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ABSTRACT OF THE THESIS 
 

Integrating an Agro-Meteorological Indicator for Assessing Drought Impacts on Agricultural 
Production 

 
By 

 
Lei Li 

 
Master of Environmental Engineering 

 
 University of California, Irvine, 2015 

 
Professor Amir AghaKouchak, Chair 

 
 
 

      In the study, we analyzed variability of three univariate and multivariate drought indicators 

and yields of five of the largest rain-fed crops in Australia including wheat, broad beans, canola, 

lupins and barley. Using multivariate copulas, this study relates changes in climate variability to 

changes in crops production during 1980-2012.  In the analysis period, the five chosen crops 

indicate a modest association with the selected drought indicators: Standardized Precipitation 

Index (SPI); Standardized Soil Moisture Index (SSI), and Multivariate Standardized Drought 

Index (MSDI). The latter combines precipitation and soil moisture and provides a measure of 

agro-meteorological drought. A model is developed to describe the relationship between drought 

and crop production using copulas. The model offers the likelihood of crop yield given an 

observed or predicted SPI, SSI or MSDI. 
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INTRODUCTION	  

Potential impacts of climate variability and change on crop yields have been pursued for decades 

worldwide. Temperature (e.g. Wheeler et al., 2000), precipitation (e.g. Rosenzweig et al., 2002) 

and solar radiation (e.g. Monteith, 1972) significantly affect agricultural production in both 

positive and negative ways. A quantitative understanding of the relative impacts of the variability 

in climate on crop yield can help develop effective adaptation strategies to cope with climate 

change and variability. 

 

Different approaches have been applied in previous studies, such as statistical regression method 

(e.g. Peltonen-Sainio et al., 2010) and process-based crop simulation models (e.g. Lobell and 

Ortiz-Monasterio, 2007). Statistical regression method evaluates the impact of climate change on 

agricultural productivities through regressing crop yields to different weather conditions. This 

empirical method has been applied in numerous crop-climate relationship studies since the 1960s 

(e.g., Wolfgang, 1973). The classic regression models developed by Thompson 

(1969,1970,1975,1985,1986,1988) has far-reaching implications in the study of relationship 

between climate variables and crop yields. In the 1990s, Nicholls (1997) suggested to use first 

difference regression method, which calculated first differences (year-to-year variations) of yield 

and relevant weather variables to assess the relationship between crop yields and climate 

variables. The study demonstrated the method would reduce the influence of artificial trends and 

could lead to skillful forecasts. Lobell and Field (2007) adopted Nicholls’s approach to evaluate 

the response of global yields for wheat, maize and barley in a warming world. Osborne and 

Wheeler (2013) jointly examined the relationship of yield and climate variability for rice, wheat 

and maize from 1961 to 2010 using first difference method. In addition to time series approach 
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based on the data at a single location, panel methods based on different locations and time are 

adopted in the recent studies. Schlenker et al. (2010) used a panel analysis of historical yields of 

five staple crops grown in South Africa and Zimbabwe and weather data during 1961-2002. 

Lobell et al. (2011a) combined crop yield, crop locations, growing seasons and monthly 

temperature and rainfall in a panel analysis to assess the impact of climate trends on yields of 

four crops at the country scale for the period of 1980 to 2008.  

 

Another type of approach found in numerous studies on assessment of climate-crop yield 

relationship is process-based crop simulation model. This approach, linking meteorological 

variables with crop growth processes, is capable of simulating yields under constant management 

with climate records as the input of these models. Crop Environment Resource Synthesis 

(CERES) model (Richie et al., 1985; Hodges et al., 1987; Chipanshi et al., 1997; Hundal and 

Kaur, 1997; Rosenthal et al., 1998; Bannayan et al., 2003; Nain et al., 2004) and Agricultural 

Production Systems Simulator (APSIM) model (McCown et al., 1996; Keating et al. 2003) are 

the common adopted models to investigate the potential effects of climate changes on crop 

production. Most of the models applied for simulating crop yields are crop-specific models. For 

instance, APSIM model consists of a suite of modules for different crops. APSIM-Wheat is the 

common adopted module in the wheat yield-climate relationship simulation studies. To date, 

APSIM system contains modules for 28 different crops (See crops on 

http://www.apsim.info/Documentation/Model,CropandSoil/CropModuleDocumentation.aspx).  

 

However, both process-based crop simulation and statistical modeling approaches are subject to 

substantial uncertainties. Therefore, recent studies (Lobell et al., 2005; Yu et al., 2014) often 
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combine different methods for evaluating the effects of climate change and variability on 

variables would put on agricultural production. 

 

Heat stress has been reported to have a significant impact on crop outputs throughout the world. 

Lobell et al. (2011b) presented statistical evidence to indicate that maize productions in United 

States and Africa had negative response to accumulation of temperature above 30℃. In addition, 

based on processed-based crop simulation models, Lobell et al. (2012) also found that wheat 

growth in northern India suffered significant acceleration of senescence from extreme heat. 

Moreover, another crop simulation study over Europe-wide indicated that high temperature and 

drought in the growing season could reduce the crop productivity (Ciais et al., 2005).   

 

Beside the heat stress, variability in precipitation and soil moisture would also affect production 

of crop yields. Recently, Luo and Wen (2014) attempt to examine the effects of observed climate 

on three most grown crops in Australia by adopting robust statistical regression method. They 

indicate that growing season rainfall was significantly, non-linearly correlated with crop yields in 

New South Wales, Australia. 

 

In order to assess climatic contributions to crop yields, the association between crop yields and 

climate variables over the past few decade needs to be evaluated. A good understanding of the 

relationship between rainfall and rain-fed agricultural production in the past would help to cope 

with future climate variability. 
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Here, a retrospective analysis is applied in the study. We investigate the relationship between 

variations of crop yields in rain-fed area in Australia and precipitation and soil moisture 

variability in the growing areas of the crops by comparing year-to-year variations in historical 

data during 1980-2012. We choose five of the largest rain-fed crops grown in Australia including 

wheat, broad beans, canola, lupins and barley in the study (ABARES, 2013). The rain-fed 

agricultural regions of Australia locate in the temperate areas shown in Figure 1.1. 

 

 
Figure 1.1|Australia Climate Map The Australian Bureau of Meteorology climate 

classification (Data from bom.gov.au.) 
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The objectives of this study are: 

(1) Compare the historical variations of yields for five broad-acre rain-fed crops grown in 

Australia and Standardized Precipitation Index (SPI), Standardized Soil moisture Index (SSI), 

and Multivariate Standardized Drought Index (MSDI) over Australia’s agricultural areas.  

(2) Adopt a copula-based approach to model the dependence structure between the crop yield 

and three climate indices for probabilistic yield assessment. 
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METHOD	  

 
2.1 Data Description 

To compare the variations of precipitation and soil moisture with rain-fed crop yields, 

standardized indices including Standardized Precipitation Index (SPI) (McKee et al., 1993), 

Standardized Soil moisture Index (SSI) (Hao and AghaKouchak, 2013), and Multivariate 

Standardized Drought Index (MSDI) (Hao and AghaKouchak, 2014) are adopted in the study. 

The SPI and SSI are mathematically based on the cumulative probabilities of given precipitation 

and soil moisture with historical data. They are capable to represent the amount of rainfall and 

soil moisture over a given time scale. The MSDI, combining the SPI and SSI, incorporates 

precipitation and soil moisture using the joint distribution function of the two variables. In this 

study, the SPI, SSI and MSDI for the period of 1980-2012 are obtained from Global Integrated 

Drought Monitoring and Prediction System (GIDMaPS; Hao et al., 2014; 

http://drought.eng.uci.edu/). The original precipitation and soil moisture data are derived from 

National Aeronautics and Space Administration’s (NASA) land-only version of Modern-Era 

Retrospective Analysis for Research and Applications (MERRA-Land) data. 

 

Rather than use annual averages for the climate variables, we used precipitation and temperature 

of the growing season (Table 2.1). Furthermore, precipitation and temperature are extracted for 

the rain-fed agricultural areas in Australia (shown in Fig 2.1).  
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Figure 2.1|Satellite Sensor Based Global Map of Rain-fed Cropland Areas (obtained from 

http://waterdata.iwmi.org/) 
 

The annual crop yields for 1980-2012 were obtained from the Food and Agriculture 

Organization (FAO) of the United Nations. The five crops used in this study are broadly grown 

in the rain-fed areas of Western and South-Eastern Australia. Wheat, Canola and Barley usually 

seed in May and harvest in October, while the growing season of Broad beans and Lupins are 

from June to November (ABARES, 2013). We use 6-month scale climate indices to cover the 

growing season of five different crops chosen in the study respectively (Table 2.1).  

 

Table 2.1| Growing Season of The Crops and The Specific Climate Indices 
Crops Growing Season SPI/SSI/MSDI 

Wheat May-October 6-month, October 

Broad beans June-November 6-month, November 

Canola May-October 6-month, October 

Lupins June-November 6-month, November 

Barley May-October 6-month, October 
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2.2 Dependence Analysis 

2.2.1 Copula 

To model the relationship between the drought indicators and yields of rain-fed crops, the 

approach of copulas is applied in the study. In statistics, copulas are functions used to link two or 

more univariate distributions to form multivariate joint distribution (Sklar, 1959,1973). Each 

copula function of random variables is constructed with marginal distributions that are uniform 

parametrically. The approach is useful and convenient for examining the dependence structure 

between the variables by estimating multivariate joint distribution independently of the marginal 

distribution functions (Nelsen, 2006). To model the joint distributions of different couples of 

drought indicators and yields of rain-fed crops, we adopted a bivariate copula fitted to the 

historical data and estimated the parameters of each copula function of different combinations. 

 

For the case of bivariate problem, we consider two continuous random variables X and Y, 

describing drought indicator and crop yield respectively. Assume 𝑭𝑿(𝑥) and 𝑭𝒀(𝑦) denote the 

marginal cumulative distribution functions of X and Y. The values of variables are firstly 

transformed into values in the interval 𝕀 = [0,1] through probability integral transform method.  

Then, the joint distribution of X and Y can be described with a copula C as: 

 𝑭𝑿𝒀 𝑥,𝑦 = 𝑪 𝑭𝑿(𝑥),𝑭𝒀(𝑦)   (1) 

 

There is a range of copula families for modeling dependence structure between the stochastic 

variables, for example, Gaussian copula, the Student’s t-copula and the class of Archimedean 

copulas (Nelsen, 2006). The Archimedean copulas (e.g. Clayton, 1978; Gumbel, 1960; Frank, 

1979) are capable of building joint distribution function of random variables with only one 
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parameter. Thus, the families of Archimedean copulas are widely adopted for dependence 

structure modeling. Here, a Frank copula (Frank, 1979) from Archimedean class is adopted to 

model the dependence structure between the drought indicators and yields of rain-fed crops. The 

bivariate Frank copula can be expressed as: 

 
𝑪𝛉(𝒖,𝒗  ) =

1
𝜃 𝑙𝑛 1+

𝑒!!" − 1 𝑒!!" − 1
𝑒!! − 1

 (2) 

where 𝜃 is the parameter, and u and v are the marginal distributions of transformed variables 

which are uniform on 𝕀 = [0,1]. In this study, u and v denote the marginal distributions of 

drought indicators and yields of rain-fed crops, respectively.  

 

2.2.2 Parameter Estimation 

Maximum likelihood estimation (MLE) is a prominent approach used in parameter estimation for 

different copulas. Assume two random variables X and Y describing drought indicator and crop 

yield respectively with their joint distribution function 𝑭𝑿𝒀 𝑥,𝑦  and marginal probability 

density functions 𝒇 𝑥  and 𝒇(𝑦). The joint density function can be written as: 

 
𝒇𝑿𝒀 𝑥,𝑦 =

𝜕!𝑭𝑿𝒀 𝑥,𝑦
𝜕𝑥𝜕𝑦 𝒇 𝑥 𝒇(𝑦)  (3) 

MLE estimates the parameter 𝜃 by maximizing log-likelihood: 

 log𝓛 𝜃; 𝑥,𝑦 = log𝒇𝑿𝒀 𝑥,𝑦|𝜃   (4) 

In this study, combining equation (1), (2), (3) and (4), the parameter 𝜃 in each copula function of 

different combinations of drought indicators and crop yields can be estimated through MLE 

approach. 
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2.2.3 Measure of Association 

The association between stochastic variables can be measure in different ways. Pearson linear 

correlation coefficient, which is a traditional index of association, evaluates the degree of two 

random variables linearly correlated. However, in most cases, the association between stochastic 

variables is nonlinear. In the case of nonlinear association between variables, concordance 

measurement is usually been considered. Assume two random variables X and Y, if the observed 

values of X and Y increase/decrease simultaneously, the two variables are concordance. 

Spearman’s correlation coefficient and Kendall’s correlation coefficient are the usual method to 

estimate the concordance of two random variables. The copula-based association measurement 

remains invariable with the strictly monotonously increasing transformation (Nelsen, 2006). The 

two coefficients are related to the copula functions, regardless of the marginal distributions of 

variables. Schweizer and Wolf (1981) described the two correlation coefficients in terms of 

copula functions.  To evaluate the concordance of different drought indicators with rain-fed crop 

yields used in this study, we apply Kendall’s correlation coefficient based on the copula 

framework, which is useful and convenience to be employed in the measurement of association 

between variables.  

 

In this study, we use the Kendall 𝜏 rank correlation coefficient for a bivariate Frank copula 

expressed as: 

 𝝉 =   𝟏+ 𝟒[𝑫(𝜽)− 𝟏]/𝜽   (5) 

where 𝑫(𝜽) is a so-called “Debye” function defined using the integration variable t as:  

 
𝑫(𝜽) =   

𝟏
𝜽

𝒕
𝒆𝒙𝒑(𝒕)− 𝟏𝒅𝒕

𝜽

𝟎
   (6) 
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The values of the coefficient range from -1 to 1. Two variables are in accordance with each other 

when the value is close to 1. When the value is close to -1, it indicates that the two variables have 

a negative correlation with each other. The variables are independent if the value of the 

coefficient equals to 0. 
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RESULTS	  

3.1 Time series analysis 

Figure 3.1 displays the comparison of year-to-year variability of Australia wheat yield with three 

drought indicators for the period of 1980-2012. From the observation of the figure, we note that 

both the yield of Australia wheat and three drought indicators have been highly variable in recent 

decades. Such fluctuations indicate that Australia crop production is closely related to climate 

variations. 

 
 Figure 3.1| Time Series of SPI (top), SSI (middle), MSDI (bottom) and wheat yield in 

Australia, 1980-2012 
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As it is shown in Figure 3.1, the variation pattern of the observed yield of Australia wheat during 

1980 to 2012 is similar to different drought indicators (SPI/SSI/MSDI). All of the three drought 

indicators have good relationship with the crop yield. This similar change pattern of wheat yield 

and three drought indicators suggest that one can use these drought indices to predict the rain-fed 

crop yields. Similarly, we investigated the other four common crops namely broad beans, canola, 

lupins and barley in Australia rain-fed areas.     

 

Figure 3.2 displays time series of yields (blue line) of (a) wheat, (b) broad beans, (c) canola, (d) 

lupins and (e) barley grown in the rain-fed areas of Australia and their corresponding growing 

season SPI (red line) during 1980 to 2012. All of the crops’ yields show good relationship with 

SPI, especially for canola and lupins. As it is shown in the figure, while the value of SPI 

increasing/decreasing, the yields change accordingly. The consistency between variability of SPI 

and crop yields in inter-annual time series is apparent. Only in 2012, the change in yields is not 

in line with climate variability. The crop yield increases despite a decline in precipitation. Other 

than climatic factors, crop production could also be influenced by some human activities such as 

land management for increasing the yields and improvement of cultivar in recent years. Crop 

productions are closely associated with the effective precipitation during the growing season. 

The obvious physical relationship between SPI and crop production is clearly identified in Figure 

3.2. In general, the variability in yields is in line with the SPI, which indicates that it is possible 

to apply SPI to reflect the trend of rain-fed crop yields.                   



14	  
	  

 
Figure 3.2| Time Series (a) Wheat, (b) Broad beans, (c) Canola, (d) Lupins, (e) Barley 

Yields in Australia against SPI, 1980-2012 
 
 

Soil moisture is another important factor that correlated closely to crop growth. The metabolism 

of crop plants is closely related to the water contained in soil, and this is what the SSI reflects. If 

the SSI decreases a lot, it means the soil contains little water for plant to utilize. This results in a 

slow metabolism of plant, and brings less crop production. Moreover, plant cannot live under a 
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certain level of soil moisture. Therefore, the condition of soil moisture is one of the key factors 

to influence the production of crops. 

 
Figure 3.3| Time Series of Australia (a) Wheat, (b) Broad beans, (c) Canola, (d) Lupins, (e) 

Barley Yields and SSI, 1980-2012 
 
 
 

Figure 3.3 compares time series of yields (blue line) of (a) wheat, (b) broad beans, (c) canola, (d) 

lupins and (e) barley grown in the rain-fed areas in Australia and their corresponding growing 
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season the SSI (red line) during 1980 to 2012. It is also shown good relationships between all of 

the five crop yields and the SSI as the figure displays. We note that in the figure, the yield of 

canola(c) shows the strongest association with the SSI among the five crops chosen in the study. 

In most years, the yield of canola changes in the same way when the SSI increases or decreases. 

The overall trend of yields for the five rain-fed crops is substantially close to the trend of the SSI. 

It suggests that, besides precipitation, Australia’s rain-fed crop yields could also have a strong 

relationship with the soil moisture conditions in the growing area. Furthermore, it could be 

evidence that application of climate indices on reflecting the trend of some rain-fed crop yields 

in Australia was feasible. 

 

As precipitation and soil moisture jointly influence the agricultural production and the SPI and 

the SSI are both have good relationship with different crop yields during recent decades, the 

MSDI, combining the SPI and SSI, incorporates precipitation and soil moisture using the joint 

distribution function of the two variables, are of great importance to be considered in the climate-

yield relationship research.  

 

Figure 3.4 displays time series of yields (blue line) of (a) wheat, (b) broad beans, (c) canola, (d) 

lupins and (e) barley grown in the rain-fed areas in Australia and their corresponding growing 

season MSDI (red line) during 1980 to 2012. The MSDI exhibit a very similar change patterns as 

the plots of the SPI shown in Figure 3.2. It reveals that the MSDI also have good consistency 

with the crop yields. The good satisfactory agreements between different rain-fed crops and the 

three drought indicators suggest that one can use these drought indices to predict the rain-fed 

crop yields. 
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Figure 3.4| Time Series of Australia (a) Wheat, (b) Broad beans, (c) Canola, (d) Lupins, (e) 

Barley Yields and MSDI, 1980-2012 
 
 

In general, from observation of Figure 3.2, 3.3, 3.4, the consistency between variability of 

SPI/SSI/MSDI and crop yields in inter-annual time series is apparent. The SPI and the MSDI 

have very similar change pattern with crop yields. These results are based on the observation of 
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the plots of time series during 1980-2012. To evaluate the relationship more accurately, a 

statistical analysis is shown in the next section. 

 
3.2 Dependence analysis 

To statistically investigate the dependence structure between each climate index and crop yield, 

we fit a Frank copula from Archimedean classes to data in this study and jointly analyze the 

association with different couples of drought indicators and Australia rain-fed crop yields. 

 

We estimated the parameter of each copula for different couples of Australia rain-fed crop yields 

and drought indicators using Copulafit programed in Matlab. By introducing the estimated 

parameters into Equation (2) in section 2.2.1, we obtained joint distributions of different couples 

of crop yields and drought indicators. Figure 3.5,3.6,3.7 displays contour lines of joint 

distributions of yield of (a) wheat, (b) broad beans, (c) canola, (d) lupins and (e) barley grown in 

the rain-fed areas of Australia during the period of 1980 to 2012 and SPI, SSI, MSDI, 

respectively. The joint distributions based on copula show dependence structure between drought 

indicators and crop production. Given a specific joint probability and precipitation, one can 

obtain yield of different crops. 
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Figure 3.5| Joint Distributions of Australia (a) Wheat, (b) Broad beans, (c) Canola, (d) 

Lupins, (e) Barley Yields and SPI, 1980-2012 
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Figure 3.6| Joint Distributions of Australia (a) Wheat, (b) Broad beans, (c) Canola, (d) 

Lupins, (e) Barley Yields and SSI, 1980-2012 
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Figure 3.7| Joint Distributions of Australia (a) Wheat, (b) Broad beans, (c) Canola, (d) 
Lupins, (e) Barley Yields and MSDI, 1980-2012 
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SUMMARY	  AND	  CONCLUSIONS	  

 

Although precipitation and soil moisture are not the only factors that could decide food 

production, they do play critical role in crops’ growth. By analyzing the time series of yields of 

five crops grown in the rain-fed areas in Australia and three drought indicators (SPI/SSI/MSDI) 

during the period of 1980-2012, we notice that both the yield of Australia wheat and three 

drought indicators have been highly variable in recent decades. All of the three drought 

indicators have good relationship with yields of the five rain-fed crops. The similar change 

pattern in the inter-annual historical observed records indicates the close association between the 

drought indicators and rain-fed crop production in Australia. 

 

Using multivariate copulas, the study relates changes in climate variability to changes in crops 

production during 1980-2012. By fitting a Frank copula to the bivariate data, we obtained the 

joint distribution of each drought indicator and crop yield. The copula-based joint distributions 

show dependence structure between drought indicators and crop productions. The model 

describes the relationship between drought and crop production using copulas and offers the 

likelihood of crop yield given an observed or predicted SPI, SSI or MSDI. 

 

The Kendall’s rank correlation coefficient of each couples of drought indicators and yields of 

rain-fed crops in this study shows association with the three drought indicators. SPI and MSDI 

show the strongest concordance with all of the five rain-fed crops according to the relatively high 

correlation coefficient in this study.  
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The proposed model can be used to assess the probability of crop yield exceeding a certain 

threshold if precipitation or soil moisture is known. Knowing both precipitation and soil moisture, 

hence MSDI, one can derive probability of exceedance of crop yield for thresholds of interest 

(e.g., above average yield or yield above 75th percentile).  
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