
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Section Based Program Analysis to Reduce Overhead of Detecting Unsynchronized Thread
Communication

Permalink
https://escholarship.org/uc/item/8vx8d8wv

Author
Das, Madan Mohan

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8vx8d8wv
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

SECTION BASED PROGRAM ANALYSIS TO REDUCE OVERHEAD OF
DETECTING UNSYNCHRONIZED THREAD COMMUNICATION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Madan Mohan Das

March 2015

The Dissertation of
Madan Mohan Das is approved:

Professor Jose Renau, Chair

Professor Cormac Flanagan

Professor Anujan Varma

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Madan Mohan Das

2015

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Acknowledgments ix

1 Introduction 1
1.1 Contributions . 8
1.2 Thesis Organization . 10

2 Related Work 12
2.1 Static Race Detection . 13
2.2 Dynamic Race Detection . 15
2.3 Deterministic Runtime Systems . 18
2.4 Software Transactional Memory (STM) . 19
2.5 Data Flow Analysis . 21
2.6 Pointer Analysis Background . 22

2.6.1 Flow sensitive vs. insensitive pointer analysis 23
2.6.2 Context sensitive vs. insensitive pointer analysis 24
2.6.3 Dynamic vs. Static pointer analysis 25

2.7 Some important Flow insensitive methods . 26
2.7.1 Andersen’s flow insensitive analysis 26
2.7.2 Steensgaard’s algorithm . 27

3 Finding Disjoint Thread Sections 29
3.1 Terminologies . 29
3.2 SBPA Pointer Analysis Framework . 32

3.2.1 Perform modref analysis per section 33
3.2.2 Adaptive non-unification for points-to sets of function arguments . . . 33

iii

3.2.3 Field sensitivity for array elements . 36
3.3 Constructing the Reduced ICFG . 36
3.4 Single-Threaded Thread Sections (Single-TS) 41
3.5 Disjoint Thread Sections (Disjoint-TS) . 45
3.6 Overall Instrumentation Flow . 50

4 Programmer Annotations and MTROM 51
4.1 Marking Parallel Code Sections . 52
4.2 Multi Thread Read Only Memory . 52

5 Loop Invariant Log Motion 56
5.1 Scalar Loop Invariant Log Motion (SLILM) 57
5.2 Vector Loop Invariant Log Motion (VLILM) 58
5.3 Result of Applying LILM . 61

6 Experimental Results 63
6.1 Experimental Setup . 63
6.2 Results . 65

6.2.1 Overall Results . 66
6.2.2 Analysis of Reduction in Instrumentation 68
6.2.3 Benchmark Insights . 70
6.2.4 Compilation Overhead . 75

7 A case study with ThreadSanitizer 78

8 Improving Static Race Precision with SBPA 84
8.1 Methodology . 85
8.2 An Example Case . 87
8.3 Results . 91

9 Conclusion 96

10 Future Work 98
10.1 Symbolic Array Partitioning . 98
10.2 Generalized SBPA and MTROM . 99

10.2.1 Extension of SBPA to Tree of Threads 99
10.2.2 MTROM for Tree of Threads and Dynamic MTROM 100

10.3 Hardware Implementation of MTROM . 101

Bibliography 104

iv

List of Figures

1.1 Two threads T1 and T2 execute four different code sections (CS1, CS2, CS3,
CS4) separated by a barrier B. The barrier implicitly creates two thread sections
(TS1, TS2) that cannot execute simultaneously. WX and RX represent write
and read of some memory location X . Since X is not modified anywhere in
TS2, RX does not need to be instrumented. 6

1.2 A typical threaded section of program . 7

3.1 A code snippet showing the call of a function f , that has any of the thread
creation, join or synchronization directive. The resulting changes in RICFG are
shown on the right. 41

3.2 A program comprised of 4 code sections in 3 thread sections 42
3.3 A decomposition of threaded section into smaller, disjoint parallel segments . . 46
3.4 Two threads executing 5 code sections in 3 disjoint thread sections. 47

6.1 SBPA compiler pass detected 63% of all memory accesses at run-time as non-
conflicting. Excluding the improvements from ’Directives’ yields 51% accesses
proven as non-conflicting. 66

6.2 SBPA identified 80% of the dynamic memory accesses executed in single threaded
mode. 67

6.3 68% of the loads are detected as non-conflicting, with a few applications reach-
ing 100%. 68

6.4 61% of the stores do not need to be tracked by tools like data-race detectors
which is much better than 38% with Base. For STMs that may have restarts,
52% of the stores can be proven as safe. 69

6.5 Compilation times of Base and SBPA normalized against compile time when
no optimization is applied. On average, Base took 75% and SBPA took 46% of
unoptimized compile time. 76

7.1 SBPA yields over 2 times speedup compared to Tsan, with some applications
achieving over 30 times speedup. 82

v

7.2 ThreadSanitizer speed-ups in the different modes described earlier. SBPA, com-
bined with Directives, speeds up ThreadSanitizer execution by a factor of 2.74. 82

8.1 Static race detection flow with SBPA. Static races detected are classified and
further validated by dynamic race detection. 88

8.2 Percentages of total read and write lines identified as non-racy by Base and
SBPA techniques. 93

8.3 Percentages of read lines identified as non-racy by Base and SBPA techniques. . 93
8.4 Percentages of write lines identified as non-racy by Base and SBPA techniques. 93
8.5 Percentages of read and write instructions identified as non-racy by Base and

SBPA techniques. 94
8.6 Percentages of read instructions identified as non-racy by Base and SBPA tech-

niques. 94
8.7 Percentages of write instructions identified as non-racy by Base and SBPA tech-

niques. 94

10.1 A hierarchy of threads in a program, represented as a tree 100

vi

List of Tables

5.1 Total access logging reduction improvement with LILM 62
5.2 Load logging reduction with LILM. 62

6.1 Benchmarks used, abbreviation shown in parentheses. 64

7.1 Runtimes (in seconds) of executables compiled for ThreadSanitizer dynamic
race detection with 2 threads. 80

8.1 Total racy read and write lines, and total program lines for the benchmarks studied. 95

vii

Abstract

Section Based Program Analysis to Reduce Overhead of Detecting Unsynchronized

Thread Communication

by

Madan Mohan Das

Most systems that test and verify parallel programming, such as data race detectors and soft-

ware transactional memory systems, require instrumenting loads and stores in an application.

This can cause a very significant runtime and memory overhead compared to executing unin-

strumented code. Multithreaded programming typically allows any thread to perform loads and

stores at any location in the process’s address space independently. Most of these unsynchro-

nized memory accesses are non-conflicting in nature; that is, the values read from or written to

memory are only used by a single thread. We propose Section-Based Program Analysis (SBPA),

a novel way to decompose the program into disjoint sections to identify non-conflicting loads

and stores during program compilation.

We combine SBPA with improved context sensitive alias analysis, loop specific op-

timizations and a few user directives to further increase the effectiveness of SBPA. We imple-

mented SBPA for a deterministic execution runtime environment, and were able to eliminate

63% of dynamic memory access instrumentations. We also integrated SBPA with ThreadSan-

itizer, a state of the art dynamic race detector, and achieved a speed-up of 2.74 times on a

geometric mean basis. Lastly, we show that SBPA is also effective in static race detection.

viii

Acknowledgments

First, I sincerely thank my adviser Professor Jose Renau for his ideas, vision, constant support

and feedback over the last many years on my research. Without his help I won’t be able to reach

this milestone in my life.

I would also like to thank Professor Cormac Flanagan and Professor Anujan Varma

for accepting to review this work, and providing valuable feedback. This thesis wouldn’t have

been complete without their inputs.

I also thank Gabriel Southern, my fellow researcher and co-author in my publications

for his great effort and support for the work presented in this thesis; and for bringing positive

thoughts during times of difficulty.

I also sincerely thank other MASC lab students for their valuable inputs and feedback

during the tenure of my studies.

Finally, I thank my wife, son and daughter for being supportive of my decision to

pursue this degree and understanding my inability at times to carry out family obligations.

ix

Chapter 1

Introduction

Since the beginning of the computer era, researchers have explored several parallel

execution models and architectures. While significant progress has been achieved in paralleliz-

ing multiple program execution on the same system, and in distributed multi-processing where

the outcome of the program depends on the solution of well-segregated sub-problems, parallel

programming in the context of a single program with shared memory remains difficult to adopt

for programmers. This fact is most conspicuous when we observe that even today, most pro-

grammers first think of their programs as single-threaded applications and often times develop

as such, and then consider parallelizing the program as an after thought.

The reasons for such behavior are multiple. Most prominent among those is the fact

that for software programmers, it is difficult to visualize the parallel execution of many dif-

ferent program fragments. Secondly, potentially exponential number of possible interleavings

of the program fragment executions makes it almost impossible to contemplate and debug the

1

unpredictable bugs, or as many have said, the ”heisen-bugs”. Worse, if an untested execution

interleaving of a program with such heisen-bugs occurs in applications when in critical deploy-

ment, consequences can be catastrophic. A few other major reasons why parallel programs are

still not mainstream, are lack of debug framework, memory latency and lack of software ap-

plications to guide programmers in parallelizing their algorithms. Often times, it is not clear

which portions of a program should be parallelized and what is the expected benefit of doing

so. Except for very simple and obvious programs, parallelizing software applications remains

non-trivial for developers.

As a consequence, most software algorithms have continued to evolve without the use

of parallel programming, mainly riding on the exponential performance improvements seen in

single processors through the use of deeper and deeper pipelining and smaller silicon geome-

tries. However, in recent years, this path has hit a hurdle due to the increasing cost of such

processors and practical limits on clock frequency scaling. While transistor density still seems

to follow Moore’s law, clock speed and CPU throughput are not on same track. Another big

deterrent has been the power and thermal considerations, which are increasingly determining

the clock frequency that can be used. Faster transistors require a lower threshold voltage, which

in turn result in higher static current dissipation, thereby increasing the power consumption and

temperature in the chip. These factors together have moved the focus of computer architects

from performance gains in uni-processor systems back to parallel processing. Although perfor-

mance of single stream instructions has continued to improve, such improvements have slowed

down significantly, and this trend is likely to continue in the future years. Hence, there has been

a renewed interest in multi-processing architectures and models in recent years.

2

There are many forms of multi-processing in vogue. In this work, we focus on shared

memory multi-processing using general purpose CPUs. This is where the trend has been re-

cently, due to a stagnation in CPU clock scaling. Most inexpensive systems already have 4 to

64 cores. However, it must be noted that even if the program has significant parallelism, ap-

plications won’t scale indefinitely due to memory latency and bandwidth issues in such shared

memory applications. So, to be more specific, we considered applications using anywhere from

2 to 32 cores for our studies. The uni-processor case is considered in this research solely for

performance comparisons. In this work, we consider multi-threaded applications using POSIX

pthread library only, though the ideas are generally extensible to other threading mechanisms.

While shared memory model makes communication among threads fast, it also gives

rise to memory access dependencies among the threads, and these are not managed very well by

today’s processors. Typically, shared memory multithreaded applications assume implicit data

sharing among threads, and hence thread synchronization has been a perpetual issue for parallel

programs. No effective solution has been found to date. This leads to a need of software tools

to detect and fix the associated issues.

Data-race detection [88], software transactional memory (STM) [91], and determin-

istic execution [11] have been proposed as ways to reduce errors associated with multithreaded

programming. These techniques detect unsynchronized communications among threads and ei-

ther report them as possible bugs (for data-race detection), or change the behavior of running

threads (for STM and deterministic execution).

However, the use of these techniques is limited in practice by significant instrumen-

tation overhead associated with software implementations [23]. These techniques perform run-

3

time checks on loads and stores that cause significant slowdown in program execution. One

way to improve the performance of such systems is to decrease the cost of each dynamic check

operation. For instance, FastTrack [41] improved on the performance of Djit+ [79] by reducing

the cost of most runtime checks needed for data-race detection.

An alternative and complementary way to improve performance is to reduce the num-

ber of such checks. Static program analysis techniques can be combined with verifiable user

directives to identify and eliminate checks on non-conflicting loads and stores for thread-local or

read-only data. Dynamic instrumentation should ideally be used only when there is a possibility

of unsynchronized communication among multiple threads; i.e, when these memory accesses

may be conflicting data among threads. More accesses being classified as non-conflicting

result in fewer checks at runtime. In data-race free applications, conflicting loads and stores

must be synchronized with barriers and/or mutual exclusion areas. If a compiler can prove that

a store performed by a thread cannot overlap with any load or store performed by any other

thread, then that store access does not require any runtime check.

A non-conflicting access is different from a non-racy access. We define non-conflicting

memory accesses for a section of program execution contained within global barriers, i.e, syn-

chronization points of all the threads. While non-racy accesses to same memory location can

communicate information from one thread to other threads within the same multi-threaded sec-

tion, a non-conflicting access never passes information between threads in the same thread

section. In other words, non-conflicting values modified within a section are not used by other

threads within the same section, either with or without synchronization. As an example, lock

protected read and write accesses of same memory location by different threads within same

4

section are non-racy, but not non-conflicting. For systems such as deterministic execution and

conflict free STM task execution, only non-conflicting accesses are safe, as non-racy accesses

still can produce different results, depending on the order of lock acquisition.

Similarly, a conflicting access of a memory location might be either racy or non-racy,

if the modified value in the same section is used by any thread that is different from the thread

that modifies the value.

However, current compilers only identify a small subset of non-conflicting memory

accesses. Current alias analysis also does not consider that some section of code cannot execute

simultaneously with other sections of code. Existing solutions conservatively assume that any

code section can overlap its execution with any other code section. Typically, when thread

escape analysis is performed, it only marks a memory location as thread local or escaping

(potentially shared between threads); it does not consider the context in which a memory address

escapes, and how it is used.1

The key insight of this work is that it is possible to statically divide an application into

thread sections, and that these sections can be used to reduce the number of instrumentation

instructions a compiler inserts, and are executed at runtime. For example, Figure 1.1 shows

a thread T1 performing a write to a shared memory location Wx in a code section CS1 and

another thread T2 performing a read of the same location after a synchronized barrier. The

barrier creates a happens before relationship between the two sections; so the two code sections

cannot execute simultaneously. Consequently, the read is race free and does not need to be

instrumented.
1Some escape analysis techniques consider thread context when constructing objects in Java.

5

Thread T1:

Thread T2:

CS1

CS2

CS3

CS4

TS1 TS2

Rx

Wx

Ba
rr

ie
r

B

Figure 1.1: Two threads T1 and T2 execute four different code sections (CS1, CS2, CS3, CS4)
separated by a barrier B. The barrier implicitly creates two thread sections (TS1, TS2) that
cannot execute simultaneously. WX and RX represent write and read of some memory location
X . Since X is not modified anywhere in TS2, RX does not need to be instrumented.

Threaded code sections are essentially the top level code for a parallelized section

of program. Since the threads created within a threaded section all terminate within the same

threaded section, when we are concerned about communication pattern among threads created

in this section, we only need to consider the code that is reachable from this threaded section.

More precisely, it is the set of all functions that act as the start functions for the threads, and the

code in parent thread that is executed in this section. Often times, the parent thread just waits

for the completion of child threads or acts as a master synchronizer.

Fig 1.2 shows a typical threaded section, where three child threads are started, with

function and data pairs of (F1,D1), (F2,D2) and (F2,D3). Thus, the thread starts can be seen as

tuples (Fi, Di) where function Fi is executed on data set Di. In the shown example, S is the

dominator of the thread creations, and T is the post-dominator of all thread terminations. So, a

thread section can be represented as a tuple of the dominator and post-dominator instructions,

as in (S, T). Then, the synchronization considerations and instrumentations can be limited to

the threaded sections of a program only. This is useful since in many complex programs, the

portion of program that is performance critical may be small, yet consume most of the runtime.

6

Identifying the threaded sections helps avoid instrumenting the loads and stores unnecessarily

in other regions of the program. Thus, each thread section can be identified as a pair of source

and sink vertices in the CFG.

S

T

t1 = Create thread(F1, D1)

t2 = Create thread(F2,D2)

t3 = Create thread(F2,D3)

Join thread(t3)

Join thread(t2)

Join thread(t1)

Figure 1.2: A typical threaded section of program

Previous work on data-race detection has taken advantage of the fact that loads and

stores in serial sections of code do not need to be instrumented [72, 83, 84]. However, prior

work mainly targeted structured programming environments such as Cilk [17] or Fortran us-

ing nested parallel loops. Structured programming explicitly restricts communication among

threads, which makes it easier to determine when an application is executing a serial section

of code. In contrast, this work focuses on statically partitioning an application written using

unstructured parallelism with thread spawns and barriers. Our algorithms segment the whole

7

program into sections, and apply optimizations based on the communication pattern among

sections of code that can be executed simultaneously by multiple threads. This helps it iden-

tify non-conflicting loads and stores, thereby reducing dynamic checks. To improve precision

of alias analysis for memory locations accessed in these different sections, we extended flow

insensitive Steensgaard [92] points-to analysis to use dynamically adjusted non-unified points-

to sets. We also describe a small set of verifiable user directives that helps the compilers and

programmers reason about memory accesses happening in multi-threaded mode and reduce the

instrumentations further.

We integrated our techniques for use with our own implementation of a deterministic

execution system similar to CoreDet [11] to accurately measure the reduction in instrumen-

tation. We also integrated our pass with ThreadSanitizer [89], a widely used dynamic race

detector, to measure runtime improvements using our optimizations. Lastly, we also measured

the effectiveness of the methods in static race detection. Our methods can be combined with

many different systems, such as FastTrack [41], DJIT+ [79] and others.

1.1 Contributions

In this work, we propose Section-Based Program Analysis (SBPA) with the following

contributions:

• Propose a language agnostic method to statically decompose multithreaded applications

into code sections, and analyze their communication pattern.

• Propose a mechanism and algorithm to identify the global barriers within multi-threaded

8

code sections of the program, thus increasing the number and precision of provably dis-

joint code sections. Prior work in the literature has focused only on identifying the multi-

threaded sections. This work finds such sections, as well as the global barrier separated

sections within the multi-threaded section.

• Improve precision of points-to analysis by using an adaptive non-unification strategy that

limits the size of points-to sets.

• Propose loop specific optimization to reduce instrumentation in program loops.

• Propose a small set of verifiable user directives to improve static analysis

• Propose a multi-thread read only memory model (MTROM) to improve tool flow and

programmer reasoning of memory accesses in parallel portions of program.

• Evaluate SBPA in a deterministic runtime system similar to CoreDet and show 51% re-

duction in dynamic instrumentation over varied suite of benchmarks. With few directives,

the total reduction increased to 63%. In comparison, reduction by current state-of-the-art

compiler techniques as used in CoreDet is only 16%.

• Integrate SBPA with ThreadSanitizer, and show reduction in execution time of instru-

mented programs by a factor of 2.74 on a geometric mean basis.

• Apply SBPA to the problem of static race detection and show that it is effective. We

propose an integrated approach of static and dynamic race detection to develop and test

multi-threaded programs.

9

We propose a novel way of decomposing multi-threaded programs into disjoint, bar-

rier separated sections, which helps improve the precision of mod-ref and alias analysis, to

achieve significant reduction in instrumentation overhead. Many researchers have focused on

improving the precision of pointer analysis for threads. We show that it is equally important

to consider the modified and referenced properties of the pointer values. A major theme of our

work is to use the precision of points-to relationship in conjunction with modified-referenced

information for each parallel segment of a program. Our analysis framework helps all systems

focusing on race detection, determinism and debugging of concurrency related issues through

rigorous compiler support for multi-threaded programs. It works for general shared memory

multi-threading models.

In summary, we combine multiple techniques to create a holistic and practical solu-

tion for efficient detection and correction of race and non-determinism related issues in multi-

threaded programs.

1.2 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 surveys related work

in this field. Chapter 3 describes the partitioning of an application into sections and how this

is used to reduce instrumentation based on such partitioning. Chapter 4 describes a few pro-

gramming directives and MTROM memory. Chapter 5 describes loop specific optimizations.

Chapter 6 describes the experimental setup, and presents results and insights based on our in-

house runtime library. Chapter 7 presents results by integrating our methods with ThreadSan-

10

itizer, an industry standard dynamic race detection software. Chapter 8 presents the results of

applying our methods in reducing false positives in static race detection. Chapter 9 concludes.

Chapter 10 presents future extensions possible from this work.

11

Chapter 2

Related Work

The methods used in this work have a solid foundation in static program analysis, a

field that has matured with decades of research. Static program analysis covers multiple tech-

niques, such as control and data flow analysis, constraint based analysis, concurrency analysis,

type and effect systems and many others. These techniques can have a variety of objectives,

such as code optimization, static race detection and correction checks to name a few. However,

our work is applied to reduce overhead of dynamic checks. So, it is also closely related to

dynamic race detection and other types of runtime checks. In this chapter, we briefly describe

the prior work in all the fields that have a strong relationship with our work; and in particular

we discuss the current techniques in the areas of both static and dynamic race detection. As

discussed below, a vast body of literature [27, 74, 80, 96] exists, focusing on both static and

dynamic race detection and other program analyses.

12

2.1 Static Race Detection

Naik et al. [74] described Chord, a tool to statically detect races in Java programs,

that uses many techniques similar to SBPA analysis methods, such as identification of thread

local variables and lock protected accesses. Chord uses an optimization Unlocked Pairs Com-

putation to find the pairs of accesses that are not protected by the same over-approximated set of

locks held by the accesses. This is unsound, but is correct for their purpose of static race detec-

tion, if the objective is to not flag false positives. We adapted this approach to make it sound for

our objective of eliminating instrumentation and included it as part of the base techniques when

evaluating our work for race detection. We describe this adaptation in more detail in Chapter 7.

In addition, we also use barrier sensitive analysis, by identifying the global synchronization

points in the program. RacerX [36] is another static race detector that detects both races and

deadlocks using flow sensitive inter-procedural analysis. Naik et al. [73] describe an algorithm

to use conditional must not aliasing to improve the aliasing of pairs of objects in static race

detection. Choi et al. [27] describes a reachability based program analysis method for Java pro-

grams to identify objects that can be allocated on stack, or are accessed by a single thread only.

Their goal is to remove synchronization operation for those objects to improve performance.

We do not use this technique to change the allocation location, though such techniques can be

combined with our methods. Aldrich et al. [5] evaluate a set of methods to reduce synchro-

nization overhead in Java programs. It uses static analysis to automatically remove unnecessary

synchronization operations. Fang et al. [37] and Kuperstein et al. [59] describe memory fence

insertion and optimization algorithms to guarantee sequential consistency. While the purpose

13

of their techniques is different, there are similarities with our methods to detect thread local

accesses and identifying memory accesses that are race free.

Locksmith [81] is another static race detector that analyzes locks, and uses fork-join

and mod-ref of memory locations to avoid instrumenting in single threaded code sections, and

also includes some field sensitivity. However, SBPA further refines the contexts to global barri-

ers, and augments the method with few directives that are highly effective. As SBPA works on

LLVM IR, it is also language agnostic to some degree.

Agarwal et al. [4] introduce may happen in parallel analysis for X10, which is ap-

plicable to languages that adopt concepts of places, async, finish, and atomic sections from

X10. Although there are some similarities, their analysis is path sensitive while SBPA is path

insensitive. SBPA also targets a different programming model.

Voung et al. [97] proposed RELAY, a scalable tool to detect static races for millions

of lines of C code under some optimistic assumptions. It modularizes races by limiting alias

analysis per file, and does not handle pointer arithmetic. Therefore, RELAY has some sources

of unsoundness. JLint2 [8] is another static program analysis tool to find synchronization issues

in large scale Java programs.

Some researchers have also proposed to improve precision of static race detection

using type systems. Flanagan et al. [39] and Abadi et al. [1] describe type based race detec-

tion for Java, that also considers thread local classes and common synchronization patterns in

Java. Flanagan et al. [45] also proposed Houdini, a static annotation checker for modular Java

programs.

14

2.2 Dynamic Race Detection

There is also a vast body of literature and tools covering dynamic race detection. One

of the seminal works in this field was published by Lamport [61] in 1978, that described a

simple model to represent the causal relationships and developed the notion of happens before

among pairs of events. Most dynamic race detectors are based on this notion, and check that

conflicting memory accesses are separated by a synchronization event. Savage et al. [88] pro-

posed Eraser, a tool that detects data races dynamically in lock-based programs, and present

several case studies demonstrating its effectiveness. FastTrack [41] is an optimized version of

a precise dynamic race detector using vector clocks to track the happens before relationships.

Ponzniansky and Schuster [79] developed a dynamic data race detector for C++ programs called

Djit+. In theory, SBPA techniques could be integrated with any of these dynamic race detectors

to reduce instrumentation overhead.

A very closely related work is Choi et al. [28], which uses static analysis to identify

potentially racy accesses and instruments these accesses for use with a dynamic race detector.

An earlier paper, Choi et al. [27], describes a reachability based program analysis technique to

identify objects that can be stack allocated or that are accessed by a single thread only, where

unnecessary synchronization can be removed. In both cases, the techniques presented targeted

Java applications and, in contrast to our work, do not consider barrier or join operations during

the static analysis phase.

Callahan et al. [75] proposed a hybrid dynamic race detector, that uses both lockset

based detection and happens-before edges to improve the accuracy of dynamic race detection

15

and eliminate more false positives, with the main target application being web programs. Their

optimization is dynamic in nature, not static as in SBPA.

Marino et al. [70] proposed LiteRace, a statistical sampling based data race detector

that is light weight in runtime and memory overhead. They show that in catches more than 70%

of data races by sampling only 2% percent of memory accesses. As their results show, this can

miss some data races. And hence a static and conservatively correct optimization pass, such as

SBPA, remains important.

RaceTrack [101] is an adaptive approach to detect races by focusing at the suspicious

areas of the program to reduce overhead, that also requires a post-processing of the races to

issue correct warnings. It is reported to have 2-3X slowdown at 1.2x memory overhead.

Zhou et al. [103] proposed hardware implementation of the lockset based race detec-

tion algorithm that runs efficiently. Their implementation detected 54 out of 60 injected bugs

in the SPLASH-2 benchmarks. They concluded that a full hardware implementation requires

significantly more hardware resources.

Bond et al. [19] developed a framework for detecting cross-thread dependencies and

used for runtime analysis such as record and replay. Praun et al. [95] described an on-the-fly

mechanism to detect races at the object level for Java programs.

Raman et al. [83, 84] developed a dynamic data race detector for use with structured

parallelism in languages such as X10. They implement some of the same optimization as SBPA,

such as eliminating checks in sequential regions of code and checks for read-only data in parallel

code sections. However, the algorithms differ from those used in SBPA because their work is

intended for structured parallelism.

16

Effinger-Dean et al. [35] proposed using interference-free regions to reduce the over-

head of dynamic race detection. This work shares SBPA’s goal of reducing instrumentation by

segmenting an application, but takes a different approach in achieving this. Mellor-Crummey [72]

developed one of the first dynamic race detection tools that also used static analysis to reduce

instrumentation overhead. In that sense, it is similar to SBPA; but their tool was intended for

Fortran, and the design and implementation differ from those of SBPA.

RedCard [44] describes eliminating redundant access tracking in dynamic race de-

tection using static analysis. SBPA does not focus on redundant accesses; instead it eliminates

conflict free accesses. Their method is orthogonal to what is proposed in this work. Cormac

et al. also proposed Atomizer [40], a dynamic checker for detecting atomicity violations in

programs. This is a stricter condition that race detection, since it checks for non-interference

property of atomicity. Cormac et al. also proposed Velodrome [43], which is a sound and com-

plete atomicity checker, that works on program traces and checks for conflict serializability.

Unfortunately, Velodrome slows down program execution by an order of magnitude, similar to

most race detectors.

Serebryany et al. [89] described ThreadSanitizer, a commercially deployed dynamic

race detector developed at Google Inc. We combined SBPA with ThreadSanitizer, and present

our results in this work. Another race detector in practice is Helgrind, which is part of Valgrind

tool chain [90]. Valgrind also provides a dynamic analysis framework. In contrast, SBPA

analysis is static, and can complement Valgrind to reduce race detection overhead.

17

2.3 Deterministic Runtime Systems

Recently, a number of works have focused on making multi-threaded programs de-

terministic, such that there is repeatability of results when running the same program with ex-

actly the same inputs, assuming no asynchronous event occurs. While some languages such as

StreamIt [93], Jade [87] and Parallel Haskell [25] are deterministic by nature, most compute

intensive programming still use the C++ concurrency model [18] that do not use these specific

languages.

SBPA was also originally developed for use in a deterministic runtime system using

an always-on STM. Olszewski et al. proposed Kendo [76], a system that achieves weak deter-

minism through deterministic locking among multiple threads. However, it doesn’t achieve full

(strong) determinism, which our system can enable by instrumenting the memory accesses.

Our methods can be combined with Kendo and other such systems to achieve greater efficiency

in full determinism. Edwards et al. [34] proposed SHIM, a model and language combination for

deterministic software and hardware thread communication for embedded computing. Devietti

et al. [32] proposed DMP, that enforces deterministic commit order for deterministic quanta of

instructions. CoreDet [11] is a compiler and runtime environment that together enforces similar

determinism. But it reports scalability issues, and its results are also sensitive to changes in

compiler options or unrelated, minor changes in code. DThreads [68] describes a determinis-

tic execution system, where threads are implemented as processes and OS memory protection

enforces isolation between threads. DThreads does not rely on memory access tracking. It

also avoids instrumenting single threaded code, but only in its runtime library through dynamic

18

checks, and not through static checks as we do. But it is unable to provide any insight into

the causes of non-determinism, as it doesn’t have a static compiler pass like SBPA. SBPA can

not only make the program deterministic, but also help the programmer identify and fix the

underlying issues.

2.4 Software Transactional Memory (STM)

Software Transactional Memory systems provide concurrency control for shared mem-

ory multi-processing via transactions. This can be viewed as an alternative to synchronization

based on locking. Each transaction is a series of memory reads and writes, that are committed

together if there is no conflict with other transactions. The successful transactions appear to

occur at once to other processes.

The original idea of transactional memory was started as a hardware mechanism by

Tom Knight [58] and was further popularized by Herlihy et al. [52], who described lock free data

structures for shared memory processing and wait free synchronization [50]. Due to the cost

of hardware at that time, the hardware version of transactional memory never became practical.

However, in recent times, due to drastic reductions in cost and geometry of semiconductor

devices, some limited support for hardware transactional memory has started appearing in the

mainstream processor architectures [47, 71]. Due to the limited size of such support, STM still

remains the only viable option for managing such transactions.

Shavit et al. [91] extended the idea to software transactional memory. Many STMs

have been proposed and implemented since then. Herlihy et al. [51] proposed DSTM, the first

19

STM for dynamic sized memory objects. It maintains per object information in the form of

locator objects to reduce conflicts at runtime. Harris et al. [49] described a new concurrency

model based on transactional memory to compose larger abstractions of data structures. Harris

et al. also proposed many different implementations of STMs based on the methods described

in the paper [48]. Transactional Locking II (TL2) by Dice et al. [33] is an STM system based

on commit-time locking and global versioning. RSTM [69] is a low overhead, obstruction free

STM for non-garbage collected languages, RSTM is similar to DSTM in the design, as it is

also a dynamic STM. TinySTM [38], a word based STM based on locking, is one of the best

performing STMs with lower single threading overhead.

Most of the STMs listed above focus on reducing the overhead at runtime with var-

ious techniques. Our work focuses on the static reduction of such overhead. There has also

been prior work to reduce STM overhead, mainly for strongly typed languages. Beckman et

al. [10] described object ownership in Java to reduce logging operations in STM. Blanchet [16]

described escape analysis for object oriented languages like Java. Li and Verbugge [67] de-

scribe similar work on May Happen In Parallel for Java, that performs flow sensitive analysis

of locks and synchronizations, which is runtime intensive. Our analysis does not rely on locks,

and uses a different approach of program segmentation orthogonal to theirs. SBPA can comple-

ment ad hoc synchronization detection mechanisms, such as Xiong et al. [100], Tian et al. [94]

and Jannesari et al. [54]; but currently does not use such methods and relies on global barriers

only. Afek et al. [3] describe static analysis techniques to reduce STM overhead that are similar

to the ones implemented in CoreDet [11] and used in our baseline system. While their method

focuses on some optimization specific to code motion and read-only transactions, we developed

20

a framework for identifying different program sections to harness different data usage in those

sections in reducing instrumentation.

Cascaval et al. [24] argue that STM overheads are so high, that STM is merely a

research toy. With our proposed techniques, we believe STMs can become significantly more

efficient, and thus also practical.

2.5 Data Flow Analysis

Data flow analysis is used in multiple areas of compilers, such as reachability anal-

ysis, liveness analysis, def-use analysis etc. Program control flow is also an integral part of

data flow analysis. Kildall [57] formalized the data flow analysis problem by representing the

analysis as a set of equations at different basic blocks. Sharir and Pnueli [77] described two

possible approaches to the inter-procedural data flow analysis. They called their first approach

a functional approach that considers functions as super operations, defined by the effects

the function calls produce on global data. Their second approach, call strings approach,

blended the intra-procedural and inter-procedural approaches together by creating a global flow

graph. Most global data flow analysis problems are solved by iterative methods [22, 56, 78],

where the iterations stop once a fixed point is reached. Pointer analysis, a form of data flow

analysis to infer points-to property is used extensively in SBPA, and so we discuss it separately

in the next section.

21

2.6 Pointer Analysis Background

In this section, we briefly discuss some background on pointer analysis, which is a

form of data flow analysis. Pointer analysis or points-to analysis, is also sometimes referred to as

alias analysis or shape analysis. It tries to find non-trivial relationships among pointer variables

and memory locations. It is related to alias analysis, which answers the question of whether two

pointer variables p1 and p2 point to the same memory location. An alias analysis can answer

the question in three ways: may alias, must alias or do not alias. The alias information can

be very useful for several compiler optimizations and program understanding analysis, such as

live variable analysis, register allocation, constant propagation and compile time checking for

potential runtime violations. Raman [85] provides a brief survey of various pointer analysis

techniques.

A trivial points-to set for a type-unsafe language is where each pointer points to ev-

ery memory location, and hence each pair of pointers may alias each other. If a language is

type-safe, meaning pointer variables of different types cannot be assigned to one another, then

a slightly better trivial points-to set can be achieved, where each pointer only points to all mem-

ory locations assigned to that particular type, and alias with only the same type of pointers.

Thus, any pointer analysis approach has to improve upon these trivial solutions by finding more

precise points-to sets.

A precise pointer analysis is very important for many program analyses. Hence, the

subject of pointer analysis has been researched extensively for more than three decades. In their

2001 paper, Hind et al. [53] provide a description of the still open issues in this field. Many

22

types of algorithms have been proposed for the problem. The approaches range from very pre-

cise but exponentially expensive flow sensitive, path sensitive analyses to flow insensitive, path

insensitive algorithms which are generally very efficient in runtime and memory overheads. The

analysis can also be distinguished by whether they consider whole program (inter-procedural)

or limit the analysis to one procedure at a time (intra-procedural). Below, we describe some

of the most prevalent methods. The reader can refer to the references in this section for more

in-depth understanding.

2.6.1 Flow sensitive vs. insensitive pointer analysis

A flow sensitive pointer analysis considers the control flow of the program to create a

points-to set for each variable at different program points, either at basic block level or at finer

granularity of instruction level. For example, consider the code excerpt in Example 1. In this

example, the variable x might point to either a or b depending on the location of the code. A

flow sensitive analysis will thus have two different points-to set for x, whereas a flow-insensitive

analysis will just have one points-to set for both basic blocks for the code fragment, which is

the union {a, b}.

Flow sensitive pointer analysis is challenging for large programs, as the time and

space complexities can become exponential. Hardekopf et al. [] proposed a staged flow sensi-

tive analysis for millions of line of code, that balances precision with complexity with equiva-

lence classes for def-use pairs. Choi et al. [26] also proposed practical approximation methods

for flow sensitive pointer analysis using compact representations, where they trade off some

precision.

23

Example 1 An example of flow sensitive points-to set
void func(int *a, int *b)
{

int *x;
if(a < b) {

x = a;
...

}
else {

x = b;
..

}
}

2.6.2 Context sensitive vs. insensitive pointer analysis

A context sensitive analysis will have a different points-to set for the same pointer

in different program contexts. The context can be chosen in many different ways, depending

on the requirements of the analysis. For example, the context could be different call sites for a

function as shown in Example 2. A call site of a function F is an instruction in the program that

calls function F . A context sensitive analysis would re-analyze the points-to sets for function

variables for each call site, merging the function arguments at the call site. Thus, the variables

within the function can potentially have multiple points-to set depending on the call sites from

where the function is called. In Example 2, the function func of Example 1 is called from two

different places. For call site 1, x points to {A,B}, whereas for call site 2, x points to {C,D}.

But a context-insensitive analysis will have a single points-to set for x, which is {A,B,C,D}.

Inherently, flow sensitive and context sensitive analyses are exponential in complexity

due to the exponential number of possible recursive contexts and execution paths in the program.

Whaley et al. [98] propose a cloning based context sensitive pointer analysis, in which they

24

Example 2 Function func() called at multiple call sites
int A,B,C,D;
...
func(&A, &B); // 1st callsite
...
func(&C, &D); // 2nd callsite

clone functions in each context of interest for the acyclic call paths. Berndl et al. [13] proposed

a new way of solving the subset based pointer analysis using binary decision diagrams [20]

(BDDs). BDDs were originally proposed by Bryant for their application in equivalence and

model checking for electronic circuits, but they can also be used for compact representation

of sets for pointer analysis. Burke et al. [21] proposed a flow insensitive inter-procedural alias

analysis, that preserves some of the precision lost in a flow insensitive technique.

2.6.3 Dynamic vs. Static pointer analysis

The previous methods are static analyses performed during compilation, and at best

they can achieve the accuracy of the worst case dynamic scenario. Dynamic analysis tries

to collect points-to information during runtime for different variables. This can be used to

compare the precision of static algorithms. In case of probabilistic pointer analysis, it can

predict the probability of a pointer pointing to certain memory locations. It can also yield

interesting profiling based optimizations. Axel [9] presents some interesting comparison of

static vs. dynamic pointer analyses, and shows that the static sets are quite often too big and

inexact for use in program understanding. The dynamic sets found are much smaller and in

97% of the cases actually singletons with averages close to 1. Dynamic points-to data can

25

enhance program understanding and compile-time optimizations greatly. Some of the uses are

more exact alias analysis, feedback driven compilation and program understanding methods

like program slicing. But dynamic methods depend on the input sets used to train the points-to

analyses, and so they are generally more difficult to apply.

2.7 Some important Flow insensitive methods

Due to the complexity of flow sensitive, fully context sensitive or dynamic pointer

analyses, most practical analysis methods are static, flow insensitive. These completely ignore

the control flow graph, and compute only one points-to set for a variable for the entire program,

or the scope of analysis. The order of instruction execution is ignored completely. A few notable

flow-sensitive algorithms are described below.

2.7.1 Andersen’s flow insensitive analysis

Andersen [7] proposed a method in which each pointer variable assignment is treated

as a constraint. Then, the analysis would propagate these initial constraints transitively till a

fixed point is reached. The solution to the pointer analysis problem is the fixed point solution

of the transitive closure of the initial points-to graph. Example 3 shows a small code segment

of how this works. Since pointer a points to memory location A in line 1, a ⊃ A. Similarly,

due to line 2, b ⊃ B. The assignment operation b = a in line 3 causes an additional constraint

(edge), b ⊇ a. The rest of the initial constraints shown in column 2 are derived similarly. The

initial constraints define the initial points-to relationship graph. Final constraints are found by

26

an iterative algorithm to find the transitive closure of the initial directed graph. Since the best

known algorithm for transitive closure is O(n3), the worst case complexity of this analysis is

also O(n3), where n is the number of pointer variables in the program.

Example 3 A code excerpt to explain Andersen’s points-to analysis
Code Initial Points-to Final Points-to

1: a = &A; a -> {A} a -> {A}
2: b = &B; b -> {B}
3: b = a; b -> {a} b -> {A,B}
4: c = &C; c -> {C}
5: d = &D; d -> {D} d -> {D}
6: c = d; c -> {d} c -> {C,D}

2.7.2 Steensgaard’s algorithm

Steensgaard [92] described an almost linear time flow insensitive points-to analysis

for a strongly typed language. It uses type inferencing to compute a non-trivial flow insensitive,

inter procedural points-to graph. Steensgaard’s analysis can be viewed as a simplification of the

previously described Andersen’s algorithm, in which an assignment of pointer variables results

in unification of both LHS and RHS sets.

Thus, whereas Andersen’s algorithm would find a transitive closure of the points-to

graph, Steensgaard’s algorithm would only do repeated union-find operations for pointer as-

signments. The sets of pointer variables and memory addresses are represented as inverted

trees. At every union operation, the paths to the roots of the trees are compressed, thereby re-

ducing subsequent union costs. It also uses union by rank, meaning the tree with lower depth

is merged into the root of the tree with higher depth. The runtime complexity of the algo-

27

rithm is N × Ack−1(N) where Ack is the Ackermann function. This is almost linear, since

Ack−1(N) < 4 for N <= 2132.

Example 4 shows the computed Steensgaard points-to sets for the same code as in

Example 3.

Example 4 A code excerpt demonstrating Steensgaard’s points-to analysis
Code Initial Points-to Final Points-to

1: a = &A; a -> {A}
2: b = &B; b -> {B}
3: b = a; b -> {a} {a,b} -> {A,B}
4: c = &C; c -> {C}
5: d = &D; d -> {D}
6: c = d; c -> {d} {c,d} -> {C,D}

28

Chapter 3

Finding Disjoint Thread Sections

To find the single threaded, multi-threaded and disjoint thread sections in a program,

we use techniques from program flow analysis. Our overall methodology involves building

a reduced inter-procedural control flow graph (RICFG) of the program, and then performing

control flow analysis on the RICFG to identify the aforementioned sections of the program.

Thereafter, the section information is used to improve the instrumentation flow for race detec-

tion, deterministic execution and other use cases. In the next section, we review some compiler

terminologies and other terms used in this chapter.

3.1 Terminologies

We described some common terms used in the rest of the text. A more in-depth

description of these terms can be found in the book by Lam et. al. [60].

A basic block is a sequential block of instructions without any branching or termina-

29

tion statement within it, or any incoming edge into it. All execution of the block starts at the

first instruction and exits at the last instruction.

The control flow graph (CFG) of a program shows the flow of execution for the pro-

gram, where each node is a basic block and each edge represents a transfer of execution from

one basic block to another. The program start is the source node S in the flow graph. All exits

from the program are merged at the sink node T of the flow graph. CFG can also be constructed

for a segment of the whole program, such as a function.

Prosser introduced the term dominance in his 1959 paper [82]. In the control flow

graph, the dominator of a basic block Bi, denoted Dom(Bi), is the basic block closest to Bi

that must appear in any execution path that reaches Bi from program start node S. Thus, every

node dominates itself by this definition.

A dominator tree is another representation of dominators, in which each node only

dominates its descendants. And thus, there is a unique dominator for each node in this tree. For

two basic blocks Bi and Bj , the dominator is the lowest ancestor of Dom(Bi) and Dom(Bj),

both inclusive, that dominates both Dom(Bi) and Dom(Bj). The notion can be extended to a set

of basic blocks B1, B2, . . . Bn, where Dom(B1, B2, . . . Bn) is the lowest ancestor in the CFG

that dominates the dominators of basic blocks B1, B2, . . . , Bn.

Similarly, the post dominator of a set of basic blocks B1, B2, . . . Bn post dominates

these blocks; i.e. it is always executed after any of these blocks are executed.

A loop L in the CFG is a portion of the CFG, in which there is one entry point called

header that dominates all the other nodes in L, and there is at least one back edge pointing

back to the header. Sometimes, compilers introduce a pre-header block right before the header,

30

and a post-header block right after the loop, so code within the loop that doesn’t depend on

the variables modified in the loop can be moved into these outer blocks for reducing redundant

executions.

A callsite for function F is an instruction that transfers program control to function

F . In other words, call sites of a function are the places from where a function is invoked.

Pointer Analysis is a form of data flow analysis that identifies the aliasing informa-

tion among different pointers through static or other methods. See section 2.6 for a detailed

background on this subject.

We define a code section, represented by a tuple (Bm, Bn) where Bm and Bn are

basic blocks in the CFG, as a set of all basic blocks that have Bm as their common dominator

and Bn as their common post-dominator. Note that the code section includes both Bm and Bn.

A thread section is a collection of code sections that might be executed concurrently.

Figure 1.1 shows an example execution, with two thread sections TS1 and TS2, and

four different code sections (CS1, CS2, CS3, CS4). TS1 consists of CS1 and CS2, whereas TS2

consists of CS3 and CS4. Although not shown in the example, same code section can appear in

more than one thread section when multiple thread sections execute the same code.

We define two types of thread sections as follows. Later, we explain how these are

identified by our analysis.

Single-threaded thread section Single-TS (Section 3.4) is a collection of code sections

that can only execute when a single thread is active.

Disjoint thread section Disjoint-TS (Section 3.5) is a collection of code sections that

might be executed by multiple threads simultaneously. Note that same code sections can ap-

31

pear in multiple Disjoint-TS. A union of all the Disjoint-TS sections constitutes a conservative

closure of multi-threaded code regions of the program.

Praun et al. [96] use the term conflicting for potentially unsynchronized accesses to

shared objects. We define conflicting read-write (or equivalently load-store) as a pair of read and

write of the same memory location by different threads that are executing concurrently, without

a happens-before edge between them. For data-race detection, conflicting loads and stores must

be synchronized with barriers and/or mutual exclusion checks. For deterministic execution, the

requirement is stricter, since the lock acquire-release orders can affect the program output. So,

even the lock protected accesses are treated as conflicting for our analysis. Thus, a conflicting

access can be racy or non-racy. We define the other accesses separated by happens before edges

as non-conflicting. A non-conflicting memory access by a thread does not affect the behavior

of other threads executing concurrently.

In this work, a memory location implies an abstract set of memory addresses that

are seen as equivalent by pointer analysis used in SBPA. We use read/load for a memory read

access, and write/store for a memory write access interchangeably.

3.2 SBPA Pointer Analysis Framework

SBPA uses the DSA pointer analysis framework [65] [63] which is a unification

based [92] pointer analysis framework. This is also used in CoreDet [11] from which we de-

rived our baseline set of optimizations (henceforth referred to as Base) used in our evaluation.

In addition, DSA works with the LLVM compiler framework [64] which is used by SBPA. DSA

32

is context sensitive in the sense that it can be applied to a local context of the program. However,

both SBPA and Base need to identify the potential points-to set for the whole program to detect

where a pointer used in an instruction may point, and whether it conflicts with any other access

in the whole program. Therefore, for SBPA the analysis is performed in the global context. The

pointer analysis first creates a local points-to graph for each function in a bottom-up manner.

For a function call, the points-to sets of formal function arguments are merged with those of the

actual arguments. We modified DSA as described below for improved results. Note that some

of these techniques are covered in literature in various forms [102] [28] [62]. We include these

here to provide a complete explanation of the differences with Base method, The use of these

techniques is categorized as Alias in our results section.

3.2.1 Perform modref analysis per section

We performed modified and referenced analysis for the points-to sets (memory re-

gions) for each Disjoint-TS. For each points-to set, two separate bit arrays R and W are main-

tained for read and write accesses respectively. If R[i] is true for a points-to set S, it implies

some instruction in Disjoint-TS i reads some memory location in S. Similarly, W [i] indicates

a write to any location in S in Disjoint-TS i. A depth-first traversal for each section i sets R[i]

and W [i] of the accessed points-to sets.

3.2.2 Adaptive non-unification for points-to sets of function arguments

Generally, in unification methods, two points-to nodes (abstract memory locations)

are merged when any pointer can point to both of those nodes. In DSA [65], the calls to a

33

function f are resolved by merging the points-to nodes of actuals with those of the formals of f

at each callsite. This ultimately leads to the pointers corresponding to arguments of f pointing

to an unified node that includes all the actuals at different call sites. So, if f(X) and f(Y) are

two such calls, and P (x) represents the points-to node of x, then this leads to a merger of P (X)

and P (Y). However, if X and Y are accessed in a section where P (Y) has a write and P (X)

only has a read, this false aliasing caused by merging P (X) and P (Y) results in instrumenting

read-only accesses of X in that section.

To circumvent this issue, we modified DSA to avoid these mergers of actuals for

some functions. To compute the points-to node for a pointer within f in the program context,

we must then recursively traverse the function call graph in a bottom-up manner until the ac-

tual is not a function argument passed from above. This can lead to deep recursions, and an

exponentially growing number of points-to nodes for the pointer. So, we used three thresholds

to constrain the runtime and memory requirements of this scheme. First, this was only used for

functions with at most T1 callsites. Second, if the pointer argument of f was passed many lev-

els through the function call graph, then f was resolved by merging its arguments with actuals.

This can be detected during the upward traversal in the call graph starting from each callsite of

f . If the depth of such argument passing exceeded T2, then calls to f were also resolved by

the original method. Third, if during the process, the number of elements in a points-to set of

any argument of f exceeded another threshold T3, then the most commonly occurring elements

within the set were merged to reduce the size of points-to set to T3. For its implementation,

these non-unified points-to sets were maintained as a map, with each points-to node mapping

to its occurrence count within the set. Whenever the size of the set exceeded T3, the two nodes

34

with the most occurrences counts were merged into a single points-to node, making them in-

distinguishable. The calls to functions in strongly connected components in the call graph were

resolved by the original method of unification.

For our experiments, we used T1 = 4, T2 = 4 and T3 = 10. To resolve the points-to

set for any formal argument of a function, it can take at most T1T2 recursions. Since both T1

and T2 are small constants, the worst case runtime of such computation is O(1). T1 and T2

should not be large, as that leads to a high constant multiplier. The third threshold guarantees

that the size of non-unified sets are within T3. Once the above process is completed in a top-

down manner, the non-unified points-to sets of all function arguments that were not merged are

available for use by SBPA analysis, and recomputation is not required. The benefit derived is

the disambiguation of points-to sets that would otherwise have been merged if they appeared as

actual arguments in multiple calls of the same function. Very small functions are inlined by the

compiler, so their formals aren’t merged by unification in most cases, thus making the pointer

resolution within these inlined functions context sensitive. So, our above heuristic only affects

function call resolutions for relatively large functions.

The result is never worse than the original approach, since the different actuals would

always have been merged otherwise. The pointer analysis remains context insensitive; only the

mod-ref analysis becomes context sensitive for the points-to nodes not merged by this approach.

We found this hybrid, adaptive approach to be less memory and runtime intensive while pro-

viding significant disambiguation benefits by making the mod-ref analysis more precise. As

described above, we performed this non-unification strategy only for function calls. At other

places, as in function bodies, the points-to nodes are unified as usual.

35

3.2.3 Field sensitivity for array elements

DSA is field sensitive only for small sizes of pointed memory objects. For large

arrays, it loses field sensitivity as it collapses the points-to node to a size of 1. We modified

it to reduce it to the size of the elements in the array. Thus, the array indices alias for all

accesses, but the offsets within the array element still remain distinct. We added a check for

strided accesses to unalias the store to one field from load from another field. To minimize

performance overheads, we used a simple scheme based on offsets from the beginning of a

structure’s memory. Assume a read r and a write w in the same Disjoint-TS accessed data

through the same points-to set that has elements of type struct ss. Also assume that the access

sizes are sr and sw respectively, at offsets of or and ow respectively within the struct. In such a

case, if or + sr < ow, or ow + sw < or, there is no overlap, and so r and w can be classified as

non-conflicting. This helped significantly for arrays of structures, where in some phases, only a

certain field is written while other fields are only read.

3.3 Constructing the Reduced ICFG

SBPA requires an inter-procedural control flow graph (ICFG) of the whole program

to understand the multi-threaded structure of the program. Since it is used only to detect the

multi-threaded regions of a program, and is an auxiliary graph that points back to original CFGs

of functions, some optimizations can be performed to reduce the size of the ICFG. We call this

reduced ICFG (RICFG) in subsequent discussions.

Algorithm 1 is a high level description of creation of the RICFG. The RICFG of the

36

top level function main is constructed recursively. In the RICFG, if a function f or any function

called within f has any thread related directive, we replace the call to function f at all its call

sites with the RICFG of f . To do this, first the RICFG of f is created in a recursive manner.

In RICFG of f , a common return node R(f) is created that has incoming edges (Ri, R(f)) for

each of the original return nodes Ri in RICFG of f . Then, for each call site of f , we create two

nodes N1 and N2 for the basic block containing the call instruction. The call to f is replaced

with an edge from N1 to the entry node in RICFG of f , and another edge from R(f) to N2.

The nodes in RICFG of f point back to original CFGs of functions, which remain unmodified.

Algorithm 1 Constructing RICFG for a function F .

1.start = First instruction of F
2.Copy CFG of F to its RICFG; with RICFG

nodes pointing to original basic blocks.
3 foreach basic block B in F:
.1 foreach instruction I in B:
.1 if I is a call to function f with spawn, join or sync,

or if I is a call to spawn a thread:
.1 ricfg(f) = Create or find RICFG for callee function f at I.
.2 Create node B1 for instructions in B before I.
.3 Create node B2 for instructions in B after I.
.4 Add edge from B1 to entry of ricfg(f)
.5 Add edge from return node R(f) of ricfg(f) to B2.

.2 else if I is a global barrier call:
.1 n = find or create global sync node for used ID
.2 Create B1 and B2 as above, partitioning B at I
.3 Add edges B1 to n, and n to B2.

4. Remove exit edges from RICFG.
5. Build the dominator and post dominator tree for the RICFG.

Note that we do not insert the whole CFG of f at its call sites, but only add two edges.

Thus, there is no scalability issue for this approach for large programs. For each call instruction,

37

at most 2 edges are added to the RICFG, and at most two nodes are created for the basic block

containing the call site. For our purposes of identifying threaded sections, we are only interested

in analyzing the control flow of functions that contain thread spawn, join, barrier or other thread

directives. If some function does not have these directives, we do not need the inter-procedural

flow of control through that function. This eliminates the need to expand a vast majority of

the basic functions. So, all library functions and external functions do not need to be expanded

in this RICFG. This is why we call it reduced ICFG. Algorithm 1 gives a high level view of

creating the RICFG. As seen in the algorithm, it is a recursive process. A function is considered

to have one of the interesting thread directives, if either the function or any descendant function

called from within that function has these directives; so this is a recursive relationship. The

directives of interest here are thread creation, join, cancellation and sync barrier.

The functions with interesting thread related directives are marked in a global hash

table, so each function is inspected only once on whether it has a thread directive. Similarly,

when an ICFG of a function is created, its entry node and the return nodes are recorded in

a hash table organized by this function. So, subsequent queries to the function simply return

information for the already constructed RICFG of the function, which is a part of the global

ICFG for the whole program. Then, edges are added from/to those nodes as described earlier,

to complete the ICFG construction of the caller function. Since we add one edge from preceding

instruction to the entry node of called function, and add one edge from common return node

to the successor instruction, we insert at most 2 edges for a call instruction. Also, each basic

block can be split at at most all the call instructions it contains, and at the sync thread calls it

has. Therefore, the ICFG has at most N nodes, where N is the number of instructions in the

38

program. Also, for each function, it adds one common return node for all return statements. If

there were M return statements, it leads to M edges for all the functions. Also, if total number

of callsites is C, then we add an additional 2C edges to connect the ICFG of a functions to

its callsite. The runtime is proportional to the number of instructions in the program, as each

instruction is visited at most once in the BFS traversal shown in 1. In reality, our approach

expands only a few high level functions and so space and runtime overhead is not a concern for

even large programs.

We explain the creation of the RICFG with the example in Figure 3.1. It shows a part

of a basic block B within a function F . There is a call to function f , and f has one of the thread

directives that we are interested in. In the process, an RICFG is first created for f . The basic

block B is then represented by two nodes N1 and N2, with N1 comprised of the first part of

B and N2 comprised of the latter part of B. N1 then points to the node for entry of function

f . R(f) is the consolidated return node for all returns within f . In other words, the incoming

edges in R(f) are from the original return statements in f . An edge is added from R(f) to N2

to maintain the control flow in B. This is a recursive process. So, the RICFG of f is created if

it isn’t created already when its call is encountered first. Also, the splitting occurs repeatedly.

Thus, if the instructions in N2 contain any call to some other function f ′ or f itself, N2 will

be split again at that call. If the called function doesn’t have any of the thread directives that

defines the sections, then the splitting does not occur.

Once the RICFG is constructed, we splice the exit edges to simplify post-dominance.

The exit edges due to assertions or exit() are not useful for SBPA analysis, and also break

the post-dominance relationships that exist in normal program flow. Maintaining the post-

39

dominators are important for SBPA to find the single entry single exit [55] nodes in the RICFG.

Once we have removed the exit edges and created the RICFG, we construct the dom-

inator and post dominator tree for it. There are many algorithms in literature [6, 29, 30, 66] to

build the dominator tree for directed graphs, such as CFGs. Lengauer et al. [66] proposed an

almost linear time algorithm. Georgiadis and Tarjan [46] improved the algorithm to be linear

time. However, for simplicity of implementation, we used [29], which is an iterative algo-

rithm to build the dominance frontier. Even though its worst case asymptotic complexity can be

quadratic in number of nodes, it is faster in practice as the worst case is rarely encountered.

Note that the nodes in RICFG point back to the original basic blocks, which are

part of the original, unmodified CFGs for the containing functions. Thus, it is an auxiliary data

structure besides the original CFGs of each function. The nodes in RICFG contain the following

information:

• Original basic block it represents

• Start position in basic block

• End position in basic block

• Unique ID of sync barrier in case this represents a sync barrier node

• A list of successor nodes in RICFG from this node

• Number of incoming edges. Note that we don’t need the back edges, as the SBPA algo-

rithms never traverse backwards.

40

 Basic Block B
 ...
 D1 = 4;
 D2 = 5;
 X = f(D1, D2);
 Y = X + 7;
 ...

D1=4
D2=5

N1

entry(f)

R(f)

RICFG of f

Y=X+7

N2

Figure 3.1: A code snippet showing the call of a function f , that has any of the thread creation,
join or synchronization directive. The resulting changes in RICFG are shown on the right.

3.4 Single-Threaded Thread Sections (Single-TS)

Intuitively, multithreaded applications have thread sections because the programmer

is responsible for ensuring that inter-thread communication is properly synchronized. The syn-

chronization directives the programmer uses naturally divide the program into thread sections,

and the communication pattern in each thread section can be detected at compile time.

Programming Patterns: As defined earlier, Single-TS code can only be executed in single-

threaded mode. Single-TS exist because some code is safe to be executed only when a single

thread is active. All the concurrent threads are either not created, or not executing in such

mode. Application initialization and finalization in many programs fall in this category. In

many applications, parent thread waits for all the spawned threads to complete before running

some finalization code. Also in the fork/join programming model it is common to alternate

between parallel and serial regions. In all these cases, the serial regions could be detected as

41

Single-TS, thereby eliminating the need to detect unsynchronized communication or races in

these code sections.

If a memory location is determined to be modified only in Single-TS, all reads to the

same memory location in any thread section are race-free. Then, identifying Single-TS in a

program can not only help eliminate instrumentation in the Single-TS regions of application,

but also in the regions that are not Single-TS.

CS1
CS2

CS3
CS4

TS2 TS3TS1

Rx
Wx Wx

Wy

Ry
Rz Wy

Figure 3.2: A program comprised of 4 code sections in 3 thread sections

Detailed Example: Figure 3.2 shows a program divided into 4 code sections appearing in 3

thread sections TS1, TS2 and TS3. CS1 and CS4 are in single-TS TS1 and TS3 respectively,

while CS2 and CS3 can execute concurrently within TS2. CS1 and CS4 are single threaded, so

they don’t need instrumentation. Memory location X is only written in CS1 and CS4, and is

accessed only for reads in TS2. So, no instrumentation is required for X in any of the thread

sections. Only Y needs instrumentation in TS2, as it is both modified and read in the same

Disjoint-TS.

Algorithmic Solution: Algorithm 2 is a high level description of our method to detect code

sections executed in single-threaded mode only. The algorithm marks code sections as either

single-threaded or multithreaded. If a code section can be run in both single-threaded and

42

multithreaded sections, it conservatively marks that as multithreaded code section (MTCS).

While it is possible to replicate functions that are called in both Single-TS and MTCS, and

assign one copy to Single-TS to avoid instrumentation in that, in the benchmarks we studied,

we did not see opportunities for this, and hence this option was not explored.

Once the program is segmented into these sections, we perform an improved points-to

analysis to extract modified-referenced information for memory locations accessed in overlap-

ping thread sections (described in Section 3.2). These techniques, combined together, help

identify the real conflicting loads and stores in the program. Loads from a memory location

that happen in a thread section, which do not overlap with any other thread section that writes

to the same location, are data-race free, and so do not need to be instrumented since these loads

are non-conflicting. Similarly, if a store is data-race free, it does not need to be instrumented

in tools that check data races or provide determinism. However, STMs still need to log or ver-

sion the data in stores to support restarts that may be triggered by conflicts with other memory

accesses in a transaction. So, even data-race free stores in Disjoint-TS might need to be instru-

mented in STMs. We call these log-only stores. Thus, SBPA classifies the stores as conflicting,

non-conflicting and log-only.

The algorithm finds multithreaded code sections (MTCS). Single-TS code is any code

that is not included in any MTCS. It first creates a Reduced Inter-Procedural Control Flow Graph

(RICFG) as explained in 3.3. Thereafter, it splices away the exit edges, such as asserts and exits

for error conditions. These are irrelevant for our analysis of which code can execute in parallel.

The reason we splice out these exit edges is that it simplifies the RICFG for the purposes of

post-dominance relationship. These two steps are shown as steps 1 and 2 in Algorithm 2.

43

Algorithm 2 Finding multi-threaded code sections (MTCS).

1 Create RICFG for top level function main
2 Remove exit branches from global RICFG
3 foreach spawn call c in the RICFG:

.1 if a join j is control equivalent with c:
.1 code between c and j is multithreaded

.2 else if c is in a loop:
.1 foreach control equivalent loop with same iterations:

.1 if the loop join calls always match c loop:
.1 code between c and j is multithreaded

.3 else:
.1 code between c and exit is multithreaded

The next step is to iterate over each spawn call (step 3). If the spawn call is followed

by a single join call, and both are control equivalent 1 (step 3.1), all the code sections dominated

by c and post-dominated by j are marked as MTCS (step 3.1.1). Since we use the RICFG for

this, it includes all the function calls embedded in this section, and the functions invoked by the

thread spawns.

A more common case is where a loop that spawns a number of threads is followed by

a similar loop that joins or waits until all the threads have finished execution. This is a typical

fork/join program pattern in parallel applications. Both spawn calls and join calls should be in

control equivalent loops that have the same number of iterations (step 3.2.1). In addition, we

check that the join and spawn calls inside the loop are not control dependent, which guarantees

that both loops call exactly the same number of spawn and join calls (step 3.2.1.1). When these

conditions are met, we mark the loops and the code sections dominated by the spawn loop and

post-dominated by the join loop as MTCS.
1Two nodes (x and y) in a control flow graph are control equivalent if x dominates y and y post-dominates x.

44

When we cannot find the control equivalent join of the loop, we conservatively as-

sume that the rest of the program is multithreaded (step 3.3.1). This ensures that the single-TS

identification is conservatively correct.

3.5 Disjoint Thread Sections (Disjoint-TS)

Programming Patterns: Figure 3.3 shows an example of the regions in program that we want

to identify with our analysis. The parent thread creates p child threads in this threaded section.

Each of the child threads are further decomposed into smaller spans T (1, 1), T (1, 2) and so

on separated by global thread barriers. The entire thread section begins at basic block S and

terminates at T , where S to T is a flow graph embedded in the program CFG. Since these

sections are separated by global barriers, where all these threads must synchronize, we call these

disjoint thread sections (Disjoint-TS). For this example, we name them as DTS(1), DTS(2), ...

DTS(n).

Since they never overlap in any execution trace, we can segregate memory accesses

into disjoint sets of accesses corresponding to each of DTS(1), DTS(2), ... DTS(n). Hence,

when we instrument memory accesses in each of these, we only need to consider the modified

and referenced information within the context of the disjoint thread section in conjunction with

the parent thread. The parent thread usually waits and synchronizes the child threads, and so

we consider it to be overlapping with all thread sections in its entirety for all sectional analy-

ses. However, different programming patterns do exist. And sometimes the parent thread also

execute the same or a different function in parallel with the child threads. In such cases, the

45

T(1,1) T(1,2) T(1,3) T(1,n)

T(2,1) T(2,2) T(2,3) T(2,n)

T(i,1) T(i,2) T(i,3) T(i,n)

T(p,1) T(p,2) T(p,3) T(p,n)

Parent thread

Phase 1 Phase 2 Phase 3 Phase n

S T

Starts Barrier1 Barrier2 Barrier3 Barrier (n-1) Joins

Figure 3.3: A decomposition of threaded section into smaller, disjoint parallel segments

parent thread must also execute the same barrier synchronizations as the children threads for

such segmentation to work.

Code appearing in any Disjoint-TS can potentially run in multi-threaded mode. So,

loads and stores in these sections need to be instrumented unless proven unnecessary. Portions

of Disjoint-TS can overlap with each other. While some code sections of a Disjoint-TS is

executed only by one Disjoint-TS, others might be executed by many Disjoint-TS.

In general, Disjoint-TS occur due to non-overlapping parallel phases separated by

Single-TS code sections, or due to global synchronization barriers within same parallel phase.

The finer-grained partitioning helps identify non-conflicting reads and writes within parallel

phases with increased precision.

Detailed Example: Figure 3.4 shows a program with 5 different code sections, CS1 through

46

CS1 CS2

CS3

CS4

TS2 TS3TS1
RxWx

Wy

RyRz Wx

CS1
Wx Rz CS5

Wz

Thread 1

Thread 2

Figure 3.4: Two threads executing 5 code sections in 3 disjoint thread sections.

CS5, which read and write memory locations X, Y, and Z. Since all memory accesses are per-

formed in multithreaded thread sections, without Disjoint-TS, all the accesses are assumed con-

flicting. However, the barriers guarantee that some accesses cannot overlap. Reads and writes

to Z in code sections CS1 and CS5 belong to non-overlapping thread sections TS1 and TS3, so

RZ in TS1 is not racy. Similarly, RX in TS2 is data-race free as there are no writes to X in TS2.

Accesses to Y in CS2 and CS3 may be racy, and must be instrumented. Stores are instrumented,

as we can’t determine how many threads are executing the same code section within a thread

section. If the memory locations are thread local, then for data race detection, the stores don’t

need instrumentation. For STMs, stores to local memory are race free. But SBPA cannot prove

that there is no restart due to some other conflict. So, those stores for STMs are instrumented

as log-only stores.

Algorithmic Solution:

One issue with pthread barrier wait function in POSIX library is that the program-

mer can initialize the barrier variable with incorrect value, leading to deadlock and potentially

other unexpected behaviors. Example 5 shows a bad code snippet where barrier is initialized

with nthreads, but nthreads+1 threads are created, each presumed to call pthread barrier wait

47

Example 5 Incorrect initialization of barrier value can lead to deadlock and incorrect global
barriers.
// Initialize with smaller
pthread_barrier_init(&global_barrier, NULL, nthreads);

for(int i = 0; i <= nthreads; i++)
pthread_create(&threads[i], NULL , simulate, &args[i]);
...

to synchronize among themselves. In the simple example shown here, it is possible to identify

the issue statically. However, in more complex cases, we cannot determine if the barrier is

initialized properly.

Algorithm 3 Finding disjoint thread sections in MTCS

1 create RICFG for top level function main
2 foreach thread section (ts) found by Single-TS:
.1 if the ts is not single threaded:
.1 let b = beginning of ts
.2 let e = end of ts
.3 while b != e:
.1 C = reachable barrier nodes starting from b.
.2 if C has a single node:
.1 Code between b and C is a new thread section
.2 b = C

.3 else exit search:

Other factors, such as code duplication by compilers for some other optimizations,

different threads executing different functions, barriers across multiple functions and barriers

within loops complicate the identification of these global barriers where all the threads syn-

chronize. Not all the threads may reach the same pthread barrier wait() instruction to synchro-

nize. Hence, we propose a sync barrier function to indicate global synchronization of all active

threads. It has the same functionality as pthread barrier wait, with an additional argument to

48

specify the synchronization barrier ID. Each unique global barrier calls sync barrier with same

ID. This step is performed by the programmer, to annotate the global synchronization points

in the program. Note that the same barrier can appear at different locations in source code, as

when different functions are executed by different threads. It could also be that the single bar-

rier placed at a single location in source code is duplicated by compiler and appears at multiple

instructions in the intermediate representation of the program. The barrier ID ensures that the

compiler can still find the barrier points in all such scenarios. The ID allows the compiler to

determine the barriers where all threads synchronize.

Next, we use algorithm 3, to incrementally identify these barriers starting from the

beginning of a multithreaded section. It uses the RICFG (step 1) as created by algorithm 2. In

the RICFG, a single, global sync node is created for each sync barrier call with the same ID.

The Disjoint-TS algorithm proceeds by iterating over each multithreaded thread section found

by the Single-TS algorithm (step 2 and 2.1). It finds the reachable barrier nodes from start node

through a depth first search (DFS) traversal of the RICFG, stopping at the sync nodes. If all the

paths from the beginning of a thread section reach a single sync node (step 2.3.1 and 2.3.2), it

implies that all possible paths that start from the beginning of the multithreaded code section

have to go through the same barrier, and so this section can safely be demarcated as a new

Disjoint-TS (2.3.2.1). The new common sync node is then used as a starting point for another

search (2.3.2.2), to find the next Disjoint-TS. On the other hand, if the reachable set of sync

nodes contains multiple elements, or is an empty set, then it conservatively abandons finding

any new Disjoint-TS (2.1.3.3), and marks the end of the multithreaded section as end of current

Disjoint-TS.

49

3.6 Overall Instrumentation Flow

The overall SBPA compilation flow proceeds as follows. We first perform an inter-

procedural pointer analysis. Then, we build the RICFG. Then, Single-TS and Disjoint-TS al-

gorithms are applied on the RICFG consecutively. Once we have detected the correct sets of

memory locations accessed in different sections, we leverage per section modified/reference

information to detect if the reads and writes in various sections can potentially share data with

other threads. If a read/write is in single threaded code sections only, it is guaranteed to not have

sharing issues. As the evaluation shows, we correctly detect nearly 80% of the single-threaded

reads and writes.

For multithreaded code sections, we evaluate each read instruction as follows. If any

write accesses the same points-to set as accessed in the read instruction in any of the thread

sections where this read instruction can be executed, it implies that the memory accessed by the

read could potentially be written in the same thread section. So the read must be instrumented.

Otherwise, the memory accessed by this read is a read-only memory in the thread sections in

which the read instruction is executed, and so the read is not instrumented. All thread sections

in which the read instruction can appear are considered before the read can be determined as

non-conflicting. Since single threaded sections do not overlap with multi-threaded sections, the

writes in single threaded mode are automatically excluded from consideration.

50

Chapter 4

Programmer Annotations and

MTROM

In this work, we focus on automatically reducing instrumentation without any pro-

gram modification. However, in practice, due to various other overlapping compiler optimiza-

tions that can make the CFG more complex to analyze, and the pessimism of points-to analysis,

sometimes static analysis fails to derive the most precise sets of conflicting loads and stores.

In such cases, it is useful for the programmer to insert directives that help compilers under-

stand the program flow more easily, The directives act as hints; inexpensive runtime checks are

performed to verify that they hold true at runtime. The runtime checks are executed very infre-

quently compared to the frequency of instrumented memory accesses. We propose two types of

directives: A directive to indicate multi-threaded read-only memory, and a pair of directives to

mark the multi-threaded sections.

51

4.1 Marking Parallel Code Sections

Sometimes, thread spawn and join calls have conditional calls that make it diffi-

cult to automatically detect the fork/join pattern. For these cases, we propose a pair of di-

rectives single mode begin and single mode end. These directives do not change

the behavior of the program, they just notify the compiler that the code section between the

single mode begin and the first immediate post-dominator single mode end is exe-

cuted by a single thread. To verify that the programmer does not introduce bugs, the runtime

system verifies that when these are invoked, only a single thread is active. Otherwise, a runtime

error is generated. These same directives can be used when the programmer knows that a single

thread is performing work while the others are waiting. These were used only in 2 benchmarks

in our evaluations.

4.2 Multi Thread Read Only Memory

In this section, we describe a memory model of Multithreaded Read-Only Memory

(MTROM), that we define as a region of memory that is read-only, only when an application

has multiple active threads. For data races to happen across multiple threads, at least one thread

accessing a shared memory location must perform a write to that location while some other

thread reads or writes to the same location in the same thread section.

Programming Patterns: It is quite common for parallel sections to just read a vast amount of

data that is created in single threaded sections. A very common example of this is the parallel

dense matrix multiplication. During the parallel phase of the program, the matrices being mul-

52

tiplied are not written to; only the product matrix is modified. Hence, the input matrices can be

allocated from MTROM memory space. Another example of the usefulness of this technique

is in the case of large graphs where additions and deletions only happen in single-threaded

sections, but the query operations happen in multi-threaded sections. In the benchmarks we

tried, many exhibited this nature of parallel execution. Thus, the MTROM model also aids the

programmer understand the communication patterns easily in a multithreaded application.

All MTROM memory are allocated from a special heap, called MTROM-heap. This

heap can be viewed as a segment of program heap separated by virtual address. At the beginning

of multi-threaded phases, these heaps are marked as read-only through page fault protection

available on most systems.

Theorem 1.: If all memory regions that a pointer variable can point to at a read

instruction are MTROM memory locations, then that read instruction does not need to be in-

strumented.

Proof: Since it is guaranteed by the compiler, and additionally checked by the run-

time system that MTROM memory is never written in multi-threaded sections, all the possible

memory regions pointed to by this pointer are invariant in all disjoint-TS sections. Hence, there

is no race or non-determinism through this access. So, excluding this read access from instru-

mentation is conservatively correct. Note that this access can only be a read, as a write will be

an immediate violation.

Ideally, static analysis as described in chapter 3 would identify all such accesses. But

due to limitations in pointer analysis and other static analysis methods in tracking large num-

ber of objects allocated at different places, it is not always possible to do so. In the MTROM

53

approach, the programmer allocates such memory from MTROM heap by replacing allocation

routines with corresponding MTROM routines. The programmer can also mark some globals

as MTROM, if desired. In practice, we observed that most large chunks of such memory are

heap allocated or mmaped, as their sizes are not known upfront. We provide MTROM versions

of functions (such as malloc and mmap), and require the programmer to use them when allo-

cating MTROM memory. The pointer analysis then marks the memory objects created by these

methods as ’MTROM heap’, and similarly for global memories, it marks them as ’MTROM

global’. During access instrumentation in thread sections, if a read memory access is traced to

a points-to set that only contains MTROM-heap or MTROM-global regions, then that memory

read access is not instrumented. On the other hand, if there is a write access to a points-to set

containing only MTROM objects in some parallel section of the program, then the compiler

pass can flag that as an error or warning. If the points-to set is a mixture of both MTROM and

non-MTROM memory regions, then the read and write operations are instrumented as usual.

To detect incorrectly marked MTROM memory regions, a test can be be implemented

either in all the executions or during debug mode. To avoid adding overhead with additional

checks in the write logging functions, we protect the pages of MTROM heap by marking them

as read-only. The read-only protection happens during multithreaded execution only, and are

marked as read-write whenever the program goes to a single thread mode. These checks are to

detect incorrect MTROM annotation by the programmer, and also to alert inadvertent writes to

such memory locations in parallel mode.

In the benchmarks we analyzed, using MTROM required minimal changes (a few

lines) to the source code. The only change was to replace few malloc, mmap, free and

54

munmap with their MTROM equivalents, and annotating at one place to indicate that the mem-

ory being accessed is MTROM. This method is not automatic, but it is robust and general, since

the writes to such memory are protected in parallel phases. It provides a strict guarantee to the

programmer that there is no communication (or races) through the MTROM memory regions.

In the past, various authors have proposed different memory modeling and allocation

for multi threaded programming also. Berger et. al. [12] proposed Hoard, that maintains per

thread heaps so that parallel, scalable memory allocation is possible, and false sharing is also

easily eliminated for thread local memory. Our approach of MTROM is for memory shared

among threads that cannot be made thread local. Adve et. al. [2] provide a perspective on var-

ious memory modeling for multi-threaded programming, that includes sequential consistency,

Java and C++ memory modeling. The MTROM modeling proposed here is much simpler, and

it provides a completely conflict memory, avoiding any of the issues associated with the models

described in [2].

55

Chapter 5

Loop Invariant Log Motion

In this chapter, we describe few techniques to reduce instrumenting of memory ac-

cesses in loops. Loops in programs consume significant portion of the runtime, and hence any

optimization in the loops is of great significance. This work and its results are also described

in brief in our workshop paper [31]. We note that our optimizations described here has some

similarity with the work described in REDCard [42].

Loop Invariant Code Motion (LICM) is a well known compiler optimization tech-

nique, that hoists code independent of the loop outside the body of the loop, either before or

after the loop. A reaching definition analysis is usually performed to identify such code. Ex-

ample 6 shows a small code excerpt illustrating such a case. The computation of exp(x) can be

moved to the loop pre-header, and the computed value can be used within the loop body.

Note that if the loop invariant code is as shown in example 6, then SBPA instrumen-

tation pass automatically benefits from reduced instrumentation, as the loop pre-header is only

56

Example 6 A simple loop with loop invariant computation of exp(x). After LICM, the com-
putation is moved into the loop preheader and computed only once, thereby reducing execution
time
Original loop:

for(int i = start; i < end; i++) {
C[i] = A[i] * exp(x);

}

After LICM:

v = exp(x);
for(int i = start; i < end; i++) {

C[i] = A[i] * v;
}

executed once for multiple iterations of the loop body. However, for our purposes, we are only

interested in set of accessed memory locations and not the actual values of those memory loca-

tions. So, to reduce instrumentation overhead, we extend the notion further. to only look at the

pointers. So, there is potential for further optimization regarding this. Similar to LICM, we call

it Loop Invariant Log Motion (LILM).

We describe two types of Loop Invariant Log Motion in the next sections.

5.1 Scalar Loop Invariant Log Motion (SLILM)

Example 7 An example of repeated accesses in the loop through the pointer p. The value of ∗p
may change in each iteration.
for(int i = start; i < end; i++) {

*p += C[i] ;
}

57

Consider the code in example 7. In this example, there is a store to the memory

location pointed to by p in each iteration of the loop. So, the value of *p is different each time,

and LICM may not move the operation outside the loop body. However, for the purposes of

instrumentation, the pointer location p does not change from iteration to iteration. Hence, we

only need to instrument it once for the entire loop. If p itself changes during loop execution,

this optimization cannot be applied. Algorithm 4 shows the steps of applying SLILM to loops

in a program.

Algorithm 4 Detecting Scalar Loop Invariant Log Motion.

1 foreach loop L in program P {
1.1 If L has thread directive, skip L
1.2 for each memory access a in L without an offset {

1.2.1 Let p be the pointer value.
1.2.1 If p does not need instrumentation, skip a.
1.2.2 If there is any assignment to p in L, skip a.
1.2.2 Remove any instrumentation for a if exists
1.2.3 if a is store {

Add logStore(p) in pre-header of L
}
1.2.4 if a is load {

Add logLoad(p) in pre-header of L
}

}
}

5.2 Vector Loop Invariant Log Motion (VLILM)

SLILM as described above only works for scalar pointer accesses. It is more common

to use the loop counter in array offsets to access memory locations from a loop invariant base

pointer. In example 8, the read access of A[i] and B[i], and write access of C[i] all fall in

58

Example 8 A simple loop with reads and writes to illustrate VLILM
for(int i = start; i < end; i++) {

C[i] = A[i] * B[i];
}

this category. These accesses cannot be hoisted outside the loop by LICM, as the values are

different in each iteration. Since the pointer values (A+i), (B+i) and (C+i) are also different in

each iteration, all these accesses must also be instrumented within the loop body.

However, our basic insight is that there is significant locality in the memory locations

in such accesses and efficiency improvements can be achieved if we can consolidate multiple

access instrumentations into a single instrumentation. The reason is that the instrumentation

function execution is runtime intensive when it is invoked billions of times in critical loops. For

example 8, we can naively instrument each of the accesses C[i] for i ranging from start to end.

Or, we can call one instrumentation function with a range of start to end and place it in the

loop pre-header. Depending on whether the access is load or store, the instrumentation call will

be one of these two listed below.

• logStore(Type ∗ address, sizetstart, sizetend)

• logLoad(Type ∗ address, sizetstart, sizetend)

Note that these vector versions of instrumentation functions are dependent on the

element type, as the size of the element determines the step sizes of the offset. The logging

function is optimized to stride through the array, since element size is known. Assuming that

the array element size is S, the cache line size used by the runtime model is C, and the number

of loop iterations is N , this will call the logging function dN × C/Se times. Without this

59

optimization, the logging function is called N times. If S is a 32-bit integer or float, and C is

32 bytes, this reduces the number of calls eight times.

Such optimizations can only be performed if the entire loop is within a single Disjoint-

TS; so the loop cannot contain any thread related directives, such as a thread barrier, or task

begin or end for STMs. Also, the base address of array must be invariant in the loop. This

ensures that the single consolidated call is equivalent to the multiple original calls. Depending

on the size of the array element, this can significantly reduce redundant calls. This is applicable

to both read and write accesses. This optimization is most useful when we have unit step

functions for the loop induction variable. With a small stride step function, this may still provide

some benefit. A unit step appears to be the most common case in practice.

Note that there is a small difference in how these methods work for race detection and

STMs, and how they are applied for deterministic runtime systems. For race detection, only the

address is required. For STMs, only the original value of the memory location is required for a

restart on conflict. But for deterministic execution, the final values of the memory locations are

required. Therefore, for deterministic systems, the single SLILM and VLILM instrumentation

is moved to the end of the loop instead of the preheader.

For nested loops, we only applied this optimization to the innermost loop. For ex-

ample, in nested loops for matrix multiplication, the pass is only able to optimize the accesses

to the elements when consecutive elements are accessed in successive loop iterations, which

happen more frequently in the innermost loops. Although one could hoist an optimal number

of logging operations outside of nested loops, we haven’t explored that. Also, we only apply

this optimization when the loop has no conditional jump that could exit the loop early. This is

60

required, so that the logging operation does not log accesses that may not actually be executed

in the loop body.

5.3 Result of Applying LILM

We present the results of applying LILM here, as LILM is excluded in the main

results presented in the next chapter. The main reason is that when we integrated our pass with

ThreadSanitizer pass, we did not want to modify the ThreadSanitizer library. And so, we had

no way to measure improvement with LILM and ThreadSanitizer. Therefore, we present the

LILM results separately here.

We evaluate the reduction possible with SLILM and VLILM when combined with

other SBPA optimizations. Hence, our base here includes the optimizations described in prior

chapters. The column headings of the tables are explained below.

• No-LILM: This includes optimizations that are part of Coredet; namely successive access

optimization (SAO) and Thread escape analysis. It also includes SBPA thread section

analysis combined with modref analysis.

• With-LILM: Optimizations in No-LILM combined with SLILM and VLILM

Table 5.1 shows the reduction in the number of instrumentation calls to the runtime

library with LILM and without LILM. Similarly, Table 5.2 shows the reduction in dynamic load

instrumentation counts when using LILM with other optimizations. As seen in the tables, in

many cases LILM failed to show any benefit. Also of interest is that LILM can produce signifi-

cant benefit even in store instrumentation counts. Most of the other optimizations, as shown in

61

Benchmark No LILM With LILM

blackscholes 92.5 92.5

fft 52.4 52.4
lu 33.3 33.3

radix 44.9 63.5

histogram 66.8 66.8

kmeans 50.6 75.2

matrix multiply 1 50

pca 99.8 99.8

reverse index 0.8 0.8

string match 58.6 58.6

linear regression 62.0 62.0

Average 51.17 59.55
Table 5.1: Total access logging reduction improvement with LILM

chapter 6 mainly reduce read instrumentations. In many cases, the fact that the optimizations

without LILM already reduced significant instrumentation (e.g. blakscholes) means there was

not much scope for LILM to improve it further.

Benchmark No LILM With LILM
blackscholes 100.0 100.0
fft 30.9 30.9
lu 1 1
radix 38.5 61.4
histogram 50.3 50.3
kmeans 50.4 75.1
matrix multiply 1 50
pca 99.9 99.9
reverse index 1 1
string match 100.0 100.0
linear regression 100.0 100.0
Average 52.0 60.8

Table 5.2: Load logging reduction with LILM.

62

Chapter 6

Experimental Results

6.1 Experimental Setup

We implemented SBPA as an LLVM compiler pass for a software runtime system

which enforces deterministic execution of multithreaded applications. The software runtime

system is similar to CoreDet [11] and has to instrument loads and stores to detect conflicts,

unless proven to be non-conflicting. We used CoreDet’s optimizations as our baseline for a

system that does not perform task logging. These optimizations include escape analysis to

avoid instrumenting thread-local data, and elimination of redundant instrumentations for same

memory address on successive accesses.

Our compiler pass is implemented for LLVM 3.3. We included the poolalloc [65]

module with Data Structure Analysis (DSA) that uses Steensgaard alias analysis [92]. We

enhanced it as described in section 3.2 to work with SBPA. We compiled each benchmark with

Clang’s -O4 optimization level to include link time optimization (LTO). Thereafter, we applied

63

SBPA analysis and instrumentation pass on the intermediate representation (IR) of the whole

program.

To evaluate SBPA we used benchmarks from the PARSEC [14] [15], SPLASH [99],

and Phoenix [86] benchmark suites which are shown in Table 6.1. We included results from all

of the benchmarks that we are currently able to compile and run with our deterministic execution

runtime system which is under development. At runtime, we recorded the dynamic counts of

the number of loads and stores which were instrumented.

We modified the Phoenix benchmarks to allow us to specify the number of threads to

spawn. For measuring dynamic instrumentation counts, all benchmarks were run with 2 threads,

as the number of threads does not influence these counts. For comparing runtime improvement

with ThreadSanitizer, as explained in chapter 7, we used 2, 4 and 8 threads. Unless otherwise

stated, each benchmark is unmodified from its original state.

Suite Benchmarks

PARSEC blackscholes (bl), dedup (de), fluidanimate (fl),
swaptions (sw), canneal (ca), streamcluster (st)

SPLASH fft (ft), lu (lu), ocean cp (oc), ocean ncp (on),
raytrace (rt), radix (rd)

Phoenix histogram (hi), kmeans (km), linear
regression (lr), matrix multiply (mm), pca (pc),
reverse index (ri), string match (sm)

Table 6.1: Benchmarks used, abbreviation shown in parentheses.

Certain benchmarks in parsec were excluded due to inability to run these with multiple

threads, even using parsecmgmt utility provided. The pthread configuration was not available

64

for freqmine and raytrace. However, a similar benchmark, raytrace, was included from splash

suite. We were also not able to compile two other parsec benchmarks facesim and vips due

to some complex manner in which these are compiled. However, we think the large set of

benchmarks we included from 3 established suites represents the parallel benchmarks very well

for our purposes.

6.2 Results

The goal of SBPA is to identify as many non-conflicting loads and stores as possible.

A non-conflicting memory access is guaranteed to be data-race free, and it also does not require

checking for conflicts in Software Transactional Memory (STM). Non-conflicting stores can be

classified as log-only (LogOnly) for STMs to reduce overhead, or can be ignored for data-race

detection. We compare SBPA results with the current state-of-the-art compiler technique used

by CoreDet [11] that we call ”Base” in this section. On top of Base, we add four improvements:

Single-TS (Section 3.4), Disjoint-TS (Section 3.5), Improved Alias Analysis (Section 3.2) and

Directives (Section 4).

The evaluation is divided into five sections: overall results, analysis of reduction in in-

strumentation, benchmark insights, compilation overheads and runtime with ThreadSanitizer 7.

Overall results provides details about the effectiveness of SBPA. Benchmark insights explains

the source of instrumentation and/or the reason SBPA failed to identify more memory accesses

as non-conflicting. The evaluation finishes by showing that SBPA pass requires minimal com-

pilation time, and that in fact, sometimes it makes the compilation process faster because it

65

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bl de sw
fl ca st ft lu rt rd oc on hi km m

m pc ri
sm

lr
av

g

%
 n

o
n

-c
o

n
fl
ic

ti
n

g
Base

Single-TS
Disjoint-TS

Alias
Directives

Figure 6.1: SBPA compiler pass detected 63% of all memory accesses at run-time as non-
conflicting. Excluding the improvements from ’Directives’ yields 51% accesses proven as non-
conflicting.

reduces the amount of loads and stores that require instrumentation.

6.2.1 Overall Results

Figure 6.1 summarizes the results for SBPA. For each benchmark, it shows the per-

centage of non-conflicting memory operations that are identified as such at compile time. On

average, 63% of the memory operations are proved non-conflicting. The current state-of-the-art

(Base) only proved 16% of the memory operations as such. This is the dynamic count of loads

and stores, and not the static counts. In all our plots, we show the dynamic counts of mem-

ory operations, not the number of loads or stores in the binary, as the latter does not represent

runtime overheads.

The most effective technique is Single-TS. It is able to avoid checks for 22% of the

memory operations. In some complex pointer cases, MTROM helped identify the truly invariant

memory regions, and so some cases showed drastic reduction with that method. Alias helped

66

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

bl de sw
fl ca st ft lu rt rd oc on hi km m

m pc ri
sm

lr
av

g

%
 n

o
n

-c
o

n
fl
ic

ti
n

g

Figure 6.2: SBPA identified 80% of the dynamic memory accesses executed in single threaded
mode.

disambiguate some pointer aliasing, thereby reducing 11% of the memory access instrumenta-

tions on average. The benefit is most apparent in 5 applications (de, sw, st, rt, oc) as the base

alias analysis was creating alias between different thread sections. Since we can guarantee that

some loads and stores cannot execute simultaneously, we were able to improve the precision of

alias analysis. Directives significantly affected 4 applications (ft, hi, mm, ri). Section 6.2.3

provides a detailed explanation per benchmark, but the main reason is the declaration of some

variables as MTROM. On average, Directives removed 11% of the memory access checks.

From these benchmarks, only fluidanimate (fl) has a significant improvement due

to Disjoint-TS. The reason is that very few benchmarks have different barriers during mul-

tithreaded code sections, or perform a significant percentage of work in each disjoint thread

section. Instead, most applications use a spawn fork/join model where threads are spawned

to perform a task, and then they are joined by the main thread. This kind of model is where

Single-TS benefits the most.

67

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

bl de sw
fl ca st ft lu rt rd oc on hi kmm

m pc ri
sm

lr
av

g

%
 n

o
n

-c
o

n
fl
ic

ti
n

g

Base NoConflict

Figure 6.3: 68% of the loads are detected as non-conflicting, with a few applications reaching
100%.

6.2.2 Analysis of Reduction in Instrumentation

To measure the effectiveness of Single-TS pass, we ran the benchmarks with and

without SBPA optimization, and measured the number of memory access instrumentations that

happened when only one thread was active in the program. Figure 6.2 shows the percentage

reduction of one over the other. A 0% reduction implies that SBPA couldn’t prove any access

in single threaded code sections as non-conflicting. A 100% implies that all such memory

accesses were identified. On average, it identified 80% of these memory operations. Most of

the benchmarks have over 90% reduction except ca, ft and lr. One of these (lr) actually has very

few such memory accesses due to mmap operation for the input file, and all the data being read

in multithreaded mode.

To understand SBPA behavior, we also show the effectiveness for loads and stores

separately. Figure 6.3 shows the percentage reduction in instrumentation for loads when apply-

ing SBPA optimization pass. The state-of-the-art (Base) removes only 13% of loads on average.

SBPA can remove an additional 55% of loads. This means that on average 68% of the load op-

68

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

bl de sw
fl ca st ft lu rt rd oc on hi kmm

m pc ri
sm

lr
av

g

%
 n

o
n

-c
o

n
fl
ic

ti
n

g

Base NoConflict LogOnly

Figure 6.4: 61% of the stores do not need to be tracked by tools like data-race detectors which
is much better than 38% with Base. For STMs that may have restarts, 52% of the stores can be
proven as safe.

erations can be proven non-conflicting (NonComm). The results are better than those for the

aggregate access counts because SBPA achieves a significant improvement for read-only ac-

cesses. The breakdown is also fairly disparate; for 8 benchmarks (bl, de, hi, pc, ri, mm, sm, lr)

out of 19, it is able to remove over 99% of the loads that would need to be instrumented. This

leaves little opportunity for other techniques to show any further improvement. The worst result

is in lu, where nearly all the loads are marked as conflicting loads. The problem in lu is that the

input matrix is modified in-place. The accesses are partitioned between threads in sub-blocks,

but all access the same matrix. As a result, the alias analysis collapses all the memory accesses

to a single points-to set. Even an ideal pointer analysis will have this problem, unless a range

or partition analysis is performed.

Figure 6.4 shows the percentage reduction in instrumentation for all stores. In case of

stores, we divided the reductions as Base, LogOnly, and NonComm. The state-of-the-art (Base)

is able to mark 38% of the stores as non-conflicting. SBPA improves over that result, removing

61% of the stores for tools like data-race detectors. For STMs, SBPA proves over 52% of the

69

stores as non-conflicting.

Alias also plays a part in these instrumentation reductions. For the benchmarks we

evaluated, it helped to reduce 12% of load accesses for baseline, and 19% of loads for SBPA.

Its effect on store reductions was minimal (< 1%).

6.2.3 Benchmark Insights

To better understand these results, we proceed to provide a detailed per benchmark

explanation of the SBPA compiler analysis.

blackscholes (bl): bl iterates over 4 global read vectors. SBPA is able to detect that most of the

accesses are read-only, and reduces load access instrumentation by 100%. For store accesses,

the same array is written by multiple threads. Without a sophisticated range analysis to partition

the array statically using symbolic values, we cannot eliminate the store instrumentations. But

overall, SBPA still determines that 93% of memory accesses are non-communicating.

dedup (de): This is a pipelined parallel processing benchmark. The core function with most of

the read accesses is FindAllAnchors. With base optimization, the read accesses are already

optimized by almost 50%, as there is significant local heap memory used within this function.

When combined with Single-TS and our improved pointer analysis pass, it is reduced signifi-

cantly more, to almost 98%.

swaptions (sw): In swaptions, a very high number of loads and stores in baseline version hap-

pen in the function

HJM SimPath Forward Blocking. Even though it allocates large portions of memory lo-

cally, due to aliasing with other global memory regions, instructions accessing the local mem-

70

ories are also treated as if they are accessing global memories, and hence get instrumented.

Single-TS alone didn’t help in this case. When combined with our modified pointer analy-

sis, Single-TS provides the expected benefit in load and store tracking reduction in this critical

function.

fluidanimate (fl): fl is a very good fork-join model parallelism, with many global barriers for

the threads. It reads and modifies different fields of the structures in a large array of structures,

and so we needed to also use an improved, field-sensitive mod-ref analysis in combination

with Disjoint-TS to see significant improvement in this case. Our strided access recognition

was specifically designed to handle such situations. In our own version of such simulation

benchmarks, where the code was written more carefully to unalias non-overlapping reads and

writes in same phase, we saw 66% reduction in load access counts instead of 56% shown here,

for this benchmark.

canneal (ca): This is a simulated annealing benchmark used in chip design. A circuit graph

is first created in single threaded mode, with different elements and their initial placements. In

parallel mode, an annealing algorithm picks random pairs of elements to consider for swaps.

At the beginning, it swaps elements even if it leads to an increase in the routing cost. but as

time advances and the temperature cools, only those swaps that improve the cost are carried out.

Single threaded mode shows a significant decrease, as the graph creation process didn’t’ require

any instrumentation. Also, the field sensitive pointer analysis helped, since only the coordinates

of each node in the graph are modified, and not their connectivity matrix, which is frozen once

the graph is created.

71

streamcluster (st): Streamcluster is an RMS kernel, that clusters a large number of points

in different clusters based on a pre-determined number of medians. In this benchmark, we

observed several local memory allocations, and also noticed that the medians are computed

in a separate array. This implies that most of the fields of the points are not modified. The

field-sensitive modified-reference analysis significantly reduced the amount of instrumentation

needed in this case, as only a particular field of the points is modified to assign it a new center,

while the coordinates of the points are never modified but read a very high number of times.

FFT (ft): ft has a global array of input time domain points that is not modified. SBPA de-

tects accesses to this as non-communicating, and reduces load counts by 30%. Our improved

Steensgaard analysis reduces this further, by disambiguating memory regions pointed by var-

ious function arguments. FFT is one of the few benchmarks that benefit from Directives, in

which we used a per thread array that effectively privatized the data before each FFT iteration.

LU (lu): In LU, threads modify the input matrix in-place with complex strides. Our methods

do not show significant improvement, except for reducing some access tracking that happen in

single threaded mode. The benefit comes from detecting all the memory initialization operations

as non-communicating, that account for over 80% of the stores.

raytrace (rt): Our Single-TS reduced a significant 61% of total read and 49% of total write

access instrumentation. When compared to baseline instrumentation, 56% read and 32% write

instrumentation were eliminated by this alone. When we combined this with our more precise

pointer analysis, the above savings were further improved to almost 98% reduction in read and

57% in store instrumentation. We observed a very distributed pattern of reads and writes across

many functions, and many of those functions were called from multiple places with different

72

arguments. That is one reason why our modified pointer analysis had a good impact in this case.

Disjoint-TS also identified 2 sections within the multithreaded program segment, but this only

helped marginally.

radix (rd): rd performs in-place sorting of the keys. We see some benefit from avoiding instru-

mentation during initialization, but very little benefit from applying SBPA specific analysis on

the multithreaded sections. Radix is one of the 3 worst benchmarks. Nevertheless SBPA still

proved 40% of the memory accesses as non-communicating.

ocean cp (oc): oc has a significant boost compared with the state of the art. The loads ben-

efit mostly from the improved alias analysis; without it we see no benefit in loads. There are

three main functions, jacobcalc, jacobcalc2 and laplacalc, which perform most of the memory

accesses. SBPA pointer analysis unaliased some of the points-to sets due to calls to some ma-

jor functions with different formal arguments. Some memory regions become read-only, thus

increasing the number of non-communicating loads. Stores benefit from Single-TS analysis,

independent of the improved alias analysis.

ocean ncp (on): In this case, the threads access global memory in such a manner that our meth-

ods do not find significant optimization opportunities. Our methods still remove approximately

8% more read accesses than the baseline. The additional reduction in store instrumentation over

baseline was negligible.

histogram (hi): The threads read values from global data, and increment counters each time

they read a value. Histogram uses a large memory malloc for a single array and passes a section

to each thread, which creates aliasing among the memory operations. We modified the memory

allocation to use per-thread malloced memory. This improved the aliasing, resulting in nearly

73

100% non-communicating memory accesses.

kmeans (km): km has a very high load-to-store ratio, stores being only a small fraction of total

accesses. It also uses a global array of points, so SBPA can determine several accesses as read-

only. Due to other interfering optimizations, such as loop trip optimization that replicates loops

with branches to handle trip counts of 0, SBPA algorithm is not able to identify the most precise

points where the multi-threaded regions begin or end. Still, it is able to remove a significant

portion of instrumentation calls.

matrix multiply (mm): This is a classic case of multiple threads accessing large portions of

read-only memory, where the input matrices are not modified at all during the multiplication

process. The problem in this benchmark is that a single large array is created for all the threads.

When the input matrices were marked read-only (MTROM), SBPA reduced 100% of the load

instrumentations, but it still instruments all the multithreaded store operations.

pca (pc): This program has two separate threaded regions. In the mean computation region,

it is reading matrix data, and writing only the means of each row. In the subsequent threaded

region to compute covariance, mean is only read. Hence, in the second threaded section, both

the matrix data and mean data are treated as read-only, and do not need instrumentation.

reverse index (ri): In this case, large input data set is is modified in-place, to NULL-terminate

the end of http links embedded in it. This rendered its memory read-write in multi-threaded

mode, although in principle it is only used as input. When the link end point information was

annotated separately using less than 10 lines of code change, this large input data became read-

only in each Disjoint-TS. Then, SBPA was able to identify nearly all the memory accesses as

non-communicating.

74

string match (sm): sm is an interesting benchmark that exhibits a property not seen in any other.

Most of the stores can be proved as log-only. This means that for data-race detection, nearly

100% of the memory accesses do not need to be verified. For non-communicating memory

accesses (Figure 6.1), 60% of the memory accesses were identified as non-communicating for

STM-like systems, due to many store operations present in the identified Disjoint-TS.

linear regression (lr): In this case, there are successive loads of the fields of the same struc-

ture. As a result, the state-of-the-art (Base) optimizations could reduce load tracking signifi-

cantly. SBPA is able to detect all the reads as read-only, marking 100% of the loads as non-

communicating, with an overall 62% reduction in aggregate access instrumentation. There is

a significant amount of stores in this case, which results in smaller reduction in total access

tracking compared to load tracking reduction.

6.2.4 Compilation Overhead

In this section, we show that SBPA, incorporated as optimization passes in LLVM

compiler, is not computationally expensive, which makes it quite practical. SBPA uses the

Clang front end to create LLVM byte codes. These byte codes are optimized and linked to

create one final byte code, which is converted to machine code executable. SBPA pass is run

as part of opt after all the input files have been combined into a single byte-code file. The

instrumentation functions are inlined for faster execution. These steps are very similar to those

used by CoreDet [11].

Figure 6.5 shows the compile times of Base and SBPA normalized against compile

times without SBPA or Base. SBPA for STM system is between 15% and 90% faster than

75

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

bl de sw
fl ca st ft lu rt rd oc on hi km m

m pc ri
sm

lr

N
o
rm

a
liz

e
d
 C

o
m

p
ila

ti
o
n
 T

im
e

Base SBPA

Figure 6.5: Compilation times of Base and SBPA normalized against compile time when no op-
timization is applied. On average, Base took 75% and SBPA took 46% of unoptimized compile
time.

the same STM compiler pass without any optimization. In the benchmark with the highest

overhead (on), the SBPA optimization pass accounts for less than 1% of the compilation time.

For most of the benchmarks, it is less than 0.3% overhead. So, SBPA pass is runtime efficient,

as even with small overhead of its own, it reduces overall compilation times for STMs and other

deterministic engines, primarily because the instrumentation overhead for compiler is reduced

significantly. Base optimization also reduces compilation time over unoptimized version. The

extra computation time required for Base and SBPA is significantly less than the extra cost

incurred in instrumenting the additional loads and stores. The second bar shows that SBPA

reduces compile times significantly more than Base for every case.

For ThreadSanitizer experiments, we used a slightly different flow as described in

Chapter 7. In this case, SBPA removes the unnecessary instrumentations already inserted by

ThreadSanitizer. ThreadSanitizer instrumentation calls are external library functions and not

inlined, so SBPA adds some compile time overhead in this flow. In our experiments, we saw a

maximum slowdown of 42% in compile time compared to that of ThreadSanitizer pass. Still,

76

for many benchmarks we observed shorter compile times due to reduced linking times. The

geometric mean slowdown was just 1%. We think, a small slowdown is acceptable, considering

how much runtime can be saved, particularly when many tests are run with the same executable.

77

Chapter 7

A case study with ThreadSanitizer

To evaluate the effect of SBPA on runtime for dynamic race detection, we combined

SBPA optimizations with ThreadSanitizer [89], a state of the art dynamic race detection tool.

ThreadSanitizer works within LLVM framework, and uses Clang’s front end to insert the instru-

mentation instructions. This is also one primary reason to choose ThreadSanitizer over other

such race detectors. According to ThreadSanitizer documentation, it causes 5X to 15X slow-

down, and anywhere from 3 times to 9 times more memory compared to executables without

ThreadSanitizer. We let ThreadSanitizer instrument the binary as it deems suitable. Thereafter,

SBPA is applied on the whole program model to remove the unnecessary instrumentations in-

serted by ThreadSanitizer. In this method, our pass has very low interactions with ThreadSani-

tizer instrumentation process. We evaluated each benchmarks with the following options.

• No-Tsan: ThreadSanitizer pass not applied. This is the native run, with no race detection.

• Tsan-Zero: ThreadSanitizer pass is applied, then all instrumentations are removed.

78

• Tsan: ThreadSanitizer instrumented; none of the Base or SBPA optimizations applied

• Tsan-Base: Apply Base optimization on Tsan

• Tsan-SBPA: Tsan with SBPA, that includes Base, Single-TS, Disjoint-TS and Alias

• Tsan-Directives: Tsan with SBPA, and annotations where applicable

Tsan-Zero is included to measure the overhead that remains even when all instrumen-

tations are removed. This is not a correct optimization to do, but it provides a trivial lower

bound of the runtime that can be achieved by removal of instrumentations. As we observe,

some benchmarks have a significant overhead regardless of the number of instrumentations,

while some others have low fixed overheads.

Tsan-Base includes the optimizations that we described in previous chapter, except

certain optimizations that are not applicable to precise data race detection, and are dependent on

the cache line size used in our previous chapter. Instead, we included an additional optimization,

to exclude accesses that are enclosed by the locking and unlocking of the same mutex variable.

This is somewhat similar to the Unlocked Pairs Computation technique in [74], except that we

can only remove an instrumentation when it is guaranteed that such removal will not miss any

race. So, instead of may aliasing, our checking is based on must aliasing of the lock variables.

If a memory location is accessed only in lock protected regions that are all protected by the

same lock, then we remove instrumentation of accesses to that memory location. Although this

technique should theoretically yield improved results, in reality only a few accesses are made

in such critical regions due to the overhead of locking and unlocking, and because it inherently

causes serialization during parallel execution. Secondly, if the mutex variable is not global, then

79

it is difficult to prove statically that memory regions are indeed protected by the same mutex. In

our benchmarks, we only observed minimal benefit by using this optimization.

Test No-Tsan Tsan-Zero Tsan Tsan-Base Tsan-SBPA Tsan-Directives

bl 90.3 107.4 174.1 173.1 112.9 113.1

de 26.4 66.2 100.6 100.7 69.9 67.5

sw 22.0 32.5 180.8 171.1 48.9 148.9

fl 6.5 12.4 105.4 97.2 69.0 69.3

ca 28.7 119.3 153.8 151.5 119.7 118.6

st 11.3 11.8 281.9 277.8 21.3 21.3

ft 7.6 7.6 57.0 40.7 32.7 32.2

lu 1.3 1.4 71.9 60.4 53.2 53.2

rt 10.2 14.9 142.3 136.1 17.2 17.2

rd 27.5 27.7 59.5 60.0 57.7 57.5

oc 20.4 23.6 271.1 257.6 228.0 228.0

on 45.5 51.9 578.6 561.2 546.9 547.6

hi 0.9 0.9 29.1 22.4 11.9 7.9

km 26.6 28.9 440.4 440.6 245.5 245.4

mm 3.5 3.5 16.5 16.4 16.5 3.5

pc 25.5 27.1 939.6 936.5 28.0 27.9

ri 1.8 7.6 10.4 10.5 10.4 7.0

sm 5.1 155.3 213.2 211.3 196.4 196.6

lr 1.1 1.1 15.4 15.4 1.1 1.1

Table 7.1: Runtimes (in seconds) of executables compiled for ThreadSani-
tizer dynamic race detection with 2 threads.

Table 7.1 shows the absolute runtimes of the benchmarks executed under controlled

load condition on a machine with 3.5 GHz Intel Xeon processors. Wherever possible, we used

a large input data set to have a long enough runtime for the comparisons to be meaningful. The

80

large data inputs were maintained locally on the machine to get accurate runtimes that do not

depend on the network speed.

In Figure 7.1, we show the speed-up for each benchmark with Tsan −Directives,

which includes all the optimizations. These are compared to the runtimes of Tsan, as measured

with 2, 4 and 8 threads. Some benchmarks have higher speed-ups as number of threads are

increased. We think, it is because the instrumentation operation is performed as a serial process

in most systems, since it needs to update data structures common to all the threads. So, once

we remove an instrumentation, it becomes faster if there are more threads running in parallel.

However, in some cases with lot of races, the race detection and reporting dominate the total

runtime. In those cases, even removing the instrumentation didn’t help the runtime significantly,

regardless of the number of threads. In several of these cases, ThreadSanitizer reports races.

And in all of those cases, the races continued to be reported after our pass was applied. This

shows that our pass is working as expected, and that it is not removing any instrumentation that

is necessary to detect races.

We also show the overall speed-ups achieved with different optimizations in Fig-

ure 7.2. These are the geometric means of speed-ups of all the benchmarks for NoTsan, Tsan-

Zero, Tsan-Base, Tsan-SBPA and Tsan-Directives compared to Tsan. (The prefix “Tsan-” is

removed in the figure for brevity.) Overall, SBPA and Base achieved speed-ups of 2.425 and

1.116 respectively on geometric mean basis. When combined with directives, the speed-up in-

creased to 2.736 times. The upper bound of speed-up is 6.5 as with Tsan-Zero. We note that

Tsan is about 12 times slower than No-Tsan for these benchmarks.

81

 0

 5

 10

 15

 20

 25

 30

 35

 40

bl de sw fl ca st ft lu rt rd oc on hi km mm pc ri sm lr avg

S
p
e
e
d
-u

p
s

Benchmarks

2 threads 4 threads 8 threads

Figure 7.1: SBPA yields over 2 times speedup compared to Tsan, with some applications
achieving over 30 times speedup.

 0

 2

 4

 6

 8

 10

 12

NoTsan Zero Tsan Base SBPA Directives

S
p

e
e

d
-u

p
s

Optimizations

2 threads
4 threads
8 threads

Figure 7.2: ThreadSanitizer speed-ups in the different modes described earlier. SBPA, com-
bined with Directives, speeds up ThreadSanitizer execution by a factor of 2.74.

In general, the speed-ups correlate fairly well with the percentage reductions in in-

strumentation we showed in previous chapter. But we note that the improvement in runtime

is not as high as the reduction in dynamic instrumentation count in some cases. For certain

benchmarks, such as de, runtime overhead didn’t decrease as the optimizations used for our

STM as part of Base was specific to cache line size used for that system. On some other bench-

marks, such as st, pc, rt, mm and lr, we see tremendous improvements. Yet, in some others, the

82

overhead even with zero instrumentation is quite high and dominates the runtime; so we do not

observe as much speed-up as would be indicated by the reduction in instrumentation counts.

83

Chapter 8

Improving Static Race Precision with

SBPA

A very important issue in writing multi-threaded programs is to identify potential

trouble spots during developing the multithreaded software. This is the subject of static race

detection, where the compiler or the static race detector flags potential racy accesses. Note

the difference with dynamic race, which detects race conditions only at runtime and detects real

races among threads at some memory location. In contrast to dynamic race detectors, static race

detectors flag potential races, although in some rare cases, they can identify definite races. The

reason is that it is very difficult to determine during program compilation, whether a race will

actually occur, as it depends on inputs with which the program is executed. Due to the inherent

imprecision of alias analysis and conservativeness of static race detection, static race detectors

generate many false positives; i.e. they indicate potential races where there is no possibility

84

of actual race. This is a big difference with dynamic race detection. This is also precisely the

reason that such tools remain impractical for use in real programs.

In this extension of our work, we apply SBPA to static race detection (vs. dynamic

race detection as in prior chapters) and evaluate if SBPA can reduce the false positives, and

thereby reduce programmer involvement to debug these unnecessary issues flagged by static

race tools. We apply the same techniques and options as discussed in earlier chapters. However,

instead of measuring dynamic counts of load and store instructions potentially involved in races,

we measure the static counts. The objective of static race is to help the programmer fix the racy

conditions. Note that SBPA operates on the Intermediate Representation (IR) of the LLVM

compiler. So, we also map back the racy instructions in IR to the line in original source code, so

that the programmer can relate to the issue much more easily. Therefore, for our evaluation, we

measure the racy read and write instructions, as well as the racy read and write lines of program.

8.1 Methodology

For measuring static race, we only need to compile the benchmarks and not run it

with any specific input. Similar to SBPA for dynamic instrumentation reduction, each source

file is first compiled into individual byte codes. Then, these byte codes are combined and linked

into a single byte code (IR) that represents the whole program. Then, LLVM opt is applied on

this combined IR, SBPA is applied as part of opt. Various techniques are turned on with options

specified to opt. For static race, we do not need to instrument the load and store instructions.

Instead, an analysis is performed to detect the racy accesses used in reducing dynamic race.

85

And the various statistics are calculated. The racy lines of programs are printed out for the user

to take further action.

To reduce the number of issues flagged, for each value accessed in source code, the

issue is flagged only once. For example, if a global escaping memory location V [i] is accessed

few times in a function F , we only issue warning once for the value V in F . This reduces the

number of issues the developer has to inspect.

We observe that some programs are intentionally racy for reasons of efficiency. In

some cases, the race conditions never cause different results, as multiple threads write exactly

the same value to a specific memory location and there are no inter-dependencies. In some other

cases, the difference in values may be insignificant and immaterial. For example, there are well

known implementations of graphic image compression utilities that are actually racy. So, there

exists a class of race conditions that can be called benign.

So, the SBPA approach for static race adds flexibility for the user. SBPA compilation

detects and issues warnings for the potentially racy accesses. The user can then verify the data

access. If the programmer is confident that the access should never participate in a race, then he

can annotate it in three different ways:

• safe: This access is safe to ignore. It could be a false race flagged, or could be a benign

race. Although the user deems it safe, there is a possibility for race to occur, or the program

output to differ due to race through such accesses. Dynamic race detection could still

instrument these accesses in test mode, and capture differences in values over multiple

runs of the same test.

86

• critical: This could be a critically important access, and should be verified further with

dynamic race verification. Dynamic race detection then should ensure that the tests run

with dynamic race detection has covered this access sufficiently.

• check: The programmer is simply unsure of the importance of this race, but he cannot rule

it out either. So, dynamic race detection should insert instrumentation for this, and flag the

race for this with normal severity. This is the default, and does not require annotation.

We believe that the reduced set of violations flagged by SBPA static race makes it

feasible for the programmer to annotate the few racy accesses properly. And then, combining

these annotations with a dynamic race detector that understands these annotations can provide

very valuable insights into the race issues in the program.

8.2 An Example Case

In example 9, we first show the output from SBPA analysis. And then show the lines

of code that it points to, along with the variable name (value). Since it operates on IR, the

variable name is sometimes not exactly correct at this time. We plan to enhance this in future.

The first location is a write to the thread ID array. Since the for loop encompassing this write

also create threads, this line is assumed to be in a multi-threaded code section. However, we

can see that this write could easily be moved into a separate loop executed before the loop that

creates the threads. The programmer can fix this by rearranging the thread, or mark it as a safe

race if he is certain. The other racy access pointed to here is the write to the global array prices

at line 435. SBPA thinks that it is a potential race. However, the programmer might conclude

87

Compile program
for static race with

SBPA

Program is
statically race free

Inspect and
categorize racy
data accesses

Re-compile program
for dynamic race

with SBPA

Run benchmarks.
Validate dynamic
race issues found.

Race
No Yes

Figure 8.1: Static race detection flow with SBPA. Static races detected are classified and further
validated by dynamic race detection.

that no two threads should write to the same location in the array, and can mark this as critical,

which then gets verified by dynamic race detection accordingly.

By contrast, example 10 shows the many false positives when we do not use SBPA.

Only two of the 14 potentially racy accesses were not proven by SBPA as non-racy; rest 12

were proven non-racy. Example 11 shows the code in program that cause most of these races

when we do no use SBPA. In this particular case, the other global pointers are read only in the

multi-threaded code sections, so these accesses are proven race free by SBPA. Note that the race

detection is for each disjoint thread section. And the report also indicates how many writes and

reads are involved in the race, and their locations.

88

Example 9 The potentially racy write access shown by SBPA race detector.
Output from SBPA race detection pass:

REPORTING RACES with 2 escaping write nodes out of total 42 (read nodes 13)
Write Locations:
File blackscholes.cpp:435
Value is tids root value: tids
Impacts 1 read locations in same DTS

===
Write Locations:
File blackscholes.cpp:294
Value is prices root value: prices
Impacts 0 read locations in same DTS

===

Snippet of source code

...
294 prices[i] = price;
...

433 int tids[nThreads];
434 for(i=0; i<nThreads; i++) {
435 tids[i]=i;
438 int _M4_i;
439 for (_M4_i = 0; _M4_i < MAX_THREADS; _M4_i++) {
440 if (_M4_threadsTable[_M4_i] == -1) break;
441 }
442 pthread_create(&_M4_threadsTable[_M4_i],NULL,

(void *(*)(void *))bs_thread,(void *)&tids[i]);
446 }
...

SBPA operates on LLVM IR, and therefore sometimes the variable names (known as

Value in LLVM) don’t always indicate the original variable name in source code. LLVM also

sometimes creates additional variables as the IR is in SSA form. Besides, the value in a function

could have been passed through the function argument or as a pointer in a structure passed to

the function, and really points to some other location. That root location is indicated by the field

root value in the output shown in examples 9 and 10.

89

Example 10 Output with base optimizations, without using SBPA
REPORTING RACES with 14 escaping write nodes out of total 42(rd nodes 16)
File blackscholes.cpp:412
Value is volatility root value: volatility
Impacts 2 read locations in same DTS

File blackscholes.cpp:416
Value is otype root value: otype
Impacts 2 read locations in same DTS

File blackscholes.cpp:420
Value is arrayidx98 root value:
Impacts 6 read locations in same DTS

File blackscholes.cpp:422
Value is arrayidx108 root value:
Impacts 7 read locations in same DTS

File blackscholes.cpp:423
Value is arrayidx113 root value:

File blackscholes.cpp:373
Value is prices root value: prices

File blackscholes.cpp:435
Value is tids root value: tids

File blackscholes.cpp:411
Value is rate root value: rate

File blackscholes.cpp:410
Value is strike root value: strike

File blackscholes.cpp:343
Value is nThreads root value: nThreads

File blackscholes.cpp:361
Value is nThreads root value: nThreads

File blackscholes.cpp:413
Value is otime root value: otime

File blackscholes.cpp:409
Value is sptprice root value: sptprice

File blackscholes.cpp:372
Value is data root value: data

File blackscholes.cpp:419
Value is arrayidx93 root value:

File blackscholes.cpp:294
Value is prices root value: prices

90

Example 11 Snippet of source code for the racy accesses.
393 _M4_numThreads = nThreads;
394
395 int _M4_i;
396 for (_M4_i = 0; _M4_i < MAX_THREADS; _M4_i++)
397 _M4_threadsTable[_M4_i] = -1;
398
399
400 ;
401 #endif
402 printf("Num of Options: %d", numOptions);
403 printf("Num of Runs: %d", NUM RUNS);
404
405 #define PAD 256
406 #define LINESIZE 64
407
408 buffer = (fptype *) malloc(5 * numOptions * sizeof(fptype) + PAD);
409 sptprice = (fptype *)(((unsigned long long)buffer+PAD)&˜(LINESIZE-1));
410 strike = sptprice + numOptions;
411 rate = strike + numOptions;
412 volatility = rate + numOptions;
413 otime = volatility + numOptions;
414
415 buffer2= (int *)malloc(numOptions * sizeof(fptype) + PAD);
416 otype= (int *)(((unsigned long long)buffer2+PAD)&˜(LINESIZE-1));
417
418 for (i=0; i<numOptions; i++)
419 otype[i] = (data[i].OptionType == ’P’) ? 1 : 0;
420 sptprice[i] = data[i].s;
421 strike[i] = data[i].strike;
422 rate[i] = data[i].r;
423 volatility[i] = data[i].v;
424 otime[i] = data[i].t;
425

8.3 Results

To measure effectiveness of SBPA in static race detection, we used the same set of

benchmarks that we used to detect the impact of SBPA in reducing dynamic load-store instru-

mentation. But the counts here are all static counts; i.e. number of lines in source code or

number of instructions in the executable. The various plots in this section show the benefit of

using SBPA to reduce potentially racy accesses.

91

We notice in the results that the effect of some SBPA options is more subdued in

many tests compared to their effect on dynamic instrumentation counts. It is because a single

memory access in code can be executed many times at runtime. For example, the memory

accesses within the loop of matrix multiply are only counted as single access in these plots,

though there are many dynamic accesses from that single access. When SBPA eliminates all

these dynamic accesses, the reduction is only seen as one less access in these plots showing

static access counts.

In Figure 8.2, we show the reduction in potentially racy read and write lines in source

code achieved by Base and SBPA techniques. The higher the percentage, the more is the

reduction and fewer remaining potentially racy lines to be investigated by the programmer.

Similarly, Figure 8.3 shows the reduction in percentages of potentially racy read lines in code,

and Figure 8.4 shows such reduction percentages for write lines in source code. Since SBPA

actually operates on IR at the instruction level, we also show similar percentage reductions for

read-write instructions, read instructions and write instructions in Figure 8.5, Figure 8.6 and

Figure 8.7 respectively.

In Table 8.1 we show the absolute number of lines of code that SBPA shows as po-

tentially racy. While it does very well in benchmarks like bl, lr, sm, mm and sw, it is less

effective in some other benchmarks like oc and rt. The main reason is the imprecision of alias

analysis, which is a common problem we observed in our dynamic race analysis.

92

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bl de sw
fl ft lu fm rt rd oc on hi km m

m pc ri
sm

lr
Avg

%
 n

o
n
-c

o
n
fl
ic

ti
n
g

Base
Single-TS

Disjoint-TS
Alias

Directives

Figure 8.2: Percentages of total read and write lines identified as non-racy by Base and SBPA
techniques.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bl de sw
fl ft lu fm rt rd oc on hi km m

m pc ri
sm

lr
Avg

%
 n

o
n
-c

o
n
fl
ic

ti
n
g

Base
Single-TS

Disjoint-TS
Alias

Directives

Figure 8.3: Percentages of read lines identified as non-racy by Base and SBPA techniques.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bl de sw
fl ft lu fm rt rd oc on hi km m

m pc ri
sm

lr
Avg

%
 n

o
n
-c

o
n
fl
ic

ti
n
g

Base
Single-TS

Disjoint-TS
Alias

Directives

Figure 8.4: Percentages of write lines identified as non-racy by Base and SBPA techniques.

93

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bl de sw
fl ft lu fm rt rd oc on hi km m

m pc ri
sm

lr
Avg

%
 n

o
n
-c

o
n
fl
ic

ti
n
g

Base
Single-TS

Disjoint-TS
Alias

Directives

Figure 8.5: Percentages of read and write instructions identified as non-racy by Base and SBPA
techniques.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bl de sw
fl ft lu fm rt rd oc on hi km m

m pc ri
sm

lr
Avg

%
 n

o
n
-c

o
n
fl
ic

ti
n
g

Base
Single-TS

Disjoint-TS
Alias

Directives

Figure 8.6: Percentages of read instructions identified as non-racy by Base and SBPA tech-
niques.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bl de sw
fl ft lu fm rt rd oc on hi km m

m pc ri
sm

lr
Avg

%
 n

o
n
-c

o
n
fl
ic

ti
n
g

Base
Single-TS

Disjoint-TS
Alias

Directives

Figure 8.7: Percentages of write instructions identified as non-racy by Base and SBPA tech-
niques.

94

Test Number of Number of Total lines
racy read lines racy write lines

bl 1 2 526

de 85 62 3084

sw 15 12 1554

fl 30 30 2815

ft 16 19 1051

lu 12 14 925

fm 289 154 4193

rt 199 152 9898

rd 21 26 1141

oc 887 279 5169

on 253 274 3265

hi 5 8 320

km 12 11 386

mm 4 4 448

pc 2 5 430

ri 44 39 639

sm 5 9 459

lr 8 7 324

Table 8.1: Total racy read and write lines, and total program lines for the
benchmarks studied.

95

Chapter 9

Conclusion

In this work, we investigated several optimizations and techniques to reduce instru-

mentation overhead for shared memory multi-threaded programming. We conclude that a

section-based static analysis of programs combined with suitable user directives, can signif-

icantly reduce the instrumentation overhead for race detection, STMs and other systems that

detect unsynchronized memory accesses in multithreaded programs.

The most effective technique was Single-TS, which identified single-threaded sec-

tions of code in a multithreaded application. One reason for this is that the benchmarks were

not written to harness the global synchronization barriers. As we mentioned in Section 6.2.3

for fluidanimate, when we write programs consciously to harness the global barriers, the ef-

fect from Disjoint Thread Sections within the multi-threaded sections is more significant. The

programs written for GPGPUs are extreme examples of such globally synchronized programs,

but have the additional limitations that all threads must execute the same code. Our proposed

96

barrier identification method does not require the code executed by each thread within such Dis-

joint Thread Sections to be identical, and paves the path for extending the global barrier notion

to general shared memory multi-threaded programming.

Overall, SBPA eliminated a much higher percentage of load and store instrumenta-

tions compared to the baseline. Our ThreadSanitizer results show that SBPA can be used to

improve performance of tools such as data-race detectors, STM and deterministic execution

systems. We also applied SBPA to static race detection, and showed that it can be greatly

beneficial in reducing false positives.

In some cases the fact that Single-TS removed nearly all of the instrumentation meant

that there was no opportunity to demonstrate the potential of other techniques. Additionally,

limitations in pointer analysis prevented the compiler from proving some instrumentation as

redundant, In this work, we also made improvements to alias analysis that increased the effec-

tiveness of the SBPA pass. that improved the effectiveness of SBPA. However, there is more

which could be done, such as applying range analysis to partition pointers that appear to access

the same memory regions, when in fact the accesses are disjoint. This is a topic of future work

for us. Ultimately, we think the problem of detecting unsynchronized accesses requires a mul-

tifaceted approach of combining programming model changes, compiler support and runtime

support.

97

Chapter 10

Future Work

In this chapter, we briefly discuss some possible future extensions of the work pre-

sented in this thesis. These are exploratory ideas, and may not be feasible to achieve. We think

these have a good potential of reducing the difficulty of detecting and correcting unsynchronized

thread communication further.

10.1 Symbolic Array Partitioning

One major issue of imprecise aliasing in array accesses is that at compile time, SBPA

cannot determine the regions of the array each thread accesses. For example, in the case of

matrix multiply, different rows of the output array are written by different threads. Presum-

ably the rows are divided among multiple threads without any overlaps. However, lacking a

symbolic analysis of this partitioning, it is impossible to determine this during program compi-

lation. Note that such analysis necessarily needs to be symbolic, and abstract syntax tree level

98

information may be needed to understand the symbolic ranges assigned to each thread. If such

an analysis can be added to SBPA, it can greatly enhance its precision for programs using large

shared arrays. Most of the benchmarks partitioned the arrays in a simple manner, like assigning

a range of contiguous rows to a thread. But in some cases, as in lu (LU decomposition), such

partitions were more complicated, as sub-blocks of a matrix are assigned to each thread. A

symbolic range analysis may be able to prove that the accesses to these partitions are race free.

10.2 Generalized SBPA and MTROM

In our earlier discussions, we have performed a top down analysis of the whole pro-

gram to identify top level thread sections. Also, for MTROM, we have assumed that the pro-

gram has only a single thread executing when such memory is written. In this section, we show

that these ideas are extensible to more general cases, where spawned threads themselves spawn

additional threads. Such situations are common in large applications, where a task executing

as a thread itself spawns more threads to run faster. Furthermore, we show that it is feasible to

implement the check for MTROM access in hardware, to speed up such checks to run at almost

same speed as uninstrumented accesses.

10.2.1 Extension of SBPA to Tree of Threads

To extend our ideas of SBPA and MTROM to such scenarios, we consider a tree of

threads model of threaded programming. Figure 10.1 shows an example tree of threads for

a large-scale program. We denoted the root thread of the main user program as T . T in turn

99

creates two threads, T1 and T2. So, T1 and T2 are children of T and T is their parent. T1 spawns

3 threads T11, T12 and T13. Each level of thread creations can be considered as different thread

sections, which might in turn be composed of lower level thread sections. SBPA analysis can

be extended to such hierarchies of threads, with each such analysis running in a sub-tree of the

hierarchy. A bottom up analysis should be possible.

T

T1 T3

T1,1 T1,2 T1,3

Top level thread
section

Second level thread
section

Figure 10.1: A hierarchy of threads in a program, represented as a tree

10.2.2 MTROM for Tree of Threads and Dynamic MTROM

Generalizing the idea described in 4.2, if a memory that is local to a thread section

is not written by any thread other than the root thread of that thread section, then accesses to

such memory do not need to be instrumented. Our earlier treatment assumed that an MTROM

memory remains MTROM in the whole program. We think that it is also feasible to dynami-

cally change an MTROM into multi-thread read write (MTRW) and vice versa with very low

runtime overheads. The changeover can be executed between different disjoint thread sections,

protected by global lock, to ensure correct operation. These dynamically changed MTROM can

still benefit from static instrumentation removal, since the static removal can still assume that

MTROM property is verified for the pointers via infrequent runtime checks.

100

In addition to dynamic transition between MTROM and MTRW, we could think of

extending MTROM concept to a tree of threads system as well, by defining an MTROM own-

ership table. This table indicates which thread owns the write permission of the MTROM

memory. It must be the root thread in a sub-tree of the thread tree where the MTROM memory

is allocated. So, if T1 allocates an MTROM heap, only T1 can write to it and free it, and all

its children threads T11, T12 and T13 can read from it. The MTROM ownership table can be

implemented as a map of page number to thread ID.

10.3 Hardware Implementation of MTROM

A hardware page ownership table for threads could speed up the checks performed

for MTROM detection. Three tables can be used to implement such a scheme: PageOwner,

ParentThread and ActiveThreads.

The table PageOwner has as indices the page number of a memory page, and maps

the page number to the thread id of the page owner. So, PageOwner[page number] indicates

the thread id that can write to this page when no other thread in the thread subtree is executing.

The entry ParentThread[threadId] indicates the parent thread of a thread. This table

is used to check if a page being read by a thread is an MTROM page allocated by one of the

parents of this thread.

The entry ActiveThreads[threadId] indicates the number of currently active threads

in a subtree of threads rooted at node for threadId. When a thread in a subtree is created, the

entries for all its ancestor threads are incremented. Similarly, when it terminates, the entries of

101

all its parent threads are decremented.

The two functions READ MTROM OK and WRITE MTROM OK as described below

can be implemented either in software or hardware. The hardware implementation can be sig-

nificantly faster when the tree of threads is not very deep. thread id is the ID of the thread that

executes this code. Also, page num is always available in hardware as the most significant bits

of the virtual address. It is assumed that the parent thread of the root thread is 0, but it could be

any fixed number in the system, though 0 seems convenient and intuitive.

The function READ MTROM OK checks if the current thread is the owner of the

MTROM page, or if it is a descendant of the owner of the page. If so, it returns true. Otherwise,

it returns false, in which case the program should instrument the access and record the value

change. Optionally, it can page fault or issue race warning, depending on whether the program

is being run in test mode or in warning mode. This could be handled by a signal handler in

software, as this is an unlikely case.

Similarly, the function WRITE MTROM OK checks if it is correct for the thread to

write to that address. In either case, if the address is not MTROM address, the functions return

false, in which case the access is instrumented.

When the compiler cannot statically rule out instrumenting a memory accesses, it uses

the following technique to instrument the load or store instruction. If the address can never point

to MTROM memory, and it needs instrumentation, then the compiler simply calls the load or

store access instrumentation function. Otherwise, it inserts an MTROM access check as shown

below.

102

Algorithm 5 Determining MTROM memory
Function READ_MTROM_OK

owner = PageOwner[page_num];
thread_id = current_thread_id;
if(owner)
while(thread_id and thread_id != owner_thread_id)
thread_id = Parent[thread_id];

if(thread_id) return true;
if(Test Mode) Page Fault;
if(Warn Mode) Issue race warning
return false;

else
return false

Function WRITE_MTROM_OK
owner = Owner[page_num];
if (owner)
if(owner == current_thread_id and active_threads[owner] <= 1)
return true;

if(Test Mode) Page Fault;
if(Warn Mode) Issue race warning
return false;

else
return false;

Read Access Instrumentation:

if(READ_MTROM_OK(addr))
uninstrumented load instruction

else
call instrumented load

Write Access instrumentation:

if(WRITE_MTROM_OK(addr))
uninstrumented write instruction

else
call instrumented write

We caution that the techniques and algorithms discussed in this chapter are merely

preliminary ideas.

103

Bibliography

[1] Martin Abadi, Cormac Flanagan, and Stephen N Freund. Types for safe locking: Static

race detection for java. ACM Transactions on Programming Languages and Systems

(TOPLAS), 28(2):207–255, 2006.

[2] Sarita V Adve and Hans-J Boehm. Memory models: a case for rethinking parallel lan-

guages and hardware. Communications of the ACM, 53(8):90–101, 2010.

[3] Yehuda Afek, Guy Korland, and Arie Zilberstein. Lowering stm overhead with static

analysis. In Languages and Compilers for Parallel Computing, pages 31–45. Springer,

2011.

[4] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K Shyamasundar.

May-happen-in-parallel analysis of x10 programs. In Proceedings of the 12th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, pages 183–193.

ACM, 2007.

[5] Jonathan Aldrich, Craig Chambers, EminGun Sirer, and Susan Eggers. Static analyses

for eliminating unnecessary synchronization from java programs. In Agostino Cortesi

104

and Gilberto Fil, editors, Static Analysis, volume 1694 of Lecture Notes in Computer

Science. 1999.

[6] Stephen Alstrup, Dov Harel, Peter W Lauridsen, and Mikkel Thorup. Dominators in

linear time. SIAM Journal on Computing, 28(6):2117–2132, 1999.

[7] Lars Ole Andersen. Program analysis and specialization for the C programming lan-

guage. PhD thesis, University of Cophenhagen, 1994.

[8] Cyrille Artho and Armin Biere. Applying static analysis to large-scale, multi-threaded

java programs. In Software Engineering Conference, 2001. Proceedings. 2001 Aus-

tralian, pages 68–75. IEEE, 2001.

[9] Gross Axel. Evaluation of dynamic points-to analysis, 2004.

[10] Nels E. Beckman, Yoon Phil Kim, Sven Stork, and Jonathan Aldrich. Reducing stm

overhead with access permissions. In International Workshop on Aliasing, Confinement

and Ownership in Object-Oriented Programming, IWACO ’09, 2009.

[11] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Coredet:

a compiler and runtime system for deterministic multithreaded execution. In Proceedings

of the fifteenth edition of ASPLOS on Architectural support for programming languages

and operating systems, ASPLOS ’10, 2010.

[12] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R Wilson. Hoard:

A scalable memory allocator for multithreaded applications. ACM Sigplan Notices,

35(11):117–128, 2000.

105

[13] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie Hendren, and Navindra Umanee. Points-

to analysis using bdds. ACM SIGPLAN Notices, 38(5):103–114, 2003.

[14] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-

versity, January 2011.

[15] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec bench-

mark suite: characterization and architectural implications. In PACT ’08: Proceedings of

the 17th international conference on Parallel architectures and compilation techniques,

pages 72–81, New York, NY, USA, 2008. ACM.

[16] Bruno Blanchet. Escape analysis for object-oriented languages: Application to java. In

Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented Programming,

Systems, Languages, and Applications, OOPSLA ’99, 1999.

[17] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,

Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. In

Proceedings of the fifth ACM SIGPLAN symposium on Principles and practice of parallel

programming, PPOPP ’95, 1995.

[18] Hans-J Boehm and Sarita V Adve. Foundations of the c++ concurrency memory model.

In ACM SIGPLAN Notices, volume 43, pages 68–78. ACM, 2008.

[19] Michael D Bond, Milind Kulkarni, Man Cao, Minjia Zhang, Meisam Fathi Salmi, Swar-

nendu Biswas, Aritra Sengupta, and Jipeng Huang. Octet: Capturing and controlling

106

cross-thread dependences efficiently. In ACM SIGPLAN Notices, volume 48, pages 693–

712. ACM, 2013.

[20] Randal E Bryant. Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys, 24:293–318, 1992.

[21] Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. Flow-insensitive inter-

procedural alias analysis in the presence of pointers. In Languages and Compilers for

Parallel Computing, pages 234–250. Springer, 1995.

[22] David Callahan. The program summary graph and flow-sensitive interprocedual data

flow analysis, volume 23. ACM, 1988.

[23] Calin Cascaval, Colin Blundell, Maged Michael, Harold W Cain, Peng Wu, Stefanie

Chiras, and Siddhartha Chatterjee. Software transactional memory: why is it only a

research toy? Communications of the ACM, 51(11):40–46, 2008.

[24] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie

Chiras, and Siddhartha Chatterjee. Software transactional memory: Why is it only a

research toy? In ACM Queue - The Concurrency Problem, Volume 6 Issue 5, pages

46–58, September 1 2008.

[25] Manuel MT Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele Keller,

and Simon Marlow. Data parallel haskell: a status report. In Proceedings of the 2007

workshop on Declarative aspects of multicore programming, pages 10–18. ACM, 2007.

107

[26] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive interprocedu-

ral computation of pointer-induced aliases and side effects. In Proceedings of the 20th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages

232–245. ACM, 1993.

[27] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam

Midkiff. Escape analysis for java. In Proceedings of the 14th ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’99,

1999.

[28] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar,

and Manu Sridharan. Efficient and precise datarace detection for multithreaded object-

oriented programs. pages 258–269. ACM Press, 2002.

[29] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. A simple, fast dominance algo-

rithm. Software Practice & Experience, 4:1–10, 2001.

[30] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck.

Efficiently computing static single assignment form and the control dependence graph.

ACM Transactions on Programming Languages and Systems (TOPLAS), 13(4):451–490,

1991.

[31] Madan Das, Gabriel Southern, and Jose Renau. Reducing logging overhead for deter-

ministic execution. In 4th Workshop on Determinism and Correctness in Parallel Pro-

gramming, March 17, 2013.

108

[32] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. Dmp: deterministic shared

memory multiprocessing. In ACM SIGARCH Computer Architecture News, volume 37,

pages 85–96. ACM, 2009.

[33] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Distributed Comput-

ing, pages 194–208. Springer, 2006.

[34] Stephen A Edwards and Olivier Tardieu. Shim: A deterministic model for heterogeneous

embedded systems. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

14(8):854–867, 2006.

[35] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J Boehm.

Ifrit: Interference-free regions for dynamic data-race detection. In ACM SIGPLAN Inter-

national Conference on Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA), 2012.

[36] Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection of race conditions

and deadlocks. In Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles, SOSP ’03, 2003.

[37] Xing Fang, Jaejin Lee, and Samuel P Midkiff. Automatic fence insertion for shared

memory multiprocessing. In Proceedings of the 17th annual international conference on

Supercomputing, pages 285–294. ACM, 2003.

[38] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of

word-based software transactional memory. In Proceedings of the 13th ACM SIGPLAN

109

Symposium on Principles and practice of parallel programming, pages 237–246. ACM,

2008.

[39] Cormac Flanagan and Stephen N Freund. Type-based race detection for java. In ACM

SIGPLAN Notices, volume 35, pages 219–232. ACM, 2000.

[40] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity checker for

multithreaded programs. ACM SIGPLAN Notices, 39(1):256–267, 2004.

[41] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise dynamic race

detection. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’09, 2009.

[42] Cormac Flanagan and Stephen N. Freund. Redcard: Redundant check elimination for

dynamic race detectors. In European Conference on Object Oriented Programming, July

1-5, 2013.

[43] Cormac Flanagan, Stephen N Freund, and Jaeheon Yi. Velodrome: a sound and com-

plete dynamic atomicity checker for multithreaded programs. In ACM SIGPLAN Notices,

volume 43, pages 293–303. ACM, 2008.

[44] Cormac Flanagan and StephenN. Freund. Redcard: Redundant check elimination for

dynamic race detectors. In ECOOP 2013 Object-Oriented Programming, volume 7920,

pages 255–280. 2013.

[45] Cormac Flanagan and K Rustan M Leino. Houdini, an annotation assistant for esc/java.

110

In FME 2001: Formal Methods for Increasing Software Productivity, pages 500–517.

Springer, 2001.

[46] Loukas Georgiadis and Robert E Tarjan. Finding dominators revisited. In Proceedings

of the fifteenth annual ACM-SIAM Symposium on Discrete Algorithms, pages 869–878.

Society for Industrial and Applied Mathematics, 2004.

[47] Per Hammarlund, Rajesh Kumar, Randy B Osborne, Ravi Rajwar, Ronak Singhal,

Reynold D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan Jourdan,

et al. Haswell: The fourth-generation intel core processor. IEEE Micro, (2):6–20, 2014.

[48] Tim Harris and Keir Fraser. Language support for lightweight transactions. In ACM

SIGPLAN Notices, volume 38, pages 388–402. ACM, 2003.

[49] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable

memory transactions. In Proceedings of the tenth ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, pages 48–60. ACM, 2005.

[50] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 13(1):124–149, 1991.

[51] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N Scherer III. Software

transactional memory for dynamic-sized data structures. In Proceedings of the twenty-

second annual Symposium on Principles of Distributed Computing, pages 92–101. ACM,

2003.

111

[52] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support for

lock-free data structures, volume 21. ACM, 1993.

[53] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings

of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools

and engineering, pages 54–61. ACM, 2001.

[54] Ali Jannesari and Walter F Tichy. Identifying ad-hoc synchronization for enhanced race

detection. In Parallel & Distributed Processing (IPDPS), 2010 IEEE International Sym-

posium on, pages 1–10. IEEE, 2010.

[55] Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree: Com-

puting control regions in linear time. In ACM SigPlan Notices, volume 29, pages 171–

185. ACM, 1994.

[56] John B Kam and Jeffrey D Ullman. Global data flow analysis and iterative algorithms.

Journal of the ACM (JACM), 23(1):158–171, 1976.

[57] Gary A Kildall. A unified approach to global program optimization. In Proceedings

of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 194–206. ACM, 1973.

[58] Tom Knight. An architecture for mostly functional languages. In Proceedings of the 1986

ACM conference on LISP and functional programming, pages 105–112. ACM, 1986.

[59] Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic inference of memory

112

fences. In Formal Methods in Computer-Aided Design (FMCAD), 2010, pages 111–119.

IEEE, 2010.

[60] Monica Lam, Ravi Sethi, JD Ullman, and AV Aho. Compilers: Principles, techniques,

and tools, 2006.

[61] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-

cations of the ACM, 21(7):558–565, Jul 1978.

[62] William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural modification side

effect analysis with pointer aliasing. In In Proceedings of the SIGPLAN ’93 Conference

on Programming Language Design and Implementation, pages 56–67, 1993.

[63] Chris Lattner. Macroscopic Data Structure Analysis and Optimization. PhD thesis, Com-

puter Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, May 2005.

[64] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In Code Generation and Optimization, 2004. CGO 2004.

International Symposium on, pages 75–86. IEEE, 2004.

[65] Chris Lattner and Vikram Adve. Automatic Pool Allocation: Improving Performance by

Controlling Data Structure Layout in the Heap. In Proceedings of the 2005 ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI’05),

Chigago, Illinois, June 2005.

[66] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in

113

a flowgraph. ACM Transactions on Programming Languages and Systems (TOPLAS),

1(1):121–141, 1979.

[67] Lin Li and Clark Verbrugge. A practical mhp information analysis for concurrent java

programs. In of Lecture Notes in Computer Science, pages 194–208. Springer, 2004.

[68] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: efficient determinis-

tic multithreading. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles, SOSP ’11, 2011.

[69] Virendra J Marathe, Michael F Spear, Christopher Heriot, Athul Acharya, David Eisen-

stat, William N Scherer III, and Michael L Scott. Lowering the overhead of nonblocking

software transactional memory. In Workshop on Languages, Compilers, and Hardware

Support for Transactional Computing (TRANSACT), 2006.

[70] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace: effective sam-

pling for lightweight data-race detection. In ACM Sigplan Notices, volume 44, pages

134–143. ACM, 2009.

[71] Alexander Matveev and Nir Shavit. Reduced hardware transactions: a new approach to

hybrid transactional memory. In Proceedings of the twenty-fifth annual ACM Symposium

on Parallelism in Algorithms and Architectures, pages 11–22. ACM, 2013.

[72] John Mellor-Crummey. Compile-time support for efficient data race detection in shared-

memory parallel programs. In ACM SIGPLAN Notices, volume 28, pages 129–139.

ACM, 1993.

114

[73] Mayur Naik and Alex Aiken. Conditional must not aliasing for static race detection. In

In POPL, pages 327–338. ACM Press, 2007.

[74] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java. In In

PLDI, pages 308–319. ACM Press, 2006.

[75] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. ACM

SIGPLAN Notices, 38(10):167–178, 2003.

[76] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient deterministic

multithreading in software. SIGPLAN Not., 44(3):97–108, Mar. 2009.

[77] M Pnueli. Two approaches to interprocedural data flow analysis. Program flow analysis:

Theory and applications, pages 189–234, 1981.

[78] Lori L Pollock and Mary Lou Soffa. An incremental version of iterative data flow anal-

ysis. Software Engineering, IEEE Transactions on, 15(12):1537–1549, 1989.

[79] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race detection in multi-

threaded c++ programs. In ACM SIGPLAN Notices, volume 38, pages 179–190. ACM,

2003.

[80] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race detection in multi-

threaded c++ programs. In In PPoPP 03: Proceedings of the ninth ACM SIGPLAN

Symposium on Principles and practice of parallel programming, pages 179–190. ACM

Press, 2003.

115

[81] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Locksmith: Practical static

race detection for c, 2011.

[82] Reese T Prosser. Applications of boolean matrices to the analysis of flow diagrams. In

Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer

conference, pages 133–138. ACM, 1959.

[83] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Efficient

data race detection for async-finish parallelism. In Runtime Verification, pages 368–383.

Springer, 2010.

[84] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Scalable

and precise dynamic datarace detection for structured parallelism. In Proceedings of the

33rd ACM SIGPLAN conference on Programming Language Design and Implementa-

tion, pages 531–542. ACM, 2012.

[85] Vishwanath Raman. Pointer analysis–a survey. Technical report, Citeseer, 2004.

[86] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In High

Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International Sym-

posium on, pages 13–24. IEEE, 2007.

[87] Martin C Rinard and Monica S Lam. The design, implementation, and evaluation of jade.

ACM Transactions on Programming Languages and Systems (TOPLAS), 20(3):483–545,

1998.

116

[88] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Ander-

son. Eraser: A dynamic data race detector for multithreaded programs. ACM Transac-

tions on Computer Systems (TOCS), 15(4):391–411, 1997.

[89] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy

Vyukov. Dynamic race detection with llvm compiler. In Runtime Verification, pages

110–114. Springer, 2012.

[90] Julian Seward, Nicholas Nethercote, and Josef Weidendorfer. Valgrind 3.3-Advanced

Debugging and Profiling for GNU/Linux applications. Network Theory Ltd., 2008.

[91] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the

fourteenth annual ACM symposium on Principles of distributed computing, pages 204–

213. ACM, 1995.

[92] Bjarne Steensgaard. Points-to analysis in almost linear time. In Annual Symposium

on Principles of Programming Languages: Proceedings of the 23 rd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, volume 21, pages 32–41,

1996.

[93] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language for

streaming applications. In Compiler Construction, pages 179–196. Springer, 2002.

[94] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Dynamic recognition of

synchronization operations for improved data race detection. In Proceedings of the 2008

international Symposium on Software Testing and Analysis, pages 143–154. ACM, 2008.

117

[95] Christoph von Praun and Thomas R Gross. Object race detection. In ACM SIGPLAN

Notices, volume 36, pages 70–82. ACM, 2001.

[96] Christoph von Praun and Thomas R. Gross. Static conflict analysis for multi-threaded

object-oriented programs. In Proceedings of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Implementation, PLDI ’03, pages 115–128. ACM,

2003.

[97] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race detection on millions

of lines of code. In Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT Symposium on The Foundations of Soft-

ware Engineering, pages 205–214. ACM, 2007.

[98] John Whaley and Monica S Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In ACM SIGPLAN Notices, volume 39, pages 131–144.

ACM, 2004.

[99] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop

Gupta. The splash-2 programs: Characterization and methodological considerations. In

ACM SIGARCH Computer Architecture News, volume 23, pages 24–36. ACM, 1995.

[100] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang Ma. Ad hoc

synchronization considered harmful. In OSDI, volume 10, pages 163–176, 2010.

[101] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of data race con-

118

ditions via adaptive tracking. In ACM SIGOPS Operating Systems Review, volume 39,

pages 221–234. ACM, 2005.

[102] Sean Zhang, Barbara G. Ryder, and William Landi. Program decomposition for pointer

aliasing: A step toward practical analyses. In Proceedings of the 4th ACM SIGSOFT

Symposium on Foundations of Software Engineering, SIGSOFT ’96, pages 81–92. ACM,

1996.

[103] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard: Hardware-assisted lockset-

based race detection. In High Performance Computer Architecture, 2007. HPCA 2007.

IEEE 13th International Symposium on, pages 121–132. IEEE, 2007.

119

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Contributions
	Thesis Organization

	Related Work
	Static Race Detection
	Dynamic Race Detection
	Deterministic Runtime Systems
	Software Transactional Memory (STM)
	Data Flow Analysis
	Pointer Analysis Background
	Flow sensitive vs. insensitive pointer analysis
	Context sensitive vs. insensitive pointer analysis
	Dynamic vs. Static pointer analysis

	Some important Flow insensitive methods
	Andersen's flow insensitive analysis
	Steensgaard's algorithm

	Finding Disjoint Thread Sections
	Terminologies
	SBPA Pointer Analysis Framework
	Perform modref analysis per section
	Adaptive non-unification for points-to sets of function arguments
	Field sensitivity for array elements

	Constructing the Reduced ICFG
	Single-Threaded Thread Sections (Single-TS)
	Disjoint Thread Sections (Disjoint-TS)
	Overall Instrumentation Flow

	Programmer Annotations and MTROM
	Marking Parallel Code Sections
	Multi Thread Read Only Memory

	Loop Invariant Log Motion
	Scalar Loop Invariant Log Motion (SLILM)
	Vector Loop Invariant Log Motion (VLILM)
	Result of Applying LILM

	Experimental Results
	Experimental Setup
	Results
	Overall Results
	Analysis of Reduction in Instrumentation
	Benchmark Insights
	Compilation Overhead

	A case study with ThreadSanitizer
	Improving Static Race Precision with SBPA
	Methodology
	An Example Case
	Results

	Conclusion
	Future Work
	Symbolic Array Partitioning
	Generalized SBPA and MTROM
	Extension of SBPA to Tree of Threads
	MTROM for Tree of Threads and Dynamic MTROM

	Hardware Implementation of MTROM

	Bibliography

