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PHYSICAL REVIEW FLUIDS 9, 044303 (2024)

Particle hydrodynamics in acoustic fields: Unifying
acoustophoresis with streaming

Xiaokang Zhang , Jake Minten, and Bhargav Rallabandi *

Department of Mechanical Engineering, University of California, Riverside, California 92521, USA

(Received 26 September 2023; accepted 12 March 2024; published 10 April 2024)

Acoustic fields are widely used to manipulate suspended particles, by rectifying the
inertia of rapid oscillations into steady transport. We develop an analytic theory of this
particle motion, systematically unifying inviscid acoustophoresis with viscous streaming
effects. By applying the Lorentz reciprocal theorem, we obtain a Faxén-like relationship
that relates particle motion to a generalized version of the secondary radiation force that
depends on the thickness of the oscillatory Stokes layer around the particle, and the density
and compressibility contrast between the particle and the fluid. The theory identifies a
reversal of particle motion when inertial and viscous forces are comparable, which we
validate quantitatively with numerical solutions of the timescale-separated hydrodynamics.
We discuss the implications of our findings for practical applications seeking to sort or
focus particles by size or material properties.

DOI: 10.1103/PhysRevFluids.9.044303

I. INTRODUCTION AND PROBLEM SETUP

Acoustophoresis refers to the steady drift of suspended particles due to scattering of an incident
acoustic field [1]. Acoustic fields—more generally, oscillatory flows—also drive a steady secondary
“streaming” flow due to viscous effects, which transports suspended particles [2]. Both effects
are produced by a nonlinear rectification of the inertia of rapid oscillations, and act in concert to
transport suspended particles [3]. These effects have been used in a growing number applications to
manipulate particles, cells, droplets, and microorganisms using ultrasound. Recent examples include
the lysis of vesicles [4], microfluidic focusing and sorting [3,5], cell patterning [6,7], the design of
microrobots [8], and the levitation of particles and droplets [9–12]. In these applications, inertial and
viscous forces focus particles at nodes or antinodes of an acoustic standing wave [3], drive motion
toward or away from solid surfaces and fluid interfaces [5,13,14], or assemble particles into chains
or clusters [15–17].

To understand these phenomena, it is necessary to quantify the emergent time-averaged motion
of the particles, driven by an interplay of acoustophoresis and streaming effects. The competition
between viscous and inertial forces on the particle is quantified by the dimensionless parameter
δ =

√
2ν/(ωa2), which is the ratio of a viscous Stokes layer thickness

√
2ν/ω to the particle radius

a. Here, ν is the kinematic viscosity of the fluid and ω is the angular frequency of the sound
(Fig. 1). The theory of secondary radiation forces (SRF) [18–20], widely used in acoustofluidics,
addresses the high-frequency inviscid limit (δ � 1) but neglects viscous effects and streaming.
Recent work using the Gatignol-Maxey-Riley equation [21,22] (often with inertial modifications
[14,23–25]) better captures transport by viscous streaming associated with δ � 1, but neglects
compressibility effects important in acoustics. At intermediate δ, where many experiments operate,
the two formalisms are in disagreement, even over the direction of particle motion [20,24,26].
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ZHANG, MINTEN, AND RALLABANDI

FIG. 1. Problem setup: An ambient fluid flow (density ρ f , compressibility κ f ) produces oscillations of a
suspended particle (density ρp, compressibility κp). Advective nonlinearities drive a secondary time-averaged
motion of the particle.

Here, we develop an analytic theory of particle motion that spans the entire range of experimen-
tally relevant parameters, systematically unifying the inviscid acoustofluidic and viscous streaming
regimes. In the absence of the particle, the acoustic driving sets up a known “ambient” (or incident)
fluid flow v∞(x, t ) (Fig. 1). The ambient flow is dominated by a fast and rapidly oscillating primary
component of characteristic speed v and angular frequency ω, whose oscillation amplitude relative
to the particle size is ε = v/(aω). As is typical for acoustically driven systems, the ambient flow
may also contain a slower secondary steady component (the “streaming” flow) that is quadratic in
the sound amplitude and has a velocity scale εv.

A suspended particle responds to the ambient flow by translating with velocity Vp(t ), which
is a combination of an oscillatory response and a time-averaged drift. Additionally, the particle
responds to the oscillating pressure of the ambient flow by executing volume oscillations with
surface velocity Vn(t )n along the surface normal n. This creates a disturbance (or “scattered”) flow
vd (x, t ), leading to a net flow v = v∞ + vd . The fluid ( f ) and the particle (p) have equilibrium
density ρ f ,p and compressibility κ f ,p = (ρ f ,pc2

f ,p)−1, where c f ,p is the speed of sound in the
respective medium. Scaling lengths with a, time with ω−1, and defining a dimensionless density
field �(x, t ) = ρ(x, t )/ρ f , the flow is governed by

2

δ2

(
∂v
∂t

+ εv · ∇v
)

= ∇ · σ, (1a)

∂�

∂t
+ ε∇ · (�v) = 0, (1b)

where σ = −pI + (∇v + ∇vT ) is the stress tensor (scaled with μv/a, where μ = νρ f ). The particle
motion must be determined as part of the solution; of particular interest is time-averaged particle
velocity 〈Vp〉.

II. SMALL AMPLITUDE THEORY

While direct numerical simulations (DNS) of (1) are expensive, time-averaged inertial effects
are quadratic in oscillation amplitude in the vast majority of applications [1,3,5,13,17]. We focus
on these quadratic effects, fully resolving them in a nonlinear theory for small amplitude ε � 1.
(More precisely, the amplitude of particle oscillation relative to the fluid must be small.) We
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PARTICLE HYDRODYNAMICS IN ACOUSTIC FIELDS: …

seek a perturbation solution with (v, σ ) ∼ (v1, σ1) + ε(v2, σ2) and � ∼ 1 + ε�1, where primary
components (subscript 1) oscillate with frequency ω, and secondary components (subscript 2)
involve steady terms that are of practical interest. Separating orders of ε (equivalently, separating
fast and slow timescales) in (1) leads to [1,26]

2

δ2

∂v1

∂t
= ∇ · σ1,

∂�1

∂t
+ ∇ · v1 = 0, (2a)

∇ ·
〈
σ2 − 2

δ2
v1v1

〉
= 0, ∇ · 〈v2 + �1v1〉 = 0, (2b)

where angle brackets define a time average over an oscillation according to 〈g〉(x) =
(2π )−1

∫ t+2π

t g(x, t )dt and isolate steady flow features. Pressure and density oscillations are related
by p1 = �1/(κ f μω). The perturbative approach is uniformly valid to the order of ε considered here
(velocity ∝ ε2), and inertial far-field effects are negligible (Appendix A).

The flow satisfies no slip (v = Vp + Vnn) on the instantaneous particle surface Sp(t ). We project
this condition onto the time-averaged surface 〈Sp〉 and separate powers of ε (Appendix B) to obtain
effective boundary conditions for the primary and secondary flow

v1 = Vp1 + Vn1n on 〈Sp〉, (3a)

〈v2〉 =
〈
Vp2 −

∫
v1dt · ∇v1

〉
on 〈Sp〉, (3b)

where Vp1 and Vn1 denote translational and volumetric oscillations of the particle, while 〈Vp2〉 =
ε−1〈Vp〉 is the rescaled time-averaged particle velocity. Observe that (3b) involves a “Stokes
drift” term, 〈∫ v1dt · ∇v1〉, that arises naturally because the particle defines a material surface
(Appendix B).

A. Oscillatory primary flow

The oscillatory primary flow around the particle is well known [27], so we only outline the
main ideas. We make the ansatz that primary flow quantities oscillate as Re[g(x)eit ] for generally
complex g(x). We focus on particles that are small relative to a spatial length scale L, of the ambient
flow, typically either the wavelength of sound Lc or an external geometric scale Lg. Defining a local
inertial frame r = x − 〈Xp〉 relative to the time-averaged particle center 〈Xp〉, we thus Taylor expand
the ambient flow as

v∞
1 (x, t ) ∼ V∞

1 (t ) + E∞
1 (t ) · r + 1

3�∞
1 (t )r + . . . (4)

in terms of the velocity V∞
1 , the deviatoric rate of strain (extension rate) E∞

1 , and the velocity
divergence (dilatation rate) �∞

1 of the ambient flow, all evaluated at the average particle center
〈Xp〉. These flow properties are complex phasors, and it will be understood that only the real part
of any complex equality is physically meaningful. We neglect the rotation of the particle and the
vorticity of the ambient flow, as they are typically small for spheres in acoustic fields [27].

The particle responds by producing an oscillatory disturbance flow vd
1 . This disturbance decays

on the scale of a � Lc and is thus approximately incompressible [27]. The solution to the primary
disturbance flow around the particle can then be written in terms of tensor harmonics [27–29] as
(rewriting results from [20,27])

vd
1 = D · (

Vp1 − V∞
1

) + Q : E∞
1 + m

(
Vn1 − �∞

1

3

)
. (5)

Here, m(r), D(r, δ), and Q(r, δ) are monopole, dipole, and quadrupole tensors given by (defining
R = λr)

m(r) = r
r3

, (6a)
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D(r, λ) = d1

[
I
r3

− 3
rr
r5

]
+ d2

[
e−R

(
1

R
+ 1

R2
+ 1

R2

)
I − e−R

r2

(
1

R
+ 3

R2
+ 3

R2

)
rr

]
, (6b)

Q(r, λ) = q1

[
6

I
r5

− 15
rr
r7

]
r + q2

[
e−R

r2

(
1 + 3

R
+ 6

R2
+ 6

R3

)
I − e−R

r4

(
1 + 6

R
+ 15

R2
+ 15

R3

)
rr

]
.

(6c)

No-slip conditions on the mean particle surface (r = 1) determine the coefficients

d1 = −3 + 3λ + λ2

2λ2
, d2 = 3eλλ

2
, q1 = 15 + 15λ + 6λ2 + λ3

9λ2(1 + λ)
, and q2 = − 5eλλ

3(1 + λ)
.

(7)

The primary oscillatory flow v1 = v∞
1 + vd

1 and the associated stress σ1 are now known in terms
of the yet-to-be-determined oscillatory particle kinematics Vp1 and Vn1. To determine Vp1, we invoke
conservation of the particle momentum (projected on eit modes), 4

3πa3ρp
dVp1

dt = ∫
〈Sp〉 n · σ1dS, to

obtain [20]

Vp1 − V∞
1 = RV∞

1 , where R(δ, ρ̃ ) = − 2λ2(ρ̃ − 1)

λ2(2ρ̃ + 1) + 9λ + 9
, (8a)

a relative oscillatory Stokes particle mobility, where ρ̃ = ρp/ρ f is the density ratio and λ = (1 +
i)/δ. The real and imaginary parts of R, respectively, quantify in-phase and out-of-phase oscillations
of the particle relative to the fluid. Equilibrium of normal stresses on the particle surface determines
Vn1 = 1

3 (κ̃ − 1)�∞
1 , where κ̃ = κp/κ f is the compressibility ratio [20].

B. Time-averaged secondary force

Having fully determined the primary flow v1, we turn to the time-averaged particle motion.
Doinikov [26] showed that the time-averaged force exerted by the fluid on the particle (in units
of εμav) is 〈F〉 = ∫

〈Sp〉 n · 〈σ2 − 2
δ2 v1v1〉. The ambient flow makes no contribution to the time-

averaged force as it satisfies (2b) everywhere (in particular also inside the particle volume). Thus,
we can write the force as

〈F〉 =
∫
〈Sp〉

n ·
〈
σ2 − 2

δ2
v1v1

〉d

dS, (9)

where we recall that the superscript d denotes disturbance contributions due to the particle, defined
for any field g by gd = g − g∞. Evaluating (9) entails finding σd

2 in the course of solving for the
(analytically intractable) secondary flow.

1. Reciprocal relation for the time-averaged force

We use the Lorentz reciprocal theorem [30,31] to develop analytic insight into the time-averaged
force without resolving the details of the secondary flow. We first introduce the steady Stokes flow
around by a sphere translating with velocity V̂ through quiescent fluid [flow velocity v̂(x), stress
σ̂(x)]. This flow (which we call the auxiliary flow) satisfies

∇ · σ̂ = 0, ∇ · v̂ = 0, subject to v̂|〈Sp〉 = V̂, v̂|r→∞ = 0. (10)

The rate of strain and surface traction of the auxiliary flow are, respectively, Ê = E (x) · V̂ and
n · σ̂|〈Sp〉 = T(x) · v̂, where the tensors E and T are (using indices for clarity) [28,32]

Ei jk = 3

4

[(
δi j rk

r3
− 3

rir jrk

r5

)
+1

3

(
−3

riδ jk

r5
− 3

r jδik

r5
− 3

δi j rk

r5
+ 15

rir jrk

r7

)]
, and Ti j = −3

2
δi j .

(11)
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We use (2b) and (10) to construct the symmetry relation ∇ · 〈σ2 − 2
δ2 v1v1〉d · v̂ = ∇ · σ̂ · 〈v2〉d ,

which, upon rearranging, yields

∇ ·
(〈

σ2 − 2

δ2
v1v1

〉d

· v̂

)
+ 2

δ2
〈v1v1〉d : Ê = ∇ · (

σ̂ · vd
2

) + p̂ (∇ · 〈v2〉d ). (12)

We then integrate over the volume 〈V 〉 surrounding the time-averaged particle surface, apply the
divergence theorem, and use (2b) and (10) once more to obtain∫

〈Sp〉
n ·

〈
σ2− 2

δ2
v1v1

〉d

· v̂dS =
∫
〈Sp〉

n · σ̂ · vd
2 dS+

∫
〈V 〉

2

δ2
〈v1v1〉d : Ê dV +

∫
〈V 〉

p̂〈v1 · ∇�1〉d dV.

(13)

The first term of (13) is exactly equal to 〈F〉 · V̂ due to (9), while its last term is smaller than the
others by a factor of (a/Lc)2 � 1 and is neglected (this is equivalent to the approximation ∇ · 〈vd

2 〉 ≈
0). Next, we separate (3b) into ambient and disturbance contributions and find that 〈v2〉d = 〈Vp2〉 −
〈v∞

2 + ∫
v∞

1 dt · ∇v∞
1 〉 − 〈∫ v1dt · ∇v1〉d on 〈Sp〉. We see that the ambient “Lagrangian streaming”

〈v∞
L 〉(x)

def= 〈v∞
2 + ∫

v∞
1 dt · ∇v∞

1 〉, which describes the time-averaged motion of a material element
in the absence of the particle [2] (and is therefore a known quantity), arises naturally in the analysis.
Eliminating the arbitrary auxiliary particle velocity V̂, (13) thus yields

〈F〉 =
∫
〈Sp〉

〈
Vp2 − v∞

L

〉 · TdS −
∫
〈Sp〉

〈∫
v1dt · ∇v1

〉d

· TdS +
∫

〈V 〉

2

δ2
〈v1v1〉d : EdV. (14)

2. Time-averaged particle motion and the generalized secondary radiation force

The result (14) is an exact reformulation of (9) for particles much smaller than the wavelength
of sound. Notably, (14) only involves the primary flow v1 (which we have already determined),
the ambient Lagrangian flow 〈v∞

L 〉 (which is known), and the secondary particle velocity 〈vp2〉
(which is the main quantity of interest). Evaluating (14) analytically yields (reverting to dimensional
variables)

〈F〉 = −6πμa

[
〈Vp〉 −

(
1 + a2

6
∇2

)
〈vL〉∞|〈Xp〉

]
+ FSR, where (15a)

FSR =
∫
〈Sp〉

〈∫
v1dt · ∇v1

〉d

· TdS +
∫

〈V 〉

2

δ2
〈v1v1〉d : EdV. (15b)

The first term of (15a) is a Stokes drag with a Faxén correction for a particle moving through the
ambient Lagrangian streaming field 〈vL〉∞. The second term, FSR is a time-averaged inertial force
that can be interpreted as the generalization of the SRF for arbitrary δ, κ̃ , and ρ̃. We observe that
FSR is produced explicitly as a consequence of the oscillatory disturbance flow due to the particle.

We evaluate FSR analytically (using Mathematica), noting that the time-average of a product
of two oscillating quantities A(t ) = Re[αeit ] and B(t ) = Re[βeit ], with complex α and β, is
〈AB〉 = 1

2 Re[α∗β] = 1
2 Re[αβ∗]. The generalized SRF contains contributions from both extension

and dilatation rates, and takes the form (defining m f = 4
3πa3ρ f )

FSR = m f Re
[(

V∞
1

)∗ · E∞
1 FE + (

V∞
1

)∗
�∞

1 F�

]
, (16)

where FE (δ, ρ̃ ) and F�(δ, ρ̃, κ̃ ) are complex coefficients that we discuss shortly, and where the
asterisk denotes a complex conjugate. We note that the dilatation is related to the primary pressure
by �∞ = −iωκ f p∞

1 , and for acoustic flows, it is often useful to write (V∞
1 )∗�∞

1 = − κ f

ρ f
p∞

1 (∇p∞
1 )∗.

If one interprets V∞
1 (t ), E∞

1 (t ), and �∞
1 (t ) as real oscillating quantities (rather than phasors), one
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FIG. 2. Coefficients (a) GE , (b) Gκ
�, (c) GR

� , and (d) GκR
� as obtained from the theory (curves) and from

numerical solutions (symbols), showing real and imaginary parts. Approximations 19(a) and 19(d) are indicated
by dashed curves in panels (a) and (d).

can equivalently write (16) as

FSR =2m f

[
〈V∞

1 · E∞
1 〉Re[FE ]−

〈
∂V∞

1

∂t
· E∞

1

〉
Im[FE ]

ω
+ 〈V∞

1 �∞
1 〉Re[F�]−

〈
∂V∞

1

∂t
�∞

1

〉
Im[F�]

ω

]
.

(17)

The coefficients FE and F� are complex, and their real (imaginary) parts characterize inertial
forces due to velocities oscillating in phase (out of phase) with rates of strain, as is made explicit by
(17). They admit the decomposition

FE = R∗GE , (18a)

F� = (κ̃ − 1)Gκ
� + R∗GR

� + (κ̃ − 1)R∗GκR
� , (18b)

into terms that depend on the density contrast (ρ̃ − 1) through R∗ [see (8)], the compressibility con-
trast (κ̃ − 1), or a combination. The associated complex coefficients GB

A (δ) are purely hydrodynamic
quantities (independent of particle properties) that result from analytic evaluation of the integrals in
(14) (using Mathematica) and are indicated as solid curves in Fig. 2. Simple analytic expressions
for these coefficients are given by [recalling that λ = (1 + i)/δ]

GE (δ) � −3λ2 + 4
5 (1 + 9i)λ + 9

4λ2
, (19a)

Gκ
�(δ) = −1

2
, (19b)

GR
� (δ) = −λ2 + 3iλ + 6

4λ2
, (19c)

GκR
� (δ) � − 15

4λ2

(9λ + 8i)

(9λ + 40i)
. (19d)

Note that (19b) and (19c) are exact. The approximations (19a) and (19d) are constructed to be
asymptotic to the exact expressions (Appendix C) to leading order for both small and large δ.
These approximations are indicated as dashed curves in Figs. 2(a) and 2(d) and are excellent
representations of the exact results (accurate to within 3%; see Fig. 5) for all δ.

The relations (15)–(19) describe in full the time-averaged motion of a particle suspended in an
oscillatory gradient flow and form the main result of this work. The theory generalizes the notion
of SRF and unifies it with streaming, thus bridging inviscid acoustofluidics with viscous particle
hydrodynamics. In many situations, the particle is freely suspended and is thus force free (〈F〉 = 0),
so (15) yields the time-averaged particle velocity]:

〈Vp〉 =
(

1 + a2

6
∇2

)
v∞

L

∣∣∣∣〈Xp〉
+ FSR

6πμa
. (20)
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0 1 2 3 4
-2

-1

0

1

2

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

FIG. 3. Coefficients (a) FE and (b) F� versus the Stokes layer thickness δ = ( 2ν

a2ω
)1/2. The real (solid) and

imaginary (dashed) parts are due to velocities that are, respectively, in phase and out of phase with strain rates.
FE reverses with δ for all ρ̃, while F� (here plotted for ρ̃ = 1.5) reverses with δ for small compressibility
contrasts (κ̃ close to unity).

In the limit δ � 1, the present formulation fully recovers inviscid acoustofluidics [20], while the
viscous limit recovers particle transport by streaming, with additional Faxén and inertial corrections;
cf. [33]. Rectified inertial forces due to the second gradient of velocity (see [34,35]) are smaller by
a relative factor of O(a2/L2) and have been neglected here, but can be simply added to FSR.

The coefficient FE , associated with the rate of extension, is nonzero only for density-mismatched
particles [Fig. 3(a)]. In the inviscid limit (δ � 1), FE ∼ F inv

E = 3(ρ̃−1)
2(2ρ̃+1) and in the viscous limit

(δ � 1), FE ∼ Fvisc
E = − (ρ̃−1)

2 , in agreement with [25]. Notably, these limits have opposite signs, so
FE must reverse with δ. This reversal occurs around δ ≈ 1.5 for modest density contrasts [Fig. 3(a)]
when viscous and inertial effects around the particle are comparable. This coincides with in-phase
and out-of-phase oscillations of the particle (real and imaginary parts of R) becoming of similar
magnitude. The imaginary part of FE vanishes in both limits and is maximum at intermediate δ.
Both real (in-phase) and imaginary (out-of-phase) parts of FE are comparable for the O(1) values
of δ typical of applications so both are likely important in practice.

The dilatation coefficient F� depends on three parameters (δ, ρ̃, and κ̃) and is plotted in Fig. 3(b).
As with FE , F� has real-valued asymptotes in both inviscid (F inv

� = (ρ̃−1)
2(2ρ̃+1) − κ̃−1

2 ) and viscous

(Fvisc
� = − ρ̃−1

3 − (κ̃−1)(ρ̃+2)
6 ) limits. For fixed ρ̃, the main effect of varying κ̃ is to “shift” F� by a

constant (this is due to the Gκ
� term). F� may also change sign with δ, but whether or not this reversal

occurs is sensitive to both κ̃ and ρ̃. For particles with a moderate density contrast, F� reverses for κ̃

close to unity [Fig. 3(b)], while the reversal occurs over a wider range of κ̃ for particles with greater
density contrast.

C. Time-averaged secondary flow

We verify the analytic predictions of the theory by developing numerical solutions of the detailed
flow under the small-amplitude perturbation scheme, (2) and (3). While not a DNS of (1), this
approach captures the practically relevant inertial effects in acoustofluidics, which are quadratic in
oscillation amplitude [1]. We numerically solve (2b) with (3b), using the analytically determined
(exact) oscillatory flow v1 discussed in Sec. II A. We focus on an axisymmetric setting, which
suffices to capture all flow features associated with the time-averaged force discussed above, viz.
translation, extension, and dilatation. As noted earlier, the disturbance flow is approximately incom-
pressible up to corrections of O(a2/L2

c ). We thus utilize a vorticity-stream function formulation of
(2b), written in spherical coordinates, which we solve numerically using finite differences.

To focus on the flow associated with the SRF (as opposed to that due to the time-averaged motion
of the particle or the response to the steady Lagrangian ambient flow), we set 〈Vp〉 = v∞

2L = 0, see
(15). On solving for the secondary flow, we use (9) to calculate 〈F〉, which isolates the generalized
SRF FSR under the setup described above. Furthermore, by constructing oscillatory ambient flows
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FIG. 4. Time-averaged disturbance flow 〈v2〉 with δ = 1 and ρ̃ = κ̃ = 2. The flow is axisymmetric about
the polar axis p, and the ambient flow corresponds to V∞

1 = p eit , E∞
1 = 1

2 (−I + 3pp) eit , �∞
1 = eit , and

Vp2 = v∞
2L = 0. Panel (a) shows streamlines close to the particle, and (b) shows the same flow at greater length

scales, revealing the behavior to be akin to a Stokeslet flow. Colors indicate dimensionless flow speed. (c) The
speed of the secondary flow decays as r−1, and can be seen here at locations along the axis of symmetry (red)
and 90◦ from the axis of symmetry (blue).

with specific pairs of flow modes, we identify the computed force with a single term in (18).
For example, a simulation with �∞

1 = 0 and nonzero V∞
1 and E∞

1 identifies GE . We repeat this
procedure for different pairs of flow modes, extracting all four G coefficients from numerical
solutions. These numerically calculated coefficients (symbols in Fig. 2) are in excellent agreement
with the analytic theory (19).

The numerical solutions also provide additional qualitative and quantitative insight that is not
directly obtained through the reciprocal theorem. Figure 4(a) shows example streamlines of the
numerically computed secondary axisymmetric flow for δ = 1, with ρ̃ = κ̃ = 2. The flow is quite
complex near the particle, including multiple stagnation and recirculation regions. However, far
away from the particle, the secondary flow approaches that driven by a point force in Stokes flow,
and exhibits the characteristic r−1 velocity decay of a Stokeslet flow [Figs. 4(b) and 4(c)]. As with
a Stokeslet flow, the secondary flow speed at locations along the axis of the point force is twice that
of the velocity at locations transverse to the axis [Fig. 4(c)]. Interestingly, however, the associated
point force is distinct from FSR, as a part of the secondary stress (viz., the radiation pressure) is
in hydrostatic balance (in the time-averaged sense) with the isotropic part of the Reynolds stress
〈2δ−2|v1|2〉 and does not engender a secondary flow. Thus, the secondary flow is Stokes-like [as
should be expected from (2b)] but involves additional complexities associated with inertial effects.
A detailed analysis of these features is left to future work.

III. CONCLUSIONS

We conclude by discussing some ramifications and applications of the theory. For incompressible
systems, the reversal of FE with δ indicates that large and small particles should exhibit qualitatively
different behaviors when exposed to the same flow. For example, consider the incompressible radial
flow driven by an oscillating monopole, which can be realized in practice by an ultrasound-driven
microbubble [23]. If particles of identical densities (e.g., with ρ̃ > 1) but different sizes are
suspended in the surrounding fluid, larger particles (smaller δ) would be attracted to the bubble
[23,24], whereas smaller particles would be repelled from it. The driving frequency could thus
be tuned to tailor δ such that particles of different sizes experience secondary forces in opposite
directions. The same principle could be applied to effect differential forces on particles of the same
size but different material properties. This could be exploited to sort particles by size or material
properties in microfluidic applications. The theory can also be applied to understanding particle
transport in more complicated situations involving a superposition of fast oscillations and a slower
steady flow; this includes streaming flows.
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As an example that involves the effects of both density and compressibility contrast, we consider
a polystyrene (PS) particle suspended in an acoustic plane standing wave in either water or air. In
water, the effects of compressibility contrast dominate (κ̃ ≈ 0.38, ρ̃ ≈ 1.05) causing the particles to
accumulate at pressure nodes (velocity antinodes) regardless of δ. However, density contrast effects
dominate in air (ρ̃ ≈ 103, κ̃ ≈ 0), where our framework predicts that the generalized SRF focuses
particles at pressure nodes for small δ, and at pressure antinodes for δ � 8. This reversal occurs due
to a competition between strong inertial effects (due to large ρ̃) and comparably strong viscous
effects (moderately large δ). Future experiments could investigate this inertioviscous transition
and use it to construct acoustofluidic traps and tweezers that distinguish particle size or material
properties.

In closing, we have developed a nonlinear theoretical framework for the time-averaged motion
of small compressible particles in acoustic fields and oscillatory gradient flows. By generalizing
the notion of secondary radiation forces and unifying it with transport by streaming, the theory
self-consistently bridges inviscid acoustofluidics with viscous particle hydrodynamics. Notably,
the reciprocal formulation (14) only requires a resolution of the linearized oscillation dynamics
in order to rigorously quantify secondary particle motion associated with advective nonlinearities.
This yields analytic insight over the entire range of Stokes layer thickness, compressibility ratio, and
density ratios. The framework developed here is thus a powerful quantitative tool to understand and
control the focusing, trapping, and sorting of small objects using acoustic and oscillatory driving in
practical applications.
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APPENDIX A: UNIFORM VALIDITY OF THE PERTURBATION EXPANSION

For steady flows, a regular perturbation expansion in particle Reynolds number does not correctly
account for inertial effects far from the particle (e.g., Stokes’ paradox). However, this limitation
disappears for oscillating flows. To see this, we observe that for any nonzero frequency ω, unsteady
inertial forces (per volume) in the Navier-Stokes equation scale as ρ f ωv1 far away from the particle
(v1 is the local oscillatory flow scale). For large r, this inertial force dominates viscous forces, which
scale as μωv1/r2 (for r − 1 � δ) or as μωv1e−(r−1)/δ (for r − 1 � δ) [20]. Advective inertial forces
scale as ρ f v

2
1/r far away from the particle.

We draw two important conclusions from this scaling analysis. First, the ratio of advective inertia
(the leading nonlinear term) to unsteady inertia (the leading linear term) is v1/(rω) ∼ ε(a/r),
which is small everywhere for small ε and decays with r. Second, linearized quantities oscillate
with frequency ω, whereas secondary nonlinear quantities involve a steady term (“zero frequency
oscillations”) and terms oscillating with a frequency of 2ω, but contain no components at frequency
ω. Both (i) the uniform smallness of advective inertia relative to unsteady inertia, and (ii) the
separation of nonlinear and linear dynamics in frequency space, ensure that the regular perturbation
expansion is valid up to O(ε2). Both arguments break down for steady viscous flows (ω = 0) leading
to the far-field inertial effects that characterize steady flows at small (but finite) Reynolds numbers.
In the present framework, we estimate that these effects only enter at O(ε3) or O(ε4), corresponding
to Saffman-like and Oseen-like wakes, respectively, in the time-averaged flow.

APPENDIX B: EFFECTIVE BOUNDARY CONDITIONS

We denote a material point on the instantaneous particle surface Sp(t ) by X(t ), so the no-slip
condition is dX/dt = εv(X(t ), t ). We split X(t ) into a time-averaged part 〈X〉 [which lies on the
mean particle surface 〈Sp〉 and varies slowly over timescale (ε2ω)−1 as the particle moves due
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FIG. 5. Relative errors between approximations in (19) and exact coefficients for (a) GE and (b) GκR
� ,

showing real (solid) and imaginary (dashed) parts.

to secondary forces], and an oscillating part εξ(〈X〉, t ), so that X(t ) = 〈X〉 + εξ(〈X〉, t ). Writing
v ∼ v1 + εv2 and Taylor expanding for small ε leads to

d〈X〉
dt

+ ε
dξ

dt
= εv1(〈X〉, t ) + ε2v2(〈X〉, t ) + ε2ξ(〈X〉, t ) · ∇v1(〈X〉, t ) + O(ε3). (B1)

Grouping oscillating and steady components yields

dξ

dt
= v1,

d〈X〉
dt

= ε2〈v2 + ξ · ∇v1〉. (B2)

The primary surface displacement is therefore ξ(〈X〉, t ) = ∫
v1(〈X〉, t )dt . Identifying dξ/dt and

d〈X〉/dt on the left sides of (B2) with the oscillatory and steady kinematics of the particle,
respectively, yields (3) of the main text.

APPENDIX C: FORCE COEFFICIENTS

Exact expressions for the force coefficients GE and GκR
� are

GE = − 1

640λ2(λ + 1)
(iλ8 + (1 + 6i)λ7 + (6 + 31i)λ6 − (93 − 51i)λ5 + (147 + 108i)λ4

+ 252(1 − i)λ3 + (732 + 1152i)λ2 + (1440 + 1152i)λ + 1440)

− 3λ2(λ2 + 3iλ − 3)

32(λ + 1)
eλE1(λ) + λ2(λ5 + 6λ4 + 33λ3 + 123λ2 + 270λ + 270)

640(λ + 1)
e−iλE1(−iλ)

− 3λ2(λ2 + 9)

16(λ + 1)
e(1−i)λE1((1 − i)λ), (C1a)

GκR
� = (iλ5 + λ4 − 14iλ3 − 18λ2 + 48iλ − 48)

64λ2
− λ2(λ2 − 12)

64
e−iλE1(−iλ), (C1b)

where E1(z) = ∫ ∞
1 t−1e−zt dt is an exponential integral [defined for Re(z) > 0]. Figure 5 shows

relative errors between the approximations (19a) and (19d) and exact expressions (C1); errors are
<3% for all δ.
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