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ABSTRACT OF THE THESIS

Prediction Model Development

of Seismic Building Responses

by

Han Sun

Master of Science in Statistics

University of California, Los Angeles, 2018

Professor Arash Ali Amini, Chair

The ability to predict building responses subjected to an earthquake could be used to identify

building damage which would largely reduce human inspection effort and operation down-

time. This thesis explores various of machine learning methods to formulate prediction

model for seismic building responses over the great Los Angeles region using three actual

earthquake scenario data (1994 Northridge, USA, 1999 Chi-Chi, Taiwan and 2000 Tottori,

Japan). The result shows that the geospatial interpolation method kriging outperforms

other candidates among all earthquakes in both accuracy and model stability using criteria

such as cross-validation and median absolute residual difference. Some inconsistency in

accuracy levels between different earthquakes are caused by 1)earthquake characteristics

and 2)representativeness of data samples of each event.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Seismic hazard is one of the most severe natural threats to modern urbanized areas where

buildings are often condensed and tall. Due to the inherent dynamic characteristics of both

buildings and frequency contents of earthquake, tall and slender buildings are often more

vulnerable to earthquakes. In seismic active regions such as US west coast, it is crucial for

the urban centers to be resilient when subject to frequent and large earthquakes. Bruneau

and Reinhorn [2] defined building resilience as an ability of the structure to possibly avoid

the shock, or to absorb such a shock and to restore to its normal performance after subjecting

to the shock. The first phase of the ability can be referred as a robust design of structures

which is mandatory required by the building design code; however, given the uncertainty of

earthquake characteristics, there is always a possibility that the building goes into second

and third phase.

In order to timely recover from a damage state to the normal state of the building, rapid

damage detection is essential. There are considerably large amount of research being done

for damage detection in both theoretical simulation and experiment testing perspective. For

example, Pandey and Biswas [3] developed a damage detection algorithm based on changes

in structural stiffness demonstrated by numerical analysis of a truss structural system; Kos-

matka and Ricles [4] proposed an experimental procedure that relies on changes of system

modal vibration characteristics which determines structural damage state. All these tech-

niques requires accurate knowledge of dynamic responses of structures such as Peak Story

Drift Ratio (PSDR) and Peak Floor Acceleration (PFA).
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It is through structural health monitoring and sensing techniques to retrieve actual struc-

tural response under earthquake in field. However, it is practically not realistic to install

sensors on every building at all interested measurement locations within each floor and

over all floors. Therefore, it is important to develop an interpolation scheme which utilizes

known structural responses to predict unknowns. This process contains two major com-

ponents, intra-building (interpolate along building height) and inter-building (interpolate

between different buildings). There are numerical research in former aspects. For example,

Naeim [5] developed a cubic interpolation method for measured structural responses along

building height; Limongelli [6] developed a spline function which interpolates deformed struc-

tural shape based on measurement and determines structural damage accordingly. On the

contract, there is very few research on inter-building interpolation. Several research has been

done in quantifying correlation patterns between different buildings. Loth and Baker [7] stud-

ied spatial correlation between different buildings by simplifying building responses as their

Spectral Acceleration at first mode period (SAT1). They developed semi-variogram mod-

els between different SAT1 which represents different buildings. Another study by DeBock

et. al. [8] extended the interested variable to be actual building responses using simulated

strucutral responses result from Nonlinear Response History Analysis (NRHA). They eval-

uated correlation patterns of PSDR and PFA of actual building responses with respect to

SAT1. They further proposed an empirical model to predict building responses using SAT1.

However, SAT1 is usually not available at most locations of majority buildings. To practically

interpolate building responses, more advanced statistical techniques are necessary.

1.2 Objective

This study intends to explore several statistical and machine learning based interpolation

methods for two major measure of building seismic responses, PSDR and PFA respectively,

that are directly related to building damage. Considering that building damage are primarily

related to maximum PSDR and PFA over building height, only the maximum building

responses are used to formulate statistical models.
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1.3 Source of Data

Three major earthquake scenarios are considered in this study. They are 1994, Northridge in

United States; 1999, Chi-Chi in Taiwan and 2000 Tottori in Japan. They all occurred in high

density urban areas and caused tremendous damage to buildings and were recorded over a

large geo-area. This provides sufficient amount and magnitude ground motion acceleration

time history data available at Peer NGA2 West Database [9] to conduct the analysis. The

three earthquakes all have large magnitude from 6.61 to 7.62. Often, Peak Ground Accel-

eration (PGA) is a general measure of earthquake intensity at a particular site. However,

the maximum geometric mean PGA differ a lot from each other as summarized in Table 1.1.

This is mainly due to various site properties such as soil and earthquake characteristics.

Another notable differences between the three earthquakes is the geo-spatial coverage. As

demonstrated in Figure 1.1, black dot represents epicenter and red crosses are where stations

locate. Northridge earthquake covers an area of approximate 18500 km2. In contrast, 400

stations from Chi-Chi earthquake covers 36200 km2 and Tottori has covered 112000 km2.

As a result, the recorded stations has uneven distributions over the area which affects the

prediction models and their result. This will be discussed in later chapter as well.

Table 1.1: Summary of Earthquake Statistics

Earthquake Mw.1 No. of Records Year Fault Type Vector Sum PGA2

Chi-Chi, Taiwan 7.62 400 1999 Strike Slip 0.047 - 2.01

Northridge, USA 6.7 152 1994 Blind Thrust 0.008 - 1.15

Tottori, Japan 6.61 414 2000 Strike Slip 0.001 - 1.13

1 Magnitude.

2 Peak Ground Accerlation (PGA) in g.

A vector sum PGA histogram of Northridge earthquake is shown in Figure 1.2. It is

observed that the distribution of PGA concentrates at 0.2 g and decreases in an exponen-

tial manner while the peak PGAs are as high as 1.5 and 2 g. This indicates that building

responses distribute in a highly nonlinear pattern due to the irregular distribution of earth-
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quake intensity measured as PGA. It further suggests that linear prediction models are not

suitable for the purpose of this study.
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Figure 1.1: Locations of Recorded Stations for Each Earthquake Scenario
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Figure 1.2: PGA Histogram of Northridge Earthquake

NRHA was conducted to retrieve building’s seismic responses under the pre-described

ground motions from the three earthquakes using OpenSees [10]. A series of reinforced

concrete moment frame building models developed by Haselton [11] are selected to formulate

a representative pool. The major structural dissimilarity between buildings is building height

and corresponding design criteria. From NRHA, interested EDPs (PFA and PSDR) were

extracted and used as data in this study. An example PSDR histogram is shown in Figure 1.3.
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Table 1.2: Building Models for Nonlinear Response History Analysis

Building Index 1st Mode Period (sec) Number of Stories

CMF-2 0.66 2

CMF-4 1.12 4

CMF-8 1.71 8

CMF-12 2.01 12

CMF-20 2.63 20
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Figure 1.3: PSDR Histogram under Northridge Earthquake
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Comparing between the three earthquakes, an exponential fitted trend of PSDR and PFA

over epic distance of 2-story building is demonstrated in Figure 1.4. It shows that PSDR is

significantly dominated by epic distance and drops faster than that of PFA. In addition, the

trend of PSDR between Tottori and Chi-Chi is consistent while that of PFA crosses each

other at 30km epic distance. These observations, also observed in other buildings, indicate

that PSDR is more consistent with geo-spatial features while PFA might contain contents

that is not able to be explained by geo-spatial features which is discussed in later chapter

too.

To summarize, there are two types of EDPs available at each site from each earthquake.

For each EDP, it can come from five different buildings. All EDPs are treated as response

variable Y and the predictors are latitude and longitude of a site.

1.4 Proposed Methodology

There are three categories of methodology being used in this study. The first one is a

traditional geo-statistical tool, Kriging or Gaussian processing regression. The other two are

recent popularized Kernel based machine learning techniques, Kernel ridge regression and

Kernel support vector machine respectively. These methods are applied and compared to

classical regression models such as ordinary least squares and naive model. The naive model

is selected to be a baseline comparison and ordinary least squares is used as a linear model

benchmark. Their performance is evaluated based on a non-replacement Bootstrap which

gives an error distribution and will be discussed in detail in later chapter.
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CHAPTER 2

Methodology

All methods being used in this study are derived in this chapter using frequentist’s ap-

proach. The uncertainity caused by underlying distribution of model parameters is consid-

ered through a non-replacement Bootstrap procedure. The geo-data in this study can be

naturally fitted into the geo-spatial model Kriging while the geo-coordinate latitude and

longitude can be considered as features for other general models.

2.1 Naive Model

The naive model is used as a baseline which makes predictions by averaging training response

variables as shown in 2.1.

Ŷ = Ȳ (2.1)

2.2 Ordinary Least Squares

Ordinary Least Squares (OLS) is commonly used in a wide range of engineering, biology

and social research field. It is a linear regression method to predict dependent variables

using a series of predictors. The model is expressed in matrix form in Equation 2.2 with the

predictor being a matrix of dimension n × p. Y is a n × 1 vector (response variable) and ε

is the residual and assumed to follow Normal distribution with mean 0 and variance σ2
n.

Y = Xβ + ε (2.2)

β, model parameter of dimension p× 1, can be estimated by Equation (4) (OLS estimator)

which is solved by minimizing Residual Sum of Squares (RSS): (Y −Xβ)T (Y −Xβ). RSS
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for OLS is a matrix form of objective function. There is no penalty term in OLS model. It

has a close-form solution, or unique global minimum as shown in Equation 2.3.

β̂OLS = (XTX)−1XY (2.3)

The OLS estimator is given by Equation 2.4.

f̂(X) = Xβ̂OLS (2.4)

This derivation is the frequentist’s view which assumes that model parameter has a single

true value instead of a distribution. Therefore, it is equivalent to the Maximum Likelihood

Estimator (MLE) of the residual ε which is showed in Equation 2.5.

β̂MLE = max
β

p(Y |X, β)

= max
β

n∏
i=1

1√
2πσn

exp

(
− (yi − βxi)2

2σ2
n

)
= max

β
log

(
1√

2πσn

)
−

n∑
i=1

(yi − βxi)2

2σ2
n

= min
β

(Y −Xβ)T (Y −Xβ)

(2.5)

2.3 Ordinary Kriging

Ordinary Kriging is a linear interpolation scheme which assumes a random field expressed

through a variogram [12] over spatial locations s1, s2, ...sn. It is suitable for geo-spatial data

prediction and therefore selected for this study[13]. The model is given by Equation 2.6.

f(s) = µ+ δ(s) (2.6)

Where δ(s) is a location dependent stochastic component defined by semivariogram γ(·) and

f(s) is response variable Y at site s. The model estimator is given by Equation 2.7 subjected

to
∑n

i=1wi = 1 to ensure unbiasness[12].

f̂(s0) =
n∑
i=1

wif(si) (2.7)
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Where wi is an estimated weight. Same as OLS, the derivation starts with RSS in Equa-

tion 2.8 which can also be derived from MLE as well.

min
W

= E
[(
f(s)−

n∑
i=1

wif(si)
)2]

(2.8)

By assuming f(s) is intrinsically stationary and incorporate the constraint using Lagrange

multiplier λ, Equation 2.8 can be written to:

min
W

2
n∑
i=1

wiγ(s− si)−
n∑
i=1

n∑
j=1

wiwjγ(si − sj)− 2λ
( n∑
i=1

wi − 1
)

(2.9)

By taking derivative with respect to each wi and λ, Equation 2.8 has a global minimum

and is solved by Equation 2.10.Ŵ
λ

 =

V arf(si) 1

1T 0

−1 Covf(si),f(s)

1



=



γ(s1 − s1) γ(s1 − s2) . . . γ(s1 − sn) 1

γ(s2 − s1) γ(s2 − s2) . . . γ(s2 − sn) 1

. . . . . .
. . . . . . 1

γ(sn − s1) γ(sn − s2) . . . γ(sn − sn) 1

1 1 . . . 1 0



−1 

γ(s− s1)

γ(s− s2)
...

γ(s− sn)

1



(2.10)

Equation 2.10 is named ordinary Kriging based on its assumption in Equation 2.6 that there

is a constant mean µ of this process. This assumption may not hold true for the given

dataset. Another Kriging, universal Kriging is also used which assumes a trend existing in

the data instead of constant. By doing so, the universal Kriging model is formulated as

below and its solution can be refereed to [14].

f(s) = µ(s) + δ(s) (2.11)

2.4 Kernel Ridge Regression

Kernel Ridge Regression (KRR) has flexibility in transferring X into high dimensional space

using various of Kernels and is beneficial in dealing with complex data structure. There are

10



several ways to derive it. We start again with a model similar to Equation 2.2 and 2.6 as

shown by Equation 2.12.

Y = f̂(X) + ε (2.12)

Using a Kernel machine to represent the model, the KRR estimator of a single x is given by

Equation 2.13.

f̂(x) =
n∑
j=1

αjK(x, xj) (2.13)

The frequentist’s approach is to add a l2 regularization term, λ|α|2 to control model com-

plexity such that the loss function which minimizes both RSS and regularizes λ is shown in

Equation 2.14 and its matrix form in Equation 2.15 where K is the Kernel matrix:

min
α

n∑
i

(yi − αjK(xi, xj))
2 +

n∑
i

n∑
j

αiαjK(xi, xj) (2.14)

min
1

2
||Y −Kα||2 + λαTKα (2.15)

Take derivative with respect to α and set it to zero,

K(Kα− Y ) + λKα = 0 (2.16)

(K + λI)Kα = KY (2.17)

In numerical cases, K may not be always invertible, use Single Value Decomposition (SVD)

on K,

K = UΣV T (2.18)

U(Σ + λI)ΣV Tα = UΣV TY (2.19)

Let α̃ = V Tα and Ỹ = V TY

Σ1 0

0 0

 +

λI 0

0 λI

 α̃ =

Σ1 0

0 0

 Ỹ (2.20)
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Which can be solved as:

α̃ =

(Σ1 + λI)−1 0

0 λ−1I

Σ1Ỹ

0

 (2.21)

This approximate α gives global minimum of the loss function 2.15 of the KRR model. The

Kernel trick has been applied and is not discussed in detail here.

2.4.1 Kernel Construction

There are various of ways to construct a Kernel and the efficiency of learning is depen-

dent on the data structure. For example, element in Gaussian Kernel matrix is defined as

Equation 2.22.

kg(xi, xj) = e−
D(xi,xj)

2

2σ2 (2.22)

Where D(xi, xj) is the Euclidean distance between xi and xj and σ is a control variable of

the Kernel’s function shape. A KRR with linear Kernel shown in 2.23 is often called ridge

regression.

kl(xi, xj) = xi · xj (2.23)

Several Kernels are visualized in Figure 2.1.
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Gaussian Kernel,σ=0.1
Exponential Kernel,σ=0.1
ANOVA Kernel,σ=2

Figure 2.1: Demonstration of Kernels
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2.5 Model Training

2.5.1 Non-Replacement Bootstrap

In order to evaluate model performance, A total of 100 non-replacement Bootstrap procedure

is performed. Within each procedure, the data is randomly separated into training batch

and testing batch based on a prefixed ratio 7 : 3. The Median Absolute Relative Devation

(MARD)(Equation 2.24) is reported for each model where nt is number of testing data such

that a distribution of error measure MARD can be visualized.

MARD = median{|yi − f̂(xi)

yi
|, i = 1, 2, ..nt} (2.24)

2.5.2 K-Fold Cross Validation

Within each procedure, model parameters are determined by k-fold cross validation using

training data. For each k = 1, 2, 3, ...K, fit the model with parameter λ to the other K − 1

parts, the prediction error is computed as:

errork(λ) =
∑

i∈kthpart

(yi − f̂(xi))
2 (2.25)

Which gives cross validation error:

CV (λ) =
1

K

K∑
k=1

errork(λ) (2.26)

The λ value which generates least CV is selected.

2.5.3 Response Variable Logarithm Transfer

An additional nature logarithm transfer is performed on all EDPs of the dataset. This is

based on knowledge that EDPs and IMs often follows log-normal distribution over geo-spatial

domain and such transformation makes normal assumption valid of the prediction residual

ε.

13



CHAPTER 3

Result Analysis and Discussion

The prediction performance is evaluated by the MARD distribution form Non-replacement

Bootstrap. Both EDPs, PFA and PSDR, are evaluated for each considered earthquake.

base is the baseline model, lat, long, and lat long is three OLS model with corresponding

predictors. krr gaussian and krr linear is two KRR model using Guassian and linear Kernel.

ordinary kriging and universal kriging is two Kriging models with no trend and linear trend

respectively.

3.1 Bias and Variance of Prediction

MARD distribution of PSDR and PFA of 4-story building is shown in Figure 3.1 which

shows prediction performance for PSDR is more robust than that of PFA. In Figure 1.4,

it shows consistent observation that PFA is probably less explained by geo-spatial features

compared to PSDR. Regardless of which predictors to use, linear models have the highest

error median at 18% for PSDR and 60% for PFA and the violin plot for linear models MARD

is quite symmetric which indicates that they are unbiased with high variance. This result

is consistent with nature sense that linear models without regularization turns to have high

variance in testing error. This can be derived in the following.

14



(a) PSDR

(b) PFA

Figure 3.1: MARD Distribution of 4-Story Building Subjected to Northridge Earthquake
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testing error = Eβ̂,ε̃
[
‖Y + ε̃−Xβ̂‖2|X

]
= Eβ̂,ε̃

[
‖Y −Xβ̂‖2 + ε̃2|X

]
= Eβ̂,ε̃

[
‖Y −Xβbest‖2 + ‖Xβbest −Xβ̂‖2|X

]
= Eβ̂,ε̃

[
‖Y −Xβbest‖2|X

]
+ Eβ̂,ε̃

[
‖β̂ − βbest‖2|X

]
= Bias2model +MSE

(3.1)

MSE = Eβ̂,ε̃
[
‖β̂ − βbest‖2|X

]
= E

[
‖β̂ − E(β̂) + E(β̂)− βbest‖2

]
= E

[
‖β̂ − E(β̂)‖2

]
+ E

[
‖E(β̂)− βbest‖2

]
= V ar +Bias2β

(3.2)

In Equation 3.1, the test error is decomposed into a bias term from the model and a Mean

Squared Error (MSE) term which is further decomposed into variance and estimator bias

(Equation 3.2). By adding back a noise term, testing error of linear model is decomposed

into:

1. Bias of model: can be improved by increasing model complexity;

2. Bias of estimator: can be improved by regularization of the model;

3. Variance of estimator: can be improved by regularization of the model;

4. Noise.

The above discussion provides some evidences for poor performance from linear model and

supports the idea to add regularization for model complexity as well as use nonlinear models

which can both be achieved by KRR. Figure 3.1 shows KRR with linear Kernels, or ridge

regression, has slight better performance than that of all linear models indicating that bias

and variance of estimator is reduced by regularization. KRR with Gaussian Kernel further

reduces testing error significantly which suggests that bias of model is reduced. As a result,

the prediction error is mainly caused by complex data structure and can be improved through

16



using complex models such as KRR with Gaussian Kernel or the Kriging models. There is

an inherent relationship between them which is discussed in the following section.

3.2 Kriging and Kernel Ridge Regression

Kriging model is equivalent to Gaussian process regression while µ is assumed to be zero

(often referred as simple Kriging) which is essentially a Bayesian framework of KRR with

Gaussian Kernel. We first make the connection between Kriging and Gaussian Process (GP)

regression. In Equation 2.6, Ordinary Kriging model is defined to be a constant mean µ plus

a location dependent Gaussian term δ(s). Assuming the constant mean is zero, we have:

f(s) = δ(s) = f̂(X) ∼ N (0, Σ) (3.3)

Now, let’s make connection from Equation 3.3 to KRR by project X into a N-dimensional

space which is much greater than p such that we have:

f̂(X) = φ(X)Tw, Y = f̂(X) + ε, ε ∼ N (0, σ2
n) (3.4)

The likelihood of residual ε to follow normal distribution is:

p(Y |X, w) =
1

(2πσ2
n)2

exp

(
− 1

2σ2
n

|Y − φ(X)Tw|2
)

= N (φ(X)Tw, σ2
nI) (3.5)

The Bayesian formalism needs a belief knowledge on the model parameters w so we assume

that w ∼ N (0, IN). According to Bayes’s rule,

p(w|X, Y ) =
p(Y |X, w)p(w)

p(Y |X)
(3.6)

The normalizing constant, also known as marginal likelihood can be ignored as it is inde-

pendent to weights. The posterior is then:

p(Y |X, w) ∝ exp

[
− 1

2
(w − ŵ)T (

1

σ2
n

φ(X)φ(X)T + Σ−1N )(w − ŵ)

]
(3.7)

Which is a Gaussian distribution with mean ŵ = σ−2n (σ−2n φ(X)φ(X)T + Σ−1N )−1φ(X)Y . Let

the weight covariance matrix Σ−1N be τ 2IN and K = φ(X)φ(X)T , use Equation 3.3 and

posterior predictive, the prediction equation becomes:

f̂(x) = (K +
τ 2

σ2
n

IN)−1Y k(x,X) (3.8)
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This is same form as KRR. Back to Figure 3.1, KRR with Gaussian distribution is same

as Gaussian process regression, which is a simple Kriging model that is not very different

from ordinary Kriging on the same figure. Universal Kriging with linear trend is very similar

to the above two as well. It is also shown that error from the complex models, KRR with

Gaussian and Kriging, distributes unsymmetrically with shorter confidence interval. This

suggests that the error distribution has shorter tails which is preferred compared to longer

tail linear models.

3.3 Comparison between Buildings

Besides the result presented in Figure 3.1 from 4-story building subjected to Northridge

earthquake, 2-story building result is shown in Figure 3.2. It is observed that the 2-story

building has higher error distributed over a larger confidence interval for both PFA and

PSDR for both linear models and complex models. A summary figure which plots number

of stories vs. mean of MARD is shown in Figure 3.3. The first observation is that baseline

model is almost identically poorly performed as OLS using latitude suggesting that the most

of the responses content is not able to be explained linearly by latitude along. It is also

shown that OLS with both geographical coordinates has the same level of performance as

OLS with longitude only which is consistent with previous observation for both PFA and

PSDR. The ridge regression, or KRR with linear Kernel, is 60% better overall compared to

base model which indicates that model regularization contributes a lot to testing accuracy

for this dataset. The best models are KRR with Gaussian Kernel and Ordinary Kriging

where both models outperform all linear models.

Comparing between Figure 3.3a and Figure 3.3b, as number of stories increases, predic-

tions of PSDR become better, i.e., mean of MARD from KRR with Gaussian Kernel drops

from 8.3% to 6% as number of stories increases from 2 to 20. However, the trend is opposite

in PFA. The best performing model, Ordinary Kriging and KRR with Gaussian, has mean

of MARD at 75% for 20-story building. Therefore, the proposed prediction scheme is not

working well with PFA. This might be caused by high variance in PFA data when it comes
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to taller buildings.

3.4 Comparison between Earthquakes

Besides building responses from Northridge, another two earthquakes, 1999 Chi-Chi and

2000 Tottori, are used to evaluate models’ prediction performance for different seismic events.

However, it should be noted that each seismic event has its unique characteristics and com-

plexity given location and depth of epicenter, energy released, transferring path and soil

conditions. These spatial dissimilarities caused ground motion on-site to be different. The

proposed methodology relies on that these spatial dissimilarities are implicitly considered in

the training data given they are from the same event. The proposed framework is limited

in its application in that this type of model can only be applied in cases where, right after

the occurrence of a particular event, an interpolation model is trained using the available

response data from instrumented buildings and used to infer responses in un-instrumented

buildings, all within the same event. In other words, the statistical models developed in this

study can only be applied to the same event that generated the training data. As a result,

comparison between earthquakes is to test its prediction performance given different events

rather than validate its generality as shown in Figure 1.4 that EDPs from each event have

very different statistics such as maximum and mean. A more generalized model incorporates

earthquake characteristics should be used when it comes to a general model.

Figure 3.4 and 3.5 shows mean MARD over building height for each method for Chi-Chi

and Tottori respectively. Comparing across different events, MARD over height does not

have a visually clear trend. However, trend across different methods is very much consistent

with that nonlinear models have highest prediction accuracy followed with linear model with

regularization and linear models except for Tottori earthquake in which KRR with linear

Kernel has worst performance. Observing that data from Tottori earthquake has the highest

coverage area compared to the other two, the relative poor performance from regularized

model might be due to insufficient sample amount to represent actual data distribution.

In general, the nonlinear models for PSDR has better prediction performance than PFA
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(a) PSDR

(b) PFA

Figure 3.2: MARD Distribution of 2-Story Building Subjected to Northridge Earthquake
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Figure 3.3: Mean MARD Trend of All Buildings Subjected to Northridge Earthquake
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Figure 3.4: Mean MARD Trend of All Buildings Subjected to Chi-Chi Earthquake
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while several cases error is very high, i.e., about 40% MARD of PSDR from 12-story bi-

ulding subjected to Chi-Chi earthquake and 60% of PFA from 20-story building subjected

to Northridge earthquake. Although different earthquake scenarios are unique from each

other considering the differences in epicenter location, soil and rock properties that affect

wave transfer, and fault types which causes different frequency characteristics, the general

trend of building response data are expected to be quite consistent due to buildings sev-

ering as physical filters. Therefore, the observed inconsistencies of prediction performance

between the three earthquakes are largely dependent on available sample distributions. The

prediction result is expected to be more consistent in terms of accuracy levels given more

representative data.
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Figure 3.5: Mean MARD Trend of All Buildings Subjected to Tottori Earthquake
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CHAPTER 4

Summary and Conclusions

This study investigates several point estimator interpolation schemes for building seismic

responses subjected to an earthquake over a geo-region. Data is retrieved from nonlinear

response history analysis corresponding to five concrete moment frame buildings from 2-

story to 20-story subjected to three historical recorded earthquakes, 1994 Northridge, 1999

Chi-Chi and 2000 Tottori respectively. Two types of building response EDPs are considered,

PFA and PSDR which are both highly correlated with building damage.

The exponential fit trend of PSDR and PFA over epic distance indicates that both EDPs

are strongly correlated with geo-spatial features while PSDR has a higher decreasing rate

across all earthquakes. Seven different models are used to predict EDPs in addition to a

baseline naive model. A frequentist approach, non-replacement Bootstrap, is applied to ex-

amine each model’s prediction performance. Despite it is observed that OLS models are

likely unbiased, it is shown to be outperformed in all earthquakes and building types by

nonlinear models as a result of high variance in terms of prediction error. By adding regular-

ization term to linear model, variance of prediction error decreases as observed in result of

KRR with linear Kernel. The best performance comes from KRR with Gaussian Kernel and

Kriging model which both includes nonlinear transformation of geo-spatial features which

shows that response patterns are nonlinearly distributed in high dimension space formulated

by geo-spatial features, latitude and longitude. KRR with Gaussian Kernel and Kriging

model shows very similar result in all analysis. A gentle process is used to connect them

through Gaussian process regression.

It is shown that nonlinear models have shorter tails in error distribution compared to

linear models which indicates better stability and less variance. It can be concluded that
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nonlinear models are superb compared to linear models.

Model performance is evaluated between buildings and earthquakes. Several discrep-

ancies are observed across the three events, regularized linear model does not necessarily

outperform OLS models. Prediction accuracy, measured by MARD, turns to have different

trend over building height for each earthquake too. These observations are probably caused

by uniqueness of each earthquake characteristics as well as site distribution over the geo-

region. However, the general trend of building response are expected to be consistent due

to buildings severing as filters. The current inconsistency between different earthquakes are

mainly in accuracy levels which should be overcome by training with more representative

data. And the proposed method to interpolate building seismic responses should only be

applied to individual earthquake. Another solution is to develop a generalized model which

potentially could be applied to any event.
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