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ABSTRACT OF THE DISSERTATION

Scalable Data-Parallel Processing of Semi-Structured Data

by

Lin Jiang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, Spetember 2021

Dr. Zhijia Zhao, Chairperson

Semi-structured data, like JSON, XML, and their derivatives, are essential in modern com-

puting infrastructures, from cloud computing and microservice to NoSQL data stores and

Internet of Things (IoT). However, existing software often fails to process such types of data

in a scalable way due to their nested structures and the lack of effective data-level paral-

lelism. The goal of this thesis is mainly to address two fundamental scalability issues in

semi-structured data processing. First, how can semi-structured data analytics effectively

leverage the abundant hardware parallelism that are offered by modern computer archi-

tectures (e.g., multi-cores and SIMD operations)? Second, how can semi-structured data

analytics improve the data access efficiency (i.e., locality) and reduce the memory consump-

tion when handling large semi-structured datasets? To answer these questions, this thesis

proposes a series of parallelization techniques and streaming computation models dedicated

to semi-structured data.

More specifically, this thesis first proposes a grammar-aware parallelization (GAP)

scheme for XPath query evaluation, which leverages the data grammar (e.g., DTD file for

vi



XML) to prune unnecessary paths during the enumerative execution. Then, it designs

a streaming model for querying JSON data, which jointly compiles JSON grammar and

JSONPath queries into a dual-stack pushdown automaton, and adopts a customized GAP

scheme for its parallelization. Next, to effectively utilize both fine-grained (bitwise and

SIMD) parallelism and coarse-grained (multi-core) parallelism, this thesis proposes a new

design of bitwise structural index construction that is able to build leveled bitmaps for a

single large JSON record in parallel, thanks to a set of parallelization techniques specialized

to JSON structures. Finally, this thesis combines the ideas of bitwise index construction

and the stream processing model, which brings in a novel on-demand parsing technique that

can intelligently skip parsing irrelevant substructures of a JSON record based on the given

JSON queries. All the above techniques have been systematically evaluated with real-world

datasets and standard JSON/XML queries, and have demonstrated significant performance

benefits over the existing solutions, in terms of both query evaluation time and memory

consumption.
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Chapter 1

Introduction

Semi-structured data, like XML, JSON, and their derivatives, are essential in the

modern computing infrastructure, ranging from cloud computing [47, 91] and microservice

architectures [130, 58], to Internet of Things (IoT) [132] and NoSQL data stores [87, 72]. In

recent years, the volume of semi-structured data also grows rapidly [24, 92, 8]. Thus, the

efficiency of semi-structured data processing becomes more critical to the modern software

applications whose performance increasingly relies on them.

Conventionally, there are two basic ways for processing semi-structured data: i)

preprocessing-based scheme and ii) streaming scheme.

Preprocessing-based Scheme. This traditional way of processing semi-structured data

requires a full parsing (or other kinds of preprocessing) over the entire data record before

getting the substructures of interests. However, for large input records, the parsing not

only incurs a long delay at the beginning, but also occupies a large chunk of memory (for

storing the parse tree) during the query evaluation.
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Streaming Scheme. To avoid the above issues, a more lightweight approach, called

streaming, would be preferred in many situations. It performs online parsing during query

evaluation, without generating any in-memory parsing tree. In this way, it can process the

entire data stream in a single pass with a bounded memory footprint. However, streaming

model is not suitable for cases where the queries are unknown beforehand, since it has to

re-traverse the data stream when a query is given.

Despite recent advances in processing semi-structured data, there are still two

major issues that may limit its efficiency:

• Lack of Data Parallelism. A semi-structured data record follows a nested structure

(e.g., a JSON object can be embedded in another object). A naive partitioning can

easily break its internal structures, making it very challenging to expose data-level

parallelism. On the other hand, modern CPU supports both fine-grained parallelism

(bitwise and SIMD instructions) and coarse-grained parallelism (multi-core). Thus,

a key research question lies in the exploitation of data parallelism for improving the

performance of semi-structured data processing.

• Lack of Efficient Streaming Models. Though the streaming model for the conventional

tag-based semi-structured data (e.g., XML) has been proposed, the streaming model

for contemporary JSON-style semi-structured data remains an open question. Note

that the syntax of JSON is fundamentally different from tag-based semi-structured

data. Moreover, the traditional way of streaming requires to scan the entire stream

character by character in order to recognize all tokens and syntactical structures. This

comprehensive way of scanning seriously limits the best efficiency of data streaming.

2



To address the above challenges, this thesis introduces a series of parallelization

techniques and new designs of streaming models to process XML/JSON data in an efficient

yet scalable way. At the high level, the thesis is organized under four major research topics,

as listed in the following sections.

1.1 Parallelization of XPath Streaming Evaluation

The first part of this thesis focuses on the parallelization of one existing streaming

model for XPath query evaluation, which is a pushdown automaton automatically generated

based on queries [68]. A recent work parallelized this model based on the idea of paths enu-

meration [106]. However, maintaining all enumerated execution paths remains a significant

parallelization overhead, especially for complex queries or multi-query scenarios. To address

this challenge, this thesis proposes a grammar-aware parallelization schema, namely GAP,

to narrow down the feasible execution paths by learning data constraints from the grammar

(e.g. DTD, XSD for XML). When certain grammar is not available, GAP may still prune

unnecessary paths speculatively by inferring an incomplete grammar from training inputs.

As elements in semi-structured data tend to follow certain patterns, speculative GAP often

yields high speculation accuracy and low reprocessing costs.

1.2 Parallel Streaming Model for JSONPath Evaluation

To adopt a similar automata-based streaming scheme for JSON query evaluation,

this thesis introduces a compilation system, namely JPStream, that compiles standard

JSONPath queries into parallel executables with bounded memory footprints. The key idea
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is formalized as a joint-compilation technique which compiles JSON grammar and JSON-

Path queries together into a single automaton (a dual-stack pushdown automaton). Based

on this streaming model, this thesis further presents a set of customized parallelization tech-

niques which can execute multiple automata in parallel on different partitions of a (large)

JSON record, without suffering from the path explosion problem caused by path enumer-

ation. Evaluation shows that JPStream can reduce the memory consumption significantly,

meanwhile achieving near linear speedup.

1.3 Scalable Index Constructor for JSON Analytics

To leverage bitwise and SIMD parallelism that is available on modern computer

architectures, a recent work, Mison [86], proposes a novel algorithm that generates bitwise

indices for the structural characters (like colon : and comma ,) in a JSON record, called

structural indices. With such indices, a parser can directly jump into relevant positions of

the JSON record to find query matches. This preprocessing-based approach has already

demonstrated its high efficiency thanks to the bit-parallel operations. However, it does not

scale well as records become larger and more complex due to its lack of coarse-grained (multi-

core) data parallelism and memory-intensive design of some index construction steps. To

address these limitations, this thesis introduces Pison − a more memory-efficient structural

index constructor with supports of intra-record parallelism. Evaluation results confirm that

Pison outperforms the state-of-the-art in terms of both index construction efficiency and

end-to-end query evaluation performance.
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1.4 Streaming JSON Data with Bit-Parallel Skipping

Lastly, this thesis addresses the comprehensive scanning limitation in the existing

streaming models by exploring the possibility of quickly skipping substructures of a JSON

record that are irrelevant to the queries. It first reveals a wide range of opportunities for

skipping irrelevant substructures during the streaming query evaluation, then proposes a

highly bit-parallel solution for implementing different skipping scenarios using bitwise and

SIMD operations. These techniques lead to a new streaming framework that offers 15

bit-parallel skipping primitives, namely JSONSki. Evaluation results show that JSONSki

achieves significant performance benefits compared to the state-of-the-art streaming and

non-streaming approaches, meanwhile keeping the memory cost to a minimum.
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Chapter 2

Grammar-aware Parallelization of

Scalable XPath Querying

Semi-structured data (like XML and JSON) emerge in many domains, especially

in web analytics and business intelligence. However, querying such data is inherently se-

quential due to the nested structure of input data. Existing solutions on XPath querying

pessimistically enumerate all execution paths to circumvent dependencies, yielding sub-

optimal performance and limited scalability.

In this chapter, we present GAP, a parallelization scheme that, for the first time,

leverages the grammar of the input data to boost the parallelization efficiency. GAP leverages

static analysis to infer feasible execution paths for specific contexts based on the grammar

of the semi-structured data. It can eliminate unnecessary paths without compromising

the correctness. In the absence of a pre-defined grammar, GAP switches into a speculative

execution mode and takes potentially incomplete grammar extracted from prior inputs.
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Together, the dual-mode GAP reduces the execution paths from all paths to a minimum,

therefore maximizing the parallelization efficiency and scalability. The benefits of path

elimination go beyond reducing extra computation − it also enables the use of more effi-

cient data structures, which further improves the efficiency. An evaluation on a large set

of standard benchmarks with diverse queries shows that GAP yields significant efficiency

increase and boosts the speedup of the state-of-the-art from 2.9X to 17.6X on a 20-core

machine for a set of 200 queries.

2.1 Introduction

Semi-structured data, like XML and JSON, is widely used in many application do-

mains, such as web analytics [131], financial data processing [109], pub/sub applications [98],

enterprise data exchanges [54], sensor networks [59], and smart buildings [121]. The volume

of semi-structured data grows rapidly. Take Twitter as an example, it produces tweets in

semi-structured format at a rate of 600 million per day [24]. To cope with fast data growth,

users need efficient querying methods to extract information.

In comparison, the increase of modern CPU frequency has reached a plateau.

Hence, exploiting parallelism is key to efficient query processing for semi-structured data.

In this work, we focus on XPath queries for their basic roles in semi-structured data pro-

cessing [68, 106, 88, 38].

However, parallelizing such queries is challenging due to the inherent nested struc-

ture of input data. Consider Facebook feed data [62] in Figure 2.1. Suppose using two

threads to process a path query feed/entry/id, which aims to find the IDs of entries in
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query : feed/entry/id 1st thread 

2nd thread 

<?xml version=“” encoding=“”?> 
<!DOCTYPE feed[ 
  <!ELEMENT feed (entry+, id)> 
  <!ELEMENT entry (id, title)> 
  <!ELEMENT id (#PCDATA)> 
  <!ELEMENT title (#PCDATA)> 
]>  

1 
2 
3 
4 
5 
6 
7 

<feed> 
 <entry> 
   <title>a post</title> 
 </entry> 
 <id>feed-id</id> 
 <entry> 
   <id>entry-id-2</id> 
 </entry> 
</feed> DTD file (Grammar) 

Figure 2.1: An illustration example (Facebook feed data 1)

the feed. Without examining the tags in the first half of the input, the second thread cannot

determine if the id at line 5 is a match or not. Because it lacks the “context” of determining

the answers to the query. As we will see later, such inherent dependence clearly manifests

when the queries are formalized as pushdown transducers − a basic computation model for

processing data that are defined by context-free grammars (Section 2.2).

State of The Art . Great efforts have been made on making parallel parsing possible for

semi-structured data. With the parsing results, a DOM (Document Object Model) tree, the

queries can be easily evaluated by traversing the tree. A practical issue with such methods

is that the data could be too large to parse due to the huge memory consumption caused

by constructing the parse tree. In addition, the query evaluation after parsing compromises

data locality.

In comparison, Odgen and others [106] directly target the parallelization of XPath

queries with a novel parallel pushdown transducer. By breaking the input into chunks and

enumerating all execution paths for each chunk (except the first one), pushdown transduc-

ers are able to process different chunks in parallel. This method shows promising results

1For illustration purpose, the data is simplified and slightly reordered.
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for single-query processing and processing a small set of concurrent queries. However, as

the query becomes more complex or the number of concurrent queries increases, the total

number of execution paths also raises, resulting in a dramatic increase of parallelization

cost. Consequently, the speedup quickly drops from 11.1X to merely 2.9X on a 20-core

Intel Xeon server, as shown in Figure 2.2.

In this work, we raise and address some fundamental questions in the paralleliza-

tion of pushdown transducers: is it necessary to enumerate all execution paths? If not, how

to know which execution paths are unnecessary?

The key to answering the questions lies in the special properties of input data −

they are defined by (context-free) grammar, either explicitly or implicitly. For example, XML

data are defined by document type definition (DTD) or XML schema. Similar ways are

used to define JSON data as well [64]. The grammar not only defines the valid structure of

the data, but also adds constraints on the possible execution paths under a specific context.

Consider the example in Figure 2.1. By checking the first element <id>, the second thread

would be able to infer that it may be under the <feed> or an <entry>, but definitely not

under a <title>, as the grammar does not specify an ID for the title.

To leverage these insights, we propose a grammar-aware parallelization (GAP)

for querying semi-structured data, which can substantially reduce the amount of execution

paths up to 200X according to our experiments. It brings in two major benefits. First, a

thread only needs to keep a small number of execution paths (typically < 5), hence runs

more swiftly. Second, when the number of execution paths drops to one, which happens

quite often based on our experiments, it becomes possible to switch to more efficient data
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Figure 2.2: Scalability Comparison

structures (from trees to stacks) to execute the pushdown transducers. Together, they

dramatically reduce the parallelization cost, making efficient parallelization of larger-scale

query processing possible, as shown in Figure 2.2.

Specifically, depending on the availability of an explicit grammar, GAP works in

two modes: non-speculative mode and speculative mode. In non-speculative mode (Sec-

tion 2.4), GAP extracts a static syntax tree from the given grammar file (e.g., a DTD file),

and symbolically executes the pushdown transducer over the syntax tree to infer feasible

execution paths under a specific context (e.g., a token <id>). With such knowledge, a

parallel pushdown transducer only maintains a set of feasible execution paths and auto-

matically switches to a stack when it detects a unique feasible execution path is left. In

certain scenarios, an explicit grammar may not be available. In such cases, GAP enters into

the speculative mode, where it first collects some partial grammar from prior runs. As the

grammar is partial, the inferred feasible paths might be incomplete. Hence, a pushdown
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transducer runs speculatively with chances that the correct execution is left uncovered. To

guarantee the correctness and reduce the penalty of misspeculation, a pair of validation and

selective reprocessing mechanisms are proposed. With the dual-mode GAP, our approach

is able to process semi-structured data either with or without a grammar file. Our evalua-

tion results show that both non-speculative GAP and speculative GAP provide sustainable

speedup, about 17.6X on a 20-core server, up to a set of 200 concurrent queries.

In sum, this work makes the following contributions:

• To our best knowledge, this work, for the first time, unveils the potential of leveraging

input grammar to improve the efficiency of parallelization.

• It offers a rigorous inference of feasible execution paths from input grammar and

an adaptive data structure switching mechanism to boost the efficiency of the basic

computation model − pushdown transducers.

• It proposes a practical speculation scheme to cover the scenarios where the input

grammar is unavailable.

• It, for the first time, enables a scalable parallelization of query processing that yields

sustainable speedup as the query complexity increases.

2.2 Background

In this section, we first present some basic concepts for querying semi-structured

data. Then we introduce the computation model for processing queries − pushdown trans-

ducer and its parallelization challenges.
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2.2.1 Querying Semi-Structured Data

Querying semi-structured data is a routine operation in stream processing and

many database systems that supports semi-structured data. For instance, YFilter [56] and

XMLTK [39] leverage automata to simultaneously process a large number of XPath queries

against an XML stream with a constant memory requirement. These studies focus on

improving the expressiveness of queries, instead of exploiting data parallelism. On the other

hand, database engines, like Microsoft SQL Server [110] and MonetDB [42] provide task-

level parallelization for querying XML data, but require pre-computed index to accelerate

query processing, which becomes unsuitable for single-pass processing model due to the

substantial cost of index construction.

Pre-parsing v.s. On-the-fly Querying. There are two basic strategies to process

queries: (i) first parse the semi-structure data into a parse tree (i.e., DOM tree in XML

context), then answer the queries by searching the tree. (ii) Process the queries on-the-fly

without constructing any tree structure. There are three limitations with the first strategy.

First, parsing the semi-structured data requires a large memory footprint due to the con-

struction of DOM tree, which is almost infeasible for large semi-structured data or streaming

data. Second, parallel parsing itself is quite challenging, existing solutions suffer from either

load imbalance or sequential bottleneck caused by a sequential preprocessing. At last, it

needs to traverse the data again after the parsing, compromising the data locality. For

the above reasons, we choose the second strategy in this work. To enable on-the-fly query

processing, queries are implemented using stack-based computation model − pushdown
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transducers [68, 106], which run over the semi-structured data stream and report matches

as it proceeds. We next describe such a computation model.

2.2.2 Pushdown Transducers

Informally, a pushdown transducer is a finite automaton agumented with a stack

and an output tape, as illustrated by Figure 2.3. With the stack, the pushdown transducer

is able to memorize prior states (i.e., history). Such memorization is the essential for

processing semi-structured data where certain “context” is needed. A pushdown transducer

consumes the input stream by moving a pointer forward along the input tape one by one.

Based on the input symbol, the control logic (defined as transitions) examines the current

state and the status of the stack, then makes adjustments to the state and stack, and write

symbols to the output tape.

A generic pushdown transducer can be defined as follows.

Definition 1 A pushdown transducer is a 6-tuple (Σ, Γ, ∆, Q, q0, δ) where Σ is the input

alphabet, Q is the set of states, q0 ∈ Q is the initial state, Γ is the stack alphabet − a set

of symbols that can be pushed onto stack, ∆ is the output alphabet, and δ is a mapping

δ : Q× Γ× Σ→ Q× Γ×∆ which is also called the transition function.

There are three factors that may affect the moving of a pushdown transducer: (i)

current input symbol c ∈ Σ from the input tape, (ii) current state s ∈ Q, and (iii) the

element e ∈ Γ on top of the stack. As a response, the pushdown transducer may take three

actions: (i) move the current state to the next, (ii) update the top of the stack either by

push or pop, and (iii) write a symbol c′ ∈ ∆ to the output tape. Note that, depending on the
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Figure 2.3: A Diagram of The Pushdown Transducer

definition of transitions, the three factors may not always take effects at every transition,

and the same is true for the actions.

We next describe the specific pushdown transducers for query processing using the

running example in Figure 2.4. It contains a grammar with recursion (between elements a

and b) to demonstrate its generality.

States Q. For any give path query, a corresponding finite automaton can be created based

on a simple automaton construction algorithm [68]. The states in the finite automaton

are exactly the states in the pushdown transducer. The accept state(s) correspond to the

matches of the query. In the running example, a path query a/b/c is converted to a finite

automaton of five states, as shown in Figure 2.4-(c). state 4 corresponds to the match of

query.

Alphabets Σ , ∆ , and Γ. In the context of XPath querying, the input alphabet Σ is the

set of valid tokens (e.g., XML tags) resulted from a lexer. The output alphabet is actually

the same as the input alphabet (i.e., ∆ = Σ) since the queries only return some parts of
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(d) Execution of Pushdown Transducer

query: a/b/a/c

state dependence stack dependence<?xml version=“” …?>
<!DOCTYPE a[
<!ELEMENT a(b+, c)>
<!ELEMENT b(a+)>
<!ELEMENT c(#PCDATA)>

]> 

2

1 3

45

0
other start
tags

<b> <a> <c> </c></a>

2
3 3

4

2
3

</b></a>
1

Figure 2.4: A running example with a recursive grammar. ‘*’ after state 5 means a match.

the input data stream. As to the stack alphabet, it can be either the state set Q or input

alphabet Σ. Based on the convention [106], we set Γ = Q.

Transitions δplain , δpush , and δpop. There are three types of transitions in XPath

querying pushdown transducers.

1. Plain transitions δplain: Q × Σ → Q × ∆. They do not influence the stack. For

example, the transition after reading a text token x is a plain transition.

2. Push transitions δpush: Q × Σ → Q × Γ × ∆. When an start tag (e.g., <a>) is read,

the transducer first pushes the current state onto the stack, then transition to the

next state based on the finite automaton.

3. Pop transitions δpop: Q × Σ × Γ → Q × ∆. When a close tag (e.g., </d>) is met, the

transducer pops the stack and sets the current state to the popped state.

Example. Figure 2.4-(d) illustrates the transitions of the pushdown transducer for process-

ing query a/b/a/c. Among the ten steps, five of them are push transitions and the others

are pop transitions. When the pushdown transducer moves to the accept state (state 5),

it reports a match to the query and outputs the match to its output tape.
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Inherent Dependence. Based on the definition of pushdown transducers, it is obvious to

notice two types of dependence in its execution depending on the variables: (i) At every step

of the transition, the next state depends on either the immediate prior state or the element

on top the stack (which is actually an even earlier state). We refer to such dependence as

state dependence. (ii) Similarly, at each step of the transition, the content of stack depends

on stack before the transition and sometimes also depends on the prior state. We refer to

this type of dependence as stack dependence. In general, a tight dependence chain is formed

from the first step to the current step, making the parallelization of such computation model

quite challenging, as illustrated by Figure 2.4-(d).

2.2.3 Parallel Pushdown Transducers

To circumvent the inherent dependence in pushdown transducers, Ogden and oth-

ers [106] propose a parallel pushdown transducer. Basically, it works in three major phases:

• Split phase. It first cuts the input data into equal-sized chunks, each of which may

contain some broken tags.

• Parallel phase. For each chunk, except the first one, it enumerates all execution

paths, each starting from a different state with an empty stack. A mapping m is

maintained from each pair of starting state and stack (qs, zs) to a 3-tuple of finishing

state, stack and output tape (qf , zf , o), that is m = (qs, zs, qf , zf , o), where m ∈M =

Q × Γ∗ × Q × Γ∗ ×∆∗. In our running example (Figure 2.4), it needs to enumerate

all the six states (paths) and keeps a mapping for each of them.
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During the processing of a chunk, different execution paths may lead to the same

finishing state and stack (called path convergence). To improve the efficiency, a double-

tree data structure is employed to compress the mapping and reduce some redundant

computations when path convergence occurs.

For a chunk with missing start tags (due to partitioning), it is possible that a pop

operation is needed while the stack is empty. In this case, it also has to enumerate

every possible element that could be popped out from the stack (i.e. Γ). In such

cases, a single path diverges to multiple ones, referred to as path divergence. In our

running example, if the second thread starts from Line 5, when it processes the end

tag </a> at Line 6, it encounters a path divergence, similarly to the end tags </b>

and </a> at Lines 7 and 8.

• Join phase. Finally, mappings from different chunks are linked by matching the fin-

ishing state and stack in a chunk with the starting state and stack of its following.

An additional filtering phase may be added to enhance the expressiveness of the

transducers (e.g., to handle predicates in XPath queries). Though the split, join and filter

phases are sequential, they carry much less computations than the parallel phase and incur

marginal cost [106].

Parallel pushdown transducers show promising results for single query or a small

set of concurrent queries. However, as the query becomes more complex and as the number

of queries increases, enumerating all execution paths tends to be less practical due to large

amount of extra computation. To address this question, we propose a new scheme of

parallelization, grammar-aware parallelization (GAP), that leverages the grammar of the
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Figure 2.5: Overview of GAP. Labeled numbers show the major steps when predefined input
grammar is available (e.g., DTD or Schema). Blue lines show the speculative execution flow
in the absence of a pre-defined grammar.

semi-structured data to guide the design of parallelization. In the following, we first give

an overview of GAP before elaborating its major components.

2.3 Overview

In this section, we give the high-level design of GAP, a new parallelization scheme

that leverages input grammar to boost the efficiency of parallelization.

Grammar Availability and Dual-mode GAP. The key of GAP is the awareness of

semi-structured data grammars. A substantial amount of semi-structured data come with

grammars, such as the auction data from ebay developer API [55] and the publication data

from DBLP [53]. Actually, six out of ten datasets from UW’s XML data repository [126]

contain some DTD file(s). On the other hand, it is not uncommon that the grammar of

some semi-structured data is unavailable, either because there does not exist a pre-defined

grammar, or because the access to the DTD or XSD is not granted.

To cover both scenarios, GAP can run in two modes: non-speculative mode and

speculative mode. When the grammar of the semi-structured data is available (e.g., in the

form of DTD), GAP enters into non-speculative mode, where the execution correctness is
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always guaranteed, thanks to the rigorous feasible path inference from a complete grammar

(as explained shortly). In another word, there is no speculation or prediction involved

in this mode. On the other hand, when the grammar is unavailable, GAP switches into

speculative mode. In this mode, GAP first collects some partial grammar by inferring it

from previous runs (of the same data corpus). This part is illustrated as the first step of

GAP in Figure 2.5.

Feasible Path Inference. After determining the execution mode, GAP obtains either a

complete grammar or a partial grammar. With the grammar, GAP aims to infer which

paths are feasible given a specific context, that is, a symbol from the input alphabet Q

(e.g., a tag <c> in Figure 2.4-(b)).

To achieve this, GAP follows two steps: static parse tree generation and symbolic

execution of pushdown transducer. In the first step, it takes the input grammar G as input

and generates a static syntax tree T , which embodies the legal nesting structures of the input

data. For example, element b has to be an immediate child of element a (see Figure 2.4-

(a) and 2.4-(b)). In the second step, it executes the pushdown transducer symbolically by

executing on every path of the static syntax tree to infer the feasible starting states when

meeting a specific input symbol (i.e., the context). The results of the second step is a hash

table, called feasible path table, where the key is input symbol and the value is the set of

feasible paths, as shown in Table 2.1. Since the syntax tree is static and typically small, a

full traversal is affordable. When the grammar is available beforehand, both steps can be

done offline.
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Table 2.1: Feasible Paths Table

Input symbol Feasible paths/states

<a> {1, 3}
</a> {2, 4}
<b> {2}
· · · · · ·

GAP Pushdown Transducers. To leverage the results from feasible path inference, we

design a new type of parallel pushdown transducer − GAP pushdown transducers. First,

when it is needed, a GAP pushdown transducer can inquire the feasible path table to

determine and remove unnecessary paths, which is referred to as dynamic path elimination.

Second, whenever a unique feasible path is left, either caused by path elimination

or path convergence, the GAP pushdown transducer switches from the default double-tree

data structure to a stack and executes exactly like a sequential pushdown transducer. This

makes the GAP pushdown transducer run swiftly without any house-keeping work. This

feature is referred to as runtime data structure switching.

Speculative GAP. As explained earlier in this section, when a pre-defined grammar is

unavailable, only a partial grammar might be collected. Inferring feasible paths from such an

incomplete grammar may result in some feasible paths missing. Consequently, feeding such

incomplete information to a GAP pushdown transducer may cause the correct execution

path being excluded. This scheme is generally referred to as speculative execution. There

are two basic requirements for effective speculative execution. First, it has to ensure the

correctness. GAP pushdown transducers ensure this in the join phase. When no match of

mappings is found during the linking of two consecutive chunks, a misspeculation is reported.

Under this situation, a reprocessing is initiated immediately on the missepculated chunk to
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Figure 2.6: Static Syntax Tree

ensure the correctness. Second, the misspeculation penalty should be low enough so that it

will not cancel out the benefits of speculation. To achieve this, GAP pushdown transducers

carefully divide chunks into even smaller pieces such that reprocessing is done selectively.

Figure 2.5 illustrates both the basic and speculative GAP pushdown transducers.

We next elaborate the two modes of GAP in the following two sections.

2.4 Non-Speculative GAP

When the grammar of the semi-structured data is available, GAP runs in non-

speculative mode. In this section, we first describe the two steps to infer feasible paths:

static syntax tree generation and symbolic pushdown transducer execution, then present

more details about the new features of GAP pushdown transducers.
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2.4.1 Static Syntax Tree Generation

Grammars written in textual rules are hard to interpret directly. To effectively

leverage the grammar, we need a data structure to capture all the nesting relations among

different input symbols/elements in a concise form.

In fact, the nesting relations can be naturally represented as a tree structure. A

traditional syntax tree (or parse tree) indicates the derivation of a concrete sentence based

on its (context-free) grammar. Figure 2.6-(a) shows the syntax tree of the running example

(Figure 2.4-(b)). Note that such a syntax tree can grow to very large size as the input gets

longer, meanwhile it may not capture all the possible derivation of its context-free grammar.

To represent all the derivation relations in the grammar with a concise format,

we introduce static syntax tree − a tree generated purely based on the input grammar. As

shown in Figure 2.6-(b), in a static syntax tree, each child element must appear and only

appear once. The size of a static syntax tree depends on the input grammar, rather than

input data, hence will not increase as data grows.

The construction of a static syntax tree is straightforward. Basically, a construc-

tion algorithm scans the grammar file, identifies the root element and its child/descendant

elements iteratively until all leaf elements (elements without any child elements) are in-

cluded, as shown in Algorithm 1. For recursive grammars, the algorithm labels nodes that

refer to an ancestor by setting the field cycle. Figure 2.6-(c) illustrates the major steps of

executing the algorithm on the running example. The time complexity of this algorithm is

O(n2) where n is the number of elements in the DTD file.
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Algorithm 1 Construction of Static Syntax Tree
1: procedure static syntax tree construction(DTD)

2: for each element el in DTD do

3: if el is the first element then

4: root = create node(el); /* assume the 1st is root */

5: root.cycle = null; /* represent recursion if exists */

6: nodes = root;

7: else/* search el in tree root */

8: nodes = tree search(root, el);

9: for node in nodes do

10: for each subelement sub of el do

11: if sub.is ancestor(node) then /* recursion */

12: node.cycle=sub; /* set a backward pointer */

13: else

14: child = create node(sub);

15: child.cycle=null;

16: node.add child(child);

17: return root;

2.4.2 Symbolic Execution of Pushdown Transducer

The goal of symbolic execution is to find out feasible execution paths for each

input symbol. Formally, we define the feasible execution path as follows.

Definition 2 Given an input symbol c ∈ Σ, for any syntactically correct inputs, if there

exists an input such that the pushdown transducer can transition to state s ∈ Q right before

it reads c, then we call the execution path that starts from state s as a feasible execution

path for symbol c.
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Algorithm 2 Feasible Paths Inference
1: procedure path inference(root, init state)

2: current = init state; /* current state in automaton */

3: node = root; /* current node in static syntax tree */

4: stack.push(root); /* for depth-first traversal */

5: while stack is not empty do

6: node = stack.pop();

7: if node.cycle != null and node.done == false then

8: unfold cycle(hash, current, node); node.done = true; /* done with this cycle */

9: if node.visited == false then

10: next = next state(current, node.start);

11: hash.add(node.start, current); hash.add(node.end, next);

12: current = next; node.visited = true;

13: for each child of node do

14: if child.visited == false then

15: stack.push(child);

16: if node is a leaf then current = next state(current, node.end);

17: return hash;

According to the definition, to infer the feasible paths for an input symbol, it

needs to test all the possible inputs of syntactically correct semi-structured data, which

is impossible. We address this by running the pushdown transducer symbolically on the

static syntax tree. Basically, the transducer walks on every path of the static syntax tree

and records the state right before meeting the start tag and end tag of a node on the path.

For example, if the current state is s and the current node is n, then it adds a key:value
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Algorithm 3 Feasible Paths Inference (Continue from Algorithm 2)

1: procedure unfold cycle(hash, cur state, node)

2: /* current state and node in the cycle */

3: current′ = next state(current, node.start);

4: n = node.cycle; next = next state(current′, n.start);

5: if next != null then

6: queue.add(n);

7: while queue is not empty do

8: n = queue.remove(); next = next state(current′, n.start);

9: hash.add(n.start, current′); hash.add(n.end, next);

10: current′ = next; nodes = def children(n, current′);

11: if nodes is not empty then queue.add(nodes);

12: return hash;

13: /* get node’s children whose start tags are defined in state */

14: procedure def children(node, state)

15: for each child of node do

16: if next state(state, node.start) != null then

17: defined children.add(node);

18: return defined children;

pair of <n>:s and </n>:s’ into the hash table, where s’ is the next state after consuming

symbol <n>.

Recursion Handling. For a grammar with recursion, the static syntax tree contains

one or more cycle(s). In this case, the algorithm unfolds the cycles. However, a naive

unfolding would result in dead loops. To address this, we use the finite automaton to guide

the unfolding and only unfold it to the extent that is necessary for revealing feasible states.
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Algorithm 2 shows the pseudocode of the symbolic execution. It takes the query

automaton and static syntax tree as inputs and outputs feasible path hash table. The time

complexity of symbolic execution is O(n + g · |query|), where n is the number of nodes in

the syntax tree, g is the number of cycles in the syntax tree, and |query| is the length of

the query. The time complexity of dealing with cycles depends on the length the query.

Example. Figure 2.7 illustrates an execution of Algorithm 2 on the running example with

the finite automaton in Figure 2.4-(c) and the static syntax tree in Figure 2.6-(c). Note

that though there is a cycle in the static syntax tree (labeled at node b), the algorithm

terminates quickly after it finds that b is not defined at state 4.

/* H: hash table, S: stack, Q: queue */

node=a current=1 S{a} H{} // line 2-4 in Alg. 3

node=a current=2 S{b,c} H{<a>:1, </a>:2} // line 9-15 in Alg. 3

node=c current=0 S{b} H{<a>:1, </a>:2, <c>:2, </c>:0} // line 9-15 in Alg.3

since c is a leaf node, current=2 (i.e., the next state after </c>) // line 16-17 in Alg.3

node=b (b has a cycle) current’=3 n=a Q{a} // line 2-5 in Alg.2

current’=4, Q{c} H{<a>:{1,3}, </a>:{2,4}, <c>:2, </c>:0} // line 6-11 in Alg.2

/* since b is not defined at state 4, only c added to queue Q{c} */

current’=5 Q{} H{<a>:{1,3}, </a>:{2,4}, <c>:{2,4}), </c>:{0,5}} // cycle is done

node=b current=2, since b is still unvisited, process b  // line 9 in Alg.3

H{<a>:{1,3}, </a>:{2,4}, <b>:2, </b>:3, <c>:{2,4}, </c>:{0,5}}, S={}, // finish

Figure 2.7: Algorithm 2 execution on the running example.

2.4.3 GAP Pushdown Transducers

GAP pushdown transducers are based on the basic parallel pushdown transducers

(Section 2.2.3) with two novel features:
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• Dynamic path elimination: GAP pushdown transducers leverage feasible path infer-

ence to dynamically eliminate impossible execution paths at runtime, based on specific

local context.

• Runtime data structure switching: Benefited from path elimination and path conver-

gence, GAP pushdown transducers switch between a stack and a double-tree data

structure at runtime to maximize the efficiency.

At high-level, GAP pushdown transducers follow the same flow as basic parallel

pushdown transducers: (i) split phase, (ii) parallel phase, and (iii) join phase. The main

differences between GAP pushdown transducers and basic parallel pushdown transducers

lie in the parallel phase. In this phase, each transducer processes an input chunk while

maintaining a set of possible execution paths through a set of mappings M . A mapping is

defined as follows:

Definition 3 Given an input chunk i, a mapping mi for i is a 5-tuple mi = (qs, zs, qf , zf , o),

mi ∈ M = Q× Γ∗ × Q × Γ∗ × ∆∗ where qs and zs are the starting state and stack

right before processing i, qf , zf , and o are the finishing state, stack, and output tape after

processing i.

Basically, a mapping embodies the basic information of an execution path. For

example, a mapping (1, ε, 4, 1:2:3, 1) says that if the transducer starts from state 1 with

an empty stack, then after processing the input chunk, it will end at state 4 with a stack

of 1:2:3 (“:” separates items in a stack) and an output tape containing a match. Such

information is used later for joining the results of different transducers.

27



Maintaining the mappings brings a significant amount of cost, comparing to a

single path execution in a sequential transducer [106]. To reduce such parallelization cost,

GAP transducers feature two new optimizations: dynamic path elimination and runtime

data structure switching. Both of them happen in the parallel phase.

Dynamic Path Elimination . A GAP transducer leverages feasible path inference to

prune impossible paths in three situations on the fly:

(1) At the beginning of a chunk (except the first one), a GAP transducer uses the

first symbol of the chunk as the key to look up the feasible path hash table. In return, it

obtains a list of feasible execution paths Qhash, which is often a strict subset of all execution

paths Q (i.e., Qhash ⊆ Q). Then it processes the chunk with only the paths from Qhash.

For example, a GAP transducer that starts at Line 5 of the XML data in Figure 2.4-(b)

would look up <c> in the hash table (the last line of Figure 2.7), and keeps only paths {2,

4}.

(2) During the processing of a chunk, path divergences might happen − when a

pop operation is needed while the stack is empty, the parallel transducer has to enumerate

all possible states that could be popped out from the stack. Prior work [106] extends the

finite automaton by defining the transitions for all end tags, and only includes states that

have a defined transition for the given end tag (denoted as Qfa). Since the inference is only

based on the finite automaton (i.e., query), regardless the input grammar, the state amount

of reduction is limited 2. In evaluation, we found it often fails to reduce the possibilities of

popped-out states due to the inclusion of a special state that handles unrelated tags (e.g.,

2In evaluation, we found it often fails to reduce the possibilities of popped out states due to the inclusion
of a special state that handles unrelated tags (e.g., state 0 in the running example).
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state 0 in the running example). In comparison, when a path divergence occurs, a GAP

transducer inquires the feasible path hash table that is built based on both the query and

the input grammar. Using the given end tag as the key, it can obtain a potentially smaller

set of possible states (i.e., Qhash ⊆ Qfa). Since the path divergence may happen multiple

times during the processing of a chunk, the feasible path inference-based elimination has

great potential to reduce the path maintenance cost. Following the example in situation

(1), when the GAP transducer processes Line 6, it looks up </a> in the hash table and

chooses paths {2, 4}, instead of {2, 4, 0} − the choice of prior work [106].

(3) When processing the first start tag right after a path divergence (e.g., the tag

<b> in </d></c><b>, supposing that path divergence happened at both </d> and </c>), a

GAP transducer also inquires the feasible path table with the first tag (<b>). The purpose is

to further reduce the number of execution paths. This is achieved the taking the intersection

between the set of execution paths before the first start tag Qold and the returned path set

from feasible path table inquiry Qhash (i.e., Qold ∩ Qhash).

Runtime Data Structure Switching . To reduce the cost of mapping maintenance, basic

parallel pushdown transducers use a double-tree data structure [106], which compresses

the mapping and reduces redundant computation in mapping updates. While being more

efficient than maintaining each mapping separately, it is much slower than the stack-based

execution of a sequential pushdown transducer.

An interesting observation we found is that the number of feasible execution paths

often drops to one, thanks to the dynamic path elimination and path convergence. To
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leverage this insight, we allow GAP transducers switch back to stack-based execution once

a single feasible path is left.

More specifically, when a path elimination is performed, the GAP transducer

checks the number of feasible execution paths. If the transducer finds only one path is

left, then it switches to use a stack to continue its execution until the next path elimination

check; otherwise it uses a double-tree data structure to maintain multiple execution paths.

As discussed earlier, a path may diverge into multiple ones under certain circumstances (see

Section 2.2.3). In such cases, the GAP transducers switch to a double-tree data structure

right after the divergence. Since path elimination can happen multiple times for a GAP

transducer depending on the contents in the chunk, the data structure switching can also

occur multiple times. We hence refer to it as runtime data structure switching. Note that

the switching cost is usually negligible as the switching typically occurs less than 5 times

in millions of transitions, according to our experiments.

Finally, once each GAP pushdown transducer finishes its chunk, the mappings from

different transducers are joint pair by pair using the same rules as basic parallel pushdown

transducers [106]. Basically, to join a pair of mappings m1 and m2, it requires their states

and stacks are matched appropriately (e.g., m1(qf ) = m2(qs)).

In sum, GAP pushdown transducers are based on basic parallel pushdown trans-

ducers and work in three phases. With the two novel features, dynamic path elimination

and runtime data structure switching, their execution cost can be potentially reduced.
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2.5 Speculative GAP

In certain scenarios, a pre-defined grammar may not be available. For example,

the grammar has not been explicitly defined or its access is not granted. GAP addresses

this challenge with speculative execution. In this section, we first describe a method for

extracting partial grammars from input data, then introduce the speculative execution of

GAP pushdown transducers, including a local reprocessing technique to reduce the mis-

speculation penalty.

2.5.1 Partial Grammar Extraction

In the absence of a pre-defined grammar, we leverage the insight that input data

implicitly dictate the grammar to a certain extent, though may not cover the entire grammar.

Specifically, we design a method that automatically extracts a partial static syntax tree from

prior inputs.

Many applications process semi-structured data from the same source repetitively.

For example, web analytics that receive semi-structured data from a specific social network

website or data exchanges between two enterprises. In such scenarios, the input data from

run to run tend to follow a similar structure as they are all defined by the same “hidden”

grammar. Hence, it provides an opportunity to “learn” grammar from earlier runs.

Algorithm 4 shows a straightforward way to extract a (partial) static syntax tree

directly from an input stream. More sophisticated grammar learning algorithms are also

available from prior studies [118, 119].
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Algorithm 4 Static Syntax Tree Extraction from Input Data
1: procedure static syntax tree extraction(stream)

2: while stream has next tag t do

3: if t is the first element then /* root node */

4: root = create node(t); stack.push(root);

5: else if t is a start tag then

6: parent = stack.top();

7: /* find a child of parent with tag t */

8: child = find child by tag(parent, t);

9: if child != null then

10: stack.push(child);

11: else /* create a new child for parent */

12: node = create node(t);

13: parent.add child(node); stack.push(node);

14: else if t is an end tag and t == stack.top().end then

15: stack.pop();

16: else

17: print(“errors in inputs”);

18: return root;

2.5.2 Speculative GAP Pushdown Transducers

Speculative GAP pushdown transducers are augmented with the capabilities of

validating the speculative execution paths and initiating appropriate reprocessing when

speculation fails. Since Section 2.4.3 already describes the basics of GAP pushdown trans-

ducers, here we focus on the aspects of speculative execution.
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Speculative Execution. With the extracted grammar, GAP can infer feasible paths in

the same way as inferring from a pre-defined grammar. The difference lies in the results

− the feasible paths may be incomplete due to missing parts of the extracted grammar.

Consequently, GAP transducers run speculatively, with the potential of missing the true

path. Similarly to other speculation schemes, speculative GAP transducers first run with

speculated data (i.e., feasible paths from extracted grammar), then rely on the validation

and reprocessing to guarantee the correctness.

Note that when a speculative GAP transducer looks up an incomplete feasible

path table, it may not even find any corresponding feasible paths for the inquired input

symbol, simply because the symbol does not appear in the extracted grammar. In such

situations, the GAP transducers degrade themselves to basic parallel pushdown transducers

and enumerate all execution paths.

Another difference with the non-speculative transducers is about the third scenario

of dynamic path elimination (see Section 2.4.3). When processing the first start tag after

a path divergence, it does not take the intersection between two path sets Qold and Qhash.

Instead, it simply uses Qhash to replace Qold, for two reasons: first, this creates chances

to correct an earlier misspeculation; second, it allows the reprocessing to be performed

selectively (as explained next).

Validation and Reprocessing. Once every GAP transducer finishes its chunk (specula-

tively), they enter into the join phase, where the validation and reprocessing are performed.

According to Section 2.4.3, the feasible path table is used in three scenarios: (1)

at the beginning a chunk (except the first one); (2) in the occurrence of a path divergence;
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(3) when processing the first start tag after a path divergence. Since the feasible path

table is extracted from a partial grammar, it might miss the true execution path. Hence,

a validation is required for each of the above three scenarios, respectively. For example,

during the joining of a pair of mappings from two consecutive chunks, if the starting states

of the latter chunk do not include the correct finishing state of the earlier chunk, a mis-

speculation is detected. In either case, when a validation fails, a GAP transducer would

reprocess the failed part with the corresponding correct starting state. Note that a mis-

speculation at the beginning of of a chunk does not necessarily mean that the whole chunk

needs to be reprocessed. Thanks to the other two dynamic path elimination scenarios, an

earlier misspeculation might be corrected by a latter path elimination operation. Hence,

the reprocessing of a chunk is usually performed selectively.

2.6 Evaluation

We evaluate GAP on a set of real-world XML benchmarks and examine its effi-

ciency and scalability on a variety of path queries, including a set of 200 queries.

Implementation. We prototyped GAP in C language. It includes four major components:

a static syntax tree generator that takes a DTD/XSD grammar as input and outputs a static

syntax tree; a symbolic pushdown transducer executor that runs symbolically over a given

static syntax tree; a multi-threaded GAP pushdown transducer implemented using Pthread

and can be tuned into either speculative mode or non-speculative mode (by default, it is set

to speculative mode), as well as a grammar extractor that can be enabled either online (for

streaming data) or offline (for storage data).
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Methodology. We compare GAP with the state-of-the-art parallel pushdown transduc-

ers [106], which has shown comparable performance to PugiXML [82], a popular C++

XML processing library and much better performance than Expat [52]. Table 2.2 sum-

marizes the versions used in our comparison. For speculative GAP versions, we randomly

choose a portion of the complete grammar 3.

Table 2.2: Method Versions in Evaluation

Method Versions Abbreviation

Parallel pushdown transducer [106] PP-Transducer
Non-speculative GAP GAP-NonSpec
Speculative GAP with 20% grammar GAP-Spec(20%)
Speculative GAP with 40% grammar GAP-Spec(40%)
Speculative GAP with 80% grammar GAP-Spec(80%)

All experiments run on a 20-core machine equipped with two Intel 2.13 GHz Xeon

E7-L8867 processors. The machine runs openSUSE Leap 42.1 and has GCC 4.8.5. All

programs are compiled with “-O3” optimization flag. The timing results reported are the

average of 10 repetitive runs. We do not report 95% confidence interval of the average when

the variation is not significant.

Benchmarks. Table 2.3 lists datasets used in our experiments as well as their statis-

tics. Except XMark, all the datasets are from a commonly used UW XML data reposi-

tory [126], which covers a variety of XML applications. To make a fair comparison with

prior work [106], we also use a scaling factor that replicates the datasets, resulting in sizes

from 600MB to 6GB. We do not report results for larger datasets because the measurements

3To ensure the partial grammar is meaningful, we randomly and recursively remove leaf elements from
the original grammar.
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are stable due to the large amount of repetitive computations involved in semi-structured

query processing.

Table 2.3: XML datasets (d means depth)

Dataset #tags dmax davg Dataset #tags dmax davg

Lineitem 34,781,152 3 2.94 DBLP 33,321,292 6 2.9
SwissProt 29,770,302 5 3.55 NASA 237,230,520 8 5.58
Protein 42,597,466 7 5.15 XMark 23,328,398 13 5.55

We use queries from XPathMark[63] for its designated purpose of XPath query

evaluation and its realistic query structures. As listed in Table 2.4, the query set covers the

whole set of A-type queries as well as two B-type queries in XPathMark. When predicates,

parents or ancestors are used, the queries are translated into subqueries or rewritten, such

that they can be merged into a single pushdown transducer. The right-most two columns

show the number of subqueries and number of matches in the datasets.

Single-Query Performance. The speedup for single-query processing is shown in Fig-

ure 2.8 (left). The baseline is the sequential pushdown transducer.

Among the five versions, GAP-NonSpec yields the best speedup on all tested

queries, leading to an average of 15X speedup. In comparison, PP-Transducer achieves

least speedup except for benchmarks XM1 and XM2, in which cases the GAP-Spec(20%)

performs the worst. It is easy to notice the clear trend among the three speculative versions.

As the extracted syntax tree becomes more complete, the performance improves. However,

the trend varies across different benchmarks, implying that the performance of speculative

versions are less predictable. It is worth to note that even with 20% syntax tree, the

GAP-Spec still yields better performance than PP-Transducer (13.2X v.s. 11.6X).
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To better understand the performance results, we profiled the average number of

starting execution paths, as shown in Table 2.5. The last row of single query block shows the

geometrical mean of the number of starting execution paths for each version. It clearly shows

a big discrepancy between PP-Transducer and GAP-NonSpec. The discrepancy confirms

the effectiveness of the proposed dynamic path elimination and demonstrates its benefits in

improving the performance.

Table 2.4: XPath queries. #sub shows the number of sub-queries in each query structure.

Query Dataset Query structure #sub #matches

NS1 NASA /ds/d/tb/ts/tl/tit 1 2,119,760
NS2 NASA //ds/d/tit 1 3,395,250
PT1 Protein /pd/pe/r/ri/xs/x/u 1 279,402
PT2 Protein /p/pe//u 1 1,949,416

Query Dataset Query structure #sub #matches

DP1 DBLP /dp/ar/au 1 1,107,323
DP2 DBLP //dp//ed 1 31,940
DP4 DBLP /dp/ar[tit]/jn 3 558,046
XM3 XMark //k/ancestor::li/t/k 3 241,556

Query Dataset Query structure #sub # matches

NS3 NASA /ds/d[descendant::tit or descendant::na or de-
scendant::kw]/an

5 1,826,250

NS4 NASA /ds/d[tit and al]/r/s/o/au/ln 4 191,250
PT3 Protein /pd/pe/r[aci/acs or at or ct or nt]/ri/ats/at 6 5,668,287
DP3 DBLP /dp[mt/au or mt/tit or mt/yr or pt/au or

pt/tit or pt/yr or ...]/au
43 1,107,323

XM1 XMark /s/r/*/item/[parent::af ]/name 1 3,851
XM2 XMark //s[r/*/item[parent::au parent::af ... parent::

eu]/mb/m/t/k/ b or ...]/pp/ps/ name
18 178,500

Multi-Query Performance. To evaluate the performance of multi-query processing, we

use 12 groups of queries, with three different sizes: 20 queries, 40 queries, and 80 queries.
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Figure 2.8: Speedup of Single-Query and Multi-Query Processing on A 20-core Machine

Multi-query processing speedup is shown in Figure 2.8 (right). Overall, the results

follow a similar pattern as single-query processing. However, the performance differences

among different versions become larger, especially between PP-Transducer and four GAP

versions. Specifically, GAP-NonSpec produces 15.1X, similarly to its single-query perfor-

mance, while PP-Transducer only yields 6.7X speedup. The reason is that when processing

multiple queries concurrently, the pushdown transducers grow larger with more number

of states. As a result, PP-Transducer ends up enumerating more paths, causing higher

parallelization cost.

Table 2.5 reports the number of starting paths for all five versions. In single-query

processing, the gap between PP-Transducer and GAP-NonSpec is about 10X (9.2 vs. 1.4

on average). While in multi-query processing, the gap quickly increases up to hundreds of

times (188 vs. 2.1 on average).

Speculation Accuracy and Cost. Table 2.6 reports the speculation accuracy and the

cost of misspeculation, including both single queries and query sets. The ones that are

not listed do not have any misspeculation. The misspeculation cost is typically a very tiny

portion of the total execution time, except queries to XM dataset which shows more than
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Table 2.5: Average Number of Starting Execution Paths

PP- GAP- GAP-Spec
Query Set Trans. NonSpec 20% 40% 80%

si
n

gl
e

q
u

er
y NS 7.7 1.0 5.7 4.8 1.1

LI 8.4 1.1 5.3 1.3 1.1
DP 9.0 1.7 3.1 3.1 1.6
XM 12.4 1.9 6.3 5.5 3.7
Geo 9.2 1.4 4.9 3.2 1.7

80
q
u

er
ie

s NS 275.0 1.1 192.4 157.6 5.3
LI 166.0 1.0 60.6 51.4 28.5
DP 96.0 3.2 18.9 17.4 2.5
XM 285.0 5.4 119.8 75.2 33.4
Geo 188.0 2.1 71.7 57.0 10.6

Table 2.6: Speculation Accuracy and Reprocessing Cost

GAP-Spec(20%) GAP- Spec(40%)
Query (set) cost acc. cost acc.

si
n

gl
e

q
u

er
y DP1 0.003% 94.12% 0.003% 94.12%

DP3 0.002% 94.12% 0.002% 94.12%
DP4 0.003% 94.12% 0.004% 94.12%
XM1 26.85% 62.50% 0% 100%
XM2 25.10% 47.83% 0% 100%

q
u

er
y

se
t

DP (20) 0.003% 88.24% 0.002% 88.24%
DP (40) 0.002% 94.12% 0.003% 94.12%
DP (80) 0.002% 96.43% 0.002% 96.43%
XM (20) 24.18% 56.52% 0% 100%
XM (40) 24.14% 56.52% 0% 100%
XM (80) 26.02% 54.17% 0% 100%

24% misspeculation cost when using 20% grammar (GAP-Spec(20%)). There are two main

reasons causing such relatively high cost: First, the speculation accuracy of these queries are

relatively low, slightly higher than 50%, resulting in a substantial amount of reprocessing;

Second, a few elements that appear quite often in the dataset are missing in the 20%

partial grammar, in which cases, the speculative GAP transducers degrade themselves to

basic parallel transducers and enumerate all execution paths.

39



0	  

5	  

10	  

15	  

20	  

0	   5	   10	   15	   20	  

Sp
ee
du

p 

Number	  of	  Cores 

PP-‐Transducer	   GAP-‐NonSpec	   GAP-‐Spec(40%)	  

Figure 2.9: Scalability over Number of Cores

Scalability. We measured the scalabilities in terms of both the number of cores and the

number of queries.

Figure 2.9 shows the scalability in terms of number of cores. All three versions

show good scalability − the speedup linearly increases up to at least 20 cores. Meanwhile,

it also clearly shows the trend of their differences − as the number of cores increases the

performance gap among these three versions will become even larger.

Figure 2.10 shows the scalability in terms of number of queries. PP-Transducer

shows a sharp decrease as the number of queries increases, which aligns well with the results

reported by prior work [106]. In comparison, the two GAP versions show no degradation

at all up to at least 200 queries, thanks to the dynamic path elimination.
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Figure 2.10: Scalability over Number of Queries

2.7 Related Work

There is a large amount of efforts on making parsing parallel for both context-free

grammars and non-CFG grammars [105, 120, 127, 66, 67]. They provide valuable insights

to this work. In particular, [66] leverages some rules extracted from the input structure to

facilitate the parallel expression evaluation. Next, we will focus our discussions on XPath

querying and its parallelism exploitation.

XML querying . Many prior work study the expressiveness of XPath querying and the

execution of concurrent queries efficiently, including automata-based techniques [39, 134],

array-based methods like TurboXPath [80] and stack-based algorithms like Twig2Stack [49].

This work uses an approach that combines a number of small queries into a single DFA and

evaluates them simultaneously [68]. Y-Filter [56] and XMLTK [39] are based on this method

and address state explosion with lazy DFA.
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Some earlier work exploiting data parallelism in XPath queries rewrite an XPath

query with predicates into several sub-queries, execute the sub-queries in parallel and merge

their results sequentially [43]. However, this approach demands more hardware resources

meanwhile exposes limited parallelism. The work by Zhang and others [134] executes mul-

tiple states in the NFA in parallel. Although each active state is handled by a different

thread, the XML data is still processed sequentially. An alternative method proposed by

Liu and others [90] uses a parallel structured join algorithm, where both query and join

operations are parallelizable. However, constructing the required data structures is still a

sequential step. This work is primarily based on the PP-Transducer [106] which can operate

on arbitrarily framed XML chunks. More details are given in Section 2.1 and Section 2.2.3.

Parallel XML Parsing . There are two basic ways of data-level parallel parsing for XML:

the partition-oriented and the merging-oriented [122, 112, 94, 133, 135]. The work by Lu

and others, for example, first extracts the high-level structure of XML documents through

a quick prescan [94], and parses each part of the document in parallel. In comparison,

Wu and others [133]’s method cuts XML documents into chunks directly, parses them and

merges the result together.

Other Parallelization . Recent work on parallelizing finite automata [137, 103, 136, 115]

provides useful insights, but cannot be applied directly to pushdown transducers, due to

the involvement of stack. Zhao and others design stack-based automata that predict future

function calls to enable parallel Just-in-Time compilation [139]. Saeed and others [97]

exploit the rank convergence in parallel dynamic programming, sharing some of the high-

level ideas of this work.
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2.8 Summary

This work proposes GAP, a novel parallelization scheme that leverages the gram-

mar of semi-structured data to improve the parallelization efficiency. Depending on the

availability of a pre-defined grammar, GAP can run in both speculative mode and non-

speculative mode. In either case, GAP is able to infer feasible execution paths by generating

a static syntax tree and executing the pushdown transducer symbolically on the tree. By

feeding such information to the GAP pushdown transducers, unnecessary execution paths

can be eliminated on the fly. In addition, GAP transducers feature a runtime data struc-

ture switching to further take advantage of path elimination and maximize the efficiency.

Evaluation on real-world datasets and queries confirm the benefits of grammar-aware par-

allelization which yields consistent speedup to a large number of concurrent queries.

43



Chapter 3

Scalable JSONPath Querying

JSON (JavaScript Object Notation) and its derivatives are essential in the modern

computing infrastructure. However, existing software often fails to process such types of

data in a scalable way, mainly for two reasons: (i) the processing often requires to build a

memory-consuming parse tree; (ii) there exist inherent dependences in processing the data

stream, preventing any data-level parallelization.

Facing the challenges, developers often have to construct ad-hoc pre-parsers to

split the data stream in order to reduce the memory consumption and increase the data

parallelism. However, this strategy requires more programming efforts. Moreover, the pre-

parsing itself is non-trivial to parallelize, thus introducing a new serial bottleneck.

To solve the dilemma, this work introduces a scalable yet fully automatic solution

− a compilation system, namely JPStream, that compiles standard JSONPath queries into

parallel executables with bounded memory footprints. First, JPStream adopts a stream pro-

cessing design that combines the querying and parsing into one pass, without generating any
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in-memory parse tree. To achieve this, JPStream uses a novel joint compilation technique

that compiles the queries and the JSON syntax together into a single automaton.

Second, JPStream leverages the “enumerability” of automaton to break the de-

pendences and reason about the transition rules to prune infeasible states. It also features

a runtime that learns structural constraints from the input to enhance the pruning. Evalu-

ation on real-world JSON datasets with standard JSONPath queries shows that JPStream

can reduce the memory consumption significantly, by up to 95%, meanwhile achieving near-

linear speedup on multicore and manycore processors.

3.1 Introduction

JSON (JavaScript Object Notation) and its derivative data types (such as NetJ-

SON [70], GeoJSON [69], JSON-LD [71], CoverageJSON [60], and etc.) form a family of

contemporary semi-structured data (herein referred to as JSON-family data types or simply

JSON). Together, they play a fundamental role in the modern computing infrastructure,

ranging from cloud computing [47, 91] and microservice architectures [130, 58], to Internet

of Things (IoT) [132] and NoSQL data stores [87, 72]. For example, major cloud providers,

such as Azure [5], AWS [3], Firebase [61], and Oracle Cloud [48], all support JSON-based

cloud services. Document data stores, such as MongoDB [99] and CouchDB [37], are built

on JSON data.

Not only the popularity, but also the volume of JSON data grows quickly in recent

years. For instance, the NASA Earth Exchange (NEX) project yielded over 20 TB climate

data that is accessible from Amazon servers via JSON APIs [92]. Twitter produces tweets
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as a JSON data stream at a rate of 600 million per day [24]. Public data sources, like

data.gov [8], provide REST APIs to access a broad range of scientific data primarily in

JSON format, with sizes quickly increasing.

To efficiently process large-volume text data, recent work proposes hardware-

implemented automata, such as automata processor [57], cache automata [125], and in-

SRAM pushdown automata [36]. Despite of their promising results, they are not yet readily

available to the developers.

In comparison, this work focuses on the use of commodity multicore and many-

core processors to accelerate JSON data processing, which, unfortunately, remains an open

problem, due to the first two challenges shown in the first chapter.

Challenge I - Preprocessing Costs. Traditional strategies for processing semi-structured

data require a full parsing over the entire data stream before extracting information (sub-

structures of interests). This often creates a high memory pressure for large data streams.

For example, JSON-C [12], a popular JSON parser requires 8GB memory to process a 1GB

JSON stream. Even worse, loading a JSON file with hundreds of megabytes can easily raise

an out-of-memory exception on CouchDB [37]. In addition to the high-memory cost, pre-

processing introduces significant yet unnecessary delay as the substructures out of interests

are also processed together. These high costs of preprocessing greatly limit the scalability

of semi-structured data processing.

Challenge II - Inherent Dependences: Exposing effective parallelism is key to the scal-

able data processing on parallel computer architectures. Unfortunately, semi-structured

data processing exposes limited parallelism due to its inherently nested structures. Fig-
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$.routes[*].steps[2].locQuery:

{"routes": [ 
{"loc": { 

"lat":35.11,
"lng":-106.12 }, 

"steps": [
{"loc": {

"lat":32.12,
"lng":-107.69 }},

{"loc": {
"lat":31.27,
"lng":-126.89}}, 

…

thread T2

thread T1

match or not?

Figure 3.1: Challenge in Parallel JSON Data Processing1.

ure 3.1 illustrates this challenge with a piece of Google route data. Suppose the user is

interested in the location of the third step in each route, denoted as a path expression

$.routes[*].steps[2].loc. Except the first thread, all the other threads cannot deter-

mine if the key loc satisfies the path conditions or not, due to the lack of relevant contexts.

In general, such nested structures of the data serialize the processing of the whole JSON

stream.

State of The Art. To cope with the preprocessing costs, stream programming paradigms,

such as the SAX (Simple API for XML) model [75, 108], have been introduced. But, they

simply provide callback APIs for handling the basic tokens, still requiring substantial pro-

gramming efforts to design and implement a particular processing task. A more promising

solution is to automatically generate deterministic automata to process the data in a stream-

ing fashion [68]. However, so far, the automata are designed only for conventional XML. It

1Google route data is simplified and indented for better illustration.
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remains an open question how to construct the automata for the stream processing JSON

data, which follows quite different syntactical structures (see Section 3.2).

As to parallelization, prior efforts propose to pre-scan the data to find “good”

boundaries for partitioning [96, 134, 95]. However, this strategy has several limitations.

First, it adds an extra pass over the entire data stream, which could be very expensive for

large data streams; Second, the pre-scan itself is a serial process; Third, despite the avail-

ability of “good” boundaries, they may not separate the data evenly, leading to potential

load imbalance. At last, this strategy requires developers to write the pre-scanner for JSON

data in a specific structure, adding extra programming burden.

Recent work [106, 79] has shown the possibility to partition an XML stream arbi-

trarily with aggressive parallelization techniques, thus avoiding the pre-scan. However, due

to some unique features of JSON, these techniques suffer from the path explosion problem

(see Sections 3.2 and 3.4), failing to bring performance benefits for parallel JSON processing.

Overview of This Work. To solve these problems, this work proposes a compilation

system, namely JPStream, that is particularly designed for JSON-family data processing.

For a given set of JSONPath queries, JPStream can automatically generate automata-based

parallel executables with bounded memory footprints for JSON data processing. We next

briefly describe the major components of JPStream.

• Streaming Compilation. The key to avoid the expensive preprocessing is to adopt

stream processing. However, this is non-trivial for a JSON stream which is defined by

a Context-Free Grammar (CFG). The processing needs to perform both CFG parsing

and query matching at the same time. JPStream addresses this with a joint compila-
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tion. It first compiles the queries (i.e., path expressions) and JSON syntax into two

separate automata. Unlike conventional automata, partially defined. JPStream then

“hooks” the two automata together to form a new one, referred to this as streaming

automaton, which turns to be a unconventional pushdown automaton with double

stacks. Encoded with both queries and JSON syntax, a streaming automaton per-

forms parsing and querying simultaneously in a single pass (see Section 3.3).

• Parallelizing Compilation. Unlike conventional automata that only start from the

beginning of an input stream, the automata generated by JPStream can start from

an arbitrary position. This flexibility is enabled by a set of parallelization tech-

niques customized for JSON, including streaming automaton state enumeration, JSON

syntax-based state feasibility analysis and automata resetting. Together, they elimi-

nate the path explosion problem encountered by the conventional parallelization (see

Section 3.4).

• Runtime Optimization. To further reduce parallelization cost, JPStream features a

runtime that learns hints (i.e., structural constraints) from the data to eliminate

certain unnecessary computations on the fly (see Section 3.5).

We prototyped JPStream in C language and used Pthreads for the generated code.

Our evaluation using standard path expressions and a diverse set of JSON data has shown

that JPStream-generated automata reduce the memory footprint by up to 95% comparing

to preprocessing-based methods and scales with near-linear speedup on the commodity

multicore and manycore processors (see Section 3.6).

In sum, this work makes a four-fold contribution:
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object ::= {} | {members}
members ::= pair | pair,members

pair ::= key:value

array ::= [] | [elements]
elements ::= value | value,elements

value := object | array | primitive

Figure 3.2: BNF Grammar of JSON.

• To our best knowledge, this work introduces the first automata-based stream process-

ing model for JSON data, with a novel joint compilation technique.

• It offers a set of parallelization techniques customized for JSON processing, making

its possible to avoid the path explosion problem.

• It designs a data constraints learning scheme that can improve the parallelization

efficiency at runtime.

• Finally, this work prototypes the proposed ideas and evaluates the system compre-

hensively.

Next, we provide the necessary background for this work.

3.2 Background

This section introduces the basic concepts of JSON and its processing, with a

focus on its unique features comparing to XML, and how these features complicates the

parallelization.
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Grammar-based JSON. Originated from JavaScript, JSON has evolved into a language-

independent data representation with a formal context-free grammar (CFG) (see Fig-

ure 3.2). The grammar follows the conventions of C-family languages, making it an ideal

data-exchange language cross platforms.

Note that JSON grammar is fundamentally different from that of XML− a markup

language based on tag pairs. Unlike JSON with a rich syntax, XML is almost “grammar-

less” − as long as the tags are well paired, the data is considered to be valid 2. As shown

later, this “minimal grammar” feature makes the design of XML stream processing model

easier. By contrast, CFG-based JSON requires a stream processing model that can cope

with CFG, plus the querying. In fact, this needs a non-conventional automaton (an automa-

ton with double stacks) to process. Next, we introduce the two major JSON structures:

object and array and explain how they could complicate the design of data-level paral-

lelization.

JSON Objects. A JSON object consists of zero or multiple key:value pairs, enclosed by

a pair of curly parentheses (see Figure 3.2). For example, {"lat":35, "lng":-106} is a

loc object with two key-value pairs (i.e., the attributes). This object-oriented design allows

JSON to naturally fit with the data types in most object-oriented languages.

Comparing to XML tags, JSON objects are more efficient for encoding informa-

tion. For example, XML needs a longer string to encode the same information in the prior

example:

<loc><lat>35</lat><lng>-106</lng></loc>

2The XML grammar discussed here should not be confused with the user-defined grammar for a specific
set of XML data, such as DTD or XSD.
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Despite its conciseness, the syntax of JSON objects makes an effective parallelization more

challenging. Intuitively, when an XML stream is partitioned, a pair of tags might be broken

into different chunks. However, an end tag, like </loc>, still carries some context infor-

mation − it was inside a loc. By contrast, a JSON object ends anonymously, with simply

a right curly bracket }. As shown later in Section 3.4, lacking the information of object

names is a key reason causing path explosion, a problem that can result in significantly high

parallelization overhead.

JSON Arrays. The other major JSON component is array. A JSON array consists of an

ordered list of values, embraced by a pair of square brackets (see Figure 3.2). For example,

steps in Figure 3.1 is an array of loc objects.

Note that array is a new syntactical feature comparing to tag-based XML. More-

over, JSON allows the elements in an array to be objects or even arrays, creating nested

structures that are potentially interleaved. On one hand, these new features make JSON

more expressive than XML; On the other hand, similar to the anonymous ending feature,

they complicate the parallelization. For example, in a broken piece of JSON data, it might

be hard to tell if an object is under an array or an object, both of which can encapsulate

objects. This syntactical uncertainty is another important reason for the path explosion

problem (see Section 3.4).

In sum, the unique features of JSON make it a promising data language that

gradually replaces conventional tag-based XML in many domains [129, 27, 123]. Meanwhile,

they also complicate the designs of stream processing model and its parallelization.
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query 
automaton

parse
automaton

.query

{JSON} syntax

Figure 3.3: Illustration of Joint Compilation.

Querying JSON Data. In the processing of JSON data, the most basic queries are path

expressions (a.k.a. JSONPath), which identify the substructures of interest 3. JSONPath

is the key building block of more advanced processing schemes (e.g., JSONiq [14]). As

its name suggests, a path expression defines specific “paths” from the root element of

the JSON data (an object or an array) to the substructures of interest. For example,

$.routes[1].steps specifies the steps object under the first element of routes array.

The dot . after $ indicates that the root object is anonymous. Note that, unlike the path

expressions for XML data, array indexes often appear in JSON path expressions for its

support of array syntax. More details about JSONPath syntax can be found in [74].

Next, we explain how JPStream uses the path expressions and the JSON syntax

for the purpose of stream processing.

3.3 Streaming Compilation

This section introduces the joint compilation technique that generates stream pro-

cessing code for JSON.

3The counterpart for XML is XPath, which has the same expressiveness.
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3.3.1 Idea of Joint Compilation

The basic idea of joint compilation is illustrated in Figure 3.3. First, the queries

and JSON syntax are compiled separately into two automata: (i) a query automaton for

matching query results and (ii) a parsing automaton for recognizing the JSON syntactical

structure. Note that, different from conventional automata, the query and parsing automata

are only partially defined, with some transition rules missing. For example, the transition

rules for handling an ending curly bracket } or an ending square bracket ] are undefined

in the query automaton. On the other hand, there are no concrete states defined in the

parsing automaton.

The partial definitions of both automata are designed on purpose to facilitate the

next compilation step − automata hooking. Basically, the two partially defined automata

are “hooked” together in a way that a deterministic and complete set of transition rules are

created. The resulted automaton is referred to as streaming automaton, which is capable

of performing parsing and querying simultaneously. Next, we elaborate the generations of

query and parsing automata, and the automata hooking, respectively.

3.3.2 Path Expression Compilation

Given a set of path expressions, JPStream compiles them into a single finite au-

tomaton with transitions partially defined.

The basic idea is inspired by a seminal work that designs deterministic automata

for XML querying [68]. We treat a path expression as a regular expression, where a key

in the path expression is considered as a symbol in the regular expression. For path
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expressions with predicates or logical operators, we break them down into subqueries,

then group them into a set of regular expressions (also used in [106]). For example, a

query $.a[?(@.b||@.c)].d is broken into four subqueries $.a, $.a.b, $.a.c and $.a.d,

then grouped into a regular expression set {a,ab,ac,ad}. Then, following standard algo-

rithms [31], the regular expressions are used to generate a deterministic finite automaton

(DFA). Formally, the resulted finite automaton Mquery is a 5-tuple:

Mquery = (Q,Σ, δ, s0, F ) (3.1)

where Q is the set of states, Σ is the input alphabet, δ is the set of transition rules, s0 is

the initial state, and F is the set of accept states. When the finite automaton transitions

into an accept state, a match for a subquery is found.

Two things worth to mention here:

• The transition rules set δ is partially defined. In fact, it only handles three kinds of

input symbols: a key, an open square bracket [, and a comma ,, despite the existence

of other symbols. The last two symbols are used for handling array constraints, as we

explain shortly.

• The DFA matches the results of the subqueries, which may still need to be merged

and filtered to produce the final output. In the earlier example, a is finally outputted

only if a match of b or c is found under a. Thus, there is another pass over the

matches of subqueries.

Array Constraints Handling. Since JSON supports array syntax, its path expres-

sions commonly include array indexes or index ranges, such as steps[2], steps[2:4]
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Figure 3.4: Automaton for $.rountes[*].steps[2].loc.

or steps[*]. To cope with these constraints, one option is to encode them into the au-

tomaton generation process. A trick for this is to reformat an array constraint with regular

expressions of comma ,, which separates array elements:

• A specific index range [m:n]4 is reformatted to regular expression [, {m,n}, where {m,n}

indicates the comma needs to be repeated m to n times.

• Similarly, the whole index range [*] is reformatted to regular expression [, *, where *

indicates comma can be repeated any number of times.

Figure 3.4 shows the automaton for the path expression $.routes[*].steps[2].loc.

The states with shadows are the divided states used for handling array indexes.

In practice, we can also augment the automaton with a set of counters, each for an

array index constraint appeared in the path expressions. This solution adds extra condition

checks to the execution, but reduce the number of states.

4Negative indexes like [-5:] are not supported (requires backtracking).
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3.3.3 JSON Syntax Compilation

To precisely match the query results, it is critical to recognize the syntactical struc-

tures in JSON streams. As JSON is CFL, the recognition requires a pushdown automaton.

Stateless Parsing. Unlike the conventional CFG parsing that tracks a parsing state

to build the parse tree, our pushdown automaton only needs to recognize the syntactical

structures (e.g., object, array, and key-value), without connecting them into a tree. This

critical difference makes a stateless automaton sufficient for our purpose. Later, we will see

this “statelessness” is also important for the automata hooking.

A stateless pushdown automaton Mparsing is a 3-tuple:

Mparsing = (Σ,Γ,∆) (3.2)

where Σ = { {, }, [ ], ,, prim, and key } is the input alphabet, Γ = { {, [, and key } is

the stack alphabet, and ∆ is the transition rule set (listed in Figure 3.5). Each rule follows

a format of ∆(c, s) → s′, where c, c ∈ Σ is the current input symbol, and s is the stack

content, which contains an ordered list of symbols from the stack alphabet Γ. Symbols in s

are separated by comma :. Note that, for conciseness, the rules in Figure 3.5 show at most

two top elements in the stack. The arrow → indicates a transition that changes the stack

by performing pop or push operations. In general, the transitions rules are not difficult to

follow. One detail worth to mention is that the colon : in a key-value pair is treated as

part of a key token. For example, "steps": is recognized as a key.

So far, we have introduced the generations of both query and parsing automata.

Next, we explain how to hook them.
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[Obj-S] ∆({, ∗)→ { [Ary-S] ∆([, ∗)→ [

[Key] ∆(key, ∗)→ key [Obj-E] ∆(}, ε : {)→ ε
[Val-Obj-E] ∆(}, key:{)→ ε [Elt-Obj-E] ∆(}, [:{)→ [

[Ary-E] ∆(], ε : [)→ ε [Val-Ary-E] ∆(], key:[)→ ε
[Elt-Ary-E] ∆(], [:[)→ [ [Key-Val] ∆(,, {)→ {

[Elt-Pmt] ∆(prim, [)→ [ [Elt] ∆(,, [)→ [

[Val-Pmt] ∆(prim, key)→ ε

Figure 3.5: Transition Rules of Parsing Automaton.

3.3.4 Automata Hooking

The basic idea is to use the parsing automaton to drive the execution of query

automaton, so that they can coordinate to accomplish the parsing and querying tasks.

Transitions Rule Embedding. When parsing automaton recognizes some JSON syntac-

tical structures relevant to the queries (i.e., key, [, and ,), it will feed them to the query

automaton to trigger state transitions. For this purpose, we embed the transition rules of

query automaton δ into three transition rules of the parsing automaton: [Ary-S], [Key],

and [Elt], which handle the alphabet of query automaton.

Query State Recording. Note that the progress of query matching may be lost when the

processing moves to a lower JSON structural level. For example, after a steps[] array is

processed, the automaton (see Figure 3.4) needs to return to the state before it encounters

the steps[]. However, the query automaton itself is unable to memorize these older states.

We solve this by introducing another stack − query stack. When the processing moves to a

lower level (e.g., reading a [), the current query automaton state is pushed onto the query

stack. Correspondingly, a state is popped out of the query stack and to serve as the current

query state when the processing returns to a higher level of JSON structure.

58



[Obj-S] ∆(q, {, ∗, ∗)→ (q, ∗, {)
[Ary-S] ∆(q, [, ∗, ∗)→ (δ(q, [), q, [)
[Key] ∆(q, key, ∗, ∗)→ (δ(q, key), q, key)

[Obj-E] ∆(q, }, ε, ε : {)→ (q, ε, ε)
[Val-Obj-E] ∆(q, }, q′, key:{)→ (q′, ε, ε)
[Elt-Obj-E] ∆(q, }, ∗, [:{)→ (q, ∗, [)

[Ary-E] ∆(q, ], q′, ε : [)→ (q′, ε, ε)
[Val-Ary-E] ∆(q, ], q′ : ∗, key:[)→ (q′, ε, ε)
[Elt-Ary-E] ∆(q, ], q′, [:[)→ (q′, ε, [)
[Val-Pmt] ∆(q, primitive, q′, key)→ (q′, ε, ε)
[Elt-Pmt] ∆(q, primitive, ∗, [)→ (q, ∗, [)
[Key-Val] ∆(q, ,, ∗, {)→ (q, ∗, {)

[Elt] ∆(q, ,, ∗, [)→ (δ(q, ,), ∗, [)

Figure 3.6: Transition Rules of Streaming Automaton.

In this way, the parsing automaton coordinates with the query automaton, ex-

ecuting like a single automaton. Here, we refer to the hooked automaton as streaming

automaton. Formally, a streaming automaton is an 8-tuple:

Mstreaming = (Σ,Γq,Γs,∆, δ, Q, s0, F ) (3.3)

where the input alphabet Σ and syntax stack alphabet Γs are from the parsing automaton,

the query stack alphabet Γq, along with Q, s0, and F are from the query automaton, and ∆

is the transition rule set, embedded with the ones δ from the query automaton. Figure 3.6

lists the rules in the format:

∆(s, c, qs, ss)→ (s′, qs′, ss′) (3.4)

saying when the automaton is in state s, after reading the symbol c, it will transition to

state s′, meanwhile, the query and syntax stacks qs and ss will be changed to qs′ and ss′

with pop/push operations, respectively.
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Figure 3.7: An Example of Streaming Automaton Execution (input and query automaton
are from Figures 3.1 and 3.4).

Example. Figure 3.7 shows a streaming automaton execution. The input is from Figure 3.1

and the query automaton is given in Figure 3.4. For space limit, some transitions are

omitted.

Initially, the automaton is in State 1 with both stacks empty. After reading the first

symbol {, rule [Obj-S] pushes { onto the syntax stack without changing the state. For the

next symbol "routes":, rule [Key] pushes K and State 1 onto the query and syntax stacks,

respectively, then changes the state to 2 (see Figure 3.4 for state transitions). Next, after

reading symbol [, rule [Ary-S] pushes the symbol and the current state to the stacks again,

then updates the state to 3. By following the transition rules, this automaton processes the

remaining input symbols in a similar way. Once it reaches state 8, an accept state, a match

to the query is found. Finally, after finishing the last symbol }, the automaton halts with

the query and syntax stacks both empty again.

However, the execution of a streaming automaton remains sequential. Next, we

explain the ways to parallelize it.
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Figure 3.8: Two-Phase Parallelization.

3.4 Parallelizing Compilation

At a high level, the parallelization of a streaming automaton execution follows two

phases: (i) parallel processing and (ii) results merging, as illustrated in Figure 3.8.

Basically, the data stream is first partitioned into chunks (almost) evenly 5, with

each chunk processed by a thread (running a streaming automaton). After all threads

finish, the results are merged to form the final outputs. The main challenge comes from the

data dependences across the partitioned chunks where some JSON structures (e.g., a JSON

object or array) might be broken into different chunks. In the following, we will discuss the

techniques for breaking the dependences, analyze their costs, and more importantly, reduce

the costs.

3.4.1 Breaking Dependences

As Figure 3.7 shows, the execution of a streaming automaton involves a series of

transitions, each of which depends on the prior state and stacks. This can be symboli-

5The lexer is adjusted to avoid breaking a token.

61



cally reflected by the transition rule structure in Equation 3.4. Formally, we define state

dependence and stack dependence as follows:

Definition 4 In a streaming automaton execution, suppose Ti and Tj (i < j) are two arbi-

trary transitions. Based on the transition rule structure in Equation 3.4, Ti writes to state

s before Tj reads from it, thus indicating a true dependence (i.e., read-after-write) between

the two transitions. We refer to this dependence as state dependence. Similarly, there

also exist true dependences on the two stacks qs and ss between the two transitions, which

we refer to as query stack dependence and syntax stack dependence, respectively.

These three kinds of dependences serialize the execution of a streaming automaton

from the beginning to the end. Next, we show how these dependences can be broken by

leveraging some “enumerability” properties of automata.

• Breaking State Dependences. Based on the definitions, the number of states in a

streaming automaton is finite. Thus, we can enumerate all the states when the state

is unknown. For example, by enumerating all the 9 states in Figure 3.4, we ensure the

correct state is always covered.

• Breaking Stack Dependences. Unlike state dependences, it is much harder to break

the stack dependences because the stack can grow arbitrarily deep. Fortunately, we do

not have to know all the contents of the stacks at once. According to the transition

rules (see Figure 3.6), at most the top two elements of the stacks are accessed when the

automaton reads an input symbol. This property allows us to gradually enumerate the

stack contents on-demand. In specific, when a transition rule needs to access the stack(s)
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while it is empty (due to the partitioning), we enumerate all the symbols in the stack

alphabet (i.e., Γq or Γs).

For each enumerated case, we need to fork a new execution path. That is, enumer-

ation may cause an execution path to diverge into multiple ones. If path divergence occurs

frequently, the path maintaining overhead may outweigh parallelization benefits. We next

show how fast the number of paths can grow.

Path Complexity Analysis. Suppose thread ti is assigned to process chunk i and the

number of paths is denoted as P .

At the beginning of chunk i, without knowing the state, thread ti enumerates all

the states. Thus the number of paths becomes P = |Q|, where Q is the state set. Then,

thread ti reads the first symbol c. Based on the transition rules (see Figure 3.6), if c is {,

[, or key (i.e., the first three rules), then all the execution paths would proceed as normal.

If c is }, then there are three potential rules (i.e., the 4th-6th rules) applicable. Which

one is the actual depends on the stacks. Unfortunately, the stacks are all empty at this

moment. Thus, thread ti needs to enumerate all the three cases, with the assumptions that

corresponding elements are in the stacks. Furthermore, the 5th rule [Val-Obj-E] needs to

reset the current state with the top element of the query stack. Since the query stack is

empty, thread ti has to enumerate the query stack alphabet Γq (i.e., |Γq| paths). Putting it

together, when c is }, each of the existing path diverges into |Γq|+ 2 paths. Thus, we have

P = |Q| · (|Γq| + 2). Similarly, we can analyze the path numbers when c equals to other

input symbols. In fact, the worst case happens to the symbol ], where the number of paths

P = |Q| · 3|Γq|, because the query stack is accessed in all the three potential rules. If this
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worst situation keeps happening in the following processing of this chunk, the number of

paths would become P = |Q| · (3|Γq|)k, where k is the number of unmatched ]. As Γq = Q,

we have the following conclusion:

Theorem 5 The worst-case path complexity in a parallel streaming automaton execution

is:

O(3k · |Q| · |Γq|k) = O(3k · |Q|k+1) (3.5)

where Q and Γq are the input and query stack alphabets, and k is the number of unmatched

].

There are two factors in Equation 3.5: O(3k) and O(|Q|k+1). Both are caused by

data partitioning. The first factor is due to the syntactical uncertainty (needed elements

missing in the syntax stack) and the second factor is due to the state uncertainty (needed

elements missing in the query stack). Hereinafter, we refer to the two uncertainties as

syntactical complexity and state complexity, respectively.

Both complexities can cause the number of execution paths to increase exponen-

tially, which may cause the path maintenance costs to surpass the parallelization benefits

and even run out of the main memory for a relative small piece of chunk. We refer to this

issue as path explosion problem.

3.4.2 Feasible Paths Inference

In this section, we discuss a couple of solutions that could help alleviate the path

explosion problem by addressing the state and syntactical complexities, respectively.
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Figure 3.9: Query Stack Feasibility Inference: XML vs. JSON

Query Stack Feasibility Inference. Recent work [106, 79] has shown the possibility to

leverage the state transitions of query automaton to infer the (top) elements in the query

stack, for parallelizing XML’s automaton execution.

The basic idea of the inference is illustrated in Figures 3.9-(a) and (b) using a

simple query. When an unmatched end tag is met (e.g., </loc>), we can infer the top

element in the query stack for each enumerated state. In fact, the top element is the state

before meeting the open tag <loc>. Based on the structure of the query automaton, we

can find all the possible states that transition to an enumerated state after reading <loc>.

For example, only State 3 transitions to State 4 after reading <loc>. After the inference,

we can find there are five execution paths left − the same as the number of states. In fact,

it is provable that the number of paths is bounded by a constant (i.e., |Q|) with the query

stack feasibility inference.

However, this approach fails to work effectively for the parallelization of JSON

data processing for two reasons:
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• Syntactical Complexity. First, in the case of JSON, there are two complexities caus-

ing exponential path growth: state complexity and syntactical complexity. Query stack

feasibility inference might help address the first, but not the second, which is not directly

relevant to the states. Thus, the path explosion problem remains unsolved.

• Anonymous Ending Symbol. Even for state complexity, the above inference cannot

reduce the complexity to the linear level as in the case of XML. Because, unlike XML

where an end tag (e.g., </loc>) carries the tag name, a JSON ending symbol (e.g., })

is anonymous, as shown in Figure 3.9-(c). Without the key name, there would be more

states possibly serving as the prior state. For example, State 2 could transition to State

3 and State 1 could transition to State 2 (see Figure 3.9-(c)). Despite they correspond

to different input symbols, they all have to be considered to ensure the correctness.

Consequently, the number of execution paths increases from 5 to 8. This increase could

be accumulated as more unmatched symbols are met.

In sum, due to the special features of JSON, query stack feasibility inference itself

is insufficient for reducing the costs of parallelization. Next, we present a JSON-customized

feasibility inference for the syntactical complexity.

Syntax Stack Feasibility Inference. With the partitioning, the syntax stack may lack

needed element(s) to determine the next transition rule after reading a symbol. To address

this syntactical uncertainty, our idea is to infer the syntax stack by looking ahead more input

symbols. In fact, we have:

Theorem 6 By looking forward at most two input symbols, the transition rule of a stream-

ing automaton can be uniquely determined without the knowledge of the syntax stack.
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Table 3.1: Syntax Stack Feasibility Inference (* means any symbol).

Input Following Two Symbols Syntax Stack Rule

} }* or ,key *:key:{ [Val-Obj-E]

} ,[ or ,{ or ]* or ,prim *:[:{ [Elt-Obj-E]

} ε or {* ε:{ [Obj-E]

] }* or ,key *:key:[ [Val-Ary-E]

] ,[ or ,{ or ]* or ,prim *:[:[ [Elt-Ary-E]

] ε or [* ε:[ [Ary-E]

prim }* or ,key *:key [Val-Pmt]

prim ,[ or ,{ or ]* or ,prim *:[ [Elt-Pmt]

, key* *:{ [Key-Val]

, [* or {* or prim* *:[ [Elt]

Theorem 6 can be proved with a brute-force enumeration. For each symbol that

may cause syntactical uncertainties (4 such symbols), we enumerate all the possible combi-

nations of its following two symbols, including the empty symbol ε (7∗7+7+1 = 57 cases).

Thus, there are 4∗57 = 228 cases overall. For each case, we run the streaming automaton on

the three symbols. If the automaton halts before finishing, the case is infeasible; Otherwise,

we record the correspondence between the input symbols and the first transition rule to the

table. By exhaustively searching the correspondence space, we ensure the coverage of all

the feasible situations.

Table 3.1 shows our findings. The first two columns list the input symbols that

may cause syntactical uncertainty and the potential following two symbols, respectively.

The last two columns show the contents that should be in the syntax stack (instead of

being empty) and the corresponding transition rule that should be applied. With this

technique, we reduce the syntactical complexity from O(3k) to O(1).
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3.4.3 Towards a Bounded Number of Paths

Though the syntactical complexity has been addressed in Section 3.4.2, the number

of paths may still grow exponentially due to the state complexity, for which, the existing

query stack feasibility inference fails due to the anonymous ending symbol property of JSON

(Section 3.4.2). In this section, we discuss a new strategy to bound the number of paths.

On-demand Automata Resetting. The basic strategy is to reset a parallel streaming

automaton once it fails to uniquely determine the next possible transition.

Recall the reason that an enumerated execution path may diverge is because the

lack of information from the query and/or syntax stack(s) when reading certain input sym-

bol. We refer to such a symbol as a unmatched symbol. When an unmatched symbol is

met, we can apply the query and syntax stack feasibility inferences from Section 3.4.2. If

they fail to uniquely determine the next transition, we will first skip the symbol, then re-

set the streaming automaton, which includes re-enumerating all the states as the current

and emptying the stacks, just like processing a fresh new chunk. This strategy may leave

some unmatched symbols unprocessed, for which the processing is postponed to the results

merging phase. We refer to this scheme as on-demand automata resetting. As an execution

path never diverge, on-demand automata resetting bounds the number of execution paths

by the number of states |Q|, that is, P = O(|Q|).

Data Units. Essentially, automata resetting further breaks the input chunks into even

smaller pieces. To distinguish them from the original partitioning, we refer to these smaller

pieces within a chunk as data units.
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During the merging phase, the results of data units will be merged, with the

unmatched symbols in-between processed. This may add extra costs to the merging phase,

depending on the number of data units. According to our evaluation, the number of data

units in chunk is quite manageable, resulting in only marginal merging costs.

3.4.4 Results Merging

First, during the parallel processing, for each data unit i, there is a mapping

maintained:

Mi(M
s
j ) = M e

j (3.6)

where M s
j is a possible starting configuration of unit i’s streaming automaton and M e

j

is the corresponding ending configuration. The temporarily matched results are recorded

separately for each stating configuration. After the parallel processing, the correct starting

configuration of each unit can be identified one by one. For example, with the (always

correct) ending configuration of the first data unit, a (serial) streaming automaton can

further process the unmatched symbols between the first and second data units (if any).

After that, the configuration of the automaton would be the correct starting configuration

for the second data unit. In this way, we merge all the data units (along with unmatched

symbols). During the units merging, the matched results on the correct path are separated

as the actual matches of subqueries. Finally, the matches of subqueries are merged and

filtered to produce the final outputs (see Section 3.3.2).

Input Errors. Sometimes, a JSON data stream may contain syntactical errors, which may

alter the transitions of parallel streaming automata. However, since the merging of results
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are performed sequentially, we can still ensure the detections of all syntactical errors that

can be detected in serial streaming automaton during the merging phase.

3.5 Runtime Optimization

The prior section leverages the transition rules and local input symbols to reduce

the number of enumerated paths. In this section, we exploit the data properties to further

prune paths (extending GAP to JSONPath querying) 6. The intuition is that the elements

in JSON data streams often follow some patterns. For instance, in Figure 3.1, steps is

always under routes, while loc could be under routes or steps. We refer to these casual

relations among JSON objects and arrays as data constraints.

Knowing these data constraints might help further prune the execution paths.

Consider the serial automaton execution in Figure 3.7. We can record the correspondence

between the current state and its encountered input symbol. As shown in Table 3.2, there

are only a subset of states actually happened to encounter a specific key or a [. For example,

the second row says when the automaton meets steps, it is always at State 3. By feeding

such information to the query stack feasibility inference, the enumerated paths could be

further pruned. Note that, only key and [ appear in Table 3.2, because, with automata

resetting, the path enumeration can only happen before key, [, or {, so other symbols are

not recorded. Symbol { is removed from the table as every state might encounter it, failing

to provide any useful data constraints.

6Similar properties are also exploited in XML Data [79].
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Table 3.2: Example Data Constraints Hash Table

Input Symbol Feasible States (Paths)

"routes": {1}
"steps": {3}
"loc": {5,6,7}
"lat": {0}
"lng": {0}

[ {2,4}

However, this observation-based optimization is not safe when the actual input

does not follow the same “pattern” as the one used for collecting the data constraints. As

a result, the correct path may be pruned. For example, suppose in the actual input, lat

and lng appear under the routes, then using the feasible State 0 in Table 3.2 could be

incorrect. Therefore, to ensure the correctness, we also need some correctness checking and

reprocessing mechanisms.

Based on the above discussion, we provide JPStream an offline data constraint

learner and an online component for constraint integration. The learner takes training

inputs from the users to build a symbol-state correspondences, which is then exported as

a hash table. The integration part tracks the uses of query stack feasibility inference and

the resetting events during a parallel automaton execution. Once observed, the integration

component uses the current symbol to query the hash table to get the feasible states. Then,

it takes an intersection between the returned states and existing state set. Later, during the

results merging phase, the integration component verifies if the correct state was covered.

If not, it will reprocess the incorrectly interpreted unit, but never go beyond a unit, thanks

to the automaton resetting.
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3.6 Evaluation

This section evaluates the automata generated by JPStream.

3.6.1 Implementation

We prototyped JPStream in C language and used Pthread for the parallel imple-

mentation of streaming automata. JPStream supports the standard JSONPath queries [74].

Given a JSONPath query, JPStream first parses it into an abstract syntax tree

(AST) that facilitates the generation of the query automaton. For less number of states,

JPStream uses counters for handling array index constraints instead of state transitions

(see Section 3.3). JPStream then hooks the query automaton to the pre-compiled parsing

automaton to form a serial streaming automaton. For the parallelizing compilation, JP-

Stream adopts a double-tree data structure to reduce the path maintenance costs [106, 79].

It implements the syntax stack feasibility inference (Section 3.4.2) and supports the on-

demand automata resetting scheme (Section 3.4.3). In addition, JPStream also features

an offline data constraint learner that takes additional training inputs to learn the data

constraints, and a runtime integration module to apply the constraints (Section 3.5). To

provide a bounded the memory footprint, JPStream offers a threshold limiting maximum

size of data loaded each time. When a data stream is larger than the threshold, JPStream

performs multiple load-process cycles. The default value of this threshold is set to 250MB.

72



3.6.2 Methodology

We compare the automata generated by JPStream with the state-of-the-art meth-

ods for parallel semi-structured data processing and also a group of state-of-the-practice

JSON tools, in terms of performance and memory usage.

Table 3.3: Methods in Evaluation.

Abbr. Methods

XMLStream An adoption from parallel XML processor [106, 79]
JsonSurfer A manually crafted tool for streaming JsonPath [21]
JSON-C An open-source JSON parser in C [12]

Jackson-JSON An open-source JSON parser in Java [15]
RapidJSON A JSON parser in C++ from Tencent [17]
FastJSON A parsing-based JSON tool in Java from Alibaba [4]

JPStreamNR Non-restartable JPStream automata
JPStreamR Restartable JPStream automata

JPStreamR+ JPStreamR with data constraints learning

Methods. Table 3.3 lists the methods used in our evaluation. XMLStream [106, 79] is a

parallelization solution recently developed for XML data processing. Note that this solution

cannot be directly applied to JSON data due to the syntax differences (see Section 3.2).

Here, we ported their ideas to the JSON data processing. JsonSurfer [21], as far as we know,

is the only stream processing implementation for JSONPath querying. Note that it is not

based on automata. As it is Java implemented, for a fair comparison with our C-based

automata, we also rewrote JsonSurfer in C. For parsing-based JSON processing, many tools

exist. We pick JSON-C [12], Jackson-JSON [15], RapidJSON [17], and FastJSON [4] for

their popularities and industrial supports. For Jackson-JSON and FastJSON, since they

are implemented in Java, we first warmed up the JVM before measuring their performance,
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Table 3.4: JSONPath queries. #sub shows the number of sub-queries in each query struc-
ture.

Query Data Query structure #sub #matches

BB1 BB $.pd.shl[1:5].sel[1:2] 1 95
BB3 BB $..p..st 1 0
TT1 TT $[*].ur..is 1 312,460

Query Data Query structure #sub #matches

TT2 TT $[*].qs.en.um.[*].nm 1 9,580
NSPL2 NSPL $.dt[20:200:2][:] 1 3,913
UHD1 UHD $.dt[10:1000][:] 1 19,820

Query Data Query structure #sub # matches

BB2 BB $.pd[?(@.s || @.pid || @.nm || @.sr || @.tp || @.sd ||
@.nw)].cp[1:2].id

9 459,333

TT3 TT $[*].qs.*.me[?(@.id && @.ids && @.idc && @.mu &&
@.mh && @.ud && @.url && (@.eu || @.tp))].sz.lg.w

9 32,750

NSPL1 NSPL $.mt.*.co[?(@.id || @.fg || @.dtn || @.cc.lg)]..nm 6 44
AIL1 AIL $.fe[?(@.tp && (@.id || @.gn)].pp.nm 5 21,546
AIL2 AIL $.fe[1:7].fm.cd[:][:][10:20][:] 1 2,088
GMD1 GMD $[-15:].rt[?@.cr].bd.*.lt 4 28
GMD2 GMD $[*].rt[?(@.bd || @.cr].le[?@.sa].st[0:3].dt.vl 6 17,147
UHD2 UHD $.mt.vi.co[?(@.id && @.nm && @.dtn)].cc.tp[1:120].it 6 169

for their best results. As to our methods, we evaluated three versions of JPStream: (i) the

one with automata resetting disabled; (ii) the one with automata resetting; and (iii) the

one with both automata resetting and data constraints learning.

Table 3.5: Dataset Statistics.

Data #objects #arrays #key-value #primitive depth

BB 1,916,574 4,882,921 40,763,630 35,880,709 7
TT 2,898,910 4,197,990 31,472,660 30,910,730 10

NSPL 613 3,509,815 1,669 84,235,938 9
AIL 64,675 46,858,734 905,058 93,395,898 3

GMD 10,357,445 43,943 29,034,886 21,051,619 9
UHD 262 1,511,234 719 30,224,745 8

Platforms. All experiments run on two servers. The first one is a 16-core machine equipped

with two Intel 2.10 GHz Xeon EE5-2620 v4 processors and 64 GB of RAM. The second
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server is a 64-core machine equipped with Intel Xeon Phi 7210 processors and 96 GB of

RAM. Both servers run on CentOS 7 and are installed with GCC 4.8.5. In the following,

we refer to the two servers as Xeon and Xeon-Phi. All programs are compiled with O3

optimization. The timing results reported are the average of 10 repetitive runs. All CPUs

are warmed up before evaluation. We do not report 95% confidence interval of the average

when the variation is not significant.

Datasets. Table 3.5 summarizes the statistics of JSON datasets used in our evaluation,

including Best Buy product dataset [2], Twitter global tweet stream [22], National Statis-

tics Post Code Lookup (NSPL) dataset for the United Kingdom [16], Indigenous Land Use

Agreements dataset [9], Google Maps Directions dataset [6], and Washington State Depart-

ment of Health dataset [7]. The training datasets for JPStreamR+ are extracted from the

first 1% of the testing inputs.

Query Sets. Table 3.4 shows our evaluated queries. It covers all the basic types of

JSONPath queries that are commonly used [74]. The rightmost two columns record the

number of sub queries and the number of matches in each query structure.

3.6.3 Comparison with Existing Methods

Note that, due to the inherent dependences (see Section 3.2), all these methods only

support sequential execution, except for XMLStream. These experiments were executed on

Xeon.

Comparison with Streaming Methods. Figure 3.10 reports the execution time of stream

processing methods. First, we notice XMLStream runs out of memory for all the queries.
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Because it does not address the syntactical complexity (see Section 3.4.2), leading to expo-

nential path growth that quickly consumes all the machine memory (64GB).

JsonSurfer successfully processed all the queries, but its performance is limited by

the serial execution. Single-thread JPStreamR outperforms JsonSurfer, thanks to its use of

a query automaton. By contrast, JsonSurfer uses the parsing stack to match queries, which

may examine deeper in the stack for a complete comparison. This is especially inefficient for

queries with .. wildcard, such as TT1 and NSPL2. As indicated by Figure 3.10 , the gaps

in these two cases are even larger. On top of that, when using all the 16 cores, JPStreamR

outperforms JsonSurfer by an order of magnitude.

Comparison with Parsing-based Methods. In Figure 3.11, JPStreamR is compared

against four parsing-based methods. TT(20) and BB(20) are two query sets, each with 20

queries. For JSON tools without querying supports, we simply report their parsing time.

Most parsers finish the parsing of our datasets within 10 secs, except for JSON-C (took

over 30 secs). In comparison, single-threaded JPStreamR spent a little more than 10 secs,

comparable to other JSON tools. On top of that, JPStreamR also finishes the querying at

the same time, while FastJSON needs two separate phases. The total processing time of

FastJSON surpasses JPStreamR in our evaluated cases. When all the 16 threads are used,

JPStreamR outperforms all the evaluated parsing-based methods significantly.

Besides performance, JPStreamR also shows advantages in the memory footprint,

as indicated in Figure 3.12. Thanks to its stream processing model, JPStreamR saves up
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Figure 3.10: Performance of Streaming-based Methods*.

*The original JsonSurfer only supports a subset of queries. For the supported ones, its performance is 1-1.45X faster

than JPStreamR (T=1), after the JVM warmup.

to 95% of memory consumption. In fact, unlike the other JSON tools that consume more

memory for larger inputs, the memory footprint of JPStreamR is bounded.

3.6.4 Performance of Parallel Execution

Since the only other parallel method, XMLStream, runs out of memory in all the

tested cases, we mainly focus on the three versions of JPStream-generated automata in this

section.

Speedup. Figure 3.13 reports the speedups of parallel automata executions over the serial

one. Among the three versions, JPStreamR+ yields the best speedup for all evaluated

queries, thanks to its data constraint learning. On average, it achieves 12.1X on 16-core

Xeon and 53.1X on 64-core Xeon Phi. For the other two versions, JPStreamR performs

better in general, for its on-demand automata resetting scheme.
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To get deeper insights, we also examined the number of execution paths, the costs

of results merging, and the costs of using the data constraint integration.

Number of Execution Paths. The more paths a parallel streaming automaton needs

to maintain, the less benefits it brings. Table 3.6 reports the statistics about the number

of execution paths. The “avg.” columns show the average number of paths to maintain

by a streaming automaton. As the last row (i.e., “Geo”) shows, JPStreamNR maintains

2.29 paths on average across all the tested cases. In comparison, JPStreamR maintains

1.88 paths and JPStreamR+ maintains only 1.15 paths. These statistics largely echo the

performance differences among the three versions of JPStream. The “max” columns show

the maximum number of paths to maintain. We can see JPStreamNR maintains up to 119

paths. For the same case, JPStreamR+ only maintain 5 paths, due to the path pruning

enabled by data constraint integration.
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Figure 3.13: Speedups of JPStream-generated Automata on Xeon and Xeon Phi Servers.

Results Merging Costs. Table 3.7 reports the merging costs. First, the costs are consis-

tently less than 0.001% in all the tested cases. Second, units merging does not add extra

costs significantly comparing to the chunk merging, thanks to the relatively small number

of units (3rd column).

Costs of Online Constraints Integration. In principle, the online data constraints

integration is a double-edge sword, as it may eliminate a correct path due to the discrepancy

between the training and testing inputs. For this reason, we examine the accuracy of
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Table 3.6: Number of Execution Paths (Xeon Phi)

JPStreamNR JPStreamR JPStreamR+
Query avg. max avg. max avg. max

BB1 6.02 16.0 3.70 8.0 1.01 2.0
BB2 11.46 37.0 6.45 15.0 1.01 3.0
TT1 4.45 119.0 2.53 7.0 1.41 3.0
TT2 3.76 42.0 1.89 7.0 1.16 4.0

NSPL1 1.15 6.0 1.15 6.0 1.11 4.0
NSPL2 1.35 15.0 1.35 15.0 1.07 3.0

AIL1 1.75 25.0 1.74 10.0 1.19 3.0
AIL2 2.26 28.0 2.25 11.0 1.65 5.0

GMD1 1.07 23.0 1.06 10.0 1.01 2.0
GMD2 1.27 44.0 1.24 15.0 1.01 2.0
UHD1 1.26 6.0 1.26 6.0 1.13 3.0
UHD2 1.70 15.0 1.70 15.0 1.17 3.0

Geo 2.29 22.5 1.88 9.8 1.15 3.0

Table 3.7: Costs of Results Merging

Dataset #Chunks #Units Chunk Chunk+Unit

X
eo

n
-P

h
i

BB 64 146 0.004% 0.004%
TT 64 176 0.005% 0.006%
NSPL 64 116 0.001% 0.001%
AIL 64 292 0.003% 0.004%
GMD 64 317 0.001% 0.002%
UHD 64 64 0.002% 0.002%

Geo 64 185 0.002% 0.003%

covering the correct execution path and the cost of reprocessing if the correct one is missed.

The results are reported in Table 3.8. The queries that are not shown have 100% accuracies.

The results indicate, by using the first 1% of the testing inputs as the training ones, for

most test cases, JPStreamR+ successfully covered the correct paths. For the ones that it

misses, the accuracy is beyond 90%, with reprocessing costs consistently less than 1%.
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Table 3.8: Path Coverage Accuracy and Reprocessing Cost

Query Acc. Cost Query Acc. Cost

X
eo

n

BB1 97.62% 0.13%

X
eo

n
-P

h
i BB1 95.21% 0.52%

BB2 97.62% 0.08% BB2 97.26% 0.26%
TT1 92.86% 0.14% TT1 96.59% 0.55%
TT2 95.24% 0.13% TT2 97.73% 0.56%
TT3 92.86% 0.13% TT3 95.45% 0.79%

Table 3.9: Scalability over Data Size on Xeon

Data Size Exe. Time (1 core) Exe. Time (16 cores) Speedup

250 MB 3.022 s 0.245 s 12.335
1 GB 11.371 s 0.900 s 12.636
4 GB 46.573 s 3.619 s 12.868
16 GB 192.829 s 14.829 s 13.003

3.6.5 Scalability

Scalability over Number of Cores. Figure 3.14 presents the speedup curves of JPStream

on Xeon-Phi. In general, all three versions exhibit linear speedup increase up to 64 cores,

with different increasing rates. For JPStreamNR, the curve is less smooth, because the

number of execution paths could vary significantly under different partitions. For the other

two, the automaton resetting largely limits the maximal number of execution paths, yielding

smoother curves.

Scalability over Input Sizes. Table 3.9 reports the speedup of JPStreamR+ with differ-

ent data-size thresholds on Xeon. The results indicate that, in general, there is a tradeoff

between the memory footprint and the performance gain.

81



0
10
20
30
40
50
60

0 10 20 30 40 50 60

Sp
ee

du
p(
64

	co
re
s)

Number of Cores

JPStreamNR JPStreamR JPStreamR+

Figure 3.14: Scalability over Number of Cores on Xeon-Phi

3.7 Related Work

Semi-Structured Data Processing. A large body of prior work focuses on the expres-

siveness of semi-structured data querying and the efficiency of executing concurrent queries,

especially for XML data. For evaluating XML path queries, representative methods include

automata-based [68, 134], array-based [80], and stack-based algorithms [49]. Among them, a

seminal idea by Green and others is to combine a set of XPath expressions into a determinis-

tic finite automaton (DFA) to improve the query evaluation efficiency [68], which influences

many other studies, including two widely used XML tools, Y-filter [56], XMLTK [39], as

well as JPStream, though ours is for JSON data processing.

Unlike XML with well-developed streaming computation models, existing JSON

tools [4, 12, 15, 17] usually rely on parsing the whole data stream to extract information.

JsonSurfer [21] is the only stream processing tool for JSON that we are aware of, but
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it runs less efficiently for the lack of automata. Barenghi and others [40] use operator

precedence grammars (OPG) for parallel JSON parsing, without querying support. Unlike

others, MISON [86] exploits bitwise parallelism with SIMD supports. It pre-constructs

structural indexes for JSON data to speed up query processing. But the index construction

can only execute sequentially due to dependences, thus cannot scale on multicore machines.

Parabix [89] also uses bitwise parallelism to accelerate XML parsing, but not querying.

Palkar and others apply filters [111] on the raw JSON byte stream before querying the data

to accelerate the processing. Pavlopoulou and others [113] rewrite JSONiq queries into

XQuery to leverage an existing XML framework (Apache VXQuery [1]) to support parallel

processing of multiple JSON data streams, rather than a single stream.

Parallel Finite Automata. Finite automata (a.k.a. FSMs) are difficult to parallelize. A

traditional parallelization is to use prefix-sum [84], which is also based state enumeration.

An implementation of this method [104] has been optimized for SIMD instructions. Spec-

ulative parallelization of FSMs has also been proposed [115, 116, 136, 138] by breaking the

transition dependences with state predictions. Though providing useful insights, the above

work cannot be directly applied to the parallelization of semi-structured data processing,

which essentially requires the use of stack-based automata.

Some recent work introduces parallel pushdown automata for processing XML

data, such as PP-Transducer [106] and GAP [79]. They share some high-level ideas with

JPStream. However, they suffer from the path explosion problem when ported to JSON.

AT-GIS [107] is a recent work for parallel processing GeoJSON, a derivative of JSON.

However, its applicability to the generic JSON remains unclear.
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3.8 Summary

This work addresses the challenges in scalable JSON-family data processing with

a compilation system, called JPStream. JPStream automatically generates parallel exe-

cutables with low-memory footprints for JSON data processing. At its core is the design

of a streaming computation model and a set of customized parallelization techniques. The

model is enabled by a joint compilation idea that combines the queries and JSON syntax

into a unified automaton. The parallelization leverages a syntactical feasibility inference,

an on-demand automaton resetting scheme, and a data constraint learner to address the

path explosion raised by the unique features of JSON. Finally, evaluation confirms the ef-

fectiveness of JPStream in generating highly scalable automata executables with bounded

memory footprints, showing superiority over the state-of-the-art methods and existing JSON

solutions in terms of performance and memory consumption.
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Chapter 4

Scalable Bitwise Index

Construction for JSON Analytics

JavaScript Object Notation (JSON) and its variants have gained great popularity

in recent years. Unfortunately, the performance of their analytics is often dragged down by

the expensive JSON parsing. To address this, recent work has shown that building bitwise

indices on JSON data, called structural indices, can greatly accelerate querying. Despite its

promise, the existing structural index construction does not scale well as records become

larger and more complex, due to its (inherently) sequential construction process and the

involvement of costly memory copies that grow as the nesting level increases.

To address the above issues, this work introduces Pison – a more memory-efficient

structural index constructor with supports of intra-record parallelism. First, Pison features

a redesign of the bottleneck step in the existing solution. The new design is not only

simpler but more memory-efficient. More importantly, Pison is able to build structural
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indices for a single bulky record in parallel, enabled by a group of customized parallelization

techniques. Finally, Pison is also optimized for better data locality, which is especially

critical in the scenario of bulky record processing. Our evaluation using real-world JSON

datasets shows that Pison achieves 9.8X speedup (on average) over the existing structural

index construction solution for bulky records and 4.6X speedup (on average) of end-to-end

performance (indexing plus querying) over a state-of-the-art SIMD-based JSON parser on

a 16-core machine.

4.1 Introduction

JSON (JavaScript Object Notation) has emerged as a popular data type in modern

software applications [74]. Its derivatives, such as NetJSON [70], GeoJSON [69], JSON-

LD [71], CoverageJSON [60], and others, span multiple domains. Together, they play critical

roles in microservices [130, 58], Internet of Things (IoT) [132], NoSQL data stores [87,

72], and cloud computing [47, 91]. As the popularity of JSON increases, its data volume

grows faster than ever. Many web applications, such as social networks (e.g., Twitter [24]

and Facebook [25]) and online shopping (e.g., Bestbuy [2] and Walmart [26]) continuously

produce a broad range of data in JSON format through open APIs. Public data sources, like

Data.gov [8], host more datasets in JSON format of sizes easily reaching several gigabytes.

However, analyzing JSON data requires parsing – an expensive task. Recent study [86]

shows that JSON data parsing takes over 80% of the total time for complex queries and

even a larger portion for simple queries. Hence, it is critical to accelerate the parsing in

order to make the querying over JSON data performant.
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State of The Art. Traditional ways of JSON parsing involve stack-based abstract ma-

chines, known as pushdown automata. Basically, an automaton traverses a JSON record in

serial and recognizes the nested syntactical structures with a stack. Most popular JSON

parsers, like Jackson [15] and GSON [11], fall into this category. Recent work JPStream [78]

proposes a dual-stack automaton to carry out path queries simultaneously with the pars-

ing. However, an inherent limitation with the automata-based solutions is that they have

to traverse the JSON data stream character by character to perform the parsing and query

matching.

In fact, it is possible to “skip” irrelevant parts of the data stream with the help

of indexing techniques. Recently, Mison [86] proposes a novel algorithm that generates

bitwise indices (bitmaps) for the structural characters in a JSON record (i.e., “:” and “,”)

– structural indices. With the indices, a parser can directly jump into relevant positions of

the JSON record to find matches. As the construction can leverage bitwise and SIMD-level

parallelism, it can process tens of or even hundreds of characters simultaneously [86].

Despite its promise, there are several issues in the existing design of structural

index construction that may limit its scalability as the records become larger and more

complex. First, most steps in the structural index construction are inherently sequential,

preventing it from taking advantage of the coarse-grained parallelism. For bulky records,

lack of intra-record parallelism fundamentally limits the efficiency of structural index con-

struction. Second, one critical step in the current design of structural index construction [86]

involves many costly memory operations, which gets worsen as the record becomes larger

and more deeply nested. At last, the existing design assumes the record can fit into the
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caches, which is not the case for bulky records – naively using the current design to process

bulky records may suffer from poor data locality.

Overview of This Work. The primary goal of this work is to scale the structural index

construction to larger and more complex JSON records. To achieve this, we identify all the

dependences involved in each step of the index construction, then develop specialized paral-

lelization solutions to “break” those dependences. Specifically, we address the dependences

related to backlash sequences with dynamic partitioning; However, partitioning may still

cut the JSON strings and the nested structures of a JSON record. To handle broken JSON

strings, we propose a combination of techniques, including a contradiction-based context

inference, a speculation technique with fast bitwise reprocessing. Finally, to handle broken

nested JSON structures, we leverage a reduction-based parallelization technique.

Besides parallelization, we also identify the inefficiencies in the bottleneck step of

the construction and propose a new design which is not only easier to implement but also

more efficient to execute, thanks to its reduced memory accesses. Our evaluation shows the

new design brings 1.4X speedup to the total serial execution time.

Moreover, to cope with the large working set in processing bulky records, we

propose to build structural indices word by word, rather than step by step for the whole

record. This locality optimization itself brings 1.7X speedup on average for bulky records.

Finally, we integrated the above techniques and developed a new structural index

constructor called Pison. To ease the programming, Pison provides intuitive APIs that

hide the details of index traversals. We evaluated Pison using a group of real-world JSON

datasets with a focus on the bulky-record processing scenario. According to the results,
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Pison outperforms the existing structural index construction solution Mison [86] by 9.8X

(on average) for bulky records, and achieves 4.9X speedup (on average) of end-to-end per-

formance over the popular SIMD-based JSON parser simdjson[85]. The results confirm the

effectiveness of the proposed techniques.

Contributions. This work makes three main contributions:

• First, it presents a group of parallelization techniques that enable intra-record data

parallelism to the JSON structural index construction.

• Second, it proposes two key optimizations to the serial design of structural index

construction: a redesign of the bottleneck step and a locality optimization.

• Finally, it implements the proposed ideas into a C++ library (Pison) and compares it

with multiple state-of-the-art JSON tools using real-world datasets. The source code

of Pison is available at https://github.com/AutomataLab/Pison.

4.2 Background

This section introduces JSON basics, followed by an overview of the current struc-

tural index construction and its limitations.

4.2.1 JSON and Its Querying

JSON Syntax. JSON data follows a rigorous syntax, which can be defined by a context-

free grammar (CFG), as shown in Figure 4.1. At high level, there are two major structures:

object and array. An object always starts with a left brace { and ends with a right brace }.

89

https://github.com/AutomataLab/Pison


object ::= {} | {members}
members ::= pair | pair, members

pair ::= string:value
array ::= [] | [elements]

elements ::= value | value, elements
value ::= object | array | 

string | primitive
string ::= "" | "characters"

(a) BNF Grammar of JSON

(b) Sample JSON Data (Twitter)

{"user": [ {
"id": 1,
"name": "\\\":A" },

{"id": 2 }
]

} 

1
2
3
4
5
6

Figure 4.1: JSON Grammar and Example.

Between them, there could be a series of key-value pairs, separated by commas, known as

the attributes. By contrast, an array is placed between a pair of brackets [ and ]. Inside

an array, there is a linear sequence of elements, separated by commas. Both object and

array can be self-nested and also nested within each other. Here, we use the term “record”

to refer to the top-level syntax structure in the nested JSON data, which could be either

an object or an array.

Querying JSON Data. Essentially, each JSON record is a serialized hierarchy of an

object or an array. A basic group of queries to JSON data is to identify the sub-structures
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of interest inside the JSON hierarchy, known as JSONPath queries [74]. A JSONPath query

defines specific paths from the root of the hierarchy to the sub-structures of interest. For

example, $.user[0].id asks for the id of user[0], the first element of array user. A

dot . refers to the attributes of an object; two dots (like $..id) refers to all recursive

descendant objects. TFor all elements in an array, use star *, as in $.user[*].id. More

details regarding the JSONPath queries can be found in [74].

Conventionally, evaluating JSON queries requires parsing a JSON record into a tree

structure. Queries are evaluated by walking down the tree from the root and matching tree

nodes against the queries. Many popular JSON tools follow this approach, like Jackson [15],

GSON [11], RapidJSON [18], and FastJSON [4]. Alternatively, the parsing and querying

can be merged into a single pass, as shown in JPStream [78], which avoids building any

parse tree. In either approach, the parsing essentially simulates a pushdown automaton

that consumes the JSON data character by character (i.e., one byte per time). However,

modern CPUs can perform 64-bit (i.e., 8-byte) calculation, and even 512-bit calculation

(i.e., 64-byte) with SIMD units [117]. In this perspective, existing automata-based parsers

underutilize the fine-grained parallelism in modern CPUs.

To effectively utilize bitwise and SIMD parallelism, recent work Mison [86] proposes

a bitwise indexing scheme for JSON data. The basic idea is to construct bitwise indices on

structural characters in a JSON record, such as “:” and “,”. With the indices, a query can

be quickly evaluated based on locations of object attributes and array elements of different

levels. We next describe it.
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JSON Record   {"user":[{"id":1,"name":"\\\":A"},{"id":2}]}
-----------------------------------------------------------

Step 1: Build Metacharacter Bitmaps
'\' bitmap    00000000000000000000000001110000000000000000
'"' bitmap    01000010001001000100001010001001000100100000
':' bitmap    00000001000000100000000100000100000000010000
',' bitmap    00000000000000001000000000000000010000000000
'{' bitmap    10000000010000000000000000000000001000000000
'[' bitmap    00000000100000000000000000000000000000000000
']' bitmap    00000000000000000000000000000000000000000010
'}' bitmap    00000000000000000000000000000000100000000101

-----------------------------------------------------------
Step 2: Remove Escaped Quotes

'"' bitmap    01000010001001000100001010000001000100100000
----------------------------------------------------------

Step 3: Build String Mask Bitmap
string mask   01111100001110000111110011111110000111000000
----------------------------------------------------------

Step 4: Remove Pseudo-Metacharacters
':' bitmap    00000001000000100000000100000000000000010000
',' bitmap    00000000000000001000000000000000010000000000
'{' bitmap    10000000010000000000000000000000001000000000
'[' bitmap    00000000100000000000000000000000000000000000
']' bitmap    00000000000000000000000000000000000000000010
'}' bitmap    00000000000000000000000000000000100000000100
----------------------------------------------------------

Step 5: Generate Leveled Bitmaps
Level 0    00000001000000000000000000000000000000000000
Level 1       00000000000000000000000000000000010000000000
Level 2       00000000000000100000000100000000000000010000

Figure 4.2: Example Structural Index Construction.

4.2.2 Structural Index Construction

This section summarizes the structural index construction proposed in Mison [86],

with some steps adopted from simdjson [85]. In general, the construction has five steps 1,

as illustrated in Figure 4.2.

1We slightly modified steps in [86] for better illustration.
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Step 1: Build Metacharacter Bitmaps. It first builds a bitmap for each metacharacter

in JSON, including ,, :, [, ], {, }, ", and \. In the bitmap, 1s represent the positions of the

metacharacter in the record. The bitmap can be constructed by comparing the metachar-

acter against the characters in the JSON record one by one. For better efficiency, SIMD

instructions can be leveraged to compare multiple characters simultaneously. Assume that

the SIMD width is 256-bit, then a 8-bit metacharacter is duplicated 32 times to populate a

256-bit vector ( mm256 setr epi8). The vector is then compared against the characters in

JSON data, 256 bits (32 bytes) each time ( mm256 cmpeq epi8). The result is in a 256-bit

vector where each 8-bit lane is either all 1s or all 0s. Finally, the most significant bit of each

lane is selected and packed into a 32-bit integer ( mm256 movemask epi8). On a 64-bit

machine, two such 32-bit integers are combined into a long type. This step runs in O(8∗n
W )

instructions, where n is the number of characters in the JSON record and W is the SIMD

width (e.g., 256).

Note that the metacharacters may appear inside a string, in which case they are

not actually effective in defining the JSON structure. To exclude them, we need to first

identify the strings in JSON, which are marked by quotes. However, a quote may be escaped

by \, which can be further escaped, as in \\\". The next three steps are to find the actual

strings in a JSON record and exclude the metacharacters in strings from the corresponding

bitmaps.

Step 2: Remove Escaped Quotes. This step excludes all the escaped quotes− quotes fol-

lowing an odd number of consecutive \s, from the quote bitmap. To achieve this, Mison [86]

iterates through all the quotes with backslashes ahead. In comparison, simdjson [85] pro-
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poses a bitwise solution: it locates the starting and ending positions of backslash sequences,

then finds odd-length backslash sequences based on the fact that a sequence of characters

that starts at an odd (or even) position and ends at an even (or odd) position must have

an odd length, thus, any following quotes should be escaped. More details about step and

its implementation can be found in [85].

Figure 4.2 (Step 2) shows the updated quote bitmap, with one escaped quote (the

4th to the right) removed. This step needs O( n
w ) instructions, where w is the word size.

Step 3: Build String Mask Bitmap. Next, it generates a string mask bitmap, where

1s correspond to characters in strings. Here, a bitwise approach can also be adopted from

simdjson [85]. First, a prefix-sum of XOR is applied to the updated quote bitmap. The

resulted bit at index i equals to the XOR of all bit values up to i (inclusive). In fact, this

operation can be implemented by performing a carry-less multiplication PCLMUQDQ between

the quote bitmap and a 64-bit value with all 1s. This step also runs in O( n
w ) instructions.

Step 4: Remove Pseudo-Metacharacters. This step removes those metacharacters

that appear in strings, from their corresponding bitmaps. It can be implemented as an

ANDNOT operation between the metacharacter bitmaps and the string mask bitmap.

Step 5: Generate Leveled Bitmaps. The final step is to separate the colon and comma

bitmaps based on the levels that colons and commas appear in the record, dictated by the

brackets [, ], {, }. As shown in Figure 4.2 (step 5), the top level is an object with one

key-value pair, so there is a 1 at Level 1, corresponding to a colon. Next, as the value in

the key-value pair is an array of two elements, Level 2 has one 1, corresponding to a comma
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JSON Text   {"user":[{"id":1,"name":"\\\":A"},{"id":2}]}

Level 2     00000000000000100000000100000000000000010000

Level 0 00000001000000000000000000000000000000000000
"user"

Query: $.user[0].name

Level 1     00000000000000000000000000000000010000000000

[0] [1]

"id" "name" "id"

Output: ["\\\":A"]
"\\\":A"

Figure 4.3: Querying via Structural Indices.

in the array. This process repeats until it reaches the deepest level in the record (or in the

path query). These leveled bitmaps are the final outputs − structural indices.

To implement this step, Mison [86] proposes to scan the brackets ([, ], {, })

bitmaps and employ a stack to recognize the nesting levels of colons and commas. Though

the idea is intuitive, this solution actually involves expensive memory copies operations.

We will elaborate this step in detail later in the paper.

In summary, the structural indices can be effectively constructed by taking advan-

tages of bitwise and SIMD parallelism. For example, on a 64-bit processor, the construction

can operate on 64-bit vectors, where a bit corresponds to one character (byte) in the JSON

record. That is, the structural index construction can process 64 characters simultaneously.

With the use of SIMD instructions, some of these operations can operate on vectors of 256

bits or even 512 bits, which can significantly accelerate the JSON data processing.
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Querying Structural Indices. With the structural indices, we can quickly evaluate

JSONPath queries. As illustrated in Figure 4.3, for a given JSONPath query ($.user[0].name),

the evaluation starts from the top level of JSON structure (an object in the example), lo-

cates its key ("user") through backward parsing from all the 1s in this level, then finds the

range in the bitmap for its value − between this 1 and the next 1, and moves to the next

level. This process stops when no match is found in a certain level or continues until the

whole query expression has been matched.

4.2.3 Scalability Issues for Bulky Records

Despite its exploration of fine-grained bitwise parallelism, the existing structural

index construction [86] fails to scale well to bulky JSON records with complex structures,

due to three reasons.

• No Intra-Record Data Parallelism. Existing construction processes each record

in serial. For bulky records, the serial processing can seriously limit the scalability,

resulting significant delay for answering a query.

• Heavy Memory Operations. The last step (bottleneck step) of the existing con-

struction requires to duplicate the colon and comma bitmaps K times, where K is

the number of nesting levels in the record or the query expression. For bulky records,

making copies of whole bitmaps are very expensive. Then, the algorithm masks bits

with overlapped ranges, with an increasing overhead as it moves to deeper levels. Fi-

nally, it employs a stack which also makes intensive memory copies during the push

and pop operations.
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• Poor Data Locality. A simple adoption of the existing index construction algorithm

to bulky records may suffer from poor data locality, as the generated intermediate

bitmaps may not fit into the CPU cache(s)

The primary goal of this work is to bring coarse-grained data parallelism to the

structural index construction such that a bulky record can be processed in parallel effec-

tively. Moreover, this work also tries to improve the memory access efficiency by redesigning

the critical step of structural index construction algorithm (Step 5) and offering a more lo-

cality friendly construction process.

4.3 Data-Parallel Construction

For a sequence of small JSON records, parallelism naturally exists among different

records. The challenge lies in the parallelization of building indices for a single bulky JSON

record, which could cause significant delay when it is processed sequentially.

4.3.1 Dependences

When a bulky JSON record is partitioned, as illustrated in Figure 4.4, most steps

of the structural index construction (except Steps 1 and 4) involve certain kinds of depen-

dences. For Step 2 (removing escaped quotes), when a sequence of backslashes are broken

into two partitions, we need to know the number of backslashes appearing at the suffix of

the prior partition to tell if a following quote is escaped or not. For Step 3 (building string

mask bitmap), we need to know whether the current partition starts inside a string or not.
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Partition1 Partition2
Step 1

Step 2

Step 3

Step 4

Step 5
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Partition3
Step 1

Step 2

Step 3

Step 4

Step 5
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inside a 
string ?

current 
level ?

Figure 4.4: Dependences in Index Construction.

Finally, for Step 5 (generating leveled bitmaps), we need to know at which level the current

chunk begins.

To construct the structural indices in parallel, we need to effectively address the

above dependence challenges. In the following of this section, we will introduce an assembly

of parallelization techniques that are integrated together to solve the dependences, including

(i) dynamic partitioning, (ii) contradiction-based context inference, (iii) speculation, and (iv)

reduction-style parallelization. Note that the last one (reduction-style parallelization) is

based on a redesign of the Step 5 in the existing construction algorithm.

4.3.2 Dynamic Partitioning

Naively partitioning a JSON record may break a string, a keyword (e.g., true or

null), or a sequence of backslashes into different chunks. The first and third cases are

related to the dependences in Step 3 and Step 2, respectively (see Figure 4.4). One way to
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avoid such cases is adjusting the boundary (e.g., moving it to the left) between two chunks

dynamically such that no strings, keywords, or backslash sequences get cut. However,

avoiding a bad cutting is non-trivial. Considering a piece of JSON data · · · "· · · , in general,

it is hard to tell if the quote is the start or the end of a string. For this reason, we only use

this dynamic partitioning to avoid cutting of backslash sequences and keywords. Broken

strings will be addressed next with more advanced techniques.

4.3.3 Contradiction-based Context Inference

In fact, issues related to broken strings also arise in other contexts of parallel

processing. Recently, Ge and others [65] addressed the ambiguity issue caused by broken

strings in parallel CSV parsing with a pattern-based approach. Two string patterns (each

with two chars) are carefully designed for CSV data, such that once they are observed, the

parsing ambiguity can be immediately resolved. Though the idea is inspiring, it is unclear

how similar patterns can be designed for JSON whose syntax is much more complex than

CSV. In the following, we will present a contradiction-based string context inference. Unlike

the prior work [65], this inference does not rely on the specific syntax of data type, thus

may also work for data types beyond JSON.

The key insight behind the contradiction-based inference is that characters inside a

string, most of the time, do not form valid tokens. For example, in string "user", characters

user cannot be interpreted as any valid JSON token(s). In fact, any string with some

alphabet letters ([a-zA-Z]), except keywords2 and scientific numbers (e.g., 2e+7), cannot be

2Alphabetical keywords in JSON: true, false, and null.
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101", "id": "102", ...

101, "name": "Jay",...

101, null, 103, ......

(a)

(b)

(c)

Hypothesis Tokenization Conclusion

IN ERROR OUT

IN/OUT PASS/ERROR IN

IN/OUT PASS/PASS UNKNOWN

First K bytes of a chunk

Figure 4.5: Examples of Context Inference.

tokenized successfully. Based on this insight, we propose to build hypothesis and leverage

contradiction to infer the string status at the beginning of a JSON partition.

Algorithm 5 shows the contradiction-based context inference. First, it assumes

that the input chunk starts inside a string (i.e., hypothesis = IN). Based on the assumption,

it tries to recognize the tokens in the first K bytes of the chunk. Once it hits an error of

tokenization, it gets a contradiction − the current assumption is wrong, therefore it returns

the opposite status − OUT (Line 9-10), as the conclusion. An example of such cases

is Figure 4.5-(a). Otherwise, if the first K bytes are all successfully tokenized (Line 6),

the algorithm would fail to draw any conclusion, because some sequences of characters

can be interpreted in either way correctly: part of a string or valid JSON tokens, like

the example in Figure 4.5-(c). In this case, the algorithm tries the other assumption −

hypothesis = OUT, to tokenize the first K bytes again. If it encounters a tokenization

error (i.e., a contradiction), it would return IN as the conclusion, which happens to the

case in Figure 4.5-(b). Finally, if both attempts fail to draw any conclusion, the algorithm

returns UNKNOWN, as in the case of Figure 4.5-(c).
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Algorithm 5 Contradiction-based Context Inference
1: /* return string status at beginning, head represents the first K bytes of a chunk */

2: procedure context inference(head)

3: while hypothesis = {IN, OUT} do

4: while TRUE do

5: /* reach the end of the head */

6: if head.hasNextToken() == END then

7: break;

8: /* cannot recognize the next token */

9: if head.hasNextToken() == ERROR then

10: return opposite(hypothesis);

11: head.nextToken();

12: return UNKNOWN;

Note that, the more bytes (i.e., larger K) the algorithm checks, usually the higher

chances it can draw a conclusion, but this will also incur higher overhead. In evaluation,

we set K = 64 by default, and found it rarely fails to draw the conclusion. But, what if it

does fail to draw any conclusion? We next address such cases with speculation.

4.3.4 Speculative Parallelization

Note that even when the conclusion is UNKNOWN, the chances for being inside a

string and being outside a string are usually not equal. In fact, most of the time, they are

highly biased, for the same reason mentioned earlier: it is rarely seen that characters inside

a JSON string form valid JSON tokens. In another word, if the inference has successfully

recognized the first K bytes as valid JSON tokens, it is very unlikely they are part of a

string. Therefore, if we speculatively consider the status is OUT, there is a high chance

that it is true.
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JSON chunk 
infer status:
----------------
speculate:
string mask
----------------
validate:
rectify(bi=¬bi)

102, 103, null", "name":"Alex", "month": 2}
UNKNOWN
-------------------------------------------
OUT
0000000000000011110000111000011110000011111
-------------------------------------------
FAIL
1111111111111100001111000111100001111100000

Figure 4.6: Bitwise Rectification for Misspeculation.

Based on this intuition, we propose a speculative parallelization scheme for struc-

tural index construction. If the context inference of one chunk returns UNKNOWN, the

construction automatically enters into speculative mode, in which chunks with UNKNOWN

inference results are processed speculatively by assuming they start from a position outside

a string. The next question is when when the speculation is validated. If we validate it

after all the five steps are finished (on each chunk), once a speculation fails, we have to

rerun all the steps on the corresponding chunk. To minimize the misspeculation cost, we

should validate the speculation right after Step 3. To achieve this, we add a synchronization

between Steps 3 and 4, where chunks in speculative modes are validated against the ground

truth (IN or OUT) of prior non-speculative chunks. In cases some speculation fails, a naive

handling is reprocessing the corresponding chunks (up to Step 3). In fact, this is an overkill

for this particular kind of misspeculation. We will present a faster alternative shortly.

Similar to our situation, the pattern-based approach [65] used in parallel CSV

parsing may also fail to resolve the parsing ambiguity sometimes, thus turns to specula-
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tion for parallelization. However, as we show next, for structural index construction, the

misspeculation can be handled more efficiently at the bit level with bitwise rectification.

Bitwise Rectification. Instead of reprocessing the JSON chunk that was misinterpreted

(from Step 1 to Step 3), we found it is possible to directly recover the correct bit values

from the incorrect string mask bitmap with a simple bitwise logic operation bi = ¬bi.

Figure 4.6 illustrates this idea with an example JSON chunk. In the example, the string

status inference fails to draw any conclusion (i.e., UNKNOWN), thus the index construction

switches to the speculative mode and assumes the string status is OUT. However, during

the validation, it turns out that the correct string status is IN. Interestingly, as shown

in Figure 4.6, the correct string mask bitmap is exactly the “opposite” of the incorrect

bitmap. Essentially, this is due to the parity of quotes in defining strings − a string always

starts from an odd-number quote and ends at the next (even-number) quote. An incorrect

interpretation of the quote parity would flip all the following string definitions. Based on

this observation, we can generate the correct bitmap by flipping values in the incorrect

bitmap, that is, bi = ¬bi. As expected, we found this bitwise rectification is much faster

than reprocessing the JSON chunk.

4.3.5 Parallel Generation of Leveled Bitmaps

The last dependence to address is the “level” at the beginning of a chunk in Step

5 (generating leveled bitmaps). Before introducing the solution, we first summarize the

existing design of Step 5 from Mison [86] and present a new design for this step which is
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Input     { : { : , : } }
-----------------------------

'{'    100010000000000
'}'    000000000000101

-----------------------------
duplicate colon bitmap

L0 ':' 001000100010000
L1 ':' 001000100010000
-----------------------------

reset { : , : }
L0 ':’ 001000000000000
L1 ':’ 001000100010000

000010000000000

100000000000000

Stack

(a) Prior Design: Stack + Bit Reset

u

v

100000000000000

Stack x
w

push;push

pop

level++

(b) New Design: Counter + Bit Copy

Input     { : { : , : } }
-----------------------------

'{'    100010000000000
'}'    000000000000101
':' 001000100010000

-----------------------------
copy { : {

L0 ':' 001000000000000
-----------------------------

copy { : , : }
L0 ':' 001000000000000
L1 ':' 000000100010000

u

v level--

Figure 4.7: Generation of Leveled Bitmaps: Existing Design (left) vs. New Design (right).

simpler yet more efficient. After that, we will explain how the new design can be parallelized

based on the reduction-style parallelism.

Redesign of Step 5

The main task of Step 5 is to separate colons and commas of different levels into

different bitmaps.

Existing Design. Figure 4.7-(a) illustrates the basic idea of Step 5 in Mison [86]. For easier

explanation, the figure only shows curly brackets and colons that capture the structures of

JSON objects, but the idea can be easily extended to cover JSON arrays. First, it duplicates

the colon bitmap K times, where K is the number of levels in the JSON record or in the

query expression (e.g., two times for $.user.name). The duplicated bitmaps, denoted as

L0 · · ·LK−1, will be turned into the leveled bitmaps; Then, it tries to locate the objects

from inner levels to outer levels by traversing the bitmaps of { and } with the help of a

stack. Basically, from left to right, the bitmap corresponding each { is pushed onto the
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stack. The stack top has the beginning position of the inner most object (the position with

1). From there, Mison scans forward to find the first } − the ending position of the inner

most object. Then, it resets the bits in the same range in L0, as highlighted in Figure 4.7-

(a). After that, Mison pops the stack, moves to the second inner most level, and repeats

the same operations. This process continues until Mison reaches the outer most level of

the JSON structure. In practice, we found that implementation based on the above design

executes efficiently for small JSON records, taking 30-40% of the total construction time.

However, for bulky records, this ratio is raised to 60-70%, making Step 5 the bottleneck of

structural index construction. Our further investigation reveals two main factors limiting

its efficiency:

• Intensive Bit Value Updates. First, the colon bitmap duplication involves intensive

memory writes to (pre-allocated) bitmaps. Second, from an inner level to an outer

level, as the object range becomes larger, more bits need to be reset. The complexity

of the bit resetting is O( n
w · b), where n is the number of bytes, w is the word size,

and b is the number of brackets.

• Expensive Stack Operations. Employing a stack to record nesting level and the start

positions of objects requires copying bitmaps onto and off the stack (push and pop),

which are relatively expensive operations.

To address the efficiency issues in the existing design of Step 5, we next introduce

a new algorithm for generating leveled bitmaps.
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Algorithm 6 Generating Leveled Bitmaps
1: /* generate leveled bitmaps l[0...k − 1] */

2: procedure generate leveled bitmaps(bcolon, bcomma, blbracket, brbracket)

3: level = -1;

4: for each word w in bitmaps do

5: wbracket = wlbracket ∨ wrbracket;

6: if wbracket == 0 then /* if no brackets, copy all bits from wcolon or wcomma */

7: if wcolon 6= 0 then wl[level] = wcolon; /* part of an object */

8: else wl[level] = wcomma; /* part of an array */

9: else

10: wbegin = 1; /* beginning position of an interval */

11: wrange = get interval bitmap(wbracket, wbegin, level);

12: while wrange 6= 0 do /* iterate over intervals separated by brackets */

13: if wcolon ∧ winterval 6= 0 then

14: wl[level] = wl[level] ∨ (wcolon ∧ wrange);

15: else

16: wl[level] = wl[level] ∨ (wcomma ∧ wrange);

17: if wend ∧ wlbracket > 0 then level = level + 1;

18: if wend ∧ wrbracket > 0 then level = level - 1;

19: wrange = get interval bitmap(wbracket, wbegin, level);

20: return l[0...k − 1]

New Design. Figure 4.7-(b) illustrates the basic idea of the new design. First, instead of

duplicating the colon bitmap and resetting the bits, the new design first allocates leveled

bitmaps with all 0s (calloc()), then copies bits of different levels from the colon bitmap

to the corresponding leveled bitmaps, which reduces the bit value updates.

Second, the new design recognizes the objects from the outer levels to inner levels

− the opposite of the existing solution. This avoids the use of stacks for recording the
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Algorithm 7 Generating Leveled Bitmaps (Continue from Algorithm 6)
1: procedure get interval bitmap(wbracket, wbegin, level)

2: if wbracket 6= 0 then /* locate next interval */

3: wend = E(wbracket); /* end of an interval */

4: wbracket = R(wbracket);

5: winterval = wend − wbegin;

6: wbegin = wend;

7: else/* locate the last interval */

8: wend = 2|w|−1; /* end of the word */

9: winterval = (wend − wbegin) ∨ wend;

10: return winterval

beginning positions in the existing design. In this case, a counter, like variable level in

Figure 4.7-(b), is sufficient for recognizing the levels of objects.

More details of this new design are shown in Algorithm 6, which covers the gener-

ation of leveled bitmaps for both fields inside an object and members inside an array. The

inputs to the algorithm include colon bitmap bcolon, comma bitmap bcomma, and left and

right bracket bitmaps blbracket and brbracket, where blbracket combines bitmaps of { and [,

and brbracket combines bitmaps of } and ]. Since both kinds of brackets add levels, there is

no need to distinguish between them (the same as in [86]). The outputs of the algorithm

are leveled bitmaps, each of which consists of the 1s from the colon and comma bitmaps in

the corresponding level.

Initially, the algorithm marks the current level to -1 (Line 3). Then, it iterates

over the bitmaps word by word. For better efficiency, it combines the words from left

and right bracket bitmaps wlbracket and wrbracket into wbracket (Line 5). If wbracket contains

only 0s (no brackets), it simply copies the current word of colon/comma bitmap to the
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corresponding leveled bitmap (Line 6-8); Otherwise, the algorithm iterates over all the

intervals separated by two consecutive brackets. Algorithm 7 are to find the current interval.

Here, the algorithm uses functions E and R defined in Mison [86] to extract the right most

bracket and remove it, respectively. Once the interval is located, Algorithm 6 copies the

word from colon/comma bitmap to the same interval of the corresponding leveled bitmap

(Line 13-16). Finally, it updates the level based on the bracket is left or right. The same

process repeats until all the words of the bitmaps are processed.

With the new design, next we will show that Step 5 can be parallelized based on

a reduction-style parallelism. Note that, in theory, the prior design of Step 5 [86] might

also be parallelized in a similar fashion, but the reduction in that case would become more

involved for its stack-based design and the efficiency may suffer even more with multiple

threads, given its intensive memory operations.

Reduction and Index Merging

Partitioning a JSON record makes it difficult to tell at which level the beginning

of a chunk is. To “break” the level dependence among JSON chunks, we adopt a reduction-

style parallelization with two phases: (i) parallel leveled index generation and (ii) index

merging, as illustrated in Figure 4.8.

In the first phase, all JSON chunks are processed in parallel under the assumption

that they all start from Level 0. The outputs of this phase are the partial leveled bitmaps for

individual JSON chunks, as depicted in Figure 4.9. After all chunks have been processed,

the construction enters into the second phase, where the levels of different chunks are aligned
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Step 5
(index gen.)
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(parallel generation)

Final Index
Phase Ⅱ 

(index merging)

chunk 1 chunk 2 chunk n

……

……

Figure 4.8: Two-Phase Index Construction.

with those in the prior chunks one by one − the ending level of chunk i is the beginning

level of chunk i+1. In the example shown in Figure 4.9, thread T1 ends at Level 1, which is

matched with Level 0 of thread T2. As a result, the original Level 1 of thread T2 becomes

Level 2, which is then aligned with Level 0 of thread T3. Thus, levels -2 and -1 of T3 turn

into levels 0 and 1, respectively.

After adjusting the levels, the partial bitmaps are connected based on their actual

levels, forming an array of linked lists, as shown in Figure 4.10. Note that the outputs from

parallel index construction are slightly different from those in serial index construction,

where each leveled bitmap is a single array. In principle, this difference may increase the

cost of bitmap accessing. However, since the number of chunks (the same as the number

of CPU cores) is relatively very small comparing to the number of bits, this extra cost is

small (within 2%).

In summary, with multiple types of dependences involved in the structural index

construction with an assembly of customized parallelization techniques. Next, we integrate

them.
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Figure 4.9: Level Matching.
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Figure 4.10: Index Merging.

4.3.6 Putting it All Together

Figure 4.11 shows the high-level workflow of data-parallel structural index con-

struction. From the top to the bottom, the construction process is divided into five stages.

The first stage partitions the JSON record into chunks with dynamic partitioning to avoid

breaking any keywords and backlash sequences. By default, the number of chunks n is

set to the number available CPU cores. After partitioning, the construction leverages the

contradiction-based context inference to find out if a chunk starts inside a string or not.

When some inferences fail, speculation is immediately triggered to process the correspond-

ing chunks speculatively. If speculation is enabled for at least on one JSON chunk, the
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Figure 4.11: Workflow of Data-Parallel Construction.

construction would next enter into the Stages 2, 3 and 4, one by one; Otherwise, it skips

Stage 3 and combines Stages 2 and 4 (i.e., all five steps are completed without synchorniza-

tion). Before entering Stage 3, all the parallel executions of different chunks (in Stage 2)

should have been finished, that is, a barrier is required. In Stage 3, chunks with speculation

are validated in order based on the actual string statuses (i.e., inside a string or not). When

some misspeculation is detected, the corresponding input chunk would be reprocessed (only

Step 3). For fast reprocessing, bitwise rectification would be applied. The outputs of after

Stage 4 are partial structural indices built for each input chunk. Finally, Stage 5, performs

the index level matching and merging to produce the final structural indices.

4.4 Locality Optimization

So far, our design of parallel structural index construction (including a new Step

5) is performed step by step. In each step, it traverses the JSON record and/or its (inter-
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mediate) bitmaps entirely. This is consistent with the ways of description of the original

design of Mison [86]. Since steps share the access of some bitmaps (e.g., one step writes

to it and another step reads from it), repetitively traversing them cause poor data locality.

This issue might less be a concern for small JSON records, but could become serious when

processing large JSON records, as the memory footprint easily exceeds the cache capacities.

Instead of constructing the bitmaps step by step, in fact, we can build them word

by word 3, where a word consists of only a few bytes (e.g., 8 bytes on 64-bit machines).

Figure 4.12 illustrates the two granularities of bitmap construction.

chunk i word1 word2 wordN…

(a) Step-by-Step (b) Word-by-Word

Step 2

Step 1

Step 3

Step 4

Step 5

…

…

…

…

…

in str?

Index …

Step 2

Step 1

Step 3

Step 4

Step 5

Index

Step 2

Step 1

Step 3

Step 4

Step 5

Index

Step 2

Step 1

Step 3

Step 4

Step 5

Index

num ‘\’ 

level

Figure 4.12: Index Construction Granularities.

To implement the word-by-word bitmap construction, the construction algorithm

has to generate and consume bitmaps partially and incrementally. This requires recording

some “context” of each step between two adjacent words. For example, after finishing one

word at Step 2, the algorithm needs to record how many consecutive \s have been observed

3Note that word-by-word processing could also be adopted in Mison [86]
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by the end of the current word and resume the counting when processing the next word.

Despite these extra work of “bookkeeping”, the benefits of word-by-word processing are

significant for bulky JSON records, as we will report later.

4.5 Querying using Index

In this section, we first present the APIs for accessing the bitmaps and demonstrate

their usage in evaluating common JSON path queries, then we further discuss the strategies

for enabling parallel query evaluation on bulky JSON records.

APIs. To simplify the programming, we hide the low-level bitmap traversal details into a

set of high-level JSON data accessing APIs that are similar to the existing tools [85]. The

APIs include a BitmapConstructor class for generating the leveled bitmaps in parallel and

a bitmap traversal class BitmapIterator for navigating through the leveled bitmaps and

locating the keys in objects or elements in arrays.

Algorithm 8 demonstrates an example usage of these APIs for evaluating query

$.user[0].name. Note that even though the bitmap indices are constructed in parallel

(line 3), the bitmap traversal (line 5-10) remains sequential. To make JSON data analytics

scalable, we next describe a strategy that enables parallel bitmap traversals.

Parallel Query Evaluation. Given the indices of many small JSON records, we can

easily traverse them in parallel and evaluate the query on different records independently.

However, for a bulky JSON record, it is non-trivial to traverse its indices in parallel. Our

parallelization of the index traversal stems from a simple yet critical observation 4 − a bulky

4According to real-world datasets [28, 16, 23, 2, 6, 26].
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Algorithm 8 API Usage Example (query $.user[0].name)
1: procedure query execution example(input)

2: BitmapConstructor bc = new BitmapConstructor()

3: Bitmap bm = bc.construct(input, 16) /* with 16 threads */

4: BitmapIterator iter = bc.getIterator(bm)

5: if iter.isObject() && iter.moveToKey(“user”) then

6: iter.down() /* value of “user” */

7: if iter.isArray() && iter.moveToIndex(0) then

8: iter.down() /* “user[0]” */

9: if iter.isObject() && iter.moveToKey(“name”) then

10: result = getV alue()

11: return result

JSON record usually consists of a JSON array at an upper level (closer to the root level)

which dominates the size of the JSON records and divides lower levels of the JSON record

into many smaller elements. We refer to such an array as the dominating array. Based on

this observation, we propose to first locate the index level of the dominating array, from

where we then traverse different elements in the array in parallel. The criteria for defining

the dominating array are configurable. In our experiments, we require the array to occupy

80% of the whole record in size and consist of at least 256 elements. Elements of the

dominating array are processed using a thread pool where each thread gets a copy of the

current bitmap iterator and proceeds independently. For better load balancing, elements of

the dominating array are inserted into a worklist and then consumed on demand by worker

threads.
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4.6 Evaluation

This section presents evaluation results of the proposed techniques, with a focus

on the parallel performance on bulky JSON records.

4.6.1 Methodology

We implemented the parallel JSON structure index constructor in C++, namely

Pison, and used Pthread for its parallelization. We compare Pison with the existing solution

Mison [86]. As Mison [86] itself is not publicly available, we use a third-party implementation

of Mison, called Pikkr [13], as well as our own implementation of Mison for this comparison.

Moreover, we also implemented an optimized version of Mison, denoted as Mison+, where

Steps 2 and 3 are implemented using ideas from simdjson [85] (see Section 4.2).

In addition, we also compare Pison with simdjson [85] − a popular SIMD-based

JSON processing tool, RapidJSON [18] − a popular JSON parser based on character by

character processing, and JPStream [78] − a streaming-based JSON tool. Table 4.1 lists

all the methods in our evaluation.

Table 4.1: Methods in Evaluation

Method Brief Description

simdjson A SIMD-based JSON parser [85]
CMison Our C++ implementation of Mison [86]
Mison+ Improved Mison (Steps 2-3) based on simdjson [85]
Pikkr Third-party implementation of Mison in Rust [13]

RapidJSON A JSON parser in C++ from Tencent [18]
JPStream A parallel streaming JSON processor in C [78]
Pison(SbS) Pison with step-by-step processing (this work)

Pison(WbW) Pison with word-by-word processing (this work)
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We evaluate Pison for processing a sequence of small JSON records and individual

bulky JSON records in terms of both processing time and memory consumption. Table 4.2

reports the statistics of JSON datasets used in our evaluation. These include Best Buy

(BB) product dataset [2], tweets from Twitter (TT) developer API [23], Google Maps

Directions (GMD) dataset [6], National Statistics Postcode Lookup (NSPL) dataset for

UK [16], Walmart (WM) product dataset [26], and Wikipedia (WP) entity dataset [29].

The default size of each dataset is approximately 1GB for easier comparison. Each dataset

forms a single large JSON record. To create scenarios of small records processing, we

manually extracted the dominating array from each dataset, broke it into smaller records,

and inserted a new line after each small record − a common way to organize small JSON

records. The number of small records for each dataset is shown in the column #subrec. in

Table 4.2.

Table 4.2: Dataset Statistics

Data #objects #arrays #K-V #prim. #subrec. depth

TT 2.39M 2.29M 26.5M 24.3M 150K 11
BB 1.91M 4.88M 40.7M 35.8M 230K 7

GMD 10.3M 43K 29.0M 21.0M 4.44K 9
NSPL 613 3.50M 1.66K 84.2M 1.74M 9
WM 333K 34K 8.19M 9.92K 275K 4
WP 17.3M 6.53M 53.2M 35.0M 137K 12

To evaluate the querying performance, we first include 8 queries used in Mison [86]

on Twitter dataset (TT1-TT8), then for each other dataset, we created a JSONPath query,

as shown in Table 4.3. Note that 8 of out the 13 queries consist of two subqueries. For

bulky records made of small records, we add a prefix [*]. to each of its queries. Together,
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they cover common patterns of path queries, as well as queries of different complexities and

selectiveness.

Table 4.3: JSONPath Queries

Queries TT1-TT8 are from Mison [86]

ID Query structure #matches #visited fields

TT1 { ur.id } 150,135 1,979,268
TT2 { ur.id, rtct } 300,270 3,076,477
TT3 { ur.id, ur.la } 300,270 4,681,698
TT4 { ur.nm, rp } 300,270 2,279,538
TT5 { ur.la, la } 300,270 6,767,260
TT6 { id, rtst } 252,524 3,243,333
TT7 { id, en.urls[*].url } 239,016 3,615,763
TT8 { id, en.urls[*].idc[*] } 327,897 3,862,762
BB { pd[*].cp[1:3].id } 459,332 7,362,758

GMD { rt[*].lg[*].st[*].dt.tx } 1,716,752 5,215,576
NSPL { mt.vw.co[*].nm } 44 121
WM { it[*].bmpr.pr, it[*].nm } 288,391 7,867,449
WP { cl.P[*].ms.pty } 15,603 1,974,693

All the experiments were conducted on a 16-core machine equipped with two Intel

2.1GHz Xeon E5-2620 v4 CPUs and 64GB RAM (referred to as Xeon server) The CPUs

support 64-bit ALU instructions, 256-bit SIMD instruction set, and the carry-less multipli-

cation instruction (pclmulqdq). Both servers run on CentOS 7 and are installed with G++

7.4.0 and JDK 1.8.0 191. All C++ programs are compiled with ”-O3” optimization flag.

In the case of small records, they are stored in a single array with the beginning position

of each record stored in a separate offset array. The timing results are the average of 10

runs; no 95% confidence interval is shown when the variation is not significant.

Next, we first report the performance of serial and parallel index constructions of

different methods.
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4.6.2 Index Construction Peformance

Figure 4.13 reports the time of index construction for bulky JSON records using

different methods. We exclude JPStream since it does not construct any indices. Among

them, RapidJSON and simdjson create parse trees while the other methods create structural

indices.
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Figure 4.13: Comparison of Index Construction Time of Different Methods on Bulky JSON
Records.

RapidJSON vs. Others. First, according to the results, RapidJSON takes substantially

longer to construct indices than other evaluated methods, even though it is known for its

superior performance than many other popular JSON parsers (such as FastJSON [4]). The

main reason is that RapidJSON does not leverage bitwise parallelism and SIMD instructions.

The results confirm the effectiveness of leveraging fine-grained parallelism in JSON data

processing.

Mison vs. simdjson vs. Serial Pison. For methods with bitwise parallelism and

SIMD supports, the two versions of Mison (Pikkr and CMison) take slightly longer than

others. In comparison, Mison+ runs faster than the prior two, by 31% and 11%, thanks

to its optimized Steps 2 and 3 based on simdjson. Following these, simdjson and serial

Pison(SbS) show similar performance on average. Note that the only difference between
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Mison+ and serial Pison(SbS) is the the new design of Step 5 (Section 4.3.5). Therefore, the

time difference between the two shows the benefits of this new design − 1.41X speedup on

average, which is substantial for an optimization of one step. Finally, serial Pison(WbW)

performs the best among all the serial methods. The performance gap between Pison(WbW)

and Pison(SbS) indicates the benefits of locality optimization (Section 4.4), which is 1.67X

speedup on average, demonstrating the importance of the proposed locality optimization.

Adding the benefits of the new design of Step 5 and the locality optimization together, we

find that serial Pison(WbW) runs 3.1X faster than Pikkr, 2.6X faster than CMison, and

2.3X faster than Mison+.

So far, the comparison are among only serial methods. Next, we discuss the

performance of parallel Pison − the main contribution of this work. Note that we cannot

run other methods in parallel due to the lack of parallelization.

Parallel Pison vs. Others. First, running two versions of Pison (SbS and WbW) in

parallel with eight threads, achieves 3.3X and 3.8X speedups over the serial counterparts,

respectively. The sub-linear speedups indicate that the structural index construction is not

only computation-intensive, but also memory-intensive; while the parallelization helps ad-

dress the former, the performance could be limited by the latter. Despite this limitation,

when compared to the other indexing methods, parallel Pison still shows significant perfor-

mance improvements − 19X faster than RapidJSON, 11.6X faster than Pikkr, 9.8X faster

than CMison, and 8.8X faster than Mison+.
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Figure 4.14: Comparison of Index Construction Time of Different Methods on Small JSON
Records.

So far, the performance results are for building indices on bulky JSON records

− the focus of Pison. For completeness, we also report the performance of small record

indexing.

Small Record Indexing. For many small records, parallelism can be easily achieved at

the task level, we only report the serial performance of Pison for fairness. Figure 4.14

shows the performance results of different methods, which are consistent with those in large

record indexing, except that the two implementations of Mison and its optimized version

Mison+ run relatively faster than they do in large record indexing. The reason is that when

the records are small, they can easily fit into the caches; the locality of their step-by-step

processing gets much improved.

Next, we break down the benefits of parallelization by steps and evaluate the

effectiveness of the parallelization techniques in detail.
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Table 4.4: Time Breakdown by Steps

Entry is [seq. time(s) : para. time(s) w/ 8 threads] of Pison(SbS)

Step 1 Step 2 Step 3 Step 4 Step 5

TT 0.48 : 0.14 0.03 : 0.01 0.06 : 0.01 0.12 : 0.05 0.83 : 0.25
BB 0.59 : 0.18 0.05 : 0.01 0.06 : 0.01 0.15 : 0.06 0.65 : 0.20

GMD 0.65 : 0.19 0.05 : 0.02 0.06 : 0.01 0.21 : 0.06 0.92 : 0.27
NSPL 0.65 : 0.18 0.06 : 0.03 0.07 : 0.02 0.20 : 0.06 0.42 : 0.15
WM 0.59 : 0.17 0.06 : 0.01 0.08 : 0.01 0.19 : 0.06 0.27 : 0.10
WP 0.67 : 0.19 0.06 : 0.01 0.06 : 0.01 0.15 : 0.07 1.55 : 0.51

Geo SP 3.55X 5.04X 6.54X 2.83X 3.04X

4.6.3 Benefits and Costs Breakdown

Time Breakdown by Steps. Table 4.4 reports the sequential and parallel execution times

of for each step in the structural index construction, as well as the averaged parallelization

speedup of each step. The results show that parallelization improvements vary among

steps. Step 3 achieves the highest speedup − 6.5X, while Step 4 achieves the lowest − 2.8X.

As discussed earlier, the variation of benefits mainly depends on the memory-computation

ratio. Step 3 is relatively more complex computation-wise, meanwhile only writes results

to one bitmap (see Figure 4.2). By contrast, Step 4 only involves a single bitwise operation

(ANDNOT), but needs to write to six bitmaps. As a result, Step 4 is more memory-bound

than Step 3, leading to less speedups. Similar reasoning also holds to the other three steps.

After reporting the time and speedups, we next further evaluate the main parallelization

techniques used in different steps.

Context Inference. To parallelize Step 3, in Section 4.3.3, we proposed contradiction-

based context inference to find if a chunk starts inside a string. To confirm its effectiveness,

we profiled the success rate of context inferences in all the parallel executions reported in
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Figure 4.15: Costs of Speculation and Recovering.

Figure 4.13. The results show that all the inferences succeeded, which indicates that a

contradiction is derived in all the evaluated cases.

Speculation. Since no context inferences failed in evaluation, we artificially failed a few

context inferences when 8 threads are used to examine the performance under speculative

mode. Thus, 20 threads entered into the speculative mode across 6 datasets Interestingly,

none of them failed, which demonstrates the effectiveness of the heuristic used by the

speculation − usually characters inside a string do not form valid tokens (see Section 4.3.4).

Despite the high speculation accuracy, the performance still suffers from another aspect −

loss of data locality. As discussed in Section 4.3.5, once entering speculative mode, the

validation stage would isolate the word-by-word optimizations within Steps 1-3 and Steps

4-5, respectively. Figure 4.15 shows the cost of speculation − reducing speedups from 3.76X

to 2.45X.

In principle, misspeculation can still happen, in which cases there are costs of

recovering. To measure these costs, we manually flipped the speculated string status for 1
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Figure 4.16: Scalability over Number of Threads.

and 2 out of 4 speculative threads, respectively. Figure 4.15 reports the costs of reprocessing.

With 2 cases of misspeculation, the speedup only drops from 2.45X to 2.33X. This is due

to the bitwise rectification introduced in Section 4.3.4. Without this technique, we have to

reprocess the chunk, in which case the cost would be quite significant.

Costs of Index Merging. The costs associated with index merging are of two types: (i)

the cost of index merging − the second phase of the two-phase parallel index construction

and (ii) the extra cost of accessing of merged (linked) indices. For the former, we profiled the

cost of each phase and found that the merging cost is less than 0.01% for all test cases. This

is because the index merging only needs to connect the partial indices of different chunks

together (see Figure 4.10), including the adjustment of index levels (Figure 4.9), both of

which are low-cost operations. For the latter, our profiling results show that overhead of

accessing linked indices is 1.5% on average, comparing to the single-array indices from serial

construction.
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Figure 4.17: Scalability over Record Size.

Scalability. Figure 4.16 reports the parallel performance of Pison with different numbers of

threads. The results show that the additional benefits from more threads diminish slightly

as the number of threads increases. This is due to the fact that structural index construction

is both computation and memory intensive. As computations get parallelized with more

threads, the memory bandwidth gets more saturated, limiting the performance benefits.

To better understand how Pison and Mison scale as the record size increases, we

further vary the size of the record in the BB dataset from 256MB to 8GB. Figure 4.17 shows

the scalabilities of Mison and Pison as the record size increases. As the trend indicates, the

larger the records are, the more time saving Pison provides comparing to Mison.

Memory Consumption. The other concern in processing large records is the memory

consumption. As shown in Figure 4.18, the memory footprint of Pison is about 3.0GB

on average, which is the least among the indexing or parsing-based methods. Comparing

to step-by-step processing, the word-by-word processing of Pison eliminates the needs of

storing large intermediate bitmaps, resulting in 40.8% less memory footprint. The Figure
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Table 4.5: End-to-End Time (s) Comparison.

JPS(8) RapidJ Mison+(1) simdjson Pison(1) Pison(8)

TT 6.64 4.73 4.92 2.13 4.10 0.86
BB 1 5.27 2.61 1.84 1.55 0.34

GMD 1.01 5.18 3.64 1.88 2.32 0.58
NSPL 1.02 5.26 2.46 2.22 0.76 0.22
WM 0.43 3.98 2.14 1.19 1.2 0.25
WP 1.38 6.7 3.67 2.64 2.21 0.6

Geo 1.26 5.12 3.11 1.93 1.76 0.42
Sum 11.48 31.12 19.44 11.9 12.14 2.85

does not include the memory footprint of JPStream, which in fact is configurable (set it to

1GB) thanks to its streaming-style processing strategy.

4.6.4 End-to-End Performance

Finally, we evaluate end-to-end performance that includes both index construction

and query evaluations. The queries used for this evaluation are from Table 4.3.

Table 4.5 reports the end-to-end performance of different methods under evalu-

ation. Except for JPStream, the time for all the other methods include both the index
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construction time and the querying time. For bulky JSON records, we cache the indices

and reuse them for multiple queries. For dataset TT, this means the 8 queries share the

constructed indices. In the case of JPStream, a streaming-based method, its execution time

is only about the querying.

JPStream vs. Others. First, from the performance results of JPStream, we observe a

large gap (over 5.2X) between the case of TT and cases of other datasets. In fact, JPStream

performs the worst in the case of TT among all evaluated methods. The reason is that,

for TT, multiple individual queries are evaluated. Without any indices, the evaluation has

to traverse the entire raw dataset once for each query, causing repeated overhead, which

is expected as JPStream is designed for streaming scenarios. For other datasets where a

single query is evaluated, JPStream clearly shows better performance than other methods,

except for parallel Pison. On average, parallel Pison runs 3X faster than JPStream when

both of them running with 8 threads.

Parallel Pison vs. Others. Among the indexing-based methods, parallel Pison achieves

12.2X speedup over RapidJSON, 7.4X speedup over Mison+, 4.6X speedup over simdjson,

and 4.2X over its own serial version. Note that for Mison+, we do not have the parallel

implementation for its querying. However, we find that its indexing time alone (2.28s)

already takes significantly longer than the total running time of parallel Pison (0.42s).

In summary, the above results confirm that the efficiency of parallel Pison, showing

substantial performance boosts over a set of state-of-the-art JSON processing tools.
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4.7 Related Work

This section discusses existing research on raw semi-structured data processing

and the parallelization of large-record processing

Raw Semi-Structured Data Processing. There is a rich body of research on processing

raw semi-structured data such as XML and JSON. Typical solutions often involve in some

forms of automata [39, 134, 56] and stacks [50, 82], which are essential in recognizing the

nesting structures and matching the queries. Most existing JSON tools [4, 12, 15, 18] follow

this direction and convert the JSON data stream into in-memory tree structures before

querying. However, it takes time and memory to generate the parsing trees [78]. One way

to avoid the cost of parsing is to adopt streaming schemes [68, 81, 106, 21, 78]. For instance,

JSONSurfer [21] directly evaluates path queries without any pre-parsing of the JSON data.

However, it is inefficient in performing the query matching due to a lack of the capability of

tracking the matching status. JPStream [78] improves this by compiles a set of JSONPath

queries and JSON syntax into a dual stack pushdown automaton which records both the

parsing status and the matching status of queries.

One common limitation with the above methods is the “one-character-each-time”

processing strategy. To deal with this limitation, Mison [86] proposes to build structural

indices with bitwise operations, which can process tens of or even hundreds of characters

simultaneously with the help of bitwise and SIMD-level parallelism. This idea originates

from NoDB [32, 33, 76, 83], which builds structural index on raw CSV files and adaptively

uses the index to load the data. In fact, simdjson [85] also adopts this bitwise processing

in its first stage of JSON parsing. Besides JSON data, the idea of bitwise processing is also
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seen in other contexts, including regular expression matching [45], XML parsing [89], as

well as some database systems [30, 41, 101, 51]. Based on bitwise processing, Sparser [111]

applies filtering before performing the parsing to further accelerate the processing.

Parallel Processing of Large Records. In addition to the exploration of bitwise and

SIMD-level parallelism, it is also important to exploit coarse-grained parallelism (such as

multicores) in the processing of individual large records. In fact, many efforts have been

put into the parallelization of XML stream processing [96, 112, 122, 106, 79], including the

use of hardware accelerators [100, 98]. The key in enabling parallel processing of individual

XML record is “breaking” the dependences in the data processing. For example, in [96,

112], a pre-scan is applied to the XML record first to partition it according its high-level

structures. In another work [106], the authors design parallel pushdown transducers that

enumerate all the possible states at the beginning of an arbitrary XML partition to break the

state dependences. To reduce the cost of state enumeration, GAP [79] leverages the XML

grammar to prune infeasible states. By contrast, there are few studies in the parallelization

of JSON stream processing. JPStream [78] adopts ideas from parallel XML processing [106,

79] to JSON processing so that an individual large JSON record can be effectively processed

in parallel. This shares a similar goal with Pison.

Besides the above work, there are also prior studies that design speculative paral-

lelization for parallel processing other types of raw data [135, 137, 136, 116, 124]. For exam-

ple, HPar [135] proposes speculative parsing of HTML documents. In [137, 136, 116], FSMs

are executed speculatively to perform pattern matching over unstructured textual data.

Recently, Parparaw [124] leverages speculation techniques to process delimiter-separated
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raw data in parallel, and PBS [114] speculatively parallelizes bitstream processing by mod-

eling it into FSM computations. As far as we know, Pison is the first work that leverages

speculation for parallel indexing of JSON data.

4.8 Summary

Constructing structural indices for JSON data has shown promises in accelerating

JSON analytics, but its serial design makes it difficult to scale to large and complex JSON

records. This work addresses this challenge by introducing intra-record parallelism and re-

designing the structural indices construction process. It proposes an assembly of paralleliza-

tion techniques that make it possible to construct the structural indices of individual JSON

records in parallel. Evaluation on datasets collected from real-world applications show that

the developed system − Pison, surpasses the performance of state-of-the-art tools, including

simdjson and Mison, in both small-record and large-record processing scenarios.
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Chapter 5

Streaming Semi-Structured Data

with Bit-Parallel Skipping

Semi-structured data, like JSON, is the de facto standard for data communication

on the Web and data representation in document-based data stores. Streaming analytics

combines semi-structured data parsing and query evaluation into one pass to avoid gener-

ating any parse tree. Though promising, its conventional design requires to scan the data

stream character by character to recognize all the syntactical structures, which fundamen-

tally limits the efficiency of data streaming.

This work challenges the above design: is it necessary to scan the entire data

stream in detail for query evaluation? In fact, based on the query and the data stream

structures, this work finds a wide range of opportunities for skipping certain “irrelevant

substructures” of the data stream. However, there is a dilemma − identifying the irrelevant

substructures itself appears to need comprehensive scanning. To circumvent this “chicken-

130



egg” issue, an alternative yet faster way to identifying the irrelevant substructures is desired.

For this purpose, this work presents a highly bit-parallel solution which intensively

utilizes bitwise and SIMD operations to identify the irrelevant substructures during the

streaming. The keys to this solution include a new streaming model − recursive-descent

streaming, for easy adoption of skipping optimizations, an abstraction− structural intervals,

for partitioning the data streams, and a group of bit-parallel algorithms for implementing

different skipping cases. The whole solution is packaged into a JSON streaming framework,

called JSONSki. It offers 15 bit-parallel skippers that can be naturally integrated into the

streaming to dynamically “jump over” irrelevant substructures. Evaluation using real-world

JSON datasets and standard path queries shows that JSONSki can achieve 19.0× speedup

on average over the existing JSON streaming tool, and 7.7× speedup on average over a

popular SIMD-based parser (simdjson).

5.1 Introduction

Recent years have seen a surge in adopting semi-structured data, like JSON (JavaScript

Object Notation) and its variants, in the computing infrastructures, ranging from data

transfer among loosely-coupled services in the cloud [35, 20, 48, 129] to the underlying data

representation of popular document-based data stores, like MongoDB [99] and Firebase [61],

to public data release through open APIs (e.g., data.gov [8]). Thus, the efficiency of semi-

structured data processing is getting more critical to many modern software applications

that require low data processing latency and strict memory budget.
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{ "coordinates” : [ 
40.74118764, -73.9998279 

],
”user” : {
"id” : 6253282

},
”place” : {
“name” : “Manhattan”,
“bounding_box” : { 

“type” : ”Ploygon”,
“pos” : [
[-74.026675, 40.683935], …

] } } }

Figure 5.1: Geo-referenced Tweet in JSON [128]

Figure 5.1 shows some attributes in a JSON Tweet object 1: coordinates, user,

and place [128]. Note that the attributes themselves could be objects or arrays. In general,

there are two processing schemes for such semi-structured data:

• Preprocessing-based scheme preprocesses the data stream to build some in-memory

data structures before extracting data of interests. For example, common JSON

processing tools, such as RapidJSON [19], FastJSON [4], Gson [11], and simdjson [85],

first parse the JSON data according to its grammar [10] to create an in-memory parse

tree, then evaluate queries by traversing the tree. Though intuitive, this scheme

suffers from a significant upfront delay due to the pre-parsing. Moreover, the parse

tree occupies a chunk of memory that grows as the data stream becomes larger.

1The object is simplified and slightly modified for illustration purpose.
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• Streaming scheme can naturally avoid the above issues by immediately consuming the

semi-structured data stream, locating and extracting the data of interests on the fly.

For example, JsonSurfer [21] and JPStream [78] evaluate path queries dynamically as

they traverse the data stream without generating any in-memory trees. In this way,

they only need to scan the data in one pass with a bounded memory cost.

Despite its promises, the conventional design of streaming scans the entire data

stream character by character to recognize each token and each syntactical structure (e.g.,

objects and arrays), to evaluate the queries. This detailed way of scanning fundamentally

limits the efficiency of streaming. In this work, we raise a key question in semi-structured

data streaming: is it possible and practical to dynamically “skip” certain parts of the data

stream to accelerate the processing?

Opportunities. Interestingly, we find that, by leveraging the query and the syntax of

semi-structured data, certain data segments become “irrelevant” to the query evaluation,

thus can be safely skipped. Consider the JSON object in Figure 5.1 as part of the data

stream. Assume the query is to find the attribute name of object place (i.e., path query

$.place.name), then the following skipping opportunities present:

• Skip attributes of unmatched types. First, the streaming can safely skip the details of

the first attribute, including its name ("coordinates") and value, because it is an

array-type attribute, while the query looks for an object (based on that place has an

attribute name).
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• Skip values of unmatched names. Then, when it comes to the second attribute, though

it is an object, its name ("user") fails to match that in the query ("place"), therefore

the streaming can skip its value − an object, entirely.

• Skip remaining attributes after matching. Finally, after the "name" attribute is also

matched, the streaming can safely skip the following attributes of the current object

place (i.e., "bounding box") because, according to its syntax, attributes in an object

cannot share names, thus no matches are possible in these remaining attributes.

The above cases are for queries involving objects. Similar skipping opportunities

also exist for queries involving arrays. In this work, we systematically explore the above

skipping opportunities and categorize them into basic groups.

However, without a priori knowledge about the input stream, a näıve way of

implementing the above skipping techniques still needs to traverse the entire data stream in

detail in order to find out all the skipping opportunities (e.g., identifying an attribute and

its type) and to mark the boundary of each data segment (e.g., an object) to be skipped.

These circular dependences essentially create a “chicken-egg” problem.

Practicality. To address the practical aspect of skipping, an alternative yet faster solution

to skipping is desired. For this purpose, we introduce bit-parallel skipping which intensively

utilizes bitwise and SIMD operations to identify the skipping opportunities and perform the

skipping. The key components include i) a new streaming model for easy integration of the

skipping optimizations − recursive-descent streaming, ii) an abstraction for partitioning the

data stream into basic logical units − structural intervals, and iii) an assembly of bit-parallel

algorithms for implementing different skipping scenarios.
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First, recursive-descent streaming decouples the parsing logic from the existing

automaton-based streaming model with the help of a recursive-descent parser. This new

design exposes the skipping opportunities in a more intuitive way, and also makes it easier

to integrate the skipping optimizations thanks to the use of recursive functions. Second, by

dividing the data stream into structural intervals, the complexity in handling the nesting

structures can be greatly reduced. This enables a batched, bracket/parenthesis counting-

based strategy to identify the nesting levels and the boundaries of irrelevant substructures.

Finally, based on this strategy, the skipping algorithms naturally expose bit-parallelism,

hence they can effectively take advantage of the bitwise and SIMD operations that are

prevalent on modern architectures.

Thanks to the bit-parallel skipping, the streaming no longer needs to scan the

characters one by one, instead, it can process a word-size of characters all at once (e.g., 64

characters on a 64-bit machine). In fact, some recent work, like simdjson [85], Mison [86],

and Pison [77], also leverages the bit-parallelism in semi-structured data processing. How-

ever, their uses are limited to locating the metacharacters in JSON data stream and they

all belong to the preprocessing-based scheme.

Based on the above proposed techniques, this work presents a new streaming

framework for JSON-style data − JSONSki. It features 15 bit-parallel skipping primitives

(called skippers), that can be naturally integrated into the streaming for faster processing.

To demonstrate its efficiency, this work compares JSONSki with a group of state-of-the-art

JSON processing tools, including both streaming and preprocessing-based ones, as well as

those supporting bit-parallelism. With real-world datasets and standard path queries, the
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evaluation shows that JSONSki on average achieves 19.0× speedup over a state-of-the-art

streaming library, JPStream [78], and 7.7× speedup over the popular SIMD-based parser,

simdjson [85].

Contributions. To summarize, this work makes the following key contributions to semi-

structured data processing.

• First, it reveals the opportunities of skipping data segments during the semi-structured

data streaming (Section 5.3).

• Second, it introduces recursive-descent streaming, a new streaming model for easy

adoption the skipping ideas, and a group of bit-parallel skipping algorithms based on

the concept of structural intervals (Section 5.4).

• Finally, this work systematically compares the proposed solution with several state-of-

the-art semi-structured data processing tools and confirms its efficiency (Section 5.5).

Next, we provide more background of this work.

5.2 Background

We first introduce the basics of semi-structured data, then present the details of the two

basic processing schemes.

Semi-Structured Data. Unlike structured data, such as tables in relational data stores,

semi-structured data do not have to follow a strict schema. In fact, the data itself carries

its type information, structures, and values. This makes them more flexible in organizing

the data. In general, semi-structured data have two flavors: i) tag-based semi-structured
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object ::= { } | { attributes }
attributes ::= attribute | attribute, attributes

attribute ::= attribute-name : value

array ::= [ ] | [ elements ]

elements ::= element | element, elements

element ::= value

value ::= object | array — primitive

Figure 5.2: JSON Grammar

data, like XML, and ii) programming language-based semi-structured data, like JSON. The

former carries data in a hierarchy of pair tags, such as <id>6536</id>. XML was popular

in the early days of web development. However, recent trends [129, 27] show that they are

getting replaced by the JSON-style data.

JSON, originated from JavaScript language, uses a compact data representation.

Figure 5.2 shows in its grammar. It has two basic structures: an object − a list of attributes

enclosed by a pair of parentheses, such as {"id":653, "name":"John"}, where an attribute

name and its value are separated by a colon, and an array − an ordered list of elements

enclosed by a pair of brackets, like [653, "John"]. Moreover, an attribute value or an

array element itself can be an object or array. Together, they can be nested recursively

to form a complex multi-level structure, like the Tweet object in Figure 5.1. More details

of JSON syntax can be specified in its standard [10]. We refer to the root-level object or

array as a JSON record. Depending on the scenarios, a JSON data stream may consist an

individual bulky JSON record, or a sequence of (small) JSON records.

Querying Semi-Structured Data. Semi-structured data can be queried via path expres-

sions, like $.place.name, each of which specifies a path from the root of a JSON record to
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obj(anonymous)

“coordinates”

40.7…

“user”

“id”

“place”
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“Manhattan”

“box”

“type”

“Ploygon”

“pos”

…

{“coo…”:[4…, -7…], ”user”:{”id”:6…}, ”place”:{“name”:”M… 

(b) leveled bitmaps

(a) parse tree

level-0 bitmaps

level-1 bitmaps

-73.9… 625…

[0] [1]

$.place.name

1 1

1 1 1

1

Figure 5.3: Preprocessing-based Query Evaluation

one or multiple object attributes. Since the root (an object or an array) is anonymous, a

path query uses a $ sign to refer to it. For array-type attributes, the query may carry index

constraints. For example, $.places[0:2] refers to the first two elements in the places

array. To select all array elements, wildcard ∗ should be used, like $.places[∗]. More

details about path queries are available in [74].

As mentioned earlier, to evaluate JSON path queries, there are preprocessing-based

and streaming schemes.

Preprocessing-based Scheme. This scheme first constructs an in-memory data structure,

like a parse tree, for a JSON record, then traverses the tree top-down to evaluate the

path queries. Figure 5.3-(a) illustrates the parse tree and query matching for the running
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example. Most existing JSON processing tools fall into this category, such as JSON-C [12],

RapidJSON [19], FastJSON [4], Gson [11], simdjson [85], and among others.

Instead of generating a parse tree, Mison [86] and Pison [77] build indices for

metacharacters at different levels of a JSON record, called leveled bitmaps. For each level

in the record, two bitmaps are created: a colon bitmap for accessing the attribute, and a

comma bitmap for accessing the array elements. Figure 5.3-(b) shows the positions of 1s

in the bitmaps for the top two levels of the JSON record. Based on them, the evaluation

can quickly locate the attribute names (appearing before colons of current level) or array

elements (appearing before commas of current level), and match them against those in the

query.

Regardless which in-memory data structure is constructed, preprocessing the data

stream introduces a significant delay upfront. Moreover, the constructed in-memory data

structure itself may consume a substantial portion of memory, especially for data stream

with large records. These limitations seriously restrict the use of preprocessing-based scheme

for applications that are sensitive to latency and memory consumption.

Streaming Scheme. This scheme can avoid the limitations of preprocessing-based scheme

by combining the conventional parsing and the path query evaluation into a single pass [21,

78]. It immediately consumes the data as the stream is being traversed and its structures

are being recognized. The key to this design is maintaining two stacks simultaneously: a

query stack for tracking the matching status at different levels of a JSON record and a syntax

stack for recognizing the syntactical structures of JSON [78]. Figure 5.4 illustrates the basic

idea of streaming evaluation using the example JSON query and data. The state machine
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Figure 5.4: Streaming Query Evaluation

captures the two attribute names to match in the query. The syntax stack shows that the

evaluation is currently under the second-level nested object. The query stack shows that it

has reached state 2 at the first level. After the token "name" is consumed, the current state

becomes 3, which is an accept state, indicating a match.

Streaming evaluation directly consumes data in the cache − no writing back to the

memory (except for outputs), thus, its efficiency tend to be higher than the preprocessing-

based scheme, which constructs some data structures in the memory. However, the existing

designs for streaming [21, 78] need to recognize every token in the data stream, based on

which they update the state and stacks. This token-by-token processing limits the efficiency

of streaming evaluation.

In the following, we will present the ideas of skipping which eliminates the needs

of comprehensive scanning.

5.3 Streaming with Skipping

This section first introduces a new basic streaming model, then presents the skipping ideas

under this model.
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5.3.1 Basic Streaming Model − A Decoupled Design

As mentioned earlier, existing work [78] models the streaming evaluation of path queries

over a JSON record as a dual-stack automaton (Figure 5.4). One stack (query stack)

tracks the query matching progress at different levels of a record, while the other stack

(syntax stack) recognizes the syntactical structures. An automaton manages the two stacks

cooperatively based on a set of transition rules. Though being formal and rigorous, this

model is not ideal for the skipping optimizations. First, it would be less intuitive to find the

skipping opportunities as the parsing logic is encoded in the transition rules. Moreover, as

shown later, to make it practical, the skipping optimizations will not follow token-by-token

processing, thus making them unsuitable to be expressed as formal transition rules.

For the above reasons, we introduce an alternative design of the streaming model

which is more amenable to the skipping optimizations. The key idea is to decouple the

parsing logic from the streaming automaton and employ a recursive-descent parser to drive

the query matching automaton. The new design brings two major benefits: First, it sim-

plifies the transition rules as only the query stack needs to be maintained explicitly; the

syntax stack becomes a call stack which is automatically managed by the operating system;

Second, the use of recursive functions makes it easier to program the skipping logic into

the parsing procedure. Next, we describe it major components: a query automaton and a

recursive-descent streaming strategy.

Query Automaton. A path expression, like $.place.name, can be converted into a

pushdown automaton (a state machine plus a stack) to track its matching progress [68, 106,

78]. The idea is to treat a path expression like a regular expression, so that the matching
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progress can be captured by a finite state machine. For example, Figure 5.4 shows a four-

state machine for the example path expression, where state 1 is the starting state, state 3 is

the accept state, and state 0 is the unmatched state. Unlike regular expressions, strings in a

path expression need to be matched according to their levels in the data record, therefore, a

stack is also needed for holding the current state at each level. For queries with array index

constraints (like pos[2:4]), a counter will be associated with the state at the corresponding

level to match the specified range. More details regarding this conversion can be found in

prior work [78].

Thanks to the decoupling, the pushdown automaton only consumes five types of

tokens, rather than eight types as in the dual-stack streaming model [78]: K, V , [, ], and

,, where K is an attribute name, like "place", V is an artificial token that symbolically

represents all possible values of an attribute, and the other three are metacharacters in

JSON. Note that the comma tokens are only those used to separate array elements. As

shown later, all the other occurrences of comma will be filtered out by the recursive-descent

parser.

For each type of tokens, there is a transition rule, as listed in Figure 5.5, where

each rule is in the format:

∆(state, counter, token, stack)→ (state, counter, stack)

Rule [Key] says, when an attribute name K is consumed, the automaton pushes

the current state q onto the stack (stack elements are separated by colons), then updates

the current state based on the finite state machine transition δ(q,K). Rule [Val], on the

other hand, pops the stack top q′ and uses it for the current state, upon receiving a value
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[Key] ∆(q, c,K, ∗)→ (δ(q,K), c, q : ∗)
[Val] ∆(q, c, V, q′ : ∗)→ (q′, c, ∗)

[Ary-S] ∆(q, c, [, ∗)→ (δ(q, [), 0, qc : ∗)
[Ary-E] ∆(q, c, ], q′c′ : ∗)→ (q′, c′, ∗)
[Com] ∆(q, c, ,, ∗)→ (q, c+ 1, ∗)

Figure 5.5: Transition Rules of Query Automaton

{“coo…”:[4…, -7…], ”user”:{”id”:6…}, ”place”:{“name”:”M …”, “b…”:{“t…”:”P…”, “p…”:[…]} } …

jump to an object attribute
(a)

skip an object
(b)

skip remaining attributes
(d)

[{“id”:4…, ”user”:”J…”}, {”id”:3…, ”user”:”L…”}, {”id”:1…

skip two consective elements
(e)

$.place.name

$[2:4].user

(c)
skip and output an primitive

Figure 5.6: Examples of Basic Skipping Cases

token V . Rules [Ary-S] and [Ary-E] work in a similar way, when brackets are consumed,

except for two differences: First, when [ is consumed, [Ary-S] pushes the current counter

along with the current state onto the stack, then it resets the counter to zero, indicating

the start of a new array. Correspondingly, when ] is consumed, both the state and counter

are reassigned with those values from the stack top. Finally, upon consuming a comma (in

an array), rule [Com] simply increments the counter.

Note that the existing dual-stack streaming automaton needs 13 transition rules [78]

as it encodes both the query matching and parsing logic. Next, we explain how the query

automaton can be driven by a recursive-descent parser.

Recursive-Descent Streaming. As a classic type of top-down parsing algorithm, recursive-

descent parsing is known for its uses of recursive functions to simplify the parser design [93].
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Algorithm 9 Recursive-Descent Streaming
1: function object()

2: consume(“{”)

3: while hasMoreAttributes() do

4: attribute = getAttributeName()

5: consume(“:”)

6: type = getAttributeType()

7: if matched == true then /* already in matched status */

8: switch type do

9: case “object”: output(attribute + “:” + object()) break

10: case “array”: output(attribute +“:” + array()) break

11: case “primitive”: output(attribute + “:” + primitive())

12: else /* not yet matched */

13: qa.transition(attribute) /* update query automaton */

14: if qa.status() == accept then matched = true

15: switch type do

16: case “object”: object() break

17: case “array”: array() break

18: case “primitive”: primitive() /* consume a primitive */

19: matched = false

20: qa.transition(V) /* V: a symbolic representation for values */

21: consume(“}”)

The basic idea is to create a function for each non-terminal in the grammar, whose job is

to recognize the structures of this non-terminal. For non-terminals that are recursively

defined, their functions naturally become recursive functions.

In the case of JSON grammar (see Figure 5.2), there are two major non-terminals:

object and array, after inlining all other non-terminals. Algorithm 9 presents the two

functions: object() and array(), respectively 2. Both functions consist of recursive calls

to themselves and to each other. Thanks to the use of recursion, the two functions are

2Due to limited space, the pseudocode of array() is separated into Algorithm 10.
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Algorithm 10 Recursive-Descent Streaming (Continue from Algorithm 9)
1: function array()

2: consume(“[”)

3: qa.transition(“[”)

4: if notEmpty() then

5: while true do

6: if qa.status() == accept then matched = true

7: type = getElementType()

8: switch type do

9: case “object”: object() break

10: case “array”: array() break

11: case “primitive”: primitive()

12: matched = false

13: if hasMoreElements() then

14: consume(“,”)

15: qa.transition(“,”)

16: else break

17: consume(“]”)

18: qa.transition(“]”)

straightforward to follow − they recognize the structures of objects and arrays simply

following their grammar rules. To achieve streaming query evaluation, we embed the query

automaton transitions into the recursive descent parsing, which are highlighted (in blue)

in Algorithm 9 and Algorithm 10. In object(), the two statements at Line 13 and 20

correspond to the [Key] and [Val] transitions in Figure 5.5, respectively. They are executed

before and after an attribute value is recognized (Line 15-18). Similarly, in array(), the

two statements at Line 3 and 18 correspond to the [Ary-S] and [Ary-E] transitions. They

are executed when an array starts and ends, respectively. Finally, the statement at Line

15 corresponds to the [Com] transition and it is executed after each comma in the array is
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encountered. Besides the above transitions, to output matches, the parser also checks the

query automaton for the matching status (at Line 14 in object() and Line 6 in array()).

We name the above approach recursive-descent streaming. Next, we present the

skipping ideas under this new model.

5.3.2 Opportunities for Skipping

Under the basic streaming model, the data stream is processed token by token, and every

token needs to be recognized and consumed. Moreover, these tokens are fed into the query

automaton to trigger transitions. To avoid this comprehensive streaming, we find that, the

query (a path expression) often carries “hints”, when intelligently leveraged, along with

the syntax of semi-structured data, they can enable various opportunities for skipping data

segments, without compromising the integrity of the results.

One of the “hints” is the data type, which can be inferred from the query, but has

not yet been leveraged by the basic streaming model. For example, from $.place.name,

we can infer that place is an object, because it has an attribute called name. By contrast,

expression $.places[2:4].name implies that places is an array. In this way, we can obtain

the types for all attribute names in the path expression, except for the last (the inner-most),

which can be of any type. Based on such type information, the streaming may skip data

segments with unmatched types. Besides this, the streaming may also leverage other query

information, such as attribute names (e.g., place) and index constraints (e.g., [2:4]) to

skip irrelavent syntactical structures in the data stream.

Next, we summarize these skipping opportunities into five groups based on their

intuitions. Assume that a global variable, pos, is maintained during the streaming, which

146



marks the current position of streaming in the data stream. The skipping effects can be

achieved by advancing pos.

G1: Jump to a Type-Specific Attribute/Element. As shown in JSON grammar (see

Figure 5.2), an object consists of a sequence of attributes, where each attribute carries

a value that could be an object, an array, or a primitive. Based on the attribute type of

interest (extracted from the query), we can skip all type-unmatched attributes, and directly

jump to the attribute of the matched type. As shown in Figure 5.6-(a), based on the type

information, the streaming skips the first attribute − an array, and directly jumps to the

second attribute − an object.

Similar scenarios also occur when the streaming traverses an array with heterogeneous-

typed elements, it may directly jump to the element of matched type. However, for queries

with index constraints, we need to make sure the skipping does not go beyond the specified

index range.

G2: Skip an Unmatched Attribute Value. For attributes with matched type, the

streaming further extracts the attribute name and feeds it to the query automaton for

updating the matching status. Note that this attribute name extraction (tokenization)

cannot be skipped. But, if the query automaton fails to make matching progress − the

attribute name leads the automaton to the unmatched state (e.g., state 0 in Figure 5.4),

it would be unnecessary to further examine its attribute value. Depending on the type of

the value, the streaming may skip an object, an array, or simply a primitive. Figure 5.6-(b)

presents such an example, where an object is skipped as its name "user" fails to match the

"place" in the query.
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G3: Skip and Output a Matched Value. Consider the scenario where the query

automaton has reached the accept state, so it should output the attribute value or the

array element. In this case, the streaming may perform skipping and outputting together,

as long as it can find the end position of the value. This avoids examinating the details

of the output. Figure 5.6-(c) shows such a case where the query is fully matched, so the

streaming skips and outputs its value entirely.

G4: Skip Remaining Attributes after Matching. Within an object, once an attribute

name is matched, the state of the automaton would be in-progress or accept. In this

case, the streaming may skip all following attributes of this object, as the JSON syntax

prohibits an object from owning duplicated attribute names, meaning no matches could

be found in these remaining attributes. Figure 5.6-(d) illustrates such a case, where the

attribute that appears after name is skipped.

G5: Skip Out-of-Range Elements. Finally, some queries may carry array index con-

straints, typically a range, such as [2:4]. These constraints expose opportunities to skip

consecutive array elements that are out of the specified range. As shown in Figure 5.6-(e),

the streaming skips the first two array elements as the query asks for matches between the

third and forth array elements (i.e., [2:4]). Similarly, skipping is also possible after the

end of the specified range is reached.

Table 5.1 lists the skipping cases discussed above as functions that can be called

to achieve the corresponding skipping effects. We refer to these functions as skippers.

Before showing their algorithmic details (in Section 5.4), we first illustrate how they can be

naturally integrated into the streaming.
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Table 5.1: Five Groups of Skippers

G1

goToObjAttr() jump to an object attribute
goToAryAttr() jump to an array attribute

goToObjElem() jump to an object element
goToAryElem() jump to an array element

goToObjElem(K) jump to an object within K elements
goToAryElem(K) jump to an array within K elements

G2
skipObject() skip an object
skipArray() skip an array

skipPrimitive() skip a primitive

G3
outputObject() skip and output an object
outputArray() skip and output an array

outputPrimitive() skip and output a primitive

G4 skipLeftAttrs() skip all remaining attributes

G5
skipElems(K) skip K consecutive array elements

skipLeftElems() skip all remaining array elements

5.3.3 Integration of Skippers

Due to space limits, we use the object() function from the recursive-descent streaming (see

Algorithm 9) as an example to illustrate the integration of skippers. Algorithm 11 shows

the new object() function after the skipper integration.

Comparing to the original object(), there are four places where skippers are

integrated. First, it extracts the expected type from the query automaton (Line 3), based

on which, it invokes the corresponding skipper to jump to the type-matched attribute

directly (Line 5-8). Note that it is possible that the object contains no more type-matched

attributes. In this case, the skipping reaches the end of the object (Line 9-10). Second,

after the query automaton takes the attribute name (Line 13), it starts to process its value

(Line 14). Here, the pseudocode of process value() function is shown in Algorithm 12

(continue from Algorithm 11). Basically, it checks the matching status (Line 1). If the last
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Algorithm 11 Streaming with Skipping (Partial)
1: function object()

2: consume(“{”)

3: type expected = qa.typeExpected() /* qa: query automaton */

4: while hasMoreAttributes() do

5: if type expected != “unknown” then

6: switch type expected do

7: case “object”: result = goToObjAttr() break

8: case “array”: result = goToAryAttr()

9: if result == object end then /* has reached object end */

10: consume(“}”) return

11: type = getAttributeType()

12: attribute = getAttributeName()

13: qa.transition(attribute) /* consume attribute name */

14: matched flag = process value(qa)

15: if matched flag == MATCHED then

16: break while-loop

17: if hasMoreAttributes() then

18: skipLeftAttrs()

19: consume(“}”)

transition leads to an unmatched state, then the corresponding skipper would be called to

skip the attribute value (Line 4-7). Otherwise, if the last transition leads the automaton

to the accept state, then the outputting-related skippers would be called to output the

values without examining their details. Finally (back to object() in Algorithm 11), if

the query automaton just made matching progress (Line 15-16), the function would stop

examining the following attributes of this object in the future (Line 17-18) by calling skipper

skipLeftAttrs().
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Algorithm 12 Streaming with Skipping (Partial) (Continue from Algorithm 11)
1: function process value(qa)

2: if qa.status() == unmatched then

3: switch type do

4: case “object”: skipObject() break

5: case “array”: skipArray() break

6: case “primitive”: skipPrimitive()

7: matched flag = UNMATCHED

8: else if qa.status() == accept then

9: switch type do

10: case “object”: outputObject() break

11: case “array”: outputArray() break

12: case “primitive”: outputPrimitive()

13: matched flag = MATCHED

14: else /* in-progress */

15: switch type do

16: case “object”: object() break

17: case “array”: array() break

18: case “primitive”: /* impossible */

19: matched flag = MATCHED

20: qa.transition(V) /* V: a symbolic representation for values */

21: return matched flag

In a similar way, the skippers can be integrated into the other function array() in

the basic recursive-descent streaming. As mentioned earlier and demonstrated here, the use

of recursive functions, instead of automaton transition rules, makes it much more intuitive

to adopt the skipping optimizations.

So far, we have present the ideas of skipping under the new streaming model,

without showing any implementation details. In fact, how to achieve these skipping goals

is a key challenge by itself, which we will address in the next section.
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5.4 Bit-Parallel Skippers

Though the ideas of skipping sound attractive, it is non-trivial to make them work effectively

in practice. A key question in achieving the skipping goals (e.g., skipping an object) is:

how can the target position of skipping be identified?

Conventionally, this question itself is a parsing problem, thus requires scanning every char-

acter and generating every token. If the skippers are implemented in this way, the only

benefit they bring is bypassing some query automaton transitions as they are not needed

during the skipping. The main cost of streaming − comprehensive scanning, still remains.

To address this dilemma, we need an alternative yet much faster solution to implement

the skippers. In this section, we show a highly bit-parallel solution to implement the skip-

pers, which bypasses the conventional detailed scanning. The keys to this solution include

an abstraction for partitioning of the semi-structured data stream into basic logic units,

namely, structural intervals, and an assembly of counting-based algorithms for identifying

the nesting levels and boundaries of objects and arrays.

5.4.1 Structural Intervals

Designing bit-parallel algorithms is notoriously challenging due to the low-level bit-manipulations.

This is compounded by the recursive and nested structures of the data stream. To reduce the

design complexity, we propose to partition the data stream into some basic data segments.

Definition 7 Given a metacharacter of interest, denoted as α, a structural interval for

α is a consecutive sequence of characters located between the current streaming position pos

(inclusive) and the following closest α (exclusive).
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{ "coordinates” : [40.7…, -73.9…], ”user” : {"id” : 6253282}, …

pos

colon interval
open-bracket interval

comma interval

open-parenthesis interval

Figure 5.7: Examples of Structural Intervals

Depending on the metacharacter of interest, there could be different kinds of struc-

tural intervals (see Figure 5.7). Note that pseudo-metacharacters inside strings should not

be counted.

A critical property of structural intervals is that they can be constructed and

accessed efficiently with bit-parallelism.

Construction. Given the current streaming position pos, and a metacharacter of interest

α, the structural interval constructor builds an interval bitmap for characters in the data

stream, and only the bits within the interval are set to 1s, as illustrated by the open-

bracket interval bitmap in Figure 5.8. By default, the size of an interval bitmap is the same

as a word, denoted as W . For example, on a 64-bit machine, the bitmap consists of 64 bits,

representing 64 consecutive characters in the data stream. However, an interval bitmap may

span multiple words, as shown by the open-parenthesis interval bitmap in Figure 5.8. In

this case, the constructor builds a partial interval bitmap for each W characters overlapped

with the interval. Note that a partial interval bitmap should be constructed after the prior

one has been used and destroyed. The constructor should not buffer them to create a whole
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{ "coordinates” : [40.7…, -73.9…], ”user” : {"id” : 6253282}, …

pos

0111111111111111110000…0

open-bracket interval bitmap (64 bits)

0111111111111111111111…1
open-paraenthesis interval bitmap (partial)
1111111111111111111000…0

destroyed

Figure 5.8: Example of Interval Bitmap

interval bitmap, which in theory can be arbitrarily long, thus contradicting the streaming

design.

Function builtInterval(pos, char) from Algorithm 13 describes the construc-

tion process. First, it builds a bitmap for the given metacharacter (Line 3). The basic

idea [86, 85, 77] is shown by function builtMetacharBitmap(char). Here, we need to re-

move all the pseudo-metacharacters. To achieve this, a string bitmap is created (Line 17),

then a logic AND is taken between the string bitmap and the raw metacharacter bitmap

(Line 20). After this, the constructor marks the start position (Line 4), resets bits up to

the start position to 0s (Line 5-6), marks the end position (Line 7), and finally generates

the interval bitmap by taking a bitmap subtraction (Line 8).

Besides the above construction, Algorithm 14 presents an alternative constructor,

nextInterval(char), which is for faster construction of a sequence of structural intervals.

Also, Algorithm 14 shows a function for quickly obtaining the end position of an inter-
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Algorithm 13 Structural Interval Construction and Access
1: /* Build an interval bitmap for a metacharacter */

2: function buildInterval(pos, char)

3: bitmap = buildMetacharBitmap(char)

4: b start = 1 << pos /* mask start position */

5: mask start = b startˆ(b start – 1) /* mask bits up to start */

6: bitmap = bitmap & ∼mask start /* reset bits up to start to 0s */

7: b end = bitmap & –bitmap /* mask end position */

8: b interval = b end – b start /* create the interval bitmap */

9: return b interval

10:

11: /* Construct the bitmap for a given metacharacter */

12: function buildMetacharBitmap(char)

13: if bitmap char != null then /* to avoid rebuilding */

14: return bitmap char

15: /* construct a bitmap to mask all the characters inside strings */

16: if bitmap string == null then

17: bitmap string = buildStringBitmap()

18: bitmap char = buildRawCharBitmap(char)

19: /* remove metacharacters in strings */

20: bitmap char = bitmap char & bitmap string

21: return bitmap char

val, intervalEnd(interval). It uses the leading-zero counting instruction to locate the

mirrored end position 3, then converts it to the actual end position.

In the next section, we will show how the structural intervals can be leveraged to

facilitate the skipping algorithm design.

3In fact, a metacharacter bitmap is always created in mirrored way [86].
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Algorithm 14 Structural Interval Construction and Access (Continue from Algorithm 13)
1: /* Build an interval bitmap between first two 1s in a bitmap */

2: function nextInterval(char)

3: bitmap = buildMetacharBitmap(char)

4: b start = bitmap & –bitmap /* get rightmost 1 */

5: bitmap = bitmap & (bitmap – 1) /* remove rightmost 1 */

6: b end = bitmap & –bitmap /* get rightmost 1 again */

7: b interval = (b end – b start) /* create the interval bitmask */

8: return b interval

9:

10: /* Get the position of the end of an interval (i.e., rightmost 1) */

11: function intervalEnd(interval)

12: pos = lzcnt(interval) /* position of leftmost 1 */

13: pos = wordSize() – pos /* mirror the position */

14: return pos

5.4.2 Skipping Algorithms

We start with the main design ideas, then present the algorithm in detail for each group of

skippers.

Main Design Ideas. The basic question in skipping is to find the target position. For

example, to skip an object, we need to locate the close parenthesis of the object that

pairs with its open parenthesis. To avoid character-by-character scanning, skippers process

the data stream interval by interval. First, they convert every W characters from the

data stream into some relevant interval bitmaps (see Section 5.4.1). Then, based on these

bitmaps, they use a counting-based pairing strategy to locate the close parenthesis/bracket

of an object/array. The strategy is backed up by the following property:

Lemma 8 In a JSON object, assume α and β are two closest open parentheses (marking

an open-parenthesis interval), and the number of close parentheses between them is nclose.
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{ … [ … { … { … } … { … } … } … ] … }  

one close parenthesis

three unpaired open parentheses

… { … { … [ … { … { … } … { … } … } … ] … } … } … { … 

four close parentheses

three unpaired open parentheses

(a)

(b)
object ends

object starts

Figure 5.9: Examples of Pairing Property

Also assume the number of unpaired open parentheses before α (including α) is nopen. Then,

we have nclose < nopen. The same conclusion holds for JSON arrays.

Figure 5.9-(a) illustrates the above property. Between the two closest open paren-

theses marked on the bottom, there is one close parenthesis − no more than the number of

unpaired open parentheses up to the first open parenthesis (i.e., three).

However, when a JSON object is part of the data stream, the property must fail

to hold when the object ends. As illustrated in Figure 5.9-(b), there are four close paren-

theses between the last two open parentheses − more than the number of unpaired open

parentheses from the object start position up to the first one of the two open parentheses

(i.e., three). This means the object ends between the last two open parentheses. In fact,

the object ends at the third close parenthesis − the same as the number of unpaired open

parentheses nopen. This is also true when a JSON array is part of the data stream.
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Based on the above observation, we present the algorithms for skipping a type-

specific value (G2), then we expand their ideas to other skipper groups. For easy recognition,

bit-parallel operations are highlighted in blue in the pseudo-code.

G2: Skip a Type-Specific Value. Take the skipper for skipping an object skipObject()

as an example. Algorithm 15 shows its basic steps. First, it consumes the open parenthesis

of the object and sets the number of unpaired open parentheses to 1 (Line 2-3). Then, it

traverses the open parenthesis intervals. For each interval, it builds the close parenthesis

bitmap (Line 9) to count the number of close parentheses in this interval (Line 10-11).

Based on that, it updates the number of unpaired open parentheses, by subtracting the

number of paired ones, plus the new one that appears at the beginning of this interval (Line

13). If there are more close parentheses than those to be paired, the object must end in this

interval, and its close parenthesis is the num {-th one (Line 15), whose position is exactly

the target of this skipping (Line 16).

The algorithm for skipping an array skipArray() is the same as skipObject(),

except that all the occurrences of parentheses are replaced with the corresponding brackets.

By contrast, the algorithm for skipping a primitive is simpler. As described in

skipPrimitive() in Algorithm 16, it first builds a comma interval (Line 2), then collects

the close parentheses within this interval (Line 3-4). If no close parenthesis exists in this

interval, it simply goes to the end of the interval; otherwise, it jumps to the position before

the object ends (Line 5-7).
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Algorithm 15 G2: Skip a Type-Specific Value
1: function skipObject()

2: consume(“{”)

3: num { = 1 /* number of unpaired open parentheses */

4: while true do

5: if interval == null then

6: interval = buildInterval(pos,“{”)

7: else

8: interval = nextInterval(“{”)

9: bitmap } = getMetacharBitmap(“}”)

10: bitmap } = bitmap } & interval

11: num } = popcnt(bitmap }) /* count “}”s in this interval */

12: if num } < num { then

13: num { = num { – num } + 1

14: else /* enough or more “}”s found */

15: pos = getPosition(bitmap }, num {)

16: goto pos /* position of “}” that ends to-be-skipped object */

G1: Jump to a Type-Specific Attribute/Element. With G2 skippers, we can compose

the algorithms for G1 skippers.

Algorithm 17 shows the goToObjAttr() function. To jump to an object attribute,

the algorithm traverses the attributes one by one, and checks their types. For each attribute,

it builds a colon interval to quickly go to its colon (Line 3-4), so that it can directly check

the type of its value without extracting the attribute name (Line 5). In cases the value type

is unmatched, the algorithm calls corresponding skippers to skip the value.

The other G1 skippers can be implemented in a similar way, except that for jump-

ing to a type-specific array element, there is no need to construct the colon interval, and for

queries with index constraints, the jumping should track a counter to avoid reaching an out-

of-range element. In addition, Algorithm 17 shows an enhanced skipper skipPrimAttrs(),
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Algorithm 16 G2: Skip a Type-Specific Value (Continue from Algorithm 15)
1: function skipPrimitive()

2: interval = buildInterval(pos, “,”)

3: bitmap } = getMetacharBitmap(“}”)

4: bitmap } = bitmap } & interval

5: if bitmap } == 0 then /* current object does not end */

6: goto intervalEnd(interval)

7: goto getPosition(bitmap }, 1) – 1

for skipping a sequence of primitive attributes or elements together, The idea is to go as far

as the next open parenthesis and open bracket (Line 12), and if the object/array has not

ended (Line 15), it has skipped these primitive attributes (elements); otherwise, it goes to

the end of the object/array (Line 18).

G3: Skip and Output a Matched Value. G3 skippers are very similar to G2 skippers,

except that they also need to output the contents that they skipped. We can easily embed

the outputting statements into the skipping at the interval level.

G4: Skip Remaining Attributes after Matching. Though for a different scenario,

function skipLeftAttrs(), in fact, can be implemented like skipObject(), because both of

them want to reach the end of an object. The only subtle difference is that skipLeftAttrs()

occurs inside an object (between attributes), while skipObject() happens before an ob-

ject. By removing the consume("{") at Line 2 in Algorithm 15, we get the algorithm for

skipLeftAttrs().

G5: Skip Out-of-Range Elements. The algorithms for G5 skippers also resembles

some of the above skippers. Function skipElems(K) skips K consecutive elements re-

gardless of their types, which can be achieved by traversing the comma intervals with an
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Algorithm 17 G1: Jump to A Type-Specific Attribute/Element
1: function goToObjAttr(). /* Jump to the next object attribute */

2: while hasMoreAttributes() do

3: interval = buildInterval(pos, “:”)

4: pos = intervalEnd(interval) + 1

5: type = getAttributeType()

6: switch type do

7: case “primitive”: skipPrimAttrs() break

8: case “object”: break while-loop

9: case “array”: skipArray()

10:

11: function skipPrimAttrs() /* Skip consecutive primitive attributes */

12: interval = buildInterval(pos, “{”, “[”)

13: bitmap } = getMetacharBitmap(“}”)

14: bitmap } = bitmap } & interval

15: if bitmap } == 0 then /* object has not ended */

16: goto intervalEnd(interval)

17: else

18: goto getPosition(bitmap }, 1)

index counter. For each element encountered, a corresponding skipper is called. Function

skipLeftElems() is similar to the function skipLeftAttrs(), with parenthesis bitmaps

replaced by bracket bitmaps.

So far, we have presented the algorithms for all the five groups of skippers listed

in Table 5.1.

5.5 Evaluation

This section evaluates the proposed streaming with bit-parallel skipping and compares it

with existing methods.
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Table 5.2: Methods in Evaluation

JPStream A state-of-the-art JSON streaming library [78]
RapidJSON A popular conventional JSON parser from Tencent [19]

simdjson A popular SIMD-based JSON parser [85]
Pison A structural index-based JSON preprocessor [77]

JSONSki JSON streaming with bit-parallel skipping (this work)

5.5.1 Methodology

We implemented the 15 skippers in Table 5.1 and the recursive descent streaming in C++.

We name this streaming framework JSONSki. It supports standard JSON path query

structures [74] with basic array index constraints, such as [a:b] and [a:]. Based on

the availability of SIMD instructions (e.g., AVX512), it tries to maximize the overall bit-

parallelism. By default, JSONSki transparently invokes the skippers whenever they apply,

based on the structure of the JSON path query. However, advanced developers can use the

skipping APIs for exploiting opportunities in other JSON analytics.

Methods in Comparison. We compare JSONSki with several representative JSON pro-

cessing tools, including simdjson [85], RapidJSON [19], JPStream [78], and Pison [77].

A summary of these methods are listed in Table 5.2. Among them, simdjson and Pison

also utilize bitwise and SIMD parallelism, but their uses are limited to the identification

of metacharacters. Also, RapidJSON, simdjson, and Pison belong to the preprocessing

scheme, while JPStream and JSONSki are streaming-based. Pison and JPStream also sup-

port speculative execution, which is orthogonal to the skipping optimizations. For the

following evaluation, this feature is disabled.
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Table 5.3: Dataset Statistics

Data #objects #arrays #attr #prim. #sub depth

TT 2.39M 2.29M 26.5M 24.3M 150K 11
BB 1.91M 4.88M 40.7M 35.8M 230K 7

GMD 10.3M 43K 29.0M 21.0M 4.44K 9
NSPL 613 3.50M 1.66K 84.2M 1.74M 9
WM 333K 34K 8.19M 9.92K 275K 4
WP 17.3M 6.53M 53.2M 35.0M 137K 12

Datasets. The datasets used for this evaluation are collected from real-world applica-

tions, including tweets stream from Twitter (TT) developer API [23], product dataset from

Best Buy (BB) [2], National Statistics Postcode Lookup (NSPL) dataset from United King-

dom [16], Google Maps Directions (GMD) dataset [6], Walmart (WM) product dataset [26],

and Wikipedia (WP) entity dataset [29]. Table 5.3 summarizes the statistics regarding their

structures. For easier comparison, we made each dataset approximately the same size: 1GB.

Each dataset can be either one single large record or a sequence of small records. The col-

umn #sub in Table 5.3 lists the number of small records in each dataset.

Path Queries. Table 5.4 lists the JSONPath queries used in the evaluation. For each

dataset, we constructed two queries. The last column lists the number of matches. Together,

they cover the common path query structures, as well as different levels of complexities and

selectivities. Similar query structures have been used for evaluation by the prior work [78,

86, 77].

All experiments were conducted on a server equipped with two Intel 2.1GHz Xeon

E5-2620 v4 CPUs and 64GB RAM. The CPUs support 64-bit ALU instructions and 256-bit

SIMD instruction set. This server runs on CentOS 7 and is installed with G++ 7.4.0. All
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Table 5.4: JSONPath Queries

ID Query structure #matches

TT1 $[*].en.urls[*].url 88,881
TT2 $[*].text 150,135
BB1 $.pd[*].cp[1:3].id 459,332
BB2 $.pd[*].vc[*].cha 8,857

GMD1 $[*].rt[*].lg[*].st[*].dt.tx 1,716,752
GMD2 $[*].atm 270
NSPL1 $.mt.vw.co[*].nm 44
NSPL2 $.dt[*][*][2:4] 3,509,764
WM1 $.it[*].bmpr.pr 15,892
WM2 $.it[*].nm 272,499
WP1 $[*].cl.P150[*].ms.pty 15,603
WP2 $[10:21].cl.P150[*].ms.pty 35

C++ programs were compiled with ”-O3” optimization flag. All inputs are preloaded into

the memory before the processing. Each input with small records is stored in an array,

along with an offset array (for starting positions).

5.5.2 Overall Performance

We first compare the execution time of the different methods, then examine their memory

overhead.
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Figure 5.10: Performance Comparison on Large Records
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Figure 5.11: Performance Comparison on Small Records

Performance on Large Records. First, we evaluated different methods on data streams

of a single large JSON record, where each record is around 1GB. Figure 5.10 reports the

execution time. For preprocessing-based methods, it includes both the preprocessing time

and querying time.

From the results we can find that JPStream and RapidJSON run significantly

slower than the other three methods. This is because both of them process the data stream

character by character, due to lack of bit-parallelism. In comparison, the other three meth-

ods can simultaneously process a batch of characters with bitwise/SIMD operations. In

particular, JPStream, the existing streaming processor, runs 19.0× slower than JSONSki,

which clearly demonstrates the importance of adopting bit-parallel skipping to the stream-

ing.

Among the three methods with bit-parallelism, JSONSki outperforms simdjson

and Pison, achieving 7.7× and 4.8× speedups on average, respectively. The benefits mainly

come from three aspects: First, JSONSki not only utilizes bit-level parallelism for identifying

metacharacters, but also uses it for locating the boundaries of objects and arrays (see

Section 5.4). Second, JSONSki can quickly “jump” over a large ratio of the data stream,

without examining its details (see Section 5.3.2). Third, with streaming design, JSONSki

processes the data mostly inside the caches. By contrast, simdjson needs to find all the
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tokens in the data stream and parse them into the tree structure. Unlike simdjson, Pison

constructs structural indices before the parsing and querying. This allows it to skip parsing

certain parts of the data stream in detail. However, it still needs to build the structural

indices for the entire data stream, and its non-streaming design also limits the overall

performance.

In addition, we noticed that JSONSki takes significantly less time (around 0.01s)

in two cases: NSPL1 and WP2. It turns out that the queries find all matches in the early

part of the data stream, so JSONSki skips a high ratio of data stream. The effectiveness of

skipping will be discussed in Section 5.5.3.

Performance on Small Records. The performance results on data streams with small

records are similar to those on the large-record data streams, except that, most of the

evaluated methods become slightly faster, thanks to the better cache locality − some small

records can be processed in the caches. Note that JSONSki shows a bit longer running

time on average (from 0.24s to 0.32s). This is actually due to the exclusion of two cases in

the large-record scenarios (NSPL1 and WP2) which are not applicable to the small-record

scenarios.

Memory Overhead. Besides performance, the memory cost of data processing is also

critical to many semi-structured data applications. Figure 5.12 reports the overall memory

footprints of different methods during the processing of large records. The results clearly

separate JPStream and JSONSki from the rest, thanks to their streaming design. In fact,

the memory footprints for JPStream and JSONSki are mainly for holding the data stream

and outputs (around 1GB). While the other three methods need a substantial amount
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Figure 5.12: Memory Footprint Comparison

of extra memory for holding the preprocessing results, either a parse tree (simdjson and

RapidJSON) or structural indices (Pison). On average, their memory sizes are tripled

(around or above 3GB).

5.5.3 Benefits Breakdown

To further examine the benefits of JSONSki, we introduce a metric called skipping ratio

− the ratio between the characters skipped and the total length of the data stream, to

estimate the effectiveness of skippers. Table 5.5 reports these ratios for different groups

of skippers under different querying scenarios. Note that G5 skippers are for queries with

index constraints, so they are applicable only to some of the queries evaluated.

First, from the last column of Table 5.5, we can find the total skipping ratio for

all five groups of skippers is very high across all the evaluated queries − all above 95%.

This confirms the potential of skipping opportunities in practice. For the less than 5%

characters that are not skipped, they are mostly the strings of attribute names that have
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Table 5.5: Skipping Ratios by Skipper Groups

Query G1 G2 G3 G4 G5 Total

TT1 12.80% 78.22% 0.22% 8.20% – 99.44%
TT2 0.00% 1.17% 2.28% 95.62% – 99.07%
BB1 14.34% 0.72% 0.49% 82.19% 0.75% 98.49%
BB2 89.24% 8.73% 0.02% ¡ 0.01% – 97.99%
GMD1 13.18% 0.04% 1.06% 83.13% – 97.41%
GMD2 0.02% 99.97% ¡ 0.01% 0.00% – 99.99%
NSPL1 ¡ 0.01% ¡ 0.01% ¡ 0.01% 99.99% – 99.99%
NSPL2 83.45% 0.00% 1.55% ¡ 0.01% 10.94% 95.94%
WM1 97.97% 0.13% 0.01% 1.66% – 99.77%
WM2 ¡ 0.01% 0.33% 1.90% 96.56% – 98.79%
WP1 1.47% 83.08% 0.01% 14.77% – 99.33%
WP2 ¡ 0.01% 0.02% ¡ 0.01% 0.01% 99.96% 99.99%

to be extracted for checking the matching status, as well as some metacharacters that have

to be consumed individually (see Algorithm 11).

Second, from the results, we find that skippers of different groups often contribute

unevenly to the overall skipping ratio. Skippers with substantial contributions (> 5%) are

highlighted in Table 5.5. For example, under TT1, G2 skippers achieve a skipping ratio of

78.22%, while G3 skippers only skip 0.22% of the data stream. Similar contribution vari-

ations also occur under other querying scenarios. In general, the contributions of skippers

highly depend on the matching process: the query structure and the data stream structure.

Except for G3, we find all other four groups of skippers made substantial contributions

in at least one querying scenario. In the case of G3 skippers, their effectiveness actually

depends on the querying selectivity, as they are designed for outputting. For queries with

lower selectivity, their contributions would become higher.
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(simdjson supports records of size up to 4G)

5.5.4 Scalability

Finally, we briefly demonstrate the scalability of JSONSki. We constructed data streams of

different sizes from the BB dataset, ranging from 250MB to 8GB. Figure 5.13 reports the

execution time of different methods under query BB1. The results show that, as the data

stream size increases, the execution time of JSONSki tends to grow slower than those of the

other methods. This projects even more benefits of JSONSki for data streams with larger

records.

5.6 Related Work

This section summarizes the existing work on semi-structured data under three topics: i)

character-by-character processing, ii) bit-parallel processing, and iii) skipping and filtering.

Character-by-Character Processing. Most existing work on querying raw semi-structured

data (such as XML and JSON) follow a character-by-character processing style. For
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XML querying, existing methods are either based on automata [39, 134, 56, 68, 106],

arrays [81], or stacks [50, 82]. Following similarly directions, most existing JSON query

evaluators [4, 12, 15, 19] convert each JSON record into in-memory tree structure before

getting the substructure of interests.

However, as discussed earlier, preprocessing introduces an upfront delay and re-

quires additional memory, especially for large data streams. To address such issues, stream-

ing scheme has been proposed, first for XML data [68, 106] then for JSON data, such as

JSONSurfer [21] and JPStream [78]. The basic idea is to traverse the data stream in one

pass, and perform the on-the-fly parsing for evaluating the queries. More details regarding

to the streaming can be found in Section 5.2.

Bit-Parallel Processing. To further optimize the processing of semi-structured data,

some recent work turn to some advanced features of modern CPUs, Mison [86] creates

structural indices using SIMD and bitwise instructions, which can process tens of or even

hundreds of characters simultaneously. However, its index construction process is sequential

for a single JSON record. To improve the scalability, Pison [77] further brings intra-record

parallelism, with the help of some customized parallelization techniques (e.g., speculation).

Some of these ideas are inspired by NoDB [32, 33, 76, 83], which builds structural index

on raw CSV files. Unlike the above methods, simdjson [85] adopts bitwise processing to

speedup the parsing tree generation. All these methods are preprocessing-based, they use

bit-parallelism for constructing the in-memory data structures. In comparison, JSONSki

leverages bit-parallelism for accelerating the skipping in the streaming scheme.
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Besides JSON processing, bitwise parallelism has also been applied in other textual

data processing scenarios, like regular expression matching [45], substring searching [45,

111], XML parsing [89], delimiter-separated data parsing [124], as well as data processing

in some database systems [30, 41, 101, 51].

Skipping and Filtering. To boost the performance of JSON data processing, Sparser [111]

filters out certain JSON records before parsing and querying them. The filtering is based

on the substrings appeared in the query. If a JSON record has no specified substrings at

all, it would be filter out. Obviously, the effectiveness of the filtering depends on the query

selectivity. If a query can find matches in most records, the filtering only brings limited

benefits (or even slows down the processing). Note that this filtering is orthogonal to the

skipping proposed in this work. The former is at the inter-record level and it is NOT aware

of the record structure, while our skipping is at the intra-record level and it is based on the

record structure.

For XML data, some earlier work also mentioned skipping optimizations, but both

the contexts and the high-level ideas are different from this work. First, XHints [73] proposes

to insert artificial “hints” into the XML data stream to indicate the portions for skipping.

This ad-hoc solution may work well for some cases, but it sacrifices the generality. In

comparison, Amagasa and others [34] propose to skip XML elements that fail to match

the path queries. This shares similarities with our G2 skippers. To implement this, they

designed a streamlined parser that can skip attributes of unmatched XML elements.
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5.7 Summary

Streaming is a promising scheme for semi-structured data processing. However, its conven-

tional design requires to scan the entire data stream in detail. In this work, we propose

the idea of “streaming with skipping”. In particular, we reveal a series of opportunities

for skipping certain substructures of the data stream that are irrelevant to the query eval-

uation. To tap into the full potential of the skipping, we propose a group of bit-parallel

algorithms for implementing different skipping cases. With these techniques, we developed

a new JSON streaming framework, called JSONSki. Our evaluation shows that JSONSki

can skip over 95% of the data stream for common query structures, bringing significant

speedups over the existing streaming and non-streaming methods.

172



Chapter 6

Conclusions

In this thesis, we tackled several major challenges in scalable processing of semi-

structured data. Specifically, we first proposed GAP, a grammar-based parallelization

scheme that leverages the grammar of the input data to narrow down the feasible execution

paths in the enumerative parallelization model of XPath query evaluation [106]. It supports

both non-speculative mode and speculative mode, depending on the availability of pre-

defined grammar. Following this work, we designed a stream processing model for querying

JSON data, namely JPStream, which is enabled by a joint compilation technique that com-

bines JSON grammar and input queries into a unified pushdown automaton with two stacks.

The parallelization of this model is enabled by leveraging a syntactical feasibility inference,

an on-demand automaton resetting scheme, and a data constraint learner (adopted from

GAP). Together, they avoid the path explosion issue raised by the unique features of JSON.

Next, to accelerate the index construction in preprocessing-based scheme, we designed a

highly efficient structural index constructor by exploiting both fine-grained (SIMD/bitwise)
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parallelism and coarse-grained (multi-core/multi-thread) parallelism, namely Pison. Based

on an existing solution named Mison [86], Pison redesigns its structural index construction

process for less memory access and addresses the parallelization challenges by breaking the

data dependences. Lastly, we explored the syntactical structure of JSON record and found

a series opportunities to skip certain types of substructures that are irrelevant to the query

evaluation during the streaming query evaluation. These skipping cases are implemented

using a group of bit-parallel algorithms and integrated into a versatile recursive-descent

streaming model. These techniques are packed into a JSON streaming framework, called

JSONSki. Our evaluation demonstrates the benefits of all proposed techniques over the

existing solutions in terms of both processing time and memory consumption.
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