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In Part I we introduce the method and results of the Twin Supernova analysis. This
novel approach to Type Ia supernova standardization is currently only possible with spec-
trophotometric timeseries observations from the Nearby Supernova Factory. As Chapters
1 through 4 will explore, we select an ideal subset of supernovae, find pairs whose features
match well in flux at all wavelengths and times, and test their dispersion in brightness. The
analysis is completed in a blinded fashion, ensuring that we are not tuning our results. What
we find is that twin supernovae do indeed have a small brightness dispersion.

Part II shows two additional analyses related to the standardization of Type Ia super-
novae. In Chapter 5 we present a check on the results of Bailey et al. [2009]. Literature
supernovae with spectra near maximum light were tested to see how well their magnitudes
could be standardized using the flux ratio method of Bailey et al. [2009]. Chapter 6 shows
a study with data from the Nearby Supernova Factory. Using only the spectrophotometric
observations near maximum light, we calculate monochromatic Hubble Diagram residuals
for each supernova. Those residuals are then corrected using a flux ratio, similar to Bailey
et al. [2009], to test the standardization possibilities using only near-maximum observations.
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Due to their uniformity in absolute brightness, Type Ia Supernovae have been used as
standard candles, allowing cosmological distance measurements. In the late 90s, studies of
high-redshift Type Ia Supernovae lead to the discovery of the accelerated expansion of the
universe, a remarkable and paradigm-shifting discovery (Riess et al. [1998],Perlmutter et al.
[1999]).

A Type Ia Supernova is the result of the death of a Carbon-Oxygen white dwarf. The
explosion is triggered by mass accretion from a companion star, though the type of companion
star is still under study, namely a main sequence companion or a white dwarf companion.
In either scenario, the white dwarf accretes matter from its companion until the pressure
is great enough to ignite carbon burning, which unbinds the star. The burning proceeds
through intermediate mass elements, such as silicon, all the way to iron peak elements. This
carbon ignition happens around the Chandrasekar mass, the maximum mass that can be
supported by electron degeneracy pressure. Close to uniform mass means similar amounts
of energy being released in the burning process and similar amounts of photons produced,
resulting in what we call standard candles.

In truth, Type Ia Supernovae are standardizable, not standard, candles: there exists
about 40% variation in the uncorrected brightness of these objects [Kim et al., 1997]. The
physical source of this variation is not fully understood, but corrections have been devised
since the early days of the field to make these brightnesses more standard. The two canoni-
cally used are stretch and color. Stretch accounts for the brighter-broader correlation: Type
Ia SNe with broader light curves (in the time domain) tend to have a brighter absolute mag-
nitude. The color correction is designed to account both for extrinsic reddening due to dust
and intrinsic color differences arising from differences in the physics of the supernova explo-
sion. With these corrections, the variation in brightness drops to 15%, allowing precision
cosmology measurements.

Since the discovery of the accelerated expansion, many large Type Ia Supernova programs
have been completed, resulting in sufficiently large data sets that statistical errors have
become subdominant to systematic errors [Sullivan et al., 2011]. The dominant systematic
error is currently calibration [Conley et al., 2011], though soon that too will fall subdomiant
to intrinsic supernova explosion differences.

Standardization techniques have been and continue to be tried to decrease the brightness
dispersion. Various spectral metrics have been tried, mostly using spectra near maximum
light. The Bailey Ratio [Bailey et al., 2009] was able to achieve 0.128 mag dispersion using
only a spectral correction. Recent explorations into using IR bands show a standardization
as good as 0.085 mag level for nearby SNe Ia [Barone-Nugent et al., 2012]. The applica-
tion of this method to higher redshifts is challenging for a variety of reasons. One is the
intrinsically low flux in the IR. Additionally, the IR is overwhelmed by atmospheric lines,
making observations from the ground very difficult. Observations from space are hindered
by the lack of detectors for supernovae beyond about redshift 0.03, making a high-redshift
study untenable. All these studies attempt to circumvent the problem of dust, namely that
some of the observed color arises from dust and some is intrinsic color from the specifics
of the explosion, and disentangling the two is a major challenge in standardizing Type Ia
supernovae.

Using new more detailed measurements of Type Ia supernova timeseries, we are able to
go even further in exploring standardization techniques, using spectra across all phases. A
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timeseries of spectrophotometric observations offers a look at the physics of the explosion
through the expanding photosphere. Each phase observation is a snapshot of the elements
visible at that stage of the expansion. If two timeseries were to match in flux at all wave-
lengths and times, they would represent the same physical explosion process. We call two
such timeseries Twin Supernovae.

A distinct advantage of this twin supernova methodology is the ability to separately
account for color arising from dust extinction. Dust extinction being constant in time, we
are able to fit a color law for the relative amount of dust extinction in the two timeseries.
Two objects that are true twins would have the same intrinsic color and the same spectral
features at all times; any color difference between them is then from dust extinction. An
advantage of this color correction is that we are able to put reddened supernovae to use in
this analysis.

For pairs of supernovae that are twins, we expect a very low brightness difference, as
they represent the same explosion physics. If this is indeed the case, we could do cosmology
with true standard candles, with no stretch or intrinsic color corrections necessary.

The data set we use from the Nearby Supernova Factory (SNfactory) [Aldering et al.,
2006] is the first of its kind. As an untargeted search in the Hubble flow, it not only mimics
the subtypes of type Ia supernovae that are found in high redshift searches, but also is at
high enough redshift to be in the regime where peculiar velocity errors are subdomiant.
To do a twin supernova analysis, frequent observations are necessary to ensure that the
analysis captures relevant spectral feature changes. With data from SNfactory, we have
spectrophotometric observations every 2 to 3 days. Chapter 2 describes the data set, the
current state of production, and cleaned subset we have prepared for the twins analysis.
Note that we finalize the sample selection criteria before examining the brightness scatter,
which gives us the freedom to finalize our data quality and subset cuts without concern that
we are tuning the result.

Additionally Section 2.2 introduces the techniques we developed to directly compare
the supernovae observations to each other. Although we have very good cadence with the
SNfactory data, rarely do we have observations at identical phases. Correctly comparing
both the spectral feature shapes and the overall flux level is essential to the robustness of
the analysis.

The twins analysis is performed in a blinded fashion. The supernova sample is split into
a training half and a validation half. The analysis is developed and finalized on the training
half of the data in Chapter 3 before including the validation half and checking the result on
the unblinded full sample in Chapter 4.

Pairs are identified and ranked in Sections 3.1 and 3.2 and in Section 3.3 we answer
the question: are better-ranked pairs more tightly dispersed in brightness? Additionally we
present a cosmologically useful way to calculate the weighted RMS for our ranked sets of
pairs. In Section 3.4 we introduce a weighting scheme that optimally takes into account
data at different phases. Monte Carlo randomization tests are performed in Section 3.5 and
outlier rejection is explored in Section 3.6. The chapter ends with Section 3.7, a variety of
checks that were explored in advance of examining the full sample results.

Section 4.1 shows the checks that were performed on the full sample before unblinding
the WRMS result that is shown and discussed in Section 4.2.
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Chapter 2

The Nearby Supernova Factory Data
Set
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2.1 Nearby Supernova Factory

The data used in this study were obtained by the Nearby Supernova Factory between
2006 and 2009 using the SuperNova Integral Field Spectrograph [SNIFS, Lantz et al., 2004].
SNIFS consists of a high-throughput wide-band pure-lenslet integral field spectrograph [IFS,
“à la TIGER;” Bacon et al., 1995, 2000, 2001], a multi-filter photometric channel to image
the field in the vicinity of the IFS for atmospheric transmission monitoring simultaneous with
spectroscopy, and an acquisition/guiding channel. The IFS possesses a fully-filled 6.′′4×6.′′4
spectroscopic field of view subdivided into a grid of 15× 15 spatial elements, a dual-channel
spectrograph covering 3200–5200 Å and 5100–10000 Å simultaneously, and an internal cal-
ibration unit (continuum and arc lamps). SNIFS is mounted on the south bent Cassegrain
port of the University of Hawaii 2.2 m telescope on Mauna Kea, and is operated remotely.
Spectra of all targets were reduced using the SNfactory’s dedicated data reduction pipeline,
similar to that presented in § 4 of Bacon et al. [2001]. A brief discussion of the software
pipeline is presented in Aldering et al. [2006] and is updated in Scalzo et al. [2010].

For this analysis we use an early release of the data. There are individual spectra with
clear flaws in the data reduction that are obvious to the eye and for which there is not yet a
complete series of automatic rejections in place. Moreover, even if the reduction is okay to
first order, there could be second order effects that do hurt the analysis; Section 2.3 details
how these issues were handled to obtain the high quality subset we require for this analysis.

2.2 Interpolation of Supernova Timeseries

For the twins analysis, we need to be able to compare data between candidate twin
supernovae at the same phases. Although the spectrophotometric timeseries in the SNfactory
sample are sampled every few days, rarely are the observations at the same phase relative
to maximum light. We use a method called Gaussian Processes (GPs) to interpolate a SN
time series to desired phases. To take advantage of all the data we have, we interpolate in
both directions. In comparing SNA to SNB we first interpolate SNA to the phases of SNB

and then vise versa. We give the pair a ranking (discussed in Section 3.2) by combining the
results of both interpolation directions.

The basic idea of a Gaussian Process is that it allows non-parametric reconstruction of
a function from data. It requires the selection of a mean function, which is an initial guess
of the average supernova flux at all phases and wavelengths. (The end result is not highly
dependent on the choice of the mean function, so long as a reasonable function is used.) The
workhorse of the Gaussian Process is the kernel, which specifies the correlation lengths in
wavelength and time. The parameters of the kernel, called hyper-parameters, are optimized
separately for each SN timeseries and with them we can interpolate the SN flux to the phases
of interest.

Appendix A provides a detailed introduction to Gaussian Processes and a detailed dis-
cussion of their application to the SNfactory sample.
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2.3 Supernova Sample Selection

2.3.1 Coverage Cuts

For each of the 132 SNe in our initial sample we do the following to determine its utility
for this analysis. We begin with a set of coverage cuts and then do a series of quality cuts.
We require coverage for the SN begin before +2 days after maximum light to ensure we
are sampling some of the region of highest spectral diversity. We only consider coverage
out to +25 days, as supernova spectra become increasingly similar at later times [Branch
et al., 2008] and because of computational efficiency (i.e decomposing a 3000x3000 matrix
with spectra out to day +25 is preferable to a 6000x6000 matrix with spectra out to day
+45, when most of supernova spectral diversity is captured in the first two weeks or so past
maximum light.)

The calibration for the red and blue arms of the spectrograph are performed separately,
and as such there are times when only one or the other successfully completed in this early
version of the reduction. We choose to leave these observations out. In principle we could in-
clude these spectra, as the GP is capable of predicting the missing channel, but for simplicity
in the analysis we choose to use only spectra with both channels.

Occasionally a supernova has more than one observation on a given night. In these
cases, we use only one of the observations (preferentially the latest one unless there is a
quality reason to prefer an earlier one). This is done because if there were to be any sort
of calibration issues between multiple spectra on a given night, the GP would pick this up
as a relevant time length scale, but this time length scale would be much too small at other
phases and would not be capturing the desired variation. In future analyses of this kind, one
might look for alternative ways to constrain the correlation lengths of the kernel in the time
direction so as to take advantage of this additional data.

Additionally there must be no gap greater than 10 days in coverage. This is enforced to
ensure the GP model is well-constrained by supernova data and not relying too heavily on
the mean function.

In total, the supernova must have at least five spectra before +25 days, again to ensure
that the GP model is well-constrained by supernova data. By limiting the sample size with
these cuts based on coverage, we are at worst losing some potential good pairs for the sake
of sample purity. As we have such a large sample to begin with, we prefer sample purity for
this initial analysis. Further analyses may wish to be more lenient in sample cuts.

For the initial sample of 132 supernovae, there are 1364 spectra before +25 days in this
reduction version. Of these, 71 (∼ 5%) have only one channel and are ignored. The coverage
cuts discussed above remove 35 supernovae from the sample: 16 are rejected due to starting
after +2 days, 17 are rejected for a coverage gap larger than 10 days, and an additional
two are rejected for having fewer than five spectra. This leaves 97 supernovae that will be
examined for quality.

2.3.2 Quality Cuts

The first quality cut we do is an initial visual scan of the spectra to identify and remove
spectra with obvious calibration issues or low signal to noise spectra if there is another
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observation of the same supernova on the same night that has higher signal to noise. In
total 37 spectra are removed in this fashion and they are shown in Figures 2.1 to 2.3. By
and large this was a very clear-cut process. The goal was to remove spectra that were
obviously bad or obviously lower signal to noise than another observation on the same night.
Two supernovae are lost after this visual scan, one because it no longer has a spectrum
before +2 days and another because it no longer has five spectra before +25 days.

The next quality cut that is done is to do a visual scan at the level of the data cube, the
3-D data cube with x,y spatial and λ spectral indices. We examine cubes that are collapsed
along the wavelength direction for the blue and red chanels to look for evidence of bad
host subtraction (presence of residual host light in the collapsed cube), blue step (a step
in the background flux level on the blue cubes resulting from calibration effects), or other
questionable behaviors characteristic of this early reduction version. If a cube looks suspect,
the spectrum resulting from that cube is dropped from the analysis. A scan of all cubes
corresponding to spectra out to +25 days for each supernova results in 69 spectra being
removed. 12 supernovae are additionally lost from the sample, as they no longer satisfy the
coverage cuts. Although we have no direct evidence that spectra from these cubes would
be problematic in the final analysis, our method is to throw out in advance anything that
would be suspect upon inspection further down the line so that we are not in a position to
compromise the blinded nature of the analysis.

The final quality check is done by examining the GP predictions for visual quality. We
require that the wavelength-averaged GP predictions (i.e. bolometric figures) be smooth as
a function of phase, as in the left panel in Figure 2.4. The right panel of the figure shows
an example of cases in which although the data look fine individually, the GP prediction is
not well behaved: the predicted bolometric flux does not follow the smooth bolometric curve
expected for SNe Ia. As we will use the GP prediction to interpolate spectrophotometric
data, we need to be able to trust the flux level as well as the individual feature shapes. Thus
again we reject such SNe from our sample to ensure purity.

In order to test if an individual spectrum might be strongly affecting the GP, we do a
“leave one out test”: for each supernova, we remove each spectrum in turn and redo the GP
model and predictions. This is the best direct test of the GP’s ability to interpolate, as we
are able to compare the GP prediction to the actual data that we left out. Figures 2.5-2.7
show three examples of this test: the data are in black and in color is the GP prediction at
that phase when the corresponding data are left out. The first, Figure 2.5, shows a supernova
with fairly high signal to noise; this object performs well on the leave one out test, indicating
that no individual spectra are problematic. Next, Figure 2.6 illustrates the same, but for a
supernova with moderate signal to noise. Aside from the difference in signal to noise, these
two examples are typical of the 74 supernovae that passed this check.

The final example, Figure 2.7, shows a problematic supernova, randomly chosen and
typical of the issues for the nine that were thrown out. The Gaussian Process is unable
to accurately predict the overall flux level of the spectra that are left out. In this case,
this is due to overall flux disparity between two spectra: the earliest one at +2 days (not
shown in the figure) and the next at +4.8 days (first spectrum in figure). Not wanting to be
dependent on templates, we cannot assess which of these spectra is correct (if, indeed, either
is). We thus choose to reject this SN from the sample, again to maximize purity of the final
subsample.
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Figure 2.1 Spectra that are removed in the initial visual scan for quality.
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Figure 2.4 Wavelength-averaged Gaussian Process predictions for two supernovae. Left panel
shows the desired smooth bolometric behavior; right panel shows an example lacking such
smoothness, resulting in the rejection of this supernova.

For nine supernovae we found that removing one spectrum alone significantly improved
the overall GP behavior; we drop these spectra in order to keep these SNe in the analysis.
There were an additional nine supernovae whose GP models could not be improved by the
removal of any single spectrum and so we remove these SNe from the sample.

In the long run we would also want to find automated techniques that would filter out
bad and less than ideal data, but for the purposes of this analysis our goal is purity over
completeness and as we complete the data quality cuts before examining the brightness
scatter results, we are confident in our method to find a clean subset. What we would
not want is to have a supernova appear as an outlier in our final analysis that has some
questionable data, for if we did we would be tempted to throw it out. By completing a
draconian by-eye scan of the data, we ensure that no such supernovae will be in our final
sample.

Additionally, an obvious further extension of this analysis is to test if the results we find
hold for increasingly less stringent data coverage and quality cuts. Since we complete our
quality and coverage cuts before proceeding with the analysis, we are confident that we are
not biasing our results, simply ensuring that we have the most pure sample of good data.
This is the power and safety of a blinded analysis.

2.3.3 Final Sample

After all coverage and quality cuts we have 74 supernovae (out of the original 132)
remaining. Part of the data release that we use has the samples split into training, validation,
and auxiliary sub samples. The auxiliary subsample is for SNe that do not have a sufficiently
good SALT2 light curve fit but that are otherwise trustworthy. The training and validation
subsamples represent an equal split of all the SNe that have good light curve fits. (Much work
has been put into ensuring that the training and validation subsamples are representative
of each other.) We split the data in this way so that exploratory analyses can be done with
only the SNe in the training sample. Then when the analysis is finalized, it is applied to the
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Figure 2.5 Leave one out test results for SNF20070531-011, a relatively high signal to noise
supernova on which the Gaussian Process performs well: the Gaussian Process does reason-
ably well at predicting the features shapes, as well as the overall flux level. The data are in
black and in color is the GP prediction at that phase when the corresponding data are left
out. Note that the first and last data phases are excluded, as we do not expect the GP to
be able to extrapolate the endpoints well.
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Figure 2.6 Leave one out test results for SNF20070725-001, a lower signal to noise supernova
on which the Gaussian Process performs well. The data are in black and in color is the GP
prediction at that phase when the corresponding data are left out. Note that the first and
last data phases are excluded, as we do not expect the GP to be able to extrapolate the
endpoints well.
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Figure 2.7 Leave one out test results for SNF20050927-005, a supernova that cannot be
modeled well by the Gaussian Process: the Gaussian Process is unable to reconstruct the
overall flux levels. The data are in black and in color is the GP prediction at that phase when
the corresponding data are left out. Note that the first and last data phases are excluded,
as we do not expect the GP to be able to extrapolate the endpoints well.
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validation SNe to act as an independent test and ensure the result was not simply tuned to
the training sample. In this analysis, we are not dependent on good light curve fits, so we
can use the auxiliary SNe as well as the training and validation SNe. Of the 74 SNe that
pass the cuts, 37 of are in the training sample, while 30 are in the validation sample and 7
are in the auxiliary sample.

Later in the analysis we determined that the lowest redshift supernovae could be prob-
lematic due to the uncertainty in their absolute luminosity from their peculiar velocity.
Although we do de-weight supernovae based on their peculiar velocity, seeing as our goal is
to achieve a pure (not complete) sample, we institute a final cut requiring SNe to be above
0.03 in redshift. This leaves 60 supernovae (29 in the training set) with which we proceed
with the analysis.

After the low-redshift cut, four of the remaining supernovae are in the auxiliary sample.
In case of concern that including the auxiliary supernovae only in the validation sample
while none are in the training sample, as will be discussed in Chapter 4, none of them have
sufficient pairs to be involved in the WRMS calculation. Two are super-Chandrasekhar-
mass candidates (having luminosities well above the standard range for Type Ia Supernovae)
and are beyond our normal redshift cut-off; one has peculiar spectral features and is not a
good match with any other supernovae; the remaining one does not have highly peculiar
features, but is nonetheless not able to find sufficient good pairs. In retrospect, the auxiliary
supernovae need not to have been included, but a priori we had no reason to neglect them
from the sample.
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Chapter 3

Training Set Analysis and Results
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3.1 Training Set Pairs

For the first stage of the analysis, we use only the supernovae in the training set. This
allows us to refine our method on part of the sample while reserving a portion (in this case
half) of the data for later validation, thus protecting against tuning our results. There are
812 (29x28) potential supernova pairs in the training set. The usual division by two does not
apply here because for each supernova we compare its data with the GP-prediction of every
other supernova (predicted at the phases where the first supernova has data). Note that this
means that pairs of supernovae are compared twice, once with each supernovae interpolated
to the other’s observation epochs.

Thus, in comparing each supernova to each other supernova, we are in some ways double
counting, as a GP-prediction of SNB at the phases of SNA is compared with the data of SNA,
and vice versa. However, comparing GP-prediction with GP-prediction (i.e. SNA and SNB

both predicted at some arbitrary phases), would likely serve to wash out the desired signal,
as the GP-prediction does a smoothing as well as an interpolation.

Since a GP prediction sufficiently far away from input data will simply yield the mean
function with a large uncertainty, we do not allow extrapolation by more than two days. I.e.,
if SNA has data at phases {-8, -4, 0, 4, 8, 12, 16} days and SNB has data at phases {-2, 1, 4,
7, 10} days, we would use only the data for SNA that is between -4 and +12 days. Enforcing
the coverage cuts from the previous section, i.e. requiring that there be at minimum five
spectra, means that some of the potential pairs are not viable due to an insufficient overlap
in phase coverage.

The goal in comparing supernovae to each other is to find pairs that are spectroscopically
similar at all phases. Any such pairs would be considered “twins.” What we want to know
is if these twins have a similar absolute magnitude, as we would expect, since spectra are a
window into the explosion physics. Since our data are spectrophotometric, and since there
may be extrinsic dust reddening in play, for each pair we fit for a scale factor (κ) to measure
any magnitude difference and a Cardelli-like color difference (∆E(B − V )) to measure any
standard dust reddening using the following χ2 equation:

χ2 =
∑
pi

∑
λj

[fA(pi, λj)− α(κ,∆E(B − V )) fB(pi, λj)]
2

σA(pi, λj)2 + α(κ,∆E(B − V ))2 σB(pi, λj)2
, (3.1)

where fA (σ2
A) are the data flux (variance) of SNA, fB (σ2

B) are the GP-predicted flux
(variance) of SNB, pi are the phases of SNA, λj are the wavelength elements (from 3300Å to
8600Å in 1000 km s−1 bins), and

α(κ,∆E(B − V )) = κ 10−0.4(aλ+bλ/RV )RV ∆E(B−V ), (3.2)

where aλ and bλ are functions of lambda and are from Cardelli et al. [1989]. We fix the
value of RV to 3.1 so the only unknowns are κ and ∆E(B − V ). (Note that though not
presented in Equation 3.1, we actually weight spectra differently at different phases; this will
be discussed further in a later section.)

This χ2 is also a natural way to rank the SN pairs, though we must use χ2/dof , as
the number of spectra per comparison differs. When we use the χ2 values from the fitting
discussed above, none of our pairs are perfect matches (in the sense of χ2/dof = 1) When
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we rank them, we see that the lowest χ2/dof pairs are overwhelmingly those involving data
from a SN with lower signal to noise.

Our goal for a twinness metric, however, is that the best ranked pairs would be inde-
pendent of the signal to noise; i.e. that the best pairs would have a representative spread
of signal to noise values. One way of enforcing this is to alter the χ2 statistic by adding an
error floor in quadrature with the variance spectrum and GP produced errors. For our error
floor we choose to use a percentage of the flux, as a flat error floor would give too much
leeway to spectra at later times (where the flux is lower), and we already expect the spectra
to match well at later times.

We tested adding error floors from 2% to 20% in steps of 2%. When the additional error
floor becomes too large, the distribution will begin to favor high signal to noise supernovae
(as opposed to low signal to noise supernovae when the error floor is too small.) We found
that 12-14% produced a ranking of pairs for which the best 50 pairs had a signal to noise
distribution most similar (using a K-S test) to that of the training supernovae. For this
analysis we choose to add a 12% error floor in quadrature with the variance spectrum.

3.2 Twinness Metric

For our twinness metric ξ, then, we use the following:

ξ =
∑
pi

∑
λj

[fA(pi, λj)− α(κ,∆E(B − V )) fB(pi, λj)]
2

σ2
A(pi, λj) + (0.12 fA(pi, λj))2 + α(κ,∆E(B − V ))2 σ2

B(pi, λj)
/(Np ∗Nλ − 2),

(3.3)
where the variable names remain the same as before, and we are dividing by the number of
degrees of freedom, which is equal to the number of phases (usually ∼8 to 10) multiplied
by the number of wavelength elements (288), minus two (as two parameters are fit in the
minimization). We divide by the number of degrees of freedom because different pairs have
different numbers of spectra included in the ξ calculation, and as such would not be readily
comparable otherwise.

Recall that we fit SNA to the Gaussian process prediction of SNB at the phases of SNA;
from this we get a κ that we will call κAB and a ξ we call ξAB. We also do the reverse: we get
a κBA and ξBA when we fit SNB to the Gaussian process prediction of SNA at the phases of
SNB. To rank our supernova pairs we must take into account that different pairings will have
different number of phases being compared, so we must divide by the degrees of freedom
so we are appropriately comparing different pairs. We combine these two ξ values into one
metric, dividing out the total number of degrees of freedom:

ξ′AB =
ξAB + ξBA

dofAB + dofBA
(3.4)

As this is a subtlety easily understood, we now drop the prime and from here on refer to
ξAB as the per degree of freedom twinness metric for SNA and SNB.

These ξ values are how we order the pairs from “best pairs” to “worst pairs”. Fig-
ures 3.1 to 3.3 show three randomly chosen pairs out of the top 50. The level of feature
overlap is impressive, much better than current theoretical models of supernova explosions
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are able to achieve. For comparison, Figures 3.4 to 3.6 show three pairs in increasing ξ value,
to illustrate the progression from twin-like pairs to pairs that are certainly not twins. (In
what follows, we are actually using an optimal weighting of the data at different phases that
will be discussed at length in a later section.) If these “best pairs” are in fact twins, their
brightness spread will be smaller than the “worse pairs.”
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Figure 3.1 Example of two well-matched supernovae from the training set. The left
panel shows data for SNF20070727-016 in dark blue. The Gaussian process prediction of
SNF20080822-005 at the phases of SNF20070727-016 is shown overlaid in light blue. Note
that there are error snakes for both the data and the GP fluxes. Phases are listed with respect
to the date of maximum brightness. The right panel shows the reverse: SNF20070727-016
predicted at the phases of SNF20080822-005. The ξ value for this pair is 15.5, in the lowest
5% of pairings, sufficiently low that it is considered a twin.

3.3 Brightness Difference Results

Now that we have our supernova pair ordering, we can assess the extent to which more
twin-like pairs (those with low ξ) have more similar brightnesses. Recall that when comparing
one supernova to another we fit for a scale factor κ. We have previously normalized the fluxes
to a standard distance based on redshift; for this low-redshift supernova data set the exact
choice of cosmology makes a negligible difference, but we chose ΩM = 0.28 and ΩΛ = 0.72.
Then, since our data are spectrophotometric, this κ represents the difference in absolute
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Figure 3.2 Example of two well-matched supernovae from the training set. Colors are as in
Figure 3.1 but for PTF09fox and SNF20080803-000 respectively. The ξ value for this pair is
16.1, in the lowest 5% of pairings, low enough to be considered a twin.

brightness of the two supernovae. If κ is 1, the supernovae have a zero brightness difference;
κ less than or greater than one corresponds to a magnitude difference of

∆M = −2.5log10κ. (3.5)

The error on this brightness difference is determined from the errors on the fit parameters
(κ and ∆E(B−V )), the peculiar velocities (with a 300 km/s error), and a small calibration
error from our standard star measurements:

σ∆M =
√
σ2
M + σ2

host + σ2
pv1 + σ2

pv2 + σ2
calib (3.6)

where

σM = | − 2.5log10(κ)−−2.5log10(κ+ σκ)|
σhost = 4.1σ∆E(B−V )

σpv = 5/log(10)300/3e5/z = 0.00217/z

σcalib = 0.025

(3.7)

Note that the fit errors (σκ and σ∆E(B−V )) are subdominant to the peculiar velocity errors,
which comprise roughly 80% of the error budget.
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Figure 3.3 Example of two well-matched supernovae from the training set. Colors are as
in Figure 3.1 but for SNF20070531-011 and SNF20071003-016 respectively. The ξ value for
this pair is 24.9, in the lowest 10% of pairings, low enough to be considered a twin.

Figure 3.7 shows, in the top panel, a scatter plot of the ∆M values as a function of
twinness metric value. What we expect to see is that for low ξ there are fewer high ∆M
points than for high ξ, which we can see qualitatively from the top panel as well as from
the histograms in the lower panel. The lower panel shows the distribution of ∆M values for
different cut-offs in ξ. The histograms on the right have a larger spread, indicating there
are more high ∆M pairs at higher ξ values. Note that low values of ∆M at high ξ are not
surprising. Given that our ∆M is calculated from κ, the fitted scale factor, it is entirely
plausible that though two supernovae do not have matching spectral features, their fitted
scale factor can be close to one. In other words, the twins hypothesis proposes that spec-
troscopically identical supernovae have similar brightnesses, not that non-spectroscopically
similar supernovae do not have similar brightnesses.

A simple measure of the spread in ∆M as a function of increasing ξ shows that better
ranked pairs do indeed have a lower brightness spread. However, to use the method to its full
power, we calculate the spread as we would if we were doing this analysis with a high-redshift
set of supernovae.

In that case, for each high-redshift supernova we would calculate its brightness relative to
all the low-redshift supernovae it matches well (brightness difference being the ∆M obtained
from fitting for κ in Equation 3.1). By taking a weighted average of these ∆Ms, we have an
average brightness difference (called µ) for each high-redshift supernova. (Note that because
the redshifts have been normalized out µ would be zero for a perfect standard candle with
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Figure 3.4 Example of two somewhat poorly-matched supernovae from the training set.
Colors are as in Figure 3.1 but for SN2007bd SNF20070712-003 respectively. The ξ value for
this pair is 43, which corresponds to the 45th percentile of pairings, too high to be considered
a twin.

no measurement errors.) The spread of those µs over the whole high-redshift sample is the
measure of how well the standardization method works.

To mimic this within our low-redshift sample, we treat each supernova in turn as though
it were the high-redshift supernova. We want to know if indeed the best ranked pairs have
a lower brightness difference spread (lower spread in µ) than the worst ranked pairs, and if
so, how low is that spread. To test this, we begin by only using the very best pairs we have.
We find all the supernovae that have at least four pairs (so that their µs are reasonably
well defined; we tested that the results are similar with a requirement of three or five pairs)
and calculate the spread, using the weighted root-mean-square (WRMS) as our measure of
spread. (It is the weighted RMS of a set of weighted means.)

We calculate this WRMS as a function of ξ: we let in worse and worse pairs to the
calculation of the µs. If the twins hypothesis is true, we expect the WRMS(ξ) to increase
with ξ, as more and more non-twin pairs are included.

Figure 3.8 shows the WRMS as a function of ξ for this training set analysis. As predicted,
the WRMS at low-ξ is better than at high-ξ. Note that figure shows results up to ξ of 46,
which only represents about half the total pairings (183 out of 346 pairs). At the transition ξ
where the WRMS increases from . 0.10 mag to . 0.15 mag, there are 77 pairs included. The
asymptotic WRMS (with all pairs) is 0.149±0.012 mag, comparable to the value measured
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Figure 3.5 Example of two poorly-matched supernovae from the training set. Colors are as
in Figure 3.1 but for SNF20060908-004 and SNF20070806-026 respectively. The ξ value for
this pair is 56, which corresponds to the 65th percentile of pairings, too high to be considered
a twin.

using the standard SALT fits and Hubble residuals. As you can see from the figure, the
WRMS has reached close to this asymptotic value within the plotted range.

It is interesting to know how many different supernovae are contributing to the result
shown in the figure. At the transition value around ξ of 30, 19 of the 29 training set
supernovae have at least four pairs and are included in the WRMS calculation. Of those 10
lacking sufficient pairs, six have some pairings up to the cut off, so only four are in no way
contributing to the result. It is encouraging that the result is not obtained using a small
fraction of the sample, but rather with the large majority of the objects participating in
some form. The fraction of supernovae with sufficient pairs should increase as the sample
size increases so this will be revisited with the full sample.

3.4 Optimal Weighting

Although one might try the analysis described above giving equal weight to early and
late time spectra of Type Ia SNe are known to be considerably more homogeneous than
spectra at early (near-maximum and pre-maximum) phases. Thus giving additional weight
to early spectra over late spectra ensures we are using the data in an optimal manner.

Though at first we attempted an ad hoc weighting scheme, we realized the optimal
weighting could be determined from the data themselves, by doing a WRMS analysis in bins
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Figure 3.6 Example of two very poorly-matched supernovae from the training set. Colors
are as in Figure 3.1 but for SNF20070803-005 and SNF20080926-009 respectively. The ξ
value for this pair is 135, which corresponds to the 99th percentile of pairings, too high to
be considered a twin.

of phase. Phase bins were set to be non-overlapping, sampling every 2.5 days. For example,
the +5 days bin would include all supernovae with spectra from +3.75 days to +6.25 days.

The analysis described in the above sections is done in each bin independently: fits for
κ and ∆E(B-V) are done for each pair of objects having data in the specified phase range,
the pairs are ranked based on their combined ξ value, as in Equation 3.3, and the WRMS
of average brightness differences is calculated as a function of increasing ξ. Note that only
one pair of spectra are compared for each supernova pair. As such the fitted κ values will
be different for a pair that appears in multiple phase bins. To calculate the WRMS in
each phase bin, we use the pairs that are sufficiently good to be considered twins; there are
roughly 50 such pairs in each bin.

The top panel of Figure 3.9 shows the WRMS results for each phase bin. The color
coding is blue at early phase bins progressing to red at late phase bins. To determine the
optimal weighting, shown by the purple line in the bottom panel, we do a weighted linear
fit to the inverse variance (where the WRMS is taken as the error so the inverse variance
is 1/WRMS2. The WRMS value that was used for each phase bin is the median value in
a “suitable” ξ range. That range varies for each bin; the lower limit is the ξ value when
at least 5 supernovae are participating in the WRMS calculation; the upper limit is the ξ
value when 80% of the SNe that will eventually participate are in the WRMS calculation.
The end result is not highly-dependent on the weighting scheme; a slightly different WRMS
selection, resulting in a different linear fit, does not affect the end results.

The fit result is used as a weighting scheme in the χ2 minimization, using the linear fit
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Figure 3.7 Top panel: Scatter plot of ∆M as a function of twinness metric ξ for the training
set analysis. Bottom panel: Histograms of ∆M for inclusively larger ξ values, illustrating
that the spread in ∆M increases as worse pairs are included.

parameters and the phase of the data spectra. This gives early time spectra more power to
determine the κ values, from which we get the brightness difference. We considered flattening
off the weighting function before maximum light, out of concern that any very early time
spectra would get a very high weight. And although we do have some spectra in the sample
that are before -5 days, only 9% of pairings have spectra that early, and when considering
only pairs with sufficiently low ξ value to be considered twins, the percentage falls to 4%.
So rather than add an additional degree of freedom by flattening the weighting function, we
proceed with the simple linear fit.
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Figure 3.8 Weighted root mean square as a function of inclusive ξ. See text for discussion.

The low-WRMS performance of the early phase bins gives an indication that the entire
spectrophotometric series might not be needed to do this kind of analysis. If this were to
be the case, it would have positive implications for the future use of this method, as full
coverage spectrophotometric timeseries of high-redshift Type Ia supernovae is not on the
immediate horizon.

In light of this, we additionally pursue an “at max” analysis, where we pair down our
cleaned sample of supernovae and take the subset that have spectra between -2.5 and
+2.5 days. An identical analysis is done on this set, with results presented in the next
section. However, note that our “at max” sample is not necessarily representative of a high-
redshift “at max” sample (nor is our optimally weighted sample), because our cleaning and
selection process chose SNe that are well-behaved with respect to our Gaussian Process re-
gression, and we use the Gaussian Process predictions to compare the SNe spectra to each
other. A more accurate test of the suitability of such a constrained analysis would be to
select all SNe from the data set with a spectrum near maximum and complete this analysis
either without a Gaussian Process (i.e. fitting the spectra directly to each other) or with
some other method to predict what the SNe would look like at each other’s phases.

3.5 Randomization Tests

In order to test the significance of our low-WRMS finding, we do Monte Carlo random-
ization tests. A naive randomization test would be to randomly re-order the ξ rankings
and proceed with the analysis. However, this does not capture the correlations present in
the non-randomized pair rankings. The correlations come about because SNA may be used
in the average ∆M of SNB and vice versa and also because the same SNA plays a role in
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Figure 3.9 Top panel: WRMS as a function of inclusive ξ for different phase bins. The
shaded regions are the error on the WRMS values. Each line is labeled by the bin-center
value. The black circles show the WRMS values that were used in the lower panel to calculate
the optimal weighting function. Lower panel: The purple line is a weighted linear fit to the
inverse variance, where the points are drawn from the upper panel. Note that the points
around -2.5 days and 0 days are significantly off scale, but their errors are large and consistent
with the fitted line.
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several other supernova distance modulus estimates besides SNB. So instead of randomly
re-ordering the ξ rankings, we shuffle the supernova identities, making a look-up table. When
the analysis wants the pairing of SNA with SNB, instead we call the pairing of, say, SNH

with SNM . Generating hundreds of these shuffled look-up tables and running the analysis
allows us to calculate the spread of the randomized results.

However, not all possible supernova pairings have sufficient coverage overlap to allow a fit
as done in Equation 3.1. This means that some pairings called for in the look-up table will
be empty. We mark these as failed pairing attempts and only use look-up table instances
where the total failure rate is less than 10%.

To calculate the significance of our result, we take the mean and standard deviations of
the randomization results at each ξ value. Figures 3.10 and 3.11 show the results of the
optimally weighted analysis and the near maximum spectra analysis, respectively. The top
panel of the figures shows the 1-, 2-, and 3-σ bands of the spread of the randomizations;
the thick colored line is the result from the data. The bottom panel shows the pulls (the
magnitude dispersion in units of sigma) as a function of ξ.

The significance of the training set results is encouraging. For the optimally weighted
analysis, we see a peak significance around 2.8 σ and for the at near maximum analysis we
see a peak significance around 3.0 σ. Unblinding the validation set will increase the sample
size by a factor of two, so we expect the significance to be roughly

√
2 larger.

We also note there is a floor to how well we can do, set by the errors on ∆M, as calculated
in Equations 3.6 and 3.7. For both the optimal weighting and near maximum analyses, that
floor is roughly 0.065 mag. When considering only the errors from the peculiar velocity, that
floor is closer to 0.045 mag.

3.6 Jackknife Outlier Rejection

Before we “unblind” (look at the results with the full sample), we want to be prepared
for various issues we may see, so that we do not have to do much additional analysis on the
unblinded sample, allowing it to stand as a verification of our initial result.

One such concern is that there could be individual supernovae that drive the WRMS high
and would be obvious outliers. In this early version of the reduction pipeline, an occasional
bad calibration could cause such an obvious outlier. To protect against this in the full
sample, we developed a jackknife outlier detection using the training sample.

The jackknife is done by proceeding with the analysis but dropping each supernova from
the sample in turn. The thin grey curves in the top panel of Figure 3.12 show the WRMS
results when throwing out each SN. The darker blue line shows the WRMS when all SNe
are included. Between ξ of 20 and 25, there is a curve that drops substantially lower than
the others; this indicates that removing that supernova from the analysis would result in a
substantial drop in the WRMS in that ξ range.

Many methods for identifying these outlying objects were considered. First we decided
to limit the range of ξ over which outliers are detected to be that of “twins”; i.e. we are
not interested in catching outliers if they show no strong presence in the low ξ values where
we consider our pairs to be twins. The lower limit of this boundary was chosen to be the ξ
value where at least five supernovae have sufficient pairs to calculate an average ∆M . The
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Figure 3.10 Results for the optimal weighting analysis on the training set data with no outlier
rejection performed. Top panel shows the WRMS of the data in blue along with the 1-, 2-,
and 3-σ error bands from the Monte Carlo randomization tests. Bottom panel shows the
pulls as a function of ξ, with a maximum significance of 2.8 σ around inclusive ξ of 30, with
a nice low WRMS result around 0.09 mag.

upper limit was chosen to be the ξ value where the maximum significance from the bottom
panel of Figure 3.10 drops by 25%.
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Figure 3.11 Results for the near maximum analysis on the training set data with no outlier
rejection performed. Top panel shows the WRMS of the data in red along with the 1-, 2-,
and 3-σ error bands from the Monte Carlo randomization tests. Bottom panel shows the
pulls as a function of ξ, with a maximum significance of 3.0 σ around inclusive ξ of 0.65,
with a very nice low WRMS result around 0.07 mag

Inside these boundaries, we identify curves that are below the distribution. We charac-
terize this distribution at each bin in ξ: the lowest 10% of curves are ignored and the median
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and spread of the remainder are recorded. The spread is the maximum value minus the
minimum value inflated by a Gaussian correction factor (∼1.5) for dropping the lowest 10%.
If a given supernova’s curve has 15% of bins lower than median minus the spread/2 * 1.25 (a
cautionary inflation factor), that supernova is determined to be an outlier. The cautionary
inflation factor was chosen to be just large enough that the algorithm was well-behaved on
the training set. With no inflation factor too many objects were detected as outliers in
subsequent iterations.

The detection is done iteratively; the supernova (or supernovae) with maximum number
of outlying bins above the 15% threshold is removed and the processes completed again,
until no more outlying supernovae are detected. The bottom panel of Figure 3.12 shows the
result of the first outlier iteration detection on the optimal weighting analysis; the outlying
object is plotted in cyan. (After unblinding, this choice to iterate needed to be revisited,
which will be discussed in the following chapter.)

For the optimal weighting analysis, only one outlier was found. For the analysis using only
spectra near maximum light, no outliers were found. To assess the significance of the result,
we must run the same jackknife procedure on the randomizations. Figures 3.13 and 3.14
show these results. The significance has dropped; for the optimal weighting analysis, it peaks
around 2.2σ. If the low WRMS is confirmed with the full unblinded sample, the increase in
the sample size will act to increase the significance.

To test our jackknife procedure we did a redshift perturbation for six of the supernovae to
see at what stage they are detected by the jackknife procedure. For a redshift perturbation
of δz, the resulting brightness difference is given by:

δM =
0.00217

zhel
− 0.00217

(zhel + δz)
(3.8)

The outliers were detected at δz values between 0.002 and 0.009; the maximum δM was
0.0049, an error well below the dominant error source (peculiar velocity), indicating that our
jackknife rejection is robust to the presence of supernovae with overall brightness calibration
issues.

3.7 Additional Checks

3.7.1 ∆dmfitcorr as Brightness Difference

There are a variety of additional checks we performed on the analysis before unblinding.
One check was testing an alternative to our brightness difference proxy, κ. In its place we used
residuals of the Hubble fit based on the SALT2 analysis of the light curves These residuals,
which we call dmfitcorr are the result of using SALT2 to fit the synthesized light curves of our
SNe and fitting the SALT2-determined magnitudes to the Hubble line. The “corr” subscript
means that prior to the Hubble fit the magnitudes were corrected for stretch and color. The
analysis proceeds identically to the above, except using ∆dmfitcorr in place of log10κ for
the brightness difference. Also, in place of the errors outlined in Equations 3.6 and 3.7, we
use the errors propagated through SALT2. The results for the optimal weighting and near
maximum analysis are shown in the top and bottom panels of Figure 3.15, respectively.
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Figure 3.12 Top panel shows the jackknife distribution of WRMS curves in the optimally
weighted analysis. The thick blue line is the WRMS when no SNe are excluded. The bottom
panel shows the first iteration outlier detection; the thin cyan line is the supernova that was
identified as an outlier; the red vertical lines mark the jackknife boundaries as discussed in
the text; the grey band shows the inflated spread discussed in the text.

Jackknife outlier rejection is included. For the optimally weighted sample one outlier was
found; interestingly, it is different from the outlier supernova detected using the κ as our
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Figure 3.13 Results for the optimal weighting analysis on the training set data with jackknife
outlier rejection on both the data (blue line) and randomizations (grey bands). Top panel
shows the WRMS of the data in blue along with the 1-, 2-, and 3-σ error bands from the
Monte Carlo randomization tests. Bottom panel shows the pulls as a function of ξ, with a
maximum significance of 2.2 σ around inclusive ξ of 28, at a very nice low WRMS result of
0.07 mag.

brightness difference. For the near maximum analysis, two outliers were found, the first of
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Figure 3.14 Results for the near maximum analysis on the training set data with jackknife
outlier rejection on both the data (red line) and randomizations (grey bands). Top panel
shows the WRMS of the data in red along with the 1-, 2-, and 3-σ error bands from the
Monte Carlo randomization tests. Bottom panel shows the pulls as a function of ξ, with a
maximum significance of 1.7 σ around inclusive ξ of 0.65; as no outliers were found in the
data, the WRMS value remains at the nicely low value of 0.07 mag.

which was the outlier found with the optimally weighted sample, indicating, perhaps, that
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there could be a problem with the SALT2 fit for this supernova.
One caveat is that we did not re-run the randomizations, the results of which are used

to determine the upper limit of the jackknife outlier detection range. As we are performing
here simply a check on the results using κ and not quoting a significance, we feel this is
sufficient and are encouraged to examine results with the entire sample.

The goal of the test is not only to confirm the results using κ as the brightness difference
proxy, but also to see if the twinness ranking is providing extra information not already
contained in the state-of-the-art SALT2 analyses. The results show that this is indeed the
case; the WRMS is lower for twins than for non-twins.

3.7.2 Pair Requirement

We examined changing the number of pairs required to calculate an average ∆M, results
shown in Figure 3.16. In both the optimal weighting and the near maximum analyses, we
see that lowering the number of required pairs to three results in a jump to larger WRMS
at lower ξ value, which is consistent with expectations, as fewer required pairs will mean a
less well-determined ∆M and a more easily polluted WRMS. The opposite happens when
increasing the pair requirement to five: a the WRMS jump is delayed to higher ξ value. In
this case, although worse twins are being included at these higher ξ values, their impact is
lessened by the requirement of more pairs to calculate an average ∆M.

For the near maximum analysis, no outliers are found with the three or five pair require-
ment, as none were found with the four pair requirement. The same outlier is found in the
optimal weighting analysis for the three, four, or five pair requirement. Thus, though the
range of ξ values over which we have a low dispersion are dependent on the pair requirement,
the fact that the dispersion remains low when changing the pair requirement is encouraging
and we choose to continue requiring four pairs in our analysis on the entire sample.

3.7.3 Error Floor

Figure 3.17 shows the results of the analysis when the percentage error floor in Equa-
tion 3.3 is changed. Recall the 12% was chosen so that the distribution of signal to noise
ratios of good twins best matched that of the overall supernova sample. No added error floor
results in an over-representation of low signal to noise supernovae, as they have an intrinsic
advantage in a simple χ2.

In this test, we change the error floor in increments of 2% and run the analysis. Note
that the values of κ and ∆E(B-V) remain unchanged, only the twinness metric ξ is altered.
The results are plotted as a function of slice number not ξ because the value of the latter
changes based on the added error floor. We did not do a full set of randomizations for each
error floor nor is there any outlier rejection done. This is designed to be a simple test of the
effect of the error floor.

In the bottom panel of the figure, we see that the results of the near maximum analysis
are unchanged so long as the error floor is at least 8%. The upper panel shows the optimally
weighted analysis; the low value of the WRMS is present to some twinness metric value for
error floors above 6%. The progression of the 6% to 10% WRMS curves shows that there
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Figure 3.15 Results using SALT2 derived magnitudes as our brightness difference proxy. Top
panel shows the optimal weighting analysis, bottom panel the near maximum analysis. In
both cases the WRMS is low for the best pairs, indicating that the twins ranking is providing
extra information not already captured in the SALT2 analysis.

is one supernova that, when included, causes the WRMS to jump; a sufficiently large error
floor correctly moves this supernova to a worse twinness ranking.

By 20% the effect of increased error floor has plateaued. Indeed, there is relatively little
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Figure 3.16 Results of the optimal weighting (top panel) and near maximum (bottom panel)
analyses when altering the number of pairs required to calculate an average ∆M. In both
cases the WRMS is low despite changing the pair number, though the ξ value at which the
WRMS increases is variable.

change in the WRMS for error floors above 12%, which indicates that it is a sufficiently good
choice for the full analysis on the entire sample.
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Figure 3.17 Results of optimally weighted (top panel) and near maximum (bottom panel)
analyses when changing the percentage error floor added into Equation 3.3. The low WRMS
result is present to at least some ξ with error floors above 6%. There is little changed by
increasing the error floor beyond the 12% used in the analysis.

3.7.4 RV Value

There is some controversy in the supernova cosmology field over the proper value to use for
reddening correction. Our choice of RV =3.1 reflects the Galactic value for dust, though some
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prefer a smaller value, for a more shallow color correction. There is evidence (presented in
Chotard et al. [2011]) that when accounting for supernova features, the appropriate reddening
law is substantially closer to the Galactic value for dust.

Our underlying assumption is that any color difference in true twins must be caused by
external factors, such as dust extinction, which is why we choose to use a Cardelli color
law [Cardelli et al., 1989] with RV =3.1. Nevertheless, we test the effects of changing RV ,
with results shown in Figure 3.18. The fiducial analysis with RV =3.1 is shown by the thick
black line; the colored lines show the result for differing RV values.

For each curve, jackknife outlier rejection has been done as outlined in previous sections,
except that the upper and lower boundaries were fixed to the non-shaded region shown in the
figure. For both the optimal weighting and near maximum analyses the value of RV has a non-
negligible impact on the final result. Interestingly, the “best” RV (i.e. those corresponding
to the low WRMS) are different when considering the whole timeseries (optimal weighting)
versus only the spectra at maximum light. It should be noted that fitting for the value of
RV in Equation 3.1 is not an option, as the value of RV governs the aλ component of the
Cardelli law (which is fairly monochromatic) and as such is degenerate with the fit for κ.

Given that the RV =3.1 curve is generally in the middle of the distribution and that it is
the value with the best physical argument, we choose to continue using this value for RV for
the full analysis on the entire sample.

3.7.5 Low Redshift Supernovae

Some early by-eye identification of outliers pointed to pairs involving low-redshift (z<0.03)
supernovae having large values of ∆M. Although we include the peculiar velocity error in
our uncertainty on ∆M, this may not be sufficient to de-weight these objects. Additionally,
if there were only a few of them, the jackknife outlier rejection might be able to throw them
out. However, with eight of the 37 training set supernovae having a redshift below 0.03, it
would not be possible to identify them with a single jackknife procedure.

Thus since our analysis is focused on purity over inclusion, we threw out these objects
and proceeded with the analysis. Here, for thoroughness, we test their impact on the final
results, using the same procedure as outlined above.

Without allowing jackknife outlier rejection on either the data or the randomizations,
the optimal weighting analysis gives a WRMS of 0.11 mag at a significance of 2σ. For the
near maximum analysis, the result is somewhat better: WRMS of 0.09 mag at a significance
of 2.5σ.

With the jackknife outlier rejection in place, one outlier is found for the optimal weighting
analysis, dropping its best WRMS to 0.09 mag. No outliers are found for the near maximum
analysis. However, the significance will drop strongly in both cases when outlier rejection is
allowed on the randomizations.

Given the higher value of the WRMS and lower significance when including the low-
redshift supernovae, we continue to remove them from the sample in the full set analysis.
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Figure 3.18 Top panel shows results on the optimally weighted analysis when the value of RV

is changed in the fit for κ and ∆E(B-V) in Equation 3.1. Bottom panel shows the same for
the near maximum analysis. In both cases, jackknife outlier rejection has been done for each
value of RV , with the upper and lower boundaries fixed and illustrated by the non-shaded
region. The primary analysis (using RV =3.1 is shown by the thick black line.
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Chapter 4

Unblinded Twins Results
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4.1 Unblinding Checks

Having finalized the analysis on the training set half of the sample, we begin the un-
blinding in stages, to check for any possible issues before examining the final result. The
first sanity check is to visually inspect the pairs ranked by ξ and see if, by eye, the overall
trend is that pairs with lower ξ value have similar spectra and pairs with higher ξ values
have disparate spectra. As expected, this first sanity check is confirmed.

4.1.1 Optimal Weighting with the Full Sample

Additionally, since we have more data in play we must test how the optimal weighting
differs. Figure 4.1 shows the updated sliced analysis, completed identically to that done
above but now using all of the data, not just the training set. The overall results look very
similar. Note that the spread in the dispersion (WRMS) is blinded; this way we have not
given away the end result but we can get a sense of how well the fit performs.

We can compare the slope of this fit with the slope of the linear fit for the training set
only: here we have a somewhat steeper value of -4, compared to the training value of -3,
indicating that with the full sample even more weight is placed in early phases. Given the
over all similarity of the results here and in the training set analysis, we choose to use this
new linear fit as our optimal weighting.

4.1.2 Outlier Rejection

We also tested our outlier rejection with the full sample, again with the spread in the
dispersion (WRMS) blinded. First we checked boundary stability, particularly whether or
not to fix the jackknife boundary values to those found with the training set or to let them
float and be chosen at each iteration as they were in the training analysis. After examination,
we chose the latter, as the tests on the maximum light analysis showed no differences in the
end result with different boundary selections. Note that we cannot test this directly with
the optimally weighted analysis because using a new optimal weighting scheme changes the
ξ values.

We did not alter the cut selections but let the jackknife outlier rejection proceed as with
the training set. Recall that the jackknife boundaries are determined using the maximum
significance from the Monte Carlo randomization tests. In this stage of the unblinding, we
do not examine either the WRMS curve with no outlier rejection or the significance with
respect to the randomizations. We examine those in the following section.

Figures 4.2 and 4.3 show the iterations of the jackknife outlier rejection. The top panel
of Figure 4.2 shows the identified outlier in cyan; the bottom panel shows the second outlier.
The top and bottom panels of Figure 4.3 show the third and fourth outliers, respectively.

Although the scale of the WRMS is blinded, we can assess to what degree the outliers that
are found are consistent with what we desire our algorithm to find. Upon visual inspection,
the first outlier seems quite reasonable, although the subsequent ones are perhaps less clear.
In order to be sufficiently conservative, we will present results tightening our constraints
such that only the first outlier is rejected.
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Figure 4.1 As Figure 3.9 but with the full sample. Top panel: WRMS as a function of
inclusive ξ for different phase bins, The shaded regions are the error on the WRMS values.
Each line is labeled by the bin-center value. The black circles show the WRMS values that
were used in the lower panel to calculate the optimal weighting function. Lower panel: The
purple line is a weighted linear fit to the inverse variance, where the points are drawn from
the upper panel.

The near maximum analysis behaves similarly. Five outliers are found, but the first is
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more convincing to the eye than the subsequent ones. Thus to guard against too zealous an
outlier rejection we allow only one supernova to be rejected.
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Figure 4.2 Blinded jackknife outlier rejection figures. Top (bottom) panel shows the first
(second) iteration. The thin black lines show the WRMS when each supernova is removed in
turn from the sample. The thick blue line shows the WRMS when all supernovae are used.
The thin cyan line illustrates the outlier. The thin vertical red line shows the boundary cut
off, determined from the randomizations.
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Figure 4.3 Blinded jackknife outlier rejection figures. Top (bottom) panel shows the third
(fourth) iteration. The thin black lines show the WRMS when each supernova is removed in
turn from the sample. The thick blue line shows the WRMS when all supernovae are used.
The thin cyan line illustrates the outlier. The thin vertical red line shows the boundary cut
off, determined from the randomizations.

4.2 Full Sample Results

With our checks completed we are prepared to unblind the WRMS values using the full
sample. We unblind in two steps: first the result with no outlier rejection performed either
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on the data or on the randomizations; second the result with a single outlier rejection allowed
both on the data and the randomizations.

4.2.1 No Outlier Rejection

Figures 4.4 and 4.5 show that although the value of the spread in the dispersion (WRMS)
is somewhat higher with the full sample, around 0.1 mag, for the optimal weighting versus
around 0.09 mag with just the training set, the significance of the result is substantially
higher, around 3.5 σ, increased from 2.8 σ. The results are similar for the near maximum
analysis: the WRMS is somewhat higher (0.09 mag for the full sample vs 0.07 mag for the
training sample) but at higher significance (4.5 σ vs 3.0 σ).

Recall that in the WRMS calculation we require at least four pairs to calculate an av-
erage brightness difference. Since that number is finite, our WRMS calculation suffers from
a penalty that goes as

√
1 + 1/N where N is the number of pairs used. Using the average

number of pairings at each ξ value, we are able to correct the quoted WRMS by the appro-
priate value, which we call WRMScorr; it is what the dispersion would be for an equivalent
large sample. Table 4.1 lists both the WRMS and WRMScorr for the full sample analysis.
(Note that the quoted errors are obtained from simple error propagation.)

Table 4.1 Full sample WRMS results
No Outlier Rejection Single Outlier Rejection

Optimal WRMS 0.099 ± 0.011 mag 0.086 ± 0.011 mag
Weighting WRMScorr 0.093 ± 0.010 mag 0.081 ± 0.010 mag

WRMSpop 0.085 ± 0.009 mag 0.071 ± 0.009 mag
At Max WRMS 0.090 ± 0.010 mag 0.083 ± 0.011 mag
Spectra WRMScorr 0.086 ± 0.010 mag 0.078 ± 0.010 mag

WRMSpop 0.075 ± 0.008 mag 0.067 ± 0.009 mag

4.2.2 Single Outlier Rejection

Figure 4.6 shows that allowing one outlier to be rejected drops the spread in the dispersion
(WRMS) to 0.086 mag for the optimal weighting analysis but maintains a good significance
around 3.3 σ. Similarly, Figure 4.7 shows that a low WRMS of 0.083 mag at 3.6 σ is found
for the near maximum analysis.

It is interesting that the near maximum analysis performs as well as the optimally
weighted analysis (or even somewhat better in the case of no outlier rejection), as we may
expect the latter to benefit from the additional data. However, it is plausible that the bulk
of the brightness-dispersion relevant information is present in the spectra near maximum
light. In that case, adding in data at different phases will alter the twinning metric without
adding any brightness-dispersion predictive power. The fact that the near maximum anal-
ysis performs so well is encouraging for future high-redshift supernova surveys; if only one
spectrophotometric observation were to be needed to achieve a dispersion of ∼0.085 mag, it
would represent a big improvement in standardization.
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Figure 4.4 Results for the optimal weighting analysis on the full data set with no outlier
rejection. Top panel shows the WRMS of the data in blue along with the 1-, 2-, and 3-σ
error bands from the Monte Carlo randomization tests. Bottom panel shows the pulls (the
magnitude dispersion in units of sigma) as a function of ξ, with a maximum significance of
3.8 σ around inclusive ξ of 50, with a WRMS result of 0.10 mag.

We also examined the results that we would get if we allowed additional outlier rejection
in straight analogy to what we did with the training sample. Doing this finds four outliers
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Figure 4.5 Results for the near maximum analysis on the full data set with no outlier rejection.
Top panel shows the WRMS of the data in red along with the 1-, 2-, and 3-σ error bands
from the Monte Carlo randomization tests. Bottom panel shows the pulls (the magnitude
dispersion in units of sigma) as a function of ξ, with a maximum significance of 4.5 σ around
inclusive ξ of 0.7, with a WRMS result of 0.09 mag.

and does drop the WRMS for the data to about the 0.07 mag level, but it also drops the
significance of the result to around 2 σ. This was surprising, as we expected the significance
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to increase with respect to what it was on the training sample given the additional data.
The fact that it did not tells us that the iterative outlier rejection is being overly aggressive
and perhaps does not behave in the same way on randomizations as it does on the real data.

4.3 Discussion

Table 4.1 shows that we have a better standard candle than previously available. The
dispersion has a variety of contributing elements, one of which is the velocity dispersion. At
the low redshifts of our sample, the velocity dispersion represents a substantial portion of our
error budget. It is instructive to consider the value of the dispersion when this component
has been removed. Although the precise value to subtract is dependent on the fine details of
which supernovae are involved at how many pairs at each ξ value, our redshift distribution is
reasonably smooth and a first order sense of the effect can be achieved by simply subtracting
in quadrature the error floor of the dispersion arising from peculiar velocities alone. These
numbers are quoted as WRMSpop in Table 4.1.

Although these numbers do not represent the spread in the sample (as the uncertainty
in the peculiar velocity is a valid source of error that must be included), they represent
the upper limit on the potential of population drift in an analysis such as this. Population
drift, the systematic impact of different subpopulations appearing in different proportions
at different redshifts, has been worried about at the 0.1 mag level. But the twins analysis
shows that with careful matching it is possible to keep it at or below the 0.07 mag level.
This is actually still an upper limit because there are still other sources of error.

The twins analysis sets the bar for what the goals should be for future observations and
analysis tools.

For cosmological utility, we would hope that a newly discovered high-redshift supernova
would have sufficient pairs in the low-redshift sample such that its magnitude could be
calculated. We have 36 supernovae with sufficient pairs by the ξ cut off to be included
in the weighted RMS calculation. Although we had 60 supernovae in the full sample, a
look at the number of all potential pairs for each supernova revealed that five of them lack
sufficient late time coverage to be adequately compared to the other 55. Additionally, three
of the supernovae are beyond our normal redshift cut-off; they were followed because they
were potential super-Chandrasekhar-mass candidates, but their signal to noise is much lower
than the target sample, and these should also be neglected from the accounting. This leaves
an overall success rate of 36 out of 52, 69%, but depends on the signal to noise of the data
set.

Of the 16 supernovae lacking sufficient pairings, five have peculiar spectral features, some
belonging to specific subtypes. Given that peculiar supernovae are rarely occurring, only with
a larger nearby sample could a given high-redshift supernova of this subtype be included.
The remaining 11 are preferentially at higher redshift and lower signal to noise than the bulk
of the sample. Indeed, if we only examine the half of the sample with higher signal to noise,
we find that only three of the otherwise unaccounted for supernovae have insufficient pairs,
a success rate of 88% for the higher signal to noise half of the data.

One next step is to complete this analysis on data from the final reduction pipeline. These
low dispersion results may improve with the final reductions in place; that the removal of a
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Figure 4.6 Results for the optimal weighting analysis on the full data set with one iteration
of jackknife outlier rejection on both the data (blue line) and randomizations (grey bands).
Top panel shows the WRMS of the data in blue along with the 1-, 2-, and 3-σ error bands
from the Monte Carlo randomization tests. Bottom panel shows the pulls (the magnitude
dispersion in units of sigma) as a function of ξ, with a maximum significance of 3.3 σ around
inclusive ξ of 50, with a nice low WRMS result of 0.086 mag.

single outlier significantly improves the result suggests that if even a few of the supernova
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Figure 4.7 Results for the near maximum analysis on the full data set with one iteration
of jackknife outlier rejection on both the data (red line) and randomizations (grey bands).
Top panel shows the WRMS of the data in red along with the 1-, 2-, and 3-σ error bands
from the Monte Carlo randomization tests. Bottom panel shows the pulls (the magnitude
dispersion in units of sigma) as a function of ξ, with a maximum significance of 3.6 σ around
inclusive ξ of 0.65, with a nice low WRMS result of 0.083 mag.

calibrations are still not perfect, there could be a still better twin result when they are
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revisited.
Further restrictions of the twins analysis to smaller phase ranges and less stringent quality

cuts are the obvious next step of the analysis, in order to assess just how good the data of
high-redshift supernovae would need to be to maintain the ∼0.085 mag dispersion level.

4.4 Extension to High-Redshift

As discussed above, there are many exciting extensions of the twins analysis testing just
how much and what quality of data is needed to maintain such a low dispersion. A first
simple question is whether we can obtain anything close to the twins result with a standard
high-redshift sample.

To test this, we degrade the size (i.e. number and phase distribution) and quality (i.e.
signal to noise) of the Nearby Supernova Factory sample to match that found in the Su-
pernova Legacy Survey (SNLS) spectroscopic data presented in Appendix B. The SNLS
data were taken at the W .M. Keck 10m telescope as part of the five-year supernova typing
program and are generally representative of the quality of high-redshift spectroscopic data.

There are two primary ways in which a degraded Nearby Supernova Factory sample is
still superior to the Keck high-redshift data, namely the host subtraction and the spectropho-
tometricity. Host subtraction with slit spectroscopy is notoriously difficult, though progress
has been made in recent years [Baumont et al., 2008]. The Keck data certainly suffer from
contamination by host light and though reasonable host templates can be subtracted to aid
in typing and phase determination, they are not sufficient for detailed spectral analyses such
as the twins analysis. The lack of spectrophotometricity is also a constraint on the utility
of high-redshift observations, as without assurance that the observations have captured all
of the light (which is not possible with slit spectroscopy) the underpinnings of the twins
analysis are lost. Thus this test represents a sort of best case scenario of high redshift data;
if it is not possible to recover a low dispersion result even in this ideal case, it is highly
informative as to what manner of data will be needed in the future.

To perform this test, each SNLS supernova in the sample is replaced with a Gaussian
Process prediction of a randomly chosen Nearby Supernova Factory supernova that has
coverage near the phase of the SNLS observation. Gaussian noise is added to the replacement
spectrum until the median signal to noise matches that of the SNLS observation.

From this point the analysis proceeds as outlined above. A χ2 minimization is done
to fit for the scale factor κ and color difference ∆E(B − V ). The pairs are ranked based
on their twinness metric value ξ and the WRMS is calculated as described in Chapter 3.
Figure 4.8 shows the WRMS results. We see that the twins ranking does improve the WRMS
vs no ranking at all. However, with this quality of data a dispersion of 0.15 mag is all that
can be achieved, similar to what is obtainable with photometric standardization methods.
For the full power of the twins analysis to apply to future high redshift surveys, the data
quality would need to improve. Further study is warranted on just how much the Nearby
Supernova Factory can be degraded (both in quality and quantity) and still achieve a WRMS
of ∼0.085 mag.
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Figure 4.8 Magnitude dispersion in mock high redshift study. Using the twins ranking does
improve the WRMS, but only to about 0.15 mag, indicating that to use the full power of
the twins analysis future high redshift studies would benefit from higher quality spectropho-
tometric data.
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Part II

Additional Spectrocopic Analyses
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Chapter 5

Literature Analysis of RSJB
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5.1 Introduction

In Part I, Chapters 1 through 4, we explored the very best standardization possible.
We used full spectrophotometric timeseries to find pairs that have the best-matching flux
values at all phases and wavelengths and demonstrated that those pairs have a very low
magnitude dispersion. There is, however, a long standing tradition of proceeding in the
other direction, namely looking for the most simple approach that corrects for the bulk of
the dispersion in the supernova population. If a correction with a small amount of data
can produce a low dispersion, it is encouraging for future projects, as spectrophotometric
timeseries are certainly observationally costly, which is why the next avenue of study for the
Twins analysis is to test the performance under the degradation of data quality.

There are other shortcuts that have shown promise. One such study was done by Bailey
et al. [2009] (hereafter B09) also using data from the Nearby Supernova Factory, but instead
of the full timeseries, using a single spectrophotometric observation for each supernova near
maximum light. The study used spectral flux ratios to decrease the scatter around the
Hubble line to ≈0.13 mag, a new standardization method that is competitive with the
canonical methods of combining stretch and color corrections. This represents a further
study of the B09 result to see if it carries over to other data sets. It has been claimed, in
e.g. Blondin et al. [2011], that the B09 result is not maintained in other data sets. We test
the correction on the literature supernovae of Matheson et al. [2008].

5.2 Method Review

The B09 analysis was done in blinded fashion. The data were split into training and
validation subsets. The best-performing spectral flux ratios found in the training set and
via Monte Carlo before the performance was examined on the validation set.

The flux ratio method correlates the uncorrected Hubble diagram residuals with ratios
of fluxes in near-maximum light spectra. Note that this method requires only a single flux-
calibrated spectrum per SN, as opposed to stretch and color which require a well-sampled
light curve in many bands. In B09, many good (correlation coefficient > 0.90) flux ratios were
found. A Hubble diagram was then fit with a distance modulus given by µB = (mB −M ′) +
γR, where mB is the uncorrected rest-frame B-band magnitude and M ′ (which includes both
the mean SN Ia absolute magnitude and theR intercept) and γ are fit in the χ2 minimization
of the residuals. The best of these ratios, R642/443 ≡ RSJB with a fitted γ = 3.5, gives a
Hubble diagram with a very low scatter of 0.128 mag (combined training and validation
subsets).

5.3 The Literature Supernovae

In order to further test this method, we perform the analysis on a sample of literature
SNe. We use the 20 SNe from Matheson et al. [2008] (hereafter M08) having observations
within ±2.5 days of maximum light (the phase requirement of B09) and coverage over both
wavelength regions of interest for this flux ratio (2000 km/s bins around 6415Åand 4427Å).
See Table 5.1 for a list of these 20 SNe and their associated photometric information.
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SN czhelio czCMB mB Phase R̄SJB E(B − V )
SN1997dt∗ 2149 1828 15.41(0.05)a 1 0.910 0.057
SN1998aq 1184 1354 12.31(0.02)b 1,2 0.404(0.013) 0.014
SN1998bp 3127 3048 15.28(0.05)b -2.5,-1.5,-0.5,0.5,1.5 0.723(0.106) 0.076
SN1998bu 897 1196 12.12(0.02)b -2.5,-2,-0.5 0.695(0.013) 0.025
SN1998de 4990 4671 17.30(0.05)b -2.5,-1.5,0 0.992(0.239) 0.057
SN1998dh 2678 2307 13.96(0.02)a 0 0.553(0.190) 0.068
SN1998ec 5966 6032 16.09(0.05)a -2.5,-1.5 0.667(0.024) 0.085
SN1998eg 7423 7056 16.12(0.02)a 0 0.550(0.190) 0.123
SN1998es 3168 2868 13.83(0.04)b -2,-1,1,2 0.452(0.012) 0.032
SN1998v 5268 5148 15.08(0.04)a 0.5,1.5,2.5 0.423(0.017) 0.196
SN1999aa 4330 4572 14.72(0.03)b -2,-1,1 0.356(0.023) 0.040
SN1999ac 2848 2943 14.09(0.04)b -2.5,-0.5 0.419(0.004) 0.046
SN1999cc 9392 9452 16.76(0.02)b -1,0.5,2 0.519(0.033) 0.023
SN1999cl 2281 2605 14.87(0.04)b -2.5,-1.5,-0.5,1.5 1.980 0.038

SN1999dq∗ 4295 4060 14.42(0.08)b -2.5,-1.5,1,2 0.470 0.110
SN1999ej 4114 3831 15.36(0.05)a -0.5,2.5 0.569(0.005) 0.071
SN1999gd 5535 5775 16.85(0.05)a 2.5 0.946(0.190) 0.041
SN1999gp∗ 8018 7806 15.99(0.05)b -1.5,0.5 0.463 0.056
SN2000dk 5228 4931 15.34(0.05)b 1.5 0.545(0.126) 0.070
SN2000fa 6378 6533 15.71(0.04)a 1.5,2.5 0.433(0.093) 0.069

Table 5.1 Summary of SNe used in the RSJB literature cross check. Starred SNe are not
included in the analysis due to host galaxy contamination in the spectra. czhelio and E(B−V )
are from Matheson et al. [2008], Table 1. Phases are listed in days with respect to maximum
light; all spectra within the ±2.5 day acceptance window are listed. mB with superscript
a are from Jha et al. [2006], Table 7, while those with superscript b are from Hicken et al.
[2009a], Table 3.
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For photometry for these 20 SNe, we use a combination of two sources: Hicken et al.
[2009a] (hereafter H09) and Jha et al. [2006] (hereafter J06). H09 has photometry for about
half the SNe, while J06 has photometry for almost all. We choose to use H09 photometry
when possible because J06 gives BBmax , derived from a parabolic fit of the light curve to
templates (see J06 page 549 for more details), and we expect H09 to have a more accurate
mB measurement as it is a more refined approach to fitting the data. (In section 5.4 we
consider photometry solely from J06.) Note that the BBmax in J06 have not been corrected
for Galactic extinction, so we correct them using the E(B − V ) values provided in J06.
Uncertainties on BBmax are set to 0.05 mag unless provided in J06 (Table 8).

Three of the 20 SNe satisfying our phase and wavelength requirements are not included
in any subsequent fitting due to strong Hα emission visible in the spectra, indicative of host
galaxy contamination. These SNe are included in Table 5.1, for reference. Another SN,
SN1999cl, is known to be unusually reddened with time-varying NaID; it is a significant
outlier and does not pass outlier rejection in the fits.

Some SNe have multiple observations in the ±2.5 day acceptance window; the phase of
each accepted observation is listed in Table 5.1. RSJB is calculated for each spectrum after
deredshifting (using zhelio) and correcting for Galactic extinction. In cases of more than one
usable spectrum, the mean value of RSJB is given in the Table 5.1 and the uncertainty (σR)
is given by the dispersion in the individual RSJB measurements. If only one spectrum falls in
the acceptance window, we use spectral slope uncertainties derived by M08 from comparison
with B − V photometry, as discussed below. Note, however, that when using the dispersion
as the uncertainty we are a assuming random scatter of the measurements; i.e. if all the
measurements are wrong in the same way (e.g. from calibration errors) this approach will
underestimate the uncertainty. We choose to do this in order to be the most conservative
in our this cross check, giving the literature data the best chance to show tension with the
result of B09.

When we cannot use the dispersion in R for σR, we extrapolate the uncertainty from
M08’s values of σB−V . Figure 5.1 is taken from M08; it plots the B − V color determined
from a SN’s spectrum versus the B − V color determined from a SN’s photometry (or the
extrapolation thereof if no photometry was coincident) and uses the scatter to determine
σB−V . Observations taken up to 1999 were not uniformly observed at the parallactic angle;
they have σB−V = 0.095. Beginning in 2000, observations were completed at the parallactic
angle and the scatter drops to σB−V = 0.063 (for observations within 20 days of maximum
light). To estimate σR, we correct for the longer baseline of the R wavelength range: σR =
σB−V (642− 443)/(540− 442), where 540(442) is the central wavelength of the B(V ) filter in
nm and 642(443) is the red(blue) wavelength used in RSJB.

5.4 Dispersion Results

In order to test the correlation, we must account for the various sources of error on our
measurements, which are broken down in Table 5.2. Uncertainties on mB are as described in
the previous section. We also include the effects of peculiar velocity on the Hubble residual
as: σvpec = (5/ln(10)) ∗ (σcz/cz) = 0.0022/cz for σcz = 300km/s, a reasonable value. Both
values for the uncertainty in R are listed, σR for uncertainty from the dispersion in R and
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Figure 5.1 From Matheson et al. [2008]; B−V color from photometry versus B−V color from
spectroscopy. Used to estimate σR when a dispersion of R measurements is not available.
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SN σmB σvpec σR σ′R Residual
SN1998aq 0.02 0.487 0.013 0.190 -0.158
SN1998bp 0.05 0.217 0.106 0.190 -0.230
SN1998bu 0.02 0.552 0.013 0.190 0.798
SN1998de 0.05 0.141 0.239 0.190 -0.365
SN1998dh 0.02 0.286 ... 0.190 -0.123
SN1998ec 0.05 0.109 0.024 0.190 0.245
SN1998eg 0.02 0.094 ... 0.190 0.145
SN1998es 0.04 0.230 0.012 0.190 0.122
SN1998v 0.04 0.128 0.017 0.190 0.048
SN1999aa 0.03 0.144 0.023 0.190 -0.098
SN1999ac 0.04 0.224 0.004 0.190 -0.201
SN1999cc 0.02 0.070 0.033 0.190 0.021
SN1999ej 0.05 0.172 0.005 0.190 -0.359
SN1999gd 0.05 0.114 ... 0.190 0.382
SN2000dk 0.05 0.134 ... 0.126 0.123
SN2000fa 0.04 0.101 0.093 0.126 -0.032

Table 5.2 Summary of error budget of SNe used in the RSJB literature cross check corre-
sponding to the fit of panel a of Figure 5.4

.

σ′R for uncertainty estimated from σB−V . We note that in most cases (all but SN1998de,
a 91bg-like SN), σ′R is larger than σR, so as discussed in the previous section, we choose
to use the later when possible. The final column in the table is the residual from the fit
corresponding to panel a of Figure 5.4. The primary contributor to the overall error for most
SNe is the peculiar velocity uncertainty; the SNe from B09 are further out in the Hubble
flow and as such not as affected by this uncertainty.

Figure 5.2 plots the raw Hubble diagram residual, mB−5∗ log10(cz) (where cz is czCMB),
as a function of RSJB. Values of the raw residual are not displayed because we do not
include the contributions from H0 or M as these constants are absorbed in the offset of the
fit µB = (mB −M ′) + γR. Panel a shows the individual R values, while panel b shows the
average R̄. The correlation is clearly seen, with ρ = 0.90 for R̄. Figure 5.3 is taken from
B09 and shows these literature SNe over-plotted on the training and validation sets of B09.
Note that SN1999cl is plotted in this figure and it is a clear outlier. The environment of
SN1999cl is known to be unusual, with time-varying NaID [Blondin et al., 2009] and “highly
non-standard dust” [Krisciunas et al., 2006]. SN1999cl is also a large outlier when corrected
with the standard stretch and color corrections.

Figure 5.2 also shows the two corrections that were fit - the red solid line for a correction
using the B09 value of γ = 3.5, fitting for the intercept, and the orange dashed line for a
correction fitting for both the intercept and the slope (γ). These fits are done using R̄ and
with errors from Table 5.2. Residuals from these fits are plotted in Figure 5.4, the top panel
for a fixed γ = 3.5 and the bottom for a fitted γ = 3.0. The scatter of these two fits is
σfix = 0.20 and σfit = 0.19, respectively. In both cases the dispersion is higher than the
value of σ = 0.128 found in B09, but the fits have χ2

ν = 0.7 and χ2
ν = 0.8, respectively,

indicating that the dispersion is consistent with the measurement errors for these data and
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Figure 5.2 Uncorrected Hubble residuals as a function of RSJB. Panel a shows the individual
R measurements for each SN connected with a thin line, while panel b shows R̄. In both
panels the red solid line is the fit of the correlation using the B09 value of γ = 3.5; the
dashed orange line is the fit allowing γ to float. SNe with photometry from H09 are plotted
in purple as diamonds if they are normal SNe and as squares if they are 91bg- or 91t-like.
SNe with photometry from J06 are plotted as cyan triangles.
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Figure 5.3 A figure from B09 showing their training (filled circles) and validation (open
circles) SNe, as well as these literature SNe (crosses). SN1999cl is also plotted and labeled;
it is clear that this SN does not pass outlier rejection cuts.

mB from H09, J06 mB from J06 only mB from R09-SALT
γ σ χ2

ν γ σ χ2
ν γ σ χ2

ν

3.5 0.20 0.77 3.5 0.19 0.80 3.5 0.17 0.41
3.0 0.19 0.73 3.1 0.18 0.80 3.3 0.16 0.42

Table 5.3 Summary of results for the slope γ, dispersion σ and χ2
ν for the three different

photometry sources: H09 and J06 combined; J06 alone, and R09-SALT fits.
.

the result does not contradict the low dispersion found in B09. We summarize the results
in Table 5.3. Values for the dispersion do not change significantly when using γ = 3.5 or
letting γ fit, though when fit the data prefer a lower value for γ.

As mentioned above, we do a consistency check of our result, using different sources of mB

to ensure that our choice to combine H09 and J06 for the primary result does not inject bias.
We consider two alternatives - using mB solely from J06 (possible for all SNe in the sample
except SN1998aq) and using mB from fits using a version of the SALT fitter [Guy et al.,
2005]. For the latter, our mB values come from private communication with D. Rubin, who
used an altered version of the SALT fitter to fit the SNe (hereafter R09-SALT). Figure 5.5
shows the residuals from the fits for both of these alternatives and Table 5.3 summarizes
the results. In all cases, the dispersion σ is higher than the B09 value, but the χ2

ν are < 1,
indicating consistency with the B09 result.
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Figure 5.4 Residuals from fits of uncorrected Hubble residual to RSJB: δHD = γRSJB+M ′.
Panel a shows residuals from the fit keeping γ fixed to the B09 value of 3.5 and fitting for
the intercept M ′. Panel b shows residuals from fitting for both γ and M ′. In both panels,
SNe with photometry from H09 are plotted in purple as diamonds if they are normal SNe
and as squares if they are 91bg- or 91t-like. SNe with photometry from J06 are plotted as
cyan triangles.
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Figure 5.5 Residuals from Hubble diagram fits with mB from J06 (panels a and b, cyan plots)
and mB from R09-SALT (panels c and d, red plots). Results fixing γ − 3.5 are shown in
panels a and c and fitting γ in panels b and d. In all panels, 91bg- and 91t-like SNe are
plotted as square symbols.
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5.5 Summary

We tested the low dispersion result of B09 with a sample of SNe from the literature. We
confirm the strong correlation of uncorrected Hubble diagram residuals with R642/443. The
measurement errors on these literature SNe, though chosen as conservatively as is reasonable,
are large and dominated by uncertainty arising from peculiar velocities, resulting in χ2

ν < 1
for all fits. The dispersion found for these data (0.16 mag to 0.20 mag depending on the
photometry source used) is substantially larger than the 0.128 mag result of B09, but is
consistent with the measurement errors. As such we cannot rule out the B09 result as has
been suggested in Blondin et al. [2011].
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Chapter 6

Monochromatic Hubble Diagrams and
Flux Ratios
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6.1 Introduction

As an extension of the analysis discussed in Chapter 5, we explore the possibility of
avoiding using the SALT model altogether. Recall that the method of Bailey et al. [2009]
uses a spectral flux ratio to correct the Hubble Diagram residuals calculated by fitting the
supernova photometric data with the SALT light curve fitter.

Using data from an early processing run of the Nearby Supernova Factory, we explore
using monochromatic Hubble diagram (McHD) residuals corrected with flux ratios as a way
to standardize Type Ia supernova luminosities. We construct Hubble diagrams from flux
values at a single wavelengths and explore the wavelengths that offer the lowest dispersion.
We then correct these residuals with the method of Bailey et al. [2009]. The advantage
of this approach is that it requires only a spectrophotometric observation near maximum
light, whereas the canonical standardization mechanisms require a well-sampled light curve
(photometry at many phases and in many bands) not only to produce a Hubble diagram but
also to correct luminosities via light curve stretch and color.

As done with other analyses from the Nearby Supernova Factory, we divide the sample
into a “training” and “validation” set - the same split that was used in Bailey et al. [2009].
This leaves us with a training sample of 28 SNe with spectra near maximum light (within
2.5 days). We proceed in our analysis development with these training SNe until all tuning
and tweaking is complete and then unblind with the validation SNe.

6.2 Monochromatic Hubble Diagrams

To construct the Monochromatic Hubble Diagrams (McHDs) the spectra were first dered-
dened (to correct for Milky Way dust), deredshifted, and rebinned to c∆λ/λ ∼ 2000 km/s
bins to sample the features in the physically relevant velocity space on scales still smaller
than the features themselves. For each wavelength bin, we fit magnitudes as a function of
distance as:

log10(flux(λ)) = log10(1/d2
L) + intercept

where the luminosity distance is calculated using ΩΛ = 0.70 and Ωm = 0.30. (The result is
not sensitive to the exact values used given the low redshift of the sample.) We mandate a
slope of one as we are interested in the spread about the best fit line. The fitted intercept
absorbs the reference flux value in the magnitude definition as well as other constants in the
luminosity distance-flux relation. An example of this fit for a particular wavelength value
(λ =642 nm) is shown in Figure 6.1.

We complete this procedure for all wavelength bins and determine the RMS about the
best fit line; results are displayed in Figure 6.2. The error on the RMS is determined with a
jackknife procedure, removing each SN in turn and calculating the standard deviation of the
differences in RMS with and without each SN. The wavelength region around 640 nm has the
lowest RMS and corresponds to the red shoulder of the primary SiII feature. Interestingly,
one of the wavelengths in the Bailey et al. [2009] study is in this regime - namely 642 nm.
The scatter in this region (σ(∆µλ) ∼ 0.2 mag) is substantially less than the uncorrected
B-band scatter (σ(∆µB) ∼ 0.4 mag). However, standard stretch and color corrections are
able to bring the scatter down to ∼ 0.15 mag, so we cannot simply use McHDs.
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Figure 6.1 Relation between luminosity distance (calculated from the concordance cosmol-
ogy) and the magnitudes of SNe in the training set (blue circles). The linear fit is mandated
to have a slope of one.
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Figure 6.2 RMS about monochromatic Hubble diagrams for each wavelength; error on the
RMS is shown as the light blue contour.
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Figure 6.3 Scatter about monochromatic Hubble diagrams as a function of wavelength for
different SN phases. Shaded contours about each line represent the error on the RMS. For
each phase bin, SNe with phases within 2.5 days of the nominal phase are included.

Additionally it is possible to consider McHDs away from maximum light; it could be that
SNe are naturally more standard at other phases in their evolution. McHD residual RMSs
for bins in 5 days are shown in Figure 6.3. For almost all phases the red shoulder of the
SiII feature is an area of low scatter, indicating that SNe share a high degree of similarity at
these wavelengths across many phases. Although much could be done to continue exploring
monochromatic Hubble diagrams, we choose a single one (642 nm at maximum light) and
look for flux ratio corrections in the hopes of finding a competitive set of corrections.

6.3 Flux Ratio Corrections

As discussed in the previous section, we use the monochromatic Hubble diagram at
λ = 642 nm at maximum light because this wavelength is in the region of low-scatter and
it is one of the wavelengths identified in Bailey et al. [2009]. Whereas that analysis chose
to look for correlations between Hubble residuals and flux ratios, here we search directly
for flux ratios that give low residual scatter: σ(∆µ642); although this represents a practical
difference it amounts to a similar search, as only flux ratios with good correlations have a
hope of having a low σ(∆µ642). We explore flux ratios, Rx/y = f(λ = x)/f(λ = y), over the
whole wavelength range. For each flux ratio, we fit ∆µ642 = aRx/y + b, a form analogous
to the standard corrections of the form µB = (mB −M) + α(s − 1) + βc, where s is the
stretch, c is the color, and α and β are fitted coefficients. The color density plot in Figure 6.4
shows the resultant σ(∆µ642) for each flux ratio. The plot is almost symmetric, but will vary
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Correction Parameter
Correction Slope Residual Scatter
Train Full Train Full

R642/443 -1.6 -1.5 0.110±0.015 0.141±0.014
R642/512 -2.3 -2.0 0.108±0.014 0.146±0.014

Table 6.1 Flux ratio R corrections to monochromatic Hubble diagrams and residual scatter.

somewhat as a fit of ∆µ642 = aRx/y + b will not yield identical results as ∆µ642 = aRy/x + b.
It is immediately apparent that there are some flux ratios that yield a σ(∆µ642) ∼ 0.1 mag,

which would be a substantial improvement over current correction methods. Before we
consider unblinding, we must choose which flux ratios to consider. Because we have the
Bailey et al. [2009] results, we choose to use two of the flux ratios identified in that analysis,
namely R642/443 and R642/512, the former as it is the primary ratio used and the latter as it
has a low scatter in this analysis. Results from the training set are listed in Table 6.4.

In order to assess the statistical significance of these results before unblinding, we per-
form a Monte Carlo test. For each of 10,000 trials, monochromatic Hubble diagram residuals
(∆µ642) are randomized, corrections are performed for all possible flux ratios, and the lowest
σ(∆µ642) is stored. A histogram of the resulting σ(∆µ642) values is shown in Figure 6.5. The
two vertical lines show the scatter for R642/443 and R642/512. The probability that random
fluctuations can attain the low level of scatter found is 2.2% (1.6%) for σ(∆µ642) =0.110 mag
(0.108 mag), corresponding to 2.3σ (2.5σ). Since low scatters are obtainable through ran-
domization of the Hubble residuals, we will not be surprise if upon unblinding we see our
good result above fail, as the low scatters could be statistical fluctuations.

6.4 Results Summary

We choose to unblind only the two flux ratios listed above and the results are listed in
Table 6.4. The low dispersion result does not hold in the full sample. In order to test if the
training and validation sets sample the same parent population, we perform a K-S test on
the training and validation McHD residuals for all wavelengths (i.e. not just 642 nm). The
sets are consistent with coming from the same larger sample. However, this does not test
for systematic bias, so for each wavelength the RMS of the validation and training sets are
compared and the ”winner” is noted. The validation set has a higher RMS 86% of the time,
which points to possible significant bias. It is possible that additional data (soon on hand
with the SNfactory) will will not exhibit this bias between the training and validation sets
and a return to this type of analysis will be warranted.
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Figure 6.5 Results from the Monte Carlo permutation test. Vertical lines show the two
σ(∆µ642) values corresponding to flux ratios R642/443 and R642/512. Note that there are some
permutations that produce σ(∆µ642) values below the displayed values, indicating they may
be the result of statistical fluctuations and may not hold after unblinding.
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Chapter 7

Future Directions
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This work has only begun to explore all that can be studied within the twin supernova
paradigm. The low-dispersion result is highly encouraging and sets the bar for the goals of
future Type Ia Supernova observations and analysis tools.

Before applying our method to high redshift, much study is still to be done to understand
just what data quality and quantity are necessary to reproduce the low-dispersion result.
Using the final pipeline production of the Nearby Supernova Factory data set will also allow
us to test the twins result on a larger number of supernovae.

We can complete a thorough test of data quality; the analysis presented here used a highly
selective subset of supernovae, those with no observable flaws. It remains to be answered
just how selective we need to be to reproduce the low-dispersion result.

Tests on data quantity are also important, specifically studies of how coarse the resolution
can be as well as further studies of whether a single at-max spectrum is sufficient to recover
the low-dispersion result.

Although there is substantial work in executing these tests, specifically in training Gaus-
sian Process models on new data, the foundation is laid here for how to utilize this method
for high-redshift data and further decrease the uncertainty on cosmological parameters.

Clearly the approach presented here for identifying twin supernovae is not the only ap-
proach, nor is it necessarily the optimal approach. It was chosen for its transparency but
there are many other statistical techniques one might want to move toward. Principle com-
ponent analyses (PCA), for instance, could potentially reduce the dimensionality while still
achieving a low dispersion. Of particular use may be the tools developed in Bailey [2012] for
performing PCA analyses on noisey datasets.

There is also the need to develop practical analysis tools to fit cosmological parameters
from the datasets. The standard technique today is to use light curve fitters, such as SALT2
[Guy et al., 2007a], which only have a few continuous parameters. From this twins analysis
it is clear that there are many subgroupings within the Type Ia supernova population, and
they may not lend themselves to continuous parameters. New light curve fitting tools will
need to be developed to fully take advantage of all the information supernovae data have to
offer.
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Figure A.1 Left panel: 1000 functions drawn at random from a GP prior, with zero mean,
kernel of the form of Equation A.1 and hyperparameters α = 4.0 and l = 0.5. Right panel:
same as left panel but with hyperparameters α = 2.0 and l = 1.0.

A.1 Gaussian Processes Introduction

Gaussian Processes (GPs) are a generalization of the Gaussian distribution. They allow
a non-parametric reconstruction of a function from data and can be thought of as defining
a distribution over functions. A GP is a collection of random variables (f(x)), any subset of
which has a multivariate Gaussian distribution. They are completely described by a mean
function µ(x) and covariance function k(x, x′): f(x) ∼ GP (µ(x), k(x, x′)) [Rasmussen and
Williams, 2006]. The mean and covariance functions have hyperparameters that can be
specified or can be learned by maximum-likelihood given some data.

As an example, consider a GP with mean function µ(x) = 0 (i.e. a zero mean function)
and kernel:

k(x, x′) = α2exp(−|x− x
′|2

2l2
) + σ2δxx′ , (A.1)

where the hyperparameters are: α (the amplitude), l (the length scale), and σ (the diagonal,
i.i.d. noise). This is a commonly used covariance function (or kernel) called the “squared
exponential.” We can specify values for the hyperparameters and draw functions at random
from the GP.

The left panel of Figure A.1 shows 1000 functions drawn at random from a GP prior with
hyperparameters α = 4.0 and l = 0.5; the right panel shows the same, but with different
hyperparameters: α = 2.0 and l = 1.0. (In both cases three of the random functions
are plotted with thicker lines for clarity.) As can be seen from the figures, the amplitude
hyperparameter α determines the typical spread in f(x), and the length scale l determines
the smoothness of the functions, i.e. how much change is needed in x to get a significant
change in f(x). The left panel has a larger α, resulting in a larger spread in f(x) values for
the 1000 realizations. The right panel has a larger l, resulting in smoother changes in f(x).

If we have data, we can condition the GP prior on that data (called training data), as
shown in Figure A.2. The left panel again shows 1000 functions, but now drawn from the
GP conditioned on the training data (blue dots). The posterior mean is shown in black; it is
constrained to go through the training data points and acts as an interpolation of the data.
In the areas between the training data points, the spread in the realized functions (i.e. the
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Figure A.2 Left panel: 1000 functions drawn from a GP prior conditioned on the training
data (blue dots); posterior mean is shown in black. Middle panel: same as left panel but
with different hyperparameter values. Right panel: similar to middle panel except including
a term for i.i.d. noise in the kernel function.

error on the posterior mean) is a reflection of the hyperparameter values α = 4.0 and l = 0.5.
In the middle panel, the training data are the same, but the different hyperparameter values
result in a different posterior mean and smaller spread in the realized functions. If we include
the i.i.d. noise term in the kernel (Equation A.1; called the “nugget”) and condition the
GP prior on the same training data points, we get the right panel of Figure A.2. Here the
posterior mean is no longer required to go through the data points and it acts as a smoothing
of the data rather than a straight interpolation.

Formulaically (from Rasmussen and Williams [2006]), for a set of input points X∗, the
values of the function are drawn from a Normal distribution

f∗ ∼ N (µ(X∗), K(X∗, X∗)), (A.2)

where the covariance matrix K has elements filled with all input pairs of k(x∗,i, x∗,j). For
y, a set of n measurements of f at inputs X, with measurement covariance V , a set of
measurements and function values is drawn from a Normal distribution:[

y
f∗

]
∼ N

([
µ(X)
µ(X∗)

]
,

[
K(X,X) + V K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(A.3)

The conditional distribution and function values is a Gaussian with expected mean

f̄∗ = µ(X) +K(X∗, X)[K(X,X) + V ]−1(y − µ(X)) (A.4)

and covariance

cov(f̄∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + V ]−1K(X,X∗). (A.5)

In addition to conditioning the GP, the training data can be used to find the optimal
hyperparameter values. This is done through maximizing the likelihood that the data arise
from the given GP. The likelihood that y, a set of n measurements of f at inputs X with
measurement covariance V is described by a Gaussian process is written as:

ln p(y|X) =
1

2
(y − µ(X))T (K + V )−1(y − µ(X))− 1

2
ln |K + V | − n

2
ln 2π. (A.6)
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By finding the hyperparameter values that maximize this log likelihood, we obtain from the
training data themselves what the best hyperparameter values are.

In summary, the basic outline is this: One has training data (a set of measurements y at
inputs X with covariance V ), chooses a mean function (µ(x)) and kernel function (k(x, x′)),
optimizes the hyperparameters by maximizing the likelihood, chooses the locations (X∗) at
which to predict the function, and calculates the predicted mean (f̄∗) and covariance cov(f̄∗).
(In principle, one can also experiment with the choice of kernel and mean functions, as the
likelihood gives a quantitative means of comparison.)

A.2 Gaussian Process Regression with SNfactory Data

For our analysis, the training data are the spectrophotometric flux values as a function
of phase (with respect to light curve maximum) and wavelength. As a mean function we
choose the spectral template of Hsiao et al. [2007] and allow one hyperparameter, θa, for an
overall flux normalization constant. (Note that the mean function is what the GP prediction
will default to in the absence of training data.) For our kernel, we use a squared exponential
of the form:

k

([
ln λi
ti

]
,

[
ln λj
tj

])
= θ2

sexp

(
−1

2

[
ln λi − ln λj

ti − tj

]T [
1/θ2

λ 0
0 1/θ2

t

] [
ln λi − ln λj

ti − tj

])
+ θ2

nδti,tj

(A.7)
We use the difference in ln λ as opposed to λ as velocity space is more physically relevant

to supernova explosions; ln λr − ln λb = ln(1− v/c), so the wavelength length scale is thus a
characteristic velocity, which is roughly wavelength independent for large features. θs is the
amplitude hyperparameter and gives the scale of the GP prediction error when sufficiently
far away from training data. θλ and θt are, respectively, the length scales in log wavelength
and time. θn is the time nugget (which differs from i.i.d. noise in that it is non-zero when
two data points are at the same phase) and accounts for wavelength-independent calibration
errors and noise.

The hyperparameters for the mean and the kernel are learned simultaneously by max-
imum likelihood estimation for each individual time series. As we have ∼300 wavelength
elements per spectrum and ∼10 spectra per supernova, a 3000x3000 covariance matrix must
be decomposed each time the likelihood is calculated. This is computationally expensive,
as the matrix must be decomposed at each optimization step as the hyperparameters are
learned. (For our optimizer we use Minuit2.) Using the NERSC supercomputer Hopper,
each learning run takes less than three minutes on a few hundred cores, using parallel dis-
tributed linear algebra routines (ScaLAPACK). We are then able to use these optimized
hyperparameters to make predictions at any desired wavelengths and phases.

Of the 132 supernovae in the ACEv2 sample, 74 make it into the final sample for this
analysis. (See Section 2.3 for details on sample selection.) Figure A.3 show histograms of
the hyperparameter values for each of the five hyperparameters used in this analysis. The
range of values for each of these hyperparameters is reasonable. We expect θa to be on
order a few, as the mean template is normalized to one and the maximum supernova fluxes
have been rescaled for this purpose to be on order a few. θs values ranging from 0.1 to
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0.8 are also reasonable, as this hyperparameter is in essence the error in the GP sufficiently
far away from data. For the time length scale θt, we have values ranging from ∼4 to ∼12.
Although SNe vary on few day timescales (as is evidenced by examining their spectra), this
hyperparameter value is affected by the data sampling as well as the overall smoothness of
the data, as a shorter time length scale will allow for more variation in the GP predictions.
The range of θλ corresponds to ∼2250 km s−1 to ∼7750 km s−1 (which in terms of Å is
∼25Å-85Å at the blue end and ∼65Å-215Å at the red end), a reasonable range given that
SN features are 103 − 104 km s−1.

Figures A.4-A.7 show examples of GP predictions for four supernovae that represent
different hyperparameter values. The first, Figure A.4, shows SNF20071015-000, which has
the largest time length scale θt. The GP prediction in day intervals is shown in blue; in black
are the data over-plotted on the day interval closest to the phase of the data. The other
hyperparameters for this SN (displayed on the figure) are not particularly extreme. From
the figure it is evident that this SN has a large degree of extrinsic reddening compared to
the supernovae in the other figures. This reddening serves to make the SN more smooth in
time than in would be otherwise, resulting in a larger θt; in fact all of the SNe in the sample
with a large SALT2 color have θt > 9 days.

Figure A.5 shows a particularly noisy SN: SNF20070528-003, which has the largest kernel
amplitude hyperparameter θs. It is not surprising that a noisy SN would have a large θs, as
θs gives the scale of the GP prediction error sufficiently far away from the data. Figure A.6
shows SNF20070831-015, which has a larger than average time nugget θn. Examining the
data around +4 days, it is clear that the GP slightly over-predicts the value of the flux at
all wavelengths. As θn encapsulates wavelength-independent calibration errors and noise, it
is clear why this SN would have a higher than average θn.

The final example is SNF20080514-002, shown in Figure A.7; it is fairly representative
of the hyperparameter space. It is one of our most well-measured SNe, as is clear from the
density of data. The time length scale θt is on the smaller end of the distribution, which is
not surprising based on how well sampled the data are. Also, θn is somewhat larger than
the average because the data around +10 days is slightly under-predicted on the whole by
the GP.
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Figure A.3 Histograms of the various hyperparameters for the 74 SNe in the final sample.
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Figure A.4 Gaussian process predictions for SNF20071015-000 in day intervals (days with
respect to maximum light, determined from the SALT2 fits to the data) is shown in blue; in
black are the data over-plotted on the day interval closest to the phase of the data. Optimized
hyperparameters are displayed in the upper right corner of the figure.
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Figure A.5 Gaussian process predictions for SNF20070528-003 in day intervals (days with
respect to maximum light, determined from the SALT2 fits to the data) is shown in blue; in
black are the data over-plotted on the day interval closest to the phase of the data. Optimized
hyperparameters are displayed in the upper right corner of the figure.
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Figure A.6 Gaussian process predictions for SNF20070831-015 in day intervals (days with
respect to maximum light, determined from the SALT2 fits to the data) is shown in blue; in
black are the data over-plotted on the day interval closest to the phase of the data. Optimized
hyperparameters are displayed in the upper right corner of the figure.
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Figure A.7 Gaussian process predictions for SNF20080514-002 in day intervals (days with
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black are the data over-plotted on the day interval closest to the phase of the data. Optimized
hyperparameters are displayed in the upper right corner of the figure.
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Appendix B

Spectroscopy from the Supernova
Legacy Survey
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B.1 Introduction

For our studies of whether data from a current high-redshift survey were to produce a
low dispersion in the twins method of Chapter 4, we turn to the Supernova Legacy Survey
(SNLS). The SNLS is one of many recent surveys [Wood-Vasey et al., 2007, Hicken et al.,
2009b, Kessler et al., 2009, Suzuki et al., 2011] that constrain the dark energy equation-
of-state parameter to an accuracy of 5%, excluding systematic errors. Over the five years
the survey ran, SNLS obtained 500 well observed SNe Ia in the redshift interval z=0.2-1.1
[Astier et al., 2006, Guy et al., 2010]. We use the subset of SNLS candidates observed at the
Keck telescope as a standard example of a high-redshift data set.

The SNLS uses imaging data from the Canada-France-Hawaii Telescope Legacy Survey
(CFHTLS) for supernova discoveries and light curves using the “rolling search” technique
in which the four deep CFHT legacy survey fields [Astier et al., 2006] (D1,D2,D3,D4) were
imaged in four filters (g′r′i′z′) every four days during dark and gray time. Spectroscopic
follow-up (for determining candidate redshift and supernova type) was done at the Very Large
Telescope (VLT), the Gemini telescopes, and the Keck telescopes. For the spectroscopic
follow-up of SNLS targets, the VLT and Gemini were used in service/queue mode, while
Keck was used during pre-scheduled nights.

In this appendix we present the observations of all 113 candidates that were targeted with
Keck using the LRIS and DEIMOS spectrographs at the Keck I and Keck II telescopes. There
are a total of 59 SNe Ia and SNe Ia*, of which 36 are part of the SNLS 3-year cosmological
results. The SNLS 3-year results (photometric follow-up and cosmological implications) are
presented in Guy et al. [2010], Conley et al. [2011], and Sullivan et al. [2011]. Spectra taken
at the VLT from the first three years of the SNLS survey are presented in Balland et al.
[2009] and the remaining 4th and 5th year spectra are presented in Balland et al. (in prep).
Spectra taken at Gemini are presented in Howell et al. [2005], Bronder et al. [2008], and
Walker et al. [2011].

B.2 Observations

B.2.1 Search and Selection

The candidates in this sample were discovered during the five year SNLS project. The
rolling search technique, employed with the CFHTLS and described in detail in Howell et al.
[2005], continually imaged the fields of interest in several filters every few days, providing
densely-sampled lightcurves for all transients. As there was insufficient spectroscopic time to
follow all the transients, when possible the choice of which objects to prioritize for spectro-
scopic follow-up was made based on the goodness of fit of the candidate’s (usually pre-max)
photometry data to SN Ia lightcurves [Sullivan et al., 2006].

Once a candidate made it to spectroscopy status, generally if it was thought to be at
high redshift (z > 0.6) and time was available it was sent to Gemini-N or Gemini-S, as
the nod-and-shuffle mode at these telescopes is helpful for reducing sky line residuals. Lower
redshift targets in the SNLS equatorial fields were sent preferentially to the VLT, as it has
the shortest setup time. Both of these facilities (Gemini and VLT) were operated in queue
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or service mode: requests for observations were sent to the telescope and observed based
on priority ratings. The remainder of the spectroscopic candidates were sent to the Keck
telescope observing list.

B.2.2 Spectroscopic follow-up

Of the four SNLS fields, denoted D1–4, D3 is a far northern field and thus not accessible
by VLT or Gemini-S. For this reason we initially focused our Keck observations during the
period March–June when D3 was visible. Observing runs with Keck usually consisted of
individual nights spread out with a spacing of roughly one per month in order to improve
the chance for targeting SNLS candidates near their maximum brightness. At the mean
redshift of z ∼ 0.6 of SNLS SNe Ia, this ostensibly allowed spectroscopy of fresh candiates
within ±10 days of maximum light. SNLS candidates known to have later epoch, or which
were less secure, were also included if there was a shortfall of premium candidates. Thus, it
was expected that the number of candidates confirmed as SNe Ia would be lower than what
was achieved with the VLT and Gemini. When poor weather at CFHT or other factors led to
a shortfall of suitable SNLS candidates, or when conditions at Keck were poor, observations
of other transients were pursued, resulting in several high-impact discoveries [Foley et al.,
2006, Aldering et al., 2006, Quimby et al., 2007, Gal-Yam et al., 2007, Barbary et al., 2009].

Candidates were observed from May 2003 to April 2008 with the LRIS and DEIMOS
spectrographs. The Low Resolution Imaging Spectrometer (LRIS) [Oke et al., 1995], at
Keck I, operates in the visible wavelength range. It employs a dichroic beamsplitter to
separate the light into red and blue channels. At the time of our observations, the red
camera used a 2048x2048 Tektronix CCD detector, with a pixel scale of 0.215′′/pixel. The
blue camera uses a mosaic of two 2Kx4K Marconi CCDs, with pixel scale 0.135′′/pixel
[Steidel et al., 2003]. The DEep Imaging Multi-Object Spectrograph (DEIMOS) [Faber
et al., 2003], at Keck II, also operates in the visible wavelength range. DEIMOS offers a
variety of gratings and has a large focal plane array consisting of a 2x4 mosaic of 2Kx4K
MIT/Lincoln Laboratory CCDs. The pixel scale for DEIMOS is 0.1185′′/pixel.

The choice between DEIMOS and LRIS depended on several factors whose relative
weighting changed as the program progressed. During the early days of the SNLS sur-
vey the DEEP2 program [Davis et al., 2003] was using its large allocation of nights in part
to obtain deep multi-object spectroscopy of galaxies in the Extended Groth Strip, which
has considerable overlap with the SNLS D3 field. This offered the possibility of obtaining
spectra for SNLS targets in parallel with DEEP2 observations by adding existing SNLS
candidates to masks for DEEP2 fields that were about to be observed. As the DEEP2
program had extended dark runs, this arrangement also provided better insurance against
bad weather. As masks must be made in advance, this program required tight coordination
between DEEP2, SNLS and Keck. Altogether, spectroscopy of 10 targets — approximately
20% of all D3 spectroscopy targets prior to June 2004 — were obtained from this cooperative
arrangement.

Additionally, in spring 2004 we designed a long slit mask having a reflective Alumiclad
coating for DEIMOS. This allowed acquisition of single targets using the slit-viewing camera.
Thus, with DEIMOS it became possible to observe single targets in long-slit mode as well
as multi-object spectroscopy (MOS) masks. In the end, the broader wavelength coverage
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provided by the simultaneous blue and red channels, along with overall higher throughput
and more sensitive long-slit acquisition system, led to a general preference for LRIS, which
was employed on 14 of our 19 nights. However, as the program neared its end we returned
to MOS masks on DEIMOS for two nights to obtain spectroscopy of the host galaxies of
SNLS SNe from previous years in parallel with observations of active SNLS candidates.

For data taken with LRIS, the standard wavelength coverage for our observations is from
3500 Å to 9200 Å; for data taken with DEIMOS, the coverage is from 5300 Å to 9800 Å. Ob-
servations of each candidate typically consisted of 2-4 exposures of varying duration (between
1200 and 1800 s), depending on the brightness of the object. Observational details, including
setup and conditions, for each candidate are given in Tables B.1 to B.3. For observations
with DEIMOS, the grating used is listed in the table; for LRIS observations, the dichroic
and grism are listed as well. During LRIS observations the red side grating tilt was adjusted
to achieve continuous wavelength coverage; however, there were two nights (2005 March 16
and 2005 April 11) for which this was not done and there is a gap in wavelength coverage.
12 candidates are affected by this; nine are SNe Ia/Ia* and three are of unidentified type
(CI=2), providing a 75% success rate — surprisingly, better than the mean for our sample.

The majority of our candidates were observed in long slit mode. Whenever possible, the
slit angle was chosen to include the presumed host galaxy of the candidate, as the most
accurate redshift determination comes from narrow galactic features. Since this position
angle rarely coincided with the parallactic angle, the resulting spectra are not expected
to be spectrophotometric. For long slit observations, flux calibration standard stars were
observed at the parallactic angle over a range in airmass. In the case of LRIS, the slit width
was chosen to match the projected seeing for the night. The DEIMOS long slit was available
with a width of 0′′.7 only. The slits for MOS were 1′′.

In total we were awarded 25 nights from May 2003 to April 2008. Our first night in May
2003 was used for SNLS commissioning support and to observe DEEP2 masks, initiating our
collaboration with the DEEP2 team. The following three awarded nights (May 2003, July
2003, March 2004) were joint with the DEEP2 team and we observed some SNLS targets
in long slit mode, some SNLS targets on DEEP2 masks, and some DEEP2 masks without
SNLS targets. Three nights were entirely lost due to weather (two in March 2006, and one
in August 2007) and three additional nights (March 2004, February 2007, December 2007)
suffered from poor weather and we were unable to observe many targets. All told, of our 25
nights, Tables B.1 to B.3 lists 19 nights with observed targets.

B.3 Data Reduction

B.3.1 DEIMOS Pipeline

For reducing DEIMOS data, we use the UCB DEEP2 pipeline1: an IDL-based package
(based on the SDSS spectral code of D. Schlegel), which produces cosmic-ray cleaned, sky-
subtracted 2-D and 1-D extracted spectra. The pipeline properly accounts for tilted sky
lines resulting from tilted slits, yielding sky subtraction residuals near the Poisson level.

1http://astro.berkeley.edu/~cooper/deep/spec2d/
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The first stage in the reduction is the processing of flat and arc files, chip by chip to
produce the necessary calibration files. Multiple flats, taken before and after science ob-
servations, are processed to determine the location of the slitlets on the CCD array, reject
cosmic rays, and to measure the throughput of the slitlet. Arc files are used to determine
the 2-D wavelength solution for each slitlet, with a mean RMS scatter of 0.25Å.

The science frames are also reduced chip by chip to extract science data, using the
calibration files to flatfield and rectify each slitlet. The b-spline used for the construction
of the sky model is a description of the mean sky as a function of wavelength and includes
cosmic ray rejection. To complete sky-subtraction, the b-spline sky model appropriate for
each exposure is subtracted from the individual extracted science slitlets. To combine the
separate science exposures, an inverse variance weighted average is computed, pixel by pixel.
Cosmic ray rejection is applied at this stage based on the variability of a given pixel.

1-D spectra and error spectra are obtained for each object (the supernova candidate as
well as occasionally the candidate host) on each of the slitlets using an unweighted rectangular
aperture (i.e. a boxcar) for extraction. To complete the reduction process, the 1-D spectra are
flux calibrated and corrected for telluric features using observations of CALSPEC standard
stars; an atmospheric extinction correction is also applied, derived from the effective airmass
of the observation.

B.3.2 LRIS Pipeline

For reducing LRIS data, we use the Low-Redux pipeline2: a package for reducing longslit
data from several different optical spectrometers including LRIS. Flat fielding in this pipeline
is split in two for improved sky subtraction: pixel flats represent the intrinsic pixel-to-pixel
variations in CCD response, illumination flats represent the larger scale variations due to
non-uniformities in the slit width and vignetting. After this split flat-fielding proceeds as
with the DEIMOS pipeline. Arc exposures taken for wavelength calibration are processed to
yield a wavelength solution with mean RMS scatter of 0.27Å and 0.62Åfor the red and blue
channels respectively.

The science frames are then reduced, red and blue channels separately, using the flat
fields and wavelength solution. The sky is modeled by a b-spline function along the spatial
direction, excluding the science object pixels from the fit. Individual science exposures are
sky-subtracted using this b-spline model.

Final extraction is completed for the red and blue channels independently, producing 1-D
spectra and error spectra for all objects. Extraction is completed with the boxcar method,
where the box size is matched to the seeing. At this stage the red and blue sides of the
spectra are flux calibrated, telluric corrected, and extinction corrected before being coadded
and cosmic ray cleaned to produce final spectra.

B.4 Candidate Classification

For determining redshifts, when possible we obtain the redshift from narrow features in
the underlying or accompanying host spectrum. At high redshifts host contamination is

2http://www.ucolick.org/~xavier/LowRedux/
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generally unavoidable due to the small angular size of the galaxy. To identify the host lines,
we use four galaxy principle component templates from a collection of SDSS spectra [Agol
et al., 2011], each template with different emission and absorption lines. The templates are
fitted to the spectrum, together with a third order polynomial which accounts for any slowly
varying mis-calibration, to produce a χ2 per degree of freedom distribution as a function of
redshift. The synthetic fluxes corresponding to the minima of the fit are compared to the
data spectrum by eye to ensure that the emission and absorption lines of the synthetic flux
correspond to legitimate emission and absorption in the data (and not to stray cosmic rays
or sky subtraction residuals). [OII] λλ 3726, 3729, [OIII] λλ 4959, 5007, CaH, CaK, and
Hβ are the most commonly detected features, as well as occasionally Hα and [NII] λ 6584.
When the redshift is determined from narrow host galaxy features we assign an error of 0.001
unless otherwise noted.

When no host lines are detected we must rely on the supernova fitting algorithm for the
redshift; this method is less accurate, yielding a redshift error of 0.01. For supernova fitting,
we use Superfit [Howell et al., 2005], which is a χ2 fitter designed to separate supernova
from host galaxy light and to obtain the supernova type through comparison to a library of
supernova observations over a range of epochs and types. Unless the redshift is supplied from
lines in the host galaxy spectrum, it is varied in the fit, along with the host contamination
and the reddening (using the reddening law of Cardelli et al. [1989] with Rv = 3.1). The
supernova library consists of 184 SN Ia, 75 SN Ib/c, and 47 SN II. The fit result, consisting
of best matching SN templates, host galaxy templates, redshift (if not set by the host lines),
and reddening, must be inspected visually for final classification. The epoch of the supernova
is determined from the mean of the epochs of the five best fit templates.

For final classification we adopt the Confidence Index (CI) fully described in Howell
et al. [2005]. SNe of CI=5 are certain SNe Ia: the distinctive SiII or SII are present;
at redshifts observed in this sample, the SiII 6150Å and SII 5400Å lines are shifted toward
redder wavelengths where sky line residuals can obscure supernova flux, so often SiII 4000Å(in
combination with the flux decrease blueward toward the CaII H&K feature) is used as the
key indicator. CI=4 are highly probably SNe Ia: the spectrum matches SN Ia template
spectra and does not match other SN type template spectra, but lacks the definitive lines;
for the redshifts probed in this sample, the UV features, particularly CaII H&K, and the
MgII triplet are the most commonly identified lines. SNe of CI=3 are probable SNe Ia: the
spectrum, although well-matched to a SN Ia template lacks definitive line identification and
could also match other SN templates (generally SN Ib or Ic); this classification is noted as
SN Ia* in other schemes. CI=2 is applied when the type cannot be determined, usually
due to low S/N or severe host contamination. Candidates that are probably not SNe Ia are
given a CI=1: the candidate spectrum is not consistent with SN Ia templates but the type
cannot be confirmed unambiguously. CI=0 is for candidates that are definitely not SNe Ia:
the spectrum matches that of another type (SN Ib/c, SN II, or AGN) or is inconsistent with
being a SN Ia.
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B.5 Classification Results

The SNLS 3-year sample has been published in Guy et al. [2010]. Here we present spectra
observed at Keck that will become part of the 5-year SNLS sample. For those of our spectra
in the 3-year sample, for which we have photometric data, we have included light curve epoch
information for comparison with the spectral fit epoch information. None of the objects in
this sample are confirmed to be peculiar SNe Ia; however, as it is difficult to identify peculiar
SNe unless the signal-to-noise ratio is high, we cannot rule out that some of these objects
may be peculiar.

Tables B.4 and B.5 list the classification of each object and when possible, redshift,
best fit supernova template, and spectroscopically-derived epoch relative to maximum light
(τspec). SNe Ia discovered from 2003 to 2006 are included in the SNLS 3-year sample and
for these objects we have finalized photometry and light curve fits from which we can derive
τLC , the epoch of the spectrum relative to B-band maximum light; when available this is
listed in the Table. Figures B.1-B.10 show observed data in gray for all classified objects
(i.e. CI 6=2). If the redshift has been determined from narrow emission or absorption from
the host galaxy, those lines are marked, otherwise the redshift has been determined from fits
to supernova templates.

We also show supernova template fits to the candidates that are classified SNe Ia/Ia*
and non-SNe Ia. In these figures, unless otherwise noted, a host galaxy template has been
subtracted from the object flux. The amount and type of host galaxy template to sub-
tract is determined by Superfit as a part of the joint supernova and galaxy template fitting
proceedure. The template-host subtracted flux has been rebinned to 20 Å for visualization
purposes, though narrow galaxy emission lines have not been removed prior to rebinning.
Figures B.1-B.5 show the template host-subtracted spectra, and the best-fit template ob-
ject for secure SNe Ia (candidates with CI=4 and CI=5). SNe Ia* (candidates with CI=3)
are shown in Figures B.6-B.8 and non-SNe Ia candidates (CI=0-CI=1) are shown in Fig-
ures B.9-B.11. As mentioned in Section B.2.2, some candidates lack continuous wavelength
coverage.

B.6 Discussion

Redshifts were determined for 99 of the 113 candidates, a success rate of 88%. Of the 14
candidates for which no redshift could be determined, the presumed host of the object was
either very faint or not apparent. Figure B.12 is a histogram of the number of candidates
of each different classification level as a function of redshift. SNe of CI=4 and CI=5 are
grouped together as “SN Ia” and objects of CI=0 and CI=1 are grouped together as “Non-
Ia.” “No ID” refers to objects of CI=2 and “SN Ia*” are less secure SNe Ia of CI=3. At
higher redshifts, the fraction of the less certain SN Ia* type over the secure SN Ia type
increases, as would be expected from the decreased S/N available at higher redshift. Most
non-SN Ia objects are at lower redshift, as core collapse SNe are generally intrinsically fainter
phenomena; note that the single non-SN Ia object in the highest redshift bin is 07D3ar, an
AGN. The mean redshift of the combined SN Ia and SN Ia* sample is z̄Keck = 0.61, which
is comparable to the redshift distributions presented in Walker et al. [2011] for observations
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Figure B.1 Candidates with CI=4 or CI=5 (secure SN Ia). Observed data is shown in gray
with host galaxy emission or absorption lines marked. Supernovva+host minus template
galaxy is shown in light blue, best fit supernova template shown in dark blue. The spectra
have been deredshifted into the restframe and the fluxes are normalized to unity. Confidence
Index CI is shown in the legend adjacent to the supernova name.
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Figure B.2 Continued from Figure B.1.
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Figure B.3 Continued from Figure B.1.
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Figure B.4 Continued from Figure B.1.
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Figure B.5 Continued from Figure B.1.
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Figure B.6 Candidates with CI=3 (likely SNe Ia). Observed data is shown in gray with
host galaxy emission or absorption lines marked. Supernova+host minus template galaxy is
shown in light blue, best fit supernova template shown in dark blue. The spectra have been
deredshifted into the restframe and the fluxes are normalized to unity. Confidence Index CI
is shown in the legend adjacent to the supernova name.
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Figure B.7 Continued from Figure B.6.
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Figure B.9 Candidates with CI=0 or CI=1 (non-SN Ia). Observed data is shown in gray with
host galaxy emission or absorption lines marked. Supernova+host minus template galaxy
is shown in light blue, best fit supernova template (if available) shown in dark blue. If a
template is fit to the data, the spectra have been deredshifted into the restframe. In all cases
the fluxes are normalized to unity. Confidence Index CI is shown in the legend adjacent to
the supernova name; upper left corner of each panel shows the type: Ib/c, II, AGN.
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Figure B.10 Continued from Figure B.9.



112

400 500 600 700 800 900

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
N

or
m

[OII]
Hβ

[OIII]

SN? z=0.4408
07D2dq [1]

350 400 450 500 550 600 650
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[OII]

[OIII]

Ib/c z=0.3250
07D2gg [0]

1994I 2d

400 500 600 700 800 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
N

or
m

[OII]

AGN? z=0.998
07D3ar [0]

400 500 600 700 800 900
0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN?
07D3bs [0]

400 450 500 550 600
0.0

0.5

1.0

1.5

2.0

F
N

or
m

[OII]

Hβ
[OIII]

II z=0.406
07D3cq [0]

1984E 4d

600 650 700 750 800 850 900
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

[OIII]

Hα

SN z=0.220
08D2hk [0]

450 500 550 600 650

Restframe λ (nm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F
N

o
rm

[OIII]

Hα

Ib/c z=0.3255
08D2iw [0]

2002ap 5d

500 550 600 650 700 750

Restframe λ (nm)

0.0

0.5

1.0

1.5

2.0

Hα

Hβ

II z=0.2199
08D2jh [0]

1993W 4d

Figure B.11 Continued from Figure B.9.



113

done at Gemini (z̄Gem = 0.63) and in Balland et al. [2009] for observations done at the
VLT (z̄V LT = 0.63).

For those SNe Ia/Ia* in the SNLS 3-year sample (36 objects), we can compare the epoch
determined from fits to the spectra (τSpec in Tables B.4) and B.5 to the epoch determined
from fits to the light curves (τLC in Tables B.4 and B.5). Figure B.13 shows this comparison;
it is apparent that the epoch estimation from fits to the spectra are poor at early (before
-10 days) and late (after ∼+12 days) times. The RMS of the whole sample is 3.9 days,
higher than the values found in Howell et al. [2005] and Hook et al. [2005] (2.5 and 3.3
days, respectively). However, if we look only at the epochs probed by those two analyses
(-10 days to +10 days and -7.5 days to +15 days), the RMS of our sample is 3.0 days (in
both cases), consistent with previous results. This inability to determine the epoch of early
time spectra was also seen in Howell et al. [2005] and is due to the limited number of early
time spectra. The difficulty at later time stems from the increased similarity of spectra at
later times coupled with the library of spectra having more templates around ∼+7 days than
∼+15 days.

Thus in order to do an accurate comparison of the epoch coverage of this sample with
other spectroscopic samples such as Howell et al. [2005], we must correct the spectroscop-
ically determined epochs for the systematic underestimation at early and late times. The
dashed line in Figure B.13 is a fit to τspec as a function of τLC . The shallow slope arises from
the paucity of early and late time spectra coupled with the increased number of templates
between -5d and +10d. By inverting this relation we can convert a spectroscopically de-
termined epoch to an estimate of the light curve determined epoch. Figure B.14 shows the
epoch of each spectrum’s observation; for objects in the SNLS 3-year sample, τLC is used,
while for objects without final photometry, τspec is corrected using this relation. Neglecting
the two outlying objects at epochs greater than ∼30 days, the bulk of the sample is between
-15 and +20 days, a larger range than the -10 to +10 days found in Howell et al. [2005].
This range is similar to what was found in Balland et al. [2009], but here the distribution is
flatter, with more objects at early and late times, which is consistent with the expectation
that when observations are done in classical observer mode, a wider range of targets are
selected for follow-up.

The repercussions of classical mode observing are also evident in the fraction of candidates
that were able to be classified as SN Ia/Ia* or non-SN Ia. In Howell et al. [2005] such a
classification was determined for ∼80% of the observed candidates, whereas in this sample
only ∼73 % are classified as SN Ia/Ia* or non-SN Ia. The percentages of spectroscopically
determined SN Ia/Ia* for all SNLS candidates observed at the Gemini telescopes [Howell
et al., 2005, Bronder et al., 2008, Walker et al., 2011] vs this sample are 71% vs 52 %. This
is largely because a broader range of transients (generally fainter and more contaminated by
host galaxy) were observed with Keck, than were sent to the VLT and Gemini.

In this appendix we have presented spectroscopic observations of 113 candidates from the
SNLS survey. We present spectra of the 83 objects, 59 of which are classified as SNe Ia/Ia*
in the redshift range z = 0.082 to z = 1.06; the other 24 objects are classified as non-
SNe Ia. The epochs of these SNe Ia spectra range from ∼-15 days to +20 days relative to
B-band maximum light. We see fair agreement between the epoch determined from fitting
the spectra with a library of template spectra and the epoch determined from fits to the
light curves. Spectra presented here span the complete 5-year range of observations with the
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Figure B.13 Rest-frame epoch of spectroscopic observations relative to B-band maximum
light from fits to the light curve and fits to the spectra. The light curve epoch is determined
from the time of B-band maximum provided in Conley et al. [2011]. The solid line is not
a fit to the data, but shows where the SNe would lie if the spectroscopic epoch were equal
to the light curve epoch. The dashed blue line is a fit to the data, used for correcting the
epochs of SNe Ia lacking light curve determined epochs.
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Figure B.14 Histogram of the rest-frame epoch relative to B-band maximum light for
SNe Ia/Ia*. Objects discovered between 2003 and 2006 are in the SNLS 3-year sample
and have finalied photometry; for these we use the light curve determined epoch. Objects
discovered in 2007 and 2008 will have finalized photometry in the full SNLS 5-year sample,
so we use the spectroscopically determined epoch corrected by the dashed line fit to the data
in Figure B.13.
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Table B.1 Summary of SNLS Candidate Observations at Keck: Part I
UT Date Telescope Mean Seeing Instrument

SNa R.A. Dec. Exp (s) Dichroic Grating Grism
2003 May 31 KECK II 0.8′′ DEIMOS

03D3bn 14:20:09.214 +53:02:34.40 710 · · · 830 · · ·
2003 Jul 2 KECK II 0.8′′ DEIMOS

03D3bz 14:19:16.470 +52:37:49.40 2400 · · · 830 · · ·
03D3cy 14:17:57.740 +52:57:37.33 4716 · · · 830 · · ·
03D3dd 14:22:39.940 +52:47:49.51 3700 · · · 830 · · ·
03D3dr 14:21:54.230 +52:58:50.01 1200 · · · 830 · · ·
03D3ds 14:21:27.790 +53:06:10.75 7549 · · · 830 · · ·

2004 Apr 22 KECK II 1.0′′ DEIMOS
04D2gb 10:02:22.712 +01:53:39.16 2400 · · · 830 · · ·
04D2ii 10:00:29.469 +02:32:18.32 3600 · · · 830 · · ·
04D3bt 14:16:59.861 +53:07:51.44 719 · · · 830 · · ·
04D3ch 14:22:27.117 +52:40:03.23 3600 · · · 830 · · ·
04D3co 14:17:50.024 +52:57:49.05 3600 · · · 830 · · ·
04D3db 14:21:05.233 +52:53:53.09 2400 · · · 830 · · ·
04D3df 14:18:10.020 +52:16:40.13 2400 · · · 830 · · ·
04D3do 14:17:46.107 +52:16:03.55 2400 · · · 830 · · ·

2004 May 23 KECK I 0.8′′ LRIS
04D3gt 14:22:32.594 +52:38:49.52 2400 560 400/8500 600/4000
04D3ht 14:16:17.101 +52:19:28.40 2400 560 400/8500 600/4000
04D3is 14:16:51.944 +52:48:45.44 3600 560 400/8500 600/4000
04D3jb 14:19:44.651 +52:37:08.00 1600 560 400/8500 600/4000
04D3ki 14:19:34.599 +52:17:32.59 3600 560 400/8500 600/4000
04D3kk 14:21:17.061 +53:04:05.85 2400 560 400/8500 600/4000
04D3kr 14:16:35.937 +52:28:44.20 1200 560 400/8500 600/4000
04D3ks 14:22:33.517 +52:11:06.75 3600 560 400/8500 600/4000

2003 Jun - 2004 May KECK II -b DEIMOS
03D3ay 14:17:58.430 +52:28:57.49 3900 · · · 12000 · · ·
04D3at 14:16:41.267 +52:22:35.61 4625 · · · 12000 · · ·
04D3bx 14:16:31.086 +52:20:26.01 5760 · · · 12000 · · ·
04D3cf 14:16:43.271 +52:14:35.90 11400 · · · 12000 · · ·
04D3cg 14:16:50.938 +52:15:28.79 3600 · · · 12000 · · ·
04D3cm 14:16:53.721 +52:21:09.49 3600 · · · 12000 · · ·
04D3ct 14:16:41.961 +52:31:43.14 8384 · · · 12000 · · ·
04D3cy 14:18:12.435 +52:39:30.59 7200 · · · 12000 · · ·
04D3il 14:17:05.757 +52:32:30.84 3600 · · · 12000 · · ·
04D3qa 14:19:29.787 +52:52:06.61 3600 · · · 12000 · · ·

2005 Mar 16 KECK I 1.0′′ LRIS
05D2dt 10:01:23.907 +01:51:28.13 4800 560 400/8500 600/4000
05D2du 10:01:28.316 +02:02:26.02 2400 560 400/8500 600/4000
05D2dw 09:58:32.058 +02:01:56.36 3600 560 400/8500 600/4000
05D3ba 14:18:26.790 +52:41:50.56 4200 560 400/8500 600/4000
05D3dh 14:20:50.382 +52:39:45.92 3000 560 400/8500 600/4000

aThe SNLS naming convention is as follows: 06D3df : the first two digits are the year of discovery, the
second two are the field name, and the final two are aa for the first candidate of the year continuing toward

ab and then on to ba for the 27th candidate.
bThese events were observed on masks by the DEEP2 program and as such were taken on a variety of nights

with a variety of seeings.
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Table B.2 Summary of SNLS Candidate Observations at Keck: Part II
UT Date Telescope Mean Seeing Instrument

SNa R.A. Dec. Exp (s) Dichroic Grating Grism
2005 Apr 11 KECK I 0.9′′ LRIS

05D2hc 10:00:04.574 +01:53:09.94 2400 560 400/8500 600/4000
05D2if 10:01:58.377 +02:21:11.66 4800 560 400/8500 600/4000
05D3dd 14:22:30.410 +52:36:24.76 2400 560 400/8500 600/4000
05D3gp 14:22:42.338 +52:43:28.71 3600 560 400/8500 600/4000
05D3gv 14:20:59.279 +53:10:43.81 3600 560 400/8500 600/4000
05D3gy 14:16:27.868 +52:13:45.05 6000 560 400/8500 600/4000
05D3hh 14:19:10.168 +52:57:33.42 3600 560 400/8500 600/4000

2005 May 12 KECK I 0.9′′ LRIS
05D3ha 14:20:50.448 +52:50:02.31 3600 560 400/8500 600/4000
05D3hq 14:17:43.058 +52:11:22.67 1800 560 400/8500 600/4000
05D3hs 14:21:13.577 +52:54:13.44 3000 560 400/8500 600/4000
05D3ht 14:17:54.721 +53:10:03.14 4800 560 400/8500 600/4000
05D3jb 14:22:10.024 +52:52:41.28 3600 560 400/8500 600/4000
05D3jh 14:17:25.359 +52:37:07.77 2400 560 400/8500 600/4000
05D3jk 14:16:47.429 +52:35:33.32 2400 560 400/8500 600/4000
05D3jr 14:19:28.768 +52:51:53.34 2400 560 400/8500 600/4000

05D3km 14:22:38.298 +53:04:01.14 2000 560 400/8500 600/4000
2005 Jun 9 KECK I 0.6′′ LRIS

05D3kp 14:20:02.952 +52:16:15.28 3000 560 400/8500 600/4000
05D3kx 14:21:50.020 +53:08:13.49 1800 560 400/8500 600/4000
05D3la 14:21:25.377 +52:21:29.00 5000 560 400/8500 600/4000
05D3lq 14:21:18.449 +52:32:08.29 2000 560 400/8500 600/4000
05D3lr 14:22:12.158 +53:11:03.14 3600 560 400/8500 600/4000

2005 Dec 2 KECK I 1.0′′ LRIS
05D2lz 10:00:59.763 +02:18:30.99 3600 680 400/8500 300/5000

05D2mx 09:59:00.886 +02:27:18.05 5400 680 400/8500 300/5000
2005 Dec 3 KECK I 1.1′′ LRIS

05D2js 10:01:56.959 +01:56:09.93 2400 680 400/8500 300/5000
05D2my 09:58:31.457 +02:29:28.21 4800 680 400/8500 300/5000

2006 Apr 29 KECK I 0.9′′ LRIS
06D2ed 10:01:19.974 +02:39:18.61 2400 560 400/8500 600/4000
06D2ez 10:01:38.653 +01:56:38.85 1000 560 400/8500 600/4000
06D2fb 09:59:32.135 +01:49:40.70 900 560 400/8500 600/4000
06D2fc 09:58:48.262 +02:08:49.63 2700 560 400/8500 600/4000
06D2fe 09:58:36.873 +02:35:36.54 1800 560 400/8500 600/4000
06D2ff 10:00:16.358 +02:14:34.96 1800 560 400/8500 600/4000
06D3df 14:22:17.221 +52:57:27.51 2100 560 400/8500 600/4000
06D3dl 14:22:12.543 +52:38:27.35 1800 560 400/8500 600/4000
06D3do 14:16:59.400 +52:52:57.10 2400 560 400/8500 600/4000
06D3dt 14:17:21.639 +52:27:10.45 1200 560 400/8500 600/4000

2006 May 29 KECK I 0.7′′ LRIS
06D2gb 10:00:47.406 +01:59:07.51 1800 560 400/8500 600/4000
06D3ec 14:20:22.628 +52:21:02.23 3600 560 400/8500 600/4000
06D3ek 14:21:24.960 +52:53:50.39 3000 560 400/8500 600/4000
06D3el 14:17:01.062 +52:13:56.84 1000 560 400/8500 600/4000

06D3em 14:19:23.437 +53:01:22.61 3000 560 400/8500 600/4000
06D3en 14:21:13.304 +52:27:22.09 3600 560 400/8500 600/4000
06D3eq 14:19:02.599 +53:05:17.87 3600 560 400/8500 600/4000

aThe SNLS naming convention is as follows: 06D3df : the first two digits are the year of discovery, the
second two are the field name, and the final two are aa for the first candidate of the year continuing toward

ab and then on to ba for the 27th candidate.
bThese events were observed on masks by the DEEP2 program and as such were taken on a variety of nights

with a variety of seeings.
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Table B.3 Summary of SNLS Candidate Observations at Keck: Part III
UT Date Telescope Mean Seeing Instrument

SNa R.A. Dec. Exp (s) Dichroic Grating Grism
2007 Feb 20 KECK I 2.0′′ LRIS

07D3cc 14:20:54.104 +52:28:49.23 6000 560 400/8500 600/4000
2007 Mar 20 KECK I 0.8′′ LRIS

07D2cc 10:01:22.807 +02:21:40.45 3600 560 400/8500 600/4000
07D2cl 10:01:07.419 +02:19:33.34 3600 560 400/8500 600/4000
07D2co 09:58:37.737 +01:51:33.74 3600 560 400/8500 600/4000
07D2dd 10:01:33.815 +01:49:31.24 2700 560 400/8500 600/4000
07D3cp 14:16:35.901 +53:05:02.27 4500 560 400/8500 600/4000
07D3cq 14:16:31.303 +52:47:52.51 3300 560 400/8500 600/4000
07D3cs 14:21:18.225 +52:40:30.52 3000 560 400/8500 600/4000

2007 Apr 17 KECK I 1.2′′ LRIS
07D2dq 10:01:17.574 +02:09:41.23 3600 560 400/8500 600/4000
07D2eb 09:59:26.160 +02:31:08.72 6000 560 400/8500 600/4000
07D2ep 09:59:16.661 +02:32:13.06 6000 560 400/8500 600/4000
07D3bs 14:21:50.466 +53:10:28.58 2700 560 400/8500 600/4000
07D3er 14:22:34.339 +52:11:21.66 3600 560 400/8500 600/4000
07D3fi 14:21:24.800 +53:10:40.10 7800 560 400/8500 600/4000

2007 May 16 KECK I 0.7′′ LRIS
07D2fv 10:01:37.833 +01:48:46.14 5400 560 400/8500 600/4000
07D2gg 09:58:49.154 +02:02:36.25 2400 560 400/8500 600/4000
07D3ar 14:17:49.219 +52:28:11.72 5400 560 400/8500 600/4000
07D3gt 14:19:02.078 +52:39:47.90 5400 560 400/8500 600/4000
07D3gw 14:21:50.902 +53:05:58.66 1800 560 400/8500 600/4000

2007 Oct 13 KECK II 0.6′′ DEIMOS
07D1cl 02:26:50.437 -04:41:47.36 3600 · · · 600 · · ·
07D1cs 02:25:56.682 -04:22:51.55 3000 · · · 600 · · ·
07D4en 22:14:47.508 -17:35:28.49 7200 · · · 600 · · ·

2007 Dec 14 KECK I 1.3′′ LRIS
07D1fl 02:27:33.141 -04:42:49.45 900 560 400/8500 600/4000
07D1hl 02:24:36.566 -04:39:02.64 2300 560 400/8500 600/4000

2008 Jan 8 KECK I 0.8′′ LRIS
08D1af 02:24:13.330 -04:32:40.18 1200 560 400/8500 600/4000
08D1av 02:24:33.194 -04:57:24.04 4100 560 400/8500 600/4000
08D2ac 09:59:31.402 +02:20:25.28 1500 560 400/8500 600/4000
08D2ad 10:00:59.187 +01:45:27.81 2700 560 400/8500 600/4000
08D2ag 09:58:35.122 +01:49:25.06 7200 560 400/8500 600/4000
08D2az 09:59:14.796 +02:37:36.77 1500 560 400/8500 600/4000

2008 Apr 7 KECK II 0.8′′ DEIMOS
08D2hk 10:01:27.543 +02:37:15.23 3000 · · · 600 · · ·
08D2iw 10:00:26.994 +01:53:57.42 5400 · · · 600 · · ·
08D2jh 09:59:31.661 +02:14:51.93 3600 · · · 600 · · ·
08D3ga 14:16:13.266 +52:43:48.39 5400 · · · 600 · · ·

aThe SNLS naming convention is as follows: 06D3df : the first two digits are the year of discovery, the
second two are the field name, and the final two are aa for the first candidate of the year continuing toward

ab and then on to ba for the 27th candidate.
bThese events were observed on masks by the DEEP2 program and as such were taken on a variety of nights

with a variety of seeings.
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Table B.4 Summary of SNLS candidate redshift measurements and classifications: Part I
SN Type CIa Template z z from τSpec

b τLC
c

03D3ay SN Ia 4 1989B +14 0.372 ± 0.001 Hβ, [OIII] +19.0 ± 4.3 24.9
03D3bn SN Ia* 3 2001ay 0d 0.715 ± 0.001 H +0.3 ± 3.6 · · ·
03D3bz SN? 2 · · · · · · · · · · · · · · ·
03D3cy SN? 2 · · · 0.402 ± 0.001 Hβ, Hα, [NII] · · · · · ·
03D3dd SN/AGN? 2 · · · 0.510 ± 0.001 H&K, Na I D · · · · · ·
03D3dr SN? 2 · · · 0.737 ± 0.001 [OII], Hβ, [OIII] · · · · · ·
03D3ds SN? 2 · · · 0.709 ± 0.001 [OII], H&K · · · · · ·
04D2gb SN Ia* 3 1992A +7d 0.45 ± 0.01 SN +6.6 ± 2.5 9.8
04D2ii SN? 2 · · · · · · · · · · · · · · ·
04D3at SN? 2 · · · 0.333 ± 0.001 [OIII], Hα, [SI], [SII] · · · · · ·
04D3bt SN Ib/c 1 1990U +12d 0.111 ± 0.001 Hβ, [OIII] +10.0 ± 3.7 · · ·
04D3bx SN? 2 · · · 0.3888 ± 0.0003 [OIII], Hα · · · · · ·
04D3cf AGN 0 · · · 0.531 ± 0.001 Hβ, [OIII] · · · · · ·
04D3cg AGN 0 · · · 1.034 ± 0.001 [OII] · · · · · ·
04D3ch SN 2 · · · · · · · · · · · · · · ·
04D3cm AGN 0 · · · 1.60 ± 0.01 [MgII]? · · · · · ·
04D3co SN Ia* 3 1994D +11d 0.62 ± 0.01 SN +11.0 ± 2.1 16.7
04D3ct AGN? 1 · · · 0.605 ± 0.001 [OIII] · · · · · ·
04D3cy SN Ia 4 1992A +7d 0.643 ± 0.001 Hβ, [OIII] +6.8 ± 2.7 11.9
04D3db SN 2 · · · 0.351 ± 0.001 [OIII] · · · · · ·
04D3df SN Ia 5 1994D +3d 0.47 ± 0.01 SN -0.6 ± 4.9 -1.2
04D3do SN Ia* 3 1998aq +1d 0.61 ± 0.01 SN +2.4 ± 2.9 5.3
04D3gt SN Ia 4 1992A +9d 0.451 ± 0.001 H&K +8.2 ± 5.6 11.5
04D3ht SN 2 · · · 0.504 ± 0.001 H&K · · · · · ·
04D3il SN/AGN? 0 · · · · · · · · · · · · · · ·
04D3is SN 2 · · · · · · · · · · · · · · ·
04D3jb SN? 2 · · · · · · · · · · · · · · ·
04D3ki SN 2 · · · · · · · · · · · · · · ·
04D3kk SN 2 · · · · · · · · · · · · · · ·
04D3kr SN? 2 · · · 0.337 ± 0.001 [OII], Hβ, [OIII] · · · · · ·
04D3ks SN Ia 4 1990N -7d 0.75 ± 0.01 SN -1.6 ± 4.8 -14.1
04D3qa SN? 2 · · · 0.370 ± 0.001 Hα, Na I D · · · · · ·
05D2dt SN Ia* 3 1992A -5d 0.58 ± 0.01 SN -2.4 ± 4.4 -4.4
05D2du SN? 2 · · · 0.227 ± 0.001 Hα · · · · · ·
05D2dw SN Ia 5 1990N -7d 0.417 ± 0.001 [OII], Hβ, [OIII] -5.2 ± 2.5 -7.9
05D2hc SN Ia 5 2001ay +1d 0.35 ± 0.01 SN -0.8 ± 2.7 0.2
05D2if SN 2 · · · · · · · · · · · · · · ·
05D2js SN II 0 1999em +9d 0.0926 ± 0.0003 [NII] +8.4 ± 4.1 · · ·
05D2lz SN 2 · · · 0.763 ± 0.001 [OII] · · · · · ·

05D2mx SN 2 · · · 0.893 ± 0.001 [OII] · · · · · ·
05D2my SN Ia 4 1999ee +3d 0.981 ± 0.001 [OII] +1.8 ± 2.7 6.0
05D3ba SN 2 · · · 0.4228 ± 0.0003 [OII], [OIII] · · · · · ·
05D3dd SN Ia 5 2008ec +11d 0.48 ± 0.01 SN +11.6 ± 2.8 17.0
05D3dh SN Ia* 3 1992A +5d 0.80 ± 0.02 SN +0.8 ± 5.5 4.8
05D3gp SN Ia 4 2007bd +11d 0.58 ± 0.01 SN +10.6 ± 2.2 17.2
05D3gv SN Ia 4 2007bd +8d 0.715 ± 0.001 H&K, [OII] +6.8 ± 2.3 6.2
05D3gy SN Ia* 3 1994D +2d 0.84 ± 0.01 SN -0.2 ± 3.3 · · ·
05D3ha SN Ia 4 1999ac +11d 0.805 ± 0.001 [OII] +16.2 ± 5.4 18.6
05D3hh SN Ia* 3 1989B -7d 0.766 ± 0.001 H&K, [OII] -1.8 ± 3.1 -6.7
05D3hq SN Ia 4 1990N +14d 0.3384 ± 0.0003 [OII], H&K, [OIII], Hβ +10.4 ± 2.1 · · ·
05D3hs SN Ia 5 2007bd +6d 0.664 ± 0.001 [OII] +8.4 ± 2.3 13.6
05D3ht SN Ia 4 1992A +5d 0.901 ± 0.001 [OII] +6.8 ± 2.2 14.4
05D3jb SN Ia 4 1990N -7d 0.745 ± 0.001 [OII], H&K -1.4 ± 5.2 -11.8

aSN Ia confidence index outlined in Section B.4: [5] Certain SN Ia, [4] Highly probably SN Ia, [3] Probable
SN Ia, [2] Unidentifiable, [1] Probable non-SN Ia, [0] Certain non-SN Ia.

bEpoch as determined from spectroscopic fit.
cEpoch as determined from light curve; this value only given for data with photometry published in Conley

et al. [2011]
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Table B.5 Summary of SNLS candidate redshift measurements and classifications: Part II
SN Type CIa Template z z from τSpec

b τLC
c

05D3jh SN Ia 4 1992A +5d 0.718 ± 0.001 H&K +5.6 ± 2.2 10.9
05D3jk SN Ia 4 1990N -7d 0.736 ± 0.001 [OII] -1.8 ± 2.7 -4.5
05D3jr SN Ia 5 1992A +9d 0.37 ± 0.01 SN +8.6 ± 2.0 9.1

05D3km SN? 2 · · · · · · · · · · · · · · ·
05D3kp SN Ia 4 1989B -1d 0.85 ± 0.01 SN +1.2 ± 2.0 1.8
05D3kx SN Ia 5 2005hc -1d 0.219 ± 0.001 Hα -1.6 ± 2.0 -2.9
05D3la SN Ia* 3 1990N -14d 0.90 ± 0.01 SN -6.2 ± 4.5 -4.4
05D3lq SN 2 · · · 0.4204 ± 0.0003 [OII], H&K, [OIII], Hβ · · · · · ·
05D3lr SN Ia 4 1990N -7d 0.60 ± 0.01 SN -2.4 ± 4.4 -9.9
06D2ed SN? 2 · · · 0.891 ± 0.001 [OII] · · · · · ·
06D2ez SN Ia 5 1999aa +19d 0.0822 ± 0.0003 Hα +17.4 ± 2.0 · · ·
06D2fb SN Ia 5 2008ec +1d 0.1242 ± 0.0003 Hα, [NII] +0.4 ± 2.0 1.2
06D2fc SN? 1 · · · · · · · · · · · · · · ·
06D2fe SN II 0 1998S +2d 0.3151 ± 0.0003 [OII], Hβ, [OIII] +1.5 ± 2.2 · · ·
06D2ff SN Ia 4 2004ef +9d 0.3447 ± 0.0003 [OII], H&K, Hα +10.2 ± 2.7 · · ·
06D2gb SN Ia* 3 1992A +5d 0.442 ± 0.001 H&K +6.8 ± 3.7 12.8
06D3df SN Ia 5 2005di +3d 0.4424 ± 0.0003 [OII], H&K +1.0 ± 3.0 5.2
06D3dl SN Ia* 3 1999aa +25d 0.3566 ± 0.0003 [OII], H&K, Hβ +21.2 ± 4.4 · · ·
06D3do SN Ia 5 1992A +5d 0.7255 ± 0.0003 [OII] +5.2 ± 2.9 8.6
06D3dt SN Ia 5 1994D -7d 0.2821 ± 0.0003 [OII], H&K, Hβ, Hα +0.8 ± 2.5 6.2
06D3ec SN Ib/c? 0 1984L +14d 0.2842 ± 0.0003 [OII], Hβ, [OIII], Hα +14.7 ± 2.5 · · ·
06D3ek SN 1 · · · · · · · · · · · · · · ·
06D3el SN Ia 5 2005hc -1d 0.52 ± 0.01 SN -3.4 ± 2.6 -8.4

06D3em SN Ia 4 2005hc +2d 0.69 ± 0.02 SN +1.4 ± 2.1 4.3
06D3en SN Ia* 3 1981B 0d 1.06 ± 0.02 SN -1.6 ± 4.0 4.3
06D3eq SN not Ia 0 1998S +11d 0.4565 ± 0.0003 [OII], Hβ, [OIII] +7.0 ± 4.8 · · ·
07D1cl SN Ia* 3 1989B -5d 0.7048 ± 0.0003 [OII] -1.6 ± 3.9 · · ·
07D1cs SN Ib/c 0 1983V +12d 0.4595 ± 0.0003 H&K +3.4 ± 5.4 · · ·
07D1fl SN II 0 1987K +7d 0.2056 ± 0.0003 [OII], Hβ, Hα, [NII] +7.2 ± 4.3 · · ·
07D1hl SN II? 0 1987B +7d 0.3809 ± 0.0003 [OII], Hβ, [OIII] +6.6 ± 5.0 · · ·
07D2cc SN 2 · · · 0.740 ± 0.001 [OII], H&K, [OIII] · · · · · ·
07D2cl SN Ia 5 1989B -5d 0.749 ± 0.001 H&K -0.2 ± 3.2 · · ·
07D2co SN Ia 4 1981B 0d 0.7375 ± 0.0003 [OII], H&K -0.4 ± 2.2 · · ·
07D2dd SN II? 0 · · · · · · · · · · · · · · ·
07D2dq SN? 1 · · · 0.4408 ± 0.0003 [OII], Hβ, [OIII] · · · · · ·
07D2eb SN? 2 · · · 0.7967 ± 0.0003 H&K · · · · · ·
07D2ep SN Ia 4 2004ef 0d 0.73 ± 0.01 SN -1.8 ± 3.4 · · ·
07D2fv SN Ia* 3 1996A +6d 0.871 ± 0.001 H&K +5.6 ± 1.5 · · ·
07D2gg SN Ib/c 0 1994I +2d 0.3250 ± 0.0003 [OII], [OIII] +1.0 ± 4.2 · · ·
07D3ar AGN 0 · · · 0.998 ± 0.001 [OII] · · · · · ·
07D3bs SN 0 · · · · · · · · · · · · · · ·
07D3cc SN Ia 4 2007bd -2d 0.7080 ± 0.0003 [OII], Hβ, [OIII] -2.6 ± 3.0 · · ·
07D3cp SN Ia 4 1989B -5d 0.807 ± 0.001 [OII] -1.0 ± 4.4 · · ·
07D3cq SN II 0 1984E +4d 0.406 ± 0.001 [OII], Hβ, [OIII] +3.2 ± 4.8 · · ·
07D3cs SN Ia 5 1994D +2d 0.8082 ± 0.0003 [OII], Hβ, [OIII] -1.4 ± 3.8 · · ·
07D3er SN? 2 · · · 0.7560 ± 0.0003 [OII], H&K · · · · · ·
07D3fi SN Ia 4 1994D +2d 0.844 ± 0.001 [OII], H&K -1.2 ± 2.1 · · ·
07D3gt SN Ia 5 1992A +5d 0.669 ± 0.001 [OII], H&K +5.4 ± 3.1 · · ·
07D3gw SN Ia 4 2005M +4d 0.3913 ± 0.0003 H&K, [OII] +6.2 ± 2.8 · · ·
07D4en SN Ia 5 2007kk 0d 0.73 ± 0.01 SN +1.0 ± 2.8 · · ·
08D1af SN 2 · · · 0.143 ± 0.001 H&K, [OII], Hα, [NII] · · · · · ·
08D1av SN Ia 5 1990N -7d 0.498 ± 0.001 [OII], [OIII] -7.2 ± 5.2 · · ·
08D2ac SN Ia 5 1996X -1d 0.4154 ± 0.0003 [OII], [OIII], Hβ -1.4 ± 2.3 · · ·
08D2ad SN Ia 4 1992A +5d 0.5537 ± 0.0003 [OII], [OIII], Hβ +4.8 ± 2.5 · · ·
08D2ag SN Ia 4 1992A +5d 0.689 ± 0.001 H&K +6.2 ± 2.0 · · ·
08D2az SN? 2 · · · 0.4074 ± 0.0003 H&K · · · · · ·
08D2hk SN 0 · · · 0.220 ± 0.001 [OIII], Hα · · · · · ·
08D2iw SN Ib/c 0 2002ap +5d 0.3255 ± 0.0003 [OIII], Hα +5.2 ± 2.8 · · ·
08D2jh SN II 0 1993W +4d 0.2199 ± 0.0003 Hα, Hβ +6.4 ± 2.6 · · ·
08D3ga SN Ia* 3 1998aq -8d 0.3685 ± 0.0003 [OIII], Hα, Hβ -8.2 ± 3.9 · · ·

a,b,cAs in Table B.4




