evaluation and Response activity patterns 
as well as mean HG amplitude values for Sustained Stimulus-to-Response activity 
calculated from the first plateau peak to the crossover point.  
 
Modulation of Sustained HG activity by cognitive load  
To determine the effect of cognitive load on the temporal and spatial distribution of 
Sustained Stimulus-to-Response activity, data were examined from participants 
who completed both the Antonym Generation and Word Repetition tasks, which 
utilize identical stimuli but differ on cognitive load. Sites with sustained stimulus-
to-response activity during both tasks were classified as overlap sites, while sites 
that were active only in one of the tasks were classified as unique. HG onsets were 
averaged across sites in each task and grouping. Mann-Whitney U tests were 
performed to compare HG onsets between overlap sites in Word Repetition and 
Antonym Generation tasks and between overlap and unique sites in the Antonym 
Generation task. Since participant S15 only had 3 overlap sites, onsets for these 
sites were pooled together from both tasks for comparison across overlap and unique 
sites (there were no significant differences between onsets for overlap sites in the 
two tasks for this or other participants).    
 
Stimulus feature representation indexed by HG activity 
To determine whether stimulus features are represented by the HG signal, we 
compared HG amplitudes across different stimulus conditions for the Visual and 
Auditory Categorization (100/80% morphs vs. 0/20% morphs) and Antonym 
Generation tasks (nouns vs. adjectives). For each channel, HG amplitudes were 
subjected to a 2-sample 2-tailed t-test between conditions at every time point across 
trials. Channels exhibiting significant condition differences (p<0.01 for at least 100 
ms) were considered sensitive to stimulus features.  
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HG Activity during trials with no response  
To determine the role of Sustained Stimulus-to-Response activity in successful 
response generation, HG activity for trials on which participants failed to respond 
was examined in the Antonym Generation task – the only task that produced 
enough no-response trials. All no-response trials were pooled together and averaged 
across channels within each HG activation pattern. For comparison, a matching 
number of correct trials with longest RTs were selected for each participant to 
account for the duration of response selection. A 2-sample, 2-tailed t-test with FDR 
correction was performed on each data point comparing no-response and correct 
trials. A 1-sample, 2 tailed t-test with FDR correction was performed on each data 
point for Response traces to determine whether there were significant HG increases 
during no-response trials.   
 

 
Figure 2.3 Cortical distribution and temporal dynamics of HG activation. Four patterns 
of HG activation were observed: Sensory (a), Stimulus Evaluation (b), Sustained Stimulus-
to-Response (c), and Response (d). Single trial plots across all subjects, tasks, and channels 
sorted by response time (black curve) are presented on the left side of each panel. Cortical 
distribution (left lateral surface) of sites corresponding to each HG pattern is presented on 
the right. Percent of all classified electrodes exhibiting the corresponding HG pattern is 
indicated for each activation type.   
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Functional Network Analysis 
To identify sites sharing common patterns of activation across trials, mean HG 
amplitude values within the activation window for each trial (observations) were 
entered into PCA analysis (using the correlation matrix without rotation) performed 
across all channels (features) within each dataset. PCs with eigenvalues above one 
(Kaiser criterion; (Kaiser, 1960)) were retained. To define functional networks based 
on shared trial-by-trial variability, sites with high loadings on each significant PC 
were identified using a threshold calculated as the smallest maximum absolute 
component loading value for a given dataset.  
 

 
 
Figure 2.4 Onset and peak latency of sustained stimulus-to-response HG activity predict 
reaction times across datasets. (a) The relationship of HG onsets and peak latencies to 
reaction times across datasets (sorted by RT) varied as a function of activation pattern. (b) 
Correlation between reaction times and HG onset times across datasets for each pattern of 
HG activity. (c) Correlation between reaction times and HG peak latency across datasets 
for each pattern of HG activity. Number of datasets (tasks x subjects) for Sensory N = 20, 
Stimulus Evaluation N = 15, Sustained Stimulus-to-Response N = 28, Response N = 29. 
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2.3 Results 
 
Time course and cortical distribution of HG activity across tasks  
Task-related increases in HG activity were observed in 37% of analyzed channels 
(Fig. 2.1). To examine information processing flow from stimulus perception to 
response execution and to identify common patterns of HG activity across tasks, 
Principal Component Analysis (PCA) followed by hierarchical clustering of 
component scores was performed on average HG traces within each dataset, 
yielding 151 clusters. Four distinct temporal patterns of activation emerged, with 
HG onsets and peak latencies reflecting chronology of information flow (see 
Methods; Figs. 2.3, 2.42a, 2.5 and 2.6):  
 
 

 
Figure 2.5 Full cortical distribution of HG activation. Cortical distribution for the Sensory, 
Stimulus Evaluation, Sustained Stimulus-to-Response, and Response temporal patterns of 
HG activity. Most active electrodes (81.9%), including Sustained Stimulus-to-Response 
(73.8%), were located over the left hemisphere, likely due to the linguistic nature of the 
tasks. 
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Sensory: 23.1% of active sites exhibited transient HG activity time-locked to 
stimulus presentation. Sensory sites were present in modality-specific regions - 
superior temporal gyrus (STG) for auditory stimuli and verbal responses, as well as 
occipital cortices for visual stimuli (Fig. 2.3a, Fig. 2.5 for full coverage).  
 
Stimulus Evaluation: 12.9% of active sites exhibited HG activity time-locked to 
stimulus presentation, but lagging in HG onsets relative to sensory activity (Mann-
Whitney U = 80.0, n1 = 20, n2 = 15, p = .01; Fig. 2.6), indicating a later stage of post-
sensory stimulus processing. Stimulus evaluation sites were predominantly located 
in auditory and visual association cortices and the PFC (Fig. 2.3b, Fig. 2.5).  
 
Response Processing: 29.9% of active electrodes exhibited HG activity time-locked to 
response onset. The onset of the response activity preceded RTs by 351 ms (s.e.m. = 
10 ms) but peaked at or immediately after the response (Fig. 2.6). Response sites 
were predominantly located around the central sulcus (on the pre- and post-central 
gyri) as well as on the inferior frontal gyrus (IFG) and inferior parietal lobule (IPL; 
Fig. 2.3d, Fig. 2.5).  
 
Sustained Stimulus-to-Response Activation: The majority of active sites (32.7%) 
exhibited sustained stimulus-to-response activation, time-locked to stimulus 
presentation (mean HG onset = 350 ms post stimulus onset, s.e.m. = 40 ms) and 
lasting until the response (mean HG offset = 129 ms post response onset, s.e.m. = 26 
ms). The onset and peak latency of the sustained stimulus-to-response activity were 
later than those for stimulus evaluation (for HG onsets, U = 107.0, n1 = 15, n2 = 28, 
p = .005; for HG peak latency, U = 61.0, p = .0001), but preceded response activity 
(for HG onsets, U = 194.0, n1 = 28, n2 = 29, p = .0004; for HG peak latency, U = 61.0, 
p = .0001; Fig. 2.6). Sites with sustained HG activity were located primarily in the 
PFC (61.6% of all sustained stimulus-to-response sites), as well as on the precentral 
gyrus (14.2%) and secondary association cortices (17.1%; Fig. 2.3c, Fig. 2.5). While 
the majority of active PFC sites (62.2%) exhibited sustained stimulus-to-response 
activation, the PFC also contained intermingled sites with stimulus evaluation 
(12.2%) and response (18.5%) activity.  
 
Each processing stage engaged and peaked later than its predecessor (Kruskal-
Wallis test; HG onset: H(3) = 53.07, p = 1.77x10-11, HG peak latency:  H(3) = 58.93,  
p = 9.95x10-13), indicating the overall flow of information from sensory processing to 
stimulus evaluation, sustained stimulus-to-response, and culminating in response 
preparation and execution. Importantly, these processing stages were not 
sequential, instead overlapping both in time (Fig. 2.3) and cortical space (Fig. 2.5). 
 
Thus, sustained stimulus-to-response HG activity temporally bridged stimulus 
processing with response execution across all tasks and participants. Next, we 
tested the hypothesis that sustained stimulus-to-response HG activation reflects 
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spatiotemporal information integration that translates stimulus characteristics into 
task-relevant behavioral output.  
 

 
Figure 2.6 Sequential engagement of neuronal activation. Average HG onset times (a) and 
HG peak latencies (b) across datasets (from Fig. 2.4) are shown for each HG activation 
type: Sensory (N = 20), Stimulus Evaluation (N = 15), Sustained Stimulus-to-Response  
(N = 28), and Response (N = 29). Error bars denote s.e.m. across datasets. Median RT is 
calculated across all subjects and tasks for all response electrodes. Refer to Fig. 2.4 for 
individual dataset data. 
 
Behavioral relevance of sustained stimulus-to-response HG activity as 
evidence of spatiotemporal integration  
To assess the behavioral relevance of the sustained stimulus-to-response activation, 
we first established that response times (RTs) across tasks were correlated with 
temporal features of the HG signal (using Pearson’s correlation for all correlation 
analyses). Significant correlations were observed for both HG onsets (r(26) = 0.82, p 
= 9.3x10-8;  Fig. 2.4a-b) and HG peak latencies (r(26) = 0.80, p = 3.9x10-7; Fig. 
2.4c), with slower RTs associated with later engagement and peak of sustained 
stimulus-to-response activity. Similar correlations were observed for response 
activity (Fig. 2.4a-c), which is not surprising given that temporal proximity of HG 
onset and peak latency to response onset was the defining feature for this pattern of 
activation, but not for the sustained stimulus-to-response activity. In contrast, 
sensory and stimulus evaluation sites did not demonstrate a significant relationship 
between RTs and HG onset and only a moderate correlation for stimulus evaluation 
sites between RT and peak latency. This indicates that the link between timing of 
the sustained stimulus-to-response activity and RT cannot be attributed to 
differences in speed of sensory processing across participants, tasks, stimulus 
parameters or response modalities. Similar results were obtained when sources of 
variance were minimized by averaging across participants within each task (Fig. 
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2.7a) or by examining data from one participant who completed six tasks (Fig. 
2.7b). 
 

 
Figure 2.7: HG onset and peak latency of Sustained Stimulus-to-Response activity predict 
reaction times across tasks. (a) HG onsets and peak latencies for Sustained Stimulus-to-
Response sites (left) along with correlations between reaction times and HG onsets (middle) 
or HG peak latencies (right) are presented for each task (N = 8), averaged across 
participants who completed that task. (b) Data in Panel a presented for one participant 
(S15) across tasks (N = 6). In both panels, data show similar patterns of strong correlations 
between reaction times and HG onset or peak latency seen in Fig. 2.4. 
 
Having demonstrated the behavioral relevance of the temporal features of the 
sustained stimulus-to-response HG signal across tasks, we next examined whether 
sustained neural activity functionally linked stimulus and response processing 
across trials. First, all trials within each HG activation pattern for each task were 
pooled together and binned in 50 ms RT steps (Fig. 2.8a). This analysis revealed 
that temporal properties of the sustained HG signal and its relationship with other 
patterns of neural activation changed as a function of RT. As response times 
increased, sustained stimulus-to-response HG activity decreased in amplitude and 
extended in time relative to early bins (Fig. 2.9), indicating longer lasting but less 
pronounced neuronal firing. Specifically, sustained stimulus-to-response activity 
was characterized by a well-defined peak at short RTs, whereas longer RTs featured 
a plateau, with peak activity distributed across the trial window (Fig. 2.8a).  
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The magnitude of HG signal across the plateau time period was greater for 
sustained than for response activity (t(58) = 12.84, p = 1.3x10-18), and the amplitude 
of sustained stimulus-to-response HG activity was negatively correlated with RTs 
(r(28) = -0.89, p = 2.6x10-11; Fig. 2.8b). A stepwise regression between RTs and peak 
or mean values of the HG signal for each activity type revealed only two significant 
predictors (model R2 = 0.87, p = 7.0x10-13): the mean plateau amplitudes for the 
sustained stimulus-to-response activity (beta = -5.63, p = 2.79x10-8) and the peak 
amplitude of response activity (beta = 2.02, p = 4.75x10-4). In fact, while the 
magnitude of sustained stimulus-to-response activity decreased with longer RTs, 
the magnitude for the peak of response activity increased (r(28) = 0.77, p = 5.4x10-7). 
In addition, the onset of sustained stimulus-to-response activity was delayed and 
overall diminished during trials on which participants failed to generate a response 
relative to successfully completed trials (p<.05, FDR-corrected; Fig. 2.10a), 
suggesting that sustained neuronal engagement during the stimulus-to-response 
window is essential for fast and successful response selection. Importantly, response 
activity was absent during no-response trials (all p-values>.05 FDR-corrected). 
Thus, we observed a clear functional dissociation between sustained stimulus-to-
response and response activations. Since sustained stimulus-to-response activation 
is present during no-response trials where response activation is absent, we 
conclude that this sustained activity pattern indexes response selection but not 
motor preparation.     
 
Next, we examined the relationship between temporal characteristics of the HG 
signal and RTs. As sustained stimulus-to-response activity began to decrease post-
plateau, response activity increased, resulting in a critical crossover point, at which 
the two time series intersect. On average, the crossover point preceded RTs by 
175.74 ms (s.e.m. = 9.34 ms), with a tight correlation between the crossover latency 
and RTs, r(28) = 0.997, 99%CI [0.992, 0.998], p = 4.41x10-32 (Fig. 2.8c). The 
crossover latency was the only significant predictor in a stepwise regression (R2 = 
0.99, beta = 1.05, p = 4.41x10-32) where it was entered along with HG onset, offset, 
and peak latency for sensory, stimulus evaluation, sustained stimulus-to response 
and response activity. Although other temporal parameters of HG signal correlated 
with RTs, none significantly contributed to the model, indicating that the crossover 
point is the time at which response selection implemented by the spatiotemporal 
integration network is complete and motor execution circuitry is initiated.  
 
Sustained stimulus-to-response HG activity during stimulus integration  
We next assessed whether and how sustained activity represents stimulus features 
relevant for response. First, if sustained stimulus-to-response activation integrates 
stimulus information, it must be temporally linked to stimulus processing. When 
tested, the offset of stimulus evaluation activity was the only significant predictor 
for the onset of sustained stimulus-to-response HG plateau (stepwise regression 
model R2 = 0.24, beta = 0.8, p = 5.50x10-3). The onset of the sustained plateau 
occurred 358.1 ms (s.e.m. = 27.55 ms) before the offset of stimulus evaluation 
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activity, suggesting that information transfer between the two systems is triggered 
prior to the completion of initial stimulus processing. 
 
Further, we examined whether sustained stimulus-to-response activation is 
involved in stimulus representation in the Visual and Auditory Categorization 
tasks, where there is a one-to-one, direct correspondence between stimulus category 
and responses. In these tasks, 8.3% of sustained stimulus-to-response sites 
exhibited a category effect (significant HG modulation as a function of stimulus 
category: dog vs. cat or male vs. female, p<.01; Fig. 2.10c). We next examined the 
Antonym Generation task, where the response was dissociated from the stimulus 
category features. A stimulus category effect (noun vs. adjective) was observed in 
10.4% of sustained stimulus-to-response sites. Thus, one of the functional roles of 
sustained stimulus-to-response activity is stimulus representation during response 
selection. Across these tasks, sites sensitive to the stimulus category effect were 
located on the PFC (middle and inferior frontal gyri; MFG, IFG), precentral gyrus, 
and sensory association cortex (Fig. 2.10b), reinforcing the role of the PFC and 
supporting areas in linking stimulus integration to response selection. 
 

 
Figure 2.8 Interaction between sustained stimulus-to-response and response HG activity 
predicts reaction times. (a) The temporal evolution of the Sustained and Response HG 
activity varied as a function of reaction time. The Sustained Stimulus-to-Response plateau 
(from the first HG peak to the crossover point between Sustained and Response traces) is 
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shaded in gray. Shading on each trace indicates s.e.m. across trials for each time point 
(average number of trials per bin = 439 trials). (b) Longer reaction times were associated 
with smaller means for Sustained Stimulus-to-Response plateau (top) and larger peak 
amplitudes for Response activity (bottom). (c) The crossover point predicted reaction times, 
while the first peak of Sustained Stimulus-to-Response plateau tracked stimulus offset.  
N = 30 bins for (b) and (c). 
 
 

 
Figure 2.9 Fast response times rely on temporal convergence across HG activation types. 
Stimulus Evaluation, Sustained Stimulus-to-Response, and Response HG traces averaged 
across binned trials for fast reaction times (RTs between 300 and 550 ms). Shading for each 
trace indicates s.e.m. around the mean trace across trials. No traces for Sensory activation 
are shown as short RT trials came from participants whose electrode coverage did not 
feature this pattern. For short RTs, Sustained Stimulus-to-Response activity temporally 
overlapped with Stimulus Evaluation activity (mean difference between HG peak latencies 
27.0 ms, s.e.m. = 17.09 ms; Mann-Whitney U = 11, n1 = n2 = 5, p = 0.83), with both closely 
tracking stimulus duration (HG peak latency for Sustained activity lagged behind stimulus 
offset by 51.46 ms, s.e.m. = 11.63 ms; U = 0, n1 = n2 = 5, p = .01). These findings suggest 
that fast cognitive processing and behavioral output may rely on temporal synchronization 
within local neuronal populations, as indexed by the temporal convergence of HG signals.  
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Task demands affect spatial and temporal profiles of integration 
To investigate whether increased cognitive load modulates the spatial distribution 
and temporal characteristics of integration activity, we focused on data from the 
Word Repetition and Antonym Generation tasks recorded in three participants. 
Both tasks employed identical stimuli, yet required different levels of cognitive 
processing: Antonym Generation recruited semantic evaluation and search, absent 
during Word Repetition, resulting in longer RTs (S15: t(259) = 15.08, p = 2.6x10-37; 
S18: t(173) = 8.77, p = 1.6x10-15; S3: t(144) = 14.74, p = 1.5x10-30) and greater RT 
variability (Fig. 2.2). We observed that although there was a considerable overlap 
in activation between the two tasks, more sustained stimulus-to-response sites were 
active during Antonym Generation than Word Repetition (Fig. 2.11a). The overlap 
sites were predominantly located on the IFG and precentral sulcus (reflecting a 
common substrate for word production(Flinker et al., 2015)), whereas sites unique 
to Antonym Generation were more broadly distributed throughout the left lateral 
PFC, indicating that task demands alter the spatial topography of integration 
activity (Fig. 2.12). In addition, while there were no significant differences between 
the two tasks in HG onsets of the overlap sites, sustained stimulus-to-response sites 
unique to Antonym Generation engaged later than overlap sites (Fig. 2.11b; Mann-
Whitney test, S18: U = 15.0, noverlap = 10, nunique = 7, p = .03; S3: U = 3.0, noverlap = 11, 
nunique = 6; p = 1.5*10-3; S15: noverlap = 6, nunique = 11,U = 19.0, p = .09). Notably, HG 
activation for unique Antonym Generation sites was comparable in amplitude 
across both short and long trials (no significant differences were detected), which 
excluded the possibility that engagement of unique sustained stimulus-to-response 
activation was due to task difficulty alone or was triggered by the temporal delay 
during response selection. Instead, these results indicate that engagement of 
additional cognitive operations (e.g., semantic search) necessary for successful 
Antonym Generation task performance is accomplished through sequential 
recruitment of additional computational resources, indexed by sustained stimulus-
to-response integration activation.  
  
Functional co-activation across different types of neuronal activity 
Finally, we assessed functional interactions across different activation patterns 
within each dataset using PCA conducted on mean HG amplitudes across trials. 
The first principal component, which accounted for 24.81% variance (s.e.m. = 1.85%) 
across all tasks, revealed a distributed network of sites, with HG activity co-
modulating on a trial-by-trial basis. Most cortical sites with sustained stimulus-to-
response activity (57%) were a part of this primary functional network, which also 
included all other types of HG activity patterns (Fig. 2.13a), indicating that 
although sustained integration activity accounts for the majority of task-relevant 
cortical activation, it is functionally connected with both stimulus processing and 
response execution sites.  
 



 31 

 
 

 
 
Figure 2.10 Spatiotemporal Integration is critical for stimulus representation and 
response selection. (a) Average traces for the Sensory (N = 570), Sustained Stimulus-to-
Response (N = 1734), and Response (N = 596) HG patterns for trials with and without a 
response (matched numbers of trials) in the Antonym Generation task. (b) Sustained 
Stimulus-to-Response sites exhibiting a category effect in the Antonym Generation and 
Visual and Auditory Categorization tasks (N = 7 subjects). (c) Representative Sustained 
Stimulus-to-Response sites showing a category effect in the Visual Categorization task (dog, 
N = 91 vs. cat, N = 90) and a part of speech effect in the Antonym Generation task (noun, N 
= 78 vs. adjective, N = 69). Shading on each trace indicates s.e.m. across trials for each time 
point. Black bold segments along the x-axis indicate significant differences between traces. 
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Figure 2.11 Task demands affect spatial and temporal profiles of integration. 
(a) Sustained Stimulus-to-Response sites active during both Word Repetition and Antonym 
Generation tasks (overlap, N = 24) were predominantly restricted to the inferior frontal 
gyrus. In contrast, Sustained Stimulus-to-Response sites active only during Antonym 
Generation task (unique, N = 24) were more broadly distributed across cortex. (b) 
Sustained Stimulus-to-Response HG activity onsets averaged across overlap sites in Word 
Repetition, overlap sites in Antonym Generation, and unique sites in Antonym Generation 
(S3: Noverlap = 11, Nunique = 6; S15: Noverlap = 6, Nunique = 11; S18: Noverlap = 10, Nunique = 7). Error 
bars denote s.e.m. across sites.  
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Figure 2.12 Task-specific cortical distribution of Sustained Stimulus-to-Response sites. 
Electrode coverage and cortical distribution of Sustained Stimulus-to-Response sites for 
tasks with left hemisphere electrode coverage, sorted in ascending order of RT (top to 
bottom). Gender and Emotion Face Categorization tasks are combined into a single image 
because there was 95% overlap in cortical coverage. Linguistic tasks featured greater 
proportion of Sustained Stimulus-to-Response sites over the inferior frontal gyrus  (IFG; 
74.7%) relative to the middle frontal gyrus (MFG; 33.3%), whereas non-linguistic tasks 
(Visual Categorization and Face Categorization) had greater distribution of sustained 
stimulus-to-response sites on the MFG (48.7%) relative to IFG (16.7%).  
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Figure 2.13 Functional connectivity analyses. (a) Principal component analyses performed 
within each dataset (using mean HG amplitude values calculated in the activation window 
for each trial) revealed a network of distributed sites linked by correlated trial-by-trial HG 
activity. Most Sustained Stimulus-to-Response sites (57%) belonged to the first principal 
component (PC1); however, this network also included 63% of sites with other types of HG 
activity. (b) Algorithm-generated (neurosynth.org) meta-analysis of significant fMRI 
activations (N = 2399) among published papers (N = 61) using the term “domain-general” 
(forward inference – probability of an activation being present given that a paper uses the 
specified term; p = .01, FDR corrected). These areas of activation closely correspond to brain 
regions exhibiting Sustained Stimulus-to-Response activation in the current study.  
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2.4 Discussion 
 
Capitalizing on the superb temporal resolution and spatial specificity of direct 
cortical recordings, we demonstrate that intrinsically sustained stimulus-to-
response activation, centered in the PFC, provides the foundation for linking 
perception and action in humans on a single trial basis. This sustained neuronal 
activity is functionally coordinated in time and across cortical space, providing 
spatiotemporal integration of information that binds stimulus processing with 
response execution with remarkable precision.  
 
Temporally, information integration was reflected in intrinsically sustained 
neuronal activation, triggered during initial stimulus processing and lasting until 
the response. Stimulus, sustained, and response processing occurred in sequential 
progression with partially overlapping stages, confirming previous research on 
region-specific processing timescales in nonhuman primates (Murray et al., 2014 ; 
Siegel et al., 2015). Spatially, sustained activation was centered in the PFC, which 
is known to have strong anatomical connections with other cortical regions that also 
showed stimulus-to-response activation (Catani et al., 2012 ; Sreenivasan, Curtis, & 
D'Esposito, 2014). Notably, areas with sustained stimulus-to-response HG activity 
closely mapped onto brain regions exhibiting significant fMRI activation in studies 
describing domain-general processing (Duncan & Owen, 2000 ; Fedorenko et al., 
2013 ; Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) (Fig. 2.13b). Thus, 
this cortical network provides an ideal anatomical and physiological substrate for 
information exchange and integration among distributed local cortical networks 
(Miller & Cohen, 2001). Functionally, sustained stimulus-to-response activity 
bridged stimulus processing with response execution. Specifically, modulation in 
amplitude of this activity reflected stimulus features, scaled with cognitive demand 
and successful task performance, and was linked to response speed. Additionally, 
trial-by-trial amplitude modulation of the sustained stimulus-to-response network 
was correlated with activity within both stimulus and response sub-networks.    
 
Animal and human studies indicate that HG activity is correlated with increased 
fMRI BOLD signal (Mukamel et al., 2005 ; Mukamel & Fried, 2012), reflecting 
increased firing among local neuronal populations (Ray et al., 2008 ; Ray & 
Maunsell, 2011). Our findings indicate that increasingly coordinated neuronal firing 
across multiple neuronal ensembles is required for fast behavioral responses, 
evident from both the temporal convergence and the high amplitudes of sensory, 
sustained, and response HG activity for short RT trials. In contrast, decreased 
response certainty and longer RTs are associated with less temporally coordinated 
and attenuated local neuronal activity.  
 
Critically, sustained neuronal activity does not reflect a single localized process. 
Instead, we observed activity distributed in time, space, and function. Spatially, 
cortical distribution of sustained activation varied with task demands. For example, 
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in line with previous research, linguistic tasks primarily recruited sustained 
activation in the IFG/Broca area (Fedorenko et al., 2012 ; Flinker et al., 2015 ; 
Sahin, Pinker, Cash, Schomer, & Halgren, 2009), whereas non-linguistic tasks 
relied on other PFC regions (e.g., MFG, superior frontal gyrus, and premotor 
regions). Further, as task difficulty and cognitive processing demands increased, we 
observed broader cortical recruitment during the spatiotemporal integration epoch. 
Temporally, we found that different processing stages were triggered at different 
times, based on task demands. Finally, not all integration sites performed similar 
functions, as only a subset of sustained activation sites was active in different tasks. 
Thus, sustained activity reflects the cumulative output of local neuronal networks, 
in which some neurons exhibit sustained firing while others may exhibit specific 
tuning to particular stimulus dimensions or response contingencies. 
 
In conclusion, this study demonstrates that intrinsically sustained neuronal activity 
in the stimulus-to-response window provides a common functional substrate for 
information integration and response selection across diverse cognitive tasks. We 
identify the prefrontal cortex as the core element of a distributed cortical network 
that links stimulus perception with action execution, enabling humans to flexibly 
respond to ever-changing environmental demands. 
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Table 2.1 Participant information 
 

Subj.	 Gender	 Age	 Hand.	
Lang.	
Lat.	

Num.	
elecs.	

Num.	
active	 Electrode	Coverage	

S1	 male	 30	 right	 NA	 90	 31	 ATL,	Area	37,	IFG,	FrP,	InfTL,	MFG,	
mPC,	OFC,	PostCG,	PreSMA,	PreCG,	
R_IFG,	R_IPL,	R_InfT,	R_MFG,	
R_MTG,	R_mPC,	R_PostCG,	
R_PreSMA,	R_PreCG,	R_SFG,	R_SMA,	
R_SPL,	R_STG,	R_dACC,	SMA,	STG,	
dACC	

S2	 female	 36	 right	 left	 99	 58	 ATL,	Area	37,	IFG,	IPL,	ITG,	InfTL,	
MFG,	MTG,	OFC,	Occip,	PostCG,	
PreCG,	R_ATL,	R_InfT,	STG	

S3	 male	 38	 left	 left	 103	 38	 ATL,	Area	37,	IFG,	FrP,	IPL,	ITG,	InfTL,	
MTG,	OFC,	PostCG,	PreCG,	STG	

S4	 male	 16	 right	 NA	 62	 22	 ATL,	Area	37,	IFG,	IPL,	MTG,	PostCG,	
PreCG,	STG	

S5	 male	 19	 right	 left	 89	 28	 ATL,	Area	37,	IFG,	IPL,	ITG,	MFG,	
MTG,	PostCG,	PreCG,	STG	

S6	 male	 20	 right	 left	 70	 10	 R_ATL,	R_IFG,	R_MFG,	R_MTG,	
R_PreSMA,	R_PreCG,	R_SFG,	R_STG,	
R_dACC,	dACC,	preSMA,		

S7	 male	 42	 right	 NA	 104	 37	 IFG,	FrP,	IFG,	IPL,	MFG,	OFC,	Occip,	
PostCG,	PreSMA,	PreCG,	SFG,	SPL,	
STG,	dACC	

S8	 female	 22	 right	 left	 81	 31	 Area	37,	FrP,	IPL,	MFG,	mPFC,	mPC,	
Occip,	PCC,	PostCG,	PreSMA,	PreCG,	
SFG,	SMA,	SPL,	STG,	dACC	

S9*	 male	 47	 	 	 EXCLUDED	 	
S10	 female	 32	 right	 left	 80	 24	 IFG,	FrP,	ITG,	MFG,	MTG,	OFC,	

PostCG,	PreCG,	SMA,	SPL,	STG,	mPFC,	
preSMA	

S11	 female	 19	 right	 NA	 90	 18	 FrP,	mPC,	PCC,	PreSMA,	R_Area	37,	
R_FrP,	R_IPL,	R_ITG,	R_MTG,	R_mPC,	
R_PCC,	R_PreSMA,	R_SMA,	R_SPL,	
R_STG,	R_dACC,	SMA,	dACC,	

S12	 male	 42	 left	 NA	 74	 15	 IPL,	ITG,	MFG,	MTG,	mOccip,	mPC,	
Occip,	PCC,	PostCG,	PreCG,	
R_mOccip,	R_mPC,	R_PCC,	SPL,	STG	

S13	 male	 19	 right	 NA	 108	 18	 R_OFC,	R_FrP,	R_IFG,	R_PreCG,	
R_PostCG,	R_STG,	R_MTG,	R_ATL,	
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R_Area	37,	R_IPL,	R_Occip,	R_MFG,	
R_InfTL,	R_SPL	

S14	 male	 47	 NA	 NA	 97	 40	 R_FrP,	R_IFG,	R_MFG,	R_PreCG,	
R_PostCG,	R_STG,	R_MTG,	R_ATL,	
R_Area	37,	R_IPL,	R_Occip,	R_IftTL	

S15	 male	 34	 right	 left	 74	 45	 ATL,	Area	37,	IFG,	IPL,	MFG,	MTG,	
PostCG,	PreCG,	STG	

S16*	 male	 37	 right	 	 EXCLUDED	 	
S17	 male	 22	 right	 left	 60	 29	 R_ATL,	R_IFG,	R_IPL,	R_MFG,	

R_MTG,	R_PostCG,	R_PreCG,	R_STG	
S18	 male	 48	 left	 left	 63	 47	 ATL,	Area	37,	IFG,	IPL,	MFG,	MTG,	

PostCG,	PreCG,	STG	
 
Note: Unless otherwise specified (R_), all cortical areas are in the left hemisphere.  
(*) Participants S9 and S16 were excluded due to stroke-related cortical lesion (S9) and 
unconfirmed electrode localization (S16).  
Abbreviations: Hand. – Handedness, Lang. Lat. – Language Laterality, NA – information 
not available, Num. elecs. – Number of recorded electrodes, Num. active – Number of task 
active electrodes, Part. – Participant;   
Area 37 – Brodmann area 37, ATL – anterior temporal lobe, dACC – dorsal anterior 
cingulate cortex , IFG – inferior frontal gyrus, FrP – frontal pole, IPL – inferior parietal 
lobule, InfTL – inferior temporal lobe, ITG – inferior temporal gyrus, MFG – middle frontal 
gyrus, mPC – medial parietal cortex, mPFC – medial prefrontal cortex, MTG – middle 
temporal gyrus, OFC – orbital frontal cortex, Occip – Occipital lobe, mOccip – medial 
occipital lobe, PCC – posterior cingulate cortex, PostCG – post central gyrus, PreSMA – pre-
supplementary motor area, PreCG – pre-central gyrus, SFG – superior frontal gyrus, SMA 
– supplementary motor area, SPL – superior parietal lobule, STG – superior temporal gyrus 
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Table 2.2 Task information 

Task	/	Participant	
Number	of	
Stimuli	per	

Block	

Number	of	
Blocks	

Completed	

Number	of	
Analyzed	
Stimuli	

RT	(ms)	
mean	 s.e.m	

Visual	Categorization	 75	 	 	 765.51	 130.77	
S8	 (1	unique	

block)	
6	 413	 896.28	 9.51	

S10	 4	 273	 634.74	 7.08	
Auditory	Categorization	 75	

	 	
1,554.73	 90.63	

S13	 (1	unique	
block)	

4	 124	 1,464.10	 53.88	
S14	 4	 260	 1,645.36	 8.86	

Word	Repetition	 105	
	 	

1,117.70	 118.72	
S1	 (2	unique	

blocks)	
2	 138	 1,310.55	 19.83	

S2	 1	 50	 1,170.04	 15.73	
S3*	 	 2	 83	 934.53	 9.08	
S4	

	
2	 136	 1,086.18	 15.86	

S7	
	

1	 74	 1,376.84	 31.93	
S11	

	
2	 135	 946.54	 11.59	

S12	
	

2	 144	 1,145.16	 11.44	
S15	 	 2	 114	 1,003.20	 12.09	
S18	 	 2	 85	 903.06	 16.89	

Antonym	Generation	 105	
	 	

2,050.27	 426.18	
S3	 (2	unique	

blocks)	
2	 63	 1,983.10	 80.90	

S6	 4	 133	 2,841.18	 90.40	
S15	 	 3	 147	 2,002.87	 57.46	
S18	 	 2	 90	 1,373.91	 45.54	

Face	Emotion	Categorization	 80	
	 	

643.52	 68.40	
S3	 (2	unique	

blocks)	
2	 113	 690.90	 12.63	

S5	 2	 112	 532.12	 11.58	
S15	 	 2	 131	 750.92	 13.55	
S18	 	 2	 104	 600.12	 16.57	

Face	Gender	Categorization	 80	
	 	

626.95	 90.91	
S15	 (2	unique	

blocks)	
2	 131	 717.86	 12.28	

S18	 2	 83	 536.04	 17.79	
Auditory	Self	Referential	 132	

	 	
1,719.82	 163.73	

S1	 (1	unique	
blocks)	

1	 61	 1,811.82	 49.94	
S2	 1	 61	 1,592.69	 55.71	
S3	

	
1	 57	 1,597.42	 44.12	

S5	
	

1	 72	 2,113.94	 88.37	
S6	

	
1	 89	 2,028.34	 69.25	

S7	
	

1	 88	 1,752.06	 45.50	
S11	

	
1	 78	 1,665.19	 68.31	
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S12	
	

1	 43	 1,688.14	 123.23	
S15	 	 1	 82	 1,657.04	 57.51	
S17	 	 1	 74	 1,291.51	 49.94	

Visual	Self	Referential	 132	
	 	

1,460.24	 188.29	
S2	 (1	unique	

blocks)	
1	 64	 1,297.61	 41.52	

S3	 1	 50	 1,642.44	 66.23	
S12	 	 1	 65	 1,627.05	 56.82	
S15	 	 1	 77	 1,068.06	 36.01	
S17	 	 1	 84	 1,666.06	 62.49	

 
* Subject S3 was used for Task Demands analysis only (Figure 2.11). It was excluded for 
all other analyses due to insufficient RT range to discriminate among different types of HG 
activation (see Methods – Cluster Classification).  
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Chapter 3 

Algorithmic identification of oscillatory frequency and 
bandwidth 
 
 
 
Abstract 
 
Neuronal communication is intricately tied to oscillatory dynamics within and 
across cortical regions. Despite the acknowledged variability in oscillatory 
frequency, the majority of research uses predefined canonical frequency bands. Here 
we introduce a novel method for algorithmically extracting individualized 
oscillatory bands. We first validate the algorithm against synthetically generated 
data and show that it is as sensitive as expert human labelers. We then apply this 
method to data recorded at different electrophysiological scales: local field 
potentials in non-human primates and human scalp EEG. We find striking 
heterogeneity in center frequency and bandwidth in both populations, with the two 
oscillatory parameters predicting subject identification with high degree of 
accuracy. Using individualized filters, we unmask correlations between behavior 
and EEG alpha power that are missed by canonical band filtering. Finally, we 
demonstrate that faster oscillations have broader bandwidths in both populations, 
and that these two individualized parameters predict visual working memory 
precision in non-human primates. This method provides a new tool for studying 
individual differences in oscillatory physiology and function. 
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3.1 Introduction 
 
Cognitive processes are supported by computation in distributed neuronal 
networks. Communication between these networks may rely on oscillatory 
dynamics both within local neuronal populations and across disparate brain 
regions. Research suggests that oscillatory power and phase of low frequency (< 40 
Hz) bands influences a variety of cognitive, perceptual, and behavioral tasks 
(Busch, Dubois, & Vanrullen, 2009 ; Samaha & Postle, 2015 ; Schroeder & Lakatos, 
2009). Furthermore, dysfunctions in oscillatory activity have been implicated in 
nearly every major neurological and psychiatric disorder (Voytek & Knight, 2015), 
including Parkinson’s (de Hemptinne et al., 2015), schizophrenia (Uhlhaas & 
Singer, 2010), depression (Segrave et al., 2010), and autism (Khan, Gramfort, & 
Shetty, 2013). Given the clear physiological importance of neural oscillations, much 
research has been dedicated to examining the nature and function of oscillatory 
activity in the brain and its behavioral relevance. 
 
The vast majority of these studies utilize classic, canonical bands of interest, 
approximately defined as: delta, 1-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; beta, 15-30 
Hz, and; gamma, > 30 Hz. However these frequency bands are only loosely related 
to the underlying physiology, and there exists a great deal of variability across 
species (Bullock, 1981), age (Klimesch, 1999 ; Obrist, 1954), and 
cognitive/behavioral state (Haegens, Cousijn, Wallis, Harrison, & Nobre, 2014 ; 
Samaha & Postle, 2015 ; Samaha, Bauer, Cimaroli, & Postle, 2015). Predetermined 
frequency bands may include noise from outside the true physiological oscillatory 
band – center frequency and bandwidth of which may not coincide with a canonical 
pass band – thus masking crucial behaviorally and physiologically relevant 
information. Current methods for identifying individual differences in oscillations 
are mostly restricted to identifying the frequency at which the power spectrum 
peaks within a specific sub-band, however these methods are susceptible to noise 
and are limited to finding only one oscillation while ignoring other potentially 
physiologically relevant oscillations as well as oscillatory features, such as 
bandwidth.  
 
To address this issue we have developed a novel statistical model for algorithmically 
extracting individualized oscillatory components. This algorithm extracts oscillation 
center frequencies and their associated bandwidths, as well as the background 1/f 
noise parameter (Fig. 3.1). This Fitting Oscillations and One-over F algorithm is 
validated against simulated power spectra that are generated to include varying 
levels of noise and combinations of oscillatory parameters (center frequency, 
bandwidth, power, and number of oscillations). These synthetic data, which have 
known underlying oscillatory components, provide a dataset against which we 
compare algorithmic performance to that of expert human labelers. We then use the 
algorithm to extract oscillatory components from non-human primate local field 
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potentials (LFP) and human scalp electroencephalography (EEG) recorded while 
subjects performed a working memory task. 
 
We find that by using individualized filters appropriate for the signal of interest in 
humans, correlations between working memory load and alpha amplitude that are 
missed by canonical filtering are unmasked. We also find that individual differences 
in both center frequency and bandwidth relate to working memory precision in non-
human primates. Additionally, these oscillatory parameters are interrelated, 
hinting at their underlying physiological origins and functions. In contrast to 
predefined canonical band analyses, we provide a new algorithm for investigating 
both the physiological origins of oscillations and the role that oscillatory variability 
may play in explaining individual differences in cognitive functioning in health, 
aging, and disease.  
 

3.2 Methods 
 
Subjects 
Humans 
We collected 64-channel scalp EEG from young (20-30 years old), healthy controls  
(n = 11; 5 male). All participants gave informed consent approved by the UC 
Berkeley Committee on Human Research. 
 
Non-human primates 
Two male rhesus monkeys (Maccaca mulatta; 4-5 years old) participated in the 
study. All procedures were in accord with the US National Institutes of Health 
guidelines and the recommendations of the UC Berkeley Animal Care and Use 
Committee. These data were previously published, and methodological details can 
be found in the corresponding manuscript (Lara & Wallis, 2014). 
 
Tasks and stimuli 
Humans 
The visual working memory paradigm was slightly modified from the procedures 
used in (Vogel & Machizawa, 2004) as outlined in (Voytek & Knight, 2010) where 
additional task details can be found. Participants were visually presented with a 
fixation cross in the center of the screen throughout the entire duration of the 
experiment. At the beginning of each trial, this cross would flash to signal the 
beginning of the trial. This was followed 350 ms later by one, two, or three different 
colored squares for 180 ms, lateralized to either the left or right visual hemifield. 
After a 900 ms delay, a test array of the same number of colored squares appeared 
in the same spatial location. Participants were instructed to respond with a button 
press to indicate whether or not one item in the test array had changed color 
compared to the initial memory array. Each participant performed 8 blocks of 40 
trials each. Data were analyzed from visual cortical alpha electrodes contralateral 
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to the hemifield of visual stimulus presentation (channels P3/5/7/9, PO3/7, and O1 
for right hemifield stimuli and P4/6/8/10, PO4/8, and O2 for left hemifield stimuli). 
 
Non-human primates 
Subjects were trained on a color detection task as previously described in (Lara & 
Wallis, 2014). Briefly, a fixation square appeared at the start of each trial followed 
by a sample array of one or two colored squares (500 ms). During the subsequent 
1000 ms delay, the subjects had to maintain the square colors in working memory. 
After the delay, one of the squares was presented again and the subject had to 
indicate via a lever press whether the color at the location changed or remained the 
same. 
 
Data acquisition and preprocessing 
Humans 
Participants were tested in a sound-attenuated EEG recording room using a 64+8 
channel BioSemi ActiveTwo system. EEG data were amplified (-3dB at ~819 Hz 
low-pass, DC coupled), digitized (1024 Hz), and stored for offline analysis. 
Horizontal eye movements (HEOG) were recorded at both external canthi; vertical 
eye movements (VEOG) were monitored with a left inferior eye electrode and 
superior eye or fronto-polar electrode. Participants were instructed to maintain 
central fixation and responded using the index finger of their right hand. All data 
were referenced offline to the average potential of two earlobe electrodes. Scalp EEG 
artifacts (electrode drifts, blinks, and saccades) were identified on a semi-automated 
basis. All incorrect trials and trials with artifacts were excluded from analysis. Raw 
time series data were filtered as outlined below to passband extract analytic 
amplitude. These analytic amplitude time series were then subjected to standard 
event-related analyses. 
 
Behavioral accuracy was assessed using a d' measure of sensitivity which takes into 
account the false alarm rate to correct for response bias. To avoid mathematical 
constraints in the calculation of d', we applied a standard correction procedure 
wherein, for any subjects with a 100% hit rate or 0% false alarm rate, performance 
was adjusted such that 1/(2N) false alarms were added or 1/(2N) hits subtracted 
where necessary. 
 
Non-human primates 
Neuronal responses were recorded simultaneously from PFC using arrays of 8-32 
tungsten microelectrodes. Local field potentials were recorded with a 1 kHz 
sampling frequency and analyzed offline. LFP were isolated from the band-passed 
(0-100 Hz) recordings, and spectral fits were done on a channel-by-channel basis. 
See (Lara & Wallis, 2014) for recording details. 
 
Similar to the prior study, a median split was used to separate low- and high- 
oscillatory power trials. For each band and high/low power trial grouping, the 
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working memory precision (σWM) with which the two-color memory arrays were 
stored was estimated using the behavioral model described previously. We could 
then estimate how the band-specific oscillatory parameters of center frequency and 
bandwidth relate to working memory precision estimates. 
 
Algorithmic fitting of 1/f function and oscillatory components 
We characterize neural power spectra using two components: a background power 
law (1/f) process and a set of independent and additively overlaid oscillations, 
characterized as peaks or bumps atop the 1/f background (Buzsaki, Logothetis, & 
Singer, 2013 ; He, 2014 ; Wang, 2010). The goal of the algorithm is to identify the 
center frequency and bandwidth of the oscillatory components, so it is critical to 
isolate them from the 1/f background. To achieve this, we need to accurately 
represent the background 1/f process. Because power laws are linear in log space, 
we estimate the exponent χ of the spectral power law by log(S(f)) = χ(log(f)) where f 
is frequency and S is the spectral power. Oscillatory peaks superimposed on top of 
the 1/f background act as outliers, drawing the estimate χest away from its true 
value χ. To compensate for this, we use a robust linear model (Random Sample 
Consensus (Fischler & Bolles, 1981)) that minimizes the influence of these 
oscillatory components on χest. 
 
The power law 1/f trend, χest is then subtracted from the original PSD (Fig. 3.1a). 
This flattens the power spectrum, isolating the oscillatory components, giving  
Sflat(f) = S(f) - fχest. This flattened power spectrum is dominated by oscillatory 
components, with small non-linear deviations (i.e., noise). These deviations are 
removed by thresholding Sflat, reducing these noise deviations to zero while keeping 
the oscillatory components intact (Fig. 3.1b). Any deviations below the 1/f 
background are also set to zero. The threshold for Sflat was set to a value of 0.01. 
 
The next step is to identify and model the oscillatory components in the flattened 
power spectrum. Previous work has shown that single Gaussians provide good 
estimates of single alpha peaks(Haegens et al., 2014). Given that a neural power 
spectrum typically contains multiple oscillatory components, we use a Gaussian 
Mixture Model (GMM) to decompose the flattened spectrum into an optimal number 
of Gaussians, estimating the center frequency (fc, mean), bandwidth (ς, standard 
deviation), and relative probability density of each. Since GMMs operate on data 
from normally distributed random variables, we converted continuous analytic 
power spectra values into discrete distributions binned by frequency This is 
accomplished by representing log power estimates as value counts for each 
frequency, fi, where the number of count entries for each frequency is linearly 
proportional to its log power log(S(f)) (Fig. 3.1c,d). 
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Figure 3.1 Algorithm schematic. (a) Calculate power spectral density (PSD). Fit 1/f 
background power using robust linear fit. (b) Subtract background power from original 
PSD, yielding flattened PSD. (c) Sample from flattened PSD as if it were a probability 
density function. (d) Fit Gaussian Mixture Model selecting number of components using 
BIC model comparison approach, and calculate probability density function for each peak. 
(e) Filter peaks to exclude those with total mass less than minp parameter. (f) Combine 
peaks that are closer together than predetermined frequency threshold and add 1/f fit back 
into model. 
 
The number of peaks in the GMM was minimized via model comparisons, using the 
conservative Bayesian information criterion (BIC) to weight alternate models 
(Schwarz, 1978). From a maximum of 10 possible peaks, the model with the 
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smallest BIC score that was at least eight BIC units smaller than the next option 
was selected. The number of maximum allowed peaks (ten) was chosen as a 
reasonable prior well above the plausible upper bound for the number of expected a 
priori independent oscillations in the signal, assuming the 5 traditional delta, theta, 
alpha, beta, and gamma bands also split into “upper” and “lower” sub-bands. A 
minimum difference of eight BIC units represents strong evidence that the smaller-
valued model is a better and maximally parsimonious fit (Burnham, 2004). GMM 
peak fitting was done with expectation maximization, based on a log-likelihood loss 
function (Pedregosa, Varoquaux, & Gramfort, 2011). 
 
To control for false positives, GMM-defined peaks were subjected to additional 
refinement. Peak refinement was based on the total probability mass present in 
each candidate GMM peak, i.e., the marginal relative probability of that peak 
compared to all peaks combined. Peaks below the minimum probability (minp) were 
excluded (Fig. 3.1e). The minimum probability threshold was determined 
separately for each dataset. This post-fit exclusion effectively minimized false 
positives introduced by frequency-independent noise and due to incomplete removal 
of nonlinear cross-frequency warping sometimes present in the flattened spectra 
(the two most common failures modes of the algorithm based on pilot tests on 
synthetic, human scalp EEG, and non-human LFP data). Finally, any two peaks 
with centers within 2r, where r is the spectral resolution (1 Hz), were combined, 
correcting for occasional overfitting by the GMM expectation maximization 
algorithm. Overall, post hoc peak refinement proved more effective in balancing 
recall and precision than additional preprocessing, i.e., greater smoothing of the 
spectra prior to application of the algorithm. 
 
There is a tradeoff between recall and precision as a function of probability 
threshold, so the threshold that equalized precision and recall was selected (Fig. 
3.2). Recall and precision are used in an information retrieval sense, where recall is 
the proportion of peaks identified compared to total peaks, and precision is the 
proportion of correctly identified peaks compared to the number of detected peaks 
plus number of false positives; in other words, precision is the proportion of 
retrieved items that are relevant such that high precision reflects few false 
positives, whereas recall (also known as sensitivity) is the proportion of relevant 
items that are retrieved such that high recall reflects few false negatives.  
 
In the final step, the fitted peaks are recombined with the original 1/f fit to give an 
estimated reconstruction of the original PSD that can be then used for visual 
inspection and manual verification of algorithm performance (Fig. 3.1f). The final 
output of the algorithm consists of center frequency and bandwidth estimates for 
each fitted oscillatory peak, in addition to the reconstructed PSD estimation. All 
preprocessing and fitting was done in the Python programming language, with 
fitting of both χ and oscillatory peaks done using the scikit-learn machine learning 
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library (Pedregosa, Varoquaux, & Gramfort, 2011). Full source code and detailed 
usage examples are available at https://github.com/voytekresearch. 
 

 
Figure 3.2 Tradeoff between precision and recall for algorithm performance on EEG and 
LFP datasets. Precision and recall values are affected by the minimum probability 
threshold for GMM-defined peaks. As the minimum probability threshold increases, recall 
values decrease, reflecting decreased sensitivity and more false negatives. Precision values 
increase with an increasing minimum probability threshold, reflecting fewer false positives. 
The minimum probability threshold was selected as the value that equalized recall and 
precision. 
 

 
 
Figure 3.3 Synthetically generated power spectra. Synthetic power spectra were generated 
in order to compare human and algorithm performance to ground truth and to each other. 
Synthetic PSDs contained between 1 and 5 Gaussian peaks ranging from 6-30 Hz with 2 Hz 
fixed bandwidth and amplitude between 0.05 and 0.30. The spectral slope parameter 
ranged from -1 to -3 and additive white noise ranged between 0-0.4 standard deviations. 
Humans labeled the center frequencies of unprocessed PSDs (with 1/f component present). 
Left panel: 1 peak (8 Hz). Right panel: 5 peaks (6, 8, 16, 20, 28 Hz). 
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Simulating power spectra 
We generated synthetic power spectra in order to validate the algorithm against 
ground truth knowledge of the number, center frequencies, and bandwidths of 
underlying oscillations. We define PSDs as consisting of a background spectrum 
with overlaid oscillatory components: S = kN(fc, ς) + 1/fχ + B, where the oscillations 
are characterized by the probability density function for a normal continuous 
random variable (N). The oscillatory component is shifted and scaled by the 
following parameters: amplitude (k), center frequency (fc), and standard deviation 
(ς). The background spectrum obeys a power law characterized by its slope (χ). 
White noise (B) is added across all frequencies. 
 
To generate a synthetic PSD with multiple peaks, oscillations are iteratively added 
to the background spectrum. Once all oscillations are included, white noise is added 
across all frequencies, creating a noisy set of synthetic PSDs (Fig. 3.3). Synthetic 
power spectra contained between 1 to 5 Gaussian peaks ranging from 6 to 30 Hz, 
with 2 Hz fixed bandwidth and amplitudes ranging between 0.05 and 0.30. The 
spectral slope parameter (χ) ranged from -1 to -3 and additive white noise ranged 
between 0.0 to 0.4 standard deviations.  
 
Human labelers versus algorithm on synthetic power spectra 
Human and algorithm performance were compared to the ground truth and to each 
other by labeling a noisy set of synthetic PSDs with multiple adjacent peaks. 
Labeling by independent expert human labelers (N = 9) was only done for the center 
frequencies of oscillations on the unprocessed PSDs (1/f component present). 
Precision and recall were calculated for both the algorithm and human labelers 
relative to the known parameters used to generate the synthetic power spectra. To 
be classified as a hit, the identified peak had to fall within a window set to twice the 
frequency resolution from the true peak (4 Hz window at 1 Hz resolution). If no 
peaks were found, accuracy, precision, and recall were all set to 0. Correct rejections 
were not included in performance estimates; had they been included, every non-
peak that was correctly identified as such (most of the power spectra) would be 
marked as a correct rejection, skewing performance results. 
 
Labeling electrophysiological power spectra 
In addition to synthetic data, randomly selected EEG (N = 33) and LFP (N = 42) 
PSDs were also labeled by the algorithm and by human labelers. PSDs were 
calculated using Welch’s method (1 second segments, 50% overlap, Hanning 
window). These PSDs were then fit and labeled from 5 to 50 Hz. The minp 
parameter for the algorithm was set at 0.12 for EEG and 0.18 for LFP data. 
Accuracy measures were based on a round-robin scoring system, where one human 
labeler was designated as providing the “ground truth,” and all other labelers were 
scored against this labeler. This process was iterated across all labelers such that 
on each run a different human labeler was designated as providing the ground 
truth. The algorithm did not provide ground truth in the round-robin scoring 
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system, but it was scored alongside human labelers for each round-robin iteration. 
Criteria for hits, misses, and accuracy precision were similar to those used for 
labeling synthetic power spectra specified above. 
 
Individualized filtering of oscillatory components in EEG and LFP data 
Oscillatory parameters were fit for each participant, block, and EEG/LFP channel 
separately. Filtering was done by multiplying the frequency domain representation 
of the raw data by a Gaussian with center frequency fc and bandwidth ς. In scalp 
EEG analyses, for canonical alpha filtering, fc = 10 Hz and ς = 2 Hz. For 
individualized filters, fc and ς were determined on a per subject, channel, and block 
basis. If no alpha-proximal (6-14 Hz) peak was found by the algorithm, canonical 
band filtering was performed instead. If more than one peak was found, the mixture 
of Gaussians was summed and normalized to create a mixed-Gaussian filter (see 
Fig. 3.5b). 
 

3.3 Results 
 
Algorithm and human performance on synthetic power spectra 
The algorithm was more sensitive than human labelers on synthetic, noisy power 
spectra with multiple peaks (Fig. 3.4a,b). The algorithm generated fewer false 
negatives than humans, so recall values were higher for the algorithm than for 
humans (nalgorithm = 747, nhumans = 622; Mann-Whitney U test, p = 0.004). However, 
algorithm precision was lower than for human labelers (Mann-Whitney U test,  
p < 10-36), suggesting that the algorithm was too sensitive and included more 
spurious peaks than human labelers. Recall decreased on average for both humans 
and the algorithm with increasing number of peaks, while precision was relatively 
more stable for both humans and the algorithm (Fig. 3.4c,d). That is, with more 
true peaks in the spectrum, both humans and the algorithm do not accordingly 
increase the number of peaks they identify. This may be driven by the difficulty in 
identifying two Gaussians that are closer to one another (see Fig. 4b for an 
example), though the effect of inter-peak difference in center frequencies on recall is 
modest (Mann-Whitney U test on differences > 8 Hz versus < 8 Hz, p = 0.044). 
 
Algorithm and human performance on electrophysiological power spectra 
Inter-rater reliability measures were used to determine if human-assigned labels on 
electrophysiological data were meaningful. Human labelers were consistent in peak 
labeling for both datasets (Fig. 3.4d,e), evidenced by recall above chance and 
precision with low variability in the round-robin scoring system (EEG: mean = 0.72, 
s.e.m = 0.01; LFP: mean = 0.64, s.e.m = 0.01). Note that when no peaks were found, 
recall and precision were set to zero, which penalized labelers for not finding any 
peaks and underestimated recall and precision (see Methods). 
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Figure 3.4 Algorithm performance compared to expert human raters. Recall (a) and 
precision (b) for the algorithm and each of the human labelers for synthetic data with 
multiple peaks. The algorithm is more sensitive than human labelers, generating (a) fewer 
false negatives, and (b) more false positives. (c) Recall for synthetic data decreases with 
increasing number of peaks for both the algorithm and human labelers, suggesting that 
more peaks are missed as the number of peaks increases. (d) Precision remains relatively 
stable across increasing number of peaks. (e) Recall and (f) precision for human and 
algorithm labels on EEG and LFP datasets. There was no significant difference in recall 
and precision between humans and the algorithm for EEG spectra, however the algorithm 
performs significantly worse than humans for LFP (yet still performs well above 0.2, the 
approximate level of chance performance). 
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Having determined that human-assigned labels were reliable, they were then used 
to estimate ground truth for each sample PSD. Precision and recall did not differ 
between the algorithm and humans for the EEG dataset (nalgorithm = 33, nhuman = 39; 
Mann Whitney U test; recall: p = 0.41; precision: p = 0.16). Human labelers and the 
algorithm did not perform as well on the LFP dataset, with the algorithm 
performing significantly worse for both recall and precision (nalgorithm = 42, nhuman = 
44; recall: p = 0.0002; precision: p = 0.006). The poor performance on LFP data may 
be because the higher frequency oscillatory components in the LFP spectra were 
skewed and not Gaussian-shaped, thus violating GMM assumptions. We explicitly 
tested this by examining algorithm performance in the lower bands (< 16 Hz), 
where bandwidths were narrower and more Gaussian-shaped. In this range, the 
algorithm performs as well as humans (Mann Whitney U test; recall: p = 0.29; 
precision: p = 0.18). Although the algorithm did not perform as well as human 
labelers on the LFP dataset when including higher frequencies, it nevertheless 
performed well above chance (for 1 frequency peak chance is 0.04; for 5 frequency 
peaks chance performance is 0.2, as limited by the frequency range and resolution). 
 
Cognitive significance of individualized oscillatory features 
Scalp EEG 
To demonstrate the generalizability of the oscillatory decomposition algorithm, we 
examined whether individualization of oscillatory parameters would improve the 
observed relationship between working memory and alpha band activity. We 
collected scalp EEG data from 11 participants performing a lateralized visual 
working memory task. Because visual tasks are strongly associated with event-
related modulations in 8-12 Hz alpha amplitude over human visual cortex (Palva & 
Palva, 2007), we focused our analyses on this range. Specifically, during the late 
delay period, we expected an alpha increase as a function of memory load for 
difficult working memory tasks (Jensen, Gelfand, Kounios, & Lisman, 2002). 
 
Across the 11 participants, 8 blocks, and 64 scalp EEG channels, we observed 
substantial heterogeneity in the distribution of alpha-proximal (6-14 Hz) 
oscillations (Fig. 3.5a) as compared to canonical alpha (8-12 Hz). We find that 
20.6% of visual cortical channels showed no alpha-proximal oscillations while the 
vast majority, 70.7%, had one individualized alpha peak; a minority, 8.7%, showed 
two peaks, with no visual cortical channels showing more than two peaks. These 
algorithmically-identified center frequencies and bandwidths were used to construct 
individualized filters (Fig. 3.5b,c). 
 



 53 

 

 
 
Figure 3.5 Working memory and oscillatory parameters for scalp EEG. (a) Many studies 
use canonical filters, such as 8-12 Hz alpha (black), that mask prevalent individual 
oscillatory differences (blue, center frequencies marked in red). Plotted are fitted Gaussians 
for all identified peaks in the human EEG data set. (b) Example of raw PSD, canonical 8-12 
Hz filter (blue), and mixed Gaussian individualized filter (red, two Gaussians: fc = 8.47,  



 54 

ς = 1.61; fc = 12.08, ς = 2.35) that give rise to (c) the bandpassed time domain signal (grey 
line below PSD highlights one large and one small oscillatory bump above background 1/f). 
Time course of (d) canonical filtered alpha and (e) fitted alpha across all 11 participants for 
each memory load (inset: scalp topography of average late alpha amplitude difference 
between load 3 and load 1; 800-1000 ms, grey box). (f) Using canonical alpha, there is no 
significant effect between average late alpha amplitude and load (blue, p = 0.13). A 
significant effect is unmasked when using individualized filters (red, p = 0.013), with a 
significant interaction between the two (p = 0.016; error bars, sem). (g) Bandwidth 
increases with higher frequencies. 
 
To assess the utility of individualized filters, we compared event-related canonical 
and fitted alpha amplitudes over the visual cortex in the late processing window 
(800-1000 ms) (Fig. 3.5d,e). We find that canonical alpha amplitude contralateral 
to the hemifield of stimulus presentation did not scale with visual working memory 
load (F2,20 = 2.28, p = 0.13). In contrast, individually fitted alpha amplitude 
increased with visual working memory load (F2,20 = 5.43, p = 0.013). The difference 
between these two relationships was significant, such that there was a filter-
method by memory load interaction (F2,20 = 5.13, p = 0.016) (Fig. 3.5f), with a post 
hoc t-test showing significant differences between the 1-item load condition  
(p = 0.040). Memory load explained nearly double the variance in fitted compared to 
canonical alpha (η2: 35.2% versus 18.5%, respectively; all analyses used repeated 
measures ANOVA). 
 
We observe that higher frequency oscillations have broader bandwidths (r = 0.84,  
p < 10-270; Fig. 3.5g). This pattern is consistent across subjects, where r ranges from 
0.74 to 0.94 (p < 10-100 each). Intersubject differences across these two oscillatory 
parameters were distinct enough that subject identity could be inferred with 32.5% 
accuracy from those two parameters alone (k-nearest neighbors with 10-fold cross-
validation; chance = 9.1% (1/11); p < 10-100 based on permutation testing of using 
1000 random permutations of subject identity relative to fc and ς, where mean 
surrogate accuracy = 10.4%). 
 
LFPs 
To further establish the algorithm’s utility and generalizability in the analysis of 
cognitive data, we compared our approach to results obtained using canonical 
frequency bands on previously published LFP data recorded from non-human 
primates performing a visual working memory task. In the initial report (Lara & 
Wallis, 2014), average oscillatory power was calculated during each temporal epoch 
using uniform bands of interest (1-7 Hz, 8-16 Hz, 20-35 Hz) across all channels. The 
authors reported band-specific differences in working memory precision as a 
function of high- or low-oscillatory power, with higher low frequency (< 16 Hz) and 
lower high frequency (20 - 35 Hz) power during a delay period associated with 
better precision. For the current analysis, power was instead calculated using 
algorithmically identified center frequencies (fc) and bandwidths (ς) on a channel-
by-channel basis, which yielded 431 total oscillations for subject A and 768 for 
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subject B. After removing cases where behavioral model fitting failed, final analyses 
were performed on 226 and 380 oscillation parameter/working memory precision 
pairs for each subject respectively. Rather than comparing the two methods directly 
– given that the previous result can be conceived of as pooling precision estimates 
by binning the individualized results – we instead sought to examine whether there 
was a more fine-grained relationship between oscillatory frequency and working 
memory precision, as hinted at by the prior findings. 
 

 
 
Figure 3.6 Working memory and oscillatory parameters in non-human primate LFPs. (a) 
There are significant working memory precision differences between subjects. Working 
memory precision was modeled using a variable precision model (see Ref. 14). These are 
associated with differences in the distribution of algorithmically identified oscillatory (b) 
center frequencies and (c) bandwidths. (d) As with the scalp EEG analysis, bandwidth 
increased as a function of center frequency in both subjects. (Error bars: s.e.m.; *p = 0.0046, 
**p < 10-50, ***p < 10-54) 
 
Given the marked working memory precision (σWM) and oscillatory differences 
between the two subjects, we analyzed them separately. Compared to subject B, 
subject A had significantly lower delay period working memory precision (Fig. 3.6a; 
means (sem): 35.1 (0.7) and 81.2 (3.2) respectively; p < 10-54), slower center 
frequencies (Fig. 3.6b; means (sem): 23.2 (0.2) and 24.2 (0.5) respectively;  
p = 0.0046), and narrower bandwidths (Fig. 3.6c; means (sem): 2.35 (0.02) and 2.71 
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(0.01); p < 10-46) (two-sample t-tests, for all comparisons). Intersubject differences in 
center frequency and bandwidths of identified oscillations were so stark that subject 
identity could be inferred with 78.3% accuracy just using the two oscillatory 
parameters (k-nearest neighbors with 10-fold cross-validation; chance = 50%;  
p < 10-100 based on permutation testing of using 1000 random permutations of 
subject identity relative to fc and ς, where mean surrogate accuracy = 62.6%). 
Finally, similar to scalp the EEG data, we observed a significant relationship 
between the two oscillatory parameters for both subjects, such that faster 
oscillations had broader bandwidths (Fig. 4d; subject A, r = 0.59, p < 10-41; subject B, 
r = 0.20, p < 10-7; all comparisons Pearson correlations). 
 
Given the working memory precision and oscillatory differences between subjects, 
we constructed a simple linear regression model to examine whether the precision 
of working memory information in the delay period could be predicted from a linear 
combination of oscillatory components (σWM = β0fc + β1ς + ϵ) on an individual subject 
basis. This model was successful for both subjects (subject A (N = 398), R2 = 0.024,  
p = 0.0086; subject B (N = 277), R2 = 0.046, p = 0.0016). Another way to assess the 
impact of the oscillatory components on working memory precision is to examine the 
impact of removing the effect of the oscillatory components on between-subjects 
working memory precision differences. Subject identity accounts for 53.3% of the 
total precision variance; this drops significantly, to 47.2%, when the oscillatory 
parameters are partialled out (difference in correlations, p = 0.029). 
 

3.4 Discussion 
 
Here we present a novel method for algorithmically extracting oscillatory 
components in electrophysiological data and demonstrate that automatically 
extracted individualized oscillatory parameters predict performance on working 
memory tasks both in human EEG and non-human primate LFP data. We validated 
the algorithm on synthetic power spectra with predefined oscillatory and noise 
parameters. We found that it was able to correctly find all true peaks, but tended to 
overfit noise, identifying peaks where none existed. In other words, it had high 
recall (i.e., sensitivity), but lower precision, whereas expert human raters had 
similar recall as, but higher precision than, the algorithm. We then compared the 
method to expert human labelers for both EEG and LFP power spectra. The 
algorithm performed as well as expert human labelers on EEG data and identified 
similar peaks. It performed significantly worse than human labelers on LFP data, 
possibly due to LFP oscillations failing to meet the assumptions of Gaussianity 
required by GMM, yet it still performed significantly above chance levels. 
 
Previous reports that examine the functional relevance of center frequency often 
rely on peak-finding algorithms that simply search for a local maximum within the 
PSD across a predefined frequency range. Furthermore, as can be seen in the 
example in Fig. 3.5b, and as discovered from the synthetic spectra analyses, 
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multiple, possibly independent, overlapping oscillations often appear as one 
broadband bump atop the 1/f in the PSD. In these cases, peak-finding is a less 
optimal and more constrained solution than the method introduced here. Although 
the current algorithm tends to overfit oscillation center frequencies relative to 
human labelers, it offers the computational advantage of being a fast, automated 
approach that can be applied to large datasets, which are becoming more and more 
common across both scalp EEG and intracranial recordings across species.  
 
By applying the algorithm to physiological data, we uncovered previously 
undescribed relationships between oscillatory center frequency and bandwidth. 
Across species, and for each individual, we found that faster oscillations have 
broader bandwidths, with individual differences in these parameters acting as 
“spectral fingerprints” allowing for the inference of subject identity in both humans 
and non-human primates. There is a rich literature showing that peak frequency 
slows between subjects with age (Obrist, 1954), with working memory maintenance 
(Cohen, 2011 ; Klimesch, 1999 ; Moran et al., 2010), and even within subjects over 
brief time periods where oscillatory frequency can speed up or slow down to 
optimize phase when the timing of an expected stimulus is known (Samaha et al., 
2015 ; Samaha & Postle, 2015). However there are few studies examining the 
functional relevance of oscillatory bandwidth.  
 
The observation that higher frequency oscillations have broader oscillatory 
bandwidths may relate to the underlying physiological generators of oscillations at 
different frequencies. For example, beta and gamma oscillations may have similar 
origins via local cortical excitatory-inhibitory (E-I) interactions while theta and 
alpha oscillations may be generated via larger thalamocortical network phenomena 
(Freyer et al., 2011 ; L. Wang et al., 2010). Driving fast-spiking inhibitory 
interneurons via optogenetic stimulation induces narrowband (< 5 Hz) oscillations 
in the gamma range (Cardin et al., 2009), with biophysical modeling of E-I 
subensembles showing similarly narrowband peaks (Börgers & Kopell, 2003 ; 
Brunel & Hakim, 1999 ; Wang & Buzsaki, 1996). LFP and EEG recordings capture 
many thousands of these subensembles, integrated across a relatively large spatial 
area. Thus, it may be that narrow beta/gamma bandwidths reflect fewer active 
subensembles. As more subensembles are recruited, the variance in the frequencies 
of these subensembles produces a broader apparent bandwidth in the LFP (if the 
center frequency variance across the active subensembles is unimodal) or even 
multiple apparent bands (if the center frequency variance is multimodal). An 
alternate, and not necessarily exclusive, interpretation comes from models of neural 
mass systems of beta/gamma oscillations, which predict that, for fixed E-I but 
variable drive/stimulation strength, bandwidth increases with frequency (Cohen, 
2014). Thus, shifts in bandwidth might reflect changing inputs into the system 
rather than subensemble recruitment. 
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The current algorithm addresses often overlooked problems in cognitive and 
systems neuroscience. In particular, implicit reliance on canonical passbands can 
lead to both false positive and false negative results in analyses. For example, 
apparent group differences in power may be the results of shifts in center frequency 
of the oscillation and not changes in their respective power. This phenomenon can 
be illustrated by aging research. It is well accepted in the literature that alpha 
frequency slows with aging, yet there have also been reports of a decrease in alpha 
power with age (Obrist, 1954). If it is the case that younger adults have strong  
10 Hz alpha center frequency while older adults have an equally high power alpha 
that has slowed to 8 Hz, canonical band analysis in the 8-12 Hz range will give the 
false appearance of older adults having lower alpha power relative to younger 
adults, as most of the oscillation range for older adults will be outside of the 
canonical alpha range. Additionally, changes in the 1/f background slope, seen with 
aging (Voytek, Kramer, et al., 2015b) and behavior (Podvalny et al., 2015), will shift 
narrowband power despite the fact that power in a narrowband oscillation has not 
changed relative to the background 1/f process (Voytek & Knight, 2015). In contrast, 
false negatives can also emerge, as demonstrated in our event-related EEG 
analyses, where canonical band analysis fails to capture the true underlying effect 
(Fig 3.5). 
 
Finally, and perhaps more problematic, canonical band analyses commit 
researchers to tacit acceptance of predefined oscillatory bands having a functional 
role, rather than considering the underlying physiological mechanisms that may 
generate different spectral features with inter-individual differences. For example, 
recent advances in cross-frequency coupling analyses, such as phase-amplitude 
coupling, have provided a powerful means for probing mechanisms of neural 
communication (Voytek & Knight, 2015); however, these analyses typically 
generally rely on canonical bands, which is problematic given that phase-amplitude 
coupling is known to exhibit different phase coupling modes as a function of cortical 
region (Voytek, Canolty, et al., 2010a). With the algorithm introduced here, it may 
be possible to identify phase coupling modes across brain regions, task, and time, 
increasing specificity and accuracy of cross-frequency coupling analyses. Thus, the 
current method allows researchers to take full advantage of the rich variance 
present in oscillatory data, increases analytical power, and potentially provides 
greater insight into physiological mechanisms underlying oscillations. 
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Chapter 4 

Concluding Remarks 
 
 
 
The prefrontal cortex (PFC) holds a unique place in the hierarchy of cognitive 
processing. Unlike with damage to sensory cortices, PFC damage often does not 
produce obvious, well-defined sensory or motor deficits. Rather, patients with PFC 
lesions are often described as having fundamental changes to their character and 
behavior, leading researchers to attribute a higher-order regulatory function to this 
region. The PFC is domain-general, exerting control across virtually any complex 
behavior studied. Further, PFC influences processing in posterior regions 
independent of sensory modality. This goal of this thesis was to understand the 
spatiotemporal profile of domain-general cognitive control, centered in the PFC, and 
to examine the transformation of sensory information into concrete actions. 
 
The first part of this thesis addresses a central question that has captivated 
scientists for over a century - how stimulus perception is translated into response 
selection. Based on results obtained using direct intracranial recordings from 16 
participants completing 38 experimental sessions, we demonstrate that sustained 
high frequency neural activity centered in the PFC provides a domain general 
mechanism bridging perception and action. This activity predicts response time 
with near perfect accuracy, independent of stimulus and response modality. These 
results provide a foundational framework that explains how the brain connects 
stimulus processing with response execution. 
 
The intracranial research provides clear evidence of a domain and modality general 
pattern of sustained neuronal activity that links sensory perception with behavioral 
output. This finding raises new questions about how this robust  ‘hand-off’ between 
sustained and response systems is implemented. One intriguing hypothesis is that 
low frequency cortical dynamics serve as the mechanism of this interaction. For 
example, directional phase-amplitude coupling from sustained to response sites 
would reflect modulation of response execution by response selection processes. The 
time course of this coupling would provide insights as to the temporal profile of the 
relationship between response selection and execution. For example, does phase-
amplitude coupling increase prior to the handoff, suggesting a peak in information 
transfer? Does this coupling change as a function of task demands, suggesting 
increased modulation for tasks requiring more cognitive control? Another critical 
question is whether phase-phase coupling in specific frequency bands segregates 
processing within the sustained and response networks, and whether this coupling 
changes prior to the handoff between systems. Understanding the mechanisms 



 60 

underlying this handoff is critical for defining how the PFC influences processing in 
downstream regions. 
 
The second part of this thesis introduces a novel method for analyzing 
electrophysiological data. Increasing evidence suggests that cognitive processing, 
including higher order control, is supported by oscillatory dynamics within local 
neuronal populations and across disparate brain regions. The PFC is proposed to 
exert domain general cognitive control via these oscillatory dynamics. To better 
understand the role of PFC in cognitive control, it is crucial to probe the frequency 
and bandwidths of these oscillations on an individual basis, unbiased by a priori 
assumptions and predefined frequency bands. However, the majority of research 
utilizes canonical frequency bands despite the widely reported variability in 
oscillatory frequencies across age, species, and cognitive state. Using our method we 
demonstrate the importance of this individual variability by relating individual 
differences in oscillatory bandwidth and frequency to working memory. The use of 
individualized frequency bands enabled us to probe relationships between task and 
behavior that were hidden by canonical band analyses.  
 
This new approach yields numerous directions for future research, specifically for 
understanding the nature of neuronal communication within and between cortical 
networks. A critical question is whether the variability in center frequencies and 
bandwidths across the cortical mantle segregates networks. Are these networks 
coherent within themselves and how do they bias local information processing in 
higher frequency bands? Do center frequencies and bandwidths change based on 
task demands? Methodological questions also arise. For example, can the use of 
individualized frequency bands provide additional information about the role of 
PAC in behavior? Answering these questions will further the understanding of the 
physiological basis of cognitive control, and will bridge the results presented here, 
which focused on local neuronal processing in the HG band and response selection, 
with larger-scale cortical dynamics. 
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