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Abstract 
Plasmids are so closely associated with pathogens and antibiotic resistance that their potential for conferring other traits is often 
overlooked. Few studies consider how the full suite of traits encoded by plasmids is related to a host’s environmental adaptation, 
particularly for Gram-positive bacteria. To investigate the role that plasmid traits might play in microbial communities from natural 
ecosystems, we identified plasmids carried by isolates of Curtobacterium (phylum Actinomycetota) from a variety of soil environments. We 
found that plasmids were common, but not ubiquitous, in the genus and varied greatly in their size and genetic diversity. There was little 
evidence of phylogenetic conservation among Curtobacterium plasmids even for closely related bacterial strains within the same ecotype, 
indicating that horizontal transmission of plasmids is common. The plasmids carried a wide diversity of traits that were not a random 
subset of the host chromosome. Furthermore, the composition of these plasmid traits was associated with the environmental context 
of the host bacterium. Together, the results indicate that plasmids contribute substantially to the microdiversity of a soil bacterium and 
that this diversity may play a role in niche differentiation and a bacterium’s adaptation to its local environment. 

Keywords: microdiversity, mobile genetic elements, plasmids, genetic traits, HGT, plant litter, Curtobacterium, Actinobacteria, Actino-
mycetota 

A high degree of genetic variation is encompassed within tradi-
tional operational taxonomic units of bacteria [1]. This so-called 
microdiversity encompasses an enormous amount of variability 
in traits that influence a bacterium’s ecological role and its contri-
butions to community functioning [2–4]. Plasmids may contribute 
to this microdiversity as they can encode a diversity of traits [5] 
that may allow a bacterium to adapt rapidly to environmental 
changes [6]. The most striking examples of this are the transfer 
of metal and antibiotic resistance, particularly in the human 
gut microbiome and clinical environments [7–10]. Beyond toxin 
resistance, however, evidence of the importance of plasmids to 
broader niche-adaptation is sporadic [11, 12]. Most of what we 
currently know is based on a handful of well-represented genera 
(e.g. Vibrio, Pseudomonas, and  Burkholderia) within the phylum Pseu-
domonadota (e.g. Chibani et al. [13]) and few studies consider Gram-
positive bacteria (e.g. Gushgari-Doyle et al. [14]) but see, Finks and 
Martiny[5]. 

A general understanding of plasmid evolution, the diversity 
of traits that they carry, and their importance for adaptation 
in most bacterial communities thus remains elusive [5, 15]. To 
investigate these unknowns in a soil bacterium, we focused on 
the widespread genus Curtobacterium [16] for which we have 
isolated a number of closely related strains from the top layer 
of soil (plant litter) in different environments. Curtobacterium 
strains associated with plant disease can carry plasmids encoding 
for putative virulence-encoded genes [17]. However, plasmid 

prevalence and diversity for this genus, as in other soil bacteria, 
are largely uncharacterized. 

Plasmids can mobilize across broad bacterial host ranges [18], 
interact with other types of mobile genetic elements [19], and 
recombine with their hosts [20]. We thus expected that Curtobac-
terium plasmids would also be subject to a high degree of mobility 
and recombination. However, plasmids are also vertically trans-
mitted to daughter cells during host cell replication such that, 
at some level of genetic resolution, they will be phylogenetically 
conserved. Thus, plasmids might be conserved within Curtobac-
terium ecotypes, previously defined as genetic clades with similar 
phenotypes that are adapted to local environmental conditions 
including temperature and moisture [21]. Alternatively, selection 
might act on plasmids separately from that of an ecotype’s chro-
mosome such that plasmid traits vary by environment rather than 
host phylogeny. To test these alternatives, here we asked: (1) Are 
plasmids within the Curtobacterium genus phylogenetically con-
served? (2) What traits do the plasmids encode and how do these 
compare to the chromosome? (3) Are plasmid traits correlated 
with the environment from which they were isolated? 

Long-read sequencing of 23 strains and additional reference 
genomes resulted in analysis of 26 putative plasmids from 18 
Curtobacterium strains (Fig. 1; Supplemental Methods). Three 
lines of evidence suggest that these sequences are indeed 
plasmids. First, the average plasmid guanine-cytosine (GC) 
content was ∼7% lower relative to the host chromosomes
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Figure 1. Curtobacterium plasmids by host ecotype and their genetic similarity, size distribution, and GC content; (A) cladogram of complete 
chromosomes of Curtobacterium constructed from a phylogenomic analysis of 916 single-copy core genes; all branches displayed represent bootstrap 
values of 95% confidence or greater; bolded values next to strain identifiers are nucleotide lengths of plasmids in bp; the branches are colored by 
ecotype designation with adjacent color tiles indicating the environment from which the strain was isolated; note: asterisks indicate the two plasmids 
in host P990 with relatively lower % GC content (see panel D) compared to the others; (B) heatmap of plasmids constructed from mash pairwise 
similarities; the strain identifiers are listed by row and the plasmid identifier (Table S1) as columns; the color tiles beside the row labels indicate the 
environment as in panel A; (C) the frequency of plasmid sizes in kilobases across all strains, where the x-axis is the lower bound of each 25kB bin; 
(D) percent GC content for each plasmid and its corresponding chromosome. 

( Fig. 1D). Second, the topology (usually circular) and replicon 
sizes (smaller than the chromosome) of the sequences are well-
known signatures of plasmids [22, 23]. Third, all but one plasmid 
(pD03b) carried some kind of plasmid feature. Interestingly, 
two plasmids of strain P990 showed % GC contents that were 
half that of other plasmids (32.3% and 35.3% versus ∼67%; 
Table S1), suggesting more recent acquisition of these mobile 
genetic elements. Approximately half of the plasmid sequences 
encoded genes for known plasmid replicon types (RepA-type, 
n = 4;  Table S6) or mobilization (MOB) relaxases (MOBF or MOBP, 
n = 12; Table S7). In addition, some plasmids carried genes 
necessary for conjugative, cell-to-cell DNA transfer (e.g. trwC) 

and for partitioning to daughter cells during host replication and 
division (e.g. parA/B/G; Fig. S1). Based on sequencing coverage, 
most plasmids appeared to be present in single copies, whereas 
some smaller ones were present in high-copy numbers (Table S1). 
None of the Curtobacterium plasmid sequences grouped into 
known plasmid taxonomic units (PTUs), although this is not 
surprising given the low representation of Actinomycetota in 
databases (Supplementary Methods [18, 24]). 

Plasmids were common among Curtobacterium strains, but their 
distribution across the phylogeny was not random. Plasmids were 
notably absent from ecotype IV and very common in ecotype I 
(Fig. 1A). That said, plasmid size varied greatly even within clades
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Figure 2. Curtobacterium plasmid COG functions are distinct from chromosomal functions and vary by environment; (A) percentages (Log10 scaled) of 
COG functional category counts of the Curtobacterium plasmids (top) and chromosome (bottom) sequences; the total number of COG functions 
identified on Curtobacterium plasmids and chromosomes are shown in parentheses; no COG functions for category Z were identified on the plasmids, 
and plasmids pCff2, pCff3, and pD03b are not included as no COG functions were identified; (B) normalized frequencies of COG categories encoded by 
the plasmids by environment; the counts of COG functions were first converted into proportional abundances within an environment after removal of 
COG functions (n = < 6), and COG counts were then normalized across environments using Z-scores to standardize for uneven representation of 
plasmids across environments; C—energy production and conversion; D—cell cycle control, cell division, chromosome partitioning; E—amino acid 
transport and metabolism; F—nucleotide transport and metabolism; G—carbohydrate transport and metabolism; H—coenzyme transport and 
metabolism; I—lipid transport and metabolism; J—translation, ribosomal structure and biogenesis; K—transcription; L—replication, recombination 
and repair; M—cell wall/membrane/envelope biogenesis; N—cell motility; O—post-translational modification, protein turnover, chaperones; 
P—inorganic ion transport and metabolism; Q—secondary metabolites biosynthesis, transport and catabolism; R—general function; S—unknown 
function; T—signal transduction mechanisms; U—intracellular trafficking, secretion, and vesicular transport; V—defense mechanisms; X—mobilome: 
prophages, transposons. 

(1.5–607 kb, mean = 136 kb), supporting the idea that plasmids 
are not phylogenetically conserved in this genus ( Fig. 1C). Indeed, 
genetic (mash) similarity of the plasmids was not correlated with 
the genetic similarity of the host chromosomes (Fig. 1B; RELATE: 
r = 0.28; P = 0.08). 

Curtobacterium plasmids encoded more than 4000 gene calls 
that clustered into 2396 distinct orthologous groups (Fig. S1). 
Despite making up only 3% of the gene content of the entire 
dataset, this genetic diversity spanned 22 Clusters of Orthologous 
Genes (COG) functional categories. Based on whole genome 
alignments, Curtobacterium plasmids did not appear to share a 
conserved backbone, such as is commonly observed for some 
IncF type plasmids found in Enterobacteriaceae [25]. Only one 
gene, lsr2 (a putative histone-like protein), was shared by 38% 

of the 26 plasmids, whereas most other genes were shared by 
fewer than three plasmids (Fig. S1). BlastP searches of consensus 
amino acid sequence alignments of Lsr2 against the National 
Center for Biotechnology Information (NCBI) Reference Proteins 
(refseq_protein) database reveals that this small protein (∼12 kDa) 
is ubiquitous throughout the genus. In Mycobacterium smegmatis, 
this protein appears to be involved in the biosynthesis of mycolyl-
diacylglycerols, an apolar lipid in the cell wall, as well as a DNA-
binding function having a transcriptional regulatory role [26–28]. 

The Curtobacterium plasmids encoded a diversity of traits that 
were not a random subset of chromosomal traits (G (21) = 1203.2, 
P < 0.001; Fig. 2A). Not surprisingly, genes associated with the 
mobilome, prophages, and transposons (X) were relatively more 
prevalent on plasmids than the chromosome, but other functions
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including those associated with cell motility (N) were relatively 
more abundant on plasmids than on chromosomes (Fig. 2B). Con-
versely, carbohydrate transport and metabolism functions (G) 
were more prevalent on Curtobacterium chromosomes than plas-
mids. Given their role in soil carbon cycling, it is notable that 11 
plasmids carried 46 CAZyme (carbohydrate active enzyme) genes 
(Table S9; Fig. S2A), and in more than half of these cases, the 
CAZyme family was not present on the associated host chromo-
some. We also identified two genes encoding nitrate assimilation 
(narB) on a plasmid (Fig. S2B). 

Finally, plasmid trait composition differed significantly by the 
environment from which the host was isolated, explaining ∼14% 
of variation in COG functional categories (PERMANOVA: Pseudo-F 
(7): 1.424, P = 0.042). For instance, plasmids isolated from grassland 
and alpine environments encoded a higher prevalence of carbohy-
drate transport and metabolism (G) genes, whereas those isolated 
from two arid environments (Desert and Salton-Sea) encoded 
a relatively high number of genes associated with cell motil-
ity (N) and translation, ribosomal structure, and biogenesis (J) 
(Fig. 2B). 

Our results indicate that plasmids contribute substantially to 
the microdiversity of Curtobacterium and that this diversity may 
play a role in its adaptation to the local environment. Horizontal 
transfer appeared to break up any signal of vertical transmission 
of plasmids, even within Curtobacterium ecotypes. However, only 
about half the plasmids encoded for genes known to facilitate 
mobility from one bacterium to another. This result is similar 
to that of marine Vibrio spp., where plasmids also appear to 
spread rapidly by horizontal gene transfer, many by unknown 
mechanisms [29]. 

This work also highlights the paucity in knowledge about which 
plasmid traits will be favored in natural ecosystems. Models 
investigating the evolutionary mechanisms that sustain plasmid 
diversity suggest that they should encode traits, like antibiotic 
resistance, that are widely beneficial to many bacterial species 
and come under relatively strong selection [30]. Future investi-
gations into how, when, and where plasmid traits such as cell 
motility provide soil bacteria with an advantage would provide a 
more in-depth understanding of the eco-evolutionary role of these 
mobile genetic elements in soil. 
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