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Abstract

We simulate flows involving porous media and homogenous fluid using a single-domain finite-
difference numerical method. We study numerically the settling of a porous sphere in a density-
stratified ambient fluid. Simulations are validated against prior laboratory experiments and com-
pared to two mathematical models. Two main effects cause the particle to slow down as it enters a
density gradient: lighter fluid within the particle and entrainment of the density-stratified ambient
fluid. The numerical simulations accurately capture the particle retention time. We quantify the
delay in settling due to ambient fluid entrainment and lighter internal fluid becoming denser through
diffusion as a function of the Reynolds, Péclet, and Darcy numbers, as well as the thickness of the
transition layer and the ratio of the density difference between the lower and upper fluid layer to the
density difference between the particle and the upper layer. A simple fitting formula is presented to
describe the settling time delay as a function of each of those five non-dimensional parameters.

We introduce a new numerical method specially designed for fluid-porous simulations. The porous
medium and unimpeded fluid are separated by a sharp interface where a stress jump boundary con-
dition is implemented using a forcing term. The interface is constructed by connecting Lagrangian
markers with cubic splines, allowing for any possible porous media geometry. This model is par-
ticularly flexible as it can easily account for a mobile interface. We apply our method to simulate
erosion and suspension of particles from a fixed particulate deposit. The flux of particles separated
from porous media ascribable to a moving fluid is obtained from the computed velocity across the
interface, in contrast to more common approaches that assume a flux proportional to the viscous
stress at the interface.
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Chapter 1

Introduction

In fluid dynamics, we study the science of fluid motion. A fluid is a substance that undergoes con-
tinuous deformation under applied shear stress. Liquids, gases and plasmas are considered to be
different categories of fluid [2]. In contrast to a solid, a fluid conforms to the shape of its container.
Fluid dynamics is an active field of research with a wide range of applications in geophysics, me-
teorology, astrophysics, biology and many aspects of engineering [3]. The study of fluid mechanics
dates back to ancient Greece, where the famous Archimedes’ principle was discovered. Scientific
development accelerated in the 19th century with the introduction of governing equations describing
different type of flows. The Navier-Stokes equations describe the motion of viscous fluid where the
pressure, density, temperature and velocity are related through the laws of conservation of mass,
momentum and energy. In their derivation, the fluid is treated as a continuous medium where
macroscopic properties are continuous and well defined at infinitesimal volume elements. The fluid
element is assumed to be small with respect to the length scale of the system but many times larger
than the size of the molecules [4].

Fluid flow through porous medium is another branch of fluid mechanics that is commonly studied.
Many substances in our environment, man-made or natural, are considered porous. Sand, aquifers,
zeolites, biological tissues and industrial filters are a few examples of common porous material. A
porous medium is a solid matrix structure with interconnected pores. The main characteristics of
porous media are porosity and permeability, both important parameters in geological applications.
Porosity is defined as the volume fraction of void space in a material that may contain any fluid [5].
The pore geometry and its interconnectedness has a profound effect on permeability, a measure of
how well fluid flows through the porous material. In most situations, the solid matrix of the porous
media is rigid but the frame can be deformed if the flow is strong. In recent years, scientific interest in
porous solids has grown because they can interact with other substances not only at the surface but
within the porous domain of the material providing a much larger surface exposure. This quality is
highly desired for materials used in microelectronics and medical diagnosis because of their superior
catalysts or aborbent abilities [6].

Fluid interaction with porous media is a common phenomena in geosciences, petroleum engi-
neering, bio-remediation, construction engineering, biology, biophysics and material sciences. More
specifically, porous flow can be found in inkjet printing technologies, nuclear waste disposal, ground
water flows, settling of porous marine organisms and erosion of sandy deposits [7]. Developing the
technologies associated with these fields, requires a deeper study of fluid motion in porous media.
Early investigations revealed that the flow rate through porous media is proportional to the pressure
gradient in the flow direction and intrinsic permeability of the medium. This model (Darcy’s law) is
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a linear differential equation and is derived under the assumption of a continuum approach consid-
ering volume elements that are large compared with the average pore volume [5]. The linear nature
of Darcy’s law is valid only when the fluid velocity is sufficiently small. For higher fluid velocities,
Darcy’s law is extended with a Laplacian including a fluid-to-fluid drag and a quadratic term to
compensate for the increasing form drag [8].

One example of a system where fluid flow in and around a porous region is determinant, is that
of marine snow. Marine organisms settling into the deep ocean are often highly porous and play an
important role in the carbon cycle. The carbon cycle along with water and nitrogen are key factors
in sustaining life on earth. Carbon can be found in biological organisms, plants, minerals, etc and is
continuously recycled between biosphere, geosphere, pedosphere, atmosphere and hydrosphere [9].
Oceans contain the greatest quantity of actively cycled carbon on earth. Organic matter settling
in the ocean, eventually breaks down into its simplest inorganic forms such as carbon dioxide and
water; a process called remineralization [10]. The depth at which this process occurs is referred to
as remineralization depth and it is dependent on the settling speed and decay rate of the particles.
Factors such as temperature, oxygen concentration, stratification and particle composition can all
affect this balance. Models show that a modest change in the remineralization depth can have
substantial impact on atmospheric carbon dioxide concentrations [10].

In coastal waters, micro organisms such as phytoplankton aggregate in thin layers in the twilight
zone [11]. The thin layer formation can be triggered by biological mechanisms such as enhanced
localized growth, directed swimming or interaction between swimming and shear [12, 13]. Physical
parameters like density stratification in the ocean can also lead to aggregation in a thin layer. Theo-
retical and experimental studies validate diminished settling velocities at sharp density gradients due
to entrainment and particle porosity. The drag associated with the settling object entrains lighter
fluid from upper layers resulting in a temporary slow down [14, 15]. This mechanism is referred to
as entrainment induced retention. In addition, if the particle is porous, it is saturated with lighter
fluid from the upper layer with lower salt concentration. The particle remains buoyant until the
stratifying agent (heat or salt) diffuses inside [1,16]. The diffusion induced retention is in most cases
the dominant cause of settling delay. In chapter 3, we study the settling of a porous particle in
density stratified ambient and quantify the retention due to entrainment and diffusion for various
parameters.

In recent years, numerical methods have been employed to solve complex mathematical problems.
Scientist and engineers can study systems that can not be solved analytically. Numerical algorithms
are developed to obtain approximate solutions to well posed partial differential equations. The major
problem with numerical solutions is the accumulation of error when the problem is advanced in time.
Discretization and roundoff errors are the major components of the numerical error. Discretization
is equivalent with transferring continuous variables and equations into discrete grid points. If the
numerical method is stable, the error converges to zero with reduced mesh size. A necessary stability
criteria for certain partial differential equations is the CFL condition (Courant-Friedrichs-Lewy),
restricting the temporal time step to be a function of spatial resolution [17].

In fluid applications, the Navier-Stokes equations are often solved numerically on fixed (Eulerian)
grid. The most common numerical methods are finite differences (FD), finite volume method (FVM)
and finite element method (FEM). In the finite volume method, the divergence theorem is used to
convert the volume integrals into surface integrals. The surface integrals are evaluated as a flux
at surfaces of each finite volume cell. The conservation laws ensure that the flux in and out from
each cell is conserved [18]. In finite element methods, a large problem is partitioned into smaller
and simpler elements. The equations that model these finite elements are put together into a large
system of algebraic equations and solved using variational methods [17]. In finite differences, we
approximate the derivatives with ratios of discrete differences. Finite differences have the advantage
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of being simple and efficient but they can not handle irregular computational domains. Finite volume
and element methods are more complicated to implement but can be employed for any arbitrary
geometry.

Simulation of flows including fluid and solid or different phases of the same substance is sometimes
necessary. In oil and gas applications, water, oil and gas flow together as a mixture. Mud slides and
gravity currents contain both water and sand. Other applications are sediment transportation in a
river or blood flow in an injured vessel. A common numerical approach for these type of problems
is to separate the phases through a mobile interface. The interface is constructed using Lagrangian
markers connected with cubic splines. The subdomains on each side of the interface is simulated with
different governing equations or parameters on a Eulerian grid. The fluid velocity can be coupled
to a moving interface through different methods. The volume of fluid (VOF) method computes the
concentration of different phases of fluid in a grid cell and accommodates for the evolving shape
of the interface. In chapter 4, we present a novel method to allow for accurate description of the
flow near a fluid-porous medium interface [19]. This method is used to quantify erosion in flow over
sandy deposits.

Water flowing over sandy deposits and soil is another example of fluid and porous media interac-
tion. The sediment can be transported by water as bed load or as suspended particles are advected
by the flow [20]. Sediment transportation is important in many fields such as environmental engineer-
ing, civil engineering, geology and geomorphology. Environmental scientists use sediment transport
models to determine rate of erosion or deposition and the time and distance over which sediments
travel. Although erosion is a natural phenomena, excessive erosion induced by human activities is
considered one of the most significant environmental problems worldwide [21]. The loss of nutrient
rich upper soil decreases the agricultural productivity leading in extreme cases to desertification.
Sedimentation of waterways and damages to roads and houses are other examples of costly incidents
caused by erosion.

Many different empirical models have been developed to quantify entrainment from a river bed.
Einstein (son of the famous physicist) was one of the pioneers in this field. He introduced a model
where the dimensionless bed-load transport rate is related to the dimensionless bed shear stress.
The shear stress is associated with the skin friction between fluid and sand. This model is only
applicable to uniform non-cohesive material [22]. The Garcia-Parker model is a more generalized
empirical model yielding reasonable estimates of sediment entrainment for beds covered with non-
uniform material. In this model, the sediment entrainment rate is proportional to the dimensionless
shear velocity. For true suspension, the dimensionless entrainment rate is not supposed to exceed
0.3 for the mixture of sand and water [23]. In chapter 5, we present a non-empirical erosion model
for estimation of sediment entrainment into suspension at the fluid-sand interface. Our model is
applicable to both uniform and non-uniform non-cohesive porous material.

This dissertation is organized as follows. In chapter 2, we introduce the governing equations
for fluid, porous media and concentration transport in dimensional form. Chapter 3 describes the
settling of a porous sphere in a density stratified ambient. The delay in settling due to entrainment
and diffusion is modeled with fitted parameters. In chapter 4, we present a new numerical method
for porous-fluid applications where the fluid and porous subdomains are separated by a Lagrangian
interface. We solve the Navier-Stokes and Brinkman equations on a staggered MAC grid and apply
the stress jump boundary condition between fluid and porous media through a forcing term at the
interface. In chapter 5, we apply our numerical method on two erosion applications; jet flow and
hill flow. We determine the erosion rate using the velocity at the interface and compare our results
with traditional empirical methods. Lastly, we conclude this dissertation in chapter 7.
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Chapter 2

Governing equations for fluid flow
and flow through a porous medium

2.1 Equations of fluid motion

In scientific applications, fluid motion is broadly described by the Navier-Stokes equations, named
after the mathematicians Claude-Louis Navier and George Gabriel Stokes. These equations are
expressed in dimensional form as

∇ · ~u = 0 (2.1)

ρ
(∂~u
∂t

+ ~u · ∇~u
)

= ∇ · ¯̄Tf + ~f, (2.2)

where ¯̄Tf = −p ¯̄I + µ(∇~u + (∇~u)T ) is the Cauchy stress tensor, ~u is the fluid velocity vector, ρ is

the fluid density, p is the pressure field, µ is the fluid viscosity, and ~f is a generic body force. The
Cauchy stress tensor assumes the stress to be a Galilean invariant (depending only on the velocity
gradient) and that the fluid is isotropic [24].

Equation 2.1 reflects conversation of mass for an incompressible fluid and equation 2.2 originates
from conservation of momentum. The momentum balance equation is derived from applying New-
ton’s second law to a volume fluid element. The two terms in the left hand side describe the local
and convective acceleration of the fluid and the right hand side contains the pressure, viscous and
body forces applied to the fluid.

The Navier-Stokes equations are nonlinear partial differential equations and can not be solved
analytically in most applications. In cases where the fluid is highly viscous, the left hand side of
equation 2.2 can be omitted and the Navier-Stokes equations are simplified to Stokes flow. The
Stokes equations are linear and can be solved analytically by the stream function method or the
Stokeslet (Green’s function) method. A useful result is the flow around a solid sphere settling in a
homogenous fluid. Stokes discovered the steady state speed by equating the drag force with gravity
and obtained the expression

Us =
2ga2(ρs − ρf )

9µ
, (2.3)
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where Us is the settling speed, g is the gravitational acceleration, a is the sphere radius, µ is the
viscosity of the fluid, ρs is the density of the sphere and ρf is the density of the fluid [4]. In the absence
of viscosity, the viscous term can be omitted yielding the Euler equation. In our applications, we
consider the Navier-Stokes equations in the fluid domain with variable density and constant viscosity.

2.2 Equations for flow through a porous medium

Porous medium is by definition a material consisting of a rigid solid structure with interconnected
void. The interconnectedness of the void allows the fluid to flow through the material in the presence
of a pressure gradient. Henry Darcy discovered that the flow rate through porous media is directly
proportional to the applied pressure difference. Darcy’s law is denoted as

µ¯̄κ−1 · ~u = ∇p+ ~f, (2.4)

where ¯̄κ is the permeability tensor of the porous medium, µ is the fluid viscosity, ~u is the fluid
velocity, ~f is a body force and ∇p is the applied pressure gradient. For isotropic material ¯̄κ becomes
a scalar. The velocity ~u so-called Darcy is the average velocity over a volume element incorporating
both solid and fluid material [5].

A more general extension to Darcy’s law is the Brinkman-Forchheimer equation, valid in a broad
range of porosities, higher Reynolds numbers and applicable in the vicinity of interfaces [25]. While
it is more general, it is also significantly more complex than Darcy’s law. It includes an inertial
term, a diffusive term and a quadratic drag. The Brinkman-Forchheimer equation is written as

µ¯̄κ−1 · ~u = ∇ · ¯̄Tp − cF ¯̄κ−1/2ρf |~u|~u+ ~f, (2.5)

where ¯̄Tp = −p ¯̄I+µe(∇~u+(∇~u)T ) is the stress tensor in the porous domain and cf is a dimensionless
form-drag constant. When the Reynolds number of the flow within the porous media is less than
unity, it is sufficient to consider the Brinkman equation [26]. The Brinkman equation supplements
Darcy’s law with a diffusive term and is denoted as

µ¯̄κ−1 · ~u = ∇ · ¯̄Tp + ~f. (2.6)

2.3 Equation of particle concentration transport

The density of a fluid may depend on a stratifying agent such as salt concentration or temperature,
denoted by c. The stratifying agent is subject to the advection-diffusion equation, given by

∂c

∂t
+ ~u · ∇c = D∇2c, (2.7)

where D is the diffusion coefficient. Equation 3.10 is valid if the concentration field is source and
sink free, the diffusion coefficient is constant and the velocity field is divergence free [27]. In our
settling application (Chapter 3), we consider the advection and diffusion of heat or salt in water.
The incompressibility of water implies that the divergence of the flow velocity is zero. There are
no sources or sinks present and the diffusion coefficient variations are marginal so equation 3.10 is
therefore applicable.
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Chapter 3

Settling of a porous particle in
density stratified fluid

3.1 Introduction

The settling of particles in fluids has long been an active area of research. Solid particles were
studied first, beginning with the derivation of the Stokes drag law for spheres [28] in the absence
of inertia. The effects of inertia were later considered theoretically [29] and experimentally [30],
resulting in increasingly sophisticated empirical expressions for the drag coefficient of a settling solid
particle. Settling or rising drops in the absence of inertia were studied simultaneously, resulting in a
more general result, the Hadamard-Rybczinski drag, with applications ranging from rising bubbles
to nearly solid drops [31]. In addition to inertial effects, the deformation of drops and bubbles,
captured by the Weber and capillary numbers also influence the drag experienced by the drop [32].
More recently, the influence surfactants was also quantified [33].

When studying particles settling in the ocean or atmosphere, one must further account for the
variable density of the surrounding fluid due to temperature and/or compositional variations. Such
height-dependent density profiles, or stratifications, have a direct impact on the settling speed of
particles through a reduction of the particle’s buoyancy. In addition, the settling particles entrain
lighter fluid downward, into the denser ambient fluid. The entrained fluid is then buoyant, and its
upward motion then opposes the downward motion of the particle, enhancing its drag. We refer
to this delay in settling as entrainment-induced retention. In recent years, the settling process in a
stratified ambient has been studied extensively for solid particles [14, 15, 34–37]. Settling drops are
also slowed by entrainment of lighter fluid, though to a lesser extent because they allow slip along
their boundary and thus entrain less fluid [38,39]. The surface tension between the ambient and the
drop may also change as drops settle, either leading to a sudden acceleration or effectively rendering
the drop stationary [40].

More recently, porous particles settling in stratified ambients have been investigated [1,16,41–43]
to describe the dynamics of marine snow. Marine snow is predominantly comprised of organic matter,
including phytoplankton, protists, detritus, or fecal matter and contains small portions of inorganic
material like sand and dust [44]. It plays an important role in the carbon transport into the deep
ocean and contributes to remineralization [45–47]. These compounds aggregate in clumps that range
between 100 µm and a few cm in size and are often over 99% porous [48, 49]. They accumulate in
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thin layers where sharp density gradients are present [50, 51]. These layers are often positioned in
the twilight zone, a hotspot for bacterial degradation [48, 49]. The main objective of these recent
settling studies was to understand the interaction of density stratification with the settling of these
porous particles, and how this interplay is affected by parameters such as the particle size, porosity,
and density.

Porous particles are unique in that their average density is very close to that of the ambient
fluid, owing to their small solid fraction. As they settle, porous particles transport their internal
fluid downward. In a stratified ambient, the porous particle may then temporarily reach a level of
neutral buoyancy, where the increased ambient density matches the combination of lighter internal
fluid and small solid fraction of the particle. The permeability of these particles is often very small
and the transport of heat or salt into the particle hence takes place mostly via diffusion. Once the
density of the internal fluid has been increased through diffusive transport, the porous particle will
resume its downward progress. We refer to this delay as a diffusion-induced retention. In theory,
such a delay may also occur as heat diffuses into or out of solid particles, but this is rarely significant.

Recently, experimental studies have sought to quantify diffusion and entrainment-induced delays.
Experiments with porous particles verified a quadratic dependence of retention time on particle size,
similar to a diffusive exchange time [16]. Other experiments found that the settling speed was
further reduced when the aggregates are less dense and found that sharper density gradients are
characterized by a lower vertical velocity minimum [42, 43]. A mathematical model was proposed
to capture the diffusion of a solute into the porous particle, and compared to experiments [1]. This
model focused on low Reynolds number flows, assumed the size of the particle small compared to the
length scale of the density gradient, and considered the ambient fluid density to be unperturbed by
the settling particle. When comparing to experiments, it was found that entrainment was significant,
and that the model could describe the settling dynamics of a porous particle provided an empirical
parameter to quantify entrainment was included. However, this study did not systematically describe
how this empirical parameter varied with parameters beyond the Reynolds number.

We present here numerical simulations of the settling of a porous sphere in a density-stratified
ambient fluid and focus on quantifying both the entrainment and diffusion-induced retention times.
We study the effects of varying the Reynolds, Péclet, and Darcy numbers, as well as the initial
density profile and the ratio of the density difference between the lower and upper fluid layer to the
density difference between the particle and the upper layer. In section 2, we present the governing
equations. We describe and validate our numerical method in section 3 and compare our results
with experimental data from [1]. We study the settling behavior of a porous sphere for different
parameters and present the results in section 4. We discuss the physical mechanisms at play in
section 5, and we present our conclusions in section 6.

3.2 Governing equations

We study numerically porous spherical particles settling under the influence of gravity in a homoge-
nous or density-stratified ambient fluid. The particle is assumed to settle in a cylindrical domain,
as depicted in Figure 3.1 (left). We take advantage of the symmetry of the system and simulate an
axisymmetric vertical cut from the center to the edge of the cylinder.

We consider a stable stratification, where the density ρ̃ increases with depth. Throughout this
paper, we use the tilde notation to represent dimensional variables. The fluid density undergoes a
smooth transition from ρ̃ = ρu in the upper layer to ρ̃ = ρl in the lower layer. We assume that
density variations are due to a linear dependence of the fluid density on a varying salt concentration
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Figure 3.1: Schematics of the domain under consideration. A porous particle settles in a cylindrical
container filled with density-stratified fluid. Left: Fixed frame of reference where the salt concentra-
tion c changes smoothly from zero in the upper layer to one in the lower layer with a transition layer
thickness γ. Right: Moving frame of reference with the boundary conditions used in the simulations.
Here ~u =< ur, uz >= ur êr + uz êz.

c̃ with maximum concentration c0

ρ̃ = ρl
c̃

c0
+ ρu(1− c̃

c0
). (3.1)

Figure 3.1 shows the non-dimensional concentration of salt c = c̃/c0 as the color intensity. The
initial salt concentration c̃i approaches zero in the upper layer and c0 in the lower layer, and varies
with height z̃ as

c̃i =
1− erf( 4(z̃−z̃c)

γ̃ )

2
c0, (3.2)

where γ̃ captures the depth over which the concentration, and therefore the density, varies. The cor-
responding initial density profile is ρ̃i. The salt concentration is evolved in time using the advection-
diffusion equation,

∂c̃

∂t̃
+ ~̃v · ∇̃c̃ = D∇̃2c̃, (3.3)

where ~̃v is the fluid velocity, t̃ is time and D the diffusivity constant for salt. Importantly, the
concentration c̃ may diffuse and advect inside the porous particle, affecting the settling dynamics.
We note that c̃ could also represent heat, another miscible fluid concentration, or any soluble agent.

The incompressible Navier-Stokes equations are used to describe the fluid flow, with the addition
of a penalty term to describe the flow inside the porous sphere [52]

ρ̃
(∂~̃v
∂t̃

+ ~̃v · ∇̃~̃v
)

= −∇̃P̃d + µ∇̃2~̃v + (ρ̃− ρ̃i)gk̂ −M
µ

κ
(~̃v − Ũ(t̃)k̂) (3.4)

∇̃ · ~̃v = 0. (3.5)
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where µ is the fluid viscosity and P̃d is the dynamic pressure which is related to the pressure P̃

through P̃ = P̃d + g
∫ z̃

0
ρ̃idz̃, with g the gravitational acceleration. In the penalty term, we denote

by κ the porous medium permeability. An indicator function M is used to denote the location of the
porous medium, with M = 1 inside the porous particle and M = 0 in the unimpeded fluid. Details
of how we solve for the vertical velocity of the porous particle Ũ(t̃), taken as positive downward,
are given below. The penalty term M µ

κ represents a porous drag proportional to the fluid velocity
relative to the porous particle, and is similar to that used in derivations of Darcy’s law [53]. We
assume that µ is constant and focus on density variations, which have a dominant effect on the
settling of particles.

To facilitate the analysis of our results, we non-dimensionalize our governing equations, and
denote corresponding variables without a tilde. We use the radius of the particle a as a reference

length. The reference speed is the Stoke’s settling speed in the upper layer, Us = 2ga2

9µ (ρs−ρu)(1−φ)
where φ is the porosity of the settling particle and ρs the density of its solid material. The reference
density is the upper layer fluid density, ρu, and the reference concentration is the lower layer salt
concentration c0. In addition to the porosity φ, important non-dimensional numbers for our setup
are the Reynolds number Re = ρuUsa

µ , the ratio of inertial to the viscous forces, the Péclet number

Pe = Usa
D , the ratio of inertial to diffusive effects, the Darcy number Da = κ

a2 a measure of the

permeability of the porous particle, an ambient density ratio η = ρl−ρu
ρu

, the dimensionless thickness

over which density varies γ = γ̃
a , and a density difference ratio ξ = ρl−ρu

(ρs−ρu)(1−φ) , which compares

the ambient density variations to the density difference between the particle and the upper layer
fluid. When ξ > 1, the settling dynamics are dominated by diffusion of salt into the particle. When
ξ < 1, the particle is always heavier than its surrounding, and so is not significantly delayed as
it settles. Noting that the non-dimensional gravitational term may be written as ga

U2
s

= 9ξ
2Reη and

ρ̃−ρ̃i
ρu

= η(c− ci), the governing equations become, in non-dimensional form

∂c

∂t
+ ~v · ∇c =

1

Pe
∇2c (3.6)

ρ
(∂~v
∂t

+ ~v · ∇~v
)

= −∇Pd +
1

Re
∇2~v +

9ξ

2Re
(c− ci)k̂ −

M

Da Re
(~v − Uk̂) (3.7)

∇ · ~v = 0 (3.8)

Here, the third term in equation (3.7) captures the local buoyancy of the fluid. To allow more
efficient numerical simulations, we introduce a frame of reference moving downward with vertical
velocity U(t), chosen such that the porous particle remains in the center of the domain. Figure 3.1
(right) shows the domain in a moving frame of reference that is used in numerical simulations. We
calculate the vertical velocity U(t) by balancing the buoyancy and drag forces on the particle. In
dimensionless form, the mass of the displaced fluid is 4π

3 (1 + ηc̄i) and we obtain

m
dU

dt
= (m− 4π

3
(1 + ηc̄i))

9ξ

2Re η
+

∫∫
S

¯̄T · ~dS

where 4π
3 is the dimensionless volume of our sphere, c̄i is the average value of ci within the sphere,

¯̄T = −Pd ¯̄I + 1
Re (∇~u+ (∇~u)T ) is the stress tensor, and S is the surface of the particle. Here m(t) is

the dimensionless mass of the particle including the fluid within the sphere,

m(t) =
4π

3

(
(1− φ)

ρs
ρu

+ φρ̄

)
=

4π

3

(
(1− φ)

ρs
ρu

+ φ(1 + ηc̄)

)
=

4π

3

(
1 +

η

ξ
+ φηc̄

)
(3.9)
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where ρ̄ is the average fluid density within the spherical particle, and c̄ the corresponding average
concentration. We rewrite our governing equations in a moving frame of reference,

∂c

∂t
+ ~u · ∇c =

1

Pe
∇2c (3.10)

∇ · ~u = 0 (3.11)

ρ
(∂~u
∂t

+ ~u · ∇~u
)

= −∇Pd +
1

Re
∇2~u+

9ξ

2Re
(c− ci)k̂ + (1 + ηc)

dU

dt
k̂ − M

Da Re
~u (3.12)

m
dU

dt
= 6π(1− ξ(c̄i − φc̄))

(
1

Re
− 2

9

η

ξ

dU

dt

)
+

∫∫
S

¯̄T · ~dS (3.13)

dZs
dt

= U, (3.14)

where ~u = ~v − Uk̂ is the relative velocity and Zs(t) the height of the particle at time t, taken as
increasing downward.

Our moving frame of reference has radius W and height H (denoted W ×H), as shown in Figure
3.1 (right). We apply Neumann boundary condition for c at the symmetry axis and at the upper and
right wall ( ∂c∂n̂ = 0, where n̂ is the unit normal at the boundaries). We use time-dependent Dirichlet
boundary conditions c = C(t) at the lower boundary, where C(t) = ci(Zs(t) +H/2). For velocities
in the vertical direction, we apply Neumann boundary conditions (∂uz∂n̂ = 0) on all boundaries except
the bottom boundary where we apply time-dependent Dirichlet boundary conditions (uz = U(t)).
We assume that the radial velocity component is zero at all boundaries (ur = 0). The imposed
boundary conditions are depicted in Figure 3.1 (right).

3.3 Numerical method and validation

We solve the governing equations described in section 2 numerically using finite differences on a
uniform staggered grid. We employ second order central differences for our spatial derivatives
and explicit Euler (first order) for our time integration. We find the pressure using a projection
method [54], which forces the velocity to remain divergence free. The porous sphere is separated
from the homogenous fluid by an interface constructed using Lagrangian markers connected with
cubic splines. In general, the method allows markers to move with the particle, but in our moving
frame of reference, the porous sphere is fixed in the center of the domain. We capture the transition
from porous medium to pure fluid by employing the Volume-of-Fluid approach commonly used in
multiphase flow applications [55–57]. We assume that the velocity, pressure, concentration, and
stresses are continuous across the interface. In our moving frame of reference, the vertical velocity of
the particle U(t) is calculated by integrating equation (3.13). The surface integral is computed using
a composite trapezoidal method to sum the surface stresses. This operation is the least numerically
accurate, as it requires estimating velocity derivatives near the interface. We also integrate U(t) in
time to obtain the position Zs(t) of the particle, equation (3.14), which is then used in equation (3.2)
to retrieve the bottom concentration C(t) = ci(Zs +H/2). The obtained velocity and concentration
are then used as conditions on the lower boundary, and are updated at every time step.

The initial concentration is given by the dimensionless version of equation (3.2). We initiate
simulations with the velocity and pressure fields corresponding to 0.8 times the Stokes flow around
a solid sphere settling in a fluid of density ρu = 1. We let the system evolve to steady-state in a
homogeneous ambient. We note that the Stokes settling speed, Us, used as a reference velocity is
derived by assuming an infinitely large domain and neglecting inertial effects (Re = 0). Hence, we
expect in the simulations that non-dimensional velocities will be smaller unity due to both inertial
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and wall effects. For this same reason, we initiate the simulations at a fraction of the Stokes flow
around a solid sphere.

To verify the numerical convergence of the simulations, we first simulate the settling of a sphere
with Re = 3.4 in a homogenous fluid (c = 0). Figure 3.2 (left) shows the terminal vertical velocity
of the sphere in a domain of size (2×4) for resolutions varied between ∆z = 2−8 and ∆z = 2−5. We
considered three different values of the Darcy number, and report the settling vertical velocity for
each. In the vicinity of the sphere’s surface, the velocity gradients become larger for small values of
Da and hence a higher resolution is required to obtain a similar numerical accuracy. If we extrapolate
toward higher resolution, the vertical velocity is seen to decrease as Da → 0, which is consistent
with literature results [58] [59].

In Figure 3.2 (right), we keep the resolution fixed at ∆z = 2−6 and vary the domain size
between 2 × 4 and 16 × 32. We find that the vertical velocity appears to approach domain size
independence when the boundaries are approximately 16 radii away from the sphere. We conclude
that the simulations accurately recover the settling of a solid sphere for sufficiently fine resolution
and sufficiently large domain size.
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Figure 3.2: Left: Dependence of the vertical velocity on the resolution for different values of Da.
Right: Dependence of the vertical velocity on domain size for dz = 2−6 and Da = 2.9× 10−4. The
red circles indicate the values used in later simulations, unless otherwise specified.
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Figure 3.3: Left: Time evolution of the average density for a sphere with porosity φ = 0.992, and
density ρs = 1 filled with fluid of density ρu = 1 that is instantly submerged in a fluid of density
ρl = 1.1 for Pe = 6.67. Right: Error of the density calculation, which is computed based on the
results obtained with ∆z = 2−9.

Because diffusion effects are dominant in this system, we next present the convergence of our
diffusion solver. In the absence of gravity, and with Pe = 6.67, we allow heavier fluid ρl = 1.1 to
diffuse into a porous sphere with porosity φ = 0.992 and solid density ρs = 1 initially filled with
lighter fluid, ρu = 1. We track the average density of the sphere over time, as shown in Figure
3.3 (left). We show in Figure 3.3 (right) the error as calculated based on our highest resolution of
∆z = 2−9. We find that diffusive effects are well captured with our chosen resolution of ∆z = 2−6,
with error below 0.1%.
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Figure 3.4: Comparison of vertical velocity versus time simulated for different resolutions and domain
sizes as a porous sphere settles through a two-layer density stratification. Here Re = 2.22, Pe = 1746,
η = 0.023, γ = 46.4, and ξ = 5.5.

Next, we present a porous sphere settling in a stratified ambient fluid and explore the effects of
resolution and domain size on the vertical velocity over time. Figure 3.4 shows the vertical velocity of
a porous particle as a function of time as it settles from a layer of lighter fluid into a layer of heavier
fluid. Due to its lighter inner fluid, the particle slows down and stays nearly stationary while its
density increases via diffusive effects and it eventually resumes settling. We first note that wall effects
remain present in an 4 × 8 domain, resulting in a slower vertical velocity away from the transition
region compared to a 8 × 16 domain. However, the domain size only has a minimal impact on the
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duration of the period when the particle has a vertical velocity close to zero, presumably because
the amount of entrained fluid does not change appreciably with domain size. Similarly, increased
resolution results in slower settling velocities in uniform ambients, but only slightly increase retention
time, as diffusive effects are well captured even at relatively low resolutions.

In the rest of this paper, the resolution and size of our domain are chosen as a trade-off between
minimizing wall effects and computational efficiency. Unless otherwise specified, we use an 4 × 8
domain with ∆z = 2−6, values shown as red circles in Figure 3.2. Wall effects, resulting in an
increased drag and so a reduced velocity, are thus present but not dominant. We also expect the
resolution used to result in an overestimate of the vertical velocity, while remaining within 15% of
a fully resolved simulations. With these choices, we obtain in a fluid of uniform density ρ = ρu = 1
a non-dimensional vertical velocity of 0.63, compared to a vertical velocity of Us ≈ 0.69 obtained
using the empirical drag law by White [4], where the drag coefficient is

CD =
12

Re
+

6

1 +
√

2Re0.5
+ 0.4. (3.15)

Note that this formula has been adapted to a Reynolds number based on particle radius. The reduced
computational effort resulting of these choices of domain size and resolution allow the exploration
of a broader range of parameters.

We conclude our validation by comparing simulations to a laboratory experiment where a porous
spherical particle settles in a two-layer density-stratified ambient [1]. The permeability of the sphere
is not explicitly given, but it is said to be extremely small. For simplicity, we therefore use the
smallest value of Da we can accurately resolve, Da = 3 × 10−4. In addition, we prevent advective
transport of the concentration c within the sphere by modifying equation (3.10) for this experimental
validation and for results labeled Da = 0. We thus use

∂c

∂t
+ (1−M)~u · ∇c =

1

Pe
∇2c, (3.16)

where the (1−M) factor blocks the advection of the soluble agent inside the porous sphere. While
the fluid parameters (density, viscosity, and diffusivity) were precisely measured in experiments and
were matched exactly in the simulations, the density and porosity of the particle were not measured
directly. Using the published values of ρs = 1.4 g/cm3 and φ = 0.992, we obtained fairly good
agreement in retention time, as shown by the yellow curve in Figure 3.5 (left). We present these
plots dimensionally for easier comparison to published experimental results. However, we note that,
as explained in [1], the porosity was obtained by matching the experimental settling velocity in a
uniform ambient, approximately Us = 0.2635 cm/s, to the Stokes settling speed of a porous sphere of
solid density ρs = 1.4 g/cm3. Accounting for inertial effects through equation (3.15), we recalculated
the porosity to account for inertial effects and found φ = 0.9896. Although the difference in porosity
is small, retention times are very sensitive to ξ = ρl−ρu

(ρs−ρu)(1−φ) , and this small difference in φ has a

large overall effect, as can be seen in Figure 3.5 (right). For this recalculated value of the porosity,
the governing parameters of this system are Re = 2.22, Pe = 1746, η = 0.023, γ = 46.4, and ξ = 5.5.

The simulations are seen to yield a shorter retention time than experimental measurements for
the recalculated porosity. However, given the sensitivity of the retention time to the exact value of
the porosity and the error associated to the calculation of the porosity, we conclude that the retention
time in the simulations are an acceptable approximation of the retention time in the experiments.
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Figure 3.5: Vertical velocity versus time for experimental data [1] in blue, reference model (equation
(3.17)) in red, enhanced model (equation (3.19)) in yellow, and simulations in purple. Left: The
porosity is φ = 0.992, the value given in [1]. Right: The porosity is φ = 0.9896, a value derived
by accounting for inertial effects in a uniform ambient. Other parameter values are Re = 2.22,
Pe = 1746, η = 0.023, γ = 46.4, and ξ = 5.5.

For future comparison, we present two models that describe the settling of a porous sphere. The
first, shown in red in Figure 3.5, is a simple reference model where the density of the fluid inside
the particle is always assumed to be that of the ambient fluid at that level. This is equivalent to
assuming that diffusion is immediate (Pe = 0). In non-dimensional terms, the mass of the particle
is then mr(t) = 4π

3 (1 + η
ξ + ηφci). Balancing drag and buoyancy, our reference model is then

mr
dUr
dt

= −sgn(Ur)
π CD

2
(1 + ηci(Zr)) U

2
r +

6π

Re
(1− (1− φ)ξci(Zr)) (3.17)

dZr
dt

= Ur

where Ur is the vertical velocity of the particle, Zr its vertical position, and (1 + ηci(Zr)) is the
initial density at the level Zr. Unsurprisingly, the simple reference model does not capture the
near-stagnant period, since in this model the particle always maintains its excess density.

We also consider an enhanced model first introduced in [1] that includes diffusive effects in the
limit of low Reynolds number, but neglects fluid entrainment effects. The concentration within the
particle, cp, when at level Ze, is then corrected to

cp(Ze) = ci(Ze)−
∞∑
n=1

6

π2n2

∫ t

0

e
n2π2(τ−t)

Pe
dci(Ze(τ))

dτ
dτ (3.18)

where the summation term comes from solving the heat equation assuming an outer concentra-
tion profile unperturbed by fluid motion. We extend this enhanced model to account for non-zero
Reynolds numbers via equation (3.15) and obtain a model of the particle’s vertical velocity, Ue, and
position, Ze, given by

me
dUe
dt

= −sgn(Ue)
π CD

2
(1 + ηci(Ze)) U

2
d +

6π

Re

(
1− (1− φ)ξci(Ze) + ξφ(ci(Ze)− cp)

)
dZe
dt

= Ue. (3.19)

The vertical velocity over time predicted by this enhanced model is shown in Figure 3.5 as yellow
curves. Including diffusive effects shows a significant slowing of the particle. However, this model
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also underestimates the retention time, as explained in [1] because it neglects the fluid displacement
around the particle. In reality, salt must diffuse through both the particle itself and the entrained
fluid before settling may resume.

Because the effects of diffusion through the particle on retention time are well understood through
the enhanced model and experiments presented in [1], we will focus primarily on how fluid entrain-
ment influences the settling time. In section 5, we compare simulation results with the reference
model given by equation (3.17) and the enhanced model outlined in equation (3.19).

3.4 Simulation Results

We report in this section the numerically computed vertical velocity and position of the particle ver-
sus time of a porous particle settling through a two-layer stratification with a transition of thickness
γ. We aim to describe and quantify the underlying dynamics causing delays in settling. We vary
the governing non-dimensional parameters over a range approximately corresponding to previously
reported experiments. The values we consider are bounded by 1 ≤ Re ≤ 64, 109 ≤ Pe ≤ 6984,
0 ≤ Da ≤ 0.01, 0.5 ≤ ξ ≤ 2.2, and 1 ≤ γ ≤ 64. We keep η = 0.00576 and φ = 0.992 fixed.

Figure 3.6: Snapshots of a porous particle settling from a lighter to a heavier layer at several times,
with blue showing low values of the concentration c and yellow high values of c. The red circle
indicates the porous sphere, and the red dashed lines the moving frame of reference. The domain
shown is from −4 ≤ r ≤ 4 and 38 ≤ z ≤ 62, and the parameters for this simulation are Re = 4,
Pe = 1746, ξ = 1.8, γ = 11.6, η = 0.0058, Da = 5× 10−4 and φ = 0.992

.
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We begin by simulating a typical porous sphere settling in a two-layer stratification. In Figure
3.6 we show several snapshots of the concentration c, with blue corresponding to c = 0 and yellow
to c = 1, and the position of the sphere, as the dashed red circle. The moving frame of reference is
also shown as the dashed red lines. The displacement between consecutive frames is indicative of the
sphere’s vertical velocity. The first row shows images taken every 5 time units, and the lower row
shows images taken every 30 time units. A video of the entire settling process is also available [60].
The parameters here are in the middle of the range of this study: Re = 4, Pe = 1746, ξ = 1.8,
γ = 11.6, and Da = 5×10−4. Prior to the first image presented, the sphere was left to reach steady-
state in a uniform ambient. As it approaches the transition layer, the sphere begins to slow, as can
be seen at times t = 10 and t = 15. The wake behind the sphere, with concentration approximately
zero, is then very broad owing to the sudden deceleration. When inertial effects are large enough and
the transition layer is sufficiently sharp, bouncing may occur as the sphere overshoots its temporary
level of neutral buoyancy, as discussed in more detail below. Once the sphere has lost its original
momentum, it progresses slowly across the transition layer, as diffusion slowly increases its mass.
The concentration within the sphere can be seen to increase slowly between times t = 15 and t = 250.
Eventually, around t = 220, the sphere exits the transition layer. Its internal fluid remains relatively
light, and as it settles into the lower layer, it will continue to become heavier, and accelerate until
reaching a new steady-state where its internal fluid density matches that of the ambient.
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Figure 3.7: Left: Non-dimensional particle vertical velocity over time for several transition layer
thicknesses γ. Right: Distance settled over time for the same values of γ. Other than γ, parameters
used are the same as in the case shown in Figure 3.6.

We present in Figures 3.7 (left) and 3.7 (right) the vertical velocity and position of the particle,
respectively, over time as it settles over a depth of 100 radii centered on the transition region for
different transition depths γ. We vary γ between 1 and 64 and keep all other parameters constant
at the values used in the simulation shown in Figure 3.6. For sharper transitions (small γ), the
particle reaches a lower minimum vertical velocity. However, the retention time is overall smaller
because the particle quickly accelerates again. Figure 3.7 (right) shows that for the largest transition
depth considered, γ = 64, the particle slows down at a higher position as it reaches the transition
layer earlier. It initially falls behind particles settling in a sharper transition, but due to the slow
density variation, it maintains a relatively high minimum vertical velocity, and temporarily overtakes
particles settling in sharper density gradients. Since the transition layer depth is much longer when
γ = 64, the particle stays in the density gradient region longer and ends up with the longest retention
time. However, the retention time is nearly independent of transition depth when γ ≥ 32.
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Figure 3.8: Enlarged portion of Figure 3.7 (left) showing the particle’s vertical velocity over time
for γ = 4 and other parameters as in Figure 3.6. We show the vertical velocity computed via the
enhanced model (equation (3.19)) in blue and simulations in red.

When a particle with sufficiently high inertia approaches a sharp density gradient, in these
simulations, as seen for γ = 1 and γ = 4, it experiences an oscillatory vertical motion that we
refer to as bouncing, as can be seen in Figure 3.7 (left) and in the enlarged plot of the case γ = 4
shown in Figure 3.8. Inertia causes the particle to sink to a depth with higher ambient density
than its own, where buoyancy then pushes it back up. This bouncing motion is captured in the
simulations as well as, to a lesser extent, in the enhanced model (equation (3.19)), see Figure 3.8.
In the enhanced model, the amplitude of the oscillation is not sufficiently large to cause the velocity
to reverse direction. The more pronounced oscillation amplitude in the simulations indicates that
entrainment plays a signifiant role in the bouncing process, as is the case for solid particles [14] and
drops [40] settling in a sharp stratification. In the simulations, when the layer thickness was kept
constant at γ = 11.6, and the Reynolds number was varied, bouncing was observed for Re ≥ 8. When
the Reynolds number was kept constant at Re = 4 and the layer thickness was varied, bouncing was
observed for γ ≤ 8.

We consider next variations in the Péclet number, a measure of the ratio of inertial effects to
diffusive effects, with higher Pe indicating that diffusion is slow and that advection is the dominant
transport mechanism. Inside the porous particle, fluid flow is negligible for the Darcy number
considered, Da = 5 × 10−4, and hence diffusion is the main mechanism of salt transport into the
particle. For smaller Pe, salt diffuses quickly into the particle, making it heavier than the ambient
fluid. As can be seen in Figure 3.9, the particle decelerates upon approaching the transition region
but passes through fairly quickly. As Pe gets larger, diffusion becomes slower, almost allowing the
particle to come to rest. The particle stays nearly stagnant for a long time before it once again
becomes dense enough to proceed into the denser lower fluid. Upon entering the stratification, the
particle experiences oscillations in its velocity for all simulated Pe, though without direction reversal.
The total settling and retention time is seen to increase significantly with increasing Pe.
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Figure 3.9: Left: Non-dimensional vertical velocity over time for several Pe. Right: Distance settled
over time for the same values of Pe. Other than Pe, parameters used are the same as in the case
shown in Figure 3.6.

We study next the effects of varying the Darcy number, and plot the velocity and position versus
time in Figure 3.10. The settling velocity in homogenous ambient fluid is higher for larger Da as the
particle experiences a lower drag. The drag converges quickly to that of a solid particle for smaller
Da. A value of Da = 0 indicates a particle with no internal advection of fluid where diffusion is
the sole mean of salt transport. The slower rate of salt penetration into the particle and enhanced
entrainment at small Da, result in slower settling across the density transition layer. Particles with
larger Da are clearly seen to accelerate earlier across the density gradient, as transport of salt into
the particle occurs through both advection and diffusion. The retention time in density-stratified
fluid is thus clearly dependent on Da.
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Figure 3.10: Left: Non-dimensional vertical velocity over time for several Da. Right: Distance
settled over time for the same values of Da. Other than Da, parameters used are the same as in the
case shown in figure 3.6.

We vary next the parameter ξ = ρl−ρu
(ρs−ρu)(1−φ) , which captures the importance of diffusive effects

on the settling dynamics of a porous particle. For ξ < 1, the particle experiences only a slight
reduction in vertical velocity because it is always heavier than the lower layer fluid and does not rely
on diffusion to settle through the transition layer. For ξ ≥ 1, the retention time increases quickly,
as the particle nearly comes to rest while salt diffuses into the particle. The vertical velocity versus
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time, shown in Figure 3.11 (left), shows a very similar pattern for all values of ξ, with a nearly
stationary period that increases with ξ. The retention time is thus strongly correlated with ξ.
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Figure 3.11: Left: Non-dimensional vertical velocity over time for several ξ. Right: Distance settled
over time for the same values of ξ. Other than ξ, parameters used are the same as in the case shown
in figure 3.6.

Lastly, we study settling particles with several different Reynolds numbers. Vertical velocity
and position of the particle versus time are shown in Figure 3.12. Bouncing is seen to occur for
Re = 1 and Re = 4 in Figure 3.12 (left), and is also visible in the position plot, Figure 3.12 (right)
when looking closely. The nearly stationary period is seen to have nearly the same duration for
all Reynolds numbers. However, the non-dimensional settling speed in a uniform ambient decreases
with higher Re. This is somewhat counter-intuitive, but results from the selection of the Stokes’
vertical velocity for our non-dimensionalization. Figure 3.12 (right) shows that the highest Reynolds
number particles are slowest in non-dimensional time units, which seems to be mostly attributable
to their slower non-dimensional settling speed in a uniform ambient.
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Figure 3.12: Left: Non-dimensional vertical velocity over time for several Re. The particle experi-
ences bouncing for Re ≥ 8. Right: Distance settled over time for the same values of Re. Other than
Re, parameters used are the same as in the case shown in Figure 3.6.
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3.5 Discussion
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Figure 3.13: Left: Time required to settle a distance of 100 radii across a density gradient for several
transition layer thicknesses γ. The reference time tref (blue) was computed using equation (3.17), the
enhanced model time tenh (red) using equation (3.19), and the simulation time tsim (yellow) using
our full numerical simulations. Right: Delay in settling time due to diffusion within the particle
(tenh − tref, purple), diffusion within the entrained fluid (tsim − tenh, orange), and both (tsim − tref,
green). The fit of equation (3.20) is shown as a dashed black line.

We now proceed to quantify the total settling time of a porous sphere settling through a two-layer
density stratification and compare it to the models introduced in Section 3. We consider the time
taken in our simulations for a porous sphere to settle through a column of height 100 radii centered
on the transition layer and denote it tsim. We compare this to the settling time tref computed by
our reference model, which assumes instantaneous diffusion as described in equation (3.17). We
also compute the time tenh taken by a particle described by the enhanced model of equation (3.19),
which includes a finite diffusion time but does not account for diffusion through the entrained fluid.
We may then identify what fraction of the delay is due to diffusion within the porous sphere, and
what fraction is due to diffusion within the entrained fluid. Because this delay is computed over a
distance extending well beyond the transition region, we expect that it also provides a good estimate
of the delay a porous sphere would experience if taller water columns were considered.

For each parameter, we provide an empirical formula fitting the delay observed in the simulations.
These formulae were obtained based on our data and accounting for known limiting cases. Other
functional forms may provide acceptable fits as well, but the ones presented here were chosen as
simple forms that closely matched our data.

The computed reference model, enhanced model, and simulations times are shown for several
transition layer thicknesses γ in Figure 3.13 (left). We first note that the reference and enhanced
model times are nearly independent of γ. The delay due to diffusion within the sphere, captured
by tenh − tref shown in Figure 3.13 (right) is therefore nearly constant, as time required for salt
to diffuse into the particle varies only weakly with γ. However, the simulations show that large
transition layers contribute to slowing down the porous sphere, at least for γ < 32. Delays due to
diffusion in the entrained fluid are captured by tsim − tenh and labelled as ”due to entrainment” in
Figure 3.13 (right). These delays increase with γ before leveling off. In a sharp density gradient,
the entrained fluid is more buoyant, and tends to detach from the porous particle, leaving less fluid
through which salt must diffuse, thus resulting in a shorter delay. For a sufficiently large value of
γ, the entrained fluid travels with the porous particle, resulting in a longer delay. While for small
γ the delay due to diffusion within the particle is similar to that due to entrainment, for larger γ
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values, diffusion through entrained fluid is dominant. As will be seen below, γ only has a relatively
small effect on the total settling time compared to other parameters. We fitted the delay relative to
the reference model as a function of γ and found

tsim(γ) ≈ tref(γ) + 365

(
1− 0.225

1 + 0.016γ2

)
. (3.20)

This fit is shown as the black dashed line in Figure 3.13 (right). Figure 3.14 (left) shows the computed
total settling times as a function of the Péclet number. The reference model assumes Pe = 0 and so
does not allow variations in Péclet numbers. The time found using the enhanced model (equation
(3.19)) includes diffusion through the particle only, and so finds a settling time that increases nearly
linearly with Pe, since the time required for diffusion to penetrate a radius a into the particle scales
as t̃diff ∼ a2/D. This is consistent with results reported by [16] and non-dimensionalizes to tdiff ∼ Pe.
The additional delay due to diffusion through entrained fluid is more complicated, as can be seen
in Figure 3.14 (right), where it is seen to be non-monotonic. For small Pe, the additional delay is
relatively small, as diffusion through the entrained fluid occurs quickly. As Pe increases, the delay
increases until reaching a maximum near Pe = 1800. The delay due to entrainment then decreases
with Pe. By observing videos of the concentration [60–62], one can see the volume of entrained fluid
decreasing with increasing Pe. In a stratified ambient, the entrained fluid is always buoyant. For
sufficiently large Pe, diffusion is slow and so is the particle’s motion. The entrained fluid then has
time to detach from the porous particle, effectively resulting in less entrainment. The volume of
fluid through which salt must diffuse then decreases with increasing Pe, reducing the entrainment
delay. The delay due to the combined effects of diffusion and entrainment remains monotonically
increasing with Péclet number, but in a logarithmic manner. We fit the additional delay relative to
the reference model as a function of Pe, and enforce that in the limit Pe the delay should approach
zero to find

tsim(Pe) ≈ tref(Pe) + 120 log(1 +
Pe

100
) (3.21)
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Figure 3.14: Left: Time required to settle a distance of 100 radii across a density gradient for
several Péclet numbers Pe. The reference time tref (blue) was computed using equation (3.17), the
enhanced model time tenh (red) using equation (3.19), and the simulation time tsim (yellow) using
our full numerical simulations. Right: Delay in settling time due to diffusion within the particle
(tenh − tref, purple), diffusion within the entrained fluid (tsim − tenh, orange), and both (tsim − tref,
green). The fit of equation (3.21) is shown as a dashed black line.

We present in Figure 3.15 (left) the computed settling times as a function of the Darcy number
within the porous sphere, Da. Neither the reference nor the enhanced model allow any flow within
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the sphere, and their predictions are therefore independent of Da. In the simulations, larger values
of Da allow more flow to penetrate the sphere, and may thus transport salt within it. Eventually,
this advective transport may even dominate the diffusive transport for large Da. The simulations
show an initially linear decrease of the settling time with increasing Da. As Da increases further, this
effect levels off as advection dominates salt transport within the sphere. We quantify the reduction
of the delay due to non-zero Darcy number as

tsim(Da) ≈ tref(Da) +
400

1 + 1700Da1.18 (3.22)

We note, however, that for the continuum hypothesis to be applicable to the porous medium, and
so for our representation of flow within the particle to be relevant, we must have Da ≤ 0.01.
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Figure 3.15: Left: Time required to settle a distance of 100 radii across a density gradient for
several Darcy numbers Da. The reference time tref (blue) was computed using equation (3.17), the
enhanced model time tenh (red) using equation (3.19), and the simulation time tsim (yellow) using
our full numerical simulations. Right: Delay in settling time due to diffusion within the particle
(tenh − tref, purple), diffusion within the entrained fluid (tsim − tenh, orange), and both (tsim − tref,
green). The fit of equation (3.22) is shown as a dashed black line.

The parameter ξ = ρl−ρu
(ρs−ρu)(1−φ) captures the importance of diffusive effects in determining the

buoyancy of the porous sphere. As can be seen in Figure 3.16, the two models and the simulations
yield settling times that are similar when ξ ≤ 1, as diffusion then plays only a minor role. As ξ
increases, the delay due to diffusion within the sphere increases, as does the delay due to diffusion
within the entrained fluid. Within the range of ξ considered, we find that the delay relative to the
reference model grows linearly with ξ. Including the consideration that there is no delay in the limit
ξ → 0, we find that our data is well approximated by

tsim(ξ) ≈ tref(ξ) + 185ξ. (3.23)

For naturally occurring values of the governing parameters, we therefore expect ξ and Pe to be the
most determinant parameters in the total settling time of a porous particle.
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Figure 3.16: Left: Time required to settle a distance of 100 radii across a density gradient for several
values of ξ = ρl−ρu

(ρs−ρu)(1−φ) . The reference time tref (blue) was computed using equation (3.17), the

enhanced model time tenh (red) using equation (3.19), and the simulation time tsim (yellow) using
our full numerical simulations. Right: Delay in settling time due to diffusion within the particle
(tenh − tref, purple), diffusion within the entrained fluid (tsim − tenh, orange), and both (tsim − tref,
green). The fit of equation (3.23) is shown as a dashed black line.

Finally, we present the effects of varying the Reynolds number on the non-dimensional settling
time in Figure 3.17. The Reynolds number influences several aspects of the flow. First, a larger Re
corresponds to smaller non-dimensional settling speed, and thus all three computed times increase
with Re. The additional settling time due to diffusion within the sphere is found to be nearly
independent of Re, as it does not affect internal diffusive processes. Larger Reynolds numbers
correspond to less entrained fluid, thus reducing total diffusion time. Moreover, as Re increases, the
flow within the porous sphere increases, and so does transport of salt into the sphere. The overall
settling delay thus shows a modest decrease with increasing Re, though it remains nearly constant
for the diffusion induced delay, shown in purple in Figure 3.17 (right). We quantify this effect as

tsim(Re) ≈ tref(Re) +
356

1 + 0.026Re0.5 . (3.24)
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Figure 3.17: Left: Time required to settle a distance of 100 radii across a density gradient for several
Reynolds numbers Re. The reference time tref (blue) was computed using equation (3.17), the
enhanced model time tenh (red) using equation (3.19), and the simulation time tsim (yellow) using
our full numerical simulations. Right: Delay in settling time due to diffusion within the particle
(tenh − tref, purple), diffusion within the entrained fluid (tsim − tenh, orange), and both (tsim − tref,
green). The fit of equation (3.24) is shown as a dashed black line.

3.6 Summary

We presented in this study numerical simulations of the settling of a porous sphere in a two-layer
stratified ambient fluid. Prior work focused on the effects of diffusion within the particle, but did not
quantify the effects of diffusion through the entrained fluid. The simulations presented here include
fluid motion and diffusion through the entrained fluid to give a more complete picture of the settling
dynamics. We focused on quantifying the effects of entrained fluid in combination with those of
diffusion to provide a comprehensive picture of the settling of porous particles. We identified the
dominant parameter ξ = ρl−ρu

(ρs−ρu)(1−φ) , capturing the importance of diffusive effects on total settling

time. We compared simulated settling time to the prediction of a simple reference model that
assumes constant excess density of the particle. We quantified the effects of ξ, as well as those
of the Reynolds, Péclet, and Darcy numbers. In addition to ξ, we found that Pe was the second
most determinant parameter in the system, showing a logarithmic growth of the settling time, which
over small intervals appears consistent with previous results showing a quadratic dependence of the
settling time on particle size [16]. For relatively large Darcy numbers, the settling was significantly
accelerated. However, most realistic values of Da are rather small, with Da < 10−4, and thus
have a weaker impact on the total settling time. The effects of the Reynolds number were mostly
well captured by our simple reference model which includes a Reynolds number-dependent drag
coefficient. We considered also the settling time dependence on the density transition thickness γ,
and found that the total settling time was not affected by the exact transition layer thickness if it
exceeded approximately 30 times the particle radius. We thus provided a qualitative and quantitative
picture of all the dominant parameters affecting the settling time of marine snow.
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Chapter 4

New numerical method for
fluid-porous domains

4.1 Introduction

In many natural settings and industrial applications, fluid flows in an environment partially con-
sisting of porous medium. Examples where this setup occurs include rivers and oceans flowing over
sandy deposits [23, 63–65], oil reservoirs and groundwater flow [66], flow past porous scaffolds in
bioreactors [67] and blood clot formation in an artery [68–70]. In particular, the chemical pollution
of our water resources through contaminated deposits is a significant issue [71], which requires mod-
els that can predict and quantify the spread of chemicals removed from contaminated soil by rainfall
and flooding [72]. For most geometries, only numerical solutions are available. We present here a
numerical method to simulate a system consisting of porous media and homogenous fluid separated
by a sharp interface. This method is simple to implement and allows for a mobile interface between
the porous and fluid regions.

The interaction of a freely flowing fluid with a porous matrix is complex and considerable effort
has been dedicated to determine proper treatment of the interface between the two media. One of
the early studies of the fluid-porous boundary condition was done by Beavers and Joseph in 1967 [73],
where a semi-empirical slip velocity corresponding to a velocity jump was introduced to match the
Navier-Stokes equations with a porous flow described by Darcy’s law. Neale and Nader [74] used
the Brinkman equations to describe the porous flow, and assumed continuous stress and velocity
across the interface. The use of the Brinkman’s equations and its associated effective viscosity, has
been used by numerous authors [75–77] since it allows for more accurate matching at the interface.
Vafai and Kim presented an exact analytical solution for fluid flow at the interface by matching both
velocity and stress [78]. A more detailed volume-averaging study led by Ochoa-Tapia & Whitaker [79]
deduced a condition of tangential stress jump at the interface which has since been widely accepted
and used in many applications [26,80,81]. We will therefore make use of the Brinkman equations to
describe the flow in the porous medium, and of a tangential stress jump boundary condition at the
interface, for more accurate results.

Fluid-porous problems are typically solved either using a two-domain approach [77, 82], or a
single-domain approach [83,84]. In a two-domain approach, two sets of coupled governing equations
are applied to the fluid and porous regions of the domain and matching boundary conditions are
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enforced at the interface. This approach is more complicated to implement but provides means to
apply a broad range of boundary conditions at the fluid-porous interface [85]. In a single-domain
approach the entire domain is represented by one governing equation with variables undergoing a
spatial variation across the interface [86]. This formulation avoids the explicit matching of boundary
conditions at the fluid-porous interface and hence is widely used in numerical simulations of ther-
mal natural convection [87]. We will make use of this approach to apply a tangential stress-jump
boundary condition at the fluid-porous interface.

Various numerical methods have been used to solve the equations governing flow in fluid-porous
domains. Because of the complex geometries associated with porous media, finite elements have
been widely used [26,80,81, 88] as have finite volumes [85]. However many of these approaches rely
on a fixed boundary between the two media. Our proposed method is based on finite-difference
approximations of derivatives and accurately describes the flow in both media while allowing for
a moving interface between the two sub-domains. The potentially mobile interface is defined by
Lagrangian markers, whose position is governed by a simple differential equation. The stress-jump
boundary condition is applied through a forcing term along the interface without requiring any
matching. This approach is analogous to the immersed boundary method [89] and related methods
used in multiphase flow [55–57]. There, a stress jump is imposed across a fluid-fluid interface, and
the Navier-Stokes equations are solved on both sides of the interface with different parameters. Here,
we employ a similar approach, but solve the Brinkman equations on one side of the interface, and
the Navier-Stokes equations on the other. The immersed boundary method is often implemented
using numerical delta functions to capture the interfacial forcing while in multiphase fluid flow a
Volume-Of-Fluid method is often used, which corresponds to an interface that is one grid-cell thick.
Here, we will compare both implementations.

After validating our method, we proceed to use it to describe the motion of fluid and particles
in erosive systems where the geometry of the surface over which currents propagate may undergo
a continuous change. At present, a complete understanding of resuspension of particles from an
irregular bed of particles remains elusive. Direct numerical simulations have been employed to study
the lift-off of particles in plane Poiseuille flow [65], but such simulations are constrained to a limited
number of circular particles [90]. In contrast, the continuum approach used here may describe much
larger systems. Our fluid-porous solver can also be used as part of a larger fluid solver to locally
quantify suspension of particles and predicting changes in surface geometry. Suspended particles
representing different type of contaminants, viruses or bacteria, could also easily be traced by adding
an advection-diffusion equation and tracking concentration fields [91].

In this chapter, we first present the governing equations. Our model and numerical approach are
described later and validated. We discuss our results and consider erosion applications with fixed
and moving interfaces.

4.2 Equations of fluid-porous domains

We consider an incompressible Newtonian fluid flowing over a fixed porous medium with potentially
variable permeability, see figure 4.1. We make use of the continuum approach, as opposed to a model
tracking individual particles, to allow for simulations over domains encompassing more particles. The
homogenous fluid portion of the system is governed by the incompressible Navier-Stokes equations
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Figure 4.1: Schematics of the domain under consideration. The porous medium (below) and ho-

mogenous fluid (above) are separated by a sharp interface ~I. Flow in the fluid portion is described
by the Navier-Stokes equations, and flow within the porous medium is described by the Brinkman
equations.

The equations used to describe the flow within porous media typically depends on the specific
flow characteristics such as the local Reynolds number, porosity, and accuracy level desired in the
vicinity of the boundaries. We assume here a stationary porous matrix, saturated by a fluid flowing
with a locally low Reynolds number. Under these conditions, the flow adjusts instantaneously to
changes in the boundary conditions and is well described by the Brinkman equations [26]

We note that the Brinkman equations are of second order in space, like the Navier-Stokes equa-
tions, which will facilitate matching at the interface, ~I, separating the two sub-domains.

For configurations containing both fluid and porous medium, boundary conditions have been
derived to match flow quantities at the interface between the two sub-domains. We enforce the
commonly used boundary condition of continuous velocities and a tangential stress jump [79] across

the interface ~I, which result from balancing mass, momentum and energy [77]. So at the interface
we have:

~up = ~uf = ~u~I (4.1)

~n · ( ¯̄Tf − ¯̄Tp) · ~t =
ζµ√
K
~u~I · ~t, (4.2)

where ¯̄Tf = −p ¯̄I + µ(∇~u + (∇~u)T ) is the fluid stress tensor, ¯̄Tp = −p ¯̄I + µe(∇~u + (∇~u)T ) is the
stress tensor in the porous domain, µe is the effective viscosity inside the porous medium, ~u the fluid
velocity vector, ~t and ~n are, respectively, unit tangential and normal vectors to the interface, ζ is an
empirical constant of order 1 and K = ||¯̄κ|| is the magnitude of the permeability tensor.

To model both the fluid and porous regions, we adopt here a single domain approach using a
convex combination of the Brinkman and Navier-Stokes equations. To distinguish between the two
domains, we use an indicating function M , which is set to 0 in the homogenous fluid and to 1 in
the porous medium, as shown in figure 4.1. Rather than solving separately the governing equations
in both domains and matching them using (4.2), we impose the stress jump boundary condition by

the addition of an interfacial force, ~f~I , as is commonly done in multiphase flow [55, 56, 89]. More
precisely, we introduce a force along the interface, which originates from the divergence of the stress
jump

~f~I = δ~I

(
ζ
µ√
K
~u · ~t

)
~t. (4.3)
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Here δ~I is a one-dimensional delta function which indicates that the force is only non-zero along the
interface. This allows for an efficient and flexible numerical approach that can be used to determine
flow characteristics in partially porous domains.

We proceed to non-dimensionalize the equations given above using quantities describing the
fluid system. We use a typical fluid density, ρ, and velocity scale U . We also use a length scale L
relevant to the fluid flow (for example for the pipe flow validation L is the diameter of the pipe). The
pressure p is non-dimensionalized by the dynamic pressure ρU2. This results in two non-dimensional
numbers. The Reynolds number Re = ρUL/µ describes the ratio of inertial to viscous effects in the
fluid. The Darcy number, Da = K/L2, is the ratio of the typical length over which flow variations
are observed in the porous medium to the length scale of the fluid flow, squared. The value of Da
is typically smaller than 10−3, which indicates that the flow in the porous medium is averaged over
several pores. In addition, the viscosity ratio β = µ/µe also appears in the non-dimensional porous
stress tensor. In this study, we will proceed to set β = 1 for simplicity.

Since the non-dimensionalization was done using reference quantities in the fluid domain, the
Reynolds number above does not describe the importance of inertial effects in the porous medium.
We can, however, compute a porous Reynolds number as

Rep =
ρUpLp
µe

= β Da Re (4.4)

where Lp ∼
√
K =

√
Da L and Up ∼ Lp

L U =
√
Da U are typical length and velocity scales of the

flow in the porous medium. We will restrict our attentions to systems where Rep ≤ 1 warranting
the use of Brinkman equations in the porous medium.

The resulting non-dimensional convex combination of Navier-Stokes and Brinkman equations,
including the interfacial forcing term is then,

∇ · ~u = 0 (4.5)

M
[ 1

Da ·Re
~u
]

+ (1−M)
[∂~u
∂t

+ ~u · ∇~u
]

= M∇ · ¯̄Tp + (1−M)∇ · ¯̄Tf + ~f + ~f~I

where we now use ~u to denote a non-dimensional velocity, and the non-dimensional stress tensors
are

¯̄Tf = −pĪ +
1

Re
(∇~u+ (∇~u)T ) and (4.6)

¯̄Tp = −pĪ +
1

βRe
(∇~u+ (∇~u)T ). (4.7)

As boundary conditions at the edge of the domain, we prescribe the fluid velocity ~u, and impose
∂p
∂n = 0 at the top and bottom boundaries. In the horizontal direction the flow is assumed periodic.
Although we focus here on a two-dimensional system, the formulation is identical in three dimensions.

While we do not move the interface between the two media in this paper, one could easily do
so provided that the flux, F , of particulates leaving the porous medium and entering the fluid is
known. In cases where this flux normalized with the particle settling speed Us is non-zero, it will
cause the interface ~I to deform according to

∂~I

∂t
= −F Us ~n.

We discuss in section 4 how such a flux may be computed.
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4.3 Combined solver
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Figure 4.2: In this figure the dashed red line represents the border between porous medium and
unimpeded flow. The potentially mobile interface is constructed by Lagrangian markers connected
by cubic splines capable to resume any shape.

We solve equations (4.5) numerically in a two-dimensional domain. We discretize the spatial deriva-
tives using centered differences on a Marker-and-Cell (MAC) grid. The grid is fixed and uniform for
simplicity, though our method is conducive to adaptive-grid-refinement. The interface separating the
porous medium from the homogenous fluid is a curve tracked with Lagrangian markers connected
by cubic splines [55]. This allows for a smooth interface that may easily accommodate a variety
of interfacial geometries. We place the markers at approximately equal distance along the curve of
the interface. We compute the indicating function M based on the location of the interface and its
intersections with the MAC grid. This value is always between 0 and 1, see figure 4.2, and describes
the volumetric average of the Navier-Stokes and Brinkman equations.

To ensure stability with reasonable time steps, we use an implicit scheme for the diffusive terms,
as shown in more details below. Explicit methods may also be used, but would have greater time
step constraints. Both the implicit Crank-Nicholson and time independent Brinkman terms require
an additional linear system to be solved, although in practice it is not as computationally demanding
as the linear system used to solve for the pressure. This latter term is found using a well-established
projection method [82]. At the top and bottom of our domain, a Neumann boundary condition
is used for pressure p, while in the horizontal direction we use the periodicity of the system. Our
method can be described in three major steps.

1. We begin by ignoring the pressure term and update the velocity ~u∗, using a second order
Adams-Bashforth method for the convective terms, and Crank-Nicholson for the diffusive
terms, yielding a first, sparse, linear system:(

M∆t
[ 1

Da ·Re
− 1

Re
∇2
]

+ (1−M)
[ ¯̄I − ∆t

2Re
∇2
])
~u∗ = (4.8)

(1−M)~un +
∆t

2

(
3
[
~f + ~fI + (1−M)[−~u · ∇~u

]n −[
~f + ~fI + (1−M)[−~u · ∇~u

]n−1
+ (1−M)

1

Re
∇2~un

)
.
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2. By imposing that the velocity must be divergence-free, we obtain a Poisson equation for the
pressure, which results in a second linear system after discretization

∇ ·A−1 · ∇pn+1∆t = ∇ · ~u∗, (4.9)

A = M∆t
[ 1

Da ·Re
− 1

Re
∇2
]

+ (1−M)
[ ¯̄I − ∆t

2Re
∇2
]
. (4.10)

Although A is a sparse Matrix, A−1 is not, nor is it symmetric or positive definite. This
results in limitations for larger systems or when memory is a limited resource. For smaller
problems, a direct method is preferred while larger problems require an iterative approach [92].
The fastest convergence for our iterative solver was achieved using the Biconjugate Gradient
Stabilized Method [93].

3. Finally, the velocity field at each grid point is obtained by adding the pressure correction term
to the updated velocity.

A~un+1 = A~u∗ −∇pn+1∆t (4.11)

Because of our one-domain approach, the numerical process of time integration is computationally
more expensive than for that of a pure fluid, as the matrix A is more complicated here than for a
pure fluid, where it would be a diagonal matrix. Although most of the results obtained here were
retrieved using a serial code, we have verified that this approach may also be implemented in parallel,
for both implicit and explicit methods.

4.3.1 Line-integral method

There are two main strategies to implement the interface force, see equation (4.3), used to enforce
the stress-jump condition denoted as ”line-integral” and ”delta-force” methods.

First, in what we refer to as the ”line-inegral” method [55], the force is averaged over each
grid cell using a double integral. The resulting average interfacial force over grid cell (i, j) can be
expressed as

~fIij =

∫∫
Dij

~fIdxdy

∆x∆y
=

∫
Cij

ζ µ√
K

(~u · ~t) ~t ds
∆x∆y

. (4.12)

The strategy for calculating the interface force numerically is:

1. Loop over grid cells and find the ones intersecting the interface.

2. Record where the interface enters and exits those cells.

3. Introduce along the interface inside each recorded cell n points to use in our numerical inte-
gration.

4. Evaluate at each point, the s-value (arc length), velocity vector ~u and the tangent vector ~t.

5. Evaluate the interfacial force using equation 4.12.

4.3.2 Delta-force method

An alternative approach, which we refer to as the ”delta-force” method, [89] distributes the inter-

face force ~fI to the closest neighboring grid points using a discretized delta function δhij . In our
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simulations this delta function has full strength right at the interface and decays to zero within 2
neighboring cells.

~fIij =

∑
m δhij (

~fIm)

∆x∆y
(4.13)

The strategy is:

1. Loop over all markers and store the grid indices for each marker.

2. Divide the interface into m sections with m the number of markers.

3. Evaluate the s-value (arc-length from the beginning of the interface) associated with the be-
ginning and end of each section.

4. Divide each section into n equidistant points. At each point ~u and ~t are evaluated to compute
~fIm .

5. Use a delta function δhij (
~fIm) to spread the force into neighboring grid points within 2 cells

from the marker.

6. Evaluate the interfacial force using equation 4.13.

4.4 Validation of the combined solver

We validate our combined fluid-porous solver by focusing initially on the individual components.
The heat equation or the viscous part of the Navier-Stokes is validated first. Second, we validate
the full Navier-Stokes equations using presribed forcing terms. Third, the Brinkman equations are
validated in a similar manner. Last, our combined solver is validated by using the analytical solution
to a pipe flow and drag convergence for a porous cylinder. Each validation is explained separately
in its own subsection.

4.4.1 Heat equation

We solve the heat equation problem in 4.14 using our numerical solver and compare our results with
the analytical solution 4.17. We apply periodic boundary conditions in x-direction and Dirichlet in
y.

ut = µ(uxx + uyy) (4.14)

Boundary Conditions: (4.15)

u(0, y, t) = u(1, y, t)

u(x, 0, t) = 1

u(x, 1, t) = 1

Initial Conditions: (4.16)

u(x, y, t = 0) = sin(πy) cos(2πx) + 1

The exact solution to the BVP 4.14 is

u(x, y, t) = e−5π2µt sin(πy) cos(2πx) + 1. (4.17)
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We validate the convergence of the numerical solution by comparing it to the exact solution, see
figure 4.3. The rate of convergence is second order in both time and space. The numerical solution
is denoted U , the exact solution u and the absolute error |u− U |.
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Figure 4.3: Heat equation problem is solved numerically and compared with an exact analytical
solution. We obtain second order convergence in time and space.

Next, we solve the poisson equation numerically and compare our results with the exact solution.
The result is shown in figure 4.4. The convergence is second order in space as expected.

Differential Equation: (4.18)

pxx + pyy = −5π2 cos(2πx) cos(πy)

x : 0 ≤ x ≤ 1

y : 0 ≤ y ≤ 1

Boundary Conditions: (4.19)

p(x = 0, y) = p(x = 1, y)

py(x, y = 0) = py(x, y = 1) = 0

Exact Solution: (4.20)

p(x, y) = cos(2πx) cos(πy)
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Figure 4.4: Poisson problem is solved numerically and compared with an exact analytical solution.
We obtain second order convergence.

4.4.2 Navier-Stokes

We apply the projection method to the Navier-Stokes equations and obtain a numerical solution.
We solve equation 4.8, with M = 0 over the entire domain. The steps of the projection method are
outlined in the appendix. We use central difference approximations on a MAC grid for our spatial
derivatives and a combination of Adams-Bashforth2 and Crank-Nicolson for our time integration.
f1 and f2 are the horizontal and vertical components of the force ~f . We apply periodic boundary
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condition in the x direction and in the y direction, Neumann for pressure, and Dirichlet for velocity.

Differential Equation: (4.21)

∂~u

∂t
= −~u · ∇~u+ ~f +

1

Re
∇2~u−∇p

f1 = −2π sin(2πx) cos(πy)−
[
(α+ 20

π2

Re
) sin(2πx) sin(4πy)

]
eαt

+ π sin(4πx)
[

sin2(4πy)− 2 sin2(2πy) cos(4πy)
]
e2αt

f2 = −π cos(2πx) sin(πy) +
[

cos(2πx)
(

2
π2

Re
+ α sin2(2πy)− 10

π2

Re
cos(4πy)

)]
eαt

+
[
π sin(4πy)− π/2 sin(8πy)

]
e2αt

Boundary Conditions: (4.22)

u(0, y, t) = u(1, y, t)

u(x, 0, t) = 0

u(x, 1, t) = 0

v(0, y, t) = v(1, y)

v(x, 0, t) = 0

v(x, 1, t) = 0

p(0, y, t) = p(1, y)

py(x, 0, t) = 0

py(x, 1, t) = 0

Initial Conditions: (4.23)

u(x, y, 0) = − sin(2πx) sin(4πy)

v(x, y, 0) = cos(2πx) sin2(2πy)

p(x, y, 0) = cos(2πx) cos(πy)

Exact Solution: (4.24)

u(x, y, t) = − sin(2πx) sin(4πy)eαt

v(x, y, t) = cos(2πx) sin2(2πy)eαt

p(x, y, t) = cos(2πx) cos(πy)eαt

The force is non-linear and tailor-made with the objective to attain an analytical solution. The
numerical solution converges to the exact solution as depicted in figure 4.5. The convergence is
second order in time and space in accordance to the theory. The domain size is 1 × 1 and the
parameters used are α = −10 and Re = 10.
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Figure 4.5: Navier-Stokes equations are solved numerically and compared with an exact analytical
solution. We obtain second order convergence in both time and space.
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4.4.3 Brinkman

We solve a Brinkman problem with known analytical solution using our numerical solver. This
corresponds to solving equation 4.8 with M = 1 over the entire domain. f1 and f2 are as before the
horizontal and vertical prescribed forces. The flow is periodic in the x direction. In the y direction,
we apply Neumann for pressure and Dirichlet for velocity. The numerical solution and the error are
plotted in figure 4.6. The convergence rate is second order for both velocity and pressure.

Differential Equation: (4.25)

1

Da ·Re
~u = ∇ · −P Ī +

1

β ·Re
∇2~u+ ~f

f1 = −
( 1

Da Re
+

20π2

βRe

)
sin(2πx) sin(4πy)− 2π sin(2πx) cos(πy)

f2 =
( 1

Da Re
+

4π2

βRe

)
cos(2πx) sin2(2πy)− 8π2

βRe
cos(2πx) cos(4πy)

+ π cos(2πx) sin(πy)

Boundary Conditions: (4.26)

u(0, y) = u(1, y)

u(x, 0) = 0

u(x, 1) = 0

v(0, y) = v(1, y)

v(x, 0) = 0

v(x, 1) = 0

p(0, y) = p(1, y)

py(x, 0) = 0

py(x, 1) = 0

Exact Solution: (4.27)

u(x, y, t) = − sin(2πx) sin(4πy)

v(x, y, t) = cos(2πx) sin2(2πy)

p(x, y, t) = cos(2πx) cos(πy)− 1
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Figure 4.6: Brinkman equations are solved numerically and compared with an exact analytical
solution. We obtain second order convergence.

4.4.4 Fluid-porous domains

We first validated our solver for the case of a homogeneous fluid. We obtained an analytical solution
to the Navier-Stokes equations subject to a tailor-made sinusoidal force. As expected, we found
second order convergence in both space and time. We then moved to consider a domain partially
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made of a porous medium. We selected a standard two dimensional pipe flow with a fixed interface
as depicted in figure 4.7, for which an analytical solution may be obtained.

We computed a transient solution for an infinite-size porous domain. However, for clarity, we
present here the steady-state solution only. Details of the transient solution can be found in the
Appendix. We consider an overlying fluid region of non-dimensional depth 1. Denoting the vertical
coordinate with y, the velocities in the homogenous fluid and the porous medium are, respectively,

uf =
G Re

2
(y − 1)(y + δ) and, (4.28)

up =
G Re

2
(2Da− δ)e

√
β
Day −G Re Da (4.29)

where δ = 2Da+
√
βDa

1+
√
βDa+

√
βζ

and G = dP
dx is constant. The stress jump boundary condition affects only

the value of δ, and has the most impact on the interface velocity at y = 0.

  	
  
  	
  

	
  
	
  

porous	
  medium	
  

    𝑢 = 0 
    𝑣 = 0 
𝑝! = 0 

𝒚 = 𝟏	
  

	
  

Porous	
  Media	
  
Flow	
  

	
  Fluid	
  Flow	
  

                                    𝑢 =   𝑢! 
                              𝑣 = 0 
                          𝑝! = 0 

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐  	
  
𝐵𝐶  𝑖𝑛  𝑥	
  

	
  

𝒚 = 𝟎	
  

y= −𝑳	
  

Figure 4.7: Pipe flow model used for validation of our porous-fluid solver. The driving force is a
constant pressure gradient in the x direction (∇p =< −G, 0 >). The horizontal bottom boundary
velocity ub is set to the analytical velocity calculated at depth y = −L by equation (4.29).

Simulation results for both methods are shown in figure 4.8 for ζ = 0.5, ζ = 0 and ζ = −0.5.
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Figure 4.8: Analytical and numerical results for pipe flow with constant pressure gradient G at
steady-state. The parameters used for these simulations are Re = 1, Da = 0.01, dy = 0.01,
dt = 0.01 and G = 1. For clarity only the line-integral method is depicted as the numerical solution.
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Figure 4.9: Convergence plot for pipe flow with constant pressure gradient. The error was computed
where it was the largest and parameters used were Re = 1, Da = 0.01, dt = 0.01 and L = 0.1.

Negative ζ values tend to decelerate the flow and positive ζ values do the opposite. When ζ = 0,
there is no stress jump, and both methods are identical. We note that the largest error always
occurs close to the interface, on the fluid side. The most critical location in applications is at the
interface itself, so we present convergence plots based on the error for the interpolated velocity at
the interface. The convergence is found to be of first order for ζ = 0.5 and second order for ζ = 0, as
shown in figure 4.9. The non-zero ζ implies that the velocity gradient is not continuous across the
interface, causing the convergence to be only first order for both approaches, though with different
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coefficients. The specific location of the interface relative to the grid also affects the magnitude of
the error, especially when the interface is parallel to the grid as is the case here.
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Figure 4.10: Error dependence on location of interface with respect to the grid. The parameters
used in this simulation are Re = 1, ζ = 0.5, dy = 0.001 and dt = 0.01. The error is calculated
using the steady-state solution. The domain size is kept fixed while the interface is moved across
the v-cell.

Figure 4.10 depicts a summary of results obtained for various interface positions relative to the
grid. Here 0 or 100 percent interface ratio of v-cell means that the interfaces passes through the u
grid-points, where it can be seen to yield the most accurate result. The convergence plot shown in
figure 4.9 was obtained while the interface was located at 30% with respect to the v-cell, where both
methods yield almost identical results. We see in figure 4.10 that the ”delta-force” method is less
sensitive to the interface position, presumably because it is more broadly distributed. On the other
hand, in the ”line-integral” method the forcing term is applied to a more focused area. The closer
the interface is to the neighboring u grid-points, the more accurate the results are.

For all three Da numbers considered here, the ”line-integral” method had a significantly lower
error on average, and hence was found to be superior to the ”delta-force” method for applications
where velocity at the interface is important. We note that the error may change sign, and thus
go lower than expected, as is the case for the ”line-integral” method with Da = 10−4 near an
interface ratio of 70%. In light of these results, we will use the ”line-integral” method throughout
the remainder of this study, as it provides overall more accurate velocities at the interface.

4.4.5 Flow past a porous cylinder

In this section the flow past a porous cylinder will be studied in more detail. The objective is
to validate the correctness of our method by comparing it to other similar numerical simulations.
The velocity and pressure fields are solved inside and outside the porous cylinder and the drag
convergence is verified using Oseen’s equations.
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The computational domain consists of a rectangular area with horizontal flow past a porous
cylinder in the middle of the domain. Due to symmetry the simulation is performed only in the
upper half of the domain, to lower the computational cost. Generally there are three main categories
of boundary conditions for pipe flow, pressure driven flow, velocity driven flow or a hybrid of both
types. In our simulations, the velocity driven boundary conditions were mostly used. Two different
configurations are outlined in figures 4.11 and 4.12 with corresponding boundary conditions. Here
u and v represent horizontal and vertical components of the velocity vector ~u. We consider 2
configurations:

Configuration1, shown in figure 4.11, includes Dirichlet boundary condition for velocity and
Neumann for pressure at inflow and Neumann boundary condition for velocity and Dirichlet for
pressure at outflow. The symmetry line in the middle shown as a dashed line helps us to simulate
half a domain size. We apply Neumann for horizontal velocity and pressure and assume no vertical
flow. At the top and lower boundaries, we apply Dirichlet boundary conditon for velocity and
Neumann for pressure.

Inlet: ~u = ~u0 and ∂p
∂x = 0, Outlet: ∂~u

∂x = 0 and p = 0
	
  

       u = u0 
       v = 0 
dp/dy = 0 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Outflow	
  

	
  

u = u0 
v = v0 
dp/dx = 0  

Inflow	
  
	
  

du/dx = 0  
dv/dx = 0 

            p = 0  
 

Symmetry 
Line 

 

du/dy = 0 
       v = 0 
dp/dy = 0 

 Porous 
Cylinder 

 

Figure 4.11: Porous cylinder in rectangular domain used for validation of solver. Neumann boundary
condition is used for velocity at the output.

Configuration 2, shown in figure 4.12, includes Dirichlet boundary condition for velocity and
Neumann boundary condition for pressure at inflow and outflow. Along the symmetry line, we
apply Neumann for horizontal velocity and pressure and assume no vertical flow as before. At the
top and lower boundaries, we apply Dirichlet boundary conditon for vertical velocity and Neumann
for pressure and horizontal velocity.

Inlet: ~u = ~u0 and ∂p
∂x = 0, Outlet: ~u = ~u0 and ∂p

∂x = 0
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Figure 4.12: Porous cylinder in rectangular domain used for validation of solver. Dirichlet boundary
condition is used for velocity at the output.

Both configurations can be used for drag calculations. For smaller domain sizes and lower
Reynolds numbers, configuration 2 is preferred as it preserves the symmetry of the flow. Fluid drag
calculation is critical in many applications. Here we will use it primarily for validation. The strategy
for calculating the drag is outlined in six steps.

1. The neighboring grid points are located at each marker position on the cylinder.

2. The pressure p and the velocity gradients ux and vy are evaluated on neighboring p-grid points.
The grid points for p, u and v are shown in figure 4.20.

3. The velocity gradients uy and vx are evaluated on neighboring cross points.

4. Bilinear interpolation is used to interpolate the pressure p and the velocity gradients at each
marker position.

5. The stress tensor ¯̄T is evaluated at each marker position.

¯̄Tij = −pij ¯̄I + µ(
∂ui
∂xj

+
∂uj
∂xi

) =

(
−p+ µ2ux µ(uy + vx)
µ(uy + vx) −p+ µ(2vy)

)
(4.30)

6. The total drag force in the horizontal direction is obtained by summation of the individual
contributions from each marker

Fdrag =
∑
m

Fm =
∑
m

( ¯̄T · n̂) · êx∆s (4.31)

where n̂ is the normal vector at marker m and ∆s is the boundary length attributed to each
marker.

The theoretical solution for Oseen’s equations are used for validation of our drag algorithm. The
Oseen’s equations for flow due to a moving body at small Reynolds number are the solutions to the
Navier-Stokes equations at steady state [94]. The boundary conditions used in this case are the ones

for a rigid body immersed in a uniform flow ~U .

~u = 0 at the surface of the rigid body (4.32)

~u → ~U when ~r →∞ (4.33)

p → p0 when ~r →∞ (4.34)
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There are no exact solutions that satisfy all the boundary conditions, however if we neglect the flow
features at infinity, approximate solutions can be obtained [94],

~u = C~U
(
− 1

2
log

r

a
− 1

4
+

1

4

a2

r2

)
+ C~x

~U · ~x
r2

(1

2
− 1

2

a2

r2

)
and (4.35)

p = p0 + Cµ
~U · ~x
r2

. (4.36)

The normal and tangential stresses at the surface of the cylinder can be derived from equations 4.35
and 4.36. These stresses exert a force on the cylinder surface causing a drag per unit length equal
to D = C 2π µ ~U where C is an arbitrary constant [94]. The convergence for our drag algorithm
using ~u and p given by equations 4.35 and 4.36 is shown in figure 4.13.
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Figure 4.13: Convergence of drag using Oseen’s theoretical solution for a solid cylinder. The absolute
error is shown versus resolution.

Next, we simulate the flow around a porous cylinder located in the center of a rectangular domain.
The boundary conditions are selected according to the configuration outlined in figure 4.12 with u0

and v0 calculated from equation 4.35. The numerical velocity and pressure are shown in figure 4.14
for Re = 1 and Da = 10−4.
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Figure 4.14: Simulation results for velocity and pressure fields around a porous cylinder for Re = 1
and Da = 10−4.

The flow around a porous cylinder is validated by comparing the numerical drag versus the
Oseen drag. We use Re = 1 and Da = 10−4 to replicate a similar flow as the Oseen flow in equation
4.35. Published results confirm that a porous cylinder with Da = 10−4 has similar drag to a solid
cylinder within an error margin of two percent. [95]. In addition Oseen equations are valid for flow
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at Re = 1 [94]. We conclude that although we use a porous cylinder in our simulation, the flow
features are very similar to the flow around a solid cylinder. Figure 4.15 confirms the convergence
of the numerical drag toward the Oseen drag as ∆x→ 0. Convergence appears slow, because of the
large changes in derivatives near the interface. For the resolution used (∆x ≥ 0.01), the relative
numerical error for gradients close to the interface remains large (< 0.2).
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Figure 4.15: Numerical drag converges with resolution. Relative error approaches zero as ∆x → 0.
The data point at ∆x = 0.1 was ignored for the slope evaluation.

4.5 Domain decomposition and parallel computing

In the bigger perspective, utilizing the single domain approach over the whole domain for estimating
erosion is not realistic unless unlimited computer resources are available. The mixed solver uses an
implicit numerical method because of the Brinkman equation and hence is computationally more
expensive than the fluid solver. We intend to apply the mixed domain approach only in areas where
the probability for erosion is high. In the mixed domain, fluid velocity at the fluid-porous interface
is non-zero and can be used to determine the erosion rate. This approach requires the fluid solver
to exchange boundary information with the mixed solver in the selected subdomain. In cases where
the flow is periodic in the x-direction the boundary information exchange is not required for the left
and right hand side boundaries.The sketch in figure 4.16 discloses the details of this unique process.

Regular Navier−Stokes solver

Mixed N.−S./Brinkman solver

d P/d y = 0 No flow

Gravity current

Figure 4.16: Our fluid-porous solver is applied in areas where erosion is likely to occur.

The challenge with this approach is to obtain the fluid velocities at the boundaries of the desig-
nated box. Measured data is normally not available in these situations, therefore we must rely on
an external fluid solver. We call this new approach with a mixed subdomain inside a larger fluid
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domain, for ”Domain Decomposition”. There are three main strategies to obtain the boundary data
in the fluid-porous domain.

1. The same methodology as a parallel fluid solver is implemented. At each time step, the pressure
will be solved iteratively in both domains simultaneously. This method is efficient and accurate
but complex. The accuracy is identical to the case as if the whole domain was solved in one
large big mixed-domain.

2. Fluid and mixed solver run simultaneously and exchange boundary information at each time
step as depicted in figure 4.18. In this approach, the horizontal and vertical velocity com-
ponents (u and v )are matched at the boundaries while the pressure is solved separately in
each domain. It is possible to employ a predictor-corrector step, where boundary information
is exchanged between the fluid and mixed domain multiple times (cycles) within each time
step. One or more cycles could be repeated to achieve the desired accuracy depending on
the selected overlap height. The overall solution will converge slowly as the flow approaches
steady-state. Although this method is easy to implement, the solution is most accurate only
at steady-state. The usefulness of this method is questionable as for reliable predictions of
erosion, the interface velocities must be accurate at all times.

3. The fluid solver simulates the flow with no slip boundary condition at the bottom. The velocity
and pressure are saved at each time step and used as boundary condition in the mixed-domain
solver. This strategy is simple but works best when the flow at the interface is relatively small.

4.5.1 Modular mixed and fluid solvers

The ideal design for fluid-porous simulations is a modular approach where pure fluid and mixed solver
subdomains are connected similar to pieces of a puzzle. This approach is flexible and powerful and
can be used for any arbitrary porous-fluid configuration. The main three advantages are:

1. Each subdomain runs on a separate processor. This allows the user to run simulations with
higher resolution over larger domains.

2. Any fluid-porous configuration can be simulated.

3. External fluid solvers can easily be integrated into our unique mixed solver.

We allow each subdomain to have one layer of overlap with other subdomains because of the MAC
grid. The overlap layer can be chosen in different formats but since the mixed subdomain is solved
using an implicit method the overlap should be chosen in such a way that it surrounds the mixed
subdomain at all sides.

We demonstrate this approach by simulating flow over a porous cylinder. This configuration
includes 5 fluid and 1 mixed subdomains as depicted in figure 4.17. We validated that this flow was
identical to as if we had one contiguous larger domain. Erosion simulations are computationally
expensive because they require high resolution specially at the interface separating the fluid from
porous media.
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Modular	Approach

• Mixed	Solver	is	numerically	expensive.
• We	apply	the	Mixed	Solver	only	where	erosion	occurs.
• Mixed	Solver	runs	in	parallel	with	a	Fluid	Solver.
• The	Modular	approach	is	flexible	and	can	be	combined	
with	other	Fluid	Solvers.

Fluid-Solver

Mixed-Solver

Fluid-Solver

Fluid-Solver

Fluid-Solver

Fluid-Solver

Figure 4.17: A fluid-porous domain is divided into smaller subdivisions. This modular design uses
parallel computing for fluid-porous simulations.

4.5.2 Domain decomposition by matching velocities
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Figure 4.18: The fluid solver and the mixed solver exchange boundary information at each time
step. Initially, the error is large but coverges quickly as we march toward steady state.

The schematics of domain decomposition technique is depicted in figure 4.18. The steps for imple-
menting this method are:
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1. We select the desired overlap and underlap heights. The underlap is the distance between the
lower boundary of the fluid domain and the interface. It is important that the underlap is
always greater than zero since we apply a tangential stress jump at the interface. The overlap
parameter must be chosen with care. A bigger overlap is computationally more expensive but
offers more stability.

2. We integrate the fluid domain from tn to tn+1 using ubottom and vbottom at y = underlap from
the mixed domain. If an implicit solver is used for the fluid domain it is important to choose
the boundary conditions at the right time. This step is called the predictor step.

3. We complete our cycle by integrating the mixed domain from tn to tn+1 using utop, vtop and
ptop from the fluid domain at y = underlap + overlap. For our time integration, we use the
boundary conditions at the right time. This step is called a corrector step.

4. For each time step it is recommended that the cycle is repeated two times. There is a significant
improvement by repeating two cycles versus only one. To reduce the error we could also try to
choose a bigger overlap at the expense of computational cost. The solution of the split-domain
solver approaches the solution for the full mixed domain solver at steady state.

Validation and numerical error for domain decomposition

We validate the split-method using the pipe flow example shown in figure 4.7 where exact analytical
solutions are available.

Generally the numerical error for the split method converges well as the solver marches toward
steady-state. The behavior and the order of convergence depends on different parameters such as
ζ, Da, Re, number of cycles, overlap and underlap. The trend is shown in the figure series 4.19.
We will not explore this method further as the error is larger in most situations compared with the
single domain mixed solver.
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Figure 4.19: Convergence plots are shown for different parameters in our domain decomposition
approach. The numerical error is larger than the single domain mixed solver but converges well at
steady state.
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4.5.3 Explicit parallel fluid solver

We present a parallel fluid solver for 2D incompressible Navier-Stokes equations. We employ finite
differences on a staggered grid as depicted in figure 4.20. The projection method is used to solve for
the pressure and the updated velocity. In a parallel solver, the boundary information must be shared
between subdomains at each time step. Because of the nature of the staggered grid there must be
one layer of overlap between the subdomains. Different boundary conditions require different grid
configurations which must be taken into consideration.
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Figure 4.20: MAC grid was used in our simulations. The numbers indicate splitting of our domain
into subdivisions for parallel computing.

The steps for our parallel solver implementation are:

1. We evaluate ~u∗ by neglecting the pressure term. Boundary information for each subdomain
must be updated before evaluating ~u∗.

~u∗ = A−1
[
~un + ∆t

(
− ~u · ∇~u+

1

Re
∇2~u+ ~f

)]
Note that the operator A−1 becomes the identity matrix for an explicit solver. For implicit
methods like Crank-Nicolson and our new mixed solver, A−1 will become a non-sparse matrix.

2. Next, we use the projection method to solve for the pressure by enforcing the volume con-
servation of the fluid. This implies that we have to solve the poisson equation at each time
step.

∇ ·A−1∇p =
∇ · ~u∗

∆t

We solve the poisson equation by iterative means (Biconjugate Gradient Stabalized Method).
We repeat the iteration in each subdomain until the residual is reduced below the tolerance.
This process requires the pressure boundary values for each subdomain to be updated at each
iteration.
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3. If any of the subdomains contains porous media, the A−1 operator must be applied to an aug-
mented mixed subdomain with an extra layer of grid points from neighboring subdomains. The
augmented subdomain ensures that A−1 operator is applied correctly to all discrete pressure
values inside the mixed subdomain.

4. Last, we update ~u∗ to retain the correct velocity. This step can be performed separately within
each subdomain, using the most updated boundary values.

~u = ~u∗ −∆t A−1∇p

4.6 Iterative and direct methods for pressure solver

In many areas of scientific computing, iterative methods are employed for solving large sparse linear
systems. Even with the latest advances in development of more efficient iterative algorithms, con-
vergence to a solution can not be guaranteed. The direct solution methods are still very popular
in real applications because they are more robust and predictable. Iterative linear solvers are ideal
when physical information of a specific problem can be used to obtain more robust methods. In
addition, iterative methods are easier to implement for parallel computing [96].

There are many different iterative methods available for solving a linear system for pressure.
Two methods, GMRES (Generalized Minimal Residual Mehod) [97] and BICGSTAB (Biconjugate
Gradient Stabalized Method) [93] were chosen for a closer investigation. The single most important
issue is to ensure convergence for large systems. Also parameters like convergence time and number
of iterations are critical for computational efficiency. The evaluation result for these methods is
summarized for systems with different sizes in table 4.1.

Method Size of Matrix A Tolerance Convergence Time [s] Number of Iterations
BICGSTAB 2400 x 2400 1.00 E-12 0.12 54
BICGSTAB 9800 x 9800 1.00 E-12 0.34 87
BICGSTAB 19600 x 19600 1.00 E-12 0.92 112
BICGSTAB 40000 x 40000 1.00 E-12 2.2 148

GMRES 2400 x 2400 1.00 E-12 0.22 39 x 5
GMRES 9800 x 9800 1.00 E-12 2.5 125 x 7
GMRES 19600 x 19600 1.00 E-12 5.2 183 x 3
GMRES 40000 x 40000 1.00 E-12 21.1 371 x 1

Table 4.1: Comparison of BICGSTAB and GMRES

The linear systems we consider here, are mostly sparse but non-symmetric and consequently ideal
for a selected number of iterative methods. We demonstrated numerically that the ”BICGSTABL”
method is consistently superior than ”GMRES” specially when it comes to higher resolutions.

Next, we compare the BiCGSTABL algorithm with a direct linear solver. We would like to know
how much faster the ”BICGSTABL” algorithm is compared with a direct solver and what is the
highest resolution we could run without the iterative error becoming the dominant error. The iter-
ative error will increase with resolution as the differential error will decrease. The iterative pressure
solver is not ideal when the iterative error dominates relative to the finite difference approximation.
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We analyze the performance of the iterative pressure solver (BICGSTABL) by using a conver-
gence study to illustrate its usefulness and limitations compared to a direct pressure solver. A fluid
problem with known analytic solution was used for convergence study. The computational domain
size was ”1× 1”, dt = 0.00005 and tfinal = 0.001. The result is shown in figure 4.21.
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Figure 4.21: Error study was conducted for direct and iterative pressure solvers. Iterative solver
performs as well as the direct solver.

The convergence plot illustrates the second order convergence for both solvers. This indicates
that both methods yield acceptable results. The best approach is to pick the faster method in each
scenario. The brown curves in figure 4.21 show the maximum numerical error in pressure. This error
is proportional to the condition number which increases with grid size N . Once the maximum error
is greater than the error due to the finite difference approximation for pressure, the theoretical limit
for lowest possible error has been reached and further resolution enhancement will not contribute to
a more accurate pressure. The blue and brown curves intersect at ∆x ≈ 0.005 if the tolerance for
the iterative pressure solver is set to 10−11.

Blue line: log10(‖P − Pexact‖)FD = 2log10(∆x) + 1 (4.37)

Brown line: log10(‖P − Pexact‖)Iter = −3log10(∆x)− 10.5 (4.38)

We conduct a time study to quantify the efficiency difference between the iterative and the direct
solver. In figure 4.22, we plot the time to solve for pressure versus grid size (N)1/2.
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Figure 4.22: Time study was conducted for direct and iterative pressure solvers. The iterative solver
is preferred for larger grid sizes.

The direct solver is faster for lower N but at N1/2 ≈ 100, the iterative solver takes over and
becomes faster. Matrix A is not sparse, hence it is computationally expensive to evaluate A and
perform a direct Ap multiplication. This operation requires huge memory allocation and makes
the iterative solver always slower than the direct solver. An alternative approach is to do the
multiplication Ap in steps outlined in equations 4.39 and 4.40.

A Pn+1 =
(
Dp
x[Au]−1Du

x +Dp
y [Av]−1Dv

y

)
Pn+1 ⇒

A Pn+1 = Dp
x[Au]−1Du

x P
n+1 +Dp

y [Av]−1Dv
y P

n+1 ⇒
A Pn+1 = P1 + P2

Where,

P1 = Dp
x[Au]−1Du

x P
n+1 and

P2 = Dp
y [Av]−1Dv

y P
n+1

(4.39)

P1 and P2 are evaluated separately and added up toward the end. The steps for calculating P1 are
shown below:

P1 = Dp
x[Au]−1Du

x P
n+1 ⇒

P 1
1 = Du

x P
n+1

AuP 2
1 = P 1

1

P1 = Dp
x P

2
1 (4.40)

P2 will be evaluated exactly the same way and added to P1 which completes the multiplication
process. The reason this modified multiplication method is less expensive in terms of efficiency and
memory allocation is that Dx, Dy, Au and Av are all band matrices but their inverse matrices are
typically non-sparse. For a 120 × 120 grid size system, it takes 25 seconds to solve the poisson
equation using the iterative pressure solver versus 50 seconds using the direct solver on a personal
laptop.
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4.7 Summary

We have introduced a numerical method for accurate and flexible simulation of a system consisting
of homogenous fluid and porous medium separated by a sharp interface. In particular, our approach
can easily be made to adjust to any geometry, and can also track a mobile interface between the
two media. We developed our method by incorporating the idea of single-domain covered by an
Eulerian grid, supplemented by a localized force on a Lagrangian interface able to account for a
stress jump boundary condition. To implement this interfacial force, we compared a line-integral
approach with a numerical delta function approach, and concluded that the line-integral approach
is generally more accurate, though its error varies more with the position of the interface relative to
the grid. Our method was validated against an analytical pipe-flow solution and found to be second
order accurate both in time and space away from the interface, and first order at the interface when
there is a stress jump.

We also found that solving for the pressure was computationally the most expensive step, re-
quiring to solve a non-sparse linear system. We compared iterative and direct pressure solvers and
presented a time study confirming the benefits of iterative solvers for big systems. For larger do-
mains, our method is therefore better incorporated in parallel to a traditional fluid solver. The
localized use of our method will provide a more accurate description of the flow near and below the
interface. We discussed three different modular approaches and concluded that the most accurate
parallel solution is to solve for pressure iteratively in the whole domain.
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Chapter 5

Simulation of erosion

5.1 Introduction

In natural systems involving sediment, particulate movement occurs mainly through two mecha-
nisms: suspension (or resuspension) and bed-load transport. Suspended particles are advected by
the flow and detach from the bed completely. On the other hand, bed-load transport consists of
particles that slide, roll or saltate in proximity to the deposit [20, 98]. Such particle movement is
somewhat erratic, with brief pulses of motion affecting random local groups of particles.

As the flow becomes stronger, smaller particles moving near the bed are lifted upward by turbu-
lent eddies and travel downstream as suspended load [98]. The concentration of suspended sediment
increases rapidly as the flow gains more vigor. While bed-load transport involves mostly particle-
particle interactions, which are notably difficult to capture with a continuum approach, resuspension
occurs mostly through fluid-particle interactions. As our simulations allow for an accurate descrip-
tion of the fluid flow near the interface, we will focus here on the resuspension effects and demonstrate
the use of our new method to simulate the erosion of a particulate deposit.

Our simulations will account for flow in and over the deposit, in contrast to the classical approach,
which assumes a solid deposit [23,99]. We consider the porous matrix to be fixed, as we focus on the
onset of erosion. As erosion occurs, the top-most particles will become suspended in the fluid and the
interface profile will be altered. Our method has the capability to allow for a mobile interface, but
as an initial implementation we assume the interface fixed. In most fluid-porous media interactions,
erosion is limited to narrow locations, and we anticipate that our mixed solver can be integrated
into a larger fluid solver, and used only where erosion is highly probable. This process can be easily
parallelized.

5.2 Equations of erosion

The physical system we described so far depends on three non-dimensional parameters: the Reynolds
number Re, the Darcy number Da and the constant ζ. In erosion applications, an additional
description of the deposited particles is required. We assume here that the fluid consists entirely
of water at normal atmospheric conditions with ρf = 1000 kg

m3 and µ = 10−3 Pa s. The Reynolds
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number in natural environmental settings is often very high, and hence requires high resolution and
small time steps. To keep computational times reasonable, we consider a smaller domain, envisioning
that it is part of a larger simulation. In our simulation model, we set the physical domain width
to L = 1 mm. For simplicity, the porous medium is assumed to consist of perfect spherical plastic
beads. The particle diameter, which affects permeability and so Da, is typically set to d = 0.1 mm,
enforcing the constraint d ≤ L

10 to maintain the validity of the Brinkman equations. We relate the
permeability, K, to the deposit’s porosity, ε, and particle size, d, through an empirical formula for

randomly packed spherical particles K = ε5.5

5.6 d
2 = Da L2 [100]. Smaller values of Da require higher

resolution and we therefore choose the largest particle diameter allowed by our domain size.

The density of the deposited beads is taken to be ρp = 1100 kg
m3 . This is lower than the density of

sand particles, but comparable to beads used in experiments, and enables us to promote erosion at
a lower Re. We choose the range of our key parameters to ensure we capture the onset of erosion,
yielding: 100 ≤ Re ≤ 700, 2× 10−5 ≤ Da ≤ 5× 10−5, and −0.5 ≤ ζ ≤ 0.5. The selected Da range
corresponds to a porosity of 44.2% ≤ ε ≤ 52.2% when d = 0.1 mm.

Various empirical models have been developed to quantify entrainment from both resuspension
and bed-load transport [101]. For comparison, we will refer to a model widely used in applications
derived by Garcia & Parker [23], which we refer to as the GP model. This model accurately
averages erosion over larger domains, but it does not provide detailed information about local effects,
or distinguish between bed-load transport and resuspension. In the GP model, the resuspension
flux Fr = FGP Us, is evaluated by an empirical formula, with Us denoting the particle settling
speed determined using the empirical formula developed by Dietrich [102]. The resuspension flux is
related to the particle Reynolds number Repa and bottom shear velocity ush. The strength of the
resuspension is a smoothed step-function of the variable Z, defined as

Z = ush Re
0.6
pa if Repa > 2.36, (5.1)

Z = 0.586 ush Re
1.23
pa if Repa ≤ 2.36 (5.2)

where ush and Repa can be expressed as

ush =
U

Us

√
1

Ref

∂(~u · ~t)
∂n

∣∣∣
interface

, (5.3)

Repa =
ρf d (gdR)1/2

µ
(5.4)

where g is the gravitational acceleration and R =
ρp−ρf
ρf

. In our simulations Repa is always close to

one and hence only the lower branch of Z is used. The normalized resuspension flux, FGP = Fr
Us

, is
defined as

FGP =
aZ5

1 + a
0.3Z

5
(5.5)

where a = 1.3 × 10−7 is an empirical constant. This normalized flux may also be viewed as a
concentration of entrained particles, and may not exceed 0.3 due to a saturation mechanism.

In our model, instead of relating the erosion flux empirically to the tangential stress, we consider
the velocity of the flow at the porous interface, and compare it to the particle settling speed. The
positive normal component of the fluid velocity minus the particle settling velocity, upa, is defined
as

upa = max
({

(α~u
∣∣∣
interface

− Usêz) · ~n, 0
})
, (5.6)

where α is an empirical constant that may be used to take other factors into account, for example
the adhesive forces between the particles. However, in the absence of a quantitative analysis, we
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don’t yet know how exactly α may depend on d, Re, or Da, and so we set α = 1. The normalized
resuspension flux for the new model Fnew, is defined as the product of the interface particle velocity
upa and the non-dimensional particle concentration in the deposit

Fnew =
upa (1− ε)

Us
. (5.7)

Figure 5.1 depicts schematically both models.
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Figure 5.1: Schematics of the GP erosion model and of the proposed erosion model.

We note that our model uses exclusively the computed velocities at the interface to determine
the suspension of particles. This is expected to be most useful in situations where suspension is
the dominating mode of transport, such as the spread of contaminants or bacteria. For a complete
erosion model, one will need to incorporate the bed-load transport occurring mostly at lower Re or
when larger particles are present. However, quantifying suspension and the fluid flow in the porous
medium is a necessary step toward obtaining an erosion model that accurately captures both effects
and provides insight into erosion mechanisms. The empirical model we show here for comparison
does not separate resuspension and bed-load transport. We therefore anticipate that it will predict
more erosion than our partial model which focuses on resuspension alone, but will still provide a
useful benchmark to assess the usefulness of our model.

5.3 Swirling flow
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Figure 5.2: Schematic of the swirling flow simulated, with boundary conditions applied.

The first application simulated was what we called a ”swirling flow”, which is depicted in figure 5.2,
along with the relevant boundary conditions. At the top boundary, we apply a sinusoidal velocity
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profile, creating a circulating flow inside the domain. The velocity profile is symmetric at the top,
with exactly one period across the domain, which ensures no net flow into or out of the domain.
At the bottom boundary beneath the porous medium, we apply a no-slip, no-penetration boundary
condition. A sample result for Re = 600, ζ = 0 and Da = 2 × 10−5 is shown in figure 5.3. The
velocity vector field shows the pattern of the flow in our computational domain, and the streamlines
are shown close to the interface. We also show the vorticity pattern over the whole domain.

Figure 5.3: Swirling flow velocity profile in the computation domain and zoomed in at the interface.
The double vortex in the left corner of the porous medium causes the flow to become asymmetrical
at higher Re numbers.

We first note the presence of a double vortex in the porous matrix beneath the region of upflow,
as can be seen in figure 5.3, breaking the flow’s symmetry close to the interface. As Re gets larger,
these vortices grow in vigor and penetrate the interface into the fluid domain. These vortices are
the result of the (locally) high pressure area that forms around the stagnation point located beneath
the region of upflow. As fluid is able to penetrate inside the porous layer, no stagnation point forms
near the interface beneath the downflow region.
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Figure 5.4: Erosion flux for swirling flow at different Reynolds numbers. The top two figures show
results for the GP erosion model, and the bottom two figures show results for the proposed erosion
model.

The most determinant parameter promoting erosion in our simulations is the Reynolds number.
Higher Re indicate a flow with more momentum to transport solid particles away from the upper
layer of the porous medium. Figure 5.4 shows the erosion flux for both the GP model and our model
for different values of Re. Here, F represents the normalized flux and is shown versus the x position
along the interface, with higher F corresponding to a greater erosion rate. The shear velocity
ush, which is directly proportional to the stress at the interface, is also shown. All parameters
are normalized with the non-dimensional settling speed Us for ease of comparison. It can be seen
that both models predict a significant increase of erosion for larger Re. Our model predicts that
erosion first occurs at Re = 600, while the GP model predicts erosion at Re as low as 300. This is
attributable to the fact that at lower Re particles move primarily as bed-load, by hopping, rolling,
and/or sliding. The onset of erosion thus differs between the two models because the GP model
includes both bed-load transport as well as suspension, while our model only captures resuspension,
which occurs at higher Re. The factor of two difference between both models is consistent with
observations of when bed-load and resuspension are triggered [103].

A comparison of the location where erosion is greatest shows both models predicting that en-
trainment occurs from two major peaks. The GP peaks are wider with the center located in the
center and beneath the downflow portion of the domain, where the fluid stress and horizontal ve-
locities are at maximum. In our model the peaks are narrowed and located where the upward flow
is strongest. Because of the presence of the double vortex, there are two such locations, on either
side of the upflow in fluid. We note that simulations in which the porous medium is replaced with
a solid do not show a vortex pair, and therefore predict a rather different erosion pattern, with a
much less pronounced M shape peak forming under the region of upflow.

The GP model saturates at 0.3, which is imputable to upper layer particles being removed before
the particles at lower depth are impacted. Our current model does not have a saturation mechanism,
though as the erosion rate is increased and more particles are entrained one could replace the interface
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velocity with velocity taken at a depth that depends on the erosion rate. This feature could easily
be incorporated in our approach, as the fluid velocity is known anywhere inside the porous medium.
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Figure 5.5: Erosion flux for swirling flow with a flat interface at different ζ. The top two figures
show results for the GP erosion model, and the bottom two figures show results for the proposed
erosion model.

Next we look at the influence of the parameter ζ, which measures the tangential stress jump
across the boundary, with a positive ζ meaning higher stress at the boundary compared with a fluid-
solid boundary. Both models predict higher erosion with increased ζ. This is directly understandable
for the GP model, as greater ζ implies a larger stress at the interface, and so a higher erosion flux.
Our model is based on the vertical fluid velocity at the interface, which is also increased by a greater
interfacial stress, though indirectly: larger stresses enhance the strength of the circulation, which
in turn increases the vertical velocity. It is also evident that the dependence of the erosion rate on
ζ is greater for our model than for the GP model, which is attributable to enhanced suspension to
bed-load ratio for higher stress, and the latter model’s saturation level limiting its growth.
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Figure 5.6: Erosion flux for swirling flow for different Da numbers and fixed particle size. The top
two figures show results for the GP erosion model, and the bottom two figures show results for the
proposed erosion model.

Finally, we look at how the parameter Da impacts the erosion rate. Increasing Da and keeping
the size of our particles fixed to d = 0.1mm corresponds to increasing the porosity. We see in figure
5.6 that the GP model erosion flux is nearly independent of Da, while our model shows a strong
increase of suspension flux with increased Da. For the values shown, and for smaller Da as well,
increasing Da results in very slight reduction of stress at the interface. The GP model is thus nearly
unaffected by such changes. However, for our method there are two major parameters influencing
the erosion flux, vertical fluid velocity and particle concentration. As Da and porosity increases,
the vertical fluid velocity increases rapidly while the particle concentration is reduced. The effect
of higher vertical velocities is found to far outweigh the decrease in particle concentration, resulting
in a rapid increase of suspension flux. An alternative interpretation of those results is that with
increased Da, we encounter more suspension, while smaller Da corresponds to higher bed-load
transport predicted only by the GP model.
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Figure 5.7: Erosion flux for swirling flow for different Da numbers and fixed porosity. The top
two figures show results for the GP erosion model, and the bottom two figures show results for the
proposed erosion model.

A change in Da can also be obtained by changing the particle diameter while keeping the porosity
fixed. The normalized erosion flux for a fixed porosity ε = 0.522 is shown in figure 5.7. Here,
both models predict higher erosion flux with smaller Da. There are now two competing factors
counteracting each other. Smaller particle sizes reduce the particle settling speed, which favors
erosion in both models, either by increasing the non-dimensional stress for the GP model, or by
decreasing the threshold velocity to exceed in our model. However, the flow in the porous matrix
will be strongly impeded due to the low permeability associated to smaller particles. Overall, the
effect of lower settling velocity prevails and the combined effect is a moderate increase in erosion flux.
This result is consistent with experiments where smaller particles get eroded and suspended more
easily than larger particles for a given flow, provided there are no excess adhesion forces between
the particles as is the case for sediments like clay and silt. Our model could also be made to capture
adhesion effects by choosing α > 1.

5.4 Hill flow

Figure 5.8 shows the details of the second setup and boundary conditions we simulated, which we
call ”hill flow”. This flow, with its wavy topography, is common to many natural settings. It also
emphasizes the effectiveness of our method to easily simulate a system with a curvilinear interface,
which is simply achieved by relocating the interfacial markers. At the top boundary, we apply a
constant horizontal velocity, forcing the flow to move from left to right and transferring momentum
to the fluid in the entire domain. At the bottom boundary below the porous medium, we apply a
no slip, no penetration boundary condition for the velocity. The interface profile is a sine function
with amplitude 0.05 and period 1 and is fixed in time.
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Figure 5.8: Schematics of the hill flow, with boundary conditions applied.

We show in figure 5.9 the flow resulting from letting the fluid approach steady-state from rest
for Re = 600 and Da = 2× 10−5. Although the flow on the upper part of the domain is predictably
unidirectional, the flow near the interface is more interesting to analyze. Here, unlike in a system
where the lower layer is solid, a portion of the flow pierces the interface across the hill profile. The
most significant flow pattern is the vortex buildup behind the porous hump, sucking fluid from the
trough of the interface. The flow close to the interface is strongest right at the top of the hump and
slowest at the trough.

Figure 5.9: Hill flow velocity profile in the computation domain and zoomed in at the interface. The
flow is strongest on top of the first hill and a vortex is formed below the middle of the interface.

The erosion flux for a hill flow for both models is shown in figure 5.10 for three different values of
Re. The vertical axis F indicates the normalized flux of particles eroding away from the boundary
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and the horizontal axis indicates the position along the interface. Due to the dependence of the
numerical accuracy on the relative interface-grid location as shown in figure 4.10, the curvilinear
interface velocity tends to be noisy. Here, to obtain a more regular resuspension profile for the same
resolution as in the previous section, we computed the resuspension flux using a velocity that was
averaged over two markers on each side. As in the swirling flow case, there is a significant increase
of erosion when Re is higher. Our model predicts erosion starting first around Re = 450, while for
the GP model, erosion starts at Re = 300. Erosion is again promoted at a lower Re for the GP
model, but the difference is smaller in this set-up. This is mostly due to the increased flow within
the hump region in this curvilinear set-up, which favors erosion in our model, and to a lesser degree
the reduction in the normal component of the settling speed due to the slope of the interface.
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Figure 5.10: Hill flow erosion flux for both models are shown at various Re numbers. The top two
figures show results for the GP erosion model, and the bottom two figures show results for the
proposed erosion model.

There is also a slight difference in the location where the erosion flux is strongest. The GP model
shows maximum erosion on top of the first bump with a fairly large spread covering the left side
of the domain. Our model on the other hand shows a more focused maximum intensity, slightly
downstream of the hump. This implies that suspension will take place most vigorously downstream
of the hump, while bed-load transport starts earlier and covers the whole bump. The trends for
parameters Da and ζ was similar to what was seen in the swirling flow, showing no enhanced effect
with the change in geometry.

5.5 Mobile interface

In realistic natural settings, as water flows over a particulate deposit with sufficient strength, smaller
size particles will be forced into suspension. This erosive process alters the shape of the interface
which in turn will affect the dynamics of the flow. This complex interaction between flow and the
interface is fundamental for accurate determination of flow characteristics and erosion flux. Most
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traditional solvers assume a fixed interface separating the porous media from the fluid and neglect
this coupled interaction. In our case, as stated previously, we construct our interface with Lagrangian
markers connected by cubic splines that can easily be moved.

We now allow the interface to be mobile and observe the flow dynamics as erosion occurs. Our new
approach for simulation of a mobile interface, has been implemented for the two previously examined
flow types swirling flow and hill flow. It is important to reiterate the fact that our simulations focus
solely on suspension and omit bedload transport, the other major component in erosion applications
for simplicity. The main steps for our moving interface algorithm can be summarized as follows.

1. Initially, the particle velocity ~upa is calculated at each marker position used for construction of
the interface. Particle velocity is defined as the normal component of the fluid velocity minus
the particle settling velocity as stated in equation (25).

2. If the particle velocity is non-zero anywhere along the interface, that specific marker is repo-
sitioned by ∆~I = −upa ∆t (1− ε) ~n.

3. At every time step, all the markers are redistributed in an equidistant manner along the
new interface. The periodicity in the x direction ensures that the first and last markers are
positioned at the opposite ends of the x-domain, having the same y position.

4. The indicating function M identifying the porous region, is updated if the interface is displaced.
This will force the fluid flow to adjust to the new profile.

5. The matrix A in the pressure poisson equation is updated since it depends on the indicating
function M . This is the most computationally expensive step as it requires the recalculation
of the matrix A and its inverse at every time step when erosion occurs.

The moving interface simulations have been observed to be stable for any geometry using our
implicit fluid-porous solver as long as the CFL condition is satisfied, as was the case for the fixed
interface case. The dominant numerical error for our method is at the interface where the largest
velocity gradients are. We tried four different interpolation methods to minimize the error at the
interface. The biharmonic spline interpolation was marginally superior to other methods as shown
in figure 5.11.
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Figure 5.11: Different interpolation methods used to compute the vertical velocity at the interface
of the hill profile. The parameters used were Re = 600 and Da = 5× 10−5.
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The interpolated vertical velocity at the hill profile interface is shown in figure 5.12 for different
grid sizes. As expected, the oscillatory behavior originating from the numerical error dependence
on the interface position with respect to the grid abates with increased resolution. We can conclude
that the best way to insure a smooth interpolation is higher resolution at the interface.

0 0.2 0.4 0.6 0.8 1
x

-2

-1

0

1

2

3

4

5

6

7

8

V
er

tic
al

 in
te

rf
ac

e 
ve

lo
ci

ty

10-3 Interpolated vertical velocity at the interface

60x30
100x50
150x75
200x100
5-point averaging

Figure 5.12: Interpolated vertical velocity at the interface for different grid resolutions for the hill
flow steady state velocity profile with parameters Re = 600 and Da = 5 × 10−5. The oscillations
subside with higher resolution and converge toward a smooth velocity profile.

Results

Our first experiment with a mobile interface was to repeat the swirling flow simulations. The
boundary conditions and domain size are identical to our fixed interface simulations. The parameters
used were Re = 600, ζ = 0 and Da = 2 × 10−5. The main advantage here is that we can observe
the fluid interaction with the porous medium as erosion takes place. We start the simulation with
the steady state velocity profile for our fixed interface swirling flow. Under these specific flow
conditions, the flow is strong enough to initiate erosion proportional to the normal fluid velocity
at the interface. The moving interface is shown together with the vertical fluid velocity in figure
5.13 and compared with the classical Garcia-Parker model. In the GP model, the displacement is
∆~IGP = −FGP Us ∆t ~n where FGP is the erosion flux given by equation (24). For this model only,
we assume constant flux calculated from the fixed interface flow and hence the displacement is given
by ~IGP = −FGP Us t ~n.
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Figure 5.13: The dynamic interface for swirling flow is depicted at different times for our model
versus GP model. The parameters used are Re = 600, Da = 5 × 10−5, promoting erosion at a
relatively fast rate. For comparison the original interface is shown as well in solid blue.

Both models predict similar locations of erosion maxima and minima. The erosion for our model
is more focused and it can be observed that at t = 20, the flow penetrates deeper into the sand at
locations where the interface has been displaced. A significant difference between the two models is
the four times higher erosion rate for our model compared to the GP model. The main reason is
that the normalized flux for the GP model never exceeds 0.3 because of a saturation mechanism. We
deliberately chose our parameters to promote erosion at a higher rate to reduce computational times,
and as a result the saturation of the GP model is emphasized. We note that our model predicts
much less erosion underneath the area where the flow is mostly downward. Stresses generated in this
region are large enough to generate erosion in the GP model, but because the flow pushes particles
downward into the deposit, our model does not predict any erosion.

The next application we explored is the hill flow profile depicted in figure 5.14. The interaction
of flow with the sand profile is visible as the erosion continues until the hill is flattened. The flow
conditions are identical to our fixed interface simulations.
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Figure 5.14: Dynamic interface for hill flow depicted at different times for our model and the GP
model. The parameters used are Re = 600, Da = 5 × 10−5, promoting erosion at a relatively fast
rate. For comparison the original interface is shown as well in solid blue.

Both models predict erosion over the hill portion of the profile with the maximum near the peak.
The GP model is predicting erosion over slightly larger area including the entire raised section while
our model is more focused around the peak of the hill. The intensity of erosion is many times larger
for our model again due to the saturation mechanism for the GP model. It can be observed that
the interface becomes more horizontal as the peak of the hill slowly flattens out.

5.6 Summary

We applied our new numerical method discussed in chapter 4 on two different erosion applications;
swirling flow and hill flow. We computed the erosion flux using the fluid velocity at the interface
and compared our results with an empirical erosion model (Garcia-Parker) based on the tangential
stress. Both models predict increased erosion rate for higher Re, zeta and smaller particle size. The
GP model does not respond to porosity changes while our model indicates a strong increase of the
erosion rate for higher porosity.

Next, we simulated the swirling flow and hill flow profiles with a mobile interface. The parameters
are selected such that erosion is promoted at a fast rate. The interface alteration for our model
correlates well with the GP model. We noted that the impact of the GP model is broader while
its erosion rate is slower mainly because of the flux saturation. Our model is strongly correlated to
the vertical velocities at the interface and predicts less erosion if the upward fluid velocity is weak.
The GP model predicts erosion in locations along the interface where the stress is high although the
fluid velocity is mostly pushing down into the sand. This explains the broader nature of erosion in
GP model compared to ours.
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Chapter 6

Conclusion

In this dissertation, we have studied the interaction of fluid with porous media in different environ-
ments. First, we investigated the settling of a porous spherical particle in density stratified fluid
to understand the mechanisms behind marine snow aggregation in the ocean. We successfully de-
termined a relationship between settling delay and quantities pertinent to the characteristics of the
particle and the ambient fluid. Next, we developed a new numerical method for accurate and flexible
porous-fluid simulations. This method is applicable to any geometry and can easily handle a mobile
interface. Lastly, we applied this method on two erosion applications where fluid is flowing over
sandy deposits of different shapes. We quantified the suspension rate of the sand particles into the
fluid and observed the deformation of the interface. The novel idea in our method is that erosion is
derived from the fluid velocity along the interface and may not require an empirical constant.

Systems with fluid flow through domains that are partially porous are relevant in many appli-
cations in geology, biology, medicine and bioengineering. The governing equations describing these
systems can not be solved analytically in most cases. Therefore the most efficient approach is to
analyze them by means of simulations. In our settling application, we quantified the settling delay
of a porous particle in density stratified ambient with respect to the most important parameters
of the system. While the parameter regime was too large to explore entirely, we quantified the
effects of each parameter when varied individually. It remains to be confirmed that the quantitative
effects described here are the same when several parameters are varied simultaneously. We intend
to explore this in our future research.

The marine snow settling results presented here make use of two significant idealizations com-
pared to real oceanographic systems. First, we considered a spherical particle, while marine snow
is notoriously irregular in shape. To make use of our results, an effective radius may be identified
to describe a real particle, particularly in the linear regime prevailing at low Reynolds numbers. It
is possible, however, that the best effective radius to describe the fluid flow differs from the best
effective radius to describe diffusive effects. Slender and spiky particles may entrain a volume of fluid
dictated by the size of the convex hull encompassing them, while diffusive time scale tend to depend
on the smallest length scale of the particle. A systematic study of the proper manner in which
to characterize the size and shape of marine snow remains to be undertaken. A second important
effect to consider in future research is that of the combined effects of several porous particles settling
together. The study of sedimentation of solid particles has revealed particularly complex dynamics
when large number of particles settle together [104, 105]. Even if these particles are localized and
act as a cloud, [106, 107], the long term dynamics in a stratified ambient are complicated by the
entrainment of ambient fluid. We anticipate the fluid entrained by a thermal or cloud of marine snow
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to be even more determinant in the dynamics of clusters of porous particles than it is for clusters of
solid particles.

In Chapter 4, we introduced a new numerical method for flow in fluid-porous applications with
a mobile interface. We have successfully demonstrated the usefulness of our numerical method for
simulation of different erosion applications. Our numerical scheme is robust and ideal for complex
flows interacting with a porous medium. Although our method is missing the bedload transport
mechanism, obtained results are still strongly correlated to the well recognized Garcia-Parker (GP )
model [23]. We were able to analyze the sand profile together with the detailed flow conditions inside
the porous region. Currently, the main disadvantage of our method is the computational cost re-
quired for each time step. For more efficient simulations, our numerical solver must be complemented
with non-uniform grid refinement and parallel computation capabilities. In addition, we would like
to add a variable density function to our Navier-Stokes solver coupled with the advection-diffusion
equation used to track a soluble agent concentration (like salt). With these additions, one would be
able to explore the spread of pollutants in situations where water flows over contaminated porous
media.

An accurate description of the flow within and above a porous deposit can provide practical
information about the spread of contaminants and pollutants in the ground caused by rain or flood-
ing. Pollution of our water resources is a major concern for highly sensitive ecosystems, with serious
health consequences [71]. Our method is well suited to track the concentration of contaminants
removed from the soil. The interaction of vortices, both within and above the deposit, and contam-
inants is of special interest and provide a more complete description of contaminant transport. Our
simulations showed that vortices may form inside the porous media beneath a swirling flow. We
detected that vortices grow in size and strength with higher Re, eventually penetrating the fluid
domain. A better understanding of the dominant transport mechanism may be useful to control and
reduce the spread of pollutants.

In many applications where a concentration of suspended particles is transported by the fluid
and particles may be deposited or eroded, the use of a mobile interface is an essential requirement.
Our numerical method may easily incorporate this feature. In the present study, we focused on
the onset of erosion and simulated the flow of water over different profiles of sandy deposits. The
trigger for erosion in our model is based on whether the normal fluid velocity exceeds the particle
settling velocity in contrast to the traditional way where an empirical model based on stress is used.
Our results were consistent with ones obtained based on the GP model and predicted increasing
erosion flux with higher Re, slip coefficient ζ and smaller particle size d. In addition, as our method
is specifically targeting resuspension, the erosion is triggered at higher Re compared with the GP
approach, which includes some bed-load transport [98]. In contrast to traditional fluid solvers where
no-slip boundary conditions are applied, our method can provide the velocities within the porous
medium and fluid, and can therefore capture differences due to variations in the porous medium. Our
model thus predicted higher erosion for higher porosity, while the GP model showed no significant
change.

The erosion model proposed here can be further refined, for example by including adhesion
forces for smaller particles. To do so, we have introduced a parameter α, currently set to one,
which allows the flexibility to take this into consideration. Moreover, for higher Re, as the interface
normal velocities increase, the erosion flux should eventually become saturated. As the erosion flux
increases, a deeper layer of particles below the interface will be affected and hence the effective
normal velocity should be evaluated at a level below the interface. The level where the velocity
is evaluated could therefore be correlated to the particle flux, for example by considering the flux
from a previous time step. This is consistent with the GP model where erosion is saturated having
maximum FGP = 0.3. Further, one could include a mechanism accounting for rolling and bed-load
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transport that occur at lower Re [108]. Accounting for the flow within a fixed porous deposit lays
the ground for further exploration of how a porous matrix may be moved by its interstitial flow, as
is the case in many erosive flows. If the porous matrix moves, the Brinkman equations still allow
the determination of the fluid velocity relative to it. Computing how to move the porous matrix
itself would require empirical models or detailed granular material simulations. The latter problem
is particularly difficult to model, but obtaining an accurate description of the flow within the porous
medium is an important step toward a useful representation of mobile porous matrices.
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Appendix A

A.1 Implicit Navier-Stokes solver

A.1.1 Advection equation

We solve the advection equation on a 2D staggered grid using Adams-Bashforth2 for time integration
and central differences for spatial discretization.

∂~u

∂t
= −~u · ∇u+ ~f (A.1)

~u represents fluid velocity and ~f is an external body force. Equation A.1 is split into horizontal and
vertical components,

ut = −uux − vuy + f1 solved on u-grid (A.2)

vt = −uvx − vvy + f2 solved on v-grid (A.3)

where u and f1 denote velocity and force in x-direction and v and f2 the velocity and force in y-
direction. We rewrite the spatial derivatives using finite difference approximation. The differential
operators are written in matrix form and applied to discretized variables.

ux = Du
xU + C1

uy = Du
yU + C8

V u = Mv→uV + C16

vx = Dv
xV + C3

vy = Dv
yV + C10

Uv = Mu→vU + C15

U and V are discrete velocites in horizontal and vertical directions. They reside on different grid
points implied by our use of a MAC grid. M operator is used to evaluate a discrete variable on
a different grid. D represents a central difference operator and C contains boundary information.
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Next, we apply the AB2 scheme (Adams-Bashforth2) to PDEs A.2 and A.3.

∂~u

∂t
= −~u · ∇u+ ~f ⇒ in x-direction

ut = −uux − vuy + f1 = f(u)

{AB2} ⇒ Un+2 = Un+1 +
∆t

2

(
− f(Un) + 3f(Un+1)

)
where

f(Un) = −Un (Du
xU

n + Cn1 )− (Mv→uV n + Cn16) (Du
y U

n + Cn8 ) + fn1

∂~u

∂t
= −~u · ∇u+ ~f ⇒ in y-direction

vt = −uvx − vvy + f2 = f(v)

{AB2} ⇒ V n+2 = V n+1 +
∆t

2

(
− f(V n) + 3f(V n+1)

)
where

f(V n) = (−Mu→vUn + Cn15) (Dv
xV

n + Cn3 )− V n(Dv
y V

n + Cn10) + fn2

A.1.2 Heat equation

We solve the heat equatioin on a MAC grid using Crank-Nicholson scheme. We followe the same
procedure as the advection equation. The heat equation is broken into horizontal and vertical
components and discretized.

∂~u

∂t
= µ∇2~u ⇒ (A.4)

ut = µ(uxx + uyy) (A.5)

vt = µ(vxx + vyy) (A.6)

uxx = Du
xx u+ C2

vxx = Dv
xx v + C4

uyy = Du
yy u+ C9

vyy = Dv
yy v + C11

∂~u

∂t
= µ∇2~u ⇒

ut = µ(uxx + uyy) ⇒ {Crank −Nicholson} ⇒

Un+1 = Un +
∆tµ

2

(
(Du

xx +Du
yy)Un + Cn2 + Cn9 + (Du

xx +Du
yy)Un+1 + Cn+1

2 + Cn+1
9

)
⇒

Un+1 =
[
I − ∆tµ

2
(Du

xx +Du
yy)
]−1
([
I +

∆tµ

2
(Du

xx +Du
yy)
]
Un +

µ∆t

2
(Cn2 + Cn9 + Cn+1

2 + Cn+1
9 )

)

If Au = I − ∆tµ

2
(Du

xx +Du
yy) ⇒

Un+1 = [Au]−1

([
I +

∆tµ

2
(Du

xx +Du
yy)
]
Un +

µ∆t

2
(Cn2 + Cn9 + Cn+1

2 + Cn+1
9 )

)
(A.7)
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vt = µ(vxx + vyy) ⇒ {Crank −Nicholson} ⇒

V n+1 = V n +
∆tµ

2

(
(Dv

xx +Dv
yy)V n + Cn4 + Cn11 + (Dv

xx +Dv
yy)V n+1 + Cn+1

4 + Cn+1
11

)
⇒

V n+1 =
[
I − ∆tµ

2
(Dv

xx +Dv
yy)
]−1
([
I +

∆tµ

2
(Dv

xx +Dv
yy)
]
V n +

µ∆t

2
(Cn4 + Cn11 + Cn+1

4 + Cn+1
11 )

)

If Av = I − ∆tµ

2
(Dv

xx +Dv
yy) ⇒

V n+1 = [Av]−1

([
I +

∆tµ

2
(Dv

xx +Dv
yy)
]
V n +

µ∆t

2
(Cn4 + Cn11 + Cn+1

4 + Cn+1
11 )

)
(A.8)

A.1.3 Navier-Stokes equations

We solve the full Navier-Stokes equation using finite differences on a MAC grid. We use Adams-
Bashforth2 scheme for time integration of the advection part and Crank-Nicholson for the diffusive
part. We obtian the updated velocities, U∗ and V ∗ by ignoring the pressure term. Lastly, we use
the projection method to solve for pressure.
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∂~u

∂t
= −~u · ∇u+ ~f +

1

Re
∇2~u−∇p ⇒ in x-direction

ut = −uux − vuy + f1 +
1

Re
(uxx + uyy)− px {AB2 & CN} ⇒ (A.9)

U (n+2) = Un+1 +
∆t

2

(
− convn + 3 convn+1

)
+

∆t

2Re

(
(Du

xx +Du
yy)Un+1 + Cn+1

2 + Cn+1
9 + (Du

xx +Du
yy)Un+2 + Cn+2

2 + Cn+2
9

)
− ∆t(Du

xP
n+1 + Cn+1

6 )

=
[
I − ∆t

2Re
(Du

xx +Du
yy)
]−1
([
I +

∆t

2Re
(Du

xx +Du
yy)
]
Un+1 +

∆t(Cn+1
2 + Cn+1

9 + Cn+2
2 + Cn+2

9 )

2Re

+
∆t

2

(
− convn + 3 convn+1

)
−∆t(Du

xP
n+1 + Cn+1

6 )

)
where,

convn =
(
− Un (Du

xU
n + Cn1 )− (Mv→uV + Cn16) (Du

y U
n + Cn8 ) + fn1

)
.

If Au = I − ∆tµ

2
(Du

xx +Du
yy) ⇒

U (n+2) = [Au]−1

([
I +

∆t

2Re
(Du

xx +Du
yy)
]
Un+1 +

∆t(Cn+1
2 + Cn+1

9 + Cn+2
2 + Cn+2

9 )

2Re

+
∆t

2

(
− convn + 3 convn+1

))
−∆t[Au]−1(Du

xP
n+1 + Cn+1

6 )

= U∗(n+2) −∆t[Au]−1(Du
xP

n+1 + Cn+1
6 ) (A.10)

where,

U∗(n+2) = [Au]−1

([
I +

∆t

2Re
(Du

xx +Du
yy)
]
Un+1 +

∆t(Cn+1
2 + Cn+1

9 + Cn+2
2 + Cn+2

9 )

2Re

+
∆t

2

(
− convn + 3 convn+1

))
(A.11)
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∂~u

∂t
= −~u · ∇u+ ~f +

1

Re
∇2~u−∇p ⇒ in y-direction

vt = −uvx − vvy + f2 +
1

Re
(vxx + vyy))− py {AB2 & CN} ⇒ (A.12)

V (n+2) = V n+1 +
∆t

2

(
− convn + 3 convn+1

)
+

∆t

2Re

(
(Dv

xx +Dv
yy)V n+1 + Cn+1

4 + Cn+1
11 + (Dv

xx +Dv
yy)V n+2 + Cn+2

4 + Cn+2
11

)
− ∆t(Dv

yP
n+1 + Cn+1

13 )

=
[
I − ∆t

2Re
(Dv

xx +Dv
yy)
]−1
([
I +

∆t

2Re
(Dv

xx +Dv
yy)
]
V n+1 +

∆t(Cn+1
4 + Cn+1

11 + Cn+2
4 + Cn+2

11 )

2Re

+
∆t

2

(
− convn + 3 convn+1

)
−∆t(Dv

yP
n+1 + Cn+1

13 )

)
where,

convn =
(
− (Mu→vUn + Cn15) (Dv

xV
n + Cn3 )− V n (Dv

y V
n + Cn10) + fn2

)
⇒

If Av = I − ∆t

2Re
(Dv

xx +Dv
yy) ⇒

V (n+2) = [Av]−1

([
I +

∆t

2Re
(Dv

xx +Dv
yy)
]
V n+1 +

∆t(Cn+1
4 + Cn+1

11 + Cn+2
4 + Cn+2

11 )

2Re

+
∆t

2

(
− convn + 3 convn+1

))
−∆t[Av]−1(Dv

yP
n+1 + Cn+1

13 )

= V ∗(n+2) −∆t[Av]−1(Dv
yP

n+1 + Cn+1
13 ) (A.13)

where,

V ∗(n+2) =
[
Av]−1

([
I +

∆t

2Re
(Dv

xx +Dv
yy)
]
V n+1 +

∆t(Cn+1
4 + Cn+1

11 + Cn+2
4 + Cn+2

11 )

2Re

+
∆t

2

(
− convn + 3 convn+1

))
. (A.14)

AB2 scheme is a multi-step method and requires the two previous time steps. We use forward Euler
for our first time stepping.

U∗1 = U0 + ∆t
(
− U0 (Du

xU
0 + C0

1 )− (Mv→uV 0 + C0
16) (Du

y U
0 + Co8 ) + f0

1 + (Du
xx +Du

yy)U0 + C0
2 + C0

9

)
V ∗1 = V 0 + ∆t

(
− (Mu→vU0 + C0

15) (Dv
xV

0 + C0
3 )− V 0 (Dv

y V
0 + V 0

10) + f0
2 + (Dv

xx +Dv
yy)V 0 + C0

4 + C0
11

)
The pressure Pn+1 can be obtained by utilizing that the velocity for incompressible flow is divergence
free (projection method).

Un+2 = U∗(n+2) −∆t[Au]−1(Du
xP

n+1 + Cn+1
6 ) (A.15)

V n+2 = V ∗(n+2) −∆t[Av]−1(Dv
yP

n+1 + Cn+1
13 ) (A.16)
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⇒ U∗(n+2)
x + V ∗(n+2)

y = ∆t
(
Dp
x[Au]−1(Du

xP
n+1 + Cn+1

6 ) + Cn+1
7

)
+ ∆t

(
Dp
y [Av]−1(Dv

yP
n+1 + Cn+1

13 ) + Cn+1
14

)
⇒

(
Dp
x[Au]−1Du

x +Dp
y [Av]−1Dv

y

)
Pn+1 =

U
∗(n+2)
x + V

∗(n+2)
y

∆t

− Cn+1
7 − Cn+1

14 −Dp
x[Au]−1Cn+1

6 −Dp
y [Av]−1Cn+1

13

⇒ A Pn+1 = b (A.17)

The pressure is obtained by solving the linear system A.17. This linear system can be solved directly
or by using an iterative method. Iterative methods are preferred for higher resolutions when the
memory resources are limited.

A.2 Brinkman equations

We solve the non-dimensional Brinkman equations numerically using finite differeces on a MAC grid.
We use cetral difference operators to approximate our spatial derivatives. The velocity is divergence
free because of the incompressibility of the fluid. We use projection method to solve for pressure
similar to the Navier-Stokes equations.

1

Da ·Re
~u = ∇ · −pĪ +

1

β ·Re
∇2~u+ ~f ⇒ (A.18)

1

Da ·Re
u = −px +

1

β ·Re
(uxx + uyy) + f1 (A.19)

1

Da ·Re
v = −py +

1

β ·Re
(vxx + vyy) + f2 (A.20)

uxx = Du
xx U + C2

uyy = Du
yy U + C9

vxx = Dv
xx V + C4

vyy = Dv
yy V + C11

px = Du
x P + C6

py = Dv
y P + C13[ 1

Da ·Re
¯̄I −

Du
xx + C2 +Du

yy + C9

β ·Re

]
U = −(Du

xP + C6) + f1 (A.21)

if A =
[ 1

Da ·Re
¯̄I −

Du
xx + C2 +Du

yy + C9

β ·Re

]
⇒

U = −A−1(Du
xP + C6) + U∗ (A.22)

where, U∗ = A−1f1[ 1

Da ·Re
¯̄I −

Dv
xx + C4 +Dv

yy + C11

β ·Re

]
V = −(Dv

yP + C13) + f2 (A.23)

if B =
[ 1

Da ·Re
¯̄I −

Dv
xx + C4 +Dv

yy + C11

β ·Re

]
⇒

V = −B−1(Dv
yP + C13) + V ∗ (A.24)

where, V ∗ = B−1f2
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∇ · ~u = 0 ⇒ (A.25)

Ux + Vy = 0 ⇒
Dp
x

(
−A−1(Du

xP + C6) + U∗
)

+ C7 +Dp
y

(
−B−1(Dv

yP + C13) + V ∗
)

+ C14 = 0 ⇒[
Dp
xA
−1Du

x +Dp
yB
−1Dv

y

]
P = Dp

x(−U∗ +A−1C6) +Dp
y(−V ∗ +B−1C13)− C7 − C14 ⇒

P =
[
Dp
xA
−1Du

x +Dp
yB
−1Dv

y

]−1[
Dp
x(−U∗ +A−1C6) +Dp

y(−V ∗ +B−1C13)− C7 − C14

]
U = −A−1Du

xP + U∗ (A.26)

V = −B−1Dv
yP + V ∗ (A.27)

A.3 Mixed domain pipe flow with infinite porous depth

In this derivation for pipe flow we assume horizontal flow and constant pressure gradient. u the
horizontal velocity is fixed at top boundary and the flow is periodic in x direction. The fluid height
is D and the porous medium is infinite. The flow starts from rest and approaches steady-state
as t → ∞. These assumptions are used to simplify the non-dimensionalized governing equations
(4.5). The Initial Boundary Value problem for our pipe flow becomes much simpler as the nonlinear
convective terms disappear. This leaves, in the fluid

∂uf
∂t

= −∇p+
1

Re

∂2uf
∂y2

and in the porous medium
1

Da Re
up = −∇p+

1

βRe

∂2up
∂y2

.

The boundary conditions at the walls are

uf (y = D) = utop

up(y → −∞) = −G Re Da

and along the interface

uf = up

∂uf
∂y =

1

β

∂up
∂y

+
ζ√
Da

up (A.28)

where the second boundary condition is the steady-state flow caused in the porous medium by a
pressure gradient G. The analytical solution for velocity in the fluid region, uf and the porous region
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up is expressed below.

uf =
G Re

2
y2 +Ay +B +

∞∑
n=1

An sin
[
kn(y −D)

]
e−

k2n
Re t (A.29)

up = Ce
√

β
Day −G Re Da+

∞∑
n=1

Bn e
√

β
Day

A =
1√
βDa

C +
ζ√
Da

B

B = C −G Re Da

C =
utop − G Re

2 D2 +G Re Da+D ζ Re G
√
Da

1 + D√
βDa

+ Dζ√
Da

kn = −1/
√
β + ζ√
Da

tan(knD) and,

An =

−G Re D2

2kn
+
(

2G Re
k3n
− 2B

kn

)
sin2(Dkn2 ) + A

k2n
sin(Dkn)− AD

kn

D
2 −

sin(2Dkn)
4kn

Bn = −Ane−
k2n
Re t sin(Dkn)

The solution is as expected a combination of a transient part slowly dying away and a constant
steady-state. There is no analytical solution for eigenvalues kn and hence they must be obtained
numerically. Fortunately only a handful of them are required to obtain an accurate solution. If an
accuracy of 10−15 is required for the analytical solution, we have:

e−
k2n
Re t < 10−15

kn >

√
− ln(10−15)

Re

t

kn > 6

√
Re

t
(A.30)

A.4 Mixed domain pipe flow with finite porous depth

The steady-state analytical solution when the porous thickness is finite has been derived as well
and used in our simulations. For a fluid height D and a porous medium thickness L, the simplified
Navier-Stokes and Brinkman equations and the known boundary conditions yield the boundary value
problem below. The differential equations in the fluid and porous medium are

0 = −∇p+
1

Re

∂2uf
∂y2

1

Da Re
up = −∇p+

1

βRe

∂2up
∂y2

with boundary conditions at the walls

uf (y = D) = 0 (A.31)

up(y = −L) = 0 (A.32)
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and along the interface

uf = up (A.33)

∂uf
∂y

=
1

β

∂up
∂y

+
ζ√
Da

up. (A.34)

The solution to the above BVP for velocity in the fluid, uf is

uf =
G Re

2
(y −D)(y + δ) where, (A.35)

δ =
2Da2 + β3/2D

√
Da

D Da+ β3/2Dζ + β3/2
√
Da

(A.36)

and the solution for the velocity in the porous medium up is

up = A cosh
(√Da

β
(y + L)

)
+B sinh

(√Da

β
(y + L)

)
−Da G Re (A.37)

A = Da G Re and

B =
G Re

(
βDζ
√
Da+ βDa−D2β/2

)
−G Re cosh(L

√
Da
β )
(
βDa−D

√
Da
β Da+ βDζ

√
Da
)

sinh(L
√

Da
β )
(
β +D

√
Da
β + βDζ√

Da

) .
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