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ABSTRACT OF THE DISSERTATION

Topological Spintronics in Confined Geometry

by

Yizhou Liu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2017

Professor Roger K. Lake, Chairperson

One main objective of spintronics is to process and store information with the

magnetic order parameters. Much recent attention has been given to magnetic skyrmions

that reside in magnetic materials with the antisymmetric Dzyaloshinskii-Moriya inter-

action. Here, we study skyrmion dynamics in two different confined geometries. We

first demonstrate single skyrmion creation and annihilation by spin waves in a cross-

bar geometry. A critical spin-wave frequency is required both for the creation and the

annihilation of a skyrmion. The minimum frequencies for creation and annihilation

are similar, but the optimum frequency for creation is below the critical frequency for

skyrmion annihilation. Then we investigate the resonant modes of a single Néel type

skyrmion in confined nanodisks with varying aspect ratios (AR). With the increase of

disk AR, multiple new modes emerge in the power spectrum, which originate from the

broken rotational symmetry of both the nanodisk and the skyrmion.

Other than skyrmions, we also present the realization of a zero–field, stable

hopfion spin texture in a magnetic system consisting of a chiral magnet nanodisk sand-

wiched by two films with perpendicular magnetic anisotropy. The preimages of the spin

texture and numerical calculations of QH show that the hopfion has QH = 1. Further-
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more, another non-trivial state that includes a monopole–antimonopole pair (MAP) is

also stabilized in this system. The ground state is determined by the ratio of the helical

period L of the chiral magnet to the radius and thickness of the nanodisk. The topologi-

cal transition between the hopfion and the MAP state involves a creation (annihilation)

of the MAP and twist of the preimages.

Another goal of spintronics is to transport spin with minimal losses. Spin

superfluid transport can be achieved in easy-plane ferromagnets and antiferromagnets

by creating a non-equilibrium meta-stable state with static spin spiral textures. We show

that the spin superfluid analogy can be extended to include Josephson-like oscillations

of the spin current in both easy-plane ferromagnets and antiferromagnets. This spin

current also has a non-linear, time-averaged component which provides a ‘smoking gun’

signature of spin superfluidity. A spin oscillator device based on the spin superfluid

Josephson effect is proposed. The 2π precession of the in–plane magnetization results

in an approximately order of magnitude larger output power of the spin superfluid

Josephson oscillator compared to that of a spin Hall oscillator.
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φ, with a spin canting in the ẑ-direction. A spin chemical potential of up
spins on the left interface of the AFMI can drive an oscillating spin cur-
rent through the metallic spacer via spin pumping. The spin Hall effect
in a heavy metal (HM) can inject a spin current. The spin current flowing
through a spin-orbit (SO) coupled metallic spacer can be detected via the
inverse spin Hall effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Dynamics of mL (blue), mR (red), φ, and the total spin current IS/IS,0 =
φ̇ with the initial conditions m0 = 0.05 and φ = 0. (a)-(c) are for the
case of a FM inter-layer exchange J < 0, and (d)-(f) represent the case
for an AFMI inter-layer exchange J > 0. All dashed lines represent the
dynamics for non-zero damping with α = 0.05. The equations are solved
for |J |/λ = 1/300 and λ = 30 meV. . . . . . . . . . . . . . . . . . . . . 56

5.3 Steady state solution of φ̇ for the FM inter-layer exchange (J < 0) (a,
c), and AFM interlayer exchange (J > 0) (b, d) as a function of the spin
voltage VS . We choose a spin injection value VS,a = 0.031J that is greater
than the critical spin injection. VS < VS,0 for (a) and (b), and VS,a > VS,0
for (c) and (d). As before, we set λ = 30meV , |J |/λ = 1/300 and α = 0.001. 59

5.4 IS − VS characteristics as a function of the applied spin voltage VS for
different values of the damping constant with λ = 30 meV and |J |/λ =
1/300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Schematic diagram of the proposed hetero-structure. Two easy-plane fer-
romagnets (FMs), with magnetization in the x-y plane) are separated by
a thin nonmagnetic metallic(NM) spacer. The ferromagnets are exchange
coupled via an anti-ferromagnetic type inter-layer exchange coupling J .
The ferromagnetic junction is sandwiched by two identical heavy metals. 66

6.2 (a) The steady state time dynamics of φ̇n from both numerical and micro-
magnetic simulations. (b) Frequency as a function of the spin chemical
potential for three different dampings in the underdamped regime. . . . 68

xiii



6.3 Numerical results of the mode locking for: (a) different rf power with fixed
frequency ωac = 0.11 and (b) different frequencies with fixed amplitude
Vac/2J = 0.03. The brown dashed line represents the case with d.c. input
only. The damping constant is 0.1. Inset: The width of the 0 step ∆0 as
a function of the ac input Vac. Red dots are the numerical results, the
solid line is a fit to the |J0| Bessel function. . . . . . . . . . . . . . . . . 71

6.4 Steady-state oscillation of the magnetoresistance for SSJ-MR and total
MR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiv



Chapter 1

Introduction

1.1 Motivation and Outline

During the past decade, advances in new technologies, such as smart phones ,

have completely reshaped people’s daily lives. These advances result from the exponen-

tial increase in computing power. High performance and small scale electronic devices

lay the foundation of modern information technology and make it possible to build

devices that people could not imagine even one decade ago. In 1965, Gordon Moore

observed that the number of transistors per chip doubled every two years [8], which

results in higher performance and smaller scale of the transistor. However, beginning

from this year, the industry business model based on Moores law has ended. The major

obstacle is that we are approaching the physical size limit of the transistor. Beyond

this size limit, quantum mechanics takes over, and the performance of the transistor

significantly degrades. More densely packed, faster, smaller transistors consume more

power per unit area. Power and the associated heat generation have limited clock speeds

to around 3-4 GHz since the mid 2000s. Increasing energy efficiency is critical for both

improving high performance computing and mobile devices that rely on battery power.
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The field of spintronics addresses this grand challenge by manipulating elec-

tron spins and magnetic spin textures instead of electron charge. The emerging field

of spintronics proposes to use the spin, instead of the charge, of electrons as the phys-

ical representation of the logical bits. This scheme of computing by flipping electron

spins, rather than by moving electrons, has the potential advantages of nonvolatility,

faster data processing speed, low power consumption, and it can be integrated together

with conventional semiconductor devices. Nonvolatility allows a spintronic based archi-

tecture to handle computing and data storage simultaneously in a single unit, which

makes it suitable for implementing new architectures other than the conventional von

Neumann architecture [3]. To enable these applications, controllable manipulation of

spins becomes the key issue.

This dissertation presents a comprehensive study of topology related effects in

the field of spintronics. The contents of this dissertation are basically divided into two

parts. Chapter two to four explore the fundamental physics and possible applications

of the magnetic topoogical solitons in confined geometry. Chapter five and six cover

a novel effect called the spin Josephson effect in spin superfluids. Then the smoking

gun signatures of spin superfluids and spin Josephson oscillators are introduced based

on the spin Josephson effect. In the following, a brief overview of the baisc concepts in

spintronics and micromagnetism is given in this chapter.

1.2 Bohr Magneton and Gyromagnetic Ratio

Assume an electron circulating around a nucleus as a classical particle as shown

in Fig. 1.1. Due to the charge of the electron, this circulating motion generates a

circulating electric current that is opposite to the direction of the electron. According to
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Maxwell’s equation, this electric current further generates a magnetic field perpendicular

to the circulating plane. In the classical limit, a magnetic moment can be expressed as

µ = IA, where I is the electric current and A is the area. The effective current induced

by this electron can be written as I = − e
T and T = 2πr

v is the period of orbit. Since the

electron is rotating around the nucleus, we can also write down its angular momentum

as L = mvr with its mass m and velocity v. Using these relationships, the magnetic

moment becomes

µ =
evr

2
=
e L
mrr

2
=

e

2m
L. (1.1)

Figure 1.1: Illustration of a magnetic moment and its current loop.

Recall that the angular momentum has the form L = ~
√
l(l + 1) in quantum

mechanics, so we can further write µ as

µ =
e~
2m

s = µBs, (1.2)

where we define µB = e~
2m = 9.2740× 10−24 J/T as the Bohr magneton. Bohr magneton

is the basic unit for expressing the magnetic moment. s in Eq. 1.2 is a quantity that

counts the magnetic moment numbers for diferent systems, which will depend on specific

material parameters.

Other than the Bohr magneton, we can rewrite Eq. 1.1 as µ = γL where

γ = e
2m is the gyromagnetic ratio, which is the ratio of a system’s magnetic moment to

3



its angular momentum. The gyromagnetic ratio defines a fundamental frequency when

the system is placed in an external field, thus it is very important for the dynamics

of a magnetic system. The above definition is only valid in the classical limit, since

we take the electron as a classical particle and ignore its quantum properties. When

the quantum nature of the electron is taken into account, the correct expression of the

gyromagnetic ratio becomes

γ = g
µB

~
, (1.3)

where g is the Landé g-factor. This definition takes into account the spin nature of

electron. For a single free electron γ = 1.76× 1011rad Hz T−1, which is the value often

used in micromagnetic simulations as a constant. However, since the g-factor varies for

different materials, sometimes it is important to use the modified gyromagnetic ratio

value in order to get the correct results.

1.3 Magnetic Interaction

In this section, a brief overview of different magnetic interactions is presented.

There are various types of magnetic interactions in magnetic system from short range

to long range. These magnetic interactions play important roles in determining the

magnetization dynamics.

1.3.1 Exchange Interaction

One of the most fundamental interactions in magnetic systems is the exchange

interaction. The exchange interaction is a short range interaction that is only present

between close neighbors. The simplest expression of the exchange interaction is

Hexch =
∑
<i,j>

−JSi · Sj . (1.4)

4



Here J is the exchange parameter and S = Sm denotes the spin at each magnetic site.

In the simplest case, the interaction is only between nearest neighbors. J is normally

isotropic in space, but for some special cases it may becomes anisotropic. The sign of

J determines the lowest energy state of the spin. For J > 0, parallel spins minimize

the energy, which results in a ferromagnetic (FM) state (Fig. 1.2 (a)). For J < 0, anti-

parallel spins minimize the energy, which results in an antiferromagnetic (AFM) state

(Fig. 1.2 (b)).

If we assume J > 0 and it is strong enough to keep the neighbor spins almost

parallel, we can extend Eq. 1.4 in the following manner. Assume θi,j is the angle between

the neighbor spins direction mi and mJ . Since the neighbor spins change slowly over

space, θi,j is a very small angle and we can write Eq. 1.4 as

Hexch = −JS2
∑
<i,j>

cos(θi,j) ' −JS2
∑
<i,j>

(1− θi,j
2

2
)

= const +
JS2

2

∑
<i,j>

θi,j
2 ' const +

JS2

2

∑
<i,j>

(mj −mi)
2. (1.5)

By further writing m as a continuous function, we will have mj−mi = (ri,j ·∇)m, where

ri,j is the vector pointing from position ri to position rj . After using this relationship,

Eq. 1.5 becomes

Hexch = const+
JS2

2

∑
<i,j>

[(ri,j · ∇)m)]2 (1.6)

Summing over all the nearest neighbors of each site and change the first summation

(a) (b)

Figure 1.2: (a) FM state (b) AFM state
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to an integral, we arrive at the famous continuous form of exchange interaction (the

constant term is ignored)

Hexch =

∫
A(∇m)2dr (1.7)

and A = JS2

2a is the so-called exchange constant with the lattice constant a. The deriva-

tions above connect the atomic exchange parameter J to the continuum exchange con-

stant A. Although sometimes the exchange interaction is more complicated and needs

to be analyzed through many-body physics or calculated from first principles, this sim-

ple model still provides a powerful model to semiclassically study the magnetization

dyanmics.

In the model above, we only take into account the nearest neighbor sites be-

cause the exchange paramter is much smaller beyond nearest neighbor. However, in

some special cases, for example in the frustrated magnets, the exchange interaction is

still strong beyond nearest neighbor and cannot be ignored. In this case, the competing

exchange interactions on a cubic lattice can be described by

Hexch = −J1
∑
<i,j>

Si · Sj + J2
∑

<<i,j>>

Si · Sj + J3
∑

<<<i,j>>>

Si · Sj (1.8)

Here the summation includes up to the third-neighbor interaction as shown in Fig. 1.3.

The system can be also extended to a triangular lattice or a kagome lattice, which is

J1

J2

J3

Figure 1.3: J1 - J2 - J3 model on a cubic lattice
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a model for many frustrated magnets. Since the exchange interaction Ji can be either

FM type or AFM type, these competing interactions may induce different spin textures

such as FM ordering in–plane and AFM ordering cross–plane.

1.3.2 Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya interaction (DMI) is also a short range interaction,

which is due to the broken of inversion symmetry [9, 10]. A general expression of DMI

is

HDM = Dij · (Si × Sj), (1.9)

where Dij is the DM constant vector. The direction of Dij is determined by the sym-

metry of unit cell [9]. Unlike the exchange interaction, which tends to make neighbor

spins parallel or anti-parallel, the DMI tends to make neighboring spins perpendicular

with each other. Thus the competing interaction between the exchange interaction and

the DMI modulates the spin to form a helical chain.

(a)
(b)

Figure 1.4: (a) The unit cell of MnSi. (b) The (111) face of MnSi lattice. Pink balls
stand for Mn atoms, and the blue balls stand for the Si atoms.

In bulk materials, such as MnSi (Fig. 1.4), the inversion symmetry is broken

in its unit cell, which results in a bulk DM vector Dij = rij . There is a series of

materials similar to MnSi, known as the B20 compounds, which host a similar DM
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vector. The DMI can also be artificially induced by putting a material with strong spin-

orbit coupling (SOC), such as a heavy metal, on top of an ultra-thin magnetic film. The

broken inversion symmetry at the interface and the large SOC can induce an interfacial

type DMI, as shown in Fig. 1.5. The interfacial DMI has a DM vector Dij ⊥ rij , which

is also perpendicular to the interface plane. In continuum limit, the bulk DMI is written

as

HDM =

∫
Dconts · (∇× s)dr, (1.10)

and the interfacial DMI can be written as

HDM = −
∫
Dconts · [(z×∇)× s]dr, (1.11)

where Dcont = DS2/a2 is the DM constant in the continuum limit. The ratio between

the exchange constant and the DM constant J/Dcont could be used to estimate the helical

period in materials with DMI. Since the DM vector is different in bulk and interfacial

system, they modify the spin directions in different ways. For bulk DMI, the DMI

tends to make the spins form a Bloch type helix. In the presence of other competing

interactions, the bulk DMI also favors the formation of a Bloch type skyrmion, as shown

in Fig. 1.6(a). For interfacial DMI, the DMI tends to make the spins form a Néel type

HM

FM

Figure 1.5: Schematic of interfacial DMI [6].
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Figure 1.6: (a) Bloch type skyrmion (top) and spin helix (bottom). (b) Néel type
skyrmion (top) and spin helix (bottom) [7].

helix as well as Néel type skyrmion, as shown in Fig. 1.6(b).

The DMI is an asymmetric interaction. It introduces a chirality in magnetic

systems, which affects the dynamics of the system. For example, in the presence of

DMI, the magnon flow is asymmetric in space. The DMI also plays an important role

in the static and dynamic properties of domain walls, which are also closely related to

the system’s chirality. In general, the DMI is isotropic in space. Similar to the exchange

interaction, the anisotropic DMI also exists in both AFM and FM materials. In an AFM

system, it can lead to the formation of AFM skyrmions.

1.3.3 Magnetic Anisotropy

The exchange interaction and the DMI are the interactions with neighboring

magnetic moments. Other than these interactions between neighbors, the energy of a

magnetic system also depends on the direction of its magnetization. It has been exper-

imentally observed that for most of the magnets, the magnetization always has some

preferred direction, which is refered to as magnetic anisotropy. Magnetic anisotropy

depends on the lattice structure and symmetry, and it is closely related to the spin orbit

interaction in materials. In the absence of magnetic anisotropy, for a single spin, its

energy is isotropic as shown in Fig. 1.7 (a). Magnetic anisotropy creates some local
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minima directions and the number of minima depends on the exact form of magnetic

anisotropy. The simplest magnetic anisotropy is the uniaxial anistropy, which has the

form

Han,u = −Ku

∑
i

(si · u)2 (1.12)

Ku is the anisotropy constant and u is a unit direction vector. When Ku > 0, the

uniaxial anisotropy creates two local minima directions i.e. parallel or anti-parallel with

u, as shown in Fig. 1.7 (b). In this case, the magnetization tends to align with the

axis u to reduce its energy, thus it is called the easy-axis case. When Ku < 0, the

uniaxial anisotropy creates two local maxima directions i.e. parallel or anti-parallel with

u, as shown in Fig. 1.7 (c). In this case, the energy could be minimized when the

magnetization is in the plane perpendicular with u, and this type of anisotropy is called

easy-plane anisotropy or hard-axis anisotropy.

In Eq. 1.12, only the first order effect is considered. There also exists higher

order terms such as the 4th and 6th order uniaxial anisotropy, and they play an impor-

tant role in explaining some special phenomana such as the easy cone anisotropy. Notice

that, by the definition of uniaxial anistropy, only the even order term is allowed in the

expression.

(a) (b) (c)

Figure 1.7: Energy landscape for (a) isotropic, (b) easy-axis and (c) easy-plane (hard-
axis).
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(a) (b)

Figure 1.8: Energy landscape for cubic anisotropy with (a) Kc > 0 (b) Kc < 0.

Uniaxial anisotropy is one example of the magnetic anisotropy. The magnetic

anisotropy may also has multiple preferential axes, for example in materials with speicific

lattice structures. The most general one is the cubic anisotropy in materials with cubic

unit cells such as iron and nickel. The cubic anisotropy can be written as

Han,c = −Kc

∑
i

[(sx)2(sy)
2 + (sy)

2(sz)
2 + (sz)

2(sx)2] (1.13)

whereKc is the anisotropy constant for cubic anisotropy. Similar with uniaxial anisotropy,

only even order terms are allowed due to the definition and symmetry of magnetic

anisotropy. The energy landscape for Kc > 0 is plotted in Fig. 1.8 (a). The local min-

ima directions are along the three major axis of the cube. Since iron has a positive Kc,

this type of cubic anisotropy is sometimes referred to as the iron-type anisotropy. The

energy landscape for Kc < 0 is plotted in Fig. 1.8 (b). The local maxima directions

are along the three major axis of the cube. This type of cubic anisotropy is similar to

that of nickel, which has a negative Kc, so it is sometimes denoted as the nickel-type

anisotropy. Higher order terms also exist in cubic anisotropy, which makes the energy

landscape more complicated. But the amplitude of these higher order terms are, in most

cases, much smaller than the first order term.
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1.3.4 Magnetic Dipole-Dipole Interaction

The magnetic moment at a given position can directly interact with another

magnetic moment via the magnetic dipole-dipole interaction (DDI). The DDI is a long

range interaction that includes every point within the system. The DDI energy is defined

as

HDDI = −µ0S
2

4π

∑ 3(Si · rij)(Sj · rij)− Si · Sj
|r|3

, (1.14)

where rij is the unit vector pointing from site i to site j and |r| is the distance between

these two sites. The DDI is an essential component in magnetic domain theory. For

a magnet with a very large size, forming a single domain in which every magnetic

moment points in the same direction costs a lot of energy, which is mainly due to the

DDI. Thus, many domains are created in order to reduce the total energy of the system.

Furthermore, the DDI is also closely related to the geometrical parameters of the sample.

For example, in a magnetic thin film, due to the large ratio between the lateral size and

the thickness, all the magnetic moments prefer to stay in the plane instead of out-of-

plane, which is due to the presence of DDI. Thus, the DDI is also refered to as the shape

anisotropy.

The DDI is not only important at long range, it also plays an important role in

sub-micron size magnets. Depending on the geometry, the DDI can modify the dynamics

of magnons and skyrmions. Calculating the DDI requires taking into account almost

all of the magnetic moments in the system, so it is the most time consuming part in

micromagnetic simulations.
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1.3.5 External Magnetic Field and Zeeman Energy

When placing a magnet in an external field, the magnetic moments tend to

align with the external field and the related energy is known as the Zeeman energy. The

Zeeman energy has the form

HZeeman = −
∑
i

Hext · Si. (1.15)

Obviously it has the minimum energy when the magnetic moment is aligned with the

external field.

1.4 Equation of Motion

1.4.1 Landau-Lifshitz-Gilbert Equation

The dynamics of the magnetic moment is described semiclassically by the

Landau-Lifshitz (LL) equation and Landau-Lifshitz-Gilbert (LLG) equation. The LL

equation was proposed by Landau and Lifshitz in 1935 which includes a derived preces-

sion term and an additional phenomenological damping term []. Then Gilbert modified

their results and proposed the LLG equation in 1955 []. The LLG equation is

Ṁ = −γM×Heff +
α

Ms
M× Ṁ (1.16)

where M is the magnetization, γ is the gyromagnetic ratio, and α is the phenomeno-

logical damping term. Ṁ denotes the time deravative of magnetization, and Heff =

−dH/dM is the effeective field.

The LLG equation can be easily transformed to the LL equation. First, take

the cross product M with both sides of Eq. 1.16,

M× Ṁ = −γM× (M×Heff ) +
α

Ms
M× (M× Ṁ). (1.17)
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Then by using the Lagrange’s formula a × (b × c) = b(a · c) − c(a · b), the term

α
Ms

M× (M× Ṁ) becomes

α

Ms
M× (M× Ṁ) =

α

Ms
[M(M · Ṁ)− Ṁ(M ·M)] (1.18)

To simplify Eq. 1.18, several relationships are employed. First, we can define M = Msm

with the saturation magnetization Ms and the magnetization unit vector m. Then, the

second term in Eq. 1.18 can be reduced to Ms
2Ṁ. We also use the trick M · Ṁ = 0,

which means the direction of change in magnetization is alwasy perpendicular to its

original direction. After using these relationships, Eq. 1.17 finally becomes just

M× Ṁ = −γM× (M×Heff )− αMsṀ (1.19)

Inserting Eq. 1.19 back into Eq. 1.16, we have

Ṁ = − γ

1 + α2
M×Heff −

γα

(1 + α2)Ms
M× (M×Heff ) (1.20)

which is the LL equation with damping term. Eq. 1.20 can be further normalized to

ṁ = − γ

1 + α2
m× heff −

γα

(1 + α2)
m× (m× heff ) (1.21)

with the unit vector m and the normalized effective field heff . The form of Eq. 1.21 is

always employed in micromagnetic simulations.

1.4.2 Finite temperature

The LLG equation only captures the magnetization dynamics at very low tem-

perature, where the thermal effect can be neglected. In order to study magnetization at

finite temperature, a thermal induced random field must be added to the LLG equation

in order to mimic the effect of finite temperature. The LLG equation with thermal field

can be written as

Ṁ = −γM× (Heff + L) +
α

Ms
M× Ṁ (1.22)
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where L is the thermal field or Langevin field. The dissipation-fluctuation relation

〈Lµ(r, t)Lv(r
′
, t

′
)〉 = ξδµvδrr′ δtt′ is satisfied where ξ = αkBT/γ. The average 〈· · · 〉 is

taken over all realizations of the fluctuation field. In numerical calculations, the random

number period for L must be large enough to avoid possible numerical artifacts.

Although adding the random field can describe magnetization dyanmics at

finite temperature, studying the dynamics at elevated temperatures is still not possible

with Eq. (1.22). This is because the magnetization is a thermally averaged quantity, and

its magnitude can change a lot under elevated temperature. If one wants to deal with

elevated temperature, the Landau-Lifshitz-Bloch (LLB) equation must be employed.

The LLB equation is very useful for problems such as heat assisted magnetic recording.

1.5 Spin Transfer Torque

1.5.1 Slonczewski Torque

The interplay between electrical current and magnetization, which lies in the

core of spintronics, has been extensively studied over the past few decades. When a

spin polarized current passes through a ferromagnetic conductor, it can exert torque

on the magnetic moments [11, 12] by transferring spin angular momentum. This spin

transfer torque (STT) can be used to electrically manipulate the magnetization. In the

equation of motion, STT is an additional term on the right side of the LLG equation,

which phenomenologically describes the effect of spin polarized current.

TSTT = −aJm× (m× p )− bJ(m× p) (1.23)

The unit vector p represents the direction of spin polarization. The prefactor aJ =

~γJP
2|e|dMs

and the prefactor bJ = εaJ , where P is the spin polarization factor, J is the

current density and d is the thicnkess of the magnet. The factor ε in bJ describes the
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ratio between this two torques. In the jargon of spintronics, the first term of STT is

refered to as the anti-damping like torque or Slonczewski torque, since it has the same

form as the damping term in the LL equation. The second term is often refered as

field-like torque since it has the same form as the field precession term. The Slonczewski

torque normally describes the case when the current direction is perpendicular to the

magnet plane.

The Slonczewski torque can be briefly derived phenomenologically in the fol-

lowing way. Imagine there is a normal metal (NM) adjacent to a FM with magnetization

m (we assume a uniform m in the FM) as shown in Fig. 1.9. A spin poalrized current

is injected from the NM to the FM with a spin polarization p. If p is non-collinear

with m, due to the s-d exchange coupling between the injected electrons and the local

magnetization, the spin polarized current will try align with the local magnetization and

transfer its angular momentum. After a time scale related to the s-d exchange coupling,

the spin polarization of injected electron becomes parallel with the local magnetization

and completes the angular momentum transfer. Since each electron carries an angular

momentum ~/2 (or −~/2), after the angular momentum transfer, the loss of angular mo-

FM

Interface

NM

Mp

Figure 1.9: Schematic of the STT
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mentum for each electron, in this process, can be expressed as Tloss = ~
2 [p− (p ·m)m].

And the FM acquires the same amout of angular momentum. Assume a spin polarized

current density j peperdicular to the FM and the spin transfer torque applied to all its

magnetic moments, we can get the rate of change in magnetic moment is equal to (use

the triple product property on Eq. 1.24)

ṁ =
~γj

2edMs
m× (m× p) (1.24)

where d is the thickness of the FM. The above equation basically resembles the anti-

damping like torque. And the field-like torque can be understood as the spin-polarized

electrons accumulation at the NM|FM interface. For a miscroscopic derivation of STT,

see reference [11].

1.5.2 Zhang-Li Torque

All the moments in magnets are not always pointing in the same direction. The

moments sometimes form non-uniform spin textures such as the domain walls, vortices

and skyrmions. In metallic magnets, the non-uniform spin texture gives arise to another

type of spin transfer torque

TZL = u0(j · ∇)m− βu0[m× (j · ∇)m] (1.25)

where u0 = PgµB
2|e|Ms

with the spin polarization factor P and the current density j. The

first term represents the torque at the adiabatic limit, and the second term represents

the non-adiabatic effect with the non-adiabatic factor β. This torque describes the case

when the current is applied in-plane.
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Chapter 2

Skyrmion Creation and

Annihilation by spin waves

A magnetic skyrmion is a topologically protected spin texture with its spins

pointing in all directions. The spins of a skyrmion wrap the unit sphere giving a skyrmion

number (or winding number) of ±1. [13] A collective skyrmion phase was first observed

as an intermediate phase between the helical state and the ferromagnetic state in the

helimagnet B20 compound MnSi. [14, 15] The lack of inversion symmetry in the B20

compounds induces an asymmetric exchange coupling known as the Dzyaloshinskii-

Moriya(DM) interaction. [9, 10] The skyrmion phase emerges from the competition be-

tween the DM interaction and the symmetric Heisenberg exchange coupling. Other

than the B20 compounds, magnetic skyrmions have also been observed at the Fe/Ir

interface where the broken inversion symmetry at the interface introduces an interfacial

DM interaction [16]. The size of a skyrmion ranges from 5nm to 100nm depending

on the strength of DM interaction and exchange interaction. Previous theoretical and

experimental results have demonstrated that skyrmions can be manipulated by electric
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currents, electric fields, or temperature gradients. [17–20] A skyrmion is moved by a

current density that is 4 to 5 orders of magnitude smaller than that required to move

a domain wall. [21, 22] Spin waves or magnons also interact with skyrmions and induce

magnon-skyrmion scattering. [23] A skyrmion induced topological magnon hall effect

has been observed. [24] The skyrmion magnon interaction suggests the possibility of

manipulating skyrmions with spin waves.

Skyrmion-based devices require single skyrmion creation and annihilation. A

single skyrmion can be created by applying a spin polarized, [25,26] unpolarized, [27,28]

or circulating current [29] to a ferromanetic state. Laser heating can overcome the

potential barrier between the skyrmion and the ferromagnetic state. [30] Injecting a

spin-polarized current into a notched geometry creates a skyrmion. [31] Most recently,

skyrmion bubbles were generated by driving domain walls through a constriction. [32,

33] In this chapter, we consider a crossbar structure and investigate the creation and

annihilation of skyrmions within the crossbar using spin waves. The effect of frequency,

amplitude, and temperature are determined and illustrated with a phase diagram.

2.1 Skyrmion Creation

Spin wave control of a single magnetic skyrmion provides a mechanism for all

magnonic skyrmion-based Boolean or non-Boolean information processing architectures.

In a simple non-volatile memory array, the topological charge could serve as the state

variable that could be ‘read’ using the topological Hall effect. [34] At spin wave ampli-

tudes or frequencies below that required for annihilation, skyrmions scatter spin waves

at specific angles. [23] Thus, skyrmions at cross-bar intersections act as the magnetic

bits in a magnetic holographic memory architecture. [35]
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Figure 2.1: Schematic of the crossbar structure. The crossbar structure consist of two
parts, the spin wave bus and the central region which has a DM interaction that stabilizes
a skyrmion. A spin wave source is put at the left terminal for creation and annihilation.

The crossbar structure is shown in Fig. 1. The center area consists of a

skyrmion host material such as a B20 helimagnetic compound that stabilizes the skyrmion.

The horizontal and vertical spin-wave buses are ferromagnetic with low damping to sup-

port a spin wave. In such a structure, a single skyrmion will be confined in the center

area by the potential boundary between the spin wave bus and the skyrmion material.

To study the dynamics of a skyrmion in this structure, we first consider the

Hamiltonian of a two-dimensional square lattice [36]:

H =
∑
<i,j>

[−JSi · Sj + δDr̂ijSi × Sj ]− µB
∑
i

Si · h0, (2.1)

where the first term is the Heisenberg exchange interaction and the second term is the
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DM interaction. r̂ij is a vector pointing from Si to Sj and δ is 0 for the spin wave

bus and 1 for the skyrmion material. The last term is the Zeeman term and µB is

the Bohr magneton. The Landau-Lifshitz-Gilbert equation is solved by a fourth order

Runge-Kutta method,

Ṡ = −γS×Heff + αS× Ṡ (2.2)

where γ is the gyromagnetic ratio, α is the damping constant and Heff is the effective

field given by Heff = −∂H
∂S . Finite temperature is included with a stochastic field L to

simulate the random field generated by finite temperature. With the finite stochastic

field, the LLG equation becomes

Ṡ = −γS× (Heff + L) + αS× Ṡ (2.3)

The dissipation-fluctuation relation 〈Lµ(r, t)Lv(r
′
, t

′
)〉 = ξδµvδrr′ δtt′ is is satisfied where

ξ = αkBT/γ. The average 〈· · · 〉 is taken over all the realizations of the fluctuation

field. The equation is solved by using the Heun scheme. [37] To precisely monitor the

creation and annihilation process, a lattice version of the topological charge is employed

to calculate the skyrmion number at each time step. [28] All units in our simulation are

normalized to J . We choose J = 1, D = 0.3J , and α = 0.001.

The central region is 30 by 30 sites and the entire structure is 300 by 300 sites.

To stabalize the skyrmion, a background magnetic field h0 = 0.09 is applied in the z

direction to the entire domain so that the ground state of both the spin wave bus and

the central region is a ferromagnetic state.

We first consider the skyrmion creation process. A spin wave is injected by

applying an ac magnetic field Hac = A sin(ωt) at the source for a total time of 300 (in

units of 1/J). At the ends of the other three terminals, absorbing boundary conditions

are employed to avoid spin wave reflection. The absorbing boundary conditions are
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Figure 2.2: (a)-(d) Snapshots during skyrmion creation. The color in the snapshot
represents different in-plane directions of the spin. The velocity of the injected spin
wave in (a) picks up a transverse component as it enters the center region with the DM
interaction in (b). The topological charge switches from 0 to 1 in (c) indicating the
creation of a skyrmion. The skyrmion remains in (d) after the spin wave ceases. (e)
Phase diagram showing the frequencies and amplitudes required for skyrmion creation at
two different temperatures. Black squares indicate the difference between the wavelength
of the spin wave and the diameter of the skyrmion.

implemented by exponentially increasing the damping constant α from 0.001 to 0.5 over

30 sites at the end of each terminal.

Time snapshots of the creation process are shown in Fig. 2 at zero temperature.

Initially at t = 0, the spin wave is generated by the ac magnetic field and propagates

in the positive x-direction. At t=100, the spin wave enters the central region which

supports the DM interaction. The DM interaction acts as an effective vector potential on

the spin wave giving rise to a transverse component to the velocity [38] causing the spin

wave to propagate downward as it enters the central region. The spin wave amplitude

in Fig. 2.2b is larger in the lower part of the the center region. The combination of
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the geometry change between the lead and the central region and the effective magnetic

field provided by the DM interaction is sufficient for this spin wave amplitude to evolve

into a skyrmion. At the time step just after the topological charge becomes 1 in Fig.

2.2c, the skyrmion is located in the lower part of the center region. After the spin wave

ceases in Fig. 2.2d, the skyrmion centers itself in the center region. The creation time

for this process is 470 when the frequency is 0.12.
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(d)

(b) (c)
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Figure 2.3: (a)-(d) Snapshots of the skyrmion annihilation process. The color scheme is
the same as in Fig. 2. Upon injection of the spin wave, the skyrmion moves upward and
to the left with a backwards scattering angle of approximately 30◦ as shown in (b) and
(c). The spin texture in (d) is shown at the time step immediately after annihilation
when the topological charge switches from 1 to 0. (e) Dependencies of the creation and
annihilation times on the spin wave frequency and amplitude. (f) Trajectory of the
skyrmion’s center in the center region of the crossbar when ω = 0.14, and the spin wave
amplitude is 0.06. The frame of the plot represents the perimeter of the 30 by 30 center
region. The total simulation time is 6× 104.

Thermal fluctuations favor the skyrmion creation process, since the random

field works together with the spin-wave excitation to overcome the energy barrier be-
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tween the skyrmion state and the ferromagnetic state. Therefore, we also consider heat

assisted spin-wave skyrmion creation. During spin wave injection, a heat source (such as

a laser spot) could heat the cross section area. This is similar to heat assisted magnetic

recording [39] and the method proposed in Ref. [30], but here, only a small temper-

ature increase is required compared to the temperature required to exceed the Curie

temperature.

A phase diagram showing the spin-wave amplitudes and frequencies required

to create a skyrmion at both T = 0 and T = 0.2 is shown in Fig. 2.2e. At T = 0,

spin waves with frequencies and amplitudes lying within the blue hatched region create

skyrmions. At T = 0.2, spin waves with frequencies and amplitudes lying within the red

and blue hatched region create skyrmions. Increasing the temperature allows skyrmion

creation at slightly lower spin wave amplitudes and frequencies, but it does not affect the

optimum frequency of ω = 0.12 for skyrmion creation. The optimal frequency occurs

when the wavelength of the spin wave matches the diameter of the skyrmion. The

black squares in Fig. 2.2e show the magnitude of the difference between the spin-wave

wavelength and the skyrmion diameter |λ− d|. The optimal frequency occurs when this

difference is zero.

2.2 Skyrmion Annihilation

We next study skyrmion annihilation by an injected spin wave. A skyrmion

provides an emergent magnetic field that can be written as he = −S · (∂xS × ∂yS)

with the total flux
∫
d2r he = 4πQ and Q = −1 is the topological charge of a single

skyrmion. [24] When a spin wave is injected from the left, this emergent magnetic field

exerts a Lorentz force on the spin wave that deflects it downward and to the right. To
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conserve momentum, the skyrmion moves upward and to the left. [23] Inspired by this

property, we consider the possibility of annihilating a single skyrmion by dragging it out

of the center region with a spin wave. Since there is no DM interaction to stablize a

skyrmion outside the center region, the skyrmion will be annihilated.

Figs. 2.3a-d show the evolution of the spin texture resulting from an injected

spin wave with amplitude 〈Sx + Sy〉 = 0.06, frequency ω = 0.45, and T = 0. At the

initial state shown in Fig. 2.3a, a relaxed stable skyrmion is at the center of the crossbar,

and the spin wave is just entering the center region. As the spin wave interacts with the

skyrmion, the skyrmion moves upward and to the left with a backwards scattering angle

of approximately 30◦ as shown in Figs. 2.3a-d. Right after the skyrmion moves outside

the center region in Fig. 2.3d, it is annihilated due to the lack of DM interaction, and

the magnitude of the topological charge switches from -1 to 0. At the boundary, there

exists an energy barrier between the skyrmion material and the spin wave bus. Hence,

the skyrmion can only be annihilated if it has enough energy to cross this boundary.

According to the previous study on magnon-skyrmion scattering [23], the ve-

locity of the skyrmion depends on the frequency of the spin wave at a fixed amplitude.

Fig. 2.3e plots the time that it takes to annihilate a skyrmion versus the frequency of

the spin wave. The higher the frequency, the shorter the time, and this is consistent

with an increased velocity with spin wave frequency. We also performed simulations

for different spin wave amplitudes as shown in Fig. 2.3e. As the amplitude of the spin

wave decreases, the time to destroy the skyrmion increases. This is consistent with

the skyrmion velocity decreasing with decreasing spin-wave amplitude as was found in

previous calculations of skyrmion velocity [20].

To overcome the potential barrier, there exists a critical frequency that is

required to annihilate the skyrmion. In our simulation, the critical frequency is approxi-
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mately 0.14 as indicated by the vertical dotted line in Fig. 2.3(e). As the frequency drops

from 0.25 to 0.15, the time for annihilation increases. As the frequency approaches 0.14,

the annihilation time rapidly increases. When ω = 0.14, we do not observe skyrmion

annihilation even when t = 6 × 104 which is the longest time that we have run the

simulations.

For ω ≤ 0.14, the skymion circulates inside the central region area as shown in

Fig. 2.3f. This circulating motion is due to the backward motion of the skyrmion and

the repulsion force that exists at the boundary between spin wave bus and skyrmion

material. The frequency of this circulating motion is 3 orders of magnitude smaller than

the frequency of the injected spin wave. In a uniform system, the skyrmion motion

should satisfy Thiele’s equation of motion [40], with a gyrovector 1
4π

∫
−S · (∂xS ×

∂yS)d2r = −1 which is the topological charge of the skyrmion. The skyrmion will exert

an effective Lorentz force on the injected spin wave that is connected to the topological

charge by the emergent magnetic field of the skyrmion. However, the skyrmion is also

subject to the forces resulting from the boundaries between the center region and the

leads and the corners. The sum of these forces determine the skyrmion motion which

must be calculated numerically.

Again, since thermal fluctuations influence the propagation of a spin wave, we

re-do the above simulations at a finite temperature of T = 0.2. Like the results for

skyrmion creation, the finite temperature results for skyrmion annihilation show little

change with respect to the zero temperature results. Annihilation times for T = 0 and

T = 0.2 with 〈Sx + Sy〉 = 0.06 are plotted in Fig. 2.3e. The annihilation times are

essentially the same at all frequencies, and the cutoff frequency remains the same for

both temperatures.
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To estimate values required for a specific material implementation, we use

parameters for the insulating skyrmion material Cu2OSeO3. For Cu2OSeO3, J = 4.3

meV, D = 0.26 meV and a = 1 nm. For skyrmion creation, a 12 GHz, 300 Oe ac

magnetic field is required at the lowest point in the phase diagram for T = 0. For

skyrmion annihilation, a 30 Oe, 25 GHz ac magnetic field is required. The switching

times for this skyrmion creation and annihilation are approximately 2.5 ns and 10 ns,

respectively.

2.3 Possible Experimental Scheme

Fabrication of such a structure could be performed in several ways. In one,

the Yttrium-Iron-Garnet(YIG) can be deposited and etched into cross bars with a hole

in the central region, and then the DM material can be deposited in the central region.

It is worth mentioning here that our results also apply to Néel type skyrmions which

are stabilized by an interfacial DM interaction in layered structures. For a structure

with Néel type skyrmions confined in the central region, one could fabricate the entire

crossbar geometry with YIG and then deposit a heavy metal on top of the center region

thus inducing an interfacial DM interaction in the center region only.

Skyrmion creation results from the geometry change in the crossbar combined

with the effective gauge field provided by the DM interaction acting on the spin wave.

Skyrmion annihilation results from the emergent magnetic field of the skyrmion acting

on the spin wave and the conservation of momentum between the spin wave and the

skyrmion. A critical frequency is required both for the creation and the annihilation

of a skyrmion. The heat assisted method for skyrmion creation reduces the minimum

frequency required for creation. The minimum frequencies for creation and annihilation
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are similar, but the optimum frequency for creation that requires minimum spin-wave

amplitude is below the critical frequency for skyrmion annihilation. If a skyrmion al-

ready exists in the cross bar region, a spin wave below the critical frequency causes it to

circulate within the central region at an angular frequency about 3 orders of magnitude

below the spin wave frequency.
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Chapter 3

Shape dependent resonant modes

of skyrmions in magnetic

nanodisks

Skyrmions can be stabilized in a confined geometry without an external mag-

netic field [41, 42]. The shape dependent boundary conditions in confined geometries

can give rise to different magnetic solitons and their interesting dynamics, such as the

pinning and creation of a domain wall [43]. Skyrmion dynamics in confined geometries

are very different from that in infinite planes or bulk samples [31,44,45]. The boundary

plays a crucial role when the sample size is comparable to the size of the skyrmion. Thus,

understanding skyrmion dynamics in different confinement geometries is an important

step towards practical applications.

In this chapter, we investigate the spin wave modes of a single Néel type

skyrmion confined in nanodisks with aspect ratios (ARs) ranging from a circular nan-

odisk with AR=1 to an elliptical nanodisk with AR=2. We focus on the power spectrum
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for the out-of-plane (perpendicular to the disk) resonant modes of the skyrmion and its

dependence on the AR. The dynamical pattern of each mode has been identified by

the spatial map of both the magnetization fluctuations and its power spectral density

(PSD). For comparison, the power spectra of ferromagnetic (FM) states in the same

geometries have also been calculated.

3.1 Micromagnetic Model

To study the skyrmion dynamics in a nanodisk, we consider a thin magnetic

nanodisk with perpendicular magnetic anisotropy (perpendicular to the disk plane) and

an interfacial type DM interaction [46]. The Hamiltonian can be written as:

H =

∫
dr3[−A(∇S)2 −DS · [(z×∇)× S)]−Ku(Sz)

2 − µ0MsS ·H +Wdip], (3.1)

where S is the unit vector of magnetization, and µ0 is the magnetic constant. The first

and second terms are the Heisenberg exchange energy and the DMI energy, respectively.

The third term is the anisotropy energy, the fourth term is the Zeeman energy, and the

last term is the dipolar interaction energy. The micromagnetic simulations were carried

out by solving the Landau-Lifshitz-Gilbert equation with the Mumax3 code [47],

Ṡ = −γS×Heff + αS× Ṡ (3.2)

where γ is the gyromagnetic ratio, α is the damping constant and Heff is the effective

field given by Heff = − 1
µ0MS

∂H
∂S . An exchange constant A = 15 pJ/m, a perpendicular

anisotropy constant Ku = 900 kJ/m3, a DMI D = 3 mJ/m2 and a saturation magneti-

zation Ms = 1 MA/m are used for all simulations. A small damping constant α = 0.001

is employed to get a better resolution of the spin wave modes in the spectrum. The

geometry of the nanodisk is l × 100 × 1 nm and the AR is defined as l/100.
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After the skyrmion is completely relaxed, a time dependent magnetic field

hac(t) = hz
sin(2πωct)

2πωct
with hz = 0.5mT and a cut-off frequency ωc = 50 GHz is applied to

excite the skyrmion ground state [44, 45, 48]. The evolution of the averaged magnetiza-

tion at each time step is recorded and the power spectrum is calculated by performing

a Fourier transform of the recorded data. To resolve resonant modes at different fre-

quencies, an ac magnetic field hac(t) = hz sin(2πωt) with hz = 0.5mT is used. The time

evolution of magnetization at each mesh point is saved to generate the spatial maps of

the magnetization fluctuations and their Fourier transforms.

3.2 Spectrum Results and Discussions

We first examine the static spin texture of skyrmions at different ARs and

the results are summarized in Fig. 3.1. As indicated from the distribution of the ẑ

component of the magnetization mz shown in Fig. 3.1(a) and (b), the magnetization

at the edge always tilts away from the easy-axis, which is due to the open boundary

condition of the nanodisk and the DMI. While the skyrmion radius along the x-axis

(long axis) always expands with increasing AR, the skyrmion radius along the y-axis

(short axis) remains unchanged for AR<1.5 and begins to slightly shrink when AR>1.5.

The AR of the skyrmion can be extracted from the mz distributions along x-axis and

y-axis, and the relationship between the skyrmion AR and the disk AR has been plotted

in the inset of Fig. 3.1(b). For AR<1.5, the skyrmion AR nonlinearly increases with

the disk AR, and for AR>1.5, the skyrmion AR has a linear relation with the disk

AR. Furthermore, except for the trivial circular disk with AR=1, the skyrmion AR

is not strictly equal to the disk AR especially when the disk AR>1.5. The dipolar

field plays an important role in determining the shape and stability of the skyrmion in
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Figure 3.1: Magetization distributions of skyrmion at different ARs along (a) x-axis and
(b) y-axis. Inset is the skyrmion AR as a function of the disk AR. (c) and (d) are the
spatial distributions of mz at AR=1 and AR=1.5, respectively.

these nanodisks. Distortion of the skyrmion is a result of the dipolar field in different

geometries, where the rotational symmetries of both the nanodisk and the skyrmion are

broken. It is also worth mentioning that if we keep increasing the disk AR all the way

to 2.5, the skyrmion is no longer the ground state, but a multi-domain state becomes

the lowest energy state as a result of the strong in-plane dipolar field in large AR disks.

We next calculate the power spectrum as a function of the disk AR. A color plot

of the power spectrum from AR=1.0 to AR=2.0 is shown in Fig. 3.2(a). When AR=1,

there are three featured modes in the spectrum. Mode A with the lowest frequency

of 4.3 GHz is not sensitive to the AR. Frequencies of the other two, mode B at 27.8

GHz and mode C at 43.5 GHz, decrease nonlinearly with the AR. Other than the initial

three spin wave modes observed at AR=1, several extra modes emerge when the AR

goes up. Below 10 GHz, two modes with strong amplitudes begin to appear. The first

one with lower frequency emerges immediately after the AR deviates from 1, while the
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Figure 3.2: Power spectrum as a function of the disk AR for (a) single skyrmion and
(b) ferromagnetic state.

other mode with higher frequency emerges from mode A at AR=1.4. On the other hand,

mode B splits into two modes when the AR increases, and when the AR is around 1.7,

three additional new modes closely related to mode B appear in the spectrum.

As a comparison, the power spectrum for a trivial FM state was calculated

in the same geometry, as shown in Fig. 3.2(b). There are also three modes observed

at AR=1, and they have similar trends that decrease nonlinearly with increasing AR.

Similar to the skyrmion case, new modes are emergent at large AR, most of them are

related to the collective modes at the edge with broken rotational symmetry. However,

the lowest frequency mode of the FM state has a much higher frequency than that

of the skyrmion, which is consistent with previous studies [44]. Also, there is no new

mode splitting from the lowest mode of the FM, which is completely different from the

skyrmion spectrum. This difference suggests that the lowest resonance mode could be

used as a signature of the skyrmion state, and furthermore, could be used to check the

AR of a given sample.
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To resolve and understand different resonant modes, we plot the snapshots

of real time magnetization fluctuations and the spatial FFT power of the nanodisk

at AR=1.0 and AR=1.8 respectively, as shown in Fig. 3.3. When AR=1.0, there are

three modes as mentioned above. Mode A is a breathing mode with the magnetization

fluctuating locally around the core of the skyrmion. Mode B is a hybridized breathing

mode with a strong magnetization fluctuation at the disk edge. Mode C is similar to

mode B, but instead of the disk edge, the magnetization fluctuates mostly around the

skyrmion core. These modes have been well studied before [44] and are employed here

merely as a reference.

Once the AR is elevated to 1.8, there are 13 significant peaks in the power

spectrum, which will be identified below. The lowest frequency mode is a new mode

labeled D at 0.85 GHz instead of mode A. It is a rotation mode around the core in

a clockwise (CW) direction with four nodes. The four nodes are all out-of-phase with

their neighboring nodes. Mode A is split into two modes A1 and A2. Mode A1 at 2 GHz

is also a CW rotation mode but with eight nodes, and the nodes are also out-of-phase

with their neighbors. Mode A2 at 4.05 GHz is very similar to its parent breathing mode

A at AR=1.0, but hybridized with a very small amplitude of oscillation. These low

lying modes D, A1, and A2 are the dominant modes over the whole spectrum. Mode E

at 6.05 GHz is a CW rotation mode with 12 nodes, which are again out-of-phase with

their neighbors. Mode F is at 11.3 GHz with a counterclockwise (CCW) rotation of two

connected large nodes, and the rotation is always in-phase around the skyrmion core.

All of the five resonant modes at AR=1.8 discussed so far are lower than the lowest

frequency mode in the FM case regardless of its AR.

Modes B1 to B4 have similar spatial map patterns, and they all involve a four-

node oscillation hybridized with breathing, although the trajectory of nodes and the

34



magnetization fluctuations near the disk edge are different. For mode B1 at 25 GHz,

the nodes located on the long axis have larger amplitudes than those on the short axis.

They all oscillate around their own axis, and there is also a small fluctuation near the

edge along the long axis. Mode B2 at 25.9 GHz has a similar oscillation as B1, but

the amplitudes of the node along long axis and short axis are almost the same. It also

involves a stronger breathing mode and a strong magnetization fluctuation near the edge

along both axises. Mode B3 at 26.7 GHz has stronger nodes along the short axis. It

consists of both a strong oscillation and a strong breathing mode, and the magnetization

fluctuations near the edge along both axes have significant amplitudes. Similar to B3,

B4 at 27.5 GHz has an oscillation trajectory, but the node with stronger amplitude is

located on the long axis. The trajectory of the node on the short axis is slightly tilted,

and the magnetization fluctuations near the edge are not strictly on the axis. Mode G

at 29.7 GHz and mode H at 33 GHz have small oscillation amplitude, and their nodes

on the long axis have larger amplitude. The trajectory of G is a little differerent from

H, the edge mode of H is close to the short axis while the edge mode of G is close to the

long axis. These 6 modes have similar patterns of hybridization between oscillation and

breathing, and they could be distinguished from each other by the oscillation trajectory,

node amplitude or fluctuations near the edge.

The last two modes are C1 at 39.1 GHz and I at 46.2 GHz. C1 is closely related

to mode C at AR=1.0, but now it is mixed with an oscillation mode. There are two

radial spin wave modes with strong amplitude along the short axis, but only one radial

mode along the long axis. The magnetization fluctuation at the edge is along the short

axis in C1. Mode I has two radial spin wave modes along both long and short axis, but

the oscillation center of its four nodes is off-axis.

35



0 10 20 30 40 50
10–5

10–4

10–3

10–2

10–1

100(a)

(c) (d)
Frequency(GHz)

PS
D

(a
.u

.)

(b)

Frequency(GHz)
0 10 20 30 40 50

10–5

10–4

10–3

10–2

10–1

100

PS
D

(a
.u

.)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSD(a.u.)

min max

δmz

min max0

 

 

A

B

C

A2D

A1

E F
B1

B2

B3

B4 C1G
H I

A

B

C

D A1 A2 E

F B1 B2 B3

B4 G H C1

I

x

y

AR = 1.8 AR = 1.0

Figure 3.3: Power spectrum at (a) AR=1.8 and (b) AR =1.0. (c) and (d): Spatial
map of the magnetization fluctuation snapshot(bottom) and the FFT amplitude(top)
associated with different resonant modes in the power sepctrum. For each mode, one
reprensentative magnetization fluctuation snapshot is slected from series of snapshots
within one excitation period and the FFT data is collected from the magnetization
dynamics over 30 excitaion periods.

36



Compared to the original three modes at AR=1, the modes at AR=1.8 are in

general hybridized with a rotation or oscillation mode and all contain an azimuthal com-

ponent which is introduced by the increasing AR. Obviously from the resolved modes,

the rotational symmetry is broken in this system and thus many azimuthal components

of the spin wave mode appears. Only mode A2 still shows an in-phase breathing mode

around the skyrmion core. However, a very weak azimuthal component is observed along

the short axis in A2, which is again a sign of the rotation symmetry breaking. Only the

modes below 20 GHz are involved in a rotation motion except for mode A2, and only

mode F has a CCW direction rotation. Mode B1 to H are all oscillation modes with a

radial mode number equal to 1 while mode C1 and I have a radial mode number equal

to 2. Although all the modes are hybridized with other motions, we can still observe

the signature of their parent modes at AR=1.0. For example mode A2 is almost the

same with mode A, both of which are a breathing mode. Mode B1 to B4 still show a

signature of mode B, where the magnetization fluctuation near the edge has a significant

amplitude. Mode C1 shows two strong radial modes, which are similar with mode C.

In general for a skyrmion in an infinite plane, the spin wave mode is governed

by the short range interactions such as the Heisenberg exchange and DMI. However,

in confined geometries with the sizes comparable to the skyrmion diameter, the long

range dipolar interaction plays an important role, particularly in generating different

resonant modes, while the short range interactions (exchange and DMI) determine basic

properties of the modes such as the frequency and the spacing between different modes.

To conclude, the out-of-plane spin wave modes of a confined skyrmion in nan-

odisks with different ARs are studied using micromagntic simulations. The skyrmion

AR increases nonlinearly with increasing disk AR. New mixed modes appear in the

spectrum with increasing AR, which originate from geometrical confinement and bro-
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ken rotational symmetry of both the nanodisk and the skyrmion. The lowest mode of

the skyrmion is still well below the first eigenmode of the FM state in the same geome-

try. Furthermore, two new modes appear below the lowest mode of the skyrmion with

increasing AR, whereas in the FM state, no additional mode appears below the lowest

frequency mode. This property can be used for measuring the skyrmion and AR in non-

axial symmetric systems. New rotation and oscillation modes with different azimuthal

and radial components are identified at AR=1.8, which still have characteristics of their

original modes at AR=1.0. This study provides insight into the effect of asymmetry

on skyrmion dynamics in confined nanodisk geometries. Such understanding is a step

towards skyrmion based spin torque oscillators and spin wave sources [49].
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Chapter 4

Hopfion in Chiral Magnet

Nanodisk

A topological soliton carries an integer topological index that cannot be changed

by a continuous deformation [50]. A celebrated example is the skyrmion, a two-dimensional

(2D) topological soliton originated from the Skyrme model [51], which can be character-

ized by the skyrmion number (or winding number) [52]. The addition of a third spatial

dimension brings more diverse and complicated topological solitons, such as rings, links

and knots [53–55]. Some of these three-dimensional (3D) topological solitons are “hop-

fions”, since they can be classified by the Hopf invariant (QH) [56], a topological index

of the homotopy group Π3(S
3) that can be interpreted as the linking number [57]. Due

to their complex structures and models, the detailed study of the hopfion was prop-

erly established not long ago in terms of toroidal coordinates [58, 59]. Hopfions have

been observed in a variety of physical systems including fluids, optics, liquid crystals,

Bose-Einstein condensates, etc. [60–66] But its feasibility in magnetic materials remains

elusive.
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In magnetic systems, topological solitons in one dimension and two dimen-

sions such as domain walls and vortices have been extensively studied over the past

few decades. Much of the recent attention is attracted by the magnetic skyrmions re-

siding in magnetic materials with the antisymmetric Dzyaloshinskii-Moriya interaction

(DMI) [9, 10, 67]. The spins of a magnetic skyrmion wind around the unit sphere once,

which results in the unit winding number of a skyrmion. Skyrmions are proposed to be

promising candidate for spintronics applications due to their prominent features such as

the nanoscale size and low driving current density [6, 21].

Although numerous studies have been made on the low-dimensional topolog-

ical solitons, 3D topological solitons like hopfions have still not been well explored so

far in nanomagnetism. Understanding the static and dynamical properties of these 3D

topological solitons are not only of fundamental interest, but may also enable future

applications. Only a few theoretical proposals predict the existence hopfions in ferro-

magnets, but only in the dynamical regime [68–70]. It has been recently proposed that a

higher order exchange interaction and an external magnetic field will stabilize a hopfion

in a frustrated magnet [71].

In this Chapter, we show that a QH = 1 hopfion can be simply enabled in

a chiral magnet nanodisk in the absence of external magnetic fields. The nanodisk is

sandwiched by two magnetic layers with perpendicular magnetic anisotropy (PMA) to

nucleate the hopfion therein. The hopfion is identified by both the preimages and the

numerical calculations of QH . Associated with the hopfion, another non-trivial state

that includes a monopole-antimonopole pair (MAP) is also stabilized at zero fields in

this structure. The topological transition between the hopfion state and the MAP state

involves the creation (annihilation) of the monopole-antimonopole pair and a twist of

the preimages.
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4.1 Theoretical Model

We consider a chiral magnet nanodisk sandwiched by two magnetic thin layers

with PMA, as shown in Fig. 4.1(a). A B20 compound such as the FeGe is employed

to model the chiral magnet, such that the DMI is of the isotropic bulk type. The

Hamiltonian of this system is given by

H =

∫
dr3[−A(∇s)2 − (1− p)Ds · (∇× s)− pKu(sz)

2 + Ed], (4.1)

where A and D are the exchange and DMI constant, respectively, Ku is the PMA con-

stant and p is 0 for the chiral magnet nanodisk and 1 for the magnetic thin nanodisks.

Ed is the magnetic dipole-dipole interaction (DDI). Ed depends on the exact shape of the

system. When the system size goes down to nanoscale, the DDI becomes important in

determining the corresponding spin textures. For example, the DDI favors the stabiliza-

tion of magnetic skyrmion at zero-field in confined geometries. It leads to the formation

of the so-called target skyrmion, which has been theoretically proposed and recently ex-

perimentally observed in magnetic nanodisks without any external fields [72–75]. Thus,

the effect of DDI is essential in confined systems and cannot be ignored.

We minimize the Hamiltonian (4.1) in the nanodisk structure with different

initial states at various radii and thicknesses 1. After minimizing the energy, we find

two stable non-trivial states at zero-field, the hopfion state and the MAP state. The

hopfion state includes a QH = 1 hopfion, and the MAP state includes a monopole-

antimonopole pair.

1Micromagnetic simulations were performed using Mumax3 [76], Fidimag [77] and an in-house mi-
cromagnetic simulation package.
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Figure 4.1: (a) Schematic of the proposed structure. The thin disks at the top and
bottom represent the magnetic films with PMA. The transparent region in the middle is
the chiral magnet nanodisk. The color ring at the center represents the set of preimages
with sz = 0 of a QH = 1 hopfion. (b), (c) The cross-sectional spin textures in the x-y
plane (z=0) for the hopfion (b) and MAP (c). (d), (e) The cross-sectional spin textures
in the y-z plane (x=0) for the hopfion (d) and MAP (e). In the color scheme, black
indicates sz = −1 and white indicates sz = 1. The color wheel is for sz = 0. The spin
texture plot is for a chiral magnet nanodisk with radius 100 nm and thickness 70 nm.
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4.2 Hopfion Spin Texture and Preimage

To present the detailed spin textures of the hopfion and MAP, cross-sections

of both states are plotted in Fig. 4.1. For the hopfion, the cross-section in the x-y

plane (z=0) shown in Fig. 4.1(b), has a skyrmion at the center surrounded by two

concentric spin helical rings. This is typically a target skyrmion configuration recently

observed in an FeGe nanodisk [75]. The hopfion consists of the central skyrmion and

its nearest spin helical ring. The outer spin helical ring is not part of the hopfion

but an edge state induced by the DDI from the circular shape and the DMI from the

chiral magnet. The cross-section spin texture at the y-z plane (x=0) shown in Fig.

4.1(d) includes a skyrmion–antiskyrmion pair. The cross-section taken at any plane

containing the z-axis always contains a skyrmion–antiskyrmion pair. This is a result of

the hopfion spin texture that consists of a 2π twisted skyrmion tube with its two ends

glued together as shown in Fig. 4.1(a). For the MAP state, the cross-section in the

x-y plane (z=0) shown in Fig. 4.1(c) is a typical skyrmion, one helix ring less than the

hopfion state. The cross-section in the y-z plane (x=0) shown in Fig. 4.1(e), has only one

spin up region, in contrast to the skyrmion–antiskyrmion pair of the hopfion. Instead,

a monopole (antimonopole) is formed near the top (bottom) surface. This originates

from the restricted spin polarization of the PMA layers on the top and bottom.

To further visualize and understand the spin configurations of the hopfion and

MAP in 3D, we plot their preimages using Spirit [78]. A preimage is the region in 3D

real space that contains spins with the same orientations. It is a Hopf map of a point on

the S2 unit sphere to 3D space. We first plot the set of preimages of all spins with sz = 0

for the hopfion (Fig 4.2(a)) and MAP (Fig. 4.2(c)), which corresponds to a Hopf map

from the equator of the S2 unit sphere to the 3D space. Two preimages are topologically
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distinct as characterized by different genus g, i.e., the number of holes. The preimage

of the hopfion forms a torus with g = 1, whereas the preimage of the MAP is a trivial

surface with g = 0, which satisfies the Poincaré-Hopf theorem [79].

The Hopf invariant, also called the linking number, counts the number of links

between two arbitrary closed-loop preimages. Therefore, preimages of two arbitrary

spins must form closed loops that are linked with each other. These features can be

identified in plots of the preimages of s = (1, 0, 0) and s = (−1, 0, 0) for the hopfion

(Fig. 4.2(b)) and MAP (Fig. 4.2(d)). For the hopfion, two closed-loop preimages are

formed and linked with each other once. QH = 1 in this case, and the topology of

the hopfion state in this system is confirmed. In contrast, the MAP does not have

closed-loop preimages and thus no links. The two MAP preimages of s = (1, 0, 0) and

s = (−1, 0, 0) join at the monopole and antimonopole indicating their singular natures.

The MAP is considered a defect state, while the hopfion is a smooth spin texture with no

singularity. These preimages successfully reflect the topological natures of the hopfion

and MAP.

4.3 Hopf Index

Other than the linking number of the preimages, the topology of the hopfion

can also be confirmed by directly calculating the Hopf invariant. The integral form of

the Hopf invariant in real space can be expressed as [80,81]

QH = −
∫

B ·Adr, (4.2)

where Bi = 1
8π εijkn · (∇jn × ∇kn) is the emergent magnetic field associated with the

spin textures, and A is any vector potential that satisfies the magnetostatic equation
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Figure 4.2: (a), (c) The set of preimages with sz = 0 for the hopfion and MAP, respec-
tively. (b), (d) The preimages of s =(-1,0,0) (cyan) and s =(1,0,0) (red) for the hopfion
(b) and MAP (d).

∇×A = B. The Hopf number is invariant under a gauge transformation A→ A +∇χ

only when the emergent field B is free of singularities, i.e., ∇ ·B = 0. Cross-sections in

the y-z plane of the emergent magnetic fields B of the hopfion and MAP states are shown

in Fig. 4.3. The emergent B field of the hopfion shown in Fig. 4.3(a) flows smoothly

and concentrates near the center of the nanodisk. In contrast, the emergent B field of

the MAP shown in Fig. 4.3(b) has two magnetic monopoles with opposite charges near

the top and bottom surface. The Hopf invariant is thus ill–defined for the MAP state,

and it is well defined for the hopfion texture.

A gauge field solution A must also be solved in order to directly calculate QH

in real space. To this end, we solve for the vector potential A in momentum space with

the Coulomb gauge k ·A = 0, and then compute QH in momentum space [82]. Hopfion

textures with different grid numbers (Ntot) are employed to validate this method. As

shown in Fig. 4.3(c), as the grid number increases, QH rapidly converges to 1. We

obtain a Hopf invariant of QH = 0.96 for the hopfion spin texture under investigation.

QH is not an integer due to the finite size and open boundary condition. The manifold
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is not compact, as indicated by the edge state around the disk boundary. Nevertheless,

the Hopf invariant is close to 1, and the topological nature of the hopfion is further

confirmed.

4.4 Topological trasition

Since the hopfion is topologically protected by the nonzero Hopf invariant,

a topological transition must take place between the hopfion and MAP states. To

investigate this topological transition, we performed a minimal energy path (MEP)

calculation between these two states [83–85]. The MEP calculation is carried out using

the geodesic nudged elastic band (GNEB) method associated with the Hamiltonian in

Eq. (4.1). We consider a chiral magnet nanodisk with radius r = 100 nm and thickness

d = 70 nm sandwiched by two magnetic thin nanodisks with thickness dPMA = 10 nm

for the MEP calculation. For this size of system, the hopfion is a metastable state, and

the MAP is the ground state. The stable spin textures from the energy minimizations

are employed as the initial states in the MEP calculation.

Results from the MEP calculation are shown in Fig. 4.4(a). There exists an

energy barrier between the hopfion and the MAP state. Thus, an activation energy

is required to enable the transition from the hopfion (MAP) to MAP (hopfion) state.

To capture details of the topological transition, we plot preimages of s =(1,0,0) and

s =(-1,0,0) at the initial hopfion state, the barrier peak, the intermediate MEP state

and the final MEP state (Fig. 4.4(b)-(e)). Transitioning from the hopfion state in (b)

to the intermediate state (d), the two linked preimages break and reconnect generating

the monopole–antimonopole pair with a 2π rotation. The two preimages are then topo-

logically equivalent to those of the MAP state in Fig. 4.4(e), although they are twisted
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by 2π. Relaxing from point (d) to to the MAP state of point (e), the preimages untwist

to π, and the monopole and antimonopole move towards the top and bottom surface re-

spectively. Videos of the transition also capture the transformation from a torus (g = 1)

to a trivial surface (g = 0) for the preimages of sz = 0 (see Movie1 and Movie2 in the

Supplemental Materials). To create a hopfion from a MAP state, the reverse process

is applied. The preimages first rotate from π to 2π. The monopole–antimonopole pair

move towards each other until they eliminate each other. Then each preimage becomes

close-looped and linked with the other preimage. In general, a hopfion can be created

from a trivial state (e.g. ferromagnetic state) by creating a MAP, twisting the MAP by

2π and finally annihilating the MAP to form a smooth spin texture [86], as shown in

Fig. 4.4(f).

4.5 Discussion

The hopfion is a 3D spin texture and a finite thickness of the sample is required

to stabilize it. The length scale of the hopfion in the proposed structure is related to

the ratio of the exchange interaction and DMI, which is the helical period L in chiral

magnets. As shown in Fig. 4.1(d), the spin texture of the hopfion in the y-z plane

includes a skyrmion–antiskyrmion pair. Thus, the radius and thickness of the chiral

magnet nanodisk should be at least comparable to L.

This is confirmed by the calculated phase diagram of the magnetic ground state

as a function of the nanodisk radius r and thickness d shown in the inset of Fig. 4.4(a).

Here, L is 70 nm for our simulation parameters. For r and d small compared to L, the

ground state is a ferromagnetic–like state in which the spins at the disk center have a

ferromagnetic texture and the spins at the edges have in–plane components due to the
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DMI and magnetic dipole interaction. As r and d increase, the MAP state becomes the

ground state. For even larger values of r and d such that r > 1.1L and d > 1.3L, the

hopfion becomes the ground state. As r and d continue to increase, multiple skyrmion

states and more complicated spin textures appear. Also, as demonstrated by the MEP

calculation, even in the regions where the MAP is the ground state, a hopfion can be

created out of a MAP state by injecting sufficient activation energy, which could be

experimentally achieved by a method such as a field quench.
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Chapter 5

Spin Josephson effects in

Exchange coupled

Antiferromagnetic Insulators

5.1 Introduction

One main objective in the field of spintronics is the generation and manip-

ulation of pure spin currents in magnetically ordered systems. Pure spin currents in

magnetic insulators are carried by collective excitations. This can be achieved by com-

bining elements of conventional spintronics with magnetic insulators [87], for example,

magnon mediated spin currents can be generated in heterostructures composed of fer-

romagnetic(FM) insulators and metals [88, 89]. A more exotic method of transporting

spin harnesses the ground states of both easy-plane FMs [90–92] and antiferromagnetic

insulators (AFMIs) [93]. It has been long appreciated that magnetically ordered sys-

tems with spontaneously broken U(1) symmetry [94,95] support metastable spin spiral
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states that can transfer spin angular momentum without dissipation 1. In this regard,

heterostructures composed of AFMIs are advantageous to those composed of easy-plane

FMs, since they are less sensitive to stray fields or dipolar interactions, which can destroy

dissipationless spin transport in easy-plane FMs [96].

It is difficult to experimentally distinguish between spin super-currents and

magnon mediated spin currents in magnetic insulators, since the spin wave decay length

is long due to the small Gilbert damping. Therefore, other signatures of spin superfluid-

ity in magnetically ordered systems need to be explored. To this end, it is advantageous

to investigate the connections between superconductivity and magnetism further. One

remarkable phenomena is the Josephson effect [97], which occurs in coupled superfluids

and superconductors because the coupling energy is a periodic function of the relative

phase difference. A similar energy dependence can be anticipated for exchange coupled

AFMIs and easy-plane FMs. This insight suggests that it is instructive to analyze the

effect of exchange coupling on the spin currents in heterostructures composed of ex-

change coupled AFMIs and easy-plane FMs. Josephson dynamics were also predictied

in dipole coupled nanomagnets [98].

In this chapter, we propose a lateral spin valve heterostructure, which consists

of two AFMIs separated by a thin metallic spacer 2. We show that the spin superfluid

analogy can be further extended to realize Josephson-like oscillations of the spin currents

flowing through exchange coupled antiferromagnetic insulators (AFMIs). This oscilla-

tory spin current can be detected by injecting a pure spin current on the left side of the

heterostructure illustrated in Fig. 6.1. A spin chemical potential established perpen-

1Spin supercurrents are analogues of charge or mass supercurrents in superconductors and superfluids.
This analogy is useful even in the absence of strict conservation laws for spin, as long as the violation
of the conservation laws is weak

2The same phenomena should be anticipated in similar heterostructures composed of easy-plane FMs
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Figure 5.1: Schematic diagram of the proposed heterostructure to detect the Josephson
effect in spin superfluids. The heterostructure consists of two antiferromagnetic insula-
tors (AFMIs) separated by a thin non-magnetic metallic (NM) spacer. The magnetiza-
tion of the AFMIs lies in the xy-plane as indicated in the inset showing the direction
of the Néel vector and phase φ, with a spin canting in the ẑ-direction. A spin chemical
potential of up spins on the left interface of the AFMI can drive an oscillating spin
current through the metallic spacer via spin pumping. The spin Hall effect in a heavy
metal (HM) can inject a spin current. The spin current flowing through a spin-orbit
(SO) coupled metallic spacer can be detected via the inverse spin Hall effect.

dicular to the direction of the Néel vector field, drives an oscillatory spin supercurrent

which can be converted to a charge current via the inverse spin Hall effect through a

metallic spacer with large spin-orbit coupling. Furthermore, this oscillatory spin current

induces a non-Ohmic IS-VS characteristics of AFMI exchange coupled heterostructures,

which provides a “smoking gun” signature of the spin superfluidity.

5.2 Coupled magnetization dynamics

Consider the heterostructure in Fig. 6.1, consisting of two bipartite lattice

AFMIs separated by a thin nonmagnetic metallic spacer that provides a local interlayer

exchange coupling between the two AFMIs. Each AFMI has a staggered spin orientation

si(r) = Si(r)/S where i = ± denotes the left (right) AFMI and S is the saturated spin

density. The long-wavelength effective Hamiltonian describing the fluctuation of the

AFMIs can be expressed in terms of two continuum fields ni(r) (the Néel vector field) and

mi(r) (the canting field), with the local spin orientation si(r) = ηi,rni(r)
√

1− |mi(r)|2+
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mi(r) with the constraints |ni| = 1 and ni · mi = 0, where ηi,r = ±1 for the A(B)

sublattices [99]. Assuming that the Néel vectors lie in the xy-plane with an interlayer

exchange interaction
∑

r,r′ Jr,r′sL,r · sR,r′ [100], the effective Hamiltonian capturing the

long-wavelength dynamics of this system is,

H =
1

V

∫
dr
∑
i=±1

[
ρ

2

(
∇ni(r)

)2
+
λ

2
m2
i (r) (5.1)

+
J

2
ni(r) · n−i(r) +

J

2
mi(r) ·m−i(r)

]
,

where V is the volume, J is the inter-layer exchange coupling of the two AFMIs, λ > 0

is the homogenous AFMI exchange coupling, and ρ is the spin stiffness assumed equal

for both AFMIs [101]. The energy of each AFMI is independent of the direction of the

Néel vector ni indicating U(1) symmetry, and λ > 0 ensures that mi = 0 in equilibrium.

The long wavelength dynamics of the isolated system can be captured by the

Landau-Lifshitz-Gilbert(LLG) equations, which subjected to the AFMI constraints, can

be expressed as,

~ṅi = λmi × ni + Jm−i × ni − ~αni × ṁi, (5.2)

~ṁi = ρni ×∇2ni + Jni × n−i − ~αni × ṅi, (5.3)

where (ṁi, ṅi) denote the time derivatives of the fields (mi,ni), α is the damping

constant assumed the same for both AFMIs, and henceforth we neglect the spatial

dependence of the fields (∇2ni ∼ 0). To implement the AFM constraints in the

above equation we define: ni = (cos θi cosφi, cos θi sinφi, sin θi), where φ is the az-

imuthal angle, θ is the relative angle to the xy-plane and mi = (−mθ,i sin θi cosφi −

mφ,i sinφi,−mθ,i sin θi sinφi+mφ,i cosφi,mθ,i cos θi). With these substitutions the long-

wavelength dynamics of the coupled AFMIs can be described in terms of a pair of

canonically conjugate fields (mθ,i, φi) and (mφ,i, θi) for both AFMIs. For small varia-
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tions about the Néel ordered state θi ≈ 0, the LLG equations for (mθ,i, φi) neglecting

the quadratic terms, are decoupled from the (mφ,i, θi) fields, reducing to,

~ṁθ,i = J sin(φi − φ−i)− ~αφ̇i,

~φ̇i = λmθ,i + Jmθ,−i + ~αṁθ,i. (5.4)

For zero damping (α = 0), the above equations describing the magnetiza-

tion dynamics for exchange coupled systems of AFMIs are remarkably similar to the

Josephson equations of coupled superconductors. This becomes evident after defining

the relative magnetization mθ = mθ,L−mθ,R and the relative phase φ = φL−φR. Then,

Eqs. (6.3) give

~ṁθ = 2J sin(φ); ~φ̇ = (λ− J)mθ. (5.5)

The time dynamics of the relative phase is governed by φ̈ = ω2
0 sin(φ), where the charac-

teristic frequency ω0 =
√

2J(λ− J)/~, depends on the nature of the inter-layer exchange

of the coupled AFMIs. The equation describing the phase dynamics resembles the equa-

tion of a simple pendulum with tilt angle φ or equivalently the motion of a particle with

unit mass moving in a potential U(φ) = ω2
0 cos(φ). This mechanical analogue provides

an intuitive understanding of the rich magnetization dynamics of Eqs. (6.3).

Starting with initial conditions φ(t = 0) = 0 and mθ,0 = 0.05 ∝ φ̇(t = 0), we

solve Eqs. (6.3) for both FM and AFM interlayer exchange coupling J . The magne-

tization exhibits periodic oscillations with frequencies ω ∼ 1 − 10 THz, as indicted in

Fig. 5.2, with different dynamics for the FM and AFM inter-layer exchange. Fig. 5.2(a)

shows the periodic variation of the phase dynamics for an FM exchange |J |/λ = 1/300

with λ = 30meV , which oscillates about the equilibrium point φ = 0. The magnitude

of the oscillations depends on the initial velocity φ̇0 ∝ (λ − J)mθ,0/~. The individual
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Figure 5.2: Dynamics of mL (blue), mR (red), φ, and the total spin current IS/IS,0 = φ̇
with the initial conditions m0 = 0.05 and φ = 0. (a)-(c) are for the case of a FM inter-
layer exchange J < 0, and (d)-(f) represent the case for an AFMI inter-layer exchange
J > 0. All dashed lines represent the dynamics for non-zero damping with α = 0.05.
The equations are solved for |J |/λ = 1/300 and λ = 30 meV.

magnetizations (mθ,L and mθ,R) also exhibits coupled periodic oscillations and as indi-

cated in Fig 5.2 (b), and the total magnetization is conserved for the isolated system in

the absence of any damping. When the initial magnetization is above a critical value

m > m0,c = 2
√

2|J |/(λ− J), the Néel vector performs full rotations in the xy-plane,

this critical value corresponds to an initial angular velocity of the pendulum φ̇c ≥ 2|ω0|.

The effect of the Gilbert damping with α = 0.05 denoted by the dotted lines in Fig. 5.2,

results in an exponential damping of the phase in time, which in turn, leads to an

exponential damping of the total magnetization.

The mechanical analogue for the antiferromagnetic interlayer exchange cou-

pling J > 0 corresponds to a simple pendulum with the initial condition φ(t = 0) = π,

or the π-phase Josephson junction in superconductors. For this case, as shown in

Fig. 5.2(d), irrespective of the initial conditions, the Néel vector performs complete
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rotations in the xy-plane. mθ,L and mθ,R oscillate in-phase leading to an oscillation

in mθ which is conserved in the absence of damping. With damping, (α = 0.05), the

individual magnetizations decay exponentially as indicated by the dashed lines in Fig.

5.2, and as before the total magnetization decays exponentially.

5.3 Spin-current Dynamics

5.3.1 Oscillatory spin-current

The oscillations in the relative magnetization induced by the dynamics in the

Néel vector fields of the AFMIs pump a spin current through the metal spacer. This

spin current can be written as IS = IS,L − IS,R, where

IS,i = ~
Gr
4π

(ni × ṅi + mi × ṁi)− ~
Gim
4π

(ṁi), (5.6)

with i = L(R) and IS,L(IS,R) is the spin current injected from the left (right) side of

the metallic spacer, G = Ag↑↓/NS is the spin-mixing conductance at the AFMI/spacer

interface, A is the interface area, g↑↓ = g↑↓r + ig↑↓im is the spin-mixing conductance per

unit area [102, 103], and N = V/a30 denotes the total number of spins. Restricting to

the ẑ-component of the spin, the spin current pumped into the metallic spacer by the

AFMIs can be expressed as,

IS = ~
Gr
4π
φ̇L − ~

Gr
4π
φ̇R = ~

Gr
4π
φ̇, (5.7)

valid for |mi| � |ni|. For simplicity, we assume the spin-mixing conductance is real and

equal at both AFMI-spacer interfaces.

The normalized IS/IS,0 spin current flowing through metallic spacer, where

IS,0 = ~Gω0/(4π) is the characteristic spin current supported by the junction, is plotted

in Figs. 5.2(c) and (f) for the FM and the AFM inter-layer exchange. Eq. 5.7 states
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that the spin current is proportional to the rate of change of the relative phase, different

from the Josephson voltage phase relation in a superconductor. Similarly, we anticipate

that the spin chemical potential must act, via spin transfer torque, as a source term for

the rate of change of the relative magnetization.

5.3.2 Steady state spin-current

Non-equilibrium spin accumulation at the left interface of the first AFMI, via

the spin hall effect [104] or anomalous Hall effect, can transfer angular momentum by

inducing a spin transfer torque on the coupled AFMI system. The spin-transfer torque

can be expressed as

τS =
Gr
4π

n× µS × n +
Gim
4π

µS × n, (5.8)

where µS = µ0 − ~n × ṅ denotes the total non-equilibrium spin accumulation at the

left interface, µ0 is the spin accumulation, and ~n× ṅ denotes the spin pumping back-

action due to the precession of the Néel vector, satisfying Onsager reciprocity [93].

This non-equilibrium spin accumulation leads to a non-zero relative magnetization via

spin-transfer torque, resulting in the precession of the Néel vector field that drives an

oscillatory spin current through the metallic spacer, which we analyze next.

Consider the spin transfer effect in the ẑ spin direction at the left interface and

drop Gi. In the presence of a spin accumulation at the left interface, Eq. (5.3) acquires

a spin transfer torque τS resulting in modified equations for the canonically conjugate

fields (mθ,i, φi). Eliminating mθ from the modified equations, the time dynamics of the

phase φ satisfy,

(1 + α2)φ̈+
~α̃ω2

2J
φ̇− ω2 sin(φ) =

ω2

2J
VS , (5.9)
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Figure 5.3: Steady state solution of φ̇ for the FM inter-layer exchange (J < 0) (a, c),
and AFM interlayer exchange (J > 0) (b, d) as a function of the spin voltage VS . We
choose a spin injection value VS,a = 0.031J that is greater than the critical spin injection.
VS < VS,0 for (a) and (b), and VS,a > VS,0 for (c) and (d). As before, we set λ = 30meV ,
|J |/λ = 1/300 and α = 0.001.

Where VS = GLr µ0/(4π), α̃ = α + α′ with α′ = Gr/(4π) is the enhanced

damping due to the spin pumping at the spacer, and we define a critical spin voltage

VS,c = 2J . Here we assume α′ is small compared to α and take αα̃ ∼ α2. This equation

has been extensively studied in the context of superconductivity, and describes the RCSJ

model for superconducting Josephson junctions [105]. Based on this similarity, it is

prudent to define an effective Stewart-McCumber parameter β = 2J(1+α2)/(α2(λ−J)),

which determines over-damped (β � 1) or under-damped (β � 1) junctions. For typical

values of damping in AFMIs β ∼ 2J/(λα2)� 1, which corresponds to an under-damped

junction where Eq. (5.9) must be solved numerically.

Eq. (5.9) resembles the equation of motion of a particle of mass ~2(1+α2)/(2(λ−

J)) moving along the φ axis in the presence of an effective tilted washboard potential

U(φ) = 2J cos(φ) − VSφ with a viscous drag force ~α̃φ̇. The phase dynamics φ̇ in

the presence of damping α = 0.001 are plotted in Fig. 5.3 for various values of a con-

stant spin chemical potential VS . The steady state solution of φ̇ for both the FM or
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the AFM inter-layer exchange interaction shows the same behavior when VS < VS,0

(see Fig. 5.3(a) & (b)) and different dynamics when VS > VS,0 (see Fig. 5.3(c) & (d)),

where VS,0 = 0.031J � VS,c depends on β. When the spin chemical potential is small

VS < VS,0, viscous drag dominates the dynamics, and the oscillations in the phase decay

as a result of the damping for both the FM and AFM inter-layer exchange interaction.

However, if the spin transfer torque induced by VS is sufficiently large, the energy gain

due to the spin transfer torque can balance the energy loss due to the damping resulting

in a continual rotation of the Néel vector. In the language of spintronics, this results

from the anti-damping like torque due to VS fully compensating the damping torque.

For J > 0, which corresponds to the superconducting π-junction, the system is at an un-

stable equilibrium point, therefore, a small driving force (VS � 2J) is enough to induce

a full 2π-rotation of the phase. However, for J < 0, the system is at an energy minima,

so a large driving force VS ∼ 2J is required to overcome both the viscous damping force

and the force required to push the particle over the hill.

In the over-damped case β � 1, when VS < VS,c a static solution for the phase

is allowed φ = sin−1(V/(2J)) implying IS = 0. However, when VS > VS,c only time

dependent solutions exist, for β � 1 we can assume 〈φ̈〉 ∼ 0, solving Eq. 5.9 gives an

oscillation frequency ω = 1/(hα̃)
√
V 2 − 4J2 for the phase φ, independent of the sign

of the inter-layer exchange interaction. Similar characteristic behavior appears for the

case of intermediate damping β ∼ 1, however the critical value of VS,0 = 2α
√

2|J |λ to

induce a non-zero steady state φ̇, depends on the damping.
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Figure 5.4: IS − VS characteristics as a function of the applied spin voltage VS for
different values of the damping constant with λ = 30 meV and |J |/λ = 1/300.

5.4 IS-VS characteristics

The phase dynamics associated with both the FM and AFM inter-layer ex-

change interactions result in non-Ohmic IS-VS characteristics for the AFMI Josephson

junctions. The time averaged value for the spin current IS,av can be determined from

Eq. (5.7) for over-damped and under-damped junctions. For over-damped AFMI Joseph-

son junctions β � 1, the IS − VS characteristics can be inferred from IS,av = ~Gω/(4π)

giving the simple relation,

IS,av =
G

4πα̃

√
V 2
S − 4J2 (5.10)

for VS > 2J , which interpolates smoothly between IS,av = 0 and Ohmic behavior with

an effective spin resistance RS = 4πα̃/G. The IS − VS characteristics for the under-

damped junction β � 1 with an AFM inter-layer exchange (J > 0) are plotted as

function of the spin chemical potential VS for different values of the damping in Fig. 5.4.

In the under-damped case, the spin current jumps discontinuously from IS = 0 until the

spin chemical potential reaches VS,0, and VS,0 is proportional to β. For under-damped

junctions with a FM inter-layer exchange (J < 0) IS,av = 0 for VS,0 ∼ 2J where the

approximation |m| � |n| breaks down and requires solutions of LLG equations without
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any approximations. The IS − VS characteristics of AFMI spin Josephson junctions

are different from the I − V characteristics of Josephson junctions in superconductors.

These differences originate from the spin-current phase relation (see Eq. 5.7) and the

role of the spin transfer torque in exchange coupled AFMIs.

5.5 Discussion and Summary

This average spin current flowing between the AFMIs can be detected via the

inverse spin Hall effect if the metallic spacer has large spin-orbit coupling [88,104]. There

are several ways to induce a spin chemical potential [92, 93, 96]. Here we consider spin

injection by the spin Hall efect. To estimate current densities required to drive a spin

current, consider two 0.1µm×0.1µm×0.01µm NiO thin films, with the exchange energy

λ = 19.01meV [106]. Taking α = 0.007 and J = 0.1 meV we find that a spin chemical

potential VS,0 = 0.039 meV is required for a spin current IS = 2.2 × 10−2 meV. The

critical current density can be estimated from the relation VS = ~G/(4πe)θSHIc. Taking

the spin mixing conductance gr of NiO of 6.9 × 1018m−2 [102], and assuming a 10nm

thick Pt spin current injector with θSH ∼ 0.1, we obtain an injection current density

Ic ∼ 2.3× 107A/cm2. The induced charge current, Ic = 2eθSHIS/~ through a thin film

Pt spacer with t = 1 nm and conductivity ∼ 0.095 (µΩcm)−1 gives an induced non-local

voltage V ∼ 0.017µV across the Pt spacer.

The RKKY interaction is one mechanism that can generate the interlayer ex-

change coupling between the two AFMIs [107]. In this case, the interlayer exchange

coupling will be an oscillatory function of kFd where kF is the Fermi wavevector and

d is the thickness of the non-magnetic metallic spacer. The detailed interlayer ex-

change coupling for AFMI multilayers will depend on the local spin orientation at the
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AFMI/non-magnetic metal interface. Exchange coupling between AFMIs has not yet

been studied, and it is an important research direction in the emerging field of AFM

spintronics.

Similar oscillations in the spin current can occur across exchange coupled easy-

plane FMs due to their broken U(1) symmetry. The out-of-plane anisotropy in FMs will

play the role of λ in AFMIs and determine the property of the junction. Even in the

presence of in-plane anisotropy, we expect these oscillations to persist as long as the

spin chemical potential is above the anisotropy energy scale. The higher order LLG

terms do not destroy the spin current oscillations, but they do affect their detailed

dynamics. Lastly, the spatial variation in the order parameter, neglected here, can

nucleate spin solitons or instantons within the junction, which can lead to a Fraunhofer-

like interference patterns in the non-local voltage similar to the behavior of critical

super-currents in superconducting Josephson junctions.

In summary, we propose a novel effect in exchange coupled AFMIs that is

the analogue of the Josephson effect in superfluids. Due to periodic dependence of

the exchange energy on the relative phase difference, an oscillatory spin current flows

through the metallic spacer that is proportional to the rate of change of the relative

in-plane orientation of the Néel vector fields. A spin transfer torque induced by a spin

chemical potential at one of the interfaces results in non-linear IS-VS characteristics

that distinguish the proposed lateral spin valve heterostructure composed of AFMIs

and provide a signature of spin superfluidity. Furthermore, this heterostructure is an

example of a pure spin AFMI terahertz oscillator [108].

63



Chapter 6

Spin superfluid Josephson

oscillator

6.1 Introduction

When a spin polarized currents passes through a ferromagnetic conductor, it

can exert torque on the magnetic moments [11, 12] by transferring spin angular mo-

mentum. This spin transfer torque (STT) can be used to electrically manipulate the

magnetization. One of the major achievements of STT inspired technologies are spin

torque oscillators. Spin oscillators utilize this effect to convert dc electric current into

non-linear magnetization precession [109–114]. Persistent magnetization oscillations can

also be induced in device heterostructures of magnetic insulators and metals with large

spin-orbit coupling. In these systems a pure spin current, injected via the spin Hall

effect [115,116] by driving electrical currents in the heavy metal (HM), causes magneti-

zation dynamics in the insulating ferromagnets.

One of the goals of spintronics is to transport spin with minimal losses. Spin

superfluid (SSF) transport can be achieved in easy-plane FMs and antiferromagnets
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(AFMs) [93, 117–120], by creating a non-equilibrium meta-stable state with static spin

spiral textures. This state carries a spin current which decays algebraically over the

propagation length has an advantage over magnon mediated spin currents [93, 117].

Recently some of us, proposed a spin Josephson-type oscillation associated with a 2π in-

plane oscillation of the Néel vector in exchange coupled AFMs [2]. This is the magnetic

analogue of the Josephson effect in superfluids. In this chapter, we demonstrate that

an easy-plane FM spin superfluid Josephson (SSJ) junction sandwiched by two heavy

metal (HM) contacts can serve as a spin oscillator.

The SSJ oscillator, illustrated in Fig. 6.1, consists of two easy-plane ferromag-

nets (FMs) with an anti-ferromagnetic inter-layer exchange coupling. This is the mag-

netic analogue of a π-phase Josephson junction. Electrical current along the x-direction

in the HM can be used to generate a transverse spin current across the junction. Using

both the Landau-Lifshitz-Gilbert (LLG) equations and micromagnetic simulations, we

show that this current drives steady-state spin oscillations within the junction with a fre-

quency determined by the applied current, damping and the parameters of the easy-plane

FMs. These spin oscillations result from 2π rotation of the relative in-plane magnetiza-

tion direction in the easy-axis FMs. The SSJ effect produces a novel magneto-resistance

(MR) effect, here after called SSJ-MR, which is the only contribution in insulating de-

vices. Whereas in metallic systems, the MR signal induced by the 2π phase rotation gets

additional contributions from the giant magneto-resistance (GMR) and the anisotropic

magneto-resistance (AMR).

When connected with an ac current, the time-averaged SSJ-MR exhibits Shapiro

steps as a function of the applied current’s dc component. SSJ-MR exhibits a step when

the ac driving frequency matches the characteristic frequency of the SSJ oscillator. Fur-
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Figure 6.1: Schematic diagram of the proposed hetero-structure. Two easy-plane fer-
romagnets (FMs), with magnetization in the x-y plane) are separated by a thin non-
magnetic metallic(NM) spacer. The ferromagnets are exchange coupled via an anti-
ferromagnetic type inter-layer exchange coupling J . The ferromagnetic junction is sand-
wiched by two identical heavy metals.

thermore, the large precession angle of the in-plane magnetization results in large output

power of SSJ oscillators.

6.2 Theoretical Model

The schematic diagram of the SSJ oscillator is shown in Fig. 6.1. The device

heterostructure consists of two HM contacts and two easy-plane FMs separated by a

thin non-magnetic spacer. The Hamiltonian for this system can be expressed as,

H =
1

V

∫
dr
∑
i=±

1

2
[A
(
∇si(r)

)2
+Kszi (r)2 (6.1)

+ Jsi(r) · s−i(r)],

where V is the volume, J is the interlayer exchange coupling between the two easy-

plane FMs, A and K represent the spin stiffness and easy-plane anisotropy of the FM,

respectively. si(r) = Si(r)/S denotes the spin orientation of each easy-plane FM, i = ±

denotes the top (bottom) FM and S is the saturated spin density. For simplicity, we

assume all materials, the HMs, the easy-plane FMs and their interfaces are identical. In

Eq. 6.1 the easy-plane anisotropy (K > 0) ensures the energy of each FM is independent
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of the in-plane magnetization direction (indicating U(1) symmetry). The energy is

minimized by the in-plane spin configuration, szi = 0 with a fixed in-plane magnetization.

For the in-plane spin configuration, the last term in Eq. 6.1 becomes an os-

cillatory function of the relative phase of the in-plane magnetization. The interlayer

exchange coupling J can be AFM (J > 0) or FM (J < 0). This depends on the material

and geometrical parameters [121]. Dipolar interactions in easy plane FMs can break the

easy-plane U(1) symmetry which destroys spin superfluidity [122] and spin Josephson

effect. In order to minimize the effects of dipolar interactions we work with an AFM

type inter-layer exchange coupling and assume J > 0 hereafter. For J > 0 spins in

the top and bottom easy-plane FMs point in the opposite directions which cancels the

dipolar interactions.

The long wavelength magnetization dynamics of the device heterostructure can

be captured by the Landau-Lifshitz-Gilbert (LLG) equation,

~ṡi = −si × (A∇2si +K(szi ẑ) + Js−i) (6.2)

+αsi × ṡi + τs,i,

where ṡi denotes the time derivative of si, α is the damping constant and τs,i describes

the spin torque and spin pumping effect at the HM/FM interfaces. To induce the spin

oscillations, a spin current with polarization perpendicular to the easy-plane, can be used

to produce a spin transfer torque on the in-plane magnetization. This spin current is

generated by driving an electrical current in x-direction in the HM contacts via the spin

Hall effect. Decomposing, si = (
√

1− (szi )
2 cosφi,

√
1− (szi )

2 sinφi, s
z
i ), the dynamics

of both FMs can be expressed in terms of canonically conjugate amplitude and phase

variables, szi and φi. For small variation of the out-of-plane magnetization, szi � 1, and

τs,i is perpendicular to the easy plane, the LLG equation can be expanded to the lowest
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order of szi and φi. Since we are interested in the magnetization dynamics across the

junction, hereafter we neglect the spatial dependence of the fields and set ∇2si = 0.

~ṡzi = J sin(φi − φ−i)− ~αφ̇i + τ zi,s,

~φ̇i = Kszi + Jsz−i + ~αṡzi , (6.3)

Defining φ = φi − φ−i as the relative phase, τ zs = τ zs,i − τ zs,−i as the total spin

torque across the junction and n = szi − sz−i as the relative out-of-plane magnetization,

the equation of motion can be reduced into two equations that describe the dynamics

of the relative coupled variables,

~ṅ = 2J sin(φ)− ~αφ̇+ τ zs , (6.4)

~φ̇ = (K − J)n+ ~αṅ.

For zero damping and zero spin torque (α = 0, τ zs = 0), the above equations resemble the

π-phase Josephson junction of weak link superconductors with characteristic frequency

ω0 =
√

2J(λ− J)/~.
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Figure 6.2: (a) The steady state time dynamics of φ̇n from both numerical and micro-
magnetic simulations. (b) Frequency as a function of the spin chemical potential for
three different dampings in the underdamped regime.
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6.3 Dynamics with dc input

When connected with an external electric field as shown in Fig. 6.1, the two

HMs are connected in a parallel circuit configuration with currents flowing in the same

direction (x-direction). The current flowing through the HM contacts generates a spin

chemical potential, with spins perpendicular to the easy plane. To determine the electric

and magnetic dynamics in the circuit, we solve for their dynamics self-consistently in

the device heterostructure. The spin torque at the HM/FM interface can be expressed

as,

τs,i =
gs
4π

[si × (µ0,i × si)− ~si × ṡi]. (6.5)

where µ0,i = µẑ, denotes the non-equilibrium spin accumulation at the top and bottom

interface and gs is effective spin mixing conductance, which we assume to be purely real

through out this paper. The first term in Eq. 6.5 is the spin torque exerted due to the

injected spin current. The second term is the reciprocal spin pumping effect [103] due to

the precession of the magnetization in the FMs. This term must be included to satisfy

Onsager’s reciprocity relations.

With the circuit set up above, we have Vs,i = −Vs,−i = |Vs|/2, where the

spin chemical potential Vs = gsµ/(4π). Inserting this relationship into Eq. 6.3 and

eliminating n we get the equation of motion for φ [2],

(1 + α̃α)φ̈+
~α̃ω0

2

2J
φ̇− ω0

2 sin(φ) =
ω0

2

J
Vs, (6.6)

where α̃ = α+ gs/(4π) is the enhanced damping. This equation represents an effective

RCSJ model for the junction with an effective Stewart-McCumber parameter β = 2J(1+

αα̃)/(α̃2(K − J)) [123, 124]. Because of the Gilbert damping a critical spin chemical

potential Vc, which is related to the current density in the HM contacts, is required to

excite a magnetization oscillation. In the strong damping case (β � 1), the critical
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spin chemical potential required to induce a persistent φ̇ oscillation is Vc = 2J . In

the intermediate damping regime(β ∼ 1), the critical spin chemical potential can be

estimated as Vc = 2α̃
√

2JK, which depends on the damping, the interlayer exchange

coupling and the FM easy-plane.

To determine the magnetization dynamics, we perform both micromagnetic

simulations (blue dots in Fig 6.2 (b)) and numerical calculations of the RCSJ model

(solid line in Fig 6.2 (b)) for the SSJ. For both calculations, in the steady-state dynamics,

φ̇ oscillates around a finite time-averaged value, these oscillations correspond to 2π

rotation of the relative in-plane magnetization. The micromagnetic simulations were

performed on two easy-plane FM SSJ with dimensions 200 nm × 200 nm × 5 nm.

The saturation magnetization in micromagnetic simulations is Ms = 140kA/m and the

parameters for Eq. 6.1 are K = 2.5 meV, J = 1 µeV with a damping constant α = 0.01.

The Hamiltonian does not include magnetic dipolar interactions, which are irrelevant for

an AFM-type inter-layer exchange coupling (J > 0) . Comparison of the micromagnetic

simulations validates our Hamiltonian and the RCSJ model.

Above the critical voltage Vc the oscillation frequency depends on the applied

voltage Vs. To investigate the relationship, we plot the oscillation frequency as a func-

tion of the normalized spin chemical potential V = Vs/Vc for three different damping

constants in Fig. 6.2. Within this damping regime, the frequency has a quasi linear rela-

tionship with V which is independent of damping. In the strong damping regime(β � 1),

one can analytically solve Eq. 6.6 and obtain a time-dependent solution for φ̇ with an

oscillation frequency ω =
√
Vs

2 − 4J2/(hα̃). This is consistent with our numerical cal-

culations of the RCSJ model.
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6.4 Spin Shapiro Steps

The spin oscillations also exhibit Shapiro step like dynamics in the presence of

an ac input [125]. An ac spin chemical potential of the form of Vs,i(t) = −Vs,−i(t) =

Vd.c. + Vac sin(ωact) can be induced by applying an ac electric current in the HMs. In a

simple model, when ωac is an integer multiple of ω0, mode-locking of the input signal and

the magnetization dynamics can occur. This results in a Shapiro step like behavior in

the time averaged pumped spin current Is within the HM. The dynamics of the system

with ac input are determined by solving Eq. 6.6 with a time dependent source Vs.

In order to explore the role of ωac and Vac, we calculate the time averaged

Is as a function of Vs. The results for different Vac and ωac are shown in Fig. 6.3(a)

and Fig. 6.3(b), respectively. The normalized spin current Itots /I0s is plotted where

I0s = ~gsω0/4π is the characteristic spin current associated with the junction. When

Vac = 0, the time averaged Is-Vs shows a non-linear relationship with Vd.c. [2]. After

increasing Vac to a finite value, the Is-Vs curve shows several steps, in the averaged spin

current.
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At each step, the oscillation frequency and maximum oscillation amplitude de-

pends on Vdc. The step position in the time averaged Is has complicated dependence

on Vdc, ωac and Vac. Both Vac and ωac strongly influence the d.c. critical value and the

step width, whereas the step height only depends on ωac. As shown in Fig. 6.3, finite

Vac can reduce the critical value required for a persistent oscillation. Furthermore, the

width of the nth step as a function of Vac/2J has a form of the first kind Bessel func-

tion |Jn(Vac/2J)|, which is characteristic of the Shapiro steps [126] in superconducting

Josephson junctions. The complicated magnetization dynamics of SSJ oscillators can

be determined from the MR, we discuss this in the next section.

6.5 Magnetoresistance

The presence of spin pumping effect generates an additional electromotive force,

∆Ei = i
~gsθSH
2edHM

(si × ṡi)× ŷ (6.7)

where i = ± denotes the top and bottom HM contacts with thickness dHM , and effective

spin Hall angle θSH . The current in HM contacts is modified to j = (E + ∆E)/ρ, where

the first term is the intrinsic circuit contribution, ρ is the resistivity and j is the electrical
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current density. Eq. 6.7 indicates that the magnetization dynamics generate a MR in

the SSJ junction, Therefore, the SSJ oscillations can be detected by purely electrical

means.

One can apply Eq. 6.7 to our geometry of Fig 6.1 to determine the MR response.

We restrict our analysis to the x-component of ∆E, since the y-component of ∆E is

small, for szi � 1 we find (si × ṡi) × ŷ = φ̇ix̂. According to Eq. 6.7, ∆E = Ei − E−i

is directly proportional to φ̇. Thus, the dynamics of φ̇ gives ∆E a time-dependent

contribution which results in an effective MR of the circuit with an oscillation frequency

ω. The SSJ-MR with a d.c. electric current source in the HM contacts is plotted in the

Fig. 6.4. The magnitude of the SSJ-MR signal is primarily determined by the spin-Hall

angle θSH . With an ac source in the HM contact, Shapiro like steps also emerge in the

time averaged MR.

In metallic SSJ oscillators, which consist of two easy-plane FM metals, addi-

tional contributions due to the in-plane giant magnetoresistance (GMR) will dominate

the MR [127–131]. The GMR can be determined by, RGMR = R0 + ∆RGMR(1 −

cos(φ))/2. The relative angle φ varies due to the precession of the in-plane magnetiza-

tion, resulting a large GMR contributions. To estimate the MR, we consider a device

with 100 nm by 100nm lateral (in x-z plane) size. The junction consists of two 3 nm

thick metallic easy-plane FMs seperated by a 2 nm non-magnetic metal. Typical GMR

ratio for this junction geometry ranges from 5% to 15%. The junction is sandwiched by

two 5 nm Pt contacts. Using the following parameters: spin Hall angle of Pt θSH = 0.1,

electrical resistivity of Pt ρPt = 2.1 × 10−7Ω · m, interfacial spin mixing conductance

gs = 5 × 1018m−2, GMR ratio 10%, sheet resistance of junction R = 40Ω, we get the

resistance change for both the GMR and SSJ-MR. The total MR for metallic SSJ oscilla-

tors with a d.c. source, plotted in Fig 6.4, is one order of magnitude larger that the MR
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in insulating SSJ oscillators since only SSJ-MR exists in insulating systems. Other than

GMR, the anisotropic magnetoresistance (AMR) also shows up in our system. However,

due to the very thin thickness and large resistance of FM layers, AMR can be ignored

here.

It is worth to mentioning that even though the SSJ-MR is small, in the time

averaged ∆R-Vs, the Shapiro steps are still persisted. This is because the GMR only

depends on the relative phase of the in-plane magnetization, and the amplitude ranges

from 0 to ∆R, however ∆R does not change with φ̇. Thus, even in a metallic system,

the non-linear ∆R-Vs and the Shapiro steps behavior still persists and is not buried by

the large GMR effect.

6.6 Discussion

MR signals are commonly employed to estimate the output power of a spin

torque nano-oscillator. For the SSJ oscillators, the 2π magnetization dynamics within

the easy-plane could potentially boost the output power of the proposed device. In

metallic SSJ junctions the full 2π precession angle provide access to the maximum

values of the GMR for given ∆R. The output power here can achieve 90 nW to 300 nW

depending on the GMR ratio.
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Chapter 7

Conclusion and Outlook

To conclude, we first demonstrate single skyrmion creation and annihilation

by spin waves in a crossbar geometry. The skyrmion creation results from the geome-

try change in the crossbar combined with the effective gauge field provided by the DM

interaction acting on the spin wave. Skyrmion annihilation results from the emergent

magnetic field of the skyrmion acting on the spin wave and the conservation of momen-

tum between the spin wave and the skyrmion. A critical frequency is required both for

the creation and the annihilation of a skyrmion. The heat assisted method for skyrmion

creation reduces the minimum frequency required for creation. The minimum frequen-

cies for creation and annihilation are similar, but the optimum frequency for creation

that requires minimum spin-wave amplitude is below the critical frequency for skyrmion

annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the

critical frequency causes it to circulate within the central region at an angular frequency

about 3 orders of magnitude below the spin wave frequency.

For the skyrmion resonance modes, the out-of-plane spin wave modes of a

confined skyrmion in nanodisks with different ARs are studied using micromagntic sim-
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ulations. The skyrmion AR increases nonlinearly with increasing disk AR. New mixed

modes appear in the spectrum with increasing AR, which originate from geometrical

confinement and broken rotational symmetry of both the nanodisk and the skyrmion.

The lowest mode of the skyrmion is still well below the first eigenmode of the FM state

in the same geometry. Furthermore, two new modes appear below the lowest mode of

the skyrmion with increasing AR, whereas in the FM state, no additional mode ap-

pears below the lowest frequency mode. This property can be used for measuring the

skyrmion and AR in non-axial symmetric systems. New rotation and oscillation modes

with different azimuthal and radial components are identified at AR=1.8, which still

have characteristics of their original modes at AR=1.0. This study provides insight into

the effect of asymmetry on skyrmion dynamics in confined nanodisk geometries. Such

understanding is a step towards skyrmion based spin torque oscillators and spin wave

sources [49].

In chapter 4, we show that a QH = 1 hopfion can be stabilized in a chiral mag-

net nanodisk sandwiched by two magnetic layers with PMA at zero external magnetic

fields. The hopfion is identified by its preimages and the Hopf invariant. A MAP state

is also stabilized at zero fields in the proposed structure. The ratio of the helical period

L of the chiral magnet to the radius and thickness of the nanodisk determines which

state is the ground state and which state is the metastable state. The minimal energy

path calculation reveals the topological transition between the hopfion and the MAP

state. 3D magnetic imaging techniques such as the X-ray vector nanotomography could

be a powerful tool for visualizing the spin texture of hopfion in real space [132]. The

hopfion may exhibit fascinating electronic transport and dynamical properties due to its

novel topology. This work paves a way in the development of 3D spintronics and high

dimensional memory architectures
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In the second part, we first propose a novel effect in exchange coupled AFMIs

that is the analogue of the Josephson effect in superfluids. Due to periodic dependence

of the exchange energy on the relative phase difference, an oscillatory spin current flows

through the metallic spacer that is proportional to the rate of change of the relative

in-plane orientation of the Néel vector fields. A spin transfer torque induced by a spin

chemical potential at one of the interfaces results in non-linear IS-VS characteristics

that distinguish the proposed lateral spin valve heterostructure composed of AFMIs

and provide a signature of spin superfluidity. Furthermore, this heterostructure is an

example of a pure spin AFMI terahertz oscillator [108].

Then, we proposed a new type of spin nano-oscillator based on the SSJ effect

in FM. When exceeds critical value, a z-polarized spin chemical potential across the

junction drives planar magnetization rotation. This spin oscillation is mediated by a

spin superfluid mode and directly related to the phase difference between the two FMs.

The oscillation frequency is highly tunable via the spin chemical potential. Furthermore,

as a response of ac input, Shapiro steps appear in the Is-Vs curve, which is a signature

of mode-locking between the ac input and the magnetization oscillations. All the mag-

netization dynamics has been investigated within a magnetoresistance formalism, which

can be directly measured experimentally. The time-averaged magnetization dynamics

provides additional signatures for spin superfluidity. The 2π precession angle of the spin

superfluid mode can maximize the GMR and AMR, thus opens an alternative routine

towards building high power spin oscillators.
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Appendix A

LLG Equations for AFM spin

Josephson effect

For an antiferromagnet with two sublattices m1 and m2, we can write down

the total magnetization m = m1 +m2 and the Néel order n = m1−m2 with |m| <<

|n| ≈ 1. Then the Hamiltonian for the two exchange coupled AFM layers shown in Fig.

6.1 is:

H =

∫
[A(∇nL)2 +λmL ·mL+A(∇nR)2 +λmR ·mR+JmL ·mR+JnL ·nR]dr3 (A.1)

where A is the exchange constant, λ is the onsite exchange constant between two sub-

lattices, and J is the interlayer exchange coupling between the left and right AFM. We

assume the same A, J and λ for the two AFMs.

Now by the definition of effective field Heff = −∂H/∂m, we first derive the

effective field for mL, nL, mR, nR respectively.

HmL = −∂H/∂mL = −2λmL − 2JmR (A.2)
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HnL = −∂H/∂nL = −A∇2nL − 2JnR (A.3)

HmR = −∂H/∂mR = −2λmR − 2JmL (A.4)

HnR = −∂H/∂nR = −A∇2nR − 2JnL (A.5)

Then the LLG equation of motion in m and n is:

ṅL = γHmL × nL − α1ṁL × nL (A.6)

ṁL = γHnL × nL + γHmL ×mL − α1ṁL ×mL − α2ṅL × nL (A.7)

ṅR = γHmR × nR − α1ṁR × nR (A.8)

ṁR = γHnR × nR + γHmR ×mR − α1ṁR ×mR − α2ṅR × nR (A.9)

The Néel order n and total magnetization m can be defined as

nL = (cos θL cosφL, cos θL sinφL, sin θL) (A.10)

mL = (−mθL sin θL cosφL −mφL sinφL,−mθL sin θL sinφL +mφL cosφL,mθL cos θL)

(A.11)

nR = (cos θR cosφR, cos θR sinφR, sin θR) (A.12)

mR = (−mθR sin θR cosφR −mφR sinφR,−mθR sin θR sinφR +mφR cosφR,mθR cos θR)

(A.13)

where θ is the angle relative to the x − y plane and φ is the angle relative to the x

axis. mθ and mφ are the two components transverse to the Néel order n. In general,

we assume the out-of-plane angle θ remains zero which gives an antiferromagnet order

varying in the x-y plane only.

Then the Néel order and total magnetization become

nL = (cosφL, sinφL, 0) (A.14)
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mL = (−mφL sinφL,mφL cosφL,mθL) (A.15)

nR = (cosφR, sinφR, 0) (A.16)

mR = (−mφR sinφR,mφR cosφR,mθR) (A.17)

and

∇2nLx = − sinφL∇2φL − cosφL(∇φL)2 (A.18)

∇2nLy = − sinφL(∇φL)2 + cosφL∇2φL (A.19)

∇2nLz = 0 (A.20)

ṅLx = − sinφLφ̇L (A.21)

ṅLy = cosφLφ̇L (A.22)

ṅLz = 0 (A.23)

ṁLx = −ṁφL sinφL −mφL cosφLφ̇L (A.24)

ṁLy = ṁφL cosφL −mφL sinφLφ̇L (A.25)

ṁLz = ṁθL (A.26)

∇2nRx = − sinφR∇2φR − cosφR(∇φR)2 (A.27)

∇2nRy = − sinφR(∇φR)2 + cosφR∇2φR (A.28)

∇2nRz = 0 (A.29)

ṅRx = − sinφRφ̇R (A.30)

ṅRy = cosφRφ̇R (A.31)

ṅRz = 0 (A.32)

ṁRx = −ṁφR sinφR −mφR cosφRφ̇R (A.33)
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ṁRy = ṁφR cosφR −mφR sinφRφ̇R (A.34)

ṁRz = ṁθR (A.35)

Now that we have written down all of the equations and variables, we will begin to

derive the equations of the spin Josephson effect.

First we expand the equation of motion for m

ṁL = −γA∇2nL×nL−2γJnR×nL−2γJmR×mL−α1ṁL×mL−α2ṅL×nL (A.36)

ṁR = −γA∇2nR×nR−2γJnL×nR−2γJmL×mR−α1ṁR×mR−α2ṅR×nR (A.37)

and write down the explicit equation for z component mz(mθ)

ṁLz +α1(ṁLxmLy−ṁLymLx)+α2(ṅLxnLy−ṅLynLx) = −γA(nLy∇2nLx−nLx∇2nLy)

− 2γJ(nRxnLy − nRynLx)− 2γJ(mRxmLy −mRymLx) (A.38)

ṁRz +α1(ṁRxmRy−ṁRymRx)+α2(ṅRxnRy−ṅRynRx) = −γAnRy∇2nRx−nRx∇2nRy)

− 2γJ(nLxnRy − nLynRx)− 2γJ(mLxmRy −mLymRx). (A.39)

After substituting all of the variables from section 1, we will have

ṁθL + α1[−ṁφLmφL sinφL cosφL − (mφL)2 cos2 φLφ̇L + ṁφLmφL sinφL cosφL

− (mφL)2 sin2 φLφ̇L] + α2(− sin2 φLφ̇L − cos2 φLφ̇L) = −γA[− sin2 φL∇2φL

− sinφL cosφL(∇φL)2 − cos2 φL∇2φL + sinφL cosφL(∇φL)2]

− 2γJ(cosφR sinφL − sinφR cosφL)

− 2γJ(−mφLmφR sinφR cosφL +mφLmφR cosφR sinφL) (A.40)
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ṁθR + α1[−ṁφRmφR sinφR cosφR − (mφR)2 cos2 φRφ̇R + ṁφRmφR sinφR cosφR

− (mφR)2 sin2 φRφ̇R] + α2(− sin2 φRφ̇R − cos2 φRφ̇R) = −γA[− sin2 φR∇2φR

− sinφR cosφR(∇φR)2 − cos2 φR∇2φR + sinφR cosφR(∇φR)2]

+ 2γJ(cosφR sinφL − sinφR cosφL)

+ 2γJ(−mφLmφR sinφR cosφL +mφLmφR cosφR sinφL) (A.41)

After cancellation, combination, and ignoring small second order terms like (mφ)2,

(mθ)
2, mθmφ, we get

ṁθL − α2φ̇L = −2γ sin(φL − φR) (A.42)

and

ṁθR − α2φ̇R = 2γ sin(φL − φR) (A.43)

Equations (A.42) and (A.43) describe the spin Josephson effect. This relation-

ship is analogous to the Josephson effect I = Ic sin(∆φ) in a superconductor.

Next we will derive equations for the order parameter φ. Expand the equation

of motion for n

ṅL + α1ṁL × nL = −2γλmL × nL − 2γJmR × nL (A.44)

ṅR + α1ṁR × nR = −2γλmR × nR − 2γJmL × nR (A.45)

Then write down the explicit equation for nLx and nLy

ṅLx − α1ṁLznLy = 2γλmLznLy + 2γJmRznLy (A.46)

ṅLy + α1ṁLznLx = −2γλmLznLx − 2γJmRznLx (A.47)

ṅRx − α1ṁRznRy = 2γλmRznRy + 2γJmLznRy (A.48)
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ṅRy + α1ṁRznRx = −2γλmRznRx − 2γJmLznRx (A.49)

After substituting all of the variables in equations (A.46)–(A.49), we get

− sinφLφ̇L − α1ṁθL sinφL = 2γλmθL sinφL + 2γJmθR sinφL (A.50)

cosφLφ̇L + α1ṁθL cosφL = −2γλmθL cosφL − 2γJmθR cosφL (A.51)

− sinφRφ̇R − α1ṁθR sinφR = 2γλmθR sinφR + 2γJmθL sinφR (A.52)

cosφRφ̇R + α1ṁθR cosφR = −2γλmθR cosφR − 2γJmθL cosφR (A.53)

Taking (A.50) × sinφL − (A.51) × cosφL and (A.52) × sinφR − (A.53) × cosφR gives

φ̇L = −2γλmθL − 2γJmθR − α1 ˙mθL (A.54)

and

−φ̇R = 2γλmθR + 2γJmθL + α1 ˙mθR (A.55)

Eqs. (A.54) and (A.55) are the equations for the order parameter φ. Now let mθL −

mθR = mz, φL − φR = φ, take (A.42)-(A.43), and (A.54) + (A.55) to obtain

ṁz = −4γJ sin(φ) + α2φ̇ (A.56)

and

φ̇ = (2γJ − 2γλ)mz − α1ṁz. (A.57)

Eqs. (A.56) and (A.57) are the final equations for the spin Josephson effect in the two

exchange–coupled AFM layers.
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Appendix B

Hopf invariant in k-space

In real space, the integral form of the Hopf invariant is defined as [81]

H = −
∫

B(r) ·A(r)dr, (B.1)

where

Bi =
1

8π
εijk m · (∇jm×∇km), (B.2)

∇×A = B, (B.3)

m is the local magnetic vector, B is the emergent magnetic field, A is the corresponding

gauge potential, and ε is the Levi-Civita symbol.

To avoid solving for the explicit form of A, we represent A in form of B in

momentum space. To do this, we first perform a Fourier transformation on both A and

B and get

A(r) =
1

N

∑
A(k)ei2πk·r,

B(r) =
1

N

∑
B(k)ei2πk·r,

(B.4)

where N is the grid size of the system. In momentum space, Eq. (B.3) becomes

i2πk×A(k) = B(k). (B.5)
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Then, by using the Lagrange formula and the gauge relation k ·A = 0, we solve Eq. (B.5)

to obtain the expression

A(k) = −ik×B(k)

2πk2
. (B.6)

Substituting Eq. (B.6) into Eq. (B.1), the Hopf invariant in momentum space becomes

H = i
1

N

∑
k

B(−k) · (k×B(k))

2πk2
. (B.7)

All the Hopf invariant calculations in the main text were obtained using Eq. (B.7).
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Appendix C

Simple Magnon Band

Let us consider a system with the following Hamiltonian

H = −A(∇m)2 +Dm · (∇×m)− Ku

2
(m · z)2 −Hext ·m (C.1)

where A is the exchange constant, D is the bulk type DMI constant, Ku is the anisotropy

constant with an easy-axis along the z-direction and Hext is the external magnetic field.

From Eq. C.1, we can get the effective field heff = − 1
µ0Ms

dH
dm of the system

heff =
A

µ0Ms
∇2m− 2D

µ0MS
(∇×m) +

Ku

µ0Ms
(m · z)z + hext ·m (C.2)

Hereafter, we will use A0, D0 and K0 instead of the full expressions of every term for

simplicity. The LLG equation without damping can be written as

ṁ = −γm× heff (C.3)

Plugging in Eq. C.2 in the LLG equation, we will have

ṁ = −γm× [A0∇2m−D0(∇×m) +K0(m · z)z + hext ·m] (C.4)

Assume the magnetic field is in z-direction and the anisotropy and external magnetic

field is strong so that all the magnetizations point to z-direction. In the presence of small
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perturbation, we can define m = m0z+m⊥, where m⊥ is the lowest order perturbation

term and m⊥ · z = 0. Using this definition, the LLG equation becomes

ṁ⊥ = −γ(m0z + m⊥)× [A0∇2m⊥ −D0(∇×m⊥) +K0m0z + hext ·m0z], (C.5)

ṁ⊥ = γm0z× [−A0∇2m⊥ +D0(∇×m⊥) +K0m⊥ + hext ·m⊥] (C.6)

Rewrite m⊥ in components m⊥ = mxx+myy, and also rewrite Eq. C.6 in components,

1

γ
ṁx = A0∇2my +D0m0∇mx −K0my − hextmy (C.7)

1

γ
ṁy = −A0∇2mx +D0m0∇my +K0mx + hextmx (C.8)

Define ψ = mx − imy and assume m0 ≈ 1. Then take Eq. (C.7) − i Eq. (C.8) to obtain

1

γ
ψ̇ = iA0∇2ψ +D0∇ψ − iK0ψ − ihextψ. (C.9)

Using a plan-wave solution ψ = ψ0e
i(k·r−ωt) in Eq. (C.9) gives the magnon dispersion

1

γ
ω = A0k

2 ±D0k + (K0 + hext). (C.10)

The dispersion is a parabolic band with horizontal shift in k due to the DMI and a

vertical shift in frequency due to the anisotropy and the external magnetic field.
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[9] Tôru Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism.
Physical Review, 120(1):91–98, October 1960.

[10] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antifer-
romagnetics. Journal of Physics and Chemistry of Solids, 4(4):241–255, 1958.

[11] J. C. Slonczewski. Current-driven excitation of magnetic multilayers. Journal of
Magnetism and Magnetic Materials, 159(1):L1–L7, June 1996.

[12] L. Berger. Emission of spin waves by a magnetic multilayer traversed by a current.
Phys. Rev. B, 54(13):9353–9358, October 1996.

88



[13] Naoto Nagaosa and Yoshinori Tokura. Topological properties and dynamics of
magnetic skyrmions. Nature Nanotechnology, 8(12):899–911, December 2013.
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