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ABSTRACT OF THE THESIS

Towards Practical Neural Prosthetic Interfaces

by

Aashish N. Patel

Master of Science in Electrical Engineering
(Intelligent Systems, Robotics, and Control)

University of California, San Diego, 2017

Professor Vikash Gilja, Chair

The connection between our brain and our muscles via the peripheral nerves

enables us to communicate and act upon the world. Individuals suffering from dis-

ease and injury that affect these connections have limited treatment options and

often rely upon prostheses. A fundamental challenge for such prostheses is the

development of a control system that is capable of interpreting desired intentions

accurately. Existing control schemes utilize activation by other functional systems

using clever mechanical linkages or electromyography signal based control. In-

creasingly, neural interfaces are being considered for these applications due to their

x



potential ability to restore behavioral function without co-opting existing motor

functions. Implanted electrode based neural interfaces, such as electrocorticogra-

phy (ECoG) hold promise for providing high signal to noise ratio measurements

that are stable over long time periods while electroencephalography (EEG) pro-

vides convenient, non-invasive scalp surface measurements. Although these tech-

niques provide powerful approaches to measuring neural signals, their application

currently yields limited performance in neural interfacing applications.

Addressing the complexity of interpreting neural signals, we explore differ-

ent neural decoding algorithms and evaluate their performance and limitations.

Taking advantage of the time-varying properties of neural oscillations, we propose

algorithms for sequence learning and sequence transfer learning. We also explore

the different user interaction scenarios and the associated performance limitations.

Furthermore, in advancing the adoption and understanding of non-invasive neural

interfaces, we outline a portable system capable of measuring complex montages of

multi-modal bio-sensing data. The perspective gained from these analyses provide

better insights to practical neural interface design.
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Chapter 1

Introduction

1.1 Motivation

Our ability to interact with the world through communication and move-

ment are fundamental capabilities that are difficult to live without. Unfortunately,

millions of people around the world live with neurodegenerative disorders like amy-

otrophic lateral sclerosis (ALS) and multiple sclerosis (MS) or suffer from spinal

cord injuries leading to partial and full paralysis. These individuals have vary-

ing ranges of obstructed interaction with the most extreme conditions resulting in

locked-in syndrome where the person can no longer communicate with others.

Numerous avenues of research are devoted to developing approaches for lim-

iting and ultimately reversing neuron damage from diseases or physical trauma.

Other approaches have focused on improving the quality of life for individuals

through either pain or symptom mediation. While some of these techniques will

ultimately eliminate the need for any prosthetic device, particularly for nerve dam-

age cases, the development of neural prosthetic interfaces can address interaction

capabilities for individuals with irreparable nerve or limb damage.

1
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1.2 Existing Solutions

There are many prostheses available to individuals suffering from neuron

damage. These devices are typically well-designed mechanical systems that benefit

from under-actuated control schemes as they rely on functioning movement capa-

bilities. Examples of such devices can be found mostly for locomotion and hand

prostheses: Jaipur foot [1, 2], Deka arm [3], etc. While providing partial restora-

tion of function, however, there are imposed hardships on other body components,

leading to the belief that more naturalistic prostheses and control schemes are

better for usability and health [4].

Although more advanced motorized prostheses can be controlled by other

functional movement capabilities, alternative control signal sources are currently

under consideration. Electromyography (EMG) is a promising technique that uses

the neuron activation in the peripheral nervous system to activate the prosthe-

ses [5]. While this works for partial amputations, it has limitations in the number

of degrees of freedom capable of being simultaneously controlled and instead relies

on clever control schemes for driving complex prosthetic actuators [6].

Neural interfaces that interact directly with the brain are also being eval-

uated for use in controlling prostheses. The non-invasive solution involves elec-

troencephalography (EEG) where the measurements are made on the surface of the

scalp. This technique, due to the spatial averaging that occurs from neural signals

traversing the skull and scalp, has limited resolution and typically utilizes stereo-

typical responses such as SSVEP, RSVP, or P300 responses for control [7, 8, 9].

Implanted neural interfaces, such as electrocorticography (ECoG) and depth elec-

trodes, are also under consideration as control signal sources [10, 11, 12, 13]. These

techniques yield higher signal quality and provide the ability to measure neural ac-

tivity at greater resolution than typical EEG approaches. A challenge to ECoG
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adoption is the required surgery to implant the electrodes, and the need for long-

term electrode measurement stability [14]. However, promising devices like the

NeuroPace RNS are tackling this problem with implantable long-term, closed-loop

measurement and stimulation systems. Finally, optogenetics interfaces are being

explored for their efficacy due to its ability to measure from a large quantity of indi-

vidual neurons simultaneously [15]. The introduction of viral vectors to genetically

modify neurons to allow for fluorescent behavior limits the near-term usability of

such systems.

1.3 Challenges

Considering the solutions and associated limitations of existing prosthetic

interfaces discussed in the previous section, the focus of this thesis is on neural

interfaces that directly measure neural activity from the brain. Addressing ECoG

measurements, numerous challenges must still be overcome before utilization as a

long-term neural prosthetic interface. Primarily, the neural decoders must improve

accuracy for a wide range of behaviors and symbol counts. It is important to

expand this capability to allow for higher rates of communication and more natural

interactions [16].

While decoder accuracy can improve the quality of the prosthetic, it has

little utility if the system is overlooked for ones with more usable interfaces. It is

clear that with consideration of user-interface design, neural prosthetic systems can

be integrated into systems that are comfortable, and even enjoyable for users [5].

Moreover, a major challenge is being able to translate and integrate research

into products for individuals. Typical experiments involving ECoG recordings

must occur in the hospital due to portability constraints. EEG systems that are
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portable and easy to interface with, however, exist. The experiments, however, are

typically constrained to laboratory settings in stationary positions or controlled

movement scenarios due to the inability to integrate different sensors in a portable

system while retaining data integrity and synchronization [17].

1.4 Chapter Structure

This thesis is composed of five core chapters in addition to the Introduction and

Conclusion.

In Chapter 2, we provide an overview of different neural decoding algorithms

currently used in ECoG brain-computer interfaces (BCIs). The state-of-the-art

decoders are evaluated for the dataset utilized in the remainder of the thesis. The

resulting analyses provide clear insight to performance trade-offs of each algorithm

and provides motivation for sequence decoding.

In Chapter 3, we analyze existing sequence linear discriminant and hidden

Markov model approaches and propose using long short-term memory networks.

Furthermore, a transfer learning architecture is proposed with results demonstrat-

ing robust decoder performance that exceeds performance of existing classifiers.

We outline a series of user-interaction schemes in Chapter 4 and utilize

sequence decoding with hidden Markov models to elucidate associated advantages

and limitations. Additionally, we propose alternative designs to relaxing timing

rigidity in existing control schemes.

Lastly, we propose a system developed to help advance translatable re-

search in Chapter 5. The device is capable of collecting EEG data and other

bio-sensing data simultaneously. Moreover, the system provides an untethered

platform for conducting complex experiments in real-world environments. Utiliz-
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ing the proposed device and software components, we provide a framework for

better understanding neural correlates to behavior and emotion.



Chapter 2

Neural Decoder Models

Neural decoder models can be divided into two classes, linear and sequence

models. In this chapter, the dataset utilized for both models is outlined with

emphasis placed on nuances between the trialization techniques. Furthermore, the

linear models and corresponding results are discussed in this chapter with sequence

model approaches being presented in Chapter 3.

2.1 Data Description

Neural signals were recorded from nine patients being treated for medically-

refractory epilepsy using standard sub-dural clinical electrocorticography (ECoG)

grids. Each array (Ad-Tech, Racine, WI) contained 34 - 64 platinum electrodes.

Each electrode had a 4 mm diameter (2.3 mm exposed), 1 cm inter-electrode dis-

tance, and were embedded in silastic. The experiment was a finger flexion task

where subjects wearing a DataGlove (Fifth Dimension Technologies, Irvine, CA)

were asked to flex a finger for two seconds based on a visual cue [18]. 30 cues per

finger were collectred across the 10 minutes of experimentation with and average

of 3 - 5 flexions measured per cue segment. All subjects participated in a purely

6
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Figure 2.1: Overview of finger flexion experiment. The top row depicts the
physical behavior measured during during the cue stimuli. The bottom row
depicts a sample subject brain with implanted ECoG grid and measured neural
trace.

voluntary manner, after providing informed written consent, under experimental

protocols approved by the Institutional Review Board of the University of Wash-

ington. All patient data was anonymized according to IRB protocol, in accordance

with HIPAA mandate. This data has been released publicly [19]. Figure 2.1 depicts

the experimental structure.

2.2 Signal Conditioning

Different subject selection criteria were utilized for fixed length and vari-

able length sequence decoders. For the fixed length sequences (linear models), three

subjects were excluded from the analysis due to mismatches in behavioral mea-

surement and cue markers. For the variable length sequences (sequence models)

discussed in Chapter 3, two additional subjects were excluded due to insufficient

coverage of the sensorimotor regions.
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Analyzing the subject specific neural data, electrodes are rejected if the

channel data exceed two standard deviations of the mean signal. The remaining

electrodes are conditioned to eliminate line noise, and then instantaneous spectral

power in the high band range (70 - 150 Hz) for each electrode is extracted for use

as the features for the classifier [20]. The data is segmented using only cue timing

information resulting in 27 - 29 trials per finger (5 classes), with each trial having

a ∼ 2100 ms duration. Results using region filtering contain 6 - 8 electrodes for

each subject and cover the sensorimotor region due to its importance in motor

planning. Where noted, frontal cortex electrodes are also evaluated due to their

involvement in higher-order processing for motor tasks.

2.2.1 Linear Models

For the linear models analyzed, a strong criteria for data binning was uti-

lized to maximize decoder performance. Specifically, the DataGlove recordings

are used for segmentation opposed to the cue information. To convert the con-

tinuous behavioral DataGlove signal to a discrete activation, the data was first

coarsely thresholded using 40% above the detrended baseline amplitude relative to

the maximum value. Finger movement amplitudes were binned to find the baseline

references. The center of the heaviest bin was set as the baseline. The true behav-

ioral onset time was then found within a window preceding the coarse threshold

marker between t − 100 ms and t. Using only the first flexion time marker in a

cue, the data is labeled as thumb, index, middle, ring, or pinky. Trialization of the

neural data was computed using the average high band power for each electrode

for non-overlapping windows of 750 ms beginning at the behavior. Window and

offset parameters were selected from the results of a grid search.
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2.2.2 Sequence Models

Given the nature of the decoding problem presented, sequence models are

a sensible approach. While not explored in this chapter, a detailed analysis is

provided in Chapter 3. The sequence models utilize a slightly different alignment

scheme than the one proposed for the linear models. The cue data, for one, is

the only alignment information that is used for data trialization. Additionally, a

smaller window of 150 ms is used for computing the average high band power for

each electrode. This allows for better resolution of the neural oscillations compared

to the larger averaged response used in the linear model analysis.

2.3 Linear Models

The standard formulation of linear models are characterized for use in in-

dividual finger classification: Naive Bayes (NB), Linear Discriminant Analysis

(LDA), Support Vector Machine (SVM) with linear kernel, and Logistic Regres-

sion (LR). The features used are a single time bin from each flexion sequence per

electrode. All results were five-fold cross-validated. As shown in Figure 2.2A, the

movement and non-movement states can be classified perfectly using LDA. Using

this as a basis for providing only movement data to each of the linear classifiers, a

hierarchical classification structure is utilized. We observe that in this setup that

LDA, LR, and SVM all perform fairly well with LR performing the best across all

subjects.
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2.4 Results

The 5-class discrimination problem results are shown in Figure 2.3A. The

best models perform below 70% on average across patients, but have a large vari-

ance. This inter-patient spread is likely a function of the behavior-cue coherence.

Exploring the class discriminability, confusion matrices for the movement and fin-

ger detectors are shown in Figure 2.2. The movement detector performs excep-

tionally with near perfect classification across all patients. This is a result of the

movement task mapping to an amplitude modulation problem for regions of inter-

est. While only providing binary output, this provides a basis for simple decoders

that are capable of very accurately providing feedback. Examining the finger de-

coding, it is clear that the primary three fingers are capable of decoding at a much

greater accuracy than the ring and pinky fingers. Reviewing the DataGlove, it is

clear that there is a significant amount of noise present during these movements.

This can be explained by the limited independent articulation capabilities of the

two fingers - not only is there less cortical area for motor planning, but paired

movement causes afferent innervation leading to difficulty in disambiguation. In

Chapter 5, symbol count trade-offs are analyzed to evaluate the utility of this

decoding.

Reviewing the linear classification performance using only a single, large

window per electrode, it is clear that the average shift in amplitude across the

different electrodes provides very useful information that can be used for a decoder.

In particular, simple movement detectors that are able to perfectly separate classes

can provide reliable binary output. Limitations with the ability to accurately

decode noisy classes requires the exploration of better trialization and decoding

strategies.
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Figure 2.2: Linear discriminant analysis classification confusion matrices of
movement-rest and 5-finger flexion.

Figure 2.3: Decoding classification accuracy for linear models. Naive Bayes
(NB), linear discriminant analysis (LDA), logistic regression (LR), and support
vector machines with linear kernel (SVM) result statistics are shown across all
6 subjects.



Chapter 3

Decoding Neural Sequences

3.1 Sequence Linear Discriminant Analysis

The standard LDA formulation evaluated in the previous chapter considers

each sample in time. While this representation is powerful when the useful features

are contained in the averaged window, it is difficult to capture behaviors that have

a time scale larger than the window. To allow for temporal modeling, the input

space needs to be modified to allow use of the time bins as features (LDA-Seq) [21].

Therefore the decoder is constructed to take in power from different frequency

bands over a time period of interest per electrode as features. LDA-Seq is supplied

the feature vector, x, and the class label, y, to decode the most likely class label,

ŷ, by

x|y ∼ N (µy,Σy)

ŷ = arg max
y
P (x|y)

12
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This maximum likelihood formulation can be extended to any generative model by

the changing the distribution of P (x|y).

We see in Results that this approach yields high accuracy. As such, we

emphasize that LDA-Seq results in a strong baseline performance because it ex-

plicitly models the temporal response as a function of neural activity relative to

movement onset. This is in contrast to hidden Markov models and long short

memory models discussed later for which learned parameters do not change as a

function of time relative to movement onset, but instead, temporal dynamics are

captured by parameters that are constant across time. Consequently, LDA-Seq

works well for structured experimental tasks, but does not generalize well to un-

structured realistic scenarios and may be prone to over-fitting as electrode count

and trial duration increase.

3.2 Hidden Markov Models

Hidden Markov models provide a probabilistic model framework that can

model sequential data. At every time step in an N -state HMM, an observation can

be obtained from the emission probability distribution conditioned on the latent

state. As we are using continuous surface local field potential, we can model the

emission probability as a Gaussian distribution [22, 23]. The latent state dynamics

follow the Markov property and can be described by a probability transition matrix.

Expectation Maximization (EM) is used to learn the HMM parameters. An HMM

is trained for each class, and classification is performed by selecting the class that

maximizes the sequence likelihood.

We construct an HMM baseline model with 1-state and 2-states using Gaus-

sian emissions to explore if the finger flexion can be modeled with more expressive
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temporal models. The 2-state HMM is a standard ergodic HMM [24] allowing

transitions between both the states. The 1-state HMM, however, is a special case

as it does not have any state dynamics and makes an independence assumption

for samples across time. The 1-state HMM is therefore specified by

P (Ok|y) = P (ok1|y)P (ok2|y) . . . P (okt |y) (3.1)

ot|y ∼ N (µy,Σy) (3.2)

where Ok denotes the observed sequential data and y denotes the class. The

full derivation of Expectation-Maximization (EM) and Viterbi decoding for the

Gaussian emission HMM are found in Appendix B.

One of the advantages of HMMs are the small amount of parameters that

need to be learned. And utilizing a Gaussian Mixture Model fit of the training

data for initialization, convergence occurs in few iterations. The parameter count

is computed as a function of features, f , states, n, and classes, c

params =

(
f × f + 1

2
+ f + n× (n− 1)

)
× c

One-state and two-state models are explored in detail and presented in Results.

3.3 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks have demonstrated an ability

to integrate information across varying time-scales and have been used in sequence

modeling problems including speech recognition and machine translation [25, 26,

27]. While previous work using LSTMs has modeled time varying signals, there

has been little focus on applying them to neural signals [28].
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A B

Figure 3.1: A schematic depicting the Long Short-Term Memory (LSTM)
model architecture. (A) Gating and activation functions for a single unit. (B)
Unrolled LSTM network with Softmax output at every time step during train-
ing.

The single recurrent LSTM cell proposed by [29] is utilized for neural de-

coding and is shown in Figure 3.1A. The model equations are fully specified in

Appendix A. At every time step during training, the label is provided to allow er-

ror propagation during intermediate steps rather than only after the full sequence

has been evaluated [30] and is depicted in Figure 3.1B. Additionally, different ini-

tialization schemes, dropout, regularization, complexity, and training strategies

were explored. The parameters were fit to a single patient and the model applied

to all subjects. Prediction accuracy was evaluated at the last time step of the se-

quence. In contrast to HMMs, a larger number of parameters need to be learned.

The amount can be computed as a function of features, f , hidden units, h, and

classes, c:

params = h× (h+ f + 1)× 4 + (h+ 1)× c

3.3.1 Initialization Schemes

Three initialization schemes were first explored: random, language model,

and sequence autoencoder [31]. The random initialization established the naive
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Figure 3.2: Modified sequence autoencoder architecture used for initialization
of LSTM network weights.

approach to initializing the model where the latter two approaches explored more

structured approaches. After evaluating the different schemes and the associated

performances, we ultimately decided to build on the sequence autoencoder and

utilize a modified version where the encoder and decoder weights are not shared

(Figure 3.2). This approach is similar to the LSTM autoencoder from [32].

3.3.2 Dropout and Regularization

Due to the limited number of samples utilized for training the model, differ-

ent dropout and regularization parameters were searched to prevent over-fitting.

Regularization was ultimately not used due to lack of performance improvement.

Dropout on the recurrent states [33] with a probability of 0.3 was used, however.

Dropout was not utilized on the input layer due to the limited dimensionality.
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3.3.3 Network Complexity

To control the model complexity, different internal recurrent state activation

functions and hidden unit counts were evaluated. Exploring the recurrent state

architecture, gated recurrent units [27] were utilized, but to a slight performance

decrease. Exploring a range of network complexities, it was determined that 100

hidden units provided the best performance for the training time. We found that

it is possible to achieve the same performance using 10 hidden units as well, but

at a much greater training epoch. Moreover, exceeding 100 hidden units provided

no measurable improvement in performance.

Establishing the network complexity, approaches for improving network

training performance were explored. In particular, two learning strategies were

identified: full-sequence learning and curriculum learning. The standard approach

uses the full-sequence during training across all epochs. Curriculum learning, orig-

inally proposed by [34], increases the training sample difficulty across epochs and

[35] proposed adding a probability for selecting the full-sequence or the curriculum-

sequence. This approach is especially useful in situations where optimization

using stochastic gradient descent is difficult [35]. In our task, difficulty is di-

rectly related to the length of the sequence. Defining L as the full-sequence

length, the curriculum-sequence length, l, is scaled by the current epoch, k, using

l = min {k/8 + 3, L}. Each sample in a batch is drawn from a uniform distribution

to be of length L or l.

Lastly, to prevent overfitting, training was stopped at 75 epochs for all

evaluations and subjects. All hyper-parameters were selected through optimization

on a single patient, Subject B, and used for all subjects. Models were trained

through backpropagation using Adam [36].
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3.4 Transfer Learning

We next explored the possibility of transferring the representation learned

by the LSTM from a subject, S1, onto a new subject, S2. Typical transfer learn-

ing approaches keep the lower-level layers fixed, but re-train the higher-level lay-

ers [32, 37]. Due to the unique electrode coverage and count as well as physiological

variability across subjects, this approach yielded poor results. Accounting for these

factors, we propose using an affine transformation to project the data from S2 onto

the input of an LSTM trained on S1 as we might expect a similar mixture of under-

lying neural dynamics across subjects. The fully connected affine transformation

is specified by

x
S′2
t = Wxxx

S2
t + bx

where Wxx and bx are the weights and biases of the affine mapping, xS2
t and x

S′2
t

are the original and the transformed sequential data from S2 respectively.

Using hyper-parameters outlined in the single subject LSTM model, a two-

step training process, shown in Figure 3.3A, is utilized. The first step trains the

LSTM using all of the data from S1. Upon fixing the learned weights, the fully

connected affine layer is attached to the inputs of the LSTM and trained on S2

data. To establish that the affine transformation is only learning an input mapping

and not representing the neural dynamics, a baseline comparison is utilized where

the Step 1 LSTM is fixed to a random initialization and only the SoftmaxS1 is

trained, this is shown in Figure 3.3B. A more detailed explanation of the LSTM

TL architecture can be found in [38].
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A B

Step 1 Step 2 Step 1 Step 2

Figure 3.3: A schematic depicting the LSTM transfer learning model architec-
ture. Where gray indicates fixed and white indicates learned weights, both (A)
and (B) depict a 2-step training process with Subject 1 (S1) training in step
1 and Subject 2 (S2) training of only the affine layer in step 2. (A) Transfer
learning model (TL) training the LSTM and Softmax layers for S1 in step 1.
(B) Randomly initialized LSTM layer and training only the Softmax layer for
S1 in step 1.

Table 3.1: Summary comparing the average accuracy of the LSTM model with
existing approaches after 20 random partitions of all the shuffled training data.

Model Subject A Subject B Subject C Subject D
LDA 0.50 0.53 0.79 0.64
HMM - 1s 0.51 0.61 0.69 0.65
HMM - 2s 0.53 0.59 0.68 0.60
LSTM 0.51 0.62 0.75 0.69

3.5 Results

3.5.1 Sequence Models

We found that the HMM approach is capable of achieving performance of

LDA-Seq while relaxing the timing constraints imposed by the latter. Furthermore,

we found that LSTMs trained on an individual subject perform comparable to

state-of-the-art models with sufficient training samples.

First we establish the performance of the baseline models (Table 3.1). In-
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Figure 3.4: Model performance comparison for sequence learning techniques.
(A) Accuracy as a function of the amount of training samples and (B) Accuracy
as a function of time with respect to movement onset evaluated for different
models and using all available training data. Results from representative subject
C are shown. Error bars show standard error of mean using 20 random partitions
of the shuffled data.

terestingly, we observe that increasing the complexity of the HMM marks little

improvement in the classification accuracy and typically results in decreased ac-

curacy at low sample counts due to the increased complexity. Additionally, while

LDA performs comparably for three subjects, it performs much better than the

other models for Subject C due to the increased alignment between cue and ob-

served behavior. This is expected because, as noted, the LDA formulation is better

suited to take advantage of the time alignment in the experiment.

Examining the performance of the LSTMs (Table 3.1), we demonstrate

that the proposed model is better able to extract information from the temporal

variability in the signals than HMMs and is able to achieve performance comparable

to the best baseline for each of the subjects. Consequently, we observe across most

subjects LSTMs are able to exceed performance of both HMM models and LDA.

Even for Subject C, the LSTM model is comparable to LDA without making the
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temporal alignment assumption.

Further investigating model time dependence, accuracy is evaluated using

neural activity preceding and following behavioral onset. As LDA explicitly models

time, a series of models for each possible sequence length are constructed. Depicted

in Figure 3.4B, we observe that the LSTM is slightly better able to predict the

behavioral class at earlier times compared to HMMs and is comparable to LDA

across all times.

3.5.2 Transfer Learning

Historically, neural prostheses must be tuned frequently for individual sub-

jects to account for neural variability [39, 40]. Establishing LSTMs as a suitable

model for decoding neural signals, we explored their ability to learn more robust,

generalized representations that can be utilized across subjects.

We demonstrate that learning the affine transformation for the input, it

is possible to relax the constraint of knowing exactly where the electrodes are

located without having to retrain the entire network. First examining the baseline

condition in order to assess the ability for the affine layer to learn the underlying

neural dynamics, the S1 LSTM weights were randomly initialized and fixed as

outlined in Figure 3.3B. Looking at Figure 3.5A, the model performs slightly above

chance, but clearly is unable to predict behavior from the data. The TL model

where only the affine layer is trained in Step 2 for S2 (Figure 3.5A) performs

comparably to the subject specific model for S2. The notable advantage provided

by TL is that there is an increase in loss stability over epochs, which indicates

a robustness to overfitting. Finally, relaxing the fixed LSTMS1 and SoftmaxS1

constraints, we demonstrate that the TL-Finetuned model achieves significantly

better accuracy than both the best linear model and subject specific LSTM.
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Figure 3.5: Transfer learning LSTM performance comparison. The TL-
Finetuned, TL, and random LSTM all utilize Subject B as S1 and Subject
C as S2. The subject specific model uses Subject C. (A) Accuracy as a function
of the amount of training samples. (B) Cross-entropy loss across epochs, using
10 training samples per class. Error bars show standard error of mean averaging
results from 20 random partitions of the shuffled data.

Detailing the performance for each TL and TL-Finetuned, we evaluate all

3 remaining subjects for each S2. For the TL model, we found that the transfer

between subjects is agnostic of S1 specific training and performs similarly across

all 3 subjects. The performance of TL-Finetuned is similarly evaluated, but has

trends unique to TL. In particular, we observe that transferring from Subject A

always provides the best results followed by transferring from Subject B. Accuracies

using the maximum permissible training data for all four subjects comparing the

two transfer learning approaches and the best linear model as well as the subject

specific LSTM are reported in Table 3.2.

Visualizing Learned Representation

For the transfer learning models, we explored the stability of the affine layer

and analyzed the learned LSTM weights between subjects. Examining the learned
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Table 3.2: Summary comparing the average accuracy of transfer learning with
subject specific training, using all training data across 20 random partitions of
the shuffled data.

Model Subject A Subject B Subject C Subject D
Best Linear Classifier 0.53 0.61 0.79 0.65
Subject Specific 0.51 0.62 0.75 0.69
TL (S1 = Subject A) - 0.66 0.72 0.60
TL (S1 = Subject B) 0.40 - 0.70 0.46
TL (S1 = Subject C) 0.44 0.63 - 0.59
TL (S1 = Subject D) 0.44 0.67 0.73 -
TL-Finetuned (S1 = Subject A) - 0.71 0.82 0.70
TL-Finetuned (S1 = Subject B) 0.46 - 0.75 0.62
TL-Finetuned (S1 = Subject C) 0.44 0.63 - 0.66
TL-Finetuned (S1 = Subject D) 0.53 0.71 0.79 -

weights of the affine mapping layer, we can see that the mapping resembles a

projection of electrodes to the appropriate brain regions. In Figure 3.6A, we show

the learned affine transformations for two cases: a projection of sensorimotor-

motor (RMotor, RSensory) between the two subjects, and a projection also adding

the occipital lobe electrodes (ROccipital) for S2. As the occipital lobe is involved

with integrating visual information, it is not as informative for motor movement

tasks. Therefore, we would expect, and in fact observe, there to be an affine

transformation with weights for ROccipital closer to zero indicating an absence of

electrodes in S1 that contain similar information. Additionally, we can qualitatively

observe the stability of the affine transform after the fixed LSTMS1 and SoftmaxS1

are relaxed. It is clear by looking between the left and right columns of Figure 3.6A

that the learned weights from TL are a good representation and only require minor

modification in TL-Finetuned.

Furthermore, exploring the use of LSTMs for transfer learning, a two-

dimensional embedding of the LSTM output using t-SNE [41] on the training

data was created. The t-SNE embedding is produced by first converting the pair-
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Figure 3.6: Visualizations of LSTM model parameters. (A) Weights of the
learned affine mapping from Subject 2 (Subject C) to Subject 1 (Subject B).
Electrodes mapped from motor to sensorimotor and sensorimotor + occipital
to sensorimotor regions of S2 to S1, respectively. Both TL and TL-Finetuned
weights are depicted. (B) Two-dimensional t-SNE embedding of the learned
signal representation corresponding to different fingers for both subjects.

wise Euclidean distances, dij, in the high-dimensional space to joint probabilities

pij ∝ exp(−d2ij). We use the LSTMS1 outputs for S1 data and LSTMS1 outputs

for S2 data after passing it through the learned affine layer on S2. All the data

between -300 ms to 900 ms, relative to behavioral onset, is embedded in the two-

dimensional space. From the summary image, Figure 3.6B, it is clear that the

model is able to separate classes for both subjects well and that the projections

for both the subjects are clustered together. Identifying the source of the noise in

the figure, we project the output at different time steps and see that the majority

of the confusion occurs at the start of the sequences.
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Chapter 4

Neural Interface Interaction

The development of long-term implantable systems and better decoders for

neural prosthetic interfaces has the potential to allow for widespread adoption. As

we develop these new interfaces, however, it is important to keep the ultimate goal

of improving the quality of life for individuals who requires such systems in view.

Reviewing the state-of-the-art neural interfaces, it is clear that the user interaction

schemes are devised primarily for the maximization of performance [21, 7]. While

important for establishing neural interfaces as a viable control interface, it does

not take into account the cognitive burden or discomfort imposed on the user.

In this chapter we define a set of usage modes and explore the effects different

interaction schemes have on decoder performance while providing some insight

into the advantages and limitations the decoder design decisions have.

4.1 Usage Modes

Examining the interactions we have daily with other people, technology, and

our environment, there are a host of rich schemes that we utilize to fully experience

the world [42]. Considering existing communication prostheses and other BCIs,

25
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Figure 4.1: Timing breakdown of neural interface interactions.

we can simplify the interaction schemes between the user and a neural interface

to being determined by two parameters - initiation (I) and termination (T ). Each

parameter has two possible values, user (U) or computer (C), that establish who

is controlling the particular timing criteria. For example, a P300-like system that

uses a rigid timing scheme would function on a ICTC , or equivalently CC and

computer-computer, paradigm. On the opposite end of the spectrum, a IUTU , or

equivalently UU and user-user, paradigm are representative of free-paced volitional

control. Figure 4.1 depicts the timing characteristics with respect to a cue such as

those present in the finger flexion dataset.

While ICTC and IUTU are the two most easily observed usage schemes, the

other two hybrid modalities provide interesting design possibilities for exploration.

The ICTU control scheme, in particular, allows for a rigid initiation of behavior,

but allows the user to control the duration of the intent signal. Though numerous
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Figure 4.2: Hierarchical decoder system framework and associated movement
detector and finger detector architectures using HMMs.

human-computer interaction (HCI) studies could be conducted exploring each of

the proposed modes in detail, individuals could have different preferences for a

range of applications. We present a structured approach to evaluating the model

timing influence on performance which provides designers with useful insight when

developing clinical systems.

4.2 Evaluation Methodology

Hidden Markov models were used to explore the interface timing character-

istics. Different from the model proposed in Chapter 3, a hierarchical decoder is

constructed to allow for explicit separation of the movement detector (Figure 4.2).

While alternative HMM structures can provide similar single graph structures (i.e.

hierarchical HMMs), the benefit of separating the functionality is to provide clear

understanding of the timing characteristics while also mimicking gateway decoder

structures. Alternative models were considered for use in evaluating interface inter-

action, however, the simple representation of sequence structures allows for ease of

understanding with respect to physiological phenomenon compared to techniques

like LSTMs.
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Figure 4.3: Segmented movement confusion matrix.

4.3 Results

The movement detector is the first component of the hierarchical decoder

that is analyzed. Compared to linear decoders proposed in Chapter 2, the HMM

model is separated into three states in an attempt to elucidate the performance

characteristics between pre-movement and post-movement sequence information.

Additionally, it is important to note the smaller integration window compared

to that of the linear classifiers (150 ms versus 750 ms). Figure 4.3 shows that

while pre-movement information is identifiable, the movement to post-movement

transition is difficult to decode. Upon further examination of the ECoG signal over

time, this is likely due to the decrease in power that occurs consistently across the

duration of the trial as the behavior is repeated [18].

Examining the finger classification performance, there are three character-

istics that we can explore: integration time, confidence, and class count. Figure 4.4

shows the integration time and confidence trade-offs. Looking first at the integra-

tion time, it is clear that the information rate is highest at the smallest integration
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Figure 4.4: Evaluation of model timing characteristics. The dotted lines rep-
resent the theoretical max limits. (A) Model performance is evaluated with
respect to the integration time used. (B) Model performance is evaluated with
respect to decoder confidence level. The decoder accuracy and information rates
are a function of all sequence lengths that achieve at least a fixed confidence.
They are mapped as shapes onto integration time.

window at the cost of accuracy. This is opposite to the accuracy where the larger

integration times achieve peak performance. Examining the confidence level of

the decoder identifying a symbol, we can see both the decoder accuracy and in-

formation rate increase. Three specific points at 0.4, 0.7 and 1.0 confidences are

selected and plotted as shapes on both Figure 4.4A, B. The range of integration

time, interestingly, is 1 - 1.4 seconds indicating more time does not increase the

decoder confidence, but rather be useful in correcting an incorrect classification.

Further exploring approaches to improving the decoder performance, the

class and electrode region dependencies are explored (Figure 4.5). From Fig-

ure 4.5A it is clear that fewer symbols allow for matching theoretical capacity,

where a greater number of symbols allows for more user commands at the cost of

capacity. Examining the region dependence, a primary motivation for electrode

selection in the models proposed in chapter Chapter 3 was the physiological signif-

icance. Using a 6-class single electrode LDA classifier for ranking, each electrode is

evaluated with the HMM model. Looking at the performance across the different
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Figure 4.5: Decoder performance as a function of symbol count, electrode
region, and electrode count. (A) Analysis of the symbol trade-offs. All unspec-
ified fingers are grouped into a single class. (B) Region analysis of electrodes
motivated by physiology.

regions, it is clear that the sensorimotor electrodes provide the best performance

and with fewer sources. It is important to note that the ranking criteria does not

take into account correlation between electrodes, but evaluates performance for

each electrode independently. It is clear, however, that even when evaluating all

implanted electrodes, it is important to identify the most informative electrodes.

4.4 Discussion

Reviewing the results from the linear classifiers using only a large onset

window, we know it is possible to accurately decode the movement. Moving to

smaller time bins and using sequence decoding techniques, the performance drops

slightly, but is still able to classify movement well. This lends the use of a high-

accuracy binary classifier for use in critical decision tasks or as a type of gateway

decoder that selects modes. As a neural prosthetic designer, there are rich con-

siderations that can be made from the results presented. Looking at information

rate, if the primary goal is to maximize this metric, the smallest integration win-
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dow yields the highest result. However, the resulting decoding accuracy is near

chance due to a lack of informative signal being provided to the decoder. As one

may expect, this approach would lead to a poor user experience. Depending on the

location of the IC and TC in Figure 4.4, different rigid timing constraints can be

considered. For example, the user could provide stimuli for as long as confidence is

sub-threshold and be notified when the decoder is above the designated threshold.

Evaluating this hybrid approach to timing where the interface and the user have an

understanding, the confidence approach can provide a faster interface and achieves

higher accuracy.

Examining the free-paced behavior scenarios, it is difficult to determine

when a stimuli is no longer being provided. The primary issue is the early transi-

tion back to a rest state. With further improvement in the discriminability between

these two states and the utilization of more powerful methods like LSTMs, it is

conceivable that online performance can match that seen in offline evaluation.

Furthermore, identifying the confusion between the classes, it is also possible to

improve performance by either combining or eliminating the last two finger move-

ments. And lastly, looking at the region filtered performances discussed in the

Results, it is clear that it is not necessary to implant large grids to achieve good

decoder performance; rather, using few electrodes placed over informative regions

is preferred.
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Chapter 5

Developing Neural Interfaces

The work presented thus far has been focused on improving the prosthetic

interfaces with a particular focus on implantable devices that utilize ECoG. Unfor-

tunately, the invasive nature of ECoG limits the experimental setups and collection

duration [39, 40]. We have proposed techniques to overcome limitations specific to

data availability and inter-patient variability in previous chapters, but the limita-

tions imposed on the experimental setups have not been addressed. Fortunately,

it is not necessary to implant subdural grids to measure neural responses. Non-

invasive techniques can be utilized with varying levels of success. EEG is one

such approach that is capable of measuring neural signals using electrodes that

make contact with the scalp surface. Though signal quality is not comparable to

ECoG, the setup allows for use outside of a clinical setting. Many interesting ex-

periments have been conducted using EEG, but most must still be constrained to

well controlled environments [43]. Recent work using immersive virtual reality and

simulation chambers have allowed for more realistic experiments to be constructed,

but have significant overhead involved with environmental setup and are therefore

restricted to particular simulations such as driving or flight [44, 45]. In address-

32
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ing this inability to easily construct experiments that are able to measure neural

signals and other bio-sensory information in real-world settings, we developed a

system that will bridge the gap between research and development of practical

neural prosthetic interfaces.

5.1 Related Work

Electroencephalogram (EEG) systems have experienced a renewed interest

for use in non-clinical studies. Though being deployed in large-scale studies, many

of the advances have not been translated to substantial real-world applications. A

major challenge is that the hardware and software used to make measurements. In

particular, the low spatial resolution of EEG limits the amount of usable informa-

tion that can be extracted from the dynamic recording environments. Additionally,

the absence of methods to automatically extract user-environment interactions for

tagging with EEG data introduces an immense overhead - having to manually tag

events or limit experimental design by requiring the subjects to provide information

during the experiments.

Most EEG research from the past few decades has been conducted under

controlled laboratory environments as opposed to practical daily-use applications.

Under these controlled conditions, EEG researchers have been able to control quad-

copters [44], robots [46], and wheelchairs [47]. Unfortunately, the translation of

this research to applications of EEG into the wild are not seen due to constraints

imposed by the existing EEG decoders [17].

EEG research often studies event-related responses evoked or elicited by a

visual or auditory stimulus. For real-world experiments with EEG, the stimulus

onset is not measured or is ill-defined. A solution is to use saccadic eye movements
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and fixations as the time-locking mechanism for analyzing naturalistic visual stim-

uli [48, 49, 50]. Hence, we must simultaneously record and synchronize EEG and

eye-gaze data in real-world neuroimaging studies. For real-world experiments with

EEG, there is also a need to pinpoint the stimulus that is causing the changes

in EEG. Therefore, it is necessary to also record stimuli from the users’ visual

perspective for real-world experiments.

Exploring other sensing modalities that can influence neural decoding, we

can look to emotion. For the analysis of emotional responses, recent research

has shown that the heart plays a complementary role in the generation of emo-

tions [51, 52]. This falsifies the wide ranging belief that the brain is solely responsi-

ble for the generation of emotion. Unfortunately, there is no existing system which

can reliably sense and record EEG and electrocardiogram (ECG) synchronously in

a mobile environment. Furthermore, ECG complicates the experimental design as

subjects must wear an ECG belt or place several sensors on their chest. An alter-

native solution is to use photoplethsmogram (PPG) from commercially available

devices that sense from the wrist. Such devices typically use low sampling rates

to conserve power and therefore can only measure heart rate, as opposed to also

measuring heart-rate variability (HRV).

5.2 System Overview

We propose a modular headset design to increase the flexibility and effi-

ciency of multiple sensory data collection. The core control board was selected

based on cost, community support, and compute capabilities. Arduinos and other

ARM-based embedded systems were evaluated on their ability to achieve lower-

bound frame-rates and collect data from multiple sensors in real-time using the
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Figure 5.1: Proposed modular headset for capturing mult-modal sensory data.
(Left) Headset for capturing eye-gaze and user view. (Left-bottom) PPG sensor.
(Right) Complete system view of first design.

Lab-Streaming Layer (LSL) [53]. Ultimately, the Raspberry Pi 3 compute module

(RPi3) was selected. The sensors that were selected for use in the first version are

explored in detail in the following sections.

5.2.1 Electroencephalogram

Non-invasive EEG is used to collect neural signals from individuals. Any

EEG system that is supported by LSL can be used in the proposed multi-modal

bio-sensing framework. The Emotiv Epoc+ has a suitable trade-off between ease-

of-use and performance. The Epoc+ allows for wireless collection of data that

can be time-stamped and synchronized in real-time by the compute module. The

sampling frequency of the system is on the lower end of new commercial systems at

128 Hz, but has 14 saline activated channels and a gyroscope allowing for collection

of cleaner signals. Independent component analysis (ICA) [54, 55, 56] is used in

real-time using the ORICA [57, 58] toolbox in Matlab to separate the sources of

EEG recordings. For each of the independent components, the scalp map is plotted

in real-time to better depict the source localization. ICA is also used to remove

EEG artifacts due to eye blinks, muscle movement, and other sources.
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Due to the uncomfortable nature of existing heart-rate and heart-rate vari-

ability sensors, a small PPG sensor (Figure 5.1) was developed that magnetically

clips to the ear. The miniaturization was achieved by integrating a high-precision

and high-sampling rate ADC to the sensor. Additionally, to eliminate noise, a

third-order filter (band-pass 0.8 - 4 Hz) was also integrated such that only the

filtered signals are digitized and transmitted to the control board. To also account

for motion artifacts in the heart-rate signals, a 3-axis accelerometer was integrated

into the board. The two data streams, once collected by the controller, are inte-

grated using an adaptive noise cancellation algorithm (ANC) [59, 60]. Addressing

the discomfort and bulk associated with existing systems, the device was devel-

oped to be mountable to the ear-lobe using magnets [59]. And because the system

is low-profile and capable of resting behind the ear, more mobile studies can be

conducted without the constrained natures of existing systems [61, 62].

5.2.2 Eye Gaze

The next sensor of the multi-modal system is a pair of cameras. One cam-

era, an IR emitting device, is capable of accurately capturing the pupil location.

A pupil-centering algorithm is integrated into the platform and is capable of main-

taining the exact location even under perturbation. An algorithm developed by

Pupil Labs for pupil detection and eye-gaze calibration is utilized [63]. The second

integrated camera is a world-view camera. This wide-angle camera provides a view

of what the wearer is seeing. With the information that is retrievable from both the

pupil and the world cameras, it is possible to retrospectively reconstruct the full-

view that the user was observing. The primary issue that stems from this type of

video collection is the large amount of data that must be manually labeled. There

are machine-learning tools that are capable of labeling video post-hoc [64, 65], but
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limit the types of experiments that can be performed. To create a truly real-time

system, the video can be streamed to a computer and processed using deep-learning

libraries such as You Only Look Once (YOLO) that are capable of labeling 20 ob-

jects in real-time [66, 57]. By labeling exactly what the user is looking at and

allowing labeled data to be accessible during the experiment, the rigidity of the

experimental task can be relaxed allowing for more natural free-flowing behavior

to be measured with minimally intrusive cues.

5.3 Evaluation

5.3.1 PPG

To quantify the performance of the miniaturized PPG sensor, different sce-

narios were considered to be representative of real-world scenarios. The baseline

system for comparison is an EEG/ECG collection system from the Institute of

Neural Engineering of Tsinghua University, Beijing, China. It is capable of mea-

suring both signals at 1,000 Hz. Because the reference system takes measurements

from electrodes placed near the heart, artifacts introduced from movements or

other physiological responses are minimized. While taking measurements from

the reference system, our PPG sensor is collecting the ECG signal from the ear

lobe at a rate of 100 Hz. As both systems can be connected in parallel, they are

synchronized using the lab-streaming layer and analyzed post-hoc.

The first experiment was a resting scenario - the user remained seated for a

fixed period of two minutes. The PPG sensor data was compared to the reference

with and without the adaptive noise cancellation filter. The second experiment

was an active scenario where the user was instructed to walk in-place to simulate

an active walking scenario. Here the data was also evaluated with and without the
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Figure 5.2: Characterization of PPG performance with respect to HR-strap
during no movement. (A) PPG results without ANC and (B) PPG results with
ANC.

adaptive noise cancellation filter.

A peak detection algorithm using minimum distance to next peak as one

of the parameters for eliminating false peaks was used to calculate Heart Rate

(HR) from ECG and PPG Data. 15-second trails were used to calculate the HR

using the peak-detection algorithm. Figure 5.2 shows the normalized errors where

a perfect HR estimation resulting in 0% error. Examining the results from the

reference, ANC enabled, and ANC disabled signals, it is clear that the ANC enabled

signals have the least noise and most closely match the reference signal. During

resting measurement, the ANC disabled and ANC enabled signals were comparable

(Figure 5.2). It is in active environments that having the ANC filtering provide a

marked improvement in noise rejection (Figure 5.3).

5.3.2 Eye Gaze

The performance of the paired pupil and world view cameras was evaluated

using a structured visual task to measure precision and accuracy during use. The

user was seated 2-2.5 feet away from a computer monitor such that > 90% of
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Figure 5.3: Characterization of PPG performance with respect to HR-strap
during movement. (A) PPG results without ANC and (B) PPG results with
ANC.

the world camera view was composed of the task screen. Both cameras were

streamed at 30 fps. The participant was instructed to fix their head movement

and only move their eyes to gaze at static targets that appeared on the screen for

the first task. A calibration step where 9 targets appeared in a regular pattern

on the screen calibrated the gaze marker. Immediately following the calibration

process, a series of 20 unique targets spread uniformly across the visual space are

randomly cycled. This process was followed by 30 seconds of rest where the user

was asked to move their head around without removing the headset. This action

was designed to simulate the active movement scenarios while wearing the headset.

Next, the participant is instructed to return to a preferred position and maintain

head position. Twenty new uniformly distributed points are cycled on screen to

measure the precision and accuracy of the eye-tracking system after active use.

This process was repeated for a total of three trials per subject.

Examining the results, we observe that the accuracy and precision of the

eye gaze setup does not drift significantly from the expected output. The accuracy

is measured as the average angular offset (distance in degrees of the visual angle)
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Figure 5.4: Eye gaze (A) accuracy and (B) precision comparisons before and
after movement.

between fixation locations and the corresponding fixation targets (Figure 5.4A).

The precision is measured as the root-mean-square of the angular distance (de-

gree of visual angle) between successive samples during a fixation (Figure 5.4B).

Compared to literature, the gaze accuracy drift of 0.42 degrees is significantly less

than the 1-2 degree drift found in commercial systems [67, 68]. The precision, on

the other hand, experiences only a 0.2 degree shift post movement, indicating a

minimal angular distance shift.

5.4 Discussion

The results presented above are focused on assessing the capabilities of

the multi-modal headset. Ongoing work has been focused on developing custom

EEG electrodes, improving packaging efficiency of the electronics, and securing

all components onto a single headset. Having established eye gaze and PPG as

stable sensors, studies can be conducted using existing mobile EEG headsets like

the Emotiv Epoc+.
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Chapter 6

Conclusion

Three major themes are presented in this thesis with a few key takeaways.

The major themes addressing current problems with developing practical neural

prosthetic interfaces are: improving decoder performance, developing for the user

through mindful interfaces, and creating tools to enable researchers to conduct

research that more easily translates to clinical or commercial applications.

Reviewing the first theme, little existing work has focused on efficient mod-

eling of time-varying dynamics of neural signals. In this thesis, we have shown

that LSTMs can model the variation within a neural sequence and are a good

alternative to state-of-the-art linear decoders. Even with low sample counts and

comparably greater number of parameters, the model is able to extract useful in-

formation without overfitting. Moreover, LSTMs provide a robust framework that

is capable of scaling with large sample counts as opposed to the the limited scal-

ability provided by linear classifiers. Considering the limitations imposed on our

model by stopping at a fixed evaluation epoch, it would be possible to further boost

performance by utilizing early stopping with a validation set. And while the input

features were selected from empirical observations made in previous studies, the
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results could be improved by extracting the features in an unsupervised manner

using autoencoders [69] or by training the decoder end-to-end using convolutional

LSTMs [70, 71].

Furthermore, having established the LSTM as a good approach for neural

decoding, we explored utilizing the model in transfer learning scenarios. Exploring

a less constrained model where the LSTM weights are relaxed, the performance

is shown to exceed that of both the subject specific training and the best linear

decoder models in both the average scenario for all mappings as well as the best

patient mapping. This robustness against subject specific neural dynamics even

when only the affine transform is learned indicates that the LSTM is capable of ex-

tracting useful information that generalizes to the new patient with limited impact

due to the original subject’s relative performance. When exploring the trade-offs

between TL and TL-Finetuned, the latter provides performance that exceeds the

current state-of-the-art models with fewer subject-specific training samples where

the former is able to achieve comparable performance. However, because TL only

requires training of the affine layer, the computation is less expensive than the

TL-Finetuned. From Figure 3.5, it could be seen when learning only the affine

transformation the cross-entropy loss is still decreasing after 500 epochs suggest-

ing that with better optimization methods, the TL model by itself may outperform

the subject-specific model. This motivates the statement that the LSTM is capable

of extracting a representation of the neural variability between behaviors that gen-

eralizes across patients. While this may be specific to the behavior being measured,

it posits potential scenarios for using sequence transfer learning.

The next theme explores the user interactions that should be accounted

for when developing neural prostheses. A hierarchical decoder construction using

HMMs was used to explore these timing constraints using a stereotypical finger
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flexion experiment. While proposing a framework to categorize the interaction

schemes between the user and computer or controller, different trade-offs are pre-

sented. The primary consideration is the rigid timing constrain posed by standard

BCIs - by using a flexible timing scheme, a BCI could be constructed that has less

accuracy (a function of the decoder), but provides greater utility and comfort to

the user. We also propose a hybrid approach that utilizes the decoder confidence

in unison with the user’s input to control the output. While these are two analyses

that are performed to explore the timing and interface control trade-offs, other

important considerations like the symbol count and number of electrodes are also

explored and discussed. Ultimately, it is important to keep the user in mind when

developing neural prosthetic interfaces - the goal is to improve their quality of life

through better decoders and more usable interfaces.

The primary focus of the final theme was to develop a multi-modal platform

that is capable of integrating multiple sensors into a comfortable and wireless

system that enables researchers to conduct experiments that are more realistic and

translate more readily to clinical and commercial applications. The core system

that has been tested and validated against established measurement systems are

the eye gaze tracking, heart rate, and heart rate variability sensors. Paired with

commercial EEG solutions like the Emotiv Epoc+, the proposed solution provides

unmatched mobility and flexibility to explore interesting neural phenomenon in

unstructured environments. The perspective gained from these analyses provide

better insights to practical neural interface design.



Appendix A

Hidden Markov Models

A.1 Index Notation

Initialization

O1, O2, ..., OK −K sequences

ok1, o
k
2, ..., o

k
T − Sequence k

Initial State Probabilities

N − Number of states

πi − Initial state probabilities

bi(O) = P (O;µi,Σi)−Gaussian Emission

(µi,Σi)− Set of N mean, covariance ∀i ∈ {1, 2, ..., N}

[A]ij − Transition probabilities ∀i ∀j ∈ {1, 2, ..., N}

St − State at time t, ∀t ∈ {1, 2, ..., T − 1}
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πi =


1 i = 1

0 i 6= 1

Define:

αk
it , P (ok1, ..., o

k
t , St = i)

βk
it , P (okt+1, ..., o

k
T |St = i)

lkit , max
S1,...,St−1

logP (S1, S2, ..., St−1, St = i, o1, ..., ot)

The forward-backward algorithm can be stated as:

αk
j1 = πjbj(o

k
1) ∀j ∈ {1, 2, ..., N}

αjt+1 =
N∑
i=1

αk
itAijbj(o

k
t+1) ∀t ∈ {1, 2, ..., T − 1}

P (Ok;λ) =
N∑
i=1

αk
iT

βk
iT = 1 ∀i ∈ {1, 2, ..., N}

βk
it =

N∑
j=1

bj(o
k
t+1)β

k
jt+1Aij ∀t ∈ {T − 1, ..., 2, 1}

Followed by Expectation-Maximization.
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E-step:

P (Sk
t = i, Sk

t+1 = j|ok1, ..., okT ) =
αk
itAijbj(o

k
t+1)β

k
jt+1

N∑
i=1

αk
iT

P (Sk
t = i|ok1, ..., okT ) =

N∑
j=1

P (Sk
t = i, Sk

t+1 = j|ok1, ..., okT )

M-step:

Aij ←

K∑
k=1

T−1∑
t=1

P (Sk
t = i, Sk

t+1 = j|ok1, ..., okT )

K∑
k=1

T−1∑
t=1

P (Sk
t = i|ok1, ..., okT )

µi ←

K∑
k=1

T∑
t=1

P (Sk
t = i|ok1, ..., okT )okt

K∑
k=1

T∑
t=1

P (Sk
t = i|ok1, ..., okT )

Σi ←

K∑
k=1

T∑
t=1

P (Sk
t = i|ok1, ..., okT )(okt − µi)(o

k
t − µi)

T

K∑
k=1

T∑
t=1

P (Sk
t = i|ok1, ..., okT )

Prediction on new data can be performed using the Viterbi decode algorithm.

lki1 = log πi + log bi(o
k
1) ∀i ∈ {1, 2, ..., N}

lkjt+1 = log bj(o
k
t+1) + max

i
(lkit + logAij) ∀j ∈ {1, 2, ..., N}, ∀t ∈ {1, 2, ..., T − 1}
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State Transitions:

Φk
t+1(j) = arg max

i
(lkiT + logAij) ∀j ∈ {1, 2, ..., N}, ∀t ∈ {1, 2, ..., T − 1}

Sk
T = arg max

i
(lkiT )

Sk
t = Φk

t+1(S
k
t+1) ∀t ∈ {T − 1, ..., 1}

A.2 Vector Notation

The subscript comma and × are used interchangeably to state dimension-

ality, the following dimensions are:

N − States

K − Sequences

T − Time

F − Features

And : indicates a slice across all values in the specified dimension. The following

variables denote:
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OK,T,F − Sequences

AN×N − Transition probabilities

πN,1 − ([1, 0, ..., 0]T )N×1; Initial state probabilities

(µF ,ΣF×F )N − Set of means and covariances

BK,N,T −Bk,n,t = P (Ok×t, µn,Σn)

αK,N,T − Forward

βK,N,T − Backward

P (O)K×1 − Sequence Probability

The forward-backward algorithm can be stated as:

α:,:,1 = π �B:,1,:

α:,:,t+1 = α:,:,t × A�B:,:,t+1 ∀t ∈ {1, 2, ..., T − 1}

P (O) =
T∑
i=0

α:,:,i

β:,:,T = 1K×N

β:,:,t = A× (B:,:,t+1 � β:,:,t+1)

Followed by Expectation-Maximization.
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E-step:

P (St, St+1)K − Tensor(K, T-1, N, N)

P (St)− Tensor(K, T-1, N)

P (St, St+1) =
α:,:,t × A�B:,:,t+1 � β:,:,t+1

P (0)
∀t ∈ {1, 2, ..., T − 1}

P (St) =
∑
N

P (St, St+1))

M-step:

A =

∑
K

∑
T

P (St, St+1)∑
K

∑
T

P (St)

µi =

∑
K

∑
T

P (St):,:,i �O∑
K

∑
T

P (St)
∀i ∈ {1, 2, ..., N}

Σi =

∑
K

∑
T

P (St):,:,i � (O − µi)× (O − µi)
T∑

K

∑
T

P (St)
∀i ∈ {1, 2, ..., N}

Inference is identical to index notation as each sequence is evaluated independently.

A.3 Psuedocode
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Algorithm 1 Hidden Markov Model - Gaussian Emission

1: procedure Learning(seqs, π)
2: y← N(µ,Σ).PDF(seqs)
3: Forward :
4: α0 = π × y0
5: for i := 1 to t step 1 do
6: αi ← αi−1 × P � yi
7: Backward :
8: βt ← 1
9: for i := 0 to t− 1 step 1 do

10: for s := 0 to S step 1 do
11: P ′s ← P × diag(yt−i,s)
12: βt−i−1 ← P ′ × βt−i
13: Expectation:
14: γ = (α� β)/sum(αT )
15: ξ = (P � α0...t−1 × (y × β)1...t) /sum(αt,N)
16: Maximization:
17: P ← sum(ξT,S)/sum(γ0...t−1,S)
18: µ′ ← γ × seqs
19: Σ′ ← tile(γ, F )� (tile(seqs,N)− tile(µ, T ))× tile(γ, F )
20: µ← sum(µ′S)/sum(γT,S)
21: Σ← sum(Σ′S)/sum(γT,S)
22: end procedure
23:

24: procedure Inference(seqs)
25: y← N(µ,Σ).PDF(seqs)
26: α0 = π × y0
27: for i := 1 to t step 1 do
28: αi ← αi−1 × P � yi
29: l = sum(αt,N)
30: scores′0 ← tile(log y0 + log π,N)
31: for i := 1 to t step 1 do
32: scores′i ← tile((max((ssi−1 + logP )N) + log yi), N)
33: states′ ← argmax(scores′N)
34: scores← max(scores′N)
35: statest ← argmax(scorest,N)
36: for i := 0 to t− 1 step 1 do
37: statest−i−1 ← gather(states′t−i, statest−i)
38: end procedure



Appendix B

Long Short Term-Memory

Networks

The defining equations for the LSTM cell are defined as

it = sigmoid(Wxixt +Whiht−1 + bi) (B.1)

jt = tanh(Wxjxt +Whjht−1 + bj) (B.2)

ft = sigmoid(Wxfxt +Whfht−1 + bf ) (B.3)

ot = sigmoid(Wxoxt +Whoht−1 + bo) (B.4)

ct = ct−1 � ft + it � jt (B.5)

ht = tanh(ct)� ot (B.6)

where the W terms are weight matrices, the b terms are biases, and � represents

Hadamard multiplication per the [29] paper. To enable gradient flow, the forget

gate bias term is initialized to 1 [72, 73].
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