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Abstract

Computational and Experimental Studies of Field-Driven Additive Manufacturing
Processes

by

Zachary Yun

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Tarek I Zohdi, Chair

Industrial coating and painting operations have used electric fields as a driving force for
decades to help more of the particles reach and stick to the intended part. More recently,
this concept has been explored for use in additive manufacturing (AM) processes as a way to
control the microstructure and geometry of particle deposits through processes like Electro-
spray Deposition and Electrophoretic Deposition (EPD). These AM processes are increas-
ingly used to make components that require specific structures such as colloidal crystals
made of micro- and nano- particles, which are then used in applications in microelectronics,
sensors, and superlattice materials. So far, most development of the EPD process for col-
loidal crystals has been performed via experiments, with many measurements taken ex-situ
to weigh deposits over time. However these experiments do not directly observe how the
particles integrate into the crystal, so the kinetics of the deposit formation are not yet well
understood. This work aims to contribute towards EPD and other field-driven AM process
development in two ways: 1) by creating a computational framework to directly simulate
the particles in these field-driven processes and 2) work towards an experimental platform
for in-situ observations of these particles to better understand how they form the deposit.

In this dissertation, I present my work towards a computational framework for simulat-
ing these field-driven processes and a preliminary experimental setup for in-situ process
observation. The simulation model captured the essential physics of the processes, while
remaining computationally tractable on limited resources, such as a laptop. I discuss the
results from verification studies showing good agreement with analytical theory as the model
is developed and then use illustrative examples to explore deposit behavior under different
processing conditions. I then present preliminary results from experiments aimed at further
expanding observations of EPD. The preliminary results from both the simulation and ex-
perimental work show that these methods can contribute to process development and have
several avenues for future extensions.
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Chapter 1

Introduction

1.1 Field-Driven Deposition and Additive

Manufacturing

The technique of using external fields such as electric fields to facilitate the motion of par-
ticles to form deposits and coatings has been utilized by industry for many years. These
deposits and coatings can be used for many functions including environmental and corrosion
protection, thermal and electrical insulation, and electron emission components. An early
adopter of the techniques used an electric field to deposit thoria particles for use in an elec-
tron tube in the early 1930’s [7], and industry continues to use these techniques today in
processes like electroplating, electrostatic painting as shown in Figure 1.1, and many others.
In these techniques, the basic principle of operation relies on electrical charge: the parti-
cles will be given a charge while the work piece or substrate has an opposite charge. The
charged particles are then attracted to the oppositely charged work piece and form a coating
or deposit. This has several advantages including less waste and time, as the particles are
attracted to the surface of the work piece, and better ease of coverage, as surfaces out of the
direct sprayer path can still attract particles.

The painting and coating examples shown in Figure 1.1 are two illustrative examples of
how these external fields can drive particle deposition in different mediums. In panel a), the
robot arms are spray painting the car body in air, while in panel b) the car body is being
coated while immersed in a liquid suspension. In both cases, the car body is oppositely
charged from the particles and will attract them to all parts of the surface.

While these methods have been used for decades in industry for coating, the techniques
of using external fields has more recently been a topic of study when combined with modern
Additive Manufacturing (AM) methods. The construction of parts or components by adding
material as opposed to removing material from a raw piece of material like in machining
or other subtractive methods leads to completely different design possibilities. These can
include complex geometries with features such as integrated cooling channels and compo-
nents with added electrical, optical, thermodynamic functionality [35]. Varied materials and
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Figure 1.1: Examples of industrial use of external fields for painting and coating. a) Elec-
trostatic spray painting of a car body, from [46]. b) Electrophoretic coating of a car body,
from [47].

geometries can be additively manufactured in many processes including extrusion-based pro-
cesses, powder bed-based processes, vat photopolymerization processes, material and binder
jetting, and many more [20].

Since AM’s expansion in the 1980’s with stereolithography, the capabilities of these pro-
cesses to expand potential materials used and functional material properties in completed
parts, and to reduce material waste and production time, have continued to be developed.
This development has been augmented wby the combination of some of the original AM pro-
cess concepts with external fields [27] [26]. Recent research efforts have combined acoustic,
electrical, and magnetic fields with AM processes to increase the process capabilities. Some
examples include: an acoustic field selective powder delivery system for powder bed sintering
[65], where different material powders were dispensed depending on the frequency applied to
the dispensing system allowing for tailored material deposition; a magnetic field-aided selec-
tive laser melting system where the applied static magnetic field helped different titanium
phases migrate before total solidification resulting in a more homogeneous microstructure
and increased tensile strength and ductility compared to parts made with the same selective
laser melting process without a magnetic field[29]; and a jet-printing process that used an
electric field to effectively constrict the jet size beyond the size of the physical nozzle to in-
crease print resolution to achieve microscale features [64]. Another example uses a magnetic
field in a direct energy deposition process to attract ferritic steel powder to the substrate;
this process improved the amount of powder that stuck to the target substrate before melting
[55]. More examples of recent field-aided AM processes were reviewed by Hu, which further
emphasizes a trend of increasing interest in combining external fields with AM processes to
continue improving AM capabilities [26].

Speaking more specifically to the deposition processes, there has been recent research
interest in adapting the field-driven deposition processes described above in a more controlled
manner to control the resulting structure and build up components. Some examples of this
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include Electrospray Deposition, and light-directed Electrophoretic Deposition as shown in
Figure 1.2.

Figure 1.2: Schematics of electric-field aided deposition processes. a) Electrospray deposition
resulting in gradient patterns in a deposit from Yan et al. [63]. b) Light-Directed EPD where
the conductive areas are defined by the projected light from Mora et al.[37].

These processes will be essentially the main focus of the following work as I investigate
how the physics behind processes like Electrospray Deposition and Electrophoretic Deposi-
tion (EPD) create particle deposits under different processing conditions. While introduced
here, more details on the process will be given below in Chapter 2. In Figure 1.2, panel
a) shows a schematic of the Electrospray Deposition process used by Yan et al. to deposit
particles through air onto a substrate [63]. By controlling the electric field pattern on the
target substrate, they demonstrated controllable gradient patterns in the resulting deposit.
Panel b) shows a schematic of Light-Directed EPD in which the substrate was coated with a
photoconductive layer so the illuminated region serves as the conductive target. When the
electric field is applied, the particles deposit on the illuminated conductive area. As time
passes, the user can change the area being illuminated, resulting in a new conductive area
where deposition will occur. This can lead to a layer-by-layer deposition building up parts
as an AM process.

These processes can be used to manufacture components with a wide range of applica-
tions including localized functional coatings, multimaterial structures, architectured materi-
als with tailored microstructures for enhanced material properties [56], and colloidal crystals
which in turn can be used for numerous applications including photonic crystals [62], su-
perlattice materials [28], and environmental sensors [32]. Colloidal crystals are crystalline



CHAPTER 1. INTRODUCTION 4

structures made of micro- and nano-particles and serve as a motivating application for the
direction of this research. In Chapter 2, I go into further detail about prior research with
the EPD process and how the kinetics of the particle integration into a crystalline structure
are not yet well understood. Examples of a multimaterial deposition and a colloidal crystal
are shown in Figure 1.3.

Figure 1.3: Examples of some applications of EPD. a) Multimaterial deposits made with
Light-Directed EPD from Pascall et al. [44]. b) Colloidal crystal structure SEM micrograph,
courtesy of Dr. Marcus Worsley, LLNL [61].

Why Study These Processes
The section above showed many examples of deposition and AM processes that are being
combined with external fields to further develop their capabilities to produce parts. External
fields such as acoustic, electric, and magnetic fields have been shown to enhance processes
in many ways, including allowing tailored multi-material deposition, aiding in homogenizing
microstructure of solidified material by moving material as it solidifies, and enhancing ma-
terial deposition resolution. These all serve to further develop AM processes by increasing
functionality in a part design through material and structure control. These methods can
also help reduce material waste, as shown in deposition processes that use fields to ensure
more of the particles or material reach their intended targets.

The recent and continuing research interest makes the development of these processes
good applications for enhanced studies and potential tools for process development. This
work aims to contribute to the development of these processes by studying field-driven pro-
cesses numerically and experimentally which can lead to the development tools to aid in
future process optimization.
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1.2 Numerical Modeling in Engineering

In engineering, the concept of modeling allows for a complex system to be represented in
more simplified, conceptual form which aids us to better understand the key components of
a problem and decide on a solution or optimized design to achieve a specific goal. Modeling
can come in many forms including physical prototypes, experimental set ups, and numerical
simulations.

Utilizing numerical modeling techniques to simulate physical processes allows us to ex-
plore some of the wide possible outcomes of a physical process. These numerical models
attempt to represent complex physical systems well, but are limited by the resources of how
they are computed, be that a person using a pencil and paper or a large simulation run on
a supercomputer. For these models to be useful, they must also reflect important factors
and outcomes that are present in the real process they aim to represent - this can come
in many forms, including obeying the laws of physics and constraints. These physically
informed models will provide the best representation of actual systems, such as the AM
systems described above.

Many of the AM processes described above, including EPD, have been developed mostly
through experimental studies, which can be both time-consuming and expensive, especially
when applied to AM processes which can operate with a large range of process parameters.
Numerical simulations can work in conjunction with these experiments by narrowing down
the potential wide range of parameters to find sets that lead to desired results. This combined
approach can lead to tuned process optimization for these complex field-driven AM processes.

1.3 Motivation

This work is motivated in large part by the need to better understand and optimize the
advanced manufacturing processes previously mentioned. In many instances, including in
AM methods such as electrophoretic deposition, much of the development has been per-
formed experimentally. The wide design space available in AM processes requires a large
range of experiments to broadly explore what parameters make a process work well, which
can be extremely time consuming and resource intensive. This presents an opportunity for
models that capture the essential physics of a process to help guide this development, re-
sulting in more limited experimental runs and more efficient optimization. This work aims
to contribute towards that goal in two ways:

1. creating a framework that moves towards faster, physics-informed process simulation
of field-aided AM processes, and

2. exploring the specific behaviors of additive deposition processes through simulation
and preliminary experimental observation.
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These faster simulations are a step towards developing digital twins of complex physical
process; when combined with experiments, a digital twin can lead to improved results when
utilizing these advanced manufacturing methods.

While the main focus of my following research will be on processes using electric fields
such as EPD, the model framework will be set up to be able to incorporate other effects
including additional external fields. The example framework will serve as a preliminary tool
for continuing process optimization.

1.4 Dissertation Outline

This work focuses on the modeling and simulation of field-aided AM processes, as well as how
we can use those models and experiments to further our understanding and development for
particular applications such as particle deposition in electrophoretic deposition for producing
desired crystalline structures. The rest of my dissertation is organized into the following
chapters.

Chapter 2 discusses more background information on the field-driven AM processes, going
into particular detail on the concept and process details of EPD. This chapter will also discuss
prior work in developing EPD and show how my present research can further expand the
understanding and development of EPD through both numerical simulation and experimental
observation. I also discuss details on existing modeling efforts of the EPD process and the
numerical methods I used for my simulation framework. Chapter 3 then takes the concepts of
electric field-driven processes and presents a numerical framework for simulation. I then use
my particle-based model to verify against analytical cases as development milestones before
modeling deposition cases under different process parameters to observe particle behavior
during deposition. Chapter 4 discusses my experimental work towards in-situ observation of
EPD. I detail the methods used and the preliminary work towards constructing and verifying
the setup for particle observation. Finally Chapter 5 provides a summary of the work and
final conclusions.
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Chapter 2

Background and Theory

This chapter expands upon the background and theory of some of the field-driven processes
of interest in the work. I specifically discuss more details about EPD and it’s application
towards making colloidal crystals including prior experimental studies and modeling work
focused on EPD. I also discuss more about the numerical method, the Discrete Element
Method, I use in this work and why I chose it for these studies.

2.1 Systems of Interest - Particle Deposition with

External Fields

This section provides more background on the AM processes of interest. These processes will
focus on the deposition of particles under external electric fields and Electrophoretic Depo-
sition (EPD) will specifically be described in detail because it is used as a direct motivating
process behind the modeling and experimental work described later in Chapters 3 and 4.

2.1.1 Principles of Field-Driven AM Processes - Electrospray
Deposition and EPD

As mentioned in the introduction in Chapter 1, my research presented here was motivated by
and focused mainly on electric field-driven processes. The two that describe the main focus
are Electrospray Deposition and EPD as introduced and shown schematically in Figure
1.2. The basic principles behind these two processes are the same, with the distinction
being that Electrospray Deposition uses a nozzle to spray the particles through air while
in EPD, the colloidal particles are suspended in liquid contained between electrodes. The
Electrospray Deposition process described by Yan et al. deposited particles by atomizing
the solution through the nozzle into particle droplets, but the concept is also the same for
other techniques that spray solid particles. For the purposes of my work moving forward, I
use the term electrospray as a blanket term to describe the family of processes that spray
particles through air before deposition. For both electrospray and EPD, the essential process
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is particles are driven through a fluid (air or a liquid) by an external electric field to deposit
on an oppositely charged electrode. Figure 2.1 shows a graphic representation of the basic
principle of EPD. In EPD, the particles suspended in the liquid develop an effective surface
charge and move towards the oppositely charged electrode when the electric field is applied.

Figure 2.1: Graphic showing the basic principles of EPD. The positively charged particles
move through the suspension towards the negatively charged electrode due to the applied
electric field.

While Figure 2.1 shows particles moving in a quiescent fluid, variations of EPD can also
have the liquid injected into the cell during deposition to add more particles or particles of
different materials.

The EPD process has several advantages in forming depositions and components like col-
loidal crystals. The process has been shown to be quick, creating full deposits or components
in the order of seconds and minutes [42], and scalable, able to create deposits potentially up
to square meters if the electrodes are large enough [30]. The effective surface charge that
develops on the colloidal particles also allows different materials including metals, polymers,
and ceramics to be used [7] [53] and multiple materials can be deposited to further expand
component design capabilities [44]. These advantages make EPD a good choice of process
for making colloidal crystals as described in Chapter 1.
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Why use field-driven AM processes?

Field-driven AM processes like EPD are particularly good choices of methods for creating
components that may require a tailored microstructure such as colloidal crystals. They can
be made of different materials, even multiple if desired, be created quickly over a large area
as needed, and reduce material waste due to more particles reaching their intended targets.
Using colloidal crystals as an example, we can see the benefits of using a process like EPD
compared to other processes such as sedimentation [1], evaporation [48], or layer-by-layer
assembly [18] which can be time intensive.

Another of the main benefits of using these processes is the controllable geometry and
structure of the deposit. An example of this is shown in Figure 2.2.

Figure 2.2: Micrographs of deposits made with EPD, courtesy of Dr. Marcus Worsley, LLNL
[61]. As the applied electric field strength increases, the structure becomes less crystalline
and more amorphous.

The micrographs shown in Figure 2.2 show the effect of adjusting the electric field strength
in EPD on the resulting deposit structure [61]. In the upper left panel, labeled with the
electric field strength of 20 V

cm , the deposit appears crystalline with large grains. As the
electric field strength further increases in the upper right and bottom panels, the structure
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transitions to be less organized and more amorphous. Depending on the level of crystallinity
desired for the end component, the electric field strength can play a significant factor.

2.1.2 EPD Background - Brief History and Process Development
The phenomenon of EPD was first observed when clay particles moved through water due
to an applied electric field as studied by Ruess in 1808 [7]. It was then developed in industry
starting in the 1930’s and continued to be used for depositing a variety of materials. Early
studies into the kinetics of EPD to understand how much mass was deposited were performed
by Hamaker, who observed linear dependence of the deposited weight with the amount of
charge passed through the process [25]. The linear model proposed by Hamaker is described
by the Hamaker Equation [19]:

m(t) = CsµAEtf (2.1)
where m(t) is the mass of the deposit as a function of time t, Cs is the suspension con-

centration, µ is the electrophoretic mobility, A is the deposition area, and f is a “sticking
parameter” analogous to the efficiency of the deposit where f = 1 if all particles are de-
posited and f = 0 if none incorporate into the deposit. This factor is generally determined
emperically for a specific EPD process [19].

Generally, EPD kinetics are determined by weighing deposits after specified amounts of
deposition time, and the morphology of the structures are investigated with imaging via an
SEM. These techniques are performed ex-situ and do not give direct insight into the particle-
particle interactions as the deposit forms. This is one of the motivating factors for my work
- to further understanding of particle kinetics through in-situ observation. Details on this
are described in Chapter 4.

2.1.3 EPD Modeling - Prior Work
Following on the studies of Hamaker, most modeling work around EPD provides a continuum
approach to investigate the thickness or overall shape of deposits [19]. Kinetic models pre-
dicting how the mass of the deposit forms over time following similar strategies as Hamaker’s
model above in Equation 2.1 have been used to incorporate additional effects such as changes
in suspension concentration Cs, and different EPD processing conditions, such as constant-
current and constant-voltage configurations [54].

These kinetic models are mostly used for determining bulk mass deposited, and are able
to be solved analytically for cases such as infinite planes and concentric cylinders. More
recent studies have investigated the shape of deposits due to more specific geometries of
electrodes. While still from a continuum domain, these models begin to look at the overall
morphology of the deposits . Most models have used methods such as the Finite Element
Method (FEM) or Finite Difference Method to simulate particle transport through the fluid
towards the electrode. Pascall et al. studied the morphology of deposits on strip electrodes
using FEM as shown in Figure 2.3 below.
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Figure 2.3: FEM simulation results from Pascall et al. investigating the morphology of EPD
deposits on electrodes with corners and edges [43].

Other recent examples include work by Braun et al. where they used FEM to study
the deposition of copper in through-silicon vias [12] and simulations by Verma et al. who
used FDM to simulate paint depositions on car bodies [59]. As shown in Figure 2.3, these
types of models are well suited to investigate overall deposit shape, but do not account for
particle-particle interactions or give details on the crystallinity of the structure.

Direct particle-based modeling of EPD has more recently been investigated by Giera et
al. to study these interactions more closely and lead to simulation tools that can help predict
structure of the deposit [22] [23]. The model uses a direct particle representation accounting
for hydrodynamic interactions with the fluid, particle-particle and particle-wall interactions
due to electrostatic and steric repulsion and van der Waals attraction, and electrophoretic
motion due to the applied electric field. Their model is implemented in the Large-scale
Atomic/Molecular Massibely Parallel Simulator (LAMMPS) and used a high performance
computing system to perform the simulations [23]. An example of the visualizations from
the Giera et al. model is shown in Figure 2.4.

This work by Giera et al. represents a high resolution model and one of the first direct
particle-based models used to study deposits made through the EPD process. Their model
simulated 15000 particles over a deposition time on the order of milliseconds. This early work
is another motivating factor in my present research as this shows an availability for increased
study in direct particle models of EPD, and with particular focus on expanding the field’s
capabilities with respect to process parameters and working towards full scale simulation.
As a full scale deposition is performed on the order of seconds or minutes, working towards
expanding modeling capabilities approach these regimes is desirable. This leads to one of
the driving goals of my research to present a simpler model framework that can simulate
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Figure 2.4: Simulation results from Giera et al. showing a particle deposit form through
EPD where � is the deposit height [23].

multiple processes, but that can be applied to EPD and works in the direction of expanding
on those capabilities and comparing it to the present standard set by Giera et al. My model
will be discussed more in Chapter 3.

2.2 Numerical Methods - Discrete Element Method

(DEM)

To work towards my goal of presenting a simulation framework that can be applied to a
range of field-driven AM processes including electrospray and EPD, I have chosen to use the
Discrete Element Method (DEM).

2.2.1 Intro to DEM
The Discrete Element Method was originally introduced as the “distinct element method” in
1979 by Cundall and Strack [16] and has been used extensively since then to model a wide
variety of particle-based systems in many fields that deal with granular media [24]. The basic
principle of DEM is a direct representation of particles that interact with the environment
and each other through interaction forces. The forces on each particle can be computed,
resulting in a total force, and by using Newton’s equations of motion, the trajectories of the
particles through time can be computed. Solving the general F = ma equation for each
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particle will result in descriptions of their motion through the simulation. Many different
forces can be accounted for using DEM, including those imparted by physical contact with
other particles and boundaries, non-contact forces due to drag with surrounding fluids or
interactions with external fields like acoustic, electric, and magnetic fields as used in the AM
processes described above.

2.2.2 DEM for My Model
I have chosen to use DEM for my simulation framework for several reasons:

• Direct particle representation allows for analysis of the deposit structure

• The general framework allows for the introduction of many forces

• The method is well established in literature for simulation of similar systems and can
be combined with other methods for representing multiphysics problems

One of the main goals of my research is use this framework to be able to evaluate the
structure of a deposit and observe how the particles interact. This direct representation of
the particles is well set up to achieve that goal as I will be able to discretely track each
particle through time.

The general framework of DEM allows it to be module in the way forces are applied.
When computing the total force, the definitions of separate forces can be implemented as
separate functions so the relative complexity of the physics affecting the particles can be
chosen for the particular situation. Another goal of my work is to make the framework as
simple as possible to work towards a “digital twin” of these AM process, so the ability to
start with simple cases and expand the forces involved as necessary is very beneficial.

Since its inception, DEM has been used for many different applications spanning different
physical systems. It has been shown to be used for physical systems similar to those of
interest in my work, including deposition processes under magnetic fields [39] and electric
fields [38], and colloidal systems [10]. It has also been combined with other methods to
incorporate additional physics. Additional factors such as h considerations and two-way
coupled interactions with fluids can be combined with DEM representations for particles
using methods like FDM to compute temperature or the fluid velocity fields [67] [21]. These
exemplify methods to build up multiphysics simulations for “digital twins” of AM processes.

My work aims to use this established method to study the field-driven AM processes in a
general framework that can be used as a starting point expanded as a useful tool for further
process development. Building upon this prior work around these AM processes, I detail my
simulation framework and preliminary experimental work in the following chapters.
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Chapter 3

A Numerical Study on Deposition

In this chapter, I discuss a numerical model framework that I use to study field-driven AM
process, specifically those with a powder or particle deposition step. To study that deposi-
tion, I will first describe a model using DEM and implemented in Python. The framework of
the model and physics included are described before investigating the framework more with
several numerical studies. I use this framework to study different cases of processes with
varied parameter scales to show it’s potential as a process development tool.

3.1 Motivation

For further development and understanding of these field-driven processes, modeling can used
to explore wide ranges of parameters that might be difficult or expensive to study purely
with experiments. Using simulations to guide the experimental parameters of interest, and
using well designed experiments to further validate the models will lead to the best results
towards developing well understood processes. As I previously mentioned in Chapter 2, there
have been some modeling efforts towards simulating EPD, but many of those have looked
at it through a continuum lens. These approaches can provide insight on the overall deposit
shape and deposit density, but may not necessarily capture the microstructure details that
can lead to an understanding of the crystallinity or order of the deposits that are important
for the end application like colloidal crystals. DEM is a method that can provide information
on individual particle motion and allow studies aimed at understanding the microstructure,
so that will be my chosen method. This direct representation of the particles will be helpful
in comparing with the prior work performed by Giera et al. on depositions from a more
simplified framework as well as be a tool for comparison with experimental work as described
later [22] [23].
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Goals of Model
The main goal of this simulation work is to provide a framework that can be used as a
potential development tool for optimizing field-driven AM processes such as electrospray
and EPD in a simple implementation that can be run on a laptop that does not require
large computational resources. These direct particle simulations will also provide particle
trajectories under varied parameters which can be used to compare with existing models
and particle tracking experiments. In particular, this simulation framework can be used
to further develop the EPD community’s work towards understanding the process kinetics
where the prior work is mostly performed with more computational intensive frameworks.
The simulation framework is designed to produce particle trajectories that allow for the study
of how they move due to the physics of the field-driven AM processes and can be directly
informed by experiments that also provide particle trajectories, such as those described below
in Chapter 4. In summary, the goals of this work are:

1. Provide a simulation framework capable of being run on a laptop to study field-driven
AM processes with a range of parameters.

2. Compare the simulation framework results against analytical solutions and explore how
a variety of process parameters effect the resulting depositions.

The work I describe below works towards these goals through several studies used as mile-
stones of the simulation framework development. While I made progress towards exploring
different depositions, there are several directions for future studies of immediate interest,
namely studying more parameters similar to the EPD process. The examples I discuss show
the capabilities of this simple framework designed to run on smaller computational resources
than previous work. This can be used as a starting point and serve as an example for the
results that can be achieved with this framework.

3.2 Methodology

This section will describe the particle model framework used for the majority of the work
described in this dissertation. I used a DEM formulation to represent the particles in 3D
and will describe the forces included in my model framework to capture the physics seen
in processes including electrospray and EPD. Due to the types of collisions I expect to
see in these simulations, I implemented an explicit time stepping scheme, however implicit
iterative schemes may also be potentially used as in other DEM models, but that exploration
is currently left for future studies [66].

3.2.1 Discrete Element Framework
For this model framework, I begin with the familiar F = ma equation that is the basis for
the equation of motion for the DEM particles mentioned previously in Chapter 2. More
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specifically, this equation written for a single particle will be denoted as:

F Total = mr̈ (3.1)

where F Total is the summation of all forces applied to the particle, m is the particle mass,
and r̈ is the second time derivative of the particle position, or the acceleration. The overall
strategy of this model is to choose the forces to model the physics of the field-driven AM
processes, compute those for each particle, and then simulate particles in time to see how
that affects the deposition. At the highest level, the basic steps in this model are:

1. Initialize Particles

2. For each timestep:

a) Compute total force on each particle
b) Compute acceleration
c) Step forward in time and compute new particle velocities and positions

3. Repeat until end of simulation

4. Analyze trajectories

I describe the forces involved in more detail in the following sections, but they will include
interactions between the particles and the fluid, particles and the driving field, particles with
other particles, and particles and the boundaries. An overall schematic of the model problem
is shown below in Figure 3.1 below. The driving field in my problem of interest is an electric
field, denoted by E in the figure, but the framework could be expanded to include others that
are also employed in AM processes such as magnetic and acoustic as in processes described
in Chapter 2 [29] [65] [26].

The inputs to the model will then be parameters describing the particles themselves
such as material and size, parameters describing the environment including fluid material
properties such as viscosity, domain dependent properties such as the boundary conditions,
and time parameters for the time stepping scheme. These will be discussed more in detail
in further sections about the forces and specific numerical studies. The output from the
model will be the particle positions overtime, or trajectories. I analyze the trajectories in
the different numerical studies described below to understand how these particles move and,
in the last studies, how they incorporate into a deposit. The results from my modeling work
show examples of how this framework can potentially be used for process development and
optimization of field-driven AM processes such as electrospray and EPD.

3.2.2 Physics Model Formulation for Field-Driven AM
The basic situation captured in this framework can be summarized as particles in a fluid,
being driven by an external electric field towards a substrate where they form a deposit. To
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Figure 3.1: Overview graphic of the model problem approached with this simulation showing
some of the forces and interactions that the particles will see with the driving field (E) and
with other particles via near-field and contact as they deposit on the substrate.

capture this essential base situation, the forces considered will include particle-fluid interac-
tions, particle-field interactions, particle-particle interactions, and particle-wall interactions.
The forces and boundary conditions used in the framework are discussed in further detail
below.

For the AM processes I am interested in studying with this model framework, I make
several simplifying assumptions. The main assumptions are as follows:

• Particles are sufficiently small, so particles will be idealized as spheres and rotation
will be neglected.

• The external electric field is constant, and unaffected by the moving particles.

• The particles are affected by drag from the fluid, but do not affect the fluid in a one-way
coupled system.

• Contact area is small compared to the particle size.

• Contact results in small strains, well within the elastic limit of the particle and wall
material.

When formulating this model, I aimed to start with a simple framework which could
then be expanded to capture additional effects. The simplifying assumptions listed above
capture that essence and enable the model framework to be developed with the tradeoff of
accuracy in the form of both resolution and complexity, for simplicity in model development
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and speed. Some of the next levels of complexity, including addressing the assumption of
the one-way coupled system will be addressed in the future work section.

Forces used in the Model

This section will define all the forces used when computing F Total for the particles. Starting
with the external, environmental forces, we have effects that apply to every particle indepen-
dent of interactions with other particles. These are effects from drag with the surrounding
fluid, gravity, the Lorentz driving force, and the browning force from collisions with the fluid
molecules. Next, the interaction forces are considered. These include the forces between
multiple particles as well as particles and the wall, namely contact and dissipation, friction,
bonding, and nearfield forces.

Drag Force First we’ll discuss the drag force imparted on the particle by the surrounding
fluid. I represent the drag force with the generalized drag model [67] [41]:

FDrag =
1

2
CDAc⇢fkvf � vpk2⌧ (3.2)

where CD is the drag coefficient, Ac = ⇡R
2
p is the characteristic area for our spherical

particles, ⇢f is the density of the surrounding fluid, vf and vp are the respective fluid and
particle velocities, and ⌧ is a unit vector defining direction of drag force as shown below:

⌧ ⌘ vf � vp

kvf � vpk
(3.3)

In most cases I used my model to investigate, the surrounding fluid was quiescent with
a vf = 0, but the framework can be used for more general situations where the fluid has a
known velocity.

The drag coefficient, CD, is generally a function of the Reynolds number (Re). Reynolds
number can be computed by:

Re =
2Rp⇢fkvf � vpk

µf
(3.4)

where µf is the absolute viscosity of the surrounding fluid. As can be seen, the Reynolds
number is directly proportional to particle size, fluid density, and relative velocity of the
particle and the fluid, and inversely proportional to the fluid viscosity. For colloidal particles
in a solvent such as in the case of EPD, the Re are usually low, as characterized by Stokes
flow [53].However, I intended this framework to be used for a variety of processes and a
process like electrospray in air may have a much higher range of Re. To account for the
possible wide range, I employed a piecewise empirical relation for the drag coefficient from
Biringen and Chow [9]:
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CD =

8
>>>>>><

>>>>>>:

24
Re 0 < Re  1

24
Re0.646 1 < Re  400

0.5 400 < Re  3 x 105

0.000366Re
0.4275 3 x 105 < Re  2 x 106

0.18 2 x 106 < Re  1

(3.5)

Gravity Gravity is the simplest of all forces used in this model to implement. Using a
cartesian coordinate system, the force is enacted in the z direction, denoted here as e3 and
causes a constant acceleration defined by the gravitational constant, g. The gravitational
force on a particle is defined as:

F grav = mge3 (3.6)

where m is the mass of the particle and the gravitational constant g = 9.81m
s2 .

Lorentz Force The field-driving force in my model framework is expressed by the classical
Lorentz force. This force describes the force experienced by a charged particle moving
through an external applied electromagnetic field. The Lorentz force can be defined as [39]:

F Lorentz = q (E + vp ⇥B) (3.7)

where q is the charge of the particle, E is the applied electric field, and the term vp ⇥B
is the cross product of the particle velocity and the applied magnetic field B. For my cases,
the magnetic component is not utilized as I am interested in looking at applied electric fields.
As this is a framework, the potential to add that component is still used. For this framework,
I am assuming that any induced magnetic field due to the motion of the charged particles
is small, and the force is dominated by the externally applied electric field. So for my cases
presented below, the Lorentz force will be expressed as (with a magnetic field component of
B = 0:

F Lorentz = qE

Brownian Force The Brownian Force on the particles describes the random force from
collisions with surrounding fluid molecules resulting in Brownian motion. The definition I
use in my model was derived from the Langevin equation as presented by Russel, Saville, and
Schowalter [53]. The derivation approximates the random collisions that occur on the time
scale of molecular motions from fluid molecules as rapid fluctuations defined to be random
in magnitude and direction and uncorrelated on the time scale of particle motion.

For my model, this takes the form of:
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F Brownian =
3X

i=1

F
b
i ei (3.8)

where the three cartesian components of the force vector are defined with magnitude F
b
i .

For each force component, we have:

F
b
i = Gi

p
12⇡µfRpkBT (3.9)

where T is the temperature and kB is the Boltzmann constant. Gi is a Gaussian random
number that has a mean of 0 and a variance of 1. This force in particular plays a large role
in the first verification trial discussed below when I discuss studying particle diffusion with
this model.

Normal Contact, Dissipation, and Bonding Forces For many of the interaction
forces, I will be following an approach presented by Zohdi [66]. To begin with the first
interaction forces, I will look at the normal contact and dissipation forces. This approach
uses a simplified model where the contact force is proportional to the normalized overlap.
To begin, we have two particles i and j. To determine if they are in contact, we first look at
their relative positions to check if the distance between them meets the criteria for contact.
If center distance between the particles is smaller than the sum of their radii, mathematically
shown below in Equation 3.10, then they are in contact and we can define the overlap, �ij
as shown below in Equation 3.11.

kri � rjk  Ri +Rj ) Particles are in contact (3.10)

�ij = |kri � rjk � (Ri +Rj)| (3.11)

where Ri and Rj are the radii of Particle i and Particle j. This is graphically shown in
the left panel of Figure 3.2 below.

Now we can define the contact force between particles as:

F contact,n
ij = �Kpij|"ij|ppnijA

c
ij (3.12)

where Kpij is a particle-particle contact compliance constant and pp is a material defor-
mation parameter. In practice, these material parameters could be determined empirically
[66]. "ij is a normalized strain-like deformation metric defined as:

"ij =

����
|kri � rjk � (Ri +Rj)|

(Ri +Rj)

���� =
�ij

(Ri +Rj)
(3.13)

The vector nij is the unit normal vector between the particle centers and points from
particle i to particle j. It is defined as:
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Figure 3.2: Graphic representation of particle contact. a) Particle-particle contact with
overlap �ij. b) Particle-wall contact with overlap �iw.

nij =
rj � ri
kri � rjk

(3.14)

Finally, the contact area parameter, Ac
ij, is defined as:

A
c
ij = ⇡(R2

i � L
2
i ) (3.15)

where:

Li =
1

2

✓
kri � rjk �

R
2
j �R

2
i

kri � rjk

◆
(3.16)

Phenomenological particle contact dissipation essentially dampens the contact force de-
fined in Equation 3.12. The dissipation is a function of the difference in normal velocities of
the particles and is defined as:

F dissipation
ij = ccd(vj,n � vi,n)A

c
ij (3.17)

where ccd is a contact damping parameter which in practice would be determined em-
pirically, and vi,n and vj,n are the normal velocities of the particles i and j. The normal
components of the velocity of a particle i can be computed using the vector dot product with
a unit normal vector nij as follows:

vi,n = (vi · nij)nij (3.18)
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For the last normal force, we look at bonding between the particles. For an attractive
normal bond to occur, I use a critical normalized deformation metric, "⇤, as a user-defined
parameter. If the particles in contact meet the criteria of |"ij| � "

⇤, the normal bond is
activated following the definition:

F bond,n
ij = K

nb
ij |"ij|pbnijA

c
ij (3.19)

This force takes the same for as the normal contact force in Equation 3.12 with the
normal bonding parameter K

nb
ij and the bonding law exponent pb also being determined

experimentally in practice. The normal bonding force is also noted to be active in the
opposite direction of the contact force. When active, the interplay between both forces and
their effect on the particle dynamics will be determined by the parameters used.

Tangential Contact Forces - Friction and Bonding Continuing with the contact
forces, we have forces acting in the tangential direction. The two main tangential contact
forces for my particle model will be friction and a tangential bonding force. For friction, I use
a regularized stick-slip friction model following Zohdi [66]. The friction model first checks
the static friction threshold at the contact point, µskF contact,n

ij k, and then utilizes either a
stick or slip condition. The piecewise definition for friction is applied as follows:

F friction
ij =

(
K

fkvj,⌧ � vi,⌧kAc
ij�t⌧ij K

fkvj,⌧ � vi,⌧kAc
ij�t < µskF contact,n

ij k
µdkF contact,n

ij k⌧ij K
fkvj,⌧ � vi,⌧kAc

ij�t � µskF contact,n
ij k

(3.20)

where K
f is a tangential contact friction compliance constant, in practice determined

empirically, �t is the time step used in the simulation, and µs and µd are the static and
dynamic friction coefficients, respectively. F contact,n

ij is computed using Equation 3.12 above.
v⌧ i and v⌧j are the tangential velocities of the particles i and j. They can be computed by
subtracting the normal component of the particle velocities from the full velocity vector as
shown:

vi,⌧ = vi � vi,n (3.21)

where the normal component is defined in Equation 3.18.
The unit vector ⌧ij is defined by the tangential velocity components at the contact point

as shown:

⌧ij =
vj,⌧ � vi,⌧

kvj,⌧ � vi,⌧k
(3.22)

If the static friction threshold is not met, as in the first part of the piecewise friction
model in Equation 3.20, the force is defined as a stick model. The second part is enforced
when the static threshold is met or exceeded, and a slip model is applied.
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Finally, if a bond is activated as above in Equation 3.19, another rotational bond which
acts in the tangential direction is activated. This bond force takes the form of:

F bond,r
ij = K

rb
ij kvj,⌧ � vi,⌧kAc

ij�t⌧ij (3.23)

where Krb
ij is a rotational bonding parameter, which in practice is empirically determined.

This force is again only applied if the bond is active and there is also a corresponding normal
bond force applied. The tangential rotational bond force is in the same direction as the
tangential stick friction force denoted in the first part of Equation 3.20, so both will work
together to resist tangential motion.

Wall Contact Forces The previous contact forces starting with Equation 3.10 were de-
fined for contact between particles. As I am using this framework to investigate deposition
processes, the particles will also interact with a substrate, or wall. For my studies, I use the
bottom boundary as a solid wall and the particles will interact with that wall using basically
the same forces including normal contact, dissipation, bonding, and tangential friction and
bonding. In these cases, the wall will take the place of Particle j. It is assumed to be large
and stationary, resulting in a “radius” Rw ! 1 and a velocity vw = 0 using the subscript
w to denote the wall. I use the bottom surface as the wall, so the normal direction for niw

will always be in the z or e3 direction and the tangential direction for friction and tangential
bonding will be in the x�y or e1�e2 plane. The surface of the wall defines the plane where
z = 0, so a particle is in contact with the wall if the z component of its position ri is less
than the radius Ri and the penetration �iw is measured as shown in the right panel of Figure
3.2. With those adjustments, the Equations 3.10 through 3.23 are used in the same way to
compute particle-wall contact interaction forces.

Near-Field Interaction Forces One more class of interaction forces between particles
are the near-field forces. These are applied when the particles are close, but not related to
contact. One example of this forces is repulsion of like-charged particles. For this model, I
follow Zohdi and use a simple form to capture effects from attractive and repulsive near-field
forces [66]:

FNF
ij =

NpX

j 6=i

0

B@↵1ijkri � rjk��1

| {z }
attraction

�↵2ijkri � rjk��2

| {z }
repulsion

1

CAnij (3.24)

where ↵1, ↵2, �1, and �2 are empirical material parameters. There are various decom-
positions used for these parameters such as those based on mass, surface area, and volume,
but the main one I use in this model is charge-based:

↵ij = ↵̄ijqiqj (3.25)

where ↵̄ will be the material parameter I use in the model.
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In Equation 3.24, the sum includes all particles j 6= i, which is a more rigorous definition
and at high number of particles Np, this will become quite computationally expensive. These
forces are inversely proportional to the distance between particles, so as the particles are
further apart, the forces decrease. I employ an effective cutoff distance for computing these
near-field forces to neglect interactions with those particles that are far enough away similar
to a strategy used by Giera et al. [23]. This cutoff distance is a user-controlled parameter
that is system dependent in practice.

Total Force on a Particle Now that all the individual force components are defined
above, I combine them to compute the total force on each particle. Using Equations 3.2
through 3.25 total force on Particle i is now defined as:

F Total
i =FDrag

i + F grav + F Lorentz
i + F Brownian

i

+

NpX

j 6=i

0

@F contact,n
ij + F dissipation

ij + F bond,n
ij + F friction

ij + F bond,n
ij + FNF

ij| {z }
Particle-Particle Interactions

1

A

+ F contact,n
iw + F dissipation

iw + F bond,n
iw + F friction

iw + F bond,n
iw| {z }

Particle-Wall interactions

(3.26)

where the particle summation terms are formally stated to account for all particles, but
contact, dissipation, friction, bond, and near-field forces are only activated under certain
conditions specified in their definitions above. This is then used with Equation 3.1 for each
particle in the system to solve for velocities and positions throughout the simulation.

Boundary Conditions

For this simulation framework, the boundary conditions of the domain had to be defined
to allow particles to deposit on a substrate and start to stack to build up layers. I chose
the bottom surface to represent the substrate with a solid boundary with force interactions
described above. The top surface is open, and that is where the particles are generated.
To investigate depositions such as those found in EPD, the number of particles can grow
extremely large. I chose not to attempt a full scale simulation since the code framework is
intended to be run quickly on a laptop. To keep the number of particles in the simulation
in a good range for my framework, but also be able to investigate behavior of stacking
particles in a deposit structure, I used periodic boundary conditions for the side boundaries.
This assumes the domain is now a representative volume element (RVE) of the domain near
the substrate. Essentially the periodic boundaries allow the particles near one side of the
boundary to exit and re-enter on the other side with the same velocity. The boundary
conditions are shown graphically in Figure 3.3 below. While they are shown in 2D, the same
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periodic boundary condition were applied to the boundaries perpendicular to those shown
(into and out of the page), forming a 3D rectangular domain.

Figure 3.3: Graphic representation of the boundary conditions used in the model framework.
Two scenarios are shown: 1) Particle (a) has partially crossed the left boundary and interacts
with the blue particles near the right boundary as if it were in the position of Particle (a’).
2) Particle (b) crosses the left boundary completely and re-enters the right boundary with
the same velocity, represented as Particle (b’).

For the periodic boundaries on the four sides, the ±x and ±y using a Cartesian coordinate
system, there are two main situations in which particles need special treatment near the
boundary. The two situations are depicted in Figure 3.3 and are described by:

1. Particle edge crosses boundary.

2. Particle center crosses boundary.
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In the first situation, a particle edge crosses a boundary, but the center is still within the
domain. In the figure, situation one is shown by the red Particle a and Particle a

0. We see
Particle a is positioned so it’s center is within the domain, but it’s edge has crossed the left
boundary. The arrow denotes its velocity. Since its edge has crossed the periodic boundary,
it interacts with the blue particles near the right boundary as if it were in the position of
Particle a

0. When computing the total forces on Particle a, I use a “ghost particle”, denoted
Particle a

0. This ghost particle then interacts with the blue particles and the sum of those
interactions is added to the total interactions for Particle a.

The second situation concerns particles that fully cross a boundary. For this criteria,
I considering situation 2 by using the center position of the particle as a reference. Again
looking at Figure 3.3, when the center position of Particle b crosses the left boundary, the
particle position will be moved to the position of Particle b

0, maintaining the same velocity.
In my code, I implement this condition at the beginning of a time step while looping through
the particles before computing forces. It is possible that both conditions occur for a particle,
such as in the figure. Since Particle b

0 still has it’s edge over the right boundary, it is
possible that it interacts with particles near the left boundary. These will be considered
when computing total forces on Particle b after adjusting its position to that of Particle b

0.

3.2.3 Time Stepping Scheme
This section will discuss the time discretization used for my model. Following the approach
in Zohdi, I will start by integrating Equation 3.1 for the ith particle [66]:

vi(t+�t) = vi(t) +
1

mi

Z t+�t

t

F Total
i dt (3.27)

where vi is the velocity of the ith particle. Using a trapezoidal rule with a variable
integration metric, 0  �  1, we have:

vi(t+�t) ⇡ vi(t) +
�t

mi

�
�F Total

i (t+�t) + (1� �)F Total
i (t)

�
(3.28)

Now integrating the velocity equation and applying the trapezoidal once more results in
the following for the particle position:

ri(t+�t) ⇡ ri(t) +�t (�vi(t+�t) + (1� �)vi(t)) (3.29)

The formulations in Equations 3.28 and 3.29 are implemented in my code for solving for
the particle velocities and positions over time. The use of the time stepping parameter �

allows for a general formulation with the ability to quickly use explicit and implicit schemes
as needed. Using a value of � = 0, the time stepping scheme will be the explicit Forward
Euler, with � = 1 we have the implicit backward Euler, and with � = 1

2 , we have the second
order accurate implicit trapezoidal rule.
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For the trials discussed below, I used a parameter � = 0, which resulted in Forward
Euler for the time stepping scheme. I chose this scheme as it is the simplest to run, and is
fully explicit, using only known data to compute the next time step. While it has first order
accuracy for the numerical solution, the goal of this model is to be implemented as quickly
as possible, and the accuracy is good enough for this early testing of the framework. For
specific use in problems in the future, more accurate, higher order accurate time stepping
schemes such as an explicit higher order Runga Kutta method may be more appropriate [33]
[21]. Utilizing implicit schemes may allow me to increase the maximum time step due to
their larger stability regions, but due to the high number of expected particle collisions and
the need to keep the time step small enough to limit particle penetration, the maximum time
step size will still have to be small. Additionally, the implicit time stepping schemes would
require iterations within the time step, so that will further increase the computation time.
It should be noted that throughout the deposition process, there are times when particles
are not colliding and are mostly moving due to the driving electric force. This section of the
simulation, before many particles start interacting with the substrate, could benefit from a
faster time step not used in my current implementation. One way to include this would be
to use an adaptive time stepping scheme, which uses an iterative scheme to control error
and adjust the time step value based on the current physics of the model [67]. I discuss this
topic further below when looking at increasing my model’s efficiency.

General Algorithm
Now that the components of the framework have been described, we will be those together to
build the full model. The overall general algorithm described with pseudocode is as follows:

1. Generate particles, initialize positions and velocities

2. Begin time loop, for each time step:

3. Begin particle loop, for each particle i:

a) Check position vs side boundaries, adjust positions, and add ghost particles as
needed

b) Compute gravity, drag, brownian, and Lorentz forces
c) loop through all other particles j, compute distance for force criteria, and compute

all contact and near-field forces on particle i

d) Check position vs wall, compute wall interaction forces
e) Sum all components to determine total force

4. Compute new acceleration, velocity, and positions of all particles

5. Step forward in time, and repeat from Step 3 until simulation end
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6. Analyze particle trajectories

The general algorithm above was used mostly in the last study below, while it was
simplified for the first two. Details on each study and how I used my framework for those
are described below. I implemented the framework in python, created functions for each
force calculation that could be called as needed when particles met the criteria [52].

3.3 Studies towards verification and validation

This section will describe verification and validation studies undertaken throughout the de-
velopment of this particle model framework. With my model framework described in the
sections above, I performed three main studies:

1. Diffusion Study

2. Electrophoretic Velocity Study

3. Deposition Studies

The first two, the diffusion study and electrophoretic velocity study, used simplified
forms of the general algorithm above. For those studies, I am looking at particle behavior
without a boundary, and without interparticle interactions, which significantly simplifies the
computations required. My aim when choosing these studies was to begin with the framework
development by starting out with the simplest situations and then increasing the complexity.
Through the consecutive studies, I build that complexity by adding more physics in to the
model in the form of forces and boundary conditions.

For third set of studies, I use the full deposition framework as described in the sections
above. This set of studies had multiple numerical examples, and looked at the capabilities of
the framework to simulate multiple processes, namely electrospray in air and EPD in water.
The results of my simulation work thus far will be discussed in the context of these three
sets of studies below.

3.3.1 Diffusion Study
This diffusion study is the first study I performed with my model framework. The goal was
to start with the simplest situation for my particles - which is particle diffusion in a quiescent
fluid. The Brownian force will then be the main driving physical factor as I simulate and
analyze the Brownian motion of my particles. This is also the first test study I use for my
experimental work discussed further in Chapter 4. The development of both the simulation
framework and the experimental work begin from the same starting point. The analysis for
this study will be similar to that used in the experimental diffusion trial.
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Methods - Simulation Details and Analysis

To begin with this first study, I discuss the physics taken into account in the model, and
details on using the simulation framework. The basic steps for this trial will be:

1. Generate particles

2. Track particle positions over time due to Brownian force

3. Compute the Diffusion coefficient

To generate the particles, I sequentially generate random non-overlapping particle po-
sitions within a rectangular domain. For this trial, I use a constant particle radius so the
distance minimum distance between all particles required for no overlap is constant as well.
This is not as important for this particular trial because I do not account for particle interac-
tions, but it is important for the deposition studies and so I implemented it for all the sets of
studies. An example of the generated particles is shown in Figure 3.4 below. Visualizations
for simulation were created with Tecplot [58].

Figure 3.4: Example domain with generated particles.
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For this simple diffusion case, the Brownian force will be the only force acting on the
particles. The particles will not need to interact in this study, and their trajectories will be
used to compute the Diffusion coefficient. However, I do generate multiple particles in each
trial to provide more data points for averaging. Therefore the equation of motion for the
particle will only use Equation 3.8 for the definition of total force. The inputs for this study
are the particle and fluid properties, specifically the particle diameter and fluid viscosity will
play particularly important roles in the following analysis. The outputs will be the particle
positions over time, or the trajectories, which will be used to compute the diffusion coefficient
using the Mean Squared Displacement (MSD).

Brownian motion is exhibited by particles suspended in a fluid and was observed as a
“random walk” as the particles are constantly colliding with the smaller fluid particles. These
collisions result in motion in random magnitudes and directions. Examining the second
moment of positional displacement, or the Mean Squared Displacement, you can obtain the
diffusion coefficient using Einstein’s relation [8]:

h�r2(t)i = 2nDt (3.30)

where hi is the ensemble average, �r is the displacement of the particle, n is the number
of dimensions (i.e. 1, 2, or 3), D is the diffusion coefficient, and t is time. The ensemble
average, means the MSD can be computed by averaging over all particles at all time steps
for displacement. I use multiple particles in each trial and as I generate trajectories, I can
compute displacements over numerous time steps. I then plot the computed MSD vs those
time steps and use a polynomial fit to find the slope of the fit line of MSD vs time step.
The slope of that plot is used to compute the diffusion coefficient D from equation 3.30.
Since the particle framework is set up for 3D analysis, I use n = 3. As the particle model
framework is implemented in python, I also implement this MSD analysis in python as a
pedagogic practice.

To quantitatively evaluate the “experimental” (simulated) diffusion coefficient from my
model, I compare it to the diffusion coefficient as calculated by the classical Stokes-Einstein
relation. The Stokes-Einstein relation defines the diffusion coefficient as [53] [22]:

D =
kBT

6⇡µfr
(3.31)

where kB is the Boltzmann constant, T is the temperature, µf is the absolute viscosity,
and r is the particle radius. This equation relates the motion and diffusion of the particles
to the collisions with the fluid molecules and the dissipation from drag [53]. Using this
analytical value, I can directly compare it with the results of my simulation from the MSD
calculation. The basic steps for this set of diffusion trials is as follows:

1. Generate particles

2. Step through time, computing trajectories due to Brownian force
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3. Analyze diffusion by computing D from the slope MSD vs time step calculation in
Equation 3.30

4. Compare with analytical diffusion coefficient from Stokes-Einstein relation in Equation
3.31

The results from those trials are discussed below in the next section.

Results and Discussion

For these trials, I computed the diffusion coefficient for different parameter combinations,
staying closer to parameter values similar to colloids such as those used in EPD. Following
the work of Giera et al., I varied both particle radius and fluid viscosity [22]. The parameters
I used for these trials were:

• Particle radius, Rp = 1nm, 10nm, 100nm, 1µm

• Fluid viscosity, µf = 0.0001Pa · s, 0.001Pa · s, 0.01Pa · s

• Temperature, T = 293K

• Boltzmann constant, kB = 1.3806⇥ 10�23Nm
K

• Number of particles, Np = 10

• Number of Time Steps, Nts = 2.5⇥ 106

This essentially became 12 different trials, with 4 different particle radii and 3 different
fluid viscosities representing several orders of magnitude of colloidal suspension properties.
Using Equation 3.31, this resulted in 6 different orders of magnitude of diffusion coefficients.
Each set of 12 parameters was simulated with 20 replicants, and over a final simulation time
of 0.2s resulting in at least 3.5⇥105 time steps for each trial to provide many data points for
displacement calculations. The time step size used for the different trials varied between the
trials and was chosen to be the maximum time step size for the suspension parameter sets.
This method of choosing time steps is discussed further below. With one plot per viscosity
value, we can see the results of the trials plotted in Figures 3.5-3.7 to show data without
overlap.

The results are also combined onto one plot as shown in Figure 3.8 with some marker
overlap, but showing the results from all 12 trials.

The results shown in Figures 3.5 - 3.7 and 3.8 plot the simulated Diffusion coefficient on
the y axis against the analytical diffusion coefficient from the Stokes-Einstein relation on the
x axis. The error bars on the plots are defined by the standard deviation. As can be seen
from all the plots, the simulation results agree quite well with the analytical expected. To
further examine the results, they are summarized in Table 3.1.
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Figure 3.5: Results from the 12 diffusion trials with different plots for each value of fluid
viscosity µf . Results for µf = 0.0001Pa · s.

Figure 3.6: Results from the 12 diffusion trials with different plots for each value of fluid
viscosity µf . Results for µf = 0.001Pa · s.

As can be seen from the results in Figure 3.8 and Table 3.1, the 12 trials result in
6 different expected diffusion coefficients covering 6 orders of magnitude. The tabulated
results show fairly good agreement in the 12 trials with the expected analytical value from the
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Figure 3.7: Results from the 12 diffusion trials with different plots for each value of fluid
viscosity µf . Results for µf = 0.01Pa · s.

Table 3.1: Results from the simulated diffusion trials compared with the analytical results
from the Stokes-Einstein relation.

Fluid
Viscosity, µf

(Pa · s)

Particle
Radius,
Rp (nm)

Analytical
DSE (m2

s )
Mean

Simulation
DSim (m2

s )

Error

(%)

0.0001 1 2.15⇥ 10�9 2.18⇥ 10�9 1.4
0.0001 10 2.15⇥ 10�10 2.35⇥ 10�10 9.3
0.0001 100 2.15⇥ 10�11 2.05⇥ 10�11 4.7
0.0001 1000 2.15⇥ 10�12 2.28⇥ 10�12 6.0
0.001 1 2.15⇥ 10�10 2.00⇥ 10�10 7.0
0.001 10 2.15⇥ 10�11 2.37⇥ 10�11 10.2
0.001 100 2.15⇥ 10�12 2.11⇥ 10�12 1.9
0.001 1000 2.15⇥ 10�13 2.21⇥ 10�13 2.8
0.01 1 2.15⇥ 10�11 1.93⇥ 10�11 10.2
0.01 10 2.15⇥ 10�12 2.06⇥ 10�12 4.2
0.01 100 2.15⇥ 10�13 2.30⇥ 10�13 7.0
0.01 1000 2.15⇥ 10�14 2.06⇥ 10�14 4.2

Stokes-Einstein relation. 6 of the 12 trials had a percent error between the mean simulated
diffusion coefficient and the analytical diffusion coefficient of < 4.7%. However, the other half
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Figure 3.8: Results from the 12 diffusion trials on one single plot comparing the simulated
diffusion coefficient with the analytical diffusion coefficient from the Stokes-Einstein relation.

of trials stretched beyond that. The maximum percent error between the mean simulated
value and the expected analytical value was 10.2%. This actually occurred in two different
trials, both with an expected value of DSE = 2.15 ⇥ 10�11m2

s . Giera et al. performed a
similar study across the same ranges of parameters with their model implimented in the
LAAMPS framework and they found a maximum error in their trials to be 5.6% [22]. While
my results showed a higher percent error, they were still relatively close to the expected
analytical value.

One potential factor leading to a difference in results could be the time constant and
chosen time step when computing the diffusion coefficient in the simulation. The time
constant I refer to here is the viscous time scale at which the energy from collisions with
fluid molecules approximately dissipates before another effective Brownian force collision is
applied. This viscous time scale is on the order of 10�9

s for a 100nm neutrally buoyant
particle suspended in water [53]. As I was developing this model, I wanted to run the
simulation with larger time steps to maximize the final time and allow the particles to
effectively diffuse longer. As I was testing, I found that by going too high, I could cause
the simulation to go unstable and the positions would diverge, which is a limitation of the
time stepping scheme I chose (Forward Euler). However there was a situation where the
time step chosen was large while still resulting in a stable simulation, but the magnitude of
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the simulated diffusion coefficient was significantly higher than the expected value. I found
that in this regime, the Brownian force magnitude could essentially be too high, causing the
displacements to also be larger. This occurred when the time step chosen was greater than
the viscous time scale for that particular suspension. To correct for this, I reformulated the
Brownian force definition to be computed by an average impulse-like definition such that:

F Brownian = F Brownian
O

t⇤
dt

(3.32)

where F Brownian
O is the original Brownian force definition defined by Equation 3.8, dt

is the time step of the simulation, and t⇤ is a time constant representing the viscous time
scale. Both dt and t⇤ have the units of s, so effectively I am computing the impulse of
an average Brownian force, and then scaling it by the time step of the simulation so that
the magnitude of the acceleration is not overly large in the situation described above. This
additional scaling term also helped in the opposite situation where the simulation time step
was much lower than the viscous time scale and the displacements were too low.

Now with the new definition of Brownian force scaled appropriately in Equation 3.32, I
wanted to generally define a t⇤ for my model framework that would work decently well for
most conditions I applied. To find a time constant that worked, I started with a constant
of t⇤ = 1 ⇥ 10�9

s and then varied the value while computing the diffusion coefficient for
suspensions with parameters across the orders of magnitude in the 12 trials. Performing
these trials, I found a value of t⇤ = 7 ⇥ 10�9

s led to a mean value of diffusion coefficients
matching decently well for the range of parameters. Now in my model, I chose to apply this
value to the broad range of suspension parameters as a broad solution. A more rigorous
solution might include a broader set of trials repeating the same strategy, but determining
a t⇤ value for each set of parameters. In practice this could be performed for every set of
parameter values, and would most likely lead to an improvement in the mean error as the
time scale is more acutely tuned for the specific conditions. However, as the number of
suspensions simulated increases, so will the convergence trials needed to find the time scale.
This is a tradeoff, and for this set of diffusion trials I chose to limit those efforts, to find one
value that worked fairly well for my range of cases.

One set of parameter convergence trials I did perform was for the time step values for each
suspension. As mentioned above, I wanted to maximize the time step for each suspension
trial to minimize the required run time of my framework. This follows my larger goal of
balancing the ability of my framework to produce results while operating more quickly and
capably on a laptop. To achieve this with this first set of trials, I ran repeated trials of each
suspension parameter set varying only the time step dt of the simulation. I increased time
step sizes until the error between the mean diffusion coefficient and the analytical diffusion
coefficient became more than one half of the standard deviation. To improve the overall
mean error, I could have decreased my tolerance while performing these convergence trials,
which would most likely have resulted in a smaller time step size for each trial. In future
trials, the sensitivity to time step size could be further explored. However in this case, I
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found that balancing the error I found with maximizing the time step to be a worthwhile
trade-off in my trials.

In summary, the results from the diffusion study showed fairly good agreement with the
analytical comparison for diffusion coefficient computed with the Stokes-Einstein relation.
This was a first test of my particle framework, and the diffusion case study was the most
simple for physics involved as the driving force was dependent on only the Brownian force
and particle interactions were not taken into account. 12 suspension parameter sets were run,
resulting in diffusion coefficients spanning 6 orders of magnitude, similar to a trial performed
by Giera et al. [22]. The results showed a maximum error of 10.2%. For my model, I
made several simplifying decisions which could have factored into this error, namely using a
single time scale factor for the Brownian force for the 12 different suspension combinations,
and choosing a simulation time step to minimize my simulation’s run time based on a user-
specified tolerance. To address these factors, future studies could preform a set of convergence
trials to find a time scale value tailored for each suspension, as well as adjust the user specified
tolerance in the time step convergence trials to reduce the overall error. These results were
a relatively successful first step in my model framework development.

3.3.2 Electrophoretic Velocity Study
The next study I performed with my framework is the electrophoretic velocity study. In-
creasing the complexity of the physics included with the framework, I moved on from the
initial diffusion study and then investigated electrophoresis, or the motion of particles due
to the external electric field. In this study, the main forces involved are the Lorentz force
due to the external electric field moving the particle and the Drag force imparted by the
surrounding fluid to oppose that motion. The balance between these opposing forces will
determine the motion of the particles in the suspension when I apply an electric field, and
that motion is study by investigating the terminal velocity of the particles.

Methods - Simulation Details and Analysis

For this study, the basic steps were:

1. Generate particles

2. Track the particle velocities and positions over time

3. Compute the average terminal velocity of the particles

Similar to the diffusion trial described above, I simulated multiple particles for averaging.
I used the same algorithm as in that trial, sequentially generating the particles in random,
non-overlapping positions. Again for this trial, I do not account for particle interactions,
under a similar assumption of investigating dilute suspensions. I again used a constant radius
when generating the particles, but added some new particle parameters to the model. The



CHAPTER 3. A NUMERICAL STUDY ON DEPOSITION 37

effective particle charge in general could be assumed to be a known parameter based on the
process, but for this particular case with colloids, I use a definition derived by Giera et al.
[22]:
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where ⇣ is the Zeta potential of the suspension, ✏0 is the permittivity of free space, ✏ is the
relative permittivity, and �D is the debye length. With this expression for effective colloid
charge, the value qp can be defined with parameters that are able to be directly measured in
an experiment [22]. I do not always use this definition of charge, especially when simulating
larger particles in air for the deposition study as discussed further below, but I do employ it
for the cases with colloids like in this study and for deposition with EPD.

Now with the particles generated, the main forces acting on them in this study are the
Lorentz force and the Drag force. These two forces act in opposing directions as shown in
Figure 3.9. The particles in the figure are shown moving in the same direction as the electric
field, indicating they have a positive effective charge. The Lorentz force and Drag force are
computed using Equations 3.7 and 3.2, respectively. I simulate the particles over a range of
simulation time that allows the particle to find an equivalent terminal velocity and remain
at that steady state. I performed exploratory studies to determine the simulation times for
each suspension parameter set where I found the velocities to not change between several
successive time steps. The outputs of each suspension parameter set simulation run are the
average terminal velocity of the particles.

For an analytical comparison of these electrophoretic terminal velocities, I use the Henry
velocity described by the Henry equation [22]:

vH =
2

3

E⇣✏✏0

µf
f

✓
Rp
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◆
(3.34)

where vH is the Henry velocity, E is the applied electric field, and the term f

⇣
Rp

�D

⌘
is the

Henry function and accounts for variations due to suspensions with different double layer
thicknesses. This function varies from f

⇣
Rp

�D
! 0

⌘
! 1 in the thin double layer limit to

f

⇣
Rp

�D
! 1

⌘
! 3

2 in the thick double layer limit. To keep my framework general, I used an
expression presented by Swan and Furst to compute an approximate Henry function value
for variable double layer thicknesses [57]. This relation for the Henry function is a simple
approximation that matches within 0.1% for all values of Rp

�D
and is given as [57]:
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Figure 3.9: Graphic of forces acting on particles for the electrophoretic velocity study. The
force directions are assuming the particles have a positive charge so they are moving in the
same direction of the E-field.
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For a suspension parameter set, I then simulate the particles and compute the elec-
trophoretic velocity at different field strengths to compare to the analytical Henry velocity
as computed in Equation 3.34 in Python [52]. An example comparison across 6 different
orders of magnitude of electric field strength is shown in Figure 3.10.

Now with the analytical Henry velocity defined, I simulate a range of simulations by
varying the parameters of particle radius, fluid viscosity, and relative permittivity. The basic
steps for this set of trials comparing the terminal electrophoretic velocity are as follows:

1. Generate particles and compute effective colloid charge

2. Step through time, compute velocities due to Lorentz and Drag forces until reaching
steady state

3. Repeat for a range of electric field strengths
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Figure 3.10: Example velocity comparison across 6 orders of magnitude of electric field
strength.

4. Compare the simulated terminal velocity with analytical Henry velocity defined in
Equation 3.34

The results for the electrophoretic velocity study are discussed in the following section.

Results and Discussion

For this electrophoretic velocity study, I ran several different particle suspension simulations
and computed the terminal velocity. Again following a similar study performed by Giera et
al., I created the suspension parameter sets by varying the particle diameter, fluid viscosity,
and relative permittivity [22]. The parameters I used for this trial were:

• Particle Radius, Rp = 10nm, 100nm, 1µm

• Fluid viscosity, µf = 0.0001Pa · s, 0.001Pa · s, 0.01Pa · s

• Relative Permittivity, ✏ = 2, 40, 80

• Vacuum Permittivity, ✏0 = 8.85419⇥ 10�12 C2

N ·m2

• Zeta Potential, ⇣ = �0.05V
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• Number of particles, Np = 10

• Electric Field Strength, E = 10 V
m , 100 V

m , 1000 V
m , 1⇥ 104 V

m , 1⇥ 105 V
m , 1⇥ 106 V

m

These sets of parameters define 27 different suspensions with 3 different particle radii,
3 fluid viscosities, and 3 relative permittivities. In each case described above, I also use a
constant ratio of Rp

�D
= 2 similar to Giera et al. For each suspension, I simulate the particles

moving due to the Lorentz force and the Drag force and compute their terminal velocities to
compare with the analytical Henry velocity using Equation 3.34 across 6 orders of magnitude
of electrical field strength E. For each suspension I average the velocity across 10 particles
and 500 replicants. In these trials the actual electrical field applied was E = [0, 0,�E] so the
field was oriented down in the z direction. The suspensions had a zeta potential ⇣ = �0.05V ,
so the charge of each particle computed with Equation 3.33 was also negative. Together,
this caused particle motion to move in the positive z direction. In the plots below, the field
strength E is the magnitude of the applied electric field. The time steps and final simulation
times varied across the different suspension parameter sets and were determined by running
the simulation trials to find appropriate values. This is discussed in further detail below.
The results from the 27 different trials are shown in Figures 3.11 - 3.13.

Figure 3.11: Velocity study results from 9 different suspension parameter sets with relative
permittivity ✏rel = 2. The simulated steady-state velocity plotted against the analytical
Henry velocity.

The three plots shown plot the simulated Steady-state (or terminal) velocity on the
y axis against the analytical Henry velocity from Equation 3.34 on the x axis. The line
represents the Henry velocity and has a slope of 1. The velocities in each plot show relatively



CHAPTER 3. A NUMERICAL STUDY ON DEPOSITION 41

Figure 3.12: Velocity study results from 9 different suspension parameter sets with relative
permittivity ✏rel = 40. The simulated steady-state velocity plotted against the analytical
Henry velocity.

Figure 3.13: Velocity study results from 9 different suspension parameter sets with relative
permittivity ✏rel = 80. The simulated steady-state velocity plotted against the analytical
Henry velocity.
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good agreement across the 8 orders of magnitude of velocity. The points with the largest
deviation from the expected value can be seen at the highest velocity points on both the
middle and lower plots. These points correspond to the suspensions with lowest viscosity
µf = 0.0001Pa · s and the largest diameter particle Rp = 1µm. While these points may
be outliers, the similarities of them being one of the more edge cases on the higher end of
velocity indicates it may be due to one of the factors of my trial design.

For each combination of particle radii Rp and fluid viscosity µf , I determined a time step
and final simulation time value based on convergence trials. When I performed these trials,
I used my initial results from the case of the ✏ = 2 and did this for only a small number of
replicants. It is possible that the time step chosen for these trials was not small enough or
the simulation time was not large enough to allow the particles to fully reach their terminal
velocity. The latter seems unlikely as in all cases I checked, I noticed velocity leveling off
quite quickly on the order of hundreds of time steps.

To investigate the cases above, I performed a sanity check of computing the terminal
particle velocity in a simple force balance. Assuming the Lorentz force and the Drag force
are balanced at steady state, i.e. acceleration is zero, I approached with an implicit solution
method to determine the steady state velocity. For the computations below, I performed
them only in the z or e3 direction for simplicity.

F Lorentz + FDrag = ma = 0

F Lorentz = �FDrag

qpE = CD(Re(vss))⇡R
2
p⇢fkvssk2

) vss =

s
qpE

CD(Re(vss))⇡R2
p⇢f

(3.36)

where vss is the steady state velocity and CD is explicitly showing it is a function of
Reynolds number Re, which is in turn a function of the steady state velocity vss. With
vss on both sides of Equation 3.36, this can be solved implicitly. I use a simple fixed point
iteration with an initial guess to find the steady state velocity as follows:

1. Set initial guess velocity

2. Loop over a max number of iterations

a) Compute Re and CD with vguess

b) Compute vnew from Equation 3.36
c) Update vguess = vnew and repeat until convergence

where the definition of convergence is controlled by a tolerance between successive guesses.
I found that typically this occurred in a very short number of iterations, usually less than 10.
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Figure 3.14 shows an example plot of the guess velocity vs iteration when using the implicit
fixed-point iteration method described above to find the steady state velocity implemented
in Python.

Figure 3.14: Plot of the guess velocity vs Iteration while solving for the steady state velocity
from the force balance in Equation 3.36. The velocity levels off near iteration 7.

I utilized this sanity check on all the electrophoretic velocity trials to ensure my steady
state velocity computed with my explicit method was consistent with the implicit as well.
Across the 27 trials, I found a difference in computed steady state velocities between my
explicit simulation and implicit check to be less than 0.2%. Specifically, the two cases
mentioned above that deviated from the analytical Henry velocity had an error of 21.5%
between the explicit steady state velocity and the Henry velocity for the ✏ = 40 case and
34.5% for the ✏ = 80 case, but between my implicit check and the explicit steady state
velocity, they had < 0.01% difference in both cases. This indicated to me that my explicit
simulation model was consistent with my implicit force balance for all cases, but that my
assumptions of the physics involved may have limits, represented by physical cases described
by the parameters in those two trials.
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To better visualize the range of parameters I explored in the electrophoretic velocity
trial, I investigated non-dimentionalizing the system. I computed the non-dimensional Péclet
number, Pe, which is the ratio of convective to diffusive motion of the particle suspensions
with the applied electric fields.The Péclet number is defined as:

Pe =
|vH |
DSE

Rp =
6⇡R2

p|E⇣|✏✏0
kBT

f

✓
Rp

�D

◆
(3.37)

where DSE is the diffusion coefficient as defined by the Stokes-Einstein relation discussed
earlier in this chapter. I used the same temperature as in the previous section, room tem-
perature, for my cases in this study as well. At each value of the Péclet number, I also
computed a ratio of the simulated steady state velocity over the analytical Henry velocity. I
used the velocity found using my explicit simulation for this analysis. Figure 3.15 shows the
plot of the velocity ratios plotted against the Péclet number.

Figure 3.15: Plot of the ratio of simulated velocity over Henry velocity over the Péclet
Number Pe. The vast majority of cases is near the ideal value of 1, but two outlying cases
are highlighted in red.

The plot in Figure 3.15 shows the ratio of the simulated steady state velocity to the
analytical Henry velocity on the y axis and the Péclet number on the x axis. As can be
seen from the plot, the vast majority of the trials were very close to the ideal ratio of 1.
This represents a large range of parameters for colloidal suspensions, covering 12 orders of
magnitude of Péclet number. This good agreement indicated to me that the model was able
to capture the essential physics for electrophoretic motion in the majority of cases. The
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two outlier points circled in red represent the two cases that had a higher error as described
above. They had a velocity ratio below 1, indicating that the trials produced a lower steady
state velocity vs the analytical Henry velocity. This could be an indicator that my simplifying
assumptions start to break down in this higher limit of Péclet number, and introduce error.

Summarizing the results shown in Figure 3.15, I tablulate the average error for a order
of magnitude of Péclet number below in Table 3.2. The percent error is computed as:

%Error =
����1�

VSim

VH

����⇥ 100% (3.38)

Table 3.2: Summary of error between electrophoretic velocity ratio for Péclet number order
of magnitude.

Pe Order Percent Error
1⇥ 10�6 0.16%
1⇥ 10�5 0.08%
1⇥ 10�4 0.17%
1⇥ 10�3 0.14%
1⇥ 10�2 0.15%
1⇥ 10�1 0.16%

1 0.19%
1⇥ 101 0.22%
1⇥ 102 0.19%
1⇥ 103 0.24%
1⇥ 104 3.80%
1⇥ 105 11.77%

From Table 3.2, good agreement is seen across the first 10 orders of magnitude with the
average error being below 0.24%. It is in the last two orders of magnitude of Pe that I
start to get the percent error to increase with the presence of the two cases circled in Figure
3.15. This may be an indicator that my assumptions in formulating the model may not be
capturing all the physics as well as I hoped in this regime. The results from this trial were
still helpful to me in identifying where the model may need more investigation to understand
the electrophoretic behavior of particles. This result of high Pe starts to represent the edge
cases for my model and would be the sight of future studies using this code framework. Giera
et al. performed a similar study and found their cases near this order of magnitude of Pe

to have good agreement, so future work can start to investigate the differences between my
simple model formulation and the more expansive one used in their studies [22]. Besides
those two cases, I had good agreement across the wide range of parameters, and used this
as a milestone to then begin studying the deposition of particles as described in the next
section.
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3.3.3 Deposition Studies
The third set of studies I performed with my model framework are focused on the deposition
of particles. Now further increasing the physics involved, I take into account all the forces
described above to factor in all of the external field, environmental, and inter-particle forces
used to cause the motion of particles in deposition processes. The field-driven AM processes
of interest vary widely in their parameters, and I intended for this framework to be a tool
capable of simulating those separate cases. Here I will discuss the cases I investigated and
present the results of some of the trials with parameters similar to electrospray of particles
in air and EPD of colloids in water. The examples here show some of the capabilities and
limitations of my model framework approach.

Methods - Simulation Details and Analysis

Similar to the previous two studies, the basic steps of these depositions were:

1. Generate particles

2. Track particle velocities and positions over time

3. Analyze the deposit structure

Throughout the development of this model framework, and especially with these deposi-
tion studies, I began with small numbers of particles before increasing the number of particles
to see what a larger deposition would look like. For testing, this could mean I generated
anywhere from 20 to 2000 particles for investigating the interaction of all the forces and the
resulting deposits. In all cases, I used the same algorithm as described in the first diffusion
studies, where I sequentially generate the particles in random, non-overlapping positions
within a defined representative volume element, or voxel, that scales in size with the number
of particles. To save on computational time, I started the region of particle generation to be
near the surface so the lowest particles will start interacting with the bottom wall soon in
the simulation. If I made the offset higher, generating more and more particles in the bulk,
a lot of time steps would be used in just moving particles before any significant interactions
took place. The particles are initialized with velocities in the direction consistent with the
overall Lorentz force with a magnitude on the order of the Henry velocity to present the
scenario where these particles have been moving from the bulk towards the substrate due to
electrophoresis. I used a constant time step for my simulation framework, but like mentioned
above when discussing the time stepping scheme, future additions to this framework could
include an adaptive time stepping scheme that would also larger time steps to be used in
instances such as when particles are mostly moving through the bulk fluid before there are
many interactions with the wall and other particles. However, this technique of starting the
particles closer to the substrate helped make the simulation time within reason, even when
needing to use a small time step for certain conditions. This will be discussed further in
detail below in the results and discussion section.
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One new addition I made to the particle generation step was allowing for variable particle
radii. Up to this point, I had formulated the code and run the trials with a constant particle
radius. However, to allow for more detailed studies in the future such as those looking
at uncertainty quantification due to particle size, I allow for variation in the radius to be
introduced by the simple relation:

Rpi = R̄p(1 + ↵Radci) (3.39)

where Rpi is the radius of Particle i, R̄p is the mean particle radius, ↵Rad is a parameter
defining the amount of variation, and ci is a random number between �1 and 1. As the
particles are generated, I also sequentially compute the radius at the same time to properly
compute distance between existing particles to make sure there is no initial overlap. Using
this relation, I was able to choose as much variation as I wanted, but for most trials I used
uniform radii. To add no variation, I just set the parameter ↵Rad = 0.

After the particles are generated, the simulation will then step through time, computing
all the forces on each particle to solve their equations of motion. In these studies, I employ
all the forces defined above in Equations 3.2 to 3.26. For each particle this step can be
computationally intensive as many of the forces are dependent on the relative distance to
other particles. I discuss several methods to improve the efficiency, particularly for these
calculations further below.

While most of the examples moving forward are mostly qualitative in nature, one method
of quantitative analysis I use is a quantitative look at the “order” of a deposit. A more
ordered, or more crystalline, structure of a deposit will in general have each particle with more
nearest neighbors than an amorphous or less ordered deposit. In a more amorphous deposit,
the particles may have voids between them that limit the number of nearest neighbors they
are able to have. As a measure of this “order”, I used the coordination number of each
particle. For my model, I define the coordination number of a particle as the number of
nearest neighbors. To define nearest neighbors, I set a distance from the particle center,
generally related to that particular particle’s radius. When analyzing a deposit, I can look
at the positions of the particles, and for each particle, count the number of neighboring
particles within that set “nearest neighbor” distance. This is graphically shown in Figure
3.16.

In the example case shown in Figure 3.16, the red particle is being analyzed and checked
for its nearest neighbors defined by the center distance denoted RCN . In this case, 3 particles
have a center distance within that range and are highlighted in green. The blue particles are
out of that range, so are not counted towards the nearest neighbors to add to the coordination
number.

The higher the coordination number, the more local order is in the deposit near it. This
is similar to the coordination number used when analyzing atoms in a crystal structure. For
my colloidal crystals, the particles are analogous to the atoms, and the coordination number
can be a measure of the order of that structure. This is also a quantity used by Giera et al.
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Figure 3.16: Example of the coordination number for a particle. In this case, the red
particle has a coordination number of 3 highlighted by the nearest neighbor green particles.
The nearest neighbors are defined by a center distance below a parameter denoted RCN .

in their mesoscale model of EPD and since I also aim for this simulation framework to be
able to analyze deposits made with EPD, I took a similar approach [23] .

Results and Discussion

The following examples are investigating the behavior of depositing particles with my simu-
lation framework. Some of the studies are more qualitative in nature to make observations
about the particle behavior and discuss limitations of my framework in the various cases.
I intended this model framework to be used for varying field-driven AM processes, so the
parameters in the examples below will vary from larger particles moving through air as in
an electrospray process to smaller particles, colloids, moving through water as in EPD.

The first example I examine was a test of the simulation framework similar to one per-
formed by Zohdi [66]. In this example, I was interested in a first check that particles could
interact with each other and the bottom wall, so this do not yet include the sidewall peri-
odic boundary conditions detailed in prior sections. This trial represented charged particles
moving through air towards a substrate, and are allowed to spread with no sidewalls. The
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parameters I used for this first example were:

• Number of particles Np = 1000

• Mean Particle radius R̄p = 0.05m

• Particle radius variation ↵Rad = 0

• Particle density ⇢p = 1540 kg
m3 , silica

• Fluid density ⇢f = 1.2754 kg
m3 , air

• Fluid viscosity µf = 18.03⇥ 10�6
Pa · s

• Electric field E = [0, 0, 100] Vm

• Particle charge per unit mass qp
mp

= �1 C
kg

• Contact damping parameter ccd = 108

• Friction compliance constant Kf = 109

• Static friction coefficient µs = 0.4

• Dynamic friction coefficient µd = 0.3

• Particle-particle contact compliance constant, Kp = 109

• Particle-particle contact exponent pp = 2

• Particle-particle normal bonding parameter Knb
p = 108

• Particle-particle rotational bonding parameter Krb
p = 105

• Particle-wall contact compliance constant, Kw = 1011

• Particle-wall contact exponent pw = 2

• Particle-wall normal bonding parameter Knb
w = 1010

• Particle-wall rotational bonding parameter Krb
w = 107

• Bonding law exponent pb = 2

• Near-field parameters, ↵̄1 = 0.5, ↵̄2 = 0.05, �1 = 1, �2 = 2
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The parameters were determined through experimentation with the simulation, and this
is just one example of a potential set. Part of the experimentation was finding good time
parameters that resulted in a stable simulation. I was using the Forward Euler time stepping
scheme, with a time stepping parameter � = 0 in Equations 3.28 and 3.29. For this example
the time parameters were:

• Time step dt = 1⇥ 10�6
s

• Final simulation time tf = 0.1s

The time step was determined to minimize the code runtime, as with the number of
particles Np = 1000, the interactions start to cause the runtime to increase significantly.
Successive frames from this simulation are shown in Figure 3.17.

The frames shown in Figure 3.17 starting in the upper left panel show the progression
from particles in random generated positions, then starting to fall in the upper right panel
with the first initial contact with the substrate. The middle left panel then shows particles
continuing to fall until they have all fallen and begun to spread out in the middle right
frame. Finally the bottom frame shows the end result as the particles have spread out a
little more and settled. A few observations can be made from this simulation, including how
the particles are clumped together, and how they settle in the z direction.

As can be seen from this last frame in particular, the particles have spread, but are still
pretty clumped together. This is possibly due to the higher attraction forces in the near-
field force definition. This can be investigated more by looking into the interplay of those
parameters, the ↵’s and �’s. For illustration purposes, I run similar trials, but with a lower
number of particles. As an example, I look at the top down view of the x� y plane for two
different trials using 100 particles. The results are shown in Figure 3.18. In the left panel,
labeled a), the ↵’s and �’s are the same as in the first example parameters listed above with
↵̄1 = 0.5, ↵̄2 = 0.05, �1 = 1, �2 = 2. As shown, the particles look more clumped together,
as which may be due to the higher parameter ↵1 which corresponds to the attractive force.
The right panel, labeled b) shows results from a simulation with a reduced ↵1 parameter,
with parameters ↵̄1 = 0.025, ↵̄2 = 0.05, �1 = 1, �2 = 2. As can be seen in panel b), the
particles are more spread out than in panel a), especially seen with the larger white gaps on
the bottom layer. Qualitatively, this makes sense as the repulsive force term in the near-field
force now has a larger contribution relative to the attractive term. I saw similar behavior
when increasing ↵2, but increasing either parameter too much can make the particles go
unstable. There is a complex interaction of forces and each parameter can have a significant
effect on the overall deposit. This interplay is discussed further below.

Another observation I saw from these few frames in Figure 3.17, is that when the particles
hit the substrate, they settle and spread out in a fairly inelastic collision. As the subsequent
particles land on top of those that land first, they also start to collect into the pile. This
behavior is due to a combination of forces, with perhaps the most consequential being the
dissipation, or contact damping force, especially after the first collision with the substrate.
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Figure 3.17: Successive frames from a simulation of particles deposited from the first example.
The particles are allowed to slowly spread out as there are no sidewall boundary conditions
applied in this case.
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Figure 3.18: Top down view of two separate trials with a) more attractive near-field forces
and b) stronger repulsive near-field forces. The particles are more spread out with larger
white gaps seen in panel b).

This force defined in Equation 3.17 is proportional to the normal velocity of the particle.
Just before the first particles contact the substrate, they will have a relatively high normal
velocity, so this dissipation will be higher than in any subsequent collisions. In the first
example shown in Figure 3.17, the particles remained in contact with the substrate after
collisions, but the behavior changed when adjusted the parameters of the model. In a
simulation with a lower damping coefficient ccd, the particles have more elastic collisions
with the substrate.

Now this dissipation is not the only force involved with how the particles collide with the
substrate. The behavior is ultimately due to a complex combination of many forces involved
including the direct contact forces (proportional to the interpenetration of the particles), the
Lorentz force from the external electric field, and any bonding or near-field interactions with
other particles in addition to the dissipation. The complex interplay between all of these
forces leads to the many different possible particle deposit structures. When exploring the
parameter spaces to investigate these behaviors, I was also limited by the stability of my
time stepping scheme. For instance, if the dissipation parameter is not high enough, particles
may have so much acceleration away from the contact point that they diverge and bounce
to infinity. This can also occur in situations where the contact compliance parameters are
high, essentially resulting in very high forces when particles are in contact with each other
and the substrate. If the interpenetration distance is high enough, this can also further
increase the contact force such that they diverge. To limit this, I also had to be careful
with selecting small enough time steps so the particles in contact didn’t have too large of
interpenetration distances during contact. My general strategy during development was to
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use a smaller time step to make sure particle motion was stable and the particles were able
to form a deposit. Then I could slowly increase that time step size in subsequent runs of the
simulation to minimize the runtime for a particular set of process parameters. This was a
very manual process, and in the future could be addressed with a different approach to time
stepping, which I will discuss further below in the future directions for this research section.
However, due to the nature of these particles having many collisions over the course of a
simulation, I continued to use this brute force approach to determining time step parameters
in my examples.

The next observation from this first example is we see that the particles are able to
spread out and settle in the z direction so that most particles are touching the substrate, or
only forming a few layers above it. This is helpful to see how large particles might fall in
a pile when unconstrained, but I also wanted to use this framework to study the structure
of deposits that could have many layers. To do that I employed the periodic boundary
conditions detailed in the section above. This led into my next example, which used the
same model parameters as the first, but now checks conditions when particles are near the
sidewalls of the domain. The simulation was carried over a final time of tf = 0.15s to allow
the particles to settle. The periodic boundary conditions allow particles near one of the
sides to interact with particles on the other side as if they were adjacent. Frames from this
example simulation are shown in Figure 3.19.

In Figure 3.19, the particles are first generated in a rectangular domain using the se-
quentially random non-overlapping position algorithm described previously in this chapter
as shown in the upper left panel. The grey grids show the bounding area of my domain.
Next in the upper right panel, the lower particles contact the substrate where they start to
build up the layers in the middle left panel. They continue to fall in the middle right panel
and settle in the bottom panel. I used the periodic boundary conditions to get more layers
in the final deposit shown in the bottom panel of Figure 3.19 than in the deposit from the
first example shown in Figure 3.17. When watching the animation of this simulation made of
many more frames than shown here, I observed particles near one edge sometimes disappear
and then reappear on the opposite edge. This behavior indicated that the periodic boundary
conditions were working as intended, and that sometimes as a deposit is settling, particles
on intermediate layer could shift their position.

Now to investigate the multiple layers, I used the coordination number as defined in
Equation 3.16 to see how it changes as the particles deposit. Figure 3.20 shows the final
deposit in panel a) with a plot of the average coordination number over time in panel b).

As seen in the right panel of Figure 3.20, the average coordination number starts low as
the particles are initially not within the RCN parameter and counted as nearest neighbors.
As the particles fall, they begin to make contact and the average CN starts to increase as
more and more particles integrate into the deposit. Near the t = 0.9s mark, the average
CN starts to level off as the particles have been driven to join the deposit and are close
enough to be counted as nearest neighbors. The particles continue to settle for the rest of
the simulation as they shift slightly and the average CN remains fairly steady. This matches
the behavior I expected to see well, so this was a positive outcome for the example.
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Figure 3.19: Successive frames from a simulation of particles deposited from the second
example. The particles are stack up and are contained to the rectangular domain because
of the applied periodic boundary conditions.
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Figure 3.20: a) Final deposit from the second example and b) the corresponding average
coordination number vs time throughout the simulation showing an increase as the particles
settle near one another.

During development of the model framework, I also tested using solid sidewalls such as
in a situation AM with powder bed. These tests showed that my model framework could
be used for other applications. In these particular examples, I was focusing more on using
the periodic boundary conditions to represent a subsection of the domain. In the future,
this framework could be used for full-scale simulations for another application such as the
particles in a powder bed, but the high number of particles will still be computationally
expensive. Those costs can be addressed with modifications to the simulation framework I
discuss further below, or larger computing resources.

The next example I present builds upon the last two, but adds in the use of the variable
particle radius. For this example, I investigated how varying the particle radius may effect
the overall deposit. This again used periodic boundary conditions like employed in the second
example, and used basically the same parameters as the first example. For the simulation
shown in Figure 3.21, the mean radius is R̄p = 0.05m and the variation parameter ↵rad = 0.2
and the deposition is simulated for tf = 0.5s. One more addition was made for these
figures, as the color of the particle now represents the coordination number of that particle
at the current frame. This is a useful visual aid for quickly seeing which particles have more
neighbors.

Starting with the top left panel, the initialized particles show a variation in the particle
sizes, as some are small and some are large. The color of the particles also indicates the
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Figure 3.21: Successive frames from a deposit with variable radius. The color bar indicates
the coordination number of the particle.
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particles all have the minimum number of nearest neighbors (zero), which makes sense as
they are generated to be non-intersecting. There is always a small chance that the particles
may be extremely close while not intersecting, but none are close enough to be added as
a nearest neighbor for the coordination number. The next panel in the upper right shows
the particles falling and starting to form the deposit on the substrate. The colors changing
indicate the deposited particles have higher coordination numbers than those still being
driven towards the surface. The third panel in the lower left has almost all of the particles
landed in the deposit, before seeing them fully settled in the last bottom right panel. In the
third panel, I see several of the top particles with a purple or magenta color, and then in
the last panel they have mostly changed to blue. This indicates that with these parameters,
the particles will settle into spaces that bring them closer to the neighboring particles as the
driving Lorentz force combined with the inter-particle near-field and contact forces result in
the final structure.

Then move towards describing zoomed in figure 3.22- more details final deposit and
comment on the slightly higher average CN

I show a more zoomed in view of the final panel in Figure 3.22. Panel a) shows the
deposit in more detail while panel b) shows a plot of the average coordination number over
time of the deposit.

Figure 3.22: a) Zoomed in image of the final frame from the third example deposit with
color indicating the coordination number of the particle. b) Plot of average coordination
over time for this deposit.

With the addition of the variable radius and the color, I can make a few new observations
compared to the second example. First it can be seen that the majority of particles appear
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to have a coordination number around 8 � 12 in the green and teal range. These particles
are mostly in the middle layers as they are in contact with the most neighbors above and
below them. I also note that a few of the particles are in the yellow range, with coordination
numbers around 12 � 16. These few particles are also in the inner layers, but also appear
to be larger in diameter. This slightly larger diameter Those that are visible on the outer
edges of the deposit are interacting with the particles nearest them as well as particles on the
opposite edge due to the periodic boundary conditions. As expected, I also see more particles
on the top and bottom layers with lower coordination numbers. It also appears that smaller
particles are able to settle further down in the deposit than larger ones. This behavior can
also be a potential cause of the apparent increase in average coordination number, as the
smaller particles may be able to settle in contact around larger particles that will then have
higher coordination numbers as opposed to the case with uniform particle radius.

In summary, these several examples showed the capabilities of my current model frame-
work to investigate deposits. The first example looked at uniform particles depositing on
a flat substrate with no sidewalls and being able to spread out. I briefly looked into the
qualitative effect of the near-field forces, noting an observable increase in space between
particles as the parameters were adjusted. The second example showed the effect of the
periodic boundary conditions, which led to more capabilities in increasing deposition layers
while maintaining the same number of particles. Essentially representing a small area or
representative volume element of the deposit domain, I used the coordination number as a
way to investigate how the particles were settling over time. This behavior was further ex-
plored in the third example where I added variation to the particle radius and observed how
that effected the deposit. These examples are the preliminary capabilities of the modeling
framework, and future directions for modifications and improvements are discussed next.

3.4 Future Directions for Research

So far I’ve shown some preliminary examples of the capabilities of my simulation framework,
but there are several ways in which this framework can be improved and several studies that
would be immediate extensions of continuing research interest. The initial improvements to
the simulation framework are more related to model efficiency, as one of the main goals of
this project was to maximize speed. The future studies are also further explorations into the
one of the original motivating applications of this project - simulating deposits created with
EPD.

Simulation Framework Improvements

Currently, I have implemented my simulation framework in Python in a simple method
which is helpful for clarity for the user, but not necessarily the most efficient. One of
the main bottlenecks of my current implementation is in the pairwise calculations used for
determining distance and applying the contact or near-field forces. For simplicity, I currently
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have the simulation set up to run in two for loops which checks each particle against every
other particle, but this becomes an O(N2) problem, which does not scale as well with large
numbers of particles. For my simulations, I tested and debugged the code with smaller
numbers of particles, and then expanded them for the examples presented above. Running
these simulations on my laptop, with the order of 105 or 106 time steps would take around
6 � 8 hours. This was further improved by the implementation of Numba, a just-in-time
compiler for Python which converts the functions written in Python to a machine code
version that runs more quickly [31] on my laptop’s CPU. Using Numba to compile my
functions for force computations sped up my simulations significantly, bringing it down to
1.5� 2.5 hours for a simulation with Np = 1000 particles. Now this is quite an improvement
for the current conditions, but while testing the simulation with parameters similar to the
EPD case, I found that I need to use a much smaller time step size for stability with the
smaller particles. This will inevitably increase the total runtime, even with limiting the
number of particles to Np = 1000. However, this current runtime for particle simulations
on a laptop is still tractable for many applications as opposed to using models that require
more complex computational resources like those running LAMMPS as presented by Giera
et al. [22] [23].

There are several avenues I could take to work on increasing the efficiency so the number
of particles can be increased while limiting the increase to computational cost and runtime.
One method would be to use Verlet Lists, possibly in a combination with cell lists or “binning”.
Verlet lists essentially sweep through all particles and make a list of nearest neighbors for each
particle. Then, when running force calculations, the loop checking for inter-particle forces
only checks for particles on each list, as opposed to the full number of particles. As particles
move through the simulation, these Verlet lists will need to be updated to maintain accuracy,
but they present a big upside since the O(N2) operation is not being performed every single
time step [51]. Cell lists or “binning” is a technique in which the domain is broken down
geometrically into “bins”, and only particles in neighboring bins are checked for inter-particle
interactions. This is graphically shown Figure 3.23 where the particle of interest resides
in the red bordered neighborhood and the adjacent green bordered neighborhoods will be
checked for interactions. Many DEM simulations utilize Verlet lists and/or “binning” and
when implemented they can reduce the operation from order O(N2) to O(N) [21][45][51].

Another improvement would be to utilize parallelization to spread out computations on
the particles. In my case, I just used one process to run all computations in the simulation,
most laptops now have multiple processors and those can be used to run separate computa-
tions in parallel. Using Python’s multiprocessing package, calculations of different forces or
processes computing forces on all particles in different bins could be turned into individual
subprocesses that are run on different processors [40].

One other potential improvement to my framework would be to implement an adaptive
time stepping scheme with an implicit solution method similar to the one used by Zohdi [66].
In my current simulation, I have used a trapezoidal time stepping scheme, but stayed on
the explicit side, utilizing only the Forward Euler method so far. As mentioned previously,
this requires small time steps to maintain system stability, and since a goal of this is to
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Figure 3.23: Graphical representation of the cell list, or “binning” algorithm from Rokhlin
[51].

reduce runtime, a potential method to improve total runtime would be to investigate implicit
methods as well. These methods are generally more stable and can use a larger time step,
but require iterations within a time step to converge on a solution. Therefore, there is a
trade-off between the runtime saved by increasing the time step and a potential increase due
to iterating. Studies with this framework would need to be tested to see how those trade-offs
work out for these particular applications.

Future Studies with EPD

Studying colloidal depositions via EPD was one of the main applications of interest to mo-
tivate this work, so performing more studies of that application would be the immediate
direction for future studies. In the model presented by Giera et al. using their implemen-
tation in LAMMPS, they performed studies on deposition by varying the Péclet number
and the debye length �D [23], which essentially varies the near-field interactions of their
particles. These studies can be similarly performed using my simulation framework on a
laptop by varying the field strength E to vary a simulation’s Pe, and by varying �D as well
as the near-field parameters, the ↵’s and �’s to study the effect of the near-field forces. In
their studies, Giera et al. observed trends in the relative order of the deposits which are
summarized in Figure 3.24.

Qualitatively, the first trend seen in Figure 3.24 is a decrease in relative order of the
deposit as Péclet number increases due to a higher driving force from the external electric
field forcing particles to settle closer together and in a more amorphous deposit. The next
trend shows that for lower Pe, there maybe an ideal ratio of a

�D
, or particle radius to Debye

length, for which order is increased and can potentially be maximized. This trend was seen
to some extent for the range of Pe = 26.5�214, and not really seen for the higher simulations
with Pe = 429 and 858. This indicates an interplay of the attractive and repulsive near-field
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Figure 3.24: Plot of relative order Nordered
N vs Debye Length �D for simulations with different

Péclet numbers from Giera et al. [23].

forces may be a defining factor in the relative order of deposits with Péclet numbers that are
low enough. This is an immediate direction of interest for future trials with my simulation
framework to see if similar trends are seen with a simpler implementation that can run on a
laptop.

3.5 Summary and Conclusions

This chapter discussed the simulation framework I used to study field-driven AM processes.
I first talk about the details of my DEM implementation in Python, including the problem
overview, details about the assumptions and physics accounted for, and three sets of veri-
fication and validation studies performed using my framework. The sets of studies started
with the simple diffusion case, then moved on to investigate electrophoretic velocity studies.
Finding good agreement with the analytical values in those first two sets of studies, I then
moved to the third set of studies of particle deposition. Using several numerical examples,
I explored the behavior of particles depositing under process parameters similar to electro-
spray deposition on a flat substrate when allowed to spread and when constrained by periodic
boundary conditions so they would deposit in multiple layers. Adding in variable particle
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radii, I also explored the effect of a potentially more realistic deposit where the particles are
not all a perfectly uniform size.

These studies showed the current capabilities of my simulation framework that can sim-
ulate a particle deposit and then be used to analyze the results qualitatively by inspection
and quantitatively by looking at the coordination number of particles as a measure of rel-
ative order in a deposit. Finally I discuss several future expansions and future directions
for research opportunities with this simulation framework including more exploration into
deposits created with EPD. This simulation framework can eventually be used to aid in
process optimization in conjunction with experiments, which I discuss next.
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Chapter 4

Particle Tracking Studies Towards
Enhanced Understanding of EPD

This chapter will discuss the preliminary experimental work performed to enhance under-
standing of the EPD process which highlights an opportunity for further studies of this
application. Quantitative data in the form of particle trajectories can also be used to val-
idate and verify simulations of the EPD process like those discussed in Chapters 2 and 3,
further advancing those tools for process understanding and optimization. The experimental
work here was done at the Lawrence Livermore National Laboratory, within the experimen-
tal facilities of the Materials Engineering Division and the Center for Engineered Materials
and Manufacturing. The work presented in this chapter could not have been done without
all of the mentoring and equipment training and expertise of the scientists there, and for
that I will always be grateful.

4.1 Motivation

As mentioned earlier in Chapter 2, most of the development and studies of EPD have been
performed ex situ. These studies have investigated the kinematics of particle depositions
under EPD through activities such as measuring deposited mass at different time instances
or removing samples from different stages of deposition to investigate the deposit structure
via SEM imaging [19]. While these methods are useful for an initial understanding of how
particles deposit and what structures may form, the details of how particles interact with the
substrate and with each other during deposition and this underlying effect on the structure
are not well understood. Specifically, the mechanisms behind the empirically observed f -
factor described by Hamaker [25] are not able to be fully observed with the ex-situ techniques.

To gain a better understanding of those particle-particle and particle-substrate interac-
tions, in-situ observation would provide further insight beyond that provided by the ex-situ
counterparts. The ability to observe and track particles as they deposit will provide that
insight to fill some of the gaps in knowledge of particle depositions under EPD. To the best
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of my knowledge, there has not yet been published work of 3D in-situ observation of EPD,
and the following presented work will give details on the early steps taken towards that goal.

Objectives/Goals
The overall goal of this work is to create and a platform that can be used to observe particles
deposited via EPD in-situ. The observations will rely on particle tracking methods to pro-
vide trajectories of those particles throughout the process. These trajectories can then be
studied to further understand the relevant physics that drive particles to deposit and form
the structures we see as an end product. With real-time observations of these particle depo-
sitions, this platform can be used to provide fundamental insight into the process dynamics,
as well as be used as a tool for process optimization when combined with simulations. The
particle trajectories under different process parameters can be used in conjunction with sim-
ulations like the one described in the bulk of this work and particularly Chapter 3. Better
informed simulation tools can then guide experiments towards parameters that produced
desired results, such as a more crystalline structure. Experimentally verified simulations will
be particularly helpful as the EPD process is evaluated and further developed to produce
various components with desired structures. In summary, the goals of this work are:

1. Provide a platform to study in-situ 3D trajectories of particles during EPD under a
variety of experimental parameters.

2. Provide particle trajectories that can be compared to and inform simulations to more
accurately capture the complex behavior of particles during EPD for future process
optimization.

Due to time constraints and the onset of the COVID-19 pandemic, the full realization
of these goals was not achieved, but this preliminary work can serve as a starting point for
further investigations.

4.2 Methods

This section discusses the experimental methods used to perform in situ observations of EPD
on a particle tracking system using fluorescence microscopy.

Fluorescence Microscopy
To visualize the particles, a fluorescence microscope (Zeiss Axiovert 200) was used. In this
technique, fluorescent tagged particles were illuminated with a specific wavelength of light
which then emit a different wavelength of light that will be imaged. The details of my
specific fluorescent particles are described below. A fluorescence microscope is similar to a
conventional light microscope but also contains filters to allow specific wavelengths of light
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to pass through the lens [11]. These filters allow for the higher energy light (the excitation
source) to reach the target particles and the fluoresced lower energy light (the emitted light)
from the particles to be viewed by the detector. The setup used in this work is detailed further
below, but essentially required a high energy light source, the fluorescence microscope shown
in Figure 4.1 with filters for excitation and emitted light, and the detector which in this case
was a CCD camera used to record the images.

Figure 4.1: Fluorescence microscope used for particle tracking experiments.

For this set of experiments, the particles of interested were fluorescently tagged with
Fluorescein isothiocyanate (FITC), a common fluorescent dye that is excited by blue light
with a wavelength of 495nm and emits green light with a wavelength of 519nm.

Fluorescent microscopy was chosen for this application for several reasons. First, the
high-contrast images aid in preparing the images for analysis using the particle tracking
software as the particles will stand out well against the background. The specific software
I used for particle tracking, GDPTlab, requires darkfield images, or images with a dark
background and the particles highlighted as the bright objects, so this was setup directly for
that workflow. Secondly, the particle sizes of interest in EPD can range down into the 100 nm
range as mentioned in Chapter 2, but the light emitted will be a larger perceivable object.
This particle size range is near or below the diffraction limit of most conventional light
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microscopes, where they will not easily be able to resolve the particle [14]. With fluorescent
particles, the image is of the emitted light that forms an Airy disk, which is larger than the
particle. This Airy disk pattern in the particle tracking images can also provide information
about location of the center of the particles that can be used to compute the position with
sub-pixel precision [15]. An example of the Airy disks observed with my particles can be
seen in Figure 4.3.

Another method of viewing particles of this size is confocal microscopy. In this technique,
the resulting image can be observed at a higher resolution, but is limited to the focal plane
that the microscope is focused on. To change the focal plane location, the objective lens or
sample stage must be moved, which limits the ability to quickly see objects as they move into
and out of the focal plane. As the main focus of this work is to observe particles depositing
on a substrate via EPD, this method will be too slow to resolve particles that may be moving
on the order of 100µm

s . Therefore, fluorescence microscopy with its ability to image the light
emitted by small particles used in conjunction with the particle tracking technique detailed
below to track particle positions in 3 dimensions is the chosen method.

Particle Tracking - General Defocusing Particle Tracking
As mentioned in the previous sections, the goal of this experimental work is to track particles
depositing on a substrate via EPD. To achieve that goal, the small particles are imaged using
a fluorescence microscope and the trajectories or positions over time of the particles are
measured using a particle tracking technique, namely General Defocusing Particle Tracking
(GDPT) developed by Barnkob et al. [3] [5]. The GDPT technique is a method of particle
tracking that can resolve positions in 3 dimensions using a single camera setup. The technique
is part of the Particle Tracking Velocimetry (PTV) family of methods and has been reported
to be capable of tracking particles moving up to 1m

s with the single camera [49] [3]. For
motion in the image plane (x, y), GDPT uses standard particle tracking algorithms to
resolve the positions of particles. To gain information in the depth direction, GDPT relies
on a “calibration stack” of images shown in Figure 4.2. The images are taken at different z

positions to record what the particles look like at different levels of defocus. A cylindrical
lens is added to the optical train of the microscope to break image symmetry around the
focal plane, which provides a unique image for each z position in the calibration stack. The
images for the calibration stack are taken before making a particle tracking measurement, as
they are taken by moving the objective or stage to scan through the z direction. An example
calibration image from the first set of trials is shown below in Figure 4.3. That trial used
500 nm FITC labeled silica particles. As can be seen with the scale bar, the light emitted
from the fluorescing particles can be captured in larger area than if just the particle itself
was imaged.

Once the calibration stack images are ready, GDPT software can then perform a particle
tracking measurement by analyzing a time-series of images. In subsequent frames of images,
particles will be identified and tracked as they move. The software uses standard particle
tracking algorithms to track position in x and y, while the z position is determined by
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Figure 4.2: Schematic of the GDPT setup and process. Image adapted from [3].

comparing the current image of the particle with the calibration stack. A correlation value is
computed for each calibration image, and the maximum correlation will provide the estimate
for the z position. Finally, the time series of particle positions is output as a result of the
measurement.

GDPT is shown to be an advantageous technique for this application for several reasons,
chiefly among them being the singular camera setup. The single camera setup helps with
experimental setup cost and is simpler with limited space, making GDPT more accessible
for a wider group of experimentalists. Particularly for tracking particles depositing via EPD,
the focus is mostly on the x� y plane, but also still interested in motion in the z direction.
Since the deposited films are mostly thin in the z direction and we can still observe the
kinematics of the particles in that thin region, the extra complication of adding multiple
cameras is unnecessary.

The software component of GDPT, GDPTlab is available as a “black box” package for
free from the developers [3], [13]. While it is unfortunately not truly open source, there is
good documentation and tutorials so understanding how to use the software is convenient.
GDPTlab is implemented in Matlab and provides a Graphical User Interface for the user. A
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Figure 4.3: Example calibration image taken for 3D GDPT analysis of 500nm silica particles.
The Airy disk from the light emitted is larger than just the particle size.

more recent iteration of the software, DefocusTracker, has become available and continues to
be developed by the team of Barnkob et al. [4]. The analysis below used the earlier version,
GDPTlab.

4.3 Verification Experiments and Results

Using the techniques described above, the experimental work progressed to construct the
particle tracking platform and perform preliminary verification experiments. Starting with
the simplest case of particle diffusion, followed by observations of particles deposited under
EPD.

4.3.1 Diffusion Experiments in 2D
The first experiments conducted were 2D experiments to begin to develop the workflow for
the particle tracking experiments. As a first trial, the system was used to track particles in
the simplest configuration: diffusing in a still fluid.

The goal of these experiments is to use the particle tracking setup to track diffusing
particles in 2D. Particle trajectories are analyzed using Mean-squared displacement and used
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to compute the diffusion coefficient. The experimental diffusion coefficient is then compared
to the result from the ideal Stokes-Einstein relation as one verification step of the particle
tracking setup.

Setup on microscope, details of particles and solution

For the first set of diffusion experiments, the system setup was fairly simple. In this case
we used the fluorescence microscope, a Zeiss Axiovert 200 with a Zeiss LD Achroplan 63x/
0.75 Korr Ph2 objective. The objective lens had a moderately high numerical aperture (NA)
of 0.75 to allow a higher intensity of observed light. As mentioned in the review article by
Lichtman and Conchello, the intensity of observed light in a fluorescence microscope system
is proportional to (NA)4[34]. Higher NA objective lenses such as those designed to be used
with oil instead of air could further improve the intensity of light, but for this first test the
air objective was sufficient. The diffusing particles are suspended in fluid, water for my case,
and are imaged by using a pipette to add a drop to a cleaned glass microscope slide. The
procedure for cleaning the slides is noted in Appendix A. A basic schematic of this setup is
seen below in Figure 4.4. The microscope used a Lumen Dynamics X-Cite 120Q Fluorescent
Light Source and captured particle images with an Andor Zyla 5.5 CMOS camera. The
microscope was also fit with a Zeiss FITC filter cube set to provide the proper wavelength of
excitation light (495m) as well as allow the emitted light (519nm) to leave the sample and
be detected by the camera.

Figure 4.4: Schematic of diffusion experimental setup. The particles are suspended in water
and a drop is imaged on the microscope to observe the diffusing particles.

The particles used for these experiments were 500nm diameter FITC-labeled silica par-
ticles. The particles were ordered from Bangs Laboratories and are suspended in water at a
percent concentration of 1% by volume. For imaging, I wanted to start with less particles
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so the images would only be tracking a few particles at a time. Aiming to start with images
where I could see 5 or less particles in the frame worked well for my initial tests of the work-
flow. For the imaging suspension, I created a new suspension of the particles and deionized
(DI) water. Adding 50 µl of the particle suspension to 1 ml of water resulted in suspension
of approximately 0.05% by volume where images with only a few particles in the frame could
be taken. I stored the suspensions with FITC-labeled particles in amber vials to keep them
in the dark to extend the life of the fluorophores and prevent early photobleaching, or loss
of fluorescence [34]. Before imaging the particles, I wanted to make sure they were properly
suspended and dispersed in the solution. Particle clumping or agglomeration became an
issue in some of the trials, especially if the suspensions had been sitting in storage for a
while between runs. To prevent this, I first mixed the vial of suspension on a vortex mixer
for a few seconds and then placed it in a sonicator (Vevor Industrial Ultrasonic Cleaner) for
1 hour to break up any clumps of particles before imaging.

With the microscope set up for fluorescence imaging, the glass slides cleaned and prepped,
and the imaging suspension mixed, the data collection could begin. I used a 0.5 mL transfer
pipette to add a few drops of suspension onto the cleaned glass slide on the microscope
stage. Finally, I focused the microscope at a plane where I could see a particle or a set
of particles diffusing. I started with the power source’s shutter on the lowest setting to
limit the illumination to the lowest level while searching for particles and closed the shutter
completely when not needed - this delayed photobleaching, or a loss of fluorescent signal, of
the fluorescent particles [34]. With this concentration of particles, it sometimes took a bit of
time to find a good viewing window with several particles, but I would generally start with
a lower magnification objective (20x) to find a good region before switching to the higher
objective (63x) when the particles were located.

Once the particles were in the view window of the microscope, I captured their images
with the CCD camera. The Andor Zyla 5.5 camera was attached to the microscope and was
controlled using Andor Solis software on a PC [2]. I used Andor Solis to view and save the
images observed by the camera. Once the image in the computer preview was located on
particles well, I opened the light source shutter all the way to maximize the excitation light
and the emitted light for the image. The software has an option to automatically adjust
contrast that I was able to use most of the time, but would sometimes need to manually
adjust contrast and other acquisition settings like exposure time to get a clear image. If
the particles were dim, increasing the exposure time would allow more light to be captured
in an image, but also limited frame rate. Since these experiments were trying to capture
particle diffusion, the goal was to take an acquisition over time with enough frames to capture
Brownian motion. In Andor Solis, this movie acquisition was called a kinetic series, and for
that I could determine exposure time, or alternatively frame rate, and the total duration.
Frame rate and total duration of the image acquisition were limited by the aforementioned
need to allow enough light into the camera for a good image (exposure time) as well as the
RAM available to the computer. Due to these constraints, I found a good combination for
my setup to be an exposure time of 0.1 seconds, or a frame rate of 10 frames per second,
and a total duration of 13 seconds. This resulted in 130 frames in each acquisition. Finally
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each frame of the video was saved as a .tiff file to save the highest resolution as possible for
each run of diffusion observations.

In summary, the experimental procedure was as follows:

1. Clean glass slides, prepare imaging suspension, turn on microscope and light source.

2. Use transfer pipette to add 2-3 drops of suspension to the glass slide.

3. Set light source shutter to lowest setting and use eyepieces to locate particles.

4. Preview camera image in Andor Solis with acquisition settings for kinetic series.

5. Open light source shutter all the way, adjust contrast as needed, and take acquisition.

6. Close light source shutter, save acquisition data, and prepare to repeat from Step 3 as
needed to take more data.

I used the basic procedure above throughout the development of the system and workflow
for imaging fluorescent particles. The data discussed below is the culmination of efforts in
determining system parameters that provided useful raw images. Details on image processing
for analysis will also be detailed in the section below. As mentioned above, the video of each
“run” was typically set to be 130 frames over 13 seconds. Saved in this way, the full .tiff
files were 5.29 Mb per image, which results in a total of 687 Mb per run. Throughout the
development and data gathering stages of this project, many iterations were recorded so this
created quite a large amount of data. The challenges large amounts of data were:

1. Data storage

2. Data transfer/communication

The first challenge, storage, was more easily dealt with by both having access to a large
hard drive and by deleting old files after they’ve been used for analysis. The second challenge
was determined by the communication limits of the camera and computer. Even though the
camera could capture the video in real-time, the computer still required several minutes to
save the files corresponding to 13 seconds of recording. This time delay was factored into
planning experiments as the camera had to save all files to the computer before taking a new
recording. For these experiments with the droplets, time between recordings contributed to
an increase in particle suspensions used because over time the suspension would begin to
evaporate on the slide. Planning accordingly for these challenges and limitations will aid in
future experiments.

Analysis - Mean Squared Displacement and Stokes-Einstein Relation

Using the experimental setup described above, we now have a timeseries of images of diffusing
particles. The end goal of this analysis is to compare the diffusion coefficients measured in
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the experiments with the diffusion coefficient analytically described by the Stokes-Einstein
relation. This analysis is similar to the diffusion study analysis described earlier in Chapter
3 with the main difference being the source of the position data. The next step in analysis
is making a GDPT measurement to extract particle positions over time and then using the
Mean Squared Displacement (MSD) to calculate the diffusion coefficient.

To make a GDPT measurement, I started with the raw timeseries images from the experi-
ments. Depending on the conditions of the images including contrast, noise, and background
(lightfield or darkfield), they may need some preprocessing before using GDPTlab [13]. In
early trials, I used non-fluorescing particles and took brightfield images and for these trials
needed to invert the images for use in GDPTlab. To invert the images I used the “invert”
function in ImageJ [50]. The results shown below were taken with fluorescent particles. For
the fluorescent particles, the background is already dark so there was no need to invert the
images. If there was noise present, ImageJ was helpful again as I could use the thresholding
function as needed to accentuate the difference between particles and the background. By
setting a threshold value, the image could essentially increase the contrast between pixels
that were part of a particle and those that were not. I would use this in particular situations
where the Airy disk of a particle started to blend in with the background, possibly some-
times caused by extra background light present in the image. Finally if excessive noise was
present in the image, I used a median filter to smooth out the changes in pixel value in the
image. For most cases a 3x3 median filter was sufficient. GDPTlab also had some image
processing options, but ImageJ had a more expansive set so I chose to use that, especially
when developing the workflow to see how different options worked when experimenting with
the GDPTlab inputs.

Now with a set of processed images, I could make the GDPT measurement using GDPT-
lab. For this first set of experiments I simply used the 2D measurement function to track
positions in the x� y plane. I started trials with calibration images and using the 3D mea-
surement function, but unfortunately due to time constraints was unable to fully develop
that process and discuss it here. That will be discussed further in the future directions sec-
tion. The input for the measurement was the timeseries of preprocessed images and scaling
values for the dimensions. I used a microscope stage micrometer, essentially a microscope
slide with a ruler etched onto the surface, to determine the scaling values in units of length
per pixel for calibrating the x � y dimensions. During development of this process, I used
image sets taken with and without the cylindrical lens in the optics train. For images with-
out the cylindrical lens, the calibration value was symmetric in both directions, so the value
of length units per pixel was the same. For the case with the cylindrical lens, the values are
asymmetric and were measured accordingly. With those loaded into the GDPTlab interface,
it then performs the calculations and outputs the trajectories over time in the form of a Mat-
lab object that contains the positions and displacements of the particles in the timeseries as
well as a graphical summary.

An example of a particle image and the graphical outputs from GDPTlab are shown in
Figure 4.5 below. In this example measurement, 3 particles were detected and their positions
in time were plotted as a point cloud in the top figure (shown on a 3D grid by default even
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though the measurement was 2D). The bottom left figure shows the displacements in the x

and y directions. With the default scaling set by GDPTlab, we can see that the displacements
are approximately symmetic in the x and y directions as we would expect. The bottom right
figure shows the displacements in the x and z directions, with the z direction showing no
displacement since it is a 2D study.

Figure 4.5: a) Example of image from timeseries with detected particles circled in red.
b) Graphical summary output from GDPTlab showing positions and dispacements of the
particles from the measurement.

After performing the GDPT measurement with GDPTlab, I use the position over time
data to compute the MSD similar to the method described in Chapter 3. Recall, the MSD
can be related to the diffusion coefficient by Equation 3.30 [8]:

h�r2(t)i = 2nDt

where hi is the ensemble average, �r is the displacement of the particle, n is the number
of dimensions (i.e. 1, 2, or 3), D is the diffusion coefficient, and t is time. The trials with
results reported below each had 2 or 3 particles tracked in the timeseries of images. Since the
position data from GDPTlab was output in Matlab, I also wrote my own code to implement
my calculations for the diffusion coefficient in Matlab [36]. I used the position data gained
from the GDPT measurement to compute the displacements at different instances in time for
the ensemble average which also averages the displacements across multiple particles. Then
I computed the MSD and plotted it against time, similar to the plots shown in Chapter 3.
I used a polynomial fit to determine the fit line slope and compute the resulting diffusion
coefficient following Equation 3.30

To verify these results, I compared the experimentally derived diffusion coefficient with
that computed using the Stokes-Einstein relation. Again, this follows the analysis performed
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in Chapter 3. Recall from Equation 3.31, the Stokes-Einstein Relation as derived by Albert
Einstein defines the diffusion coefficient, D to be [53]:

D =
kBT

6⇡⌘r

where kB is the Boltzmann constant, T is the temperature, ⌘ is the absolute viscosity, and r

is the particle radius. Using this definition, I directly compute the diffusion coefficient and
can then compare it to the experimental diffusion coefficient above. The overall analysis
workflow from capturing raw images to computing the diffusion coefficient is as follows and
can be seen in Figure 4.6 below.

1. Inspect particle images in timeseries and preprocess with ImageJ as needed.

2. Use GDPTlab to make a GDPT measurement and output particle trajectory data.

3. Compute the experimental diffusion coefficient using Equation 3.30. Code implemented
in Matlab.

4. Compute the analytical diffusion coefficient using Equation 3.31 and compare with D

computed found in previous step.

Results and Discussion

Using the methods described above, I first computed the analytical value of the diffusion
coefficient for my particle system that I later used for comparison. I then took several
particle diffusion videos and followed the workflow described above to compute the diffu-
sion coefficient from the experimental setup and compared them with the analytical value
computed from the Stokes-Einstein relation. Throughout the course of development, I took
many timeseries measurements for particles, but here I report the values for four trials. A
longer discussion of why I chose only four trials will be presented below. For the “expected”
analytical value, I used the following parameters with Equation 3.31:

• kB = 1.3806⇥ 10�23Nm
K for the Boltzmann constant,

• T = 293.15K since the suspension had been stored at room temperature,

• ⌘ = 0.001Ns
m2 as the room temperature viscosity of water, and

• r = 250nm for the radius of the particle

which resulted in an analytical diffusion coefficient of:

DAnalytical = 8.589⇥ 10�13 m
2

s
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Figure 4.6: General analysis workflow for diffusion experiments. a) Start with particle
images. b) Images loaded to GDPTlab - example of image from timeseries with tracks from
GDPTlab. c) Complete GDPT measurement to produce trajectories. d) Compute diffusion
coefficient from plot of MSD vs timestep size.

This result represented the model diffusion coefficient for our system. As an additional
point of comparison, I simulated the suspension parameters using my simulation framework
described in Chapter 3. Using the same parameters as described above when computing the
analytical value, and by averaging over 20 replicants, I found a mean simulation diffusion
coefficient of:

DSimulation = 8.741⇥ 10�13 m
2

s

which showed good agreement with the analytical expected result. The simulated value was
1.83% lower than the analytical value, well within any of the other percent differences listed
in the simulation diffusion results described earlier in Chapter 3.

Next I generated several diffusion timeseries and used GDPTlab and my Matlab code
mentioned in the previous section to compute the experimental values for the diffusion coef-
ficient. GDPTlab outputs particle coordinates in the individual dimensions, x and y in this
2D case, so I wrote my Matlab code to compute the MSD using Equation 3.30 three ways:

• 1D analysis in the x-direction: n = 1 with the displacement computed using the x

coordinates only
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• 1D analysis in the y-direction: n = 1 with the displacement computed using the y

coordinates only

• 2D analysis: n = 2 with the displacement computed using the x and y coordinates

and the results of the four trials are summarized below in Table 4.1.

Table 4.1: Experimental results of the diffusion coefficient from four separate trials.

Trial Dx (m2

s ) Dy (m2

s ) Dxy (m2

s )
1 4.605⇥ 10�13 5.673⇥ 10�13 3.709⇥ 10�13

2 4.554⇥ 10�13 8.478⇥ 10�13 4.699⇥ 10�13

3 7.275⇥ 10�13 6.905⇥ 10�13 4.985⇥ 10�13

4 6.651⇥ 10�13 8.840⇥ 10�13 5.965⇥ 10�13

With these being early results, we can see that there are several different avenues in which
we can interpret and analyze the data. Firstly, we notice all values are in the expected order
of magnitude, which was an optimistic result for setting up the particle tracking system
and working towards system and method verification. This shows that at least with my
first trials, I am in the ballpark for tracking particles in 2D. Some values were closer to the
expected analytical result than others, and all results, with the exception of the Dy from
Trial 4 were lower than the expected value. Another general observation to note is, especially
seen in Trials 1 and 3, that the diffusion coefficients in the x and y directions were relatively
close in magnitude, indicating there was roughly symmetric displacement in those directions.
This was graphically seen in the GDPTlab output plots for some trials as well such as the
one shown in Figure 4.5. This symmetric behavior is also an optimistic result as we expect
in true diffusion for the particle to be able to move, on average, the same in all directions.
Of course that result is assuming infinitely long timescales and pure diffusion of independent
particles in a totally quiescent fluid with no advective flow [53], which is not quite the exact
situation replicated in my setup. This symmetric behavior was unfortunately not seen in all
four of these trials to the same degree, with Trial 2 having the most significant difference
between the two directions.

One final general trend that can be seen in the results tabulated above is the difference
in the values for Dxy when compared to the 1D results within this same trials. One potential
cause could be compounding errors with computations from imaging to GDPTlab and finally
to my analysis code. This may be more of an issue with my Matlab code implementation.
The method for computing the MSD with 2D vs 1D was coded from scratch, so I may have
made an error when computing the displacements when inputting the arrays of coordinates
from GDPT lab for the 2D computation. Additional work in double checking the code is
the first thing on the list for future experiments if I continue this work. For the rest of the
discussion, I will be focusing mainly on analyzing the values presented for the 1D results.
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In general, with the exception of one result, the experimental diffusion coefficients were
lower in magnitude than the “expected” analytical value. This behavior has several potential
causes, and the first one I explored comes from the physical parameters that affect diffusion.
Looking at the definition of the diffusion coefficient from the Stokes-Einstein Relation in
Equation 3.31, we see that the particle and solution parameters can effect diffusion coefficient
are the particle radius r, temperature T , and solvent viscosity ⌘, which is also a function
of temperature. First investigating the size effect, as particle size increases, the diffusion
coefficient is reduced. The particles used in this trial were described as having a mean
diameter of 500nm, and to verify, I used a DLS particle size analyzer (Anton Parr Litesizer)
and then imaged a sample of the particles in a SEM for further investigation. The results
from both instruments can be seen in Figure 4.7 below.

Figure 4.7: Litesizer and SEM image results from investigating Silica particle size. a) Output
plot from the Litesizer showing size distributions from three successive runs. b) SEM image of
silica particles used for diffusion experiments. Small particulates around the main spherical
particles can be seen and may be contamination that affected the experimental diffusion
coefficient results.

First looking at the left panel of Figure 4.7, we see the distribution of particle size
from three separate successive runs. The mean diameters for the three runs were reported
to be 660.2nm, 668.0nm, and 672.2nm. The mean values were all fairly similar, but the
size measurement distributions looked different between the three runs. In all cases, we
see a mean higher than the expected value of 500nm as well as quite a wide, and skewed
distribution in the direction of larger diameter. This immediately led me to believe something
was off with my particle suspension, so I investigated further and imaged the particles with
a SEM. In the right panel, we can see the larger particles appear to be close in size to
the 500nm scale bar in the bottom right corner. However, we also see smaller particulates
that are mixed in with the larger particles. I do not concretely know the source of these
smaller particulates, but if they were present in my suspensions during the experiments that
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could have a significant effect. I hypothesized that these contaminants may be from when
I was mixing my solution and if they were sticking to the particles during the zeta sizer
measurements, this could potentially explain the increased mean size, as well as the spread
since the amount of small particles sticking to the larger ones most likely varied extremely
widely. The phenomenon of particle agglomeration in general will be discussed further below
as it was a common issue throughout my experiments. In addition to possibly explaining the
behavior of the size distributions in the Litesizer results, the presence of these contaminants
could also have had wider ranging effects on the diffusion experimental results. From my
fluorescent images, I cannot tell with certainty if the smaller particulates were present, but
we can explore the potential effect of an increased size of particle by revisiting the analytical
value calculation. Again using Equation 3.31, but replacing the original radius of 250nm
with the radius of the smallest mean particle size result from the Litesizer (330.1nm) we get
the result of:

DLargerParticle = 6.504⇥ 10�13m
2

s

which is closer to most of the results from Table 4.1. This is most certainly not the only
reason the results from the experiments are were different, but it does show the need for
several improvements in future experiments.

Immediately, one of the first steps I had planned to make was starting over with new
imaging solutions and re-verifying the quality of the suspensions with the Litesizer and
SEM before taking all new diffusion datasets. However, due to the onset of the COVID-19
pandemic as well as other time and funding constraints, I was unable to dedicate the time
to rerun the experiments with new suspensions.

As mentioned above, size was not the only possible factor contributing to the difference in
diffusion coefficient results. Temperature and viscosity were also potential factors based on
the definition of the diffusion coefficient from Equation 3.31. I did not verify these properties
with my own measurements like in my investigation of size, but those properties could both
be measured independently in future experiments. In these experiments they most likely
would not have varied as much as the effective particle size as the lab room where the
suspensions were stored and where the microscope timeseries images were taken were in a
building held around 20�C.

Another consideration when analyzing this data was the potential for hindered diffusion
due to the particles being near the glass slide. The Stokes-Einstein relation assumes pure
diffusion free from any wall affects [8], but if the particles are close enough to the surface,
their displacement can be affected in both the direction of the wall and those perpendicular
to it [17]. For this current study, the effect of the wall on the diffusion coefficient can be
described as:

Dxy(h)

D0
= 1� 9

16

a

h
+O

✓
a
3

h3

◆
(4.1)

where Dxy is the diffusion coefficient in the direction parallel to the wall, h is the distance from
the wall in the perpendicular (z) direction, D0 is the diffusion coefficient without accounting
for any effects from the wall, and a is the particle radius. As h grows larger, we see a reduced
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effect on the hindered diffusion. In my experiments I tried to choose particles far enough
above the surface of the glass slide, but did not have a quantitative rule of thumb in place
so some of the particles may have been closer to the wall. To see if this hindered diffusion
effect was responsible for the reduced diffusion coefficient I measured, I calculated the height
h above the glass slide the particles would need to be to have a diffusion coefficient averaged
from the Dx and Dy values with an assumed particle size of 500nm in diameter. Using
Equation 4.1 above, , neglecting the O

⇣
a3

h3

⌘
term for this discussion, I found the particles

would need to be 614nm above the surface of the glass slide to have as large of a reduction
on the diffusion coefficient. It is unlikely that any of the particles I images were this close
to the surface, however this hindered diffusion could still play a role in a smaller measured
diffusion coefficient.

To explore further explore this effect, we can see to make a 1% reduction in relative
diffusion coefficient Dxy(h)

D0
= 0.99, we get the ratio of a

h = 0.0178. In my system with
particles with radii of 250nm, this effect (1% relative reduction) could start to play a part
in my measurements if the particle height was less than 14µm from the glass slide. Some of
the particles imaged may have been within this threshold, and in future experiments I can
account for this factor by making sure to note the z position of the particles relative to the
glass surface either 1) factoring this height into the analysis of the experimental results when
comparing to the analytical value, or 2) deciding on a procedure where the particles imaged
are always chosen to be above a certain height to limit this effect. Option 2 above may
be a little more difficult when experiments are expanded to 3D as the Airy disk signature
from particles could be detected when the particle is below the image focal plane. For my
system, I found I could detect the emitted light from particles with GDPTlab around 60µm
above and below the focal plane, but that distance is system dependent and will need to be
considered in future experiments. In practice, a combination of both options could be used,
with the important practice of noting the z position of the focal plane relative to the glass
slide providing the necessary information to account for this effect.

One major consideration I have not yet addressed is the limited amount of data from these
experiments - not just the four reported trials and their diffusion coefficients, but also the
limits on images in the data sets (my setup reliably gave me 130 images to work with before
memory limits were reached). As I previously mentioned, I took many videos of particles, yet
I only reported four trial results. This was partially due to most of the time I had for these
experiments being dedicated to developing the setup for this round of experiments as well as
the EPD observations discussed more in the next sections and limited time to fine-tune my
methods specifically for this diffusion trials. To capture diffusion, I strove to find particles
in the suspension that appeared to be independently diffusing - specifically not too close to
other particles, but also close enough so that my images could capture multiple for averaging.
This meant that many videos I captured were not fully analyzed if those conditions were not
met for the entire duration, i.e. particles started to move closer together and agglomerate,
or I found a particle that started to drift in a particular direction as opposed to randomly
walk. The second example situation of particles advecting occurred often, and I observed
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them especially if I tried imaging anywhere near the edge or surface of the droplet. At the
edge, and especially if I had been imaging this particular drop for several trials, the water
would begin to evaporate and the particles suspended would start to advect towards that
edge. Several of the timeseries I took ended up containing situations like the above, so many
were not analyzed further. In future experiments, I might aim to change the setup from a
droplet to image the particle suspension in a larger volume that allowed for more locations
not affected by this advection. One option is the EPD cell used for the EPD observations
described below. A change like that would help me gather more timeseries in general, which
give me a more robust study of my setup’s capability to track particles. More data in general
will also be helpful in future studies, as the MSD is computed with the ensemble average,
which averages over particles and time increments. Both an increased number of particles,
such as in a more concentrated solution, and an increased number of time increments made
available by more images in a timeseries via either longer durations at the same framerate
or a higher framerate with a similar duration. Both would aid in improving the ability of
that ensemble average to more accurately compute the diffusion coefficient and would be
directions I looking into for future experiments.

In summary, this section described the preliminary results from my 2D diffusion ex-
periments. In this section, I reported results from four different trials and discussed several
factors that could explain why my experimental results diverged from the analytical expected
result. While these results showed that more work is necessary to verify this experimental
setup, I am motivated that the early results were in the right order of magnitude and that
these early trials resulted in many lessons learned that will be further discussed in the future
directions section below. Although work still remains to fully verify this setup, these early
results still showed progress towards the goals of making a particle tracking setup that can
observe EPD in action. The next set of experiments further adds to that progress.

4.3.2 Observation of Electrophoresis, EPD
While quantitative verification of setup was being completed with the diffusion experiments
mentioned above, I also wanted to move forward with EPD setup. This next set of experi-
ments was aimed at observing particles depositing via EPD in-situ.

The goal of these experiments is to observe deposition of particles under EPD. Using the
single camera setup as before, an EPD cell will be used to provide the electric field needed to
drive the electrophoresis and deposition of particles. The cell will be transparent allowing the
deposition to be captured on the camera for observation. In the future, experiments like this
could directly lead to particle tracking data in the form of trajectories of the particles as they
deposit. This trajectory data will be valuable in several aspects to the EPD field including
increasing understanding of some of the kinematics and phenomena specific to EPD as well
as helping validate and verify models seeking to capture the physics of EPD for optimization
and process development. These experiments did not quite get to that point, but this early
work can lead to more possibilities in the future. More details on future directions for this
research will be presented in the next section.
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EPD Cell and setup on microscope

For these experiments, I used the same basic setup on the inverted microscope as described
previously, but with EPD components added. The added EPD components included the
EPD cell and DC power source, a Keithley 2400 SourceMeter. Together they were integrated
on the microscope basically replacing the glass slides from the diffusion experiment setup.
The EPD cells were constructed as shown in the Figure 4.8 below. The cell is configured

Figure 4.8: Schematic of the EPD Cell used for observations of deposition. a) Top view of
the two slides used showing components. b) Side view of the cell assembled as it would look
when making an observation on the microscope.

like a sandwich with two 2”x3” glass slides as the bread. The bottom slide has an o-ring
adhered in place to form a reservoir for the particle suspension which also serves as a spacer
to separate the two slides. In this case I adhered the o-ring to the slide with a UV-cured
optical adhesive, but other adhesives could have been used. Both slides have one side with an
Indium Tin Oxide (ITO) coating which allows it to be electrically conductive while optically
transparent. When connected to the DC power source, these conductive faces will serve as
deposition electrode and the counter electrode. The o-ring was adhered to the ITO-coated
side of the bottom slide. Finally, for ease of making electrical connections, I attached a piece
of conductive copper tape to each slide for connecting to the DC power source. Together
this creates the transparent “cell” that can contain the particle imaging suspension as well as
allow EPD to occur while the camera can observe the particles in the direction of deposition.
The steps to create this device are also detailed in Appendix A.

For the microscope setup, this experiment was very similar to the diffusion trials above
with some minor changes. The main change was the addition of the DC power source and it’s
connection to the EPD cell for imaging. As seen in the Figure 4.9, I situated the EPD cell
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on the microscope stage such that the reservoir of particle suspension can be observed by the
objective microscope. I then connected the DC power source to the electrical leads created
by the copper tape to drive the electrophoresis of particles and the resulting deposition on
the electrode.

Figure 4.9: Schematic of the deposition experiment setup. EPD cell and power source are the
newly added components from the previous setup. a) Zoomed in cutaway view of particles
depositing inside the EPD cell.

Similar to the diffusion experiments above, I created the imaging suspensions by mixing
the particles with DI water to form a suspension with desired concentration. I chose the
concentration based on having enough particles in the frame to start observing the deposition
of particles on the electrode. Too few particles in the suspension and a layer might not form,
too many and the images might be too visually dense. Since these trials were more of a
qualitative observation, the concentration of particles could be higher than those initially
used for my early diffusion trials and were not limited by the limit of the particle tracking
system to capture all particles frame-to-frame. For future particle tracking experiments,
a discussion of a technique to balance the need for enough particles to form a deposit,
but not so many that the particle tracking images are too visually dense will be further
discussed in the future directions section. The suspensions used for imaging were sonicated
as mentioned in the diffusion experiment section to ensure the particles were dissipated
throughout the suspension and not agglomerated. For this set of observations, I used 0.8µm
diameter polystyrene particles that were not fluorescently labeled for development. The
images below were taken in a brightfield setup, which used the halogen lightsource on the
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Axiovert 200 instead of the 120Q lightsource like for the fluorescent images. I began taking
fluorescent images for observation of deposition, but due to time constraints and other factors,
I did not complete trials to report here. This will be further discussed in the future research
directions section.

Qualitative Results and Discussion

The preliminary observations of particle deposition on my system are presented here. While
the results are not quatitative in nature, this early work showed was a step towards that
goal. I also discuss some behavior observed during these depositions that can be of interest
for future studies.

Using the procedure discussed above, I took timeseries images of the particle suspensions
within the EPD cell. For imaging, I found a setting of 5V and 1A worked well for observing
particles in my EPD cell. I would first begin the acquisition and then turn on the power
source output to produce the voltage differential that drives the particle electrophoresis and
deposition on slide surface of the EPD cell. I moved the stage to focus on a region just above
the glass slide to capture the depositing particles in focus. For these acquisition settings
with the brightfield images, I used a framerate of 30 frames per second for a duration of 10
seconds.

Figure 4.10 below shows select frames from one of the deposition observations with the
frames taken at time values of t = 0, 2, 4, 6, 8, and 10 seconds. In the first frame, a few
particles are visible but not yet in focus indicating they are above the focal plane. In the
next frame, we see more particles moving into the field of view with some coming more into
focus and approaching the surface of the glass slide. This pattern continues through the
deposition process in the next two frames as we see more particles enter the field of view
and more coming into focus near the slide surface. Around the second to last frame we see
that the amount of particles coming into the field of view seems to slow down relative to the
earlier increases, and finally in the last frame we see the highest number of particles near the
slide surface. These early videos taken of the deposition as it was occuring was an exciting
milestone to hit, even without setting it up for quanitative analysis. This showed that my
setup on the microscope could image particles depositing via EPD with the single camera
setup and was the first step in moving towards generating the particle trajectories.

From this early deposition video, we can make a few observations of some particle be-
havior during EPD. One was the behavior seen with different field strengths. When taking
these first observations, I started with a voltage setting of 1V and then increased that later
on as I made observations, as shown in the images used for Figure 4.10 where the voltage
was set to 5V . When starting low, I noticed not only a longer travel time for particles to
enter the field of view, but also less particles depositing onto the slide. This may indicate
that the electrical driving force due to the applied potential was not high enough to over-
come repulsive interactions with the surface. As mentioned previously, a minimum electrical
driving force is required for deposition [19]. As I increased the voltage setting, the speed of
particles entering the field and the number of particles depositing or sticking to the glass
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Figure 4.10: Frames captured from an early deposition trial. The six frames represent
moments captured at t = 0, 2, 4, 6, 8, and 10 seconds.
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slide also increased. In this limited trial run, the highest setting I used was 6V and in that
case. Due to the limited nature of these observations, I can only hypothesize generally as
to the behavior I noticed, but this behavior also is expected when looking at some of the
theory behind EPD described in Chapter 2.

Another observation I noticed in this experimental run was the agglomeration of particles
as they deposited onto the surface. I observed particle agglomeration in the early diffusion
trials as well, but here it is part of the deposition process and an intended behavior to note.
It is difficult to see in the larger images in Figure 4.10, but can be seen more in the zoomed
in frames shown in Figure 4.11 below.

Figure 4.11: Zoomed in frames from the same deposition series as Figure 4.10. The circled
region in both frames shows a) the particles as they are entering the field of view before they
are deposited, and b) particles as they agglomerate while depositing.

The circled regions in Figure 4.11 showed that groups of particles started to combine and
agglomerate as they deposited on the surface. This particular timeseries of deposition did not
capture the deposition of a complete layer, but I would expect to see the particles agglomerate
and rearrange as more particles deposited. Future studies will be aimed at observing more
particles and how they interact at the deposition site. While the experiments with EPD
observations did not progress to the point of generating particle trajectories, I did get to
observe particles depositing via EPD on my setup, and this early work can be a jumping off
point for future studies of EPD. Possible direction of that future work are discussed in the
next section.
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4.4 Lessons Learned and Future Directions for

Experimental Work

The experimental setup and results discussed so far are very early work in creating and
verifying the particle tracking platform for in-situ EPD observation and continued efforts
in this direction will help further develop the methods to achieve that goal. I had many
lessons learned along the way that will be helpful for future experiments in observing EPD.
This section will further discuss those lessons learned and speak to future directions for this
experimental work.

Lessons Learned
First and foremost, to work with particle tracking systems I learned working the with proper
suspension is crucially important. Speaking specifically to my results in the 2D diffusion
trials, verifying the properties such as particle size was an important step to ensure I am
measuring what I expect when evaluating displacements later on. Using the Litesizer provides
not only a measurement of particle size, but also of the suspension’s zeta potential - which
is a critical property for the EPD process as discussed earlier in Chapter 2. The Litesizer
results from my diffusion trials were also a clue that my effective particle sizes were not quite
what I expected and led to further investigations with imaging on the SEM. In general, more
measured data is key to understanding the outcomes of the experiment.

More measured data on factors including size as mentioned above, as well as imaging
position can also improve my experiments. Recording the relative position of the particles I
am imaging to the physical surface of the glass slide is another measurement that I did not
take when performing my experiments, but is another important step for future experiments.
For diffusion, that height above the glass slide is an important factor and if the particles are
too close, the effect of hindered diffusion should be considered.

I can also further improve the diffusion studies and general development of the system
by improving the quantity and quality of images. As mentioned for diffusion, the ensemble
average component of the calculation can be aided by having more frames, or position data
points for a particle in an experimental run. This was partly limited by the camera setup,
however, more experimentation with acquisition settings may have provided alternative pa-
rameters for capturing more images. This can also be a factor if considering new equipment
for creating another setup. The number of particles can also improve the ensemble average,
so I can aim to take more images with more particles present in the field of view. I can
achieve this by creating more suspensions with increased concentration of tracer particles.

Another factor possibly affecting my suspensions and diffusion results was hinted at ear-
lier in that section’s discussion: particle agglomeration. I previously discussed the potential
for the smaller particulates sticking to the main tracer particles, but the potential for ag-
glomeration between the tracer particles is also relevant to these experiments. Throughout
the development of this process and the diffusion experiments, I observed particle agglomer-
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ation many times. Sometimes it would only be one or two particles sticking together, other
times it would be several, like the group of particles shown in Figure 4.12.

Figure 4.12: Example microscope image with group of agglomerated particles.

Typically when I searched for particles to image for the diffusion trials, I would avoid
groups of particles like the ones shown. The Stokes-Einstein relation is derived for a single
independent spherical particle, and a large group of particles will not exhibit the classical
Brownian motion so they would result in different results if they were included in the particles
used for the MSD computation. In the experimental procedure development, I tried to
prevent this agglomeration by sonicating the suspensions as mentioned in the sections above.
However, it is possible that some particles still agglomerated after sonication, especially if I
was imaging over a longer period of time and the particular trial was done later in the day
after the suspension was allowed to settle. In the case where it may be only a pair of particles,
and they were only detectable by a larger Airy disk such as if they were on the upper or
lower boundaries in the z-direction, the particles could adversely affect the overall diffusion
coefficient calculations because they were not undergoing the classic Brownian motion. This
issue could be addressed in future experiments by 1) sonicating the suspensions well before
the taking data to prevent agglomeration in the first place, and 2) limiting the time a
suspension is allowed to settle while taking data.
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Future Directions
So far, my experimental work has started to make progress on the two original goals men-
tioned at the beginning of the chapter, but there is still a lot of room for continued progress.
To continue this direct work, I would break it into the following major milestones:

1. Continue development of procedures for suspension and data analysis and redo 2D
diffusion experiments.

2. Use a complete GDPT measurement to verify the setup with 3D diffusion experiments.

3. Use verified system with GDPT to produce quantitative data of EPD experiments.

To start with the first milestone, my work so far has accomplished creating the platform
for particle tracking, and started verifying the data from observations in 2D diffusion. The
results I presented in this chapter showed a lot of work still needs to be done to continue
that verification. The 2D diffusion experiments are meant to be the first test of the basics
of the platform eventually being used to observe EPD, and more data to show the data
from tracking fluorescent particles in 2D will inspire confidence to move on to the next step.
These trials should be performed with particle suspensions made with particles with sizes
verified on a Litesizer or SEM before use in the particle tracking trials. Properly sonicating
the suspensions is another key step I would definitely use, either a bath sonicator or even a
horn sonicator as necessary to avoid the particle agglomeration issue. Finally, taking note
of the particle focal plane’s position with respect to the glass slide surface will provide extra
information on the potential effect of hindered diffusion due to wall effects as the particles
approach the wall. I believe making those main additions to the work presented so far will
improve future 2D diffusion experiments for this particle tracking platform. Finally, with
the process of creating suspensions for imaging better tuned, I believe more diffusion trials
performed will further improve the confidence in the verification of the system. More data
points will improve the averaging performed in the calculations as well as provide more
insight on the reliability of the system.

After fine-tuning the process for performing diffusion experiments and evaluations in 2D,
I would move on to the second milestone to evaluate the diffusion of particles in 3D with the
platform. The suspensions and physical components of the system will have been mostly fully
developed during the work towards the first milestone, so the additional development in this
milestone will more likely be in the direction of refining the images for use with GDPTlab.
For the 3D study, the biggest addition to the previous work is creating the calibration image
stacks. I did not present results with them earlier, but I did make several early calibration
stacks to begin 3D evaluations with GDPTlab. To take the calibration images, I used the
same setup as the 2D diffusion trials and located a particle or set of particles that were near
the surface of the glass slide. I then noted the location of the focal plane of the approximate
center of the particle as a reference, then moved the stage up until I could barely see the
Airy disk from the particle. Next, in small increments of 2µm, I moved the stage down and
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took and image at each increment, stopping when I could barely see the Airy disk again.
The calibration stack was usually about 60 images.

With these first attempts at calibration stacks, I learned a few things about the images
that will help guide future experiments. First, this process was slow, as each image required
time for me to adjust the stage height, to view the image preview to assure noise and contrast
were acceptable, and finally to take the image acquisition and save the files. This could be on
the order of 20-30 seconds so a full stack would take up to 30 minutes. This led to concerns
about photobleaching of the fluorescent particles, so I also started to make sure to close the
shutter on the lightsource while not in use during image acquisition. This process could
also be improved and simplified if the microscope had motor controlled stages, as I had to
manually adjust the position with the focus knob. This would reduce the time, and increase
the reliability, but would also increase the cost of the setup.

Another point I learned with these early calibration stack images was the importance of
maintaining z position of the particles. The ability of the GDPT method to measure the z

position of particles accurately is determined by the accuracy of the calibration stack. In
my first efforts, the particles were settled near the surface of the glass slides, but were not
totally stationary. Motion in the x and y directions was not an issue as long as the particles
did not move out of frame, as GDPTlab was able to find the approximate center of the Airy
disk in the calibration images and correct for differences in 2D position when training the
calibration model. Since the particles were not attached to the glass slide however, they also
were able to move slightly in the z direction. This motion was not large in magnitude, but
definitely was large enough to minimize the difference in sequential images. In some cases
significant motion may have been able to make an image look like it was out of order in
the stack such as if a particle moved up a large amount in the water and then back down
between images. This led to calibration image stacks that improperly trained the model for
predicting the z position. For future calibration stacks, I would aim to keep the particles
constrained, especially in the z direction. One first option, would be to find a particle that is
already stuck to the glass slide, as this will happen on occasion. With my dilute suspensions,
I had trouble finding particles already stuck, but it might just have taken more time to find
some. Another option I would use would be to use an EPD cell and deposit a small amount
of particles to the surface of the bottom slide thereby constraining the particle for the entire
imaging process. This would ensure that the particles were in a constant position for all
calibration images. Speeding up the process either through practice or a more automated
method, avoiding photobleaching, and constraining the particles will aid future experiments
in improving the calibration stack images.

The first two milestones are working towards verifying the system to eventually produce
the trajectories of particles depositing via EPD. Once those are complete, the third mile-
stone can be approached. So far, my work towards that milestone consisted of early trials
of implementing and observing EPD on the microscope. I was able to integrate the EPD
components with the microscope and observed EPD of polystyrene particles. Future work
in towards this milestone will combine the GDPT measurement with deposition timeseries
images of the particles. While these first attempts were done with particles with no fluores-
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cent label and images were taken with brightfield background, future studies will also use
fluorescent particles, similar to the diffusion trials for particle tracking. At first, suspensions
with lower particle concentrations will be easier to use for development and observation.
Experiments investigating the deposition of a single layer can provide good insight into
deposition behavior as well as further develop the measurement capabilities of the system
as the calibration and experimental image parameters are further refined. As experiments
progress, observing depositions that span multiple layers will also be of interest. To reduce
the inevitable increase in visual density of particles, the suspensions can be cleverly chosen
to use refractive index-matched particles and solutions. The deposit can begin to form with
the near-invisible index-matched particles before fluorescent tracer particles are introduced
allowing observations of the tracer particles and their interactions with the previously de-
posited layers. This concept is shown below in Figure 4.13. There are several potential
solvent and particle combinations that can provide the index-matched properties with a first
potential option of silica particles (n = 1.458) and Tetrahydrafurfuryl Alcohol (n = 1.456)
as used by Bender and Wagner [6]. A non-exhaustive list of additional options has been
compiled in a review by Wiederseiner et al [60].

Figure 4.13: Graphic introducing the index-matched particle and tracer particle technique
for imaging higher particle concentration systems.

Starting from my preliminary work with these experiments, there are different directions
in which future work could proceed, but the path laid out here may be helpful in guiding
those experiments that seek to achieve that third milestone from above: quantitative analysis
of in-situ EPD.

4.5 Summary and Conclusions

This chapter discussed my preliminary experimental work towards further understanding the
kinematics of the EPD process. The two main goals of the work were to:
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1. Provide a platform to study in-situ 3D trajectories of particles during EPD under a
variety of experimental parameters.

2. Provide particle trajectories that can be compared to and inform simulations to more
accurately capture the complex behavior of particles during EPD for future process
optimization.

To build the particle tracking platform for my experiments, I used a fluorescent micro-
scope set up to image fluorescent particles and use a single camera to track particles in 3D
using the GDPT technique. On the way to prepping the system for observing EPD directly, I
performed simple 2D diffusion experiments to start to verify the system. Those experiments
provided many lessons in the operation of the system and showed good directions for more
2D tests and 3D experiments after that to verify the system. I also progressed in developing
the methods for observing EPD on the microscope system by constructing transparent EPD
cells for observation and taking videos of particles depositing. I did not use the very prelim-
inary observations for any quantitative analysis, but they did show that my system could be
used to observe EPD in-situ. Finally, I presented some lessons learned and future directions
to continue this work towards quantitatively observing the particles depositing via EPD to
enhance our understanding of the kinetics and to inform simulations for further optimisation
and development of the process.



92

Chapter 5

Summary and Conclusions

As external field-driven AM processes have gained more interest for their abilities to man-
ufacture components with tailored material properties and geometries, more studies are
needed to develop and optimize these processes. In this work, I focused on electric field-
driven processes, such as electrospray of particles in air, and Electrophoretic Deposition of
colloid particles suspended in a liquid, and aimed to contribute towards further understand-
ing through a combination of computational and experimental work. With the process of
EPD as a main focus, I discussed how the electric field-driven process can be used for sev-
eral applications including colloidal crystals. While the kinetics of the EPD process have
been studied through ex-situ observations, the underlying particle dynamics are not yet well
understood and simulations for predicting the crystal structure of this process are computa-
tionally intensive and are still being developed. My work discussed in Chapter 3 involved the
development of a particle-based framework, which I used as a platform for studying these
electric field-driven AM processes. The framework was designed to run on limited computa-
tional resources to provide a potential development tool in combination with existing higher
fidelity models that use more computing resources. Through developmental milestones, I
compared results of diffusive motion and electrophoretic velocity behavior with analytic the-
ory and found good agreement before exploring qualitative particle behavior with the full
deposition model. While these deposition simulations were mostly performed with parame-
ters similar to electrospray of particles in air, they showed the capability of the framework
which could be used to further explore depositions of colloids via EPD in the future. In
Chapter 4, I discussed preliminary experimental work towards in-situ observation of the
EPD process to increase general understanding of how particles integrate into a deposit. I
created a particle tracking setup to observe particles and began diffusion trials to verify the
setup for eventually generating particle trajectories during EPD. Due to the onset of the
COVID-19 pandemic, I was limited to preliminary development of a particle tracking plat-
form, but was able to visually observe particle deposition. These conceptual results showed
that, with further development, my experimental setup could be used to provide quantitative
data of particle trajectories to also inform the particle simulations.

Both the numerical and experimental studies I discussed in this dissertation showed good
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preliminary results, as well as several avenues for future studies. The simulation work is a
stepping stone to developing a “digital twin” of the electric field-driven AM processes, and
the particle tracking platform is in the early stages of providing particle trajectories to both
inform future simulations and contribute directly to our understanding of the EPD process.
From these efforts, I learned many lessons applied to both simulation work and experimental
studies, all of which will be invaluable tools I can use towards any future endeavors related
to AM process development.
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Appendix A

Additional Experimental Details

The following appendix contains more details on some of the experimental procedures I used
when performing the work described in Chapter 4.

Glass Slide Cleaning Procedure

1. Place glass slides in bath sonicator with water, try to keep separated to avoid slides.

2. Sonicate for 1 hour.

3. Remove slides from bath sonicator carefully using tweezers.

4. Rinse both sides of glass slide with Acetone.

5. Rinse both sides of glass slide with Isopropyl Alcohol.

6. Dry both sides of glass slide using nitrogen gas.

EPD Cell Assembly Steps

1. Clean ITO-glass slides using procedure described above.

2. Clean O-ring using Isopropyl Alcohol and wipe dry with a lint-free wipe.

3. Use multimeter set to check for continuity and determine which side of glass slides has
the conductive ITO coating.

4. Place O-ring on one slide on the side with the ITO coating. Position as shown in
Figure 4.8.

5. Spread optical adhesive around circumference of O-ring, making sure to create a seal
on the slide.
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6. Use UV light source to cure adhesive, working around the circumference to ensure all
adhesive is cured properly.

7. Use tweezers to press on O-ring and check that adhesive is constraining the O-ring all
the way around. Add more adhesive and cure if needed.

8. Apply copper tape to ITO-coated side on both slides for electrical leads.
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