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ABSTRACT OF THE THESIS

Dynamic Container Leasing and Load Acceptance Management in Intermodal Freight
Transportation

by

Ting Luo

Master of Business Administration, Graduate Program in Management
University of California, Riverside, September 2012

Professor Long Gao, Chairperson

We study the multi-period container leasing and load acceptance problem in

intermodal freight transportation, where the container capacity could be replenished

before allocated to load orders with different profit levels. The container leasing decision

is exogenously determined by the initial container inventory left unused from last period

and the returned containers in the current period. The load acceptance decision involves

trade-offs between accepting the order now or reserve the container for potential high

profit level order in the future. Our objective is to characterize the optimal policies

in order to maximize the total profit. The two-stage sequential decision problem is

formulated as a stochastic dynamic programming problem. We show the optimal leasing

quantity follows a base-stock policy and the optimal allocation for different class of

demand follows a rationing policy. We further study the impact of demand variability

on the optimal policy. Given stochastically higher demand in the future, both total

profit and marginal value increase. Such change in demand also results in a higher

leasing threshold and a higher rationing level for each demand class.
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Chapter 1

Introduction

Dated back to the 18th century and first used for coals shipment, intermodal

freight transportation has long been considered efficient and cost-saving. In 1980s, the

railway deregulation allowed a substantial rise in its productivity and a dramatic fall in

the freight cost. Stimulated by the tide of imports on the west coast, and the shortage

of highway lorry drivers, intermodal freight transportation has been the largest as well

as the fastest-growing segment in US rail freight over the past 20 years, accounting for

22% of the rail revenues (American Association of Railroads (2008)). The Economist

(2010) estimated that the current capacity of the intermodal shipments has to rise 90% in

order to meet the forecasted demand by 2035. Due to this rapid growth, better planning

strategies towards higher profitability with limited supply of capacity are highly expected

in both practice and theoretical study.

Intermodal freight transportation employs multiple modes of transportation

without directly handling of the freight when changing modes. Usually the cargos are

containerized and transported by trucking for local pickup and delivery, and by rail for

the long haul portion of the shipment. The intermodal freight transportation service
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provider is called an Intermodal Marketing Company (IMC), who arranges the inter-

modal transportation on behalf of its customers while maintaining good relationships

with the trucking companies and railways. It coordinates the supply and demands be-

tween container providers and its customers to maximize its own economic advantage.

In practice, very few IMCs ever exercise sophisticated revenue management

techniques. Instead, they pick up some simple management rules such as increasing rate

for “busy season” and lowering rates for “back haul lanes”, not the location specific

and on-the-fly revenue management based on short term capacity conditions. Most

have no short term forecast of demand and a soft idea of available supply of other

capacities. Many take the first-come-first-serve (FCFS) approach, so that a load is

accepted regardless of the available capacity, thus subsequent high-profit-level service

request suffers. In case of turning down a load due to capacity shortage, that “lost

order” is not usually tracked, so the opportunity cost of capacity shortfalls can’t be

determined.

The aforementioned load acceptance process is also called load tendering, which

starts with the customers sending out a service request with information such as the

origin and destination of the shipment, and the date of shipment. Then the IMC has to

respond immediately or in a very short term to whether accept or reject the tendered

load. The delay in response may result in customers switching to other competitors.

Typically, the request for service is delivered within the next week, and most often the

service is initiated in the next 72 hours.

Our study was motivated by the following two improvements in the operation

of intermodal freight transportation.

First, the change of ownership of the containers. In the past, IMCs were non-

asset based service providers who use containers owned by the railroads. Now they tend
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to keep a private container fleet and borrow from the railroads only when necessary. Such

lease is often on a transaction-by-transaction basis and is more costly and requires early

planning. The IMCs need to avoid its own containers idle time and assure sufficient total

container capacity at the same time. They are also in charge of repositioning containers

returned from customers after service.

Second, the change of traditional load tendering policy. Historically, the indus-

try norm for load tendering is based on FCFS policy, in which each customer is typically

given a contract of specified rates for each origin and destination pair, thus not all ship-

ments are equally profitable to the IMCs. In order to avoid the running out of capacity

before the demand is completely met and the foregone of more profitable loads in favor

of less profitable ones, IMCs need to implement dynamic allocation practice that best

matches the available containers with the load demands.

We focus on the short term container leasing and load tendering process of

an IMC, who uses its private containers fleet and borrowed containers at higher cost

from local railroads to satisfy the multi-profit-level service demands. The execution

cycle is divided into multiple small-enough periods, so that all demands come continu-

ously throughout the time. In each period, the decision of container leasing and load

acceptance are made sequentially: first, whether to fulfill service requests with available

containers or expand the current capacity by leasing from local railroads given the ini-

tial inventory is predetermined from last period and the number of returned container

is random variable follows certain distribution; second, how and whether to accept or

reject service demands for each class. The leasing containers (incurs leasing cost in this

period) lies on the available capacity consisted of last period leftover inventory (incurs

holding cost in last period) and the returned containers from previous service. The order

is lost (incurs lost sale cost) if it can’t be accepted in the current period. The accepted
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order that can’t be fulfilled in the current period will be backlogged (incurs backlog cost

in this period).

The remainder of the our work is organized as follows. We begin in §2 to

briefly review the related literature. In §3, we set up the value function that captures

the dynamic nature of the problem by Markov dynamic process. We show that the

optimal policy could be sought though a two-stage sequential process. In §4 we analyze

the optimal structure of container replenishment policy and load acceptance policy re-

spectively. The container capacity should be replenished up to a critical level, while the

load orders are accepted in the order of descending profit levels and down to a critical

container capacity level for each demand class. We also derive managerial insights for

each result as well. In §5 we study how to cope with the impact of demand variability.

It is known that there are identifiable factors that determine the demand environment.

The change of these factors over time results in demand fluctuation. Therefore we up-

date the parameter of the optimal policy to maximize the total profit. Finally we make

concluding remarks in §6.
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Chapter 2

Literature Review

We start from literature on periodic review inventory models with multiple

demand classes. Similarly, we use the rationing lever to accept incoming load orders in

each period. Topkis (1968) considers the inventory problems associated with multi-class

demands for stocks of varying importance and identifies the optimal procurement policy

as a set of critical rationing levels. Frank et al. (2003) characterize the optimal policy for

a two-class inventory system, with a rationing level to avoid setup cost. Gupta and Wang

(2007) consider a two-class allocation problems for perishable manufacturing capacity

and characterize the policy by a state dependent rationing level. Shumsky and Zhang

(2008) examine multi-period capacity allocation problem for fixed capacity. The lead

time in multi-period inventory system is generally intractable, so most two-class models

are based on the assumption of zero lead time. In our model, we also consider the multi-

class demands problem with zero lead time. Unlike the work of Li and Zheng (2006) on

joint inventory replenishment and pricing control, where they analyze the single-item,

periodic-review model with random demands and yield, our work focus on sequential

decisions on replenishment and capacity allocation rather than pricing control. We also
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consider the inclusion of volatile or unpredictable demands due to uncertain factors

that determine the demand levels. It is similarly to the inventory models with demand

variability. Song and Zipkin (1993) derive some basic characteristics of optimal policies

and certain monotonicity patterns in the parameter are reflected in the optimal policy.

Yang et al. (2006) consider a stochastic inventory control problem with Markovian

capacity and option of order rejection and show its optimal policy as the combination

of a modified base-stock production policy and critical point order acceptance policy,

where the policy parameters change over the current capacity level in an intuitive way.

Revenue management (RM) is also close to our topic on intermodal freight

transportation, though the related literature mainly focuses on airline passengers, e.g.,

see Lautenbacher and Stidham (1999), Karaesmen and van Ryzin (2004), Zhang and

Cooper (2005) and revenue management by Talluri and van Ryzin (2004) for details.

The literature on freight revenue management is very recent, and yet airline based, e.g.,

see Amaruchkul, Cooper and Gupta (2007); Bartodziej, Derigs and Zils (2007). Unlike

airlines, where generally lower profit order goes first, we have interspersed, simultaneous,

customer orders from various profit segments common to freight transportation. Also

note that the capacity can be inventoried and carried to the next period if not used now,

not like the perishable capacity of airlines, where seats are not available after the plane

takes off. We make use of a single supply source (origin) for multiple customer products

(origin-destination), while the nature of airlines dedicates supply to a single product in

the short run. Recent literature has compared and contrasted cargo and passenger yield

management, see Freeland (2007); Sabdu and Klabjan (2006). The very few rail revenue

management research does not focus on the container unit of capacity (equivalent to a

seat on an aircraft)as we use in our model, but rather on the whole train (equivalent to

a flight).
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Most literature in intermodal transportation focus on long-term strategic or

mid-term tactical decisions. Gorman (2001, 2002) describes an intermodal pricing opti-

mization application focus on pricing as a mechanism for balancing cost. Li and Tayur

(2005) study the medium-term pricing and operation planning and solve for optimal

train frequencies. Adelman (2007) investigates a fleet management problem on a lo-

gistics network employing an internal pricing mechanism. Gorman (2010) develops an

integrated production decision support system to improve the revenue management and

container allocation for Hub Group, the largest IMC in North America. In contrast,

our problem involves real-time execution strategy that lead to load acceptance decision,

rather than one of setting optimal price levels for various segments in previous inter-

modal transportation literature. Literature in freight revenue management has been

theoretical or strategic in nature; this research proposes tactical and real time execution

strategy for freight revenue management.
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Chapter 3

Model Formulation

The IMC institutes a two-level hierarchical decision making mechanism: The

central management controls the balance of network supply and demand over execu-

tion cycles by setting strategic inventory target S for each location; each local manager

maximizes his expected total profit of each execution cycle by discretionally accepting

orders and dynamically adjusting supply through leasing. We focus on a local manager’s

decision-making process over the execution cycle T with T periods. For the manager,

the inventory target S from the central management and scheduled arrivals {Rt : t ∈ T }

from other locations are exogenously given input parameters.

The manager faces a multiperiod, multiclass, container leasing and load ac-

ceptance problem. Before the start of the cycle, the manager receives from the central

management the strategic inventory target S for the current cycle. The purpose of such

target is to direct local decisions so as to balance supply-demand over the network. At

the end of the cycle, based on his inventory relative to target S, the manager is charged

the mismatch cost for repositioning to or expediting containers from other locations:

the excess containers incur α unit cost while the shortages pay unit deficit cost β.
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During the cycle, each period consists of two stages—container leasing and load

acceptance. Time is indexed backward with t = T as the first period. Let It denote the

net inventory at the beginning of period t. There are three sources of container supply

in each period t. First, leftover inventory (if It > 0) from previous period is available

at the beginning of the period. Second, the scheduled arrivals and returns from other

locations provide additional random Rt containers. Third, the manager can also lease

ℓt containers at unit leasing cost c from the local railway with realized random capacity

Qt. Because of the proximity, the leasing lead time is negligible.

The random demand for shipping services come from J classes of customers.

The demand classes, indexed by j ∈ J , are differentiated by service priorities and

profit margins. After receiving demand Dt = (D1
t , . . . ,D

J
t ), the manager needs to make

acceptance decision xt = (x1t , . . . , x
J
t ) on how many orders to accept from each class.

Each accepted order from class j brings r̃j profit whereas each rejected order incurs bj

penalty. Thus total revenue from accepting xt orders given Dt is r · xt −b · (Dt − xt) =

∑

j(r̃
j + bj) · xjt −

∑

j b
jDj

t . Without loss of generality, we define for each class j ∈ J

the profit margin rj ≡ r̃j + bj and rank the classes such that r1 > r2 > · · · > rJ . The

accepted orders are fulfilled on a first-come-first-served basis using post-leasing inventory

It +Rt + ℓt. Unfilled accepted orders are backlogged while leftover inventory is carried

forward to the next period. Both backorders and leftover inventory at the end of the

period are charged a convex penalty cost h(It) ≡ h(I−t ) + h(I+t ), where h(I−t ) is the

backorder cost for It < 0 and h(I+t ) is the holding cost for It ≥ 0.1

Let ‖xt‖ ≡
∑J

j=1 |x
j
t | be the ℓ1-norm of vector xt. The sequence of events of

the cycle unfolds as follows (see Figure 3.1).

• In period t = T , receive strategic target S for the current cycle

1I
+
t = max(It, 0) and I

−

t = min(It, 0).
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• In period t < T :

– Observe initial net inventory It and receive random arrival containers Rt,

resulting in post-arrival inventory level Jt = It +Rt

– After observing railway capacity Qt, lease quantity ℓt ≤ Qt and pay leasing

cost cℓt; inventory level raises to post-leasing level Kt = It +Rt + ℓt

– Demand Dt materializes

– Accept loads xt ≤ Dt and collect profit r · xt; inventory level decreases to

It−1 = It +Rt + ℓt − ‖xt‖

– Deliver orders and assess inventory cost h(It +Rt + ℓt − ‖xt‖)

• In period t = 0, evaluate strategic mismatch cost relative to the target S

Dt xt

Load

Acceptance

Multiclass

Demand

t

Capacity

Availability

Leased

Containers

Returned

54

It It

Rt

It

Rt

xt

Jt

Kt

y
Containers

It-1
It 1

6It-1

t

Current Period

Time

t+1

Previous Period
t-1

Next Period

Figure 3.1: Container Leasing and Load Acceptance Process in Intermodal Freight
Transportation

The problem can be formulated as a Markov Decision Process (MDP). Each
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period t ∈ T has two stages. The optimality equations for container leasing stage are

Vt(It, Rt, Qt) = max
0≤ℓt≤Qt

Ht(It +Rt, ℓt), (3.1)

Ht(Jt, ℓt) = −cℓt + EDt
[Wt(Jt + ℓt,Dt)], (3.2)

where Vt(It, Rt, Qt) is the value function for leasing in state (It, Rt, Qt), Ht is the objec-

tive function, Wt(Jt + ℓt,Dt) is the value function for load acceptance, and EDt
[·] is the

expectation operator relative to random demand vector Dt.

The optimality equations for order acceptance stage are

Wt(Kt,Dt) = max
0≤xt≤Dt

Gt(Kt,xt), (3.3)

Gt(Kt,xt) = r · xt − h(Kt − ‖xt‖) + ERt−1,Qt−1
[Vt−1(Kt − ‖xt‖ , Rt−1, Qt−1)], (3.4)

where Wt and Gt are the value and objective functions for load acceptance after ob-

serving post-leasing inventory level Kt = It + Rt + ℓt and demand realization Dt. The

objective function Ht includes the revenue r · xt from acceptance, the inventory holding

and backorder cost h(Kt − ‖xt‖) and the expected profit-to-go function

Vt−1(It−1) ≡ ERt−1,Qt−1
[Vt−1(Kt − ‖xt‖ , Rt−1, Qt−1)]

before observing random vector (Rt−1, Qt−1). The next period initial inventory is given

by

It−1 = It +Rt + ℓt − ‖xt‖. (3.5)

The boundary condition is

V0(I0) = −α(S − I0)
+ − β(I0 − S)+, (3.6)

where the first and the second terms are the overage and shortage costs for missing the

strategic target S.
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Chapter 4

The Structure of the Optimal

Policy

In this section, we characterize the properties of the optimal leasing and ac-

ceptance policies, and provide their managerial implications. Before that, we list a few

useful properties of concavity and submodularity in Lemma 1. The proof can be found

in Boyd and Vandeberghe (2004), and Topkis (1998).

Lemma 1. (i) Define h◦g(x) = h(g1(x), . . . , gm(x)), with h : R
m → R, gi : R

n → R,

i = 1, . . . , n. Then h ◦ g(x) is concave if h is concave and nondecreasing in each

argument, and gi is concave for each i.

(ii) If h : R
m → R is a concave function, then h(Ax+ b) is also a concave function of

x, where A ∈ R
m × R

n, x ∈ R
n, and b ∈ R

m.

(iii) Assume that for any x ∈ R
n, there is an associated convex set C(x) ⊂ R

m and

{ (x, y) : y ∈ C(x), x ∈ R
n } is a convex set. If h(x, y) is concave and the function

g(x) ≡ supy∈C(x) h(x, y) is well defined, then g(x) is concave over R
n.
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(iv) If f(x) and g(x) are concave (supermodular) on X and α, β > 0, then αf(x) +

βg(x) is concave (supermodular) on X.

(v) Assume that F (y) is a distribution function on Y . Assume also that f(x, y) is con-

cave (supermodular) in x on a lattice X for each y ∈ Y , and integrable with respect

to F (y) for each x ∈ X. Then g(x) ≡

∫

Y

f(x, y)dF (y) is concave (supermodular)

in x on X.

(vi) If X and Y are lattices, S is a sublattice of X×Y , Sy is the section of S at y in Y ,

and f(x, y) is supermodular in (x, y) on S, then argmaxx∈Sy
f(x, y) is increasing

in y on { y ∈ Y : argmaxx∈Sy
f(x, y) 6= ∅ }.

(vii) Suppose that Y is a convex subset of R
1, X is a sublattice of R

n, ai ∈ R
1 for

i = 1, . . . , n,
∑n

i=1 aixi ∈ Y for x ∈ X. If ai > 0 ∀i, and g(y) is concave in y on

Y , then f(x) ≡ g(
∑n

i=1 aixi) is submodular in x on X.

We first establish the concavity of our value functions and objective functions

in the following theorem.

Theorem 2. (i) Ht(Jt, ℓt) is concave in (Jt, ℓt), and Gt(Kt,xt) is concave in (Kt,xt).

(ii) Vt(It) is concave in It, Vt(It, Rt, Qt) is concave in (It, Rt, Qt), and Wt(Kt,Dt)

is concave in (Kt,Dt).

Proof. Since functionsHt, Gt, Vt and Wt are defined recursively, we show their concavity

together by induction on t. For t = 0, by the boundary condition (3.6), the conclusion

hold trivially.

Suppose that the concavity holds for t − 1. We shall show it also holds for

t. First consider Gt(Kt,xt): The first term rt · xt is the linear combination of xjt and

hence concave in (Kt,xt) by (iv) of Lemma 1; the second term −h(Kt − ‖xt‖) is the
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composition of a concave function −h(·) and an affine function (Kt−‖xt‖), thus concave

in (Kt,xt) by (ii) of Lemma 1; by (ii) of Lemma 1 and the hypothesis (ii), the last term

is also concave in (Jt,xt). Because summation preserves concavity (part (iv) of Lemma

1), we conclude that Gt(Kt,xt) is concave in (Kt,xt) and thus in (Kt,xt,Dt).

Upon taking maximization of Gt(Kt,xt), Wt(Kt,Dt) is concave in (Kt,Dt) by

(iii) of Lemma 1.

Applying the similar argument, the concavity of Ht(Jt, ℓt) and Vt(It, Rt, Qt) is

readily established. Finally, by (v) of Lemma 1, Vt(It) is concave. This completes the

induction step and thus the proof.

The concavity of the objective functions Ht and Gt implies that both the leas-

ing and acceptance problems are well-behaved. Consequently the optimal constrained

solutions ℓ∗(Jt, Qt) and x∗
t (Kt,Dt) are well-defined and can be characterized through

the first order condition approach. However, such approach results in state-dependent

characterization and offers little insights into the interplay of policy behavior and the

the system parameters. The state-dependence for acceptance decision is especially prob-

lematic for computation as (Kt,Dt) is multi-dimensional. We therefore seek to identify

easily computable, state-independent policy parameters on which we anchor our char-

acterization.

We first characterize the optimal leasing policy ℓ∗t (Jt, Qt). Let ∂yf(x, y) ≡

f(x, y)−f(x, y−1) denote the difference function of f relative to y. We define threshold

Ct for leasing by

Ct ≡ min
{

Kt ∈ Z : −c+ ∂Kt
EWt(Kt,Dt) ≤ 0

}

, (4.1)

where Ct = −∞ if no suchKt exists. The concavity ofWt ensures that Ct is well-defined.

Intuitively, Ct is the base stock level at which the marginal value of net inventory equals

14



the marginal leasing cost c. When Ct ≤ 0, the location will be over-supplied based on the

forecast of future supply {Rτ : τ ≤ t } and demand {Dτ : τ ≤ t }. Therefore aggressive

order acceptance and possible outbound repositioning are preferred.

Based on state-independent threshold Ct, the following theorem characterizes

the optimal leasing policy.

Theorem 3. In each period t, given post-arrival inventory Jt and railway capacity Qt,

the optimal leasing policy is

ℓ∗t (Jt, Qt) = (Ct − Jt)
+ ∧Qt, (4.2)

where the threshold Ct is defined by (4.1).

Proof. For expositional convenience, we treat Jt, Qt and ℓt as continuous variables;

define Ct as the stationary point such that −c+ ∂Kt
EWt(Kt,Dt) = 0.

To obtain optimal leasing quantity ℓ∗t , we solve max0≤ℓt≤Qt
Ht(Jt, ℓt). Since

all constraints are affine, linear constraints qualification holds. Also, since this is a

concave math program, the Karush-Kuhn-Tucker (KKT) conditions are both necessary

and sufficient for characterizing ℓ∗t as both the local and global optimizer.

Lagrangian function: L(ℓt, λ1, λ2) = Ht(Jt, ℓt) + λ1(−ℓt +Qt) + λ2(ℓt)

Its local maximizer (ℓ∗t , λ
∗
1, λ

∗
2) satisfies the following KKT conditions:

Stationarity :
∂L(ℓ∗t ,λ

∗

1,λ
∗

2)
∂ℓt

=
∂Ht(Jt,ℓ∗t )

∂ℓt
− λ∗

1 + λ∗
2 = 0;

Primary feasibility : −ℓ∗t +Qt ≤ 0, ℓ∗t ≥ 0;

Dual feasibility : λ∗
1 ≥ 0, λ∗

2 ≥ 0;

Complementary slackness: λ∗
1(−ℓ∗t +Qt) = 0, λ∗

2(ℓ
∗
t ) = 0;

We now show (4.2) holds for the following four mutually exclusive and collec-

tively exhaustive cases.
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Case 1: λ∗
1 = 0, λ∗

2 = 0. This implies ∂Ht(Jt, ℓ
∗
t )/∂ℓt = 0 by Stationarity. By

the definition of Ct, we have

−c+ ∂Kt
EWt(Jt + ℓ∗t ,Dt) = −c+ ∂Kt

EWt(Ct,Dt) = 0,

which shows by the concavity of Wt that Jt + ℓ∗t = Ct, i.e., (4.2) holds.

Case 2: λ∗
1 = 0, λ∗

2 > 0. Then the complementary slackness implies that ℓ∗t = 0.

Moreover,

0 > ∂Ht(Jt, ℓ
∗
t )/∂ℓt = −c+ ∂Kt

Wt(Jt + 0,Dt),

which implies that Ct < Jt and thus ℓ∗t = (Ct − Jt)
+ = 0, i.e., (4.2) holds.

Case 3: λ∗
1 > 0, λ∗

2 = 0. Then KKT implies that ℓ∗t = Qt and ∂Ht(Jt, ℓ
∗
t )/∂ℓt >

0. Thus,

0 < −c+ ∂Kt
EWt(Jt +Qt,Dt),

which implies Jt +Qt > Ct. Therefore, ℓ
∗
t = (Ct − Jt)

+ ∧Qt = Qt so (4.2) holds.

Case 4: λ∗
1 > 0, λ∗

2 > 0. KKT implies ℓ∗t = 0 and ℓ∗t = Qt, which is infeasible.

This completes the proof.

In each period t after observing (Jt, Qt), the manager makes no lease if Jt ≥

Ct; otherwise leases up to Ct or uses up railway capacity Qt, whichever occurs first.

Compared with traditional revenue management such as airline or hotel industries where

capacity is fixed in advance, leasing provides additional lever to match supply with

demand. The efficacy of leasing lever, however, is limited by the random availability

from the railway. The capacity problem is especially acute in busy season when shortage

is an industry wise phenomenon. This calls for careful advance planning as well as

cooperation with local railway in order to secure sufficient container availability.
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Since initial inventory is critical for the leasing decision, we characterize its

impact in the following theorem.

Theorem 4. (i) For each t ∈ T , Ht(Jt, ℓt) is submodular in (Jt, ℓt).

(ii) The optimal leasing quantity ℓ∗t (Jt, Qt), defined in (4.2), is decreasing in

post-arrival inventory Jt for each capacity limit Qt. Moreover,

ℓ∗t (Jt, Qt) ≥ ℓ∗t (Jt + 1, Qt) ≥ ℓ∗t (Jt, Qt)− 1. (4.3)

Proof. (i) Consider Ht(Jt, ℓt): the first term −cℓt is independent of Jt and thus submod-

ular in (Jt, ℓt); the second term is submodular in (Jt, ℓt) by the concavity of Wt, parts

(v) and (vii) of Lemma 1; and thus Ht is submodular in (Jt, ℓt) by part (iv) of Lemma

1.

(ii) From the submodularity of Ht in (Jt, ℓt) and (a variant of) part (vi) of

Lemma 1, it immediately follows that ℓ∗t (Jt, ℓt) ≥ ℓ∗t (Jt + 1, ℓt). This proves the first

part of (4.3).

Next, we show the second part of (4.3) holds, i.e., ℓ∗t (Jt+1, Qt) ≥ ℓ∗t (Jt, Qt)−1.

First, observe that a+ ≥ (a − 1)+ ≥ a+ − 1, for a ∈ Z. Depending on Q, we have two

mutually exclusive and collectively exhaustive cases.

If Q ≥ a+, we have

Q ∧ a+ = a+ ≥ Q ∧ (a− 1)+ = (a− 1)+ ≥ Q ∧ (a+ − 1) = a+ − 1 ≥ Q ∧ a+ − 1.

If Q ≤ a+ − 1, we have

Q = Q ∧ a+ = Q ∧ (a− 1)+ > Q ∧ a+ − 1 = Q− 1.

Therefore, for each Q ∈ Z, we have

Q ∧ a+ ≥ Q ∧ (a− 1)+ ≥ Q ∧ a+ − 1. (4.4)
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Now by letting Q = Qt and a = Ct − Jt in (4.4), and by the definition of ℓ∗t (Jt, Qt) in

(4.2), we have

ℓ∗t (Jt, Qt) = Qt ∧ (Ct − Jt)
+

≥ℓ∗t (Jt + 1, Qt) = Qt ∧ (Ct − Jt − 1)+

≥ℓ∗t (Jt, Qt)− 1 = Qt ∧ (Ct − Jt)
+ − 1,

which establishes (4.3).

Theorem 4 states that the marginal value of leasing increases as internal con-

tainer supply decreases. This again underscores the importance of securing external

supply in time of inventory scarcity. Moreover, the leasing level is a contraction func-

tion of inventory: a unit increase in inventory reduces leasing level by at most one

unit.

We now characterize the optimal load acceptance decision x∗
t (Kt,Dt) by solv-

ing the second stage problem Wt(Kt,Dt) = max0≤xt≤Dt
Gt(Kt,xt) as defined in (3.3)

and (3.4). The primary challenge is the multi-dimentionality problem, especially for

computation. The main idea to overcome this difficulty is to identify possible state-

invariant policy parameters for characterization. We implement this idea in two steps.

The first step specifies the sequence of load acceptance over classes, while the second

step determines actual acceptance quantity for each class. Let ei denote the ith unit

vector with 1 for the ith coordinate and 0 otherwise.

Theorem 5. For each t ∈ T , Gt(Kt,xt + ei − ej) > Gt(Kt,xt), for i < j, i, j ∈ J .

Proof. The change from (Kt,xt) to G(Kt,xt+ei−ej) represents saving one more request

from class j to fulfill one from a more profitable class i < j. Since the total acceptance
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quantity ‖xt‖ remains unchanged, we have Gt(Kt,xt+ei−ej)−Gt(Kt,xt) = ri−rj > 0,

and thus Gt(Kt,xt + ei − ej) > Gt(Kt,xt).

As the first step in characterizing x∗
t (Kt,Dt), Theorem 5 establishes the priority

sequence of load acceptance over classes. It states that higher (profit) classes should

always have priority over lower classes in accessing containers. Because the acceptance

xt is bounded by realized demand Dt, the priority sequence and a simple exchange

argument implies the following priority structure

x∗
t (Kt,Dt) = (D1

t ,D
2
t , . . . ,D

j−1
t , xj∗t , 0, 0, . . . , 0), (4.5)

where j is the marginal (last) class with positive share, xj∗t > 0. Consequently, as

long as total acceptance ‖x∗
t‖ is determined, individual acceptance xj∗t can be readily

derived from structure (4.5). Moreover, by the linear system dynamics I∗t−1 = Kt−‖x∗
t ‖,

deciding total acceptance ‖x∗
t ‖ is equivalent to decide ending inventory I∗t−1. For each

class i ∈ J , define

sit ≡ min { It−1 ∈ Z : −∂h(It−1) + ∂Vt−1(It−1) ≤ ri } , (4.6)

where sit = −∞ if no such It−1 exists. Intuitively, sit is the rationing level for class

i at which marginal value of reserving the inventory for the future equals selling it to

class i. Therefore, sit is the target initial inventory level for class i in the next period.

Based on state-invariant parameter sit and the priority structure in (4.5), we completely

characterize the optimal load acceptance policy as follows. For vector (D1
t , . . . ,D

J
t ), let

D̄i
t ≡

∑i
j=1D

j
t denote its cumulative sum for i ≤ J .

Theorem 6. (i) The vector of rationing levels st = (s1t , . . . , s
J
t ) is state independent

and increasing in j ∈ J , i.e.,

s1t ≤ s2t ≤ · · · ≤ sJt . (4.7)
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(ii) For each period t ∈ T and class i ∈ J , the optimal acceptance decision,

given post-leasing inventory Kt and demand Dt, is

xi∗t (Kt,Dt) = Di
t ∧

(

Kt − D̄i−1
t − sit

)+
. (4.8)

Proof. (i) From sit’s definition in (4.6) it is immediate that sit is independent of state

(Kt,Dt). Moreover, since −∂h(I) + ∂Vt−1(I) is decreasing in I and ri is decreasing in

i, the monotonicity of (4.7) follows immediately from (4.6).

(ii) As discussed earlier, to prove (4.8), we first determine the optimal total

acceptance ‖x∗
t ‖, then using (4.5) to derive individual acceptance xj∗t .

Given (Kt,Dt), the priority structure (4.5) yields class i as the last class with

positive acceptance. From the linear system dynamics I∗t−1 = Kt − ‖x∗
t‖, deciding total

acceptance ‖x∗
t ‖ is equivalent to decide ending inventory I∗t−1. Thus, given (Kt,Dt) and

the last acceptance class i, the objective function Gt(Kt,xt), after changing the decision

variable from xt to It−1, yields

Gi
t(Kt,Dt, It−1) =

∑i−1
j=1 r

jDj
t + ri(It−1 − D̄i−1

t )− h(It−1) + Vt−1(It−1),

where the first two terms are the total revenue under (4.5). Clearly Gi
t is concave in It−1

and thus FOC gives interior optimal solution I∗t−1 = Kt − ‖x∗
t‖ = sit, where rationing

level sit is defined in (4.6). Therefore, ‖x∗
t ‖ = Kt − sit when the stopping class is i, and

thus by (4.5) and the monotonicity in part (i)

x∗
t = (D1

t ,D
2
t , . . . ,D

i−1
t ,Kt − sit − D̄i−1

t , 0, . . . , 0),

which proves (4.8) in part (ii) when imposing affine constraints 0 ≤ x∗
t ≤ Dt.

Theorem 7 makes three contributions. First, they provide the local manager

with easy-to-implement optimal acceptance policy: he should always accept from class 1

20



onwards; for each class i, accept until either all loads Di
t is admitted the rationing level

sit is reached, whichever occurs first; once a rationing level is reached, all rest classes are

rejected.

Second, the monotonicity of rationing levels in (4.7) and simplicity of allocation

in (4.8) significantly simplify the computation. Instead of conventional MDP value- or

policy-iteration methods, which are often crippled by the curse of dimensionality, our

state-independent characterization facilitates the development of efficient polynomial-

time algorithms.

Third, the simple structure in (4.8) reveals, in an explicit expression, the de-

pendence of the load acceptance decision on demand, supply and the rationing levels.

The explicit expression enables the detailed sensitivity analysis of these factors in the

following theorem.

Theorem 7. (i) For each t ∈ T , Gt(Kt,xt) is supermodular in (Kt, x
j
t ), ∀j ∈ J .

(ii) The optimal acceptance xj∗t (Kt,Dt) is increasing in Kt for each Dt. More-

over,

xj∗t (Kt,Dt) ≤ xj∗t (Kt + 1,Dt) ≤ xj∗t (Kt,Dt) + 1, j ∈ J . (4.9)

‖x∗
t (Kt,Dt)‖ ≤ ‖x∗

t (Kt + 1,Dt)‖ ≤ ‖x∗
t (Kt,Dt)‖+ 1. (4.10)

Proof. (i) It is equivalent to show ∂
x
j
t
Gt(Kt + 1,xt) ≥ ∂

x
j
t
Gt(Kt,xt), and we have

∂
x
j
t
Gt(Kt + 1,xt) = Gt(Kt + 1,xt)−Gt(Kt + 1,xt − ej)

= rj + ∂
x
j
t
h(Kt + 1− ‖xt‖)− ∂

x
j
t
Vt−1(Kt + 1− ‖xt‖)

≥ rj + ∂
x
j
t
h(Kt − ‖xt‖)− ∂

x
j
t
Vt−1(Kt − ‖xt‖)

= Gt(Kt,xt)−Gt(Kt,xt − ej) = ∂
x
j
t
Gt(Kt,xt),

where the inequality follows from the concavity of −h(·) and Vt−1(·).
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(ii) From the supermodularity of Gt in (Kt, x
j
t ) and (a variant of) part (vi) of

Lemma 1, it immediately follows that xj∗t (Kt + 1,Dt) ≥ xj∗t (Kt,Dt). This proves the

first inequality of (4.9).

Now we show the second inequality of (4.9) holds, i.e., xj∗t (Kt + 1,Dt) ≤

xj∗t (Kt,Dt) + 1. First, observe that a+ ≤ (a + 1)+ ≤ a+ + 1, for a ∈ Z. Depending on

D, we have two mutually exclusive and collectively exhaustive cases.

If D ≥ a+ + 1, we have

D ∧ (a+ + 1) = (a+ + 1) ≥ D ∧ (a+ 1)+ = (a+ 1)+ ≥ D ∧ a+ = a+.

If D ≤ a+, we have

D = D ∧ a+ = D ∧ (a+ 1)+ ≤ D ∧ a+ + 1 = D + 1.

Therefore, for D ∈ Z, we have

D ∧ a+ ≤ D ∧ (a+ 1)+ ≤ D ∧ a+ + 1.

Now by letting D = Dj
t and a = Kt − D̄i−1

t − sjt , and by the definition of xj∗t (Kt,Dt),

we have

xj∗t (Kt,Dt) = Dj
t ∧ (Kt − D̄i−1

t − sjt)
+

≤xj∗t (Kt + 1,Dt) = Dj
t ∧ (Kt + 1− D̄i−1

t − sjt)
+

≤xj∗t (Kt,Dt) + 1 = Dj
t ∧ (Kt − D̄i−1

t − sjt)
+ + 1,

which establishes (4.9).

Since xj∗t (Kt,Dt) ≤ xj∗t (Kt + 1,Dt) for each j ∈ J , we have

‖x∗
t (Kt,Dt)‖ =

∑

j x
j∗
t (Kt,Dt) ≤

∑

j x
j∗
t (Kt + 1,Dt) = ‖x∗

t (Kt + 1,Dt)‖ ,

which proves the first part of (4.10).
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Now we show the second part of (4.10). For expositional simplicity, assume

Dj
t > 0 for each j ∈ J . Given (Kt,Dt), let i be the last class with positive acceptance,

i.e, xi∗t > 0 and Kt − D̄i
t − si+1

t ≤ 0. We have two cases:

Case 1: xi∗t (Kt,Dt) = Di
t, D

i
t ≤ Kt − D̄i−1

t − sit. This is the case where the

last class i is bounded by the demand Di
t and the remaining inventory does not warrant

any acceptance from class i + 1 onwards. By priority structure (4.5), Theorem 7 and

inequalities (4.9), we have

‖x∗
t (Kt + 1,Dt)‖ − ‖x∗

t (Kt,Dt)‖

=
(

D̄i−1
t +Di

t + x
(i+1)∗
t (Kt + 1,Dt)

)

−
(

D̄i−1
t +Di

t + 0
)

= x
(i+1)∗
t (Kt + 1,Dt)− x

(i+1)∗
t (Kt,Dt)

≤ 1,

where x
(i+1)∗
t (Kt,Dt) = 0.

Case 2: xi∗t (Kt,Dt) = Kt − D̄i−1
t − sit, D

i
t > Kt − D̄i−1

t − sit. This is the case

where the lass class i is bounded by the supply and the solution is interior. By priority

structure (4.5) and Theorem 7, we have

‖x∗
t (Kt + 1,Dt)‖ − ‖x∗

t (Kt,Dt)‖

=
(

D̄i−1
t + xi∗t (Kt + 1,Dt)

) (

D̄i−1
t + xi∗t (Kt,Dt)

)

= (Kt + 1− D̄i−1
t − sit)− (Kt − D̄i−1

t − sit)

= 1,

where establishes the second part of (4.10).

Part (i) states that higher inventory encourages aggressive load acceptance for
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all classes. Part (ii) further specifies the magnitude of such changes for both individual

and aggregate load acceptance.
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Chapter 5

The Impact of Demand

Variability

In this section, we study the impact of demand variability on optimal policies.

First, we need some concepts in stochastic comparison theory. We say random variable

X is smaller than random variable X̂ in stochastic order, written as Xs ≤st X̂s, if

Ef(X) ≤ Ef(X̂) for any increasing function f . We say random variable X is smaller

than random variable X̂ in stochastic increasing concave order,written as Xs ≤icv X̂s,

if Ef(X) ≤ Ef(X̂) for any increasing concave function f . We denote the systems with

demand streams {Dt } and { D̂t } by System-D and System-D̂; denote the variables in

each system correspondingly.

Let Vt−1(It−1) ≡ ERt−1,Qt−1
[Vt−1(It−1, Rt−1, Qt−1)] andWt(Kt) ≡ EDt

[Wt(Kt,Dt)].

The following theorem characterizes the impact of demand variability.

Theorem 8. Assume Dt ≤st D̂t for each t ∈ T .

(i) Wt(Kt,Dt) is supermodular in (Kt,Dt).

(ii) Wt(Kt) ≤ Ŵt(Kt).
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(iii)

∂ItVt(It, Rt, Qt) ≤ ∂It V̂t(It, Rt, Qt), (5.1)

∂Kt
Wt(Kt) ≤ ∂Kt

Ŵt(Kt), (5.2)

∂It−1
Vt−1(It−1) ≤ ∂It−1

V̂t−1(It−1). (5.3)

(iv)

Ct ≤ Ĉt, (5.4)

ℓ∗t ≤ ℓ̂∗t , (5.5)

sit ≤ ŝit, i ∈ J , (5.6)

xi∗t ≥ x̂i∗t , i ∈ J . (5.7)

Proof. (i) It suffices to show Wt(Kt +1,Dt + ej)−Wt(Kt +1,Dt) ≥ Wt(Kt,Dt + ej)−

Wt(Kt,Dt).

Let x∗ be the optimal solution to state (Kt,Dt) in period t; let x∗ = ‖x∗‖ be

the total acceptance. We prove for the following three mutually exclusive cases.

For expositional brevity, we assume Dj
t > 0 for all j ∈ J . For state (Kt,Dt) let

i be the last class with positive acceptance, i.e., xi∗t (Kt,Dt) = Di
t∧ (Kt− D̄i−1

t −sit) > 0,

and Kt − D̄i
t ≤ si+1

t . Depending on Di
t, we have two cases.

Case 1: 0 < Kt − D̄i−1
t − sit < Di

t. In this case, x0,0 = Kt − sit is interior.

If j ≤ i, then extra order ej is no less valuable than ei. By concavity of Gt,

the extra ej should be filled before ei.

In state (Kt +1,Dt + ej), the extra inventory is used to fill the extra order ej

so that x1,1 = x0,0 + 1, and Wt(Kt + 1,Dt + ej) = rj +Wt(Kt,Dt).

In state (Kt + 1,Dt), the extra inventory is used to fill addition ei so that

x1,0 = x0,0 + 1 and Wt(Kt + 1,Dt) = ri +Wt(Kt,Dt).
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In state (Kt,Dt + ej), we accept one more ej order and one less ei, so that

x0,1 = x0,0 and Wt(Kt + 1,Dt) = rj − ri +Wt(Kt,Dt).

Therefore, we have

Wt(Kt + 1,Dt + ej)−Wt(Kt + 1,Dt)

= rj − ri

= Wt(Kt,Dt + ej)−Wt(Kt,Dt),

and thus part (i) holds.

If j > i, then order ej is less valuable than order ei. By Theorem 7, it should

not be accepted.

In states (Kt + 1,Dt + ej) and (Kt + 1,Dt), all j orders are rejected and one

more class i order is accepted, thus x1,1 = x1,0 = x0,0 and two corresponding value

functions are equal. In states (Kt,Dt + ej) and (Kt,Dt), all class j orders are rejected,

thus x0,1 = x0,0 and two value value functions are equal. Therefore, we have

Wt(Kt + 1,Dt + ej)−Wt(Kt + 1,Dt) = Wt(Kt,Dt + ej)−Wt(Kt,Dt) = 0,

and thus part (i) holds with equality.

Case 2: Di
t < Kt − D̄i−1

t − sit. In this case, x0,0 =
∑i

j=1D
j
t e

j is a boundary

solution.

If j ≤ i, order ej is no less valuable than ei and thus has priority over ei. By

(4.8), we have x∗
t (Kt +1,Dt + ej) = x∗ + ej, x∗

t (Kt +1,Dt) = x∗ if Kt− D̄i
t < si+1

t and
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x∗ + ei+1 otherwise, and x∗
t (Kt,Dt + ej) = x∗ + ej. Thus,

Wt(Kt + 1,Dt + ej)−Wt(Kt + 1,Dt)

=























rj − [−∂h(Kt + 1− x∗) + ∂Vt−1(Kt + 1− x∗)], if Kt − D̄i
t < si+1

t ;

rj − ri+1, otherwise;

by optimality equation

≥ rj − [−∂h(Kt − x∗) + ∂Vt−1(Kt − x∗)], by convexity of −h and Vt−1 and (4.6).

= Wt(Kt,Dt + ej)−Wt(Kt,Dt). by optimality equation.

If j > i, the order ej is less valuable than ei and should be rejected. By (4.8),

we have x∗
t (Kt + 1,Dt + ej) = x∗

t (Kt + 1,Dt) = x∗ if Kt − D̄i
t < si+1

t and x∗ + ei+1

otherwise, and x∗
t (Kt,Dt + ej) = x∗. Thus,

Wt(Kt + 1,Dt + ej)−Wt(Kt + 1,Dt)

= 0 by optimality equation.

= Wt(Kt,Dt + ej)−Wt(Kt,Dt).

(ii) Our proof is by induction on t. The case t = 0 is trivially true and

assume the case t − 1 is also true, Wt−1(·) ≤ Ŵt−1(·) and Vt−1(·) ≤ V̂t−1(·). Define

i(xt) = min{i ∈ J : D̄i
t ≥ xt}. Let xt and x̂t be the optimal acceptance in state (Kt,Dt)

in System-D and System-D̂, then we have

Wt(Kt,Dt) = ri(xt) − h(Kt − xt) + Vt−1(Kt − xt)

≤ ri(xt) − h(Kt − xt) + V̂t−1(Kt − xt)

≤ ri(x̂t) − h(Kt − x̂t) + V̂t−1(Kt − x̂t) = Ŵt(Kt,Dt),

where the first inequality holds for the induction hypothesis and the second
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holds for the optimal solution of x̂t in System-D̂. So we have shown that Wt(Kt,Dt) ≤

Ŵt(Kt, D̂t) for any realization Dt and D̂t.

Upon take expectations, we have EDt
[Wt(Kt,Dt)] ≤ EDt

[Ŵt(Wt,Dt)]. It

is easy to see that Wt(Kt,Dt) is an increasing function of confirmed orders Dt, so

EDt
[Ŵt(Kt,Dt)] ≤ EDt

[Ŵt(Kt, D̂t)]. Therefore, we have

Wt(Kt) = EDt
[Wt(Kt,Dt)] ≤ EDt

[Ŵt(Kt,Dt)] ≤ EDt
[Ŵt(Kt, D̂t)] = Ŵt(Kt).

(iii) and (iv) The two parts are proved together by induction on t. The state-

ment holds trivially true for t = 0 and we hypothesize that ∂It−2
Vt−2(It−2, Rt−2, Qt−2) ≤

∂It−2
V̂t−2(It−2, Rt−2, Qt−2), ∂Kt−2

Wt−2(Kt−2) ≤ ∂Kt−2
Ŵt−2(Kt−2), ∂It−1

Vt−2(It−1) ≤

∂It−1
V̂t−2(It−1), Ct−1 ≤ Ĉt−1, ℓ

∗
t−1 ≤ ℓ̂∗t−1, s

i
t−1 ≤ ŝit−1 and xi∗t−1 ≥ x̂i∗t−1.

Since Dt−1 ≤st D̂t−1, we may assume Dt−1 ≤ D̂t−1 with probability 1. This

implies that for any realization Dt−1 and D̂t−1, we have Dt−1 ≤ D̂t−1. Therefore,

we need to prove ∂Kt−1
Wt−1(Kt−1,Dt−1) ≤ ∂Kt−1

Ŵt−1(Kt−1, D̂t−1). From (i), we

know Ŵt−1(Kt−1, D̂t−1) is supermodular in (Kt−1, D̂t−1), so ∂Kt−1
Ŵt−1(Kt−1,Dt−1) ≤

∂Kt−1
Ŵt−1(Kt−1, D̂t−1), thus we only need to prove

∂Kt−1
Wt−1(Kt−1,Dt−1) ≤ ∂Kt−1

Ŵt−1(Kt−1,Dt−1).

Let xt−1 and x
′

t−1 be the optimal acceptance level in state (Kt−1,Dt−1) and

(Kt−1−1,Dt−1) in system-D; similarly x̂t−1 and x̂
′

t−1 be the optimal acceptance level in

state (Kt−1,Dt−1) and (Kt−1 − 1,Dt−1) in system-D̂. We must have either x
′

t−1 = xt−1

or x
′

t−1 = xt−1 − 1. From the hypothesis, xt−1 ≥ x̂t−1 and x
′

t−1 ≥ x̂
′

t−1. We prove for

the following four mutually exclusively cases.

Case 1.x
′

t−1 = xt−1 − 1 and x̂
′

t−1 = x̂t−1 − 1

∂Kt−1
Wt−1(Kt−1,Dt−1) = Wt−1(Kt−1,Dt−1)−Wt−1(Kt−1 − 1,Dt−1) = ri(xt−1)

∂Kt−1
Ŵt−1(Kt−1,Dt−1) = Ŵt−1(Kt−1,Dt−1)− Ŵt−1(Kt−1 − 1,Dt−1) = ri(x̂t−1)
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Since xt−1 ≥ x̂t−1 and ri(·) is decreasing, we have

∂Kt−1
Wt−1(Kt−1,Dt−1) ≤ ∂Kt−1

Ŵt−1(Kt−1,Dt−1).

Case 2.x
′

t−1 = xt−1 − 1 and x̂
′

t−1 = x̂t−1

We take suboptimal solution x̂t−1 + 1 in state (Kt−1 − 1,Dt−1) in System-D̂, then we

have

∂Kt−1
Wt−1(Kt−1,Dt−1) = ri(xt−1)

∂Kt−1
Ŵt−1(Kt−1,Dt−1) ≥ ri(x̂t−1+1)

Since xt−1 = x
′

t−1 ≥ x̂
′

t−1+1 = x̂
′

t−1+1 and ri(·) is decreasing, thus ∂Kt−1
Wt−1(Kt−1,Dt−1) ≤

∂Kt−1
Ŵt−1(Kt−1,Dt−1).

Case 3.x
′

t−1 = xt−1 and x̂
′

t = x̂t−1 − 1

We take suboptimal solution x̂t−1 − 1 in state (Kt−1 − 1,Dt−1) in System-D, then we

have

∂Kt−1
Wt−1(K,t−1 Dt−1) ≤ ri(xt−1)

∂Kt−1
Ŵt−1(Kt−1,Dt−1) = ri(x̂t−1)

Since xt−1 ≥ x̂t−1 and ri(·) is decreasing, we have

∂Kt−1
Wt−1(Kt−1,Dt−1) ≤ ∂Kt−1

Ŵt−1(Kt−1,Dt−1).

Case 4.x
′

t−1 = xt−1 and x̂
′

t−1 = x̂t−1

∂Kt−1
Wt−1(Kt−1,Dt−1) = −∂h(Kt−1 − xt−1) + ∂Vt−2(Kt−1 − xt−1)

∂Kt−1
Ŵt−1(Kt−1,Dt−1) = −∂h(Kt−1 − x̂t−1) + ∂V̂t−2(Kt−1 − x̂t−1)

Since both −∂h(·) and ∂Vt−2(·) are decreasing and ∂Vt−2(·) ≤ ∂V̂t−2(·) by hypothesis,

then we have ∂Kt−1
Wt−1(Kt−1,Dt−1) ≤ ∂Kt−1

Ŵt−1(Kt−1,Dt−1).

Now we prove the first inequality based on the above result. Let ℓ∗t−1 and ℓ∗
′

t−1

be the optimal leasing quantity in state (Kt−1,Dt−1) and (Kt−1 − 1,Dt−1) in system-

D; similarly ℓ̂∗t−1 and ℓ̂∗
′

t−1 be the optimal leasing quantity in state (Kt−1,Dt−1) and
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(Kt−1 − 1,Dt−1) in system-D̂. From the hypothesis, ℓt−1 ≥ ℓ̂∗t−1 and ℓ∗
′

t−1 ≥ ℓ̂∗
′

t−1. We

need to prove ∂Jt−1
Ht−1(Jt−1, ℓt−1) ≤ ∂Jt−1

Ĥt−1(Jt−1, ℓt−1).

∂Jt−1
Ht−1(Jt−1, ℓt−1) = −c(ℓ∗t−1 − ℓ∗

′

t−1) + ∂Kt−1
Wt−1(Kt−1),

∂Jt−1
Ĥt−1(Jt−1, ℓt−1) = −c(ℓ̂∗t−1 − ℓ̂∗

′

t−1) + ∂Kt−1
Ŵt−1(Kt−1),

We have proved ∂Kt−1
Wt−1(Kt−1) ≤ ∂Kt−1

Ŵt−1(Kt−1) and we also have either

ℓ∗
′

t−1 = ℓ∗t−1 or ℓ∗
′

t−1 = ℓ∗t−1 + 1. It is easily established for the other three combination

except when ℓ∗
′

t−1 = ℓ∗t−1+1 and ℓ̂∗
′

t−1 = ℓ̂∗t−1. We take suboptimal policy ℓ̂∗
′

t−1 = ℓ̂∗t−1+1

in System-D̂, then

∂Jt−1
Ĥt−1(Jt−1, ℓt−1) ≥ c+∂Kt−1

Ŵt−1(Kt−1) ≥ c+∂Kt−1
Wt−1(Kt−1) = ∂Jt−1

Ht−1(Jt−1, ℓt−1),

Since Vt−1(It−1, Rt−1, Qt−1) ≡ EQt−1
Ht−1(Jt−1, ℓt−1), the first inequality could be es-

tablished for t− 1. This completes the induction steps for part (iii).

For part (iv), we have

Ct = min{Kt : c ≥ ∂Kt
Wt(Kt,Dt)} ≤ min{Kt : c ≥ ∂Kt

Ŵt(Kt,Dt)} = Ĉt,

ℓ∗t = Qt ∧ (Ct − Jt)
+ ≤ Qt ∧ (Ĉt − Jt)

+ = ℓ̂∗t ,

sit = min{It−1 : ri ≥ −∂h(It−1) + ∂Vt−1(It−1)} ≤ min{It−1 : ri ≥ −∂h(It−1) +

∂V̂t−1(It−1)} = ŝit,

xi∗t = Di
t ∧ (Kt − D̄i−1

t − sit)
+ ≥ Di

t ∧ (Kt − D̄i−1
t − ŝit)

+ = x̂i∗t .

So xt =
∑

i x
i
t ≥

∑

i x̂
t
i = x̂t, that is, more orders are accepted in System-D

than in System-D̂. This completes the induction steps for part (iv).

Part(i) states the marginal value of available inventory is more valuable when

the confirm order is higher, or the marginal value of confirmed orders is more valuable
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when the inventory level is higher. Part (ii) establishes the first order stochastic prop-

erty for the value function Wt(Kt) in the concave order sense, where the higher future

demands evoke higher profit. Part (iii) establishes the second order stochastic property

for the value function Vt(It) and Wt(Kt). It states the marginal value of inventory is

more valuable when there is a higher future demands in the stochastic order sense during

the decision epochs. Part (iv) shows the impact of future larger demands on the leasing

policy parameters, such as the optimal leasing threshold and leasing quantity. Both

optimal leasing threshold and optimal leasing quantity increase for the future higher

demands, which implies stock up for more higher class orders in the future. It also

shows the impact of future larger demands on the order acceptance policy parameters,

such as the optimal rationing level and order acceptance for each demand class. The

optimal rationing levels for each demand class increases with higher future demands and

less orders are accepted for each demand class, which implies more capacity reservation

for the future higher profit level demands.
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Chapter 6

Conclusions

Combined container leasing and multi-profit-level load acceptance problem in

intermodal freight transportation has been studied in this work. We show the optimal

leasing policy is similar to the stock-up-to policy, where the containers inventory should

be leased up to a critical level. Note that less containers are borrowed as more available

containers are presented and at most one container needs to be borrowed given one more

extra container inventory. We also show the optimal load acceptance policy follows

allocation in the order of decreasing profits together with a rationing policy for each

demand class. So the available container inventory could be allocated to a certain

class until reaching its corresponding rationing level. More allocation is rendered when

coming across more available containers and one more available containers could result

in at most one more allocation. When the demand increases in the sense of stochastic

order, we find that both the container leasing threshold and the rationing level increase.

In practice, it means more containers are supposed to be borrowed and less orders are

accepted, that is, stock up in hope of more future high profit level orders. We provide

the IMC managers an applicable solution and an easy execution when they face the daily
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problem of container capacity management and demand fulfillment. We also stress the

importance of effective coordination between the IMC and its container suppliers and

the feasibility of demand forecasting. To the best of our knowledge, there is no similar

work address the same issue.

There are several aspects to extend our work. First, to allow more suppliers

in the model. We only consider one specific container supply, while many IMCs have

access to several containers sources with different capacity and at different cost. Second,

to add lead time to tally with practice. We didn’t consider the lead time for receiving

the borrowed containers or the lead time for delivery of the accepted orders. Third,

to consider supply uncertainty. We have illustrated the variability in demands in our

work and similar idea could also be applied to containers supply. So far our work has

provided a decent start for these future research directions.
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