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ABSTRACT OF THE DISSERTATION

Many-Body Approaches Towards Elevating Pure and Hybrid Ab-Initio Simulations

by

Eleftherios A.P. Lambros

Doctor of Philosophy in Chemistry

University of California San Diego, 2022

Professor Francesco Paesani, Chair

A precise and accurate description of the fundamental interactions between molecules

in solution is imperative to develop models that represent chemical reactions in solutions at a

predictive level. Here, we develop a set of many-body approaches which elevate the accuracy of

both hybrid QM/MM and pure ab-initio methods. In order to address the boundary discontinuity

problem in QM/MM simulations, where because the QM and MM regions are represented by two

different potential energy surfaces, there is an energetic discontinuity at the QM/MM boundary,

a generalized MB-QM model trained to the specific level of theory used in the QM region is

chosen to represent the MM region. Using this scheme, the entire QM/MM system is treated

under the same numerically ”effective” Hamiltionian, just with different analytical representations

xvii



in the QM and MM regions, in essence, describing the entire system at a full ab-initio level of

accuracy at the cost of a much cheaper QM/MM calculation. Finally, in a separate vein, after

characterizing the effects of exact exchange for aqueous systems using hybrid SCAN functionals

derived from the adiabatic connection formula, DC-SCAN, which evaluates the SCAN functional

on the Hartree-Fock density, is developed. This density corrected functional is shown to provide

gold-standard CCSD(T)/CBS level of accuracy for aqueous systems at the computational cost of a

Hartree-Fock calculation, and represents the first DFT based model which is able to quantitatively

represent the structural and energetic properties of water from the gas to condensed phases.

xviii



Chapter 1

Introduction

Challenges in contemporary aqueous chemistry include the control of chemical reactions

in bulk solutions and interfaces and the ability to predictively model physiochemical properties

and transformations which span many orders of magnitude in size, from molecular scale hydrogen

bond rearrangements in the microscopic regime to macroscopic fluid flows. Towards this end,

a precise description of chemical processes in solution requires an accurate account of the

interactions between the various chemical species in aqueous solutions, multi-component mixtures,

and other complex condensed-phase systems. For chemical reactions, chemical transformations

like bond rearrangements, steric orientation, and the electronic structure of the reactive species

in solution must be accurately represented, and the ability to reliably control and predict the

corresponding structures, phases, and reactivities which emerge in these fluid environments

necessitates a fundamental understanding of the underlying interactions between the individual

components of these systems.

At the smallest scales, individual molecules with a small number of electrons can be

modeled using purely quantum mechanical (QM) methods, which find approximate solutions

to Schrödinger’s equation and are used to calculate the electronic structure of a group of atoms.

Correlated ab-initio methods like configuration interaction (CI)[7] or coupled cluster (CC)[8, 9]
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are of the most accurate methods available, with coupled cluster with singles, douples, and

perturbative triples (CCSD(T)) regarded as the gold standard for electronic struture calculations.

These methods recover almost all of the exact energy of the system due to their explicit description

of electronic correlation. More efficient methods like 2nd order Møller-Plesset perturbation

theory[10, 11] and density functional theory (DFT)[12, 13] can be used to simulate larger systems,

which can reach on the order of hundreds of atoms, with DFT being particularly efficient in this

regard.

Extended systems with periodic conditions in the condensed phase such as bio-molecular

complexes in solution, liquid water, and crystalline solids including metal-organic frameworks

(MOFs) are prohibitively large for treatment by purely QM methods and so are treated with

force-fields (FFs) whose simpler analytic form is only crudely accurate, but allows for orders-of-

magnitude faster evaluation than QM techniques. FFs are built upon a formalism of inter and

intramolecular interactions which does not explicitly account for the electrons in the systems and

therefore cannot model the electronic structure of the system. Despite these limitations, FFs are

useful for simulating large systems over extended timescales inaccessible to pure QM methods,

and can therefore be used to calculate time dependent and thermodynamic quantities including

diffusion coefficients, free energies, and densities among many others within a defined statistical

ensemble.

In actual practice, a combination of traditional FF’s, ab-initio DFT, and a new classes of

machine learned models have been used to study aqueous and other condensed phase systems.

While the physics of such large systems are most efficiently studied by classical molecular

mechanics models due to their large size and need for extended sampling over long timescales,

owing to their relative efficiency over other ab-inito methods and higher accuracy over simple FFs,

a variety of density functional approximations (DFAs) have been used to study the condensed

phase physics of aqueous systems with the SCAN density functional [14] recently gaining traction

in this area.[15–18] In a similar vein, Machine learned models trained on ab-initio data have
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emerged as viable models to study both gas and condensed phase systems. [19–29] These

models, which seek to retain the accuracy of the data to which they are trained while offering a

computational cost similar to that of a traditional FF, have been consequently extended to study

condensed phase systems in the place of raw ab-intio calculations, with many such potentials

being trained on the SCAN functional and its hybrids to study liquid water and ice. [5, 30–32]

In situations where neither QM methods nor FFs can be used on their own, hybrid quantum

mechanics / molecular mechanics (QM/MM) schemes are used. These schemes, which treat a

small subsytem according to QM and the rest of the system using a FF, are useful for modelling

reactive systems embedded within a larger environment. This can range from relatively simple

systems such as a reactive complex in solution[33] to more intricate systems like an active site

embedded in a larger protein or a catalytic center on a material.[34–36] QM/MM simulations are

necessary for these sorts of systems as the electronic structure of the subsystem needs to be solved

in order to understand bond rearrangements, orbital properties, and electronic excitations which

be described by a FF, but where the size of the extended environment prohibits a full quantum

mechanical treatment.

1.1 Overview

This dissertation will focus on the development of many-body approaches to QM/MM

simulations, as well as a simple scheme to drastically raise the accuracy of certain density

functionals. Chapter 2 overviews a characterization of contemporary polarizable water models

in the context of the many-body expansion, and shows that many such popular models suffer

from severe error cancellation between their many-body terms, so that while those models predict

qualitatively correct energetic, structural, and thermodynamic properties, they are getting the right

answers for the wrong reasons. It is also highlighted in this work, although a great deal of progress

has been made in this field, particularly with more advanced models such as AMOEBA+CF
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which don’t suffer from the same error cancellation that plagued their predecessors, the simple

functional forms adopted by these models inhibit a quantitative description of the entire energy

landscape.

Chapter 3 introduces a many-body approach to fully polarizable QM/MM simulations,

where by using a many-body model trained to reproduce the potential energy surface of the

specific level of theory used in the QM region, boundary discontinuities between the QM and

MM regions can be suppressed, treating the entire system consistently under the same ”effective”

Hamiltonian, just with different representations in the QM and MM regions. Importantly, this

allows for the system to be represented at a full ab-initio level of accuracy at the cost of a

QM/MM simulation. Also covered in this chapter is the effect of using a fully self consistent

polarizable embedding over a partially self consistent implementation, where it is shown that

while a fully self-consistent cross polarization between the QM and MM regions is certainly more

ideal, the partially self-consistent polarizable embedding performs quite well, recovering most of

the polarization energy for small systems.

In chapter 4, the many-body models introduced in chapter 3 are generalized so that all

of their non-fitted parameters are derived from a specific level of theory so that in a QM/MM

implementation, the underlying QM/MM electrostatics are as close to the pure QM representation

as possible. More importantly, we show that in particular certain density functionals, particularly

GGAs, are not amenable to be captured by our many-body models. These functionals have large

density driven errors and often suffer from severe electronic over-delocalization, leading to larger

magnitude higher-order terms which cannot be adequately captured by the classical polarization

used in our models for those terms. It is shown that using density corrected versions of such

functionals drastically reduces the amount of error in the higher order terms, making them much

more amenable to reproduction by our many-body models.

Finally, chapters 5 and 6 cover new developments in raising the accuracy of the SCAN

functional through the incorporation of Hartree-Fock exchange. In chapter 5, the fraction of
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Hatree-Fock exchange using in SCAN hybrids is modulated in order to tune the energetic and

structural properties of gas and condensed phase water. Contrary to the value of 25% HF exchange

used in the SCAN0 hybrid functional, we show that a value closer to that of 15% is much more

optimal for reproducing the structure of liquid water. In chapter 6, building off the information

from chapters 4 and 5, shows that by simply evaluating the SCAN functional on the Hartree-Fock

density, SCAN can recover CCSD(T) level accuracy. This not only hold for the energetics of small

clusters, but extends to the structural and thermodynamic properties of water in the condensed

phase, and represents the first DFT based model that can quantitatively reproduce the properties

of water from the gas to condensed phases.

1.2 Many-Body Formalism and the MB-pol model

Irrespective of the method used to analyze the system, within the many-body formalism,

the total potential energy of a system can expressed in a many-body expansion (MBE), which

partitions the energy of a system as the sum of individual n-body contributions in a system of N

molecules with n ≤ N.[37–39]

This expansion is formally expressed as:[40]

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i< j

ε2B(ri,r j)+
N

∑
i< j<k

ε3B(ri,r j,rk)+ ...+ εNB(r1, ..,rN) (1.1)

where ε1B is the distortion energy of an individual molecule, and where εnB with n > 1 are the

n-body energies which are defined recursively as:

εnB = εn(1, ...,n)−
N

∑
i=1

ε1B(ri)−
N

∑
i< j

ε2B(ri,r j)−
N

∑
i< j<k<...<n−1

ε(n-1)B(ri,r j, ..rn−1). (1.2)

This expansion converges quickly for molecules with large band gaps and localized

electron densities such as water, and most other conventional small molecules, with the 2-body
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and 3-body energies composing ∼90-95% of the total interaction energy.[41–44] Models based

on the MBE exploit its low order convergence, explicitly representing the first few terms at a high

level of accuracy, and either truncating the higher order terms, or representing them implicitly

with a simpler description.

With respect to water, there have been a number of previously developed explicit many-

body models [45], as well as many implicit many-body models which use classical polarization

to capture the higher order terms in the MBE such as the TTM type models[46–53], and the

well known AMOEBA family of potentials. [54–60] The MB-pol[37–39], MB-DFT[61], and

generalized MB-nrg[62, 63] models include explicit representations for the first three terms of the

MBE, while all higher order, n > 3 body terms, are implicitly accounted for through a classical

polarization term,

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i> j

ε2B(ri,r j)+
N

∑
i> j>k

ε3B(ri,r j,rk)+Epol (1.3)

The 1B term represents the energy required to distort a molecule from its equilibrium configuration.

In MB-pol, this is represented by the Partridge-Schwenke potential energy surface[64], which

is parameterized using the high-level multi-reference configuration interaction (MRCI) level of

theory, while in the more generalized MB-nrg potentials[62, 63], this term is represented using

a permutationally invariant polynomial (PIP)[65] fit to an arbitrary level of theory. The 2-body

term is written as:

ε2B = Esr
2B +Eelec +Edisp (1.4)

where Esr
2B is a 4th-degree PIP[65] which represents short-range quantum mechanical interactions

within a water dimer. Eelec is represented by Coulomb interactions between geometry dependent

point charges which reproduce the ab initio dipole moment surface of a water molecule. [64] The
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2-body dispersion interaction is written as

Edisp =−∑
i, j

f (δi j)
C6,i j

R6
i j

(1.5)

where i and j are indices for atoms on two water monomers, f (δi j) is the Tang-Toennies damping

function with a fitted damping parameter δi j,[66] and C6,i j are the dispersion coefficients calcu-

lated from the asymptotic reference energies of the water dimer as in CC-pol.[45] The 3-body

interactions are represented by an explicit short range 4th-degree PIP[65]:

ε3B = Esr
3B (1.6)

In MB-pol, the 2B and 3B terms are fitted on top of the core electrostatic and dispersion

components, to recover the CCSD(T) level of theory,[37, 38], though these can be fit, in principle,

to an arbitrary level of theory.[61]
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Chapter 2

How good are polarizable and flexible

models for water: Insights from a

many-body perspective

We present a systematic analysis of state-of-the-art polarizable and flexible water models

from a many-body perspective, with a specific focus on their ability to represent the Born-

Oppenheimer potential energy surface of water, from the gas to the liquid phase. Using coupled

cluster data in the completed basis set limit as a reference, we examine the accuracy of the

polarizable models in reproducing individual many-body contributions to interaction energies

and harmonic frequencies of water clusters, and compare their performance with that of MB-pol,

an explicit many-body model that has been shown to correctly predict the properties of water

across the entire phase diagram. Based on these comparisons, we use MB-pol as a reference to

analyze the ability of the polarizable models to reproduce the energy landscape of liquid water at

ambient conditions. We find that, while correctly reproducing the energetics of minimum-energy

structures, the polarizable models examined in this study suffer from inadequate representations

of many-body effects for distorted configurations. To investigate the role played by geometry-
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dependent representations of 1-body charge distributions in reproducing coupled cluster data for

both interaction and many-body energies, we introduce a simplified version of MB-pol that adopts

fixed atomic charges and demonstrate that the new model retains the same accuracy as the original

MB-pol model. Based on the analyses presented in this study, we believe that future developments

of both polarizable and explicit many-body models should continue in parallel and would benefit

from synergistic efforts aimed at integrating the best aspects of the two theoretical/computational

frameworks.

2.1 Introduction

Since the early days of computer simulations, molecular models of water have provided

the scientific community with a means of investigating aqueous environments at the microscopic

level.[67, 68] Despite significant progress achieved in the last two decades, the accurate prediction

of the molecular properties of water across the entire phase diagram remains an outstanding

challenge, with the overall predictive power of any computer simulation heavily depending on the

accuracy with which the underlying model is able of representing the interactions between water

molecules.[69–72]

Starting from the seminal work by Bernal and Fowler[73] and taking advantage of

increasing computational power, the field of computer simulations of water has witnessed the

continued development of progressively more sophisticated models. Early models, such as

ST2,[74] and the subsequent TIPnP [75–77] and SPC* [78] families of models, have been

instrumental in shedding light on the structural, thermodynamic and dynamical properties of liquid

water at the molecular level. These models adopt relatively simple functional forms, representing

the water molecules as rigid bodies, and describe electrostatic interactions via Coulomb potentials

between effective atomic point charges, and repulsive and dispersion interactions via Lennard-

Jones potentials.[69–72]
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Motivated by the recognition of the importance of many-body effects in determining the

properties of the hydrogen-bond network, several models have been developed building upon the

many-body expansion (MBE) of the total energy, EN , which is expressed as[40]

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i< j

ε2B(ri,r j)+
N

∑
i< j<k

ε3B(ri,r j,rk)+ ...+ εNB(r1, ..,rN) (2.1)

where N is the number of water molecules and ri collectively denotes the coordinates of the

oxygen (O) and hydrogen (H) atoms of the i-th water molecule. Eq. 6.4 shows that EN can be

rigorously obtained by summing all contributions due to individual n-body energies, with the

1-body energy, ε1B, representing the deformation energy of a water monomer (which is set to zero

for rigid models) and εnB corresponding to the n-body energies defined recursively as

εnB = εn(1, ...,n)−
N

∑
i=1

ε1B(ri)−
N

∑
i< j

ε2B(ri,r j)−
N

∑
i< j<k<...<n−1

ε(n-1)B(ri,r j, ..rn−1) (2.2)

From Eqs. 6.4 and 5.7, it follows that the interaction energy, Eint , between N water molecules can

be expressed as

Eint = EN(r1, ..,rN)−
N

∑
i=1

ε1B(ri) (2.3)

In polarizable models, all many-body energies, from ε3B to εNB in Eq. 6.4 are effectively ac-

counted for by a single term representing classical many-body polarization.[79] Building upon

the pioneering work by Kollman and coworkers,[80] several polarizable water models, with

different degrees of sophistication, have been developed and used in molecular dynamics (MD)

and Monte Carlo (MC) simulations of aqueous systems. [43, 46–57, 59, 60, 81–108] Among the

most popular polarizable water models, which takes into account monomer flexibility, are the

TTM[47–53] and AMOEBA[54–57, 59, 60] families.

The TTM models are based on Thole’s polarization schemes[109] and were primarily

fitted to ab initio data for small water clusters.[46–53] The development of the TTM models began
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with the parameterization of a polarizable model derived from ab initio data for the water dimer,

which was then used to investigate the properties of water clusters and ice.[46] A subsequent

analysis of the water dimer potential energy surface (PES) demonstrated that models that were

able to more closely reproduce the ab initio PES were also able to more accurately reproduce

the experimental second virial coefficient.[47] Starting from the polarizable model of Ref. 46,

the TTM2-R model,[49] a polarizable model of water with rigid monomers, was developed to

reproduce the ab initio dimer PES of Ref. 47. TTM2-R was shown to reproduce both gas-phase

properties and ab initio data calculated at the second-order Møller-Plesset (MP2) level of theory in

the complete basis set (CBS) for small water clusters, as well as several bulk properties, including

the diffusion coefficient and the radial distribution functions (RDFs) of liquid water, and the lattice

constants of ice Ih.[49] Building upon the TTM2-R parameterization, the TTM2-F model[50] and

its refined TTM2.1-F version[51] were the first flexible water models to adopt a highly accurate

1-body term rigorously derived from high-level ab initio potential energy and dipole moment

surfaces reported for an isolated water molecule reported in Ref. 64. While maintaining the same

level of accuracy as TTM2-R in reproducing several properties of water,[110–113] TTM2-F and

TTM2.1-F were the first models able to correctly predict the widening of the HOH angle going

from small gas-phase clusters to liquid water and ice.[114] Subsequent developments led to two

distinct TTM models, TTM3-F[52] and TTM4-F[53], which were parameterized with specific

focus on reproducing the dynamical properties and vibrational spectra of water. Both TTM3-F

and TTM4-F were shown to provide better agreement with the experimental infrared spectra of

liquid water and ice compared to TTM2-F, although some discrepancies with the experimental

spectra were found in both lineshapes and vibrational shifts, particularly in the OH stretching

frequency region.[52, 53, 115, 116]

The original AMOEBA model, AMOEBA03, was built upon a polarizable atomic mul-

tipole description of electrostatic interactions, including multipoles up to the quadrupole, and

representing polarization via self-consistently induced atomic dipoles within a modified Thole
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scheme.[54] AMOEBA03 was shown to reproduce several experimental properties and ab initio

data for both water clusters and liquid water.[55] Subsequent developments and reparametriza-

tions using the ForceBalance algorithm,[117] led to iAMOEBA[60] and AMOEBA14[58]. In

contrast to AMOEBA03, iAMOEBA uses a direct approximation to polarization, with the induced

dipoles being only determined from the permanent multipole electric fields.[60] Besides being

computationally less expensive, iAMOEBA was shown to provide better agreement with experi-

ment than AMOEBA03 for several properties of water in the gas, liquid, and solid phases.[60] It

has recently been shown, however, that iAMOEBA is not able to correctly reproduce the sharp

increase of the isothermal compressibility in the supercooled regime.[118] Extensive comparisons

with experimental data showed that AMOEBA14 correctly reproduces the temperature depen-

dence of several structural, thermodynamic, and dynamical properties of water.[58] Most recent

developments of the AMOEBA models include AMOEBA+[57] and AMOEBA+CF.[56] Besides

providing improved description of many-body polarization, repulsion, and dispersion compared

to its predecessor models, AMOEBA+ incorporates an effective description of charge penetration

by damping multipole–multipole interactions as well as an explicit pairwise charge transfer term

fitted to reproduce the results of energy decompositions calculated at the symmetry-adapted

perturbation theory (SAPT) level. AMOEBA+ was shown to perform well in both reproducing

individual SAPT components and the properties of liquid water.[57] AMOEBA+CF represents a

further refinement of AMOEBA+, which was achieved by implementing a geometry-dependent

charge flux (CF) scheme within each water molecule. This resulted in a noticeable improvement

in the description of both the energetics of water clusters and the properties of liquid water.[56]

Closely related to the AMOEBA models is MB-UCB, which was derived from a varia-

tional energy decomposition analysis.[108] Similarly to AMOEBA+, MB-UCB includes terms

describing permanent electrostatics, polarization, repulsion, dispersion, and charge transfer which

were parameterized from electronic structure data for the water monomer and small water clusters.

MB-UCB was shown to reproduce the relative energies of large data sets of water clusters as well
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as the structural, thermodynamic, and dynamical properties of liquid water.[108]

It was recognized quite early that Eq. 6.4 also provides a rigorous theoretical framework

for the development of explicit many-body models that aim to quantitatively reproduce each

individual term of the MBE.[119–122] With continued progress in both hardware technology and

efficient algorithms for correlated electronic structure calculations, the development of explicit

many-body models of water has witnessed a significant acceleration in the last decade. Since,

on average, the sum of 2-body and 3-body energies contributes ∼95% to Eint , in these explicit

many-body models, low-order n-body energies up to 3-body contributions (ε3B) are treated

individually, while all higher-body energies are either approximated by an effective (n−3)B-term

or represented by classical polarization as in polarizable models. To date, the most notable explicit

many-body models of water are CC-pol,[45, 123–125] which was the first explicit many-body

water model with rigid monomers capable to reproduce both the properties of the water dimer and

the radial distribution functions (RDFs) of liquid water at 300 K, WHBB,[126–129] which was

the first explicit many-body water model with flexible monomers, and HBB2-pol and MB-pol,[37–

39, 130, 131] which were the first explicit many-body water models with flexible monomers

capable to correctly predict the properties of water across all phases.[1, 132] In particular, MB-pol

has been shown to quantitatively reproduce the vibration-rotation tunneling spectrum of the

water dimer,[37] the energetics, isomeric equilibria, tunneling splittings, and vibrational spsctra

of small water clusters,[38, 133–144] the structural, thermodynamic, and dynamical properties

as well as the infrared and Raman spectra of liquid water,[39, 145–149] the sum-frequency

generation spectra of the air/water interface,[150–154] and the energetics and the infrared and

Raman of various ice phases.[155–157] More recently, molecular configurations extracted from

MD simulations with MB-pol have been used in many-body perturbation theory calculations to

model the X-ray absorption spectrum of liquid water[158] as well as to determine the electron

affinity of water, both in the bulk and at the air/water interface.[159] MB-pol was also used as

a reference for the development of an optimized exchange-correlation density functional for
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water.[160]

Given the renewed interest in polarizable water models, we present here a systematic

analysis of the TTM, AMOEBA, and MB-UCB models, with particular focus on the ability of

these models to reproduce many-body effects in water systems from the gas to the condensed

phase. Results obtained with the polarizable models are compared with the corresponding values

obtained with MB-pol, and, when possible, the accuracy of each model is assessed relative to

reference values calculated at the coupled cluster level of theory, including single, double, and

perturbative triple excitations, in the CBS limit, i.e., CCSD(T)/CBS, the current “gold standard”

for chemical accuracy. To determine the effects of geometry-dependent representations of the

1-body charge distribution on interaction and many-body energies, we also introduce a simplified

version of MB-pol (fq-MB-pol) which employs fixed point charges, and assess the accuracy of

the new model relative to MB-pol and CCSD(T)/CBS. This study aims to investigate the accuracy

of state-of-the-art polarizable and flexible water models through a many-body perspective, and

determine how possibly shortcomings inherent to a description of many-body effects entirely

based on classical polarization may affect the predictions of the properties of water calculated

from computer simulations.

The article is organized as follows: Section II provides a brief description of both po-

larizable and explicit many-body models analyzed in this study, while Section III provides

computational details specific to the comparisons presented in the following sections. Section IV

presents comparisons for interaction and many-body energies calculated for small water clusters,

associated harmonic frequencies, and interaction energies for liquid configurations. A general

discussion along with an outlook is presented in Section V.
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2.2 Molecular models

2.2.1 Polarizable models

The TTM, AMOEBA, and MB-UCB models approximate Eq. 6.4 as

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+Ee f f
MB (2.4)

where Ee f f
MB effectively accounts for all many-body interactions among N water molecules. As

mentioned in the Introduction, the TTM models employ an accurate representation of ε1B(ri)

derived from high-level ab initio calculations of the water monomer which were then refined

to reproduce the experimental line positions of the rovibrational spectrum of an isolated water

molecule.[64] The 1-body term in the AMOEBA and MB-UCB models is instead represented by

empirically parameterized anharmonic bond-stretching and angle-bending potentials, along with

a bond-angle cross term that was found necessary in the original developments of AMOEBA03

to improve the description of the splitting between symmetric and asymmetric OH stretching

vibrations.[54]

The TTM, AMOEBA, and MB-UCB models further decompose Ee f f
MB into distinct physical

contributions to the interaction energy according to

Ee f f
MB = Eelec +Epol +Erep +Edisp +ECT (2.5)

where Eelec, Epol , Erep, Edisp, and ECT are individual terms parameterized to represent permanent

electrostatics, polarization, repulsion, dispersion, and charge transfer, respectively. Since the

TTM, AMOEBA, and MB-UCB models adopts different functional forms to describe each

contribution to Ee f f
MB , we briefly summarize here the main features of all models. The interested

reader is referred to the original references for specific details.
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TTM2.1-F. In TTM2.1-F, Eelec is described by Coulomb interactions between geometry-

dependent point charges placed on the H atoms and the fictitious M-site site located along

the bisector of the HOH angle.[51] The geometry-dependent point charges were determined

to reproduce the ab initio dipole moment surface of an isolated water molecule derived from

high-level ab initio calculations in Ref. 64. Epol is represented according to a Thole’s damping

scheme,[109] with inducible point dipoles placed on the O and H atoms. Both Eelec and Epol in

TTM2.1-F are fully damped to mimic charge penetration effects. TTM2.1-F does not include an

explicit charge transfer term and combines Erep and Edisp in a single term representing pairwise

additive van der Waals interactions between the oxygen atoms,

Erep +Edisp = EvdW = ∑
i< j

[
De−αRi j − A

R6
i j
− B

R10
i j

− C
R12

i j

]
(2.6)

where Ri j is the distance between the O atoms of molecules i and j, and D, α , A, B, and C are

fitting parameters.

TTM3-F. Although adopting the same functional form as TTM2.1-F, the TTM3-F model

was specifically parameterized to improve the description of vibrational spectra of water.[52]

For this purpose, the original geometry-dependent point charges of TTM2.1-F, were empirically

modified to mimic the increase in magnitude of the charges on the H atoms when the OH

bonds elongate in liquid water. In contrast to TTM2.1-F, the TTM3-F model employs a single

inducible point dipole placed on the M-site as well as a different expression for the van der Waals

interactions,[52]

Erep +Edisp = EvdW = ∑
i< j

ε

1−6/λ

[
6
λ

eλ

(
1−

Ri j
σ

)(
σ

Ri j

)6
]

(2.7)

where, as in TTM2.1-F, Ri j is the distance between the O atoms of molecules i and j, and ε , σ ,

and λ are fitting parameters.

TTM4-F. Directly building upon TTM2-F,[50] the TTM4-F model was parameterized
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to reproduce the polarizability surface of the water monomer calculated at the MP2 level of

theory.[53] As a result, although TTM4-F employs the same functional form as TTM2-F to

describe permanent electrostatics and polarization, it adopts a modified Thole’s damping scheme

along with an expanded pairwise additive term representing van der Waals interactions,

Erep +Edisp = EvdW = ∑
i< j

8

∑
l=3

A2l

R2l
i j

(2.8)

where, as in TTM2.1-F and TTM3-F, Ri j is the distance between the O atoms of molecules i and

j, and A2l are fitting parameters.

AMOEBA03. As mentioned above, the 1-body term of AMOEBA03, which includes

anharmonic representations of both stretching and bending vibrations along with an additional

Urey-Bradley term representing the coupling between stretching and bending vibrations, was

parameterized to reproduce the gas-phase vibrational frequencies of the water monomer at the

experimental geometry.[54] AMOEBA03 employs a multipole expansion, with atomic monopole,

dipole, and quadrupole moments placed on each atom, to represent Eelec in Eq. 2.5. These

moments were derived from a distributed multipole analysis carried out on ab initio data for

the water monomer. Epol in Eq. 2.5 is represented through the interactions of inducible point

dipoles placed on the atomic sites. While AMOEBA03 adopts a Thole’s scheme to damp Epol

at short range, no damping is applied to Eelec. As the TTM models, AMOEBA03 does not

include an explicit charge transfer term, but, differently from the TTM models, includes van der

Waals interactions between all pairs of atoms through a sum of pairwise additive buffered 14-7

potentials,

EvdW = ∑
i< j

εi j

(
1+δ

ρi j +δ

)7
(

1+ γ

ρ7
i j + γ

−2

)
(2.9)

Here, i and j thus indicate O and H atoms on different water molecules within each dimer, εi j is

the potential well depth of the corresponding 14-7 potential, and ρi j = Ri j/R0
i j, with Ri j being the

distance between atoms i and j, and R0
i j being the corresponding minimum energy distance. The
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values of δ = 0.07 and γ = 0.12 were taken from Ref. 161. All fitting parameters in AMOEBA03

were optimized to reproduce ab initio data for gas-phase clusters as well as the temperature and

pressure dependence of several properties of liquid water.

iAMOEBA. Although iAMOEBA adopts the same functional form as AMOEBA03, it

employs a simplified expression for the polarization term in which the induced dipoles are only

determined by the electric fields generated by permanent multipoles and mutual polarization

between the induced dipoles is neglected.[60] Including only direct polarization implies that

iAMOEBA only accounts for at most 3-body interactions where an induced dipole interacts with

two other multipole moments. iAMOEBA was parameterized using the ForceBalance algorithm

that allows for simultaneously fitting to experimental and ab initio training data.[117]

AMOEBA14. AMOEBA14[58] represents an updated version of the original AMOEBA03

model which was obtained by using the ForceBalance algorithm[117] to determine a refined set

of fitting parameters.

AMOEBA+. Although it was built upon previous versions of the AMOEBA models,

AMOEBA+ employs a different representation of Ee f f
MB in which Thole’s damping is applied not

only to Epol but also to the interactions between the permanent multipoles of Eelec.[57] In addition,

AMOEBA+ includes an explicit term describing charge transfer. Starting from energy decompo-

sitions derived from SAPT calculations, all fitting parameters in AMOEBA+ were optimized to

reproduce both ab initio and experimental data using the ForceBalance algorithm.[117]

AMOEBA+CF. Representing a further development of AMOEBA+, AMOEBA+CF

adopts a more advanced description of permanent electrostatics which is achieved by implement-

ing a geometry-dependent charge-flux (CF) scheme within each monomer.[56] Similarly to the

TTM models, the charge flux in AMOEBA+CF explicitly depends on the local geometry of a

water molecule and was found to improve the transferability of the model across different phases.

MB-UCB. Closely related to AMOEBA+ and AMOEBA+CF, the MB-UCB model adopts

a similar functional form for Eelec, with fully damped interactions between permanent multipoles,
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although, differently from the AMOEBA models, the multipole expansion is truncated at the

dipole moment.[108] Furthermore, MB-UCB implements anisotropic dipole polarizabilities to

better reproduce anisotropic electric fields in nonhomogenous media. While MB-UCB adopts

the same buffered 14-7 expression for EvdW as AMOEBA+ and AMOEBA+CF, differently from

the AMOEBA+ models that account only for pairwise charge transfer, MB-UCB includes a

many-body charge transfer term that is solved self-consistently.[108] All parameters of the MB-

UCB model were optimized on training data for the water monomer, dimer, trimer, tetramer, and

pentamer clusters, with the ECT term being specifically parameterized to reproduce charge transfer

energies derived from a variational absolutely localized molecular orbitals energy decomposition

analysis (ALMO-EDA). Based on the analyses reported in Ref. 108, it was claimed that MB-UCB

achieves comparable performance to MB-pol.

2.2.2 Explicit many-body models

Both MB-pol and fq-MB-pol approximate Eq. 6.4 as

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i> j

ε2B(ri,r j)+
N

∑
i> j>k

ε3B(ri,r j,rk)+Epol (2.10)

where ε1B represents the same ab initio PES of the water monomer of Ref. 64 adopted by the

TTM models, ε2B and ε3B are explicit 2-body and 3-body terms, and ε>3B is an implicit term

representing all many-body interactions involving more than three water molecules at a time.

MB-pol. The 2-body term of MB-pol includes three contributions,[37]

ε2B = Esr
2B +Eelec +Edisp (2.11)

Here, Esr
2B describes short-range 2-body interactions that are represented by a 4th-degree permuta-

tionally invariant polynomial (PIP)[65] in variables that are functions of the distances between
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all pairs of the (six) sites of the MB-pol water monomer. As in TTM2.1-F and TTM4-F, Eelec in

MB-pol is described by Coulomb interactions between geometry-dependent point charges that

reproduce the ab initio dipole moment surface of a water molecule determined in Ref. [64]. Edisp)

is a 2-body dispersion term expressed as

Edisp =−∑
i, j

f (δi j)
C6,i j

R6
i j

(2.12)

where the sum runs over all pairs of O and H atoms i and j on different water molecules within a

dimer, Ri j is the distance between atoms i and j, f (δi j) is the Tang-Toennies damping function

with fitting parameter δi j,[66] and C6,i j are the dispersion coefficients calculated from fits to the

asymptotic ab initio reference energies of the water dimer as in CC-pol.[45]

In Eq. 5.8,

ε3B = Esr
3B (2.13)

describes 3-body short-range interactions that, as in the analogous 2-body term Esr
3B, are rep-

resented by a 4th-degree PIP[65] in variables that are functions of the distances between all

sites within a trimer.[38] The coefficients of the 2-body and 3-body PIPs were optimized using

Tikhonov regression (also known as ridge regression)[162] to reproduce 2-body and 3-body

energies calculated at the CCSD(T)/CBS level of theory. It was shown that the Esr
2B and Esr

3B

terms of MB-pol quantitatively reproduce 2-body and 3-body quantum-mechanical effects that

cannot be described by purely classical expressions (e.g., charge transfer and penetration, and

Pauli repulsion).[163] Finally, Epol in Eq. 5.8 represents N-body polarization and is described by

a modified version of the Thole-type model adopted by TTM4-F.[37, 38]

fq-MB-pol. fq-MB-pol is introduced here to assess the importance of employing 1-body

geometry-dependent atomic charges in reproducing CCSD(T)/CBS interaction and many-body

energies. For this purpose, fq-MB-pol adopts the same functional form as MB-pol, with explicit

representations of short-range 2-body and 3-body interactions in terms of PIPs that are combined
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with classical representations of permanent electrostatics, polarization, and dispersion. fq-MB-pol

was developed from the same sets of CCSD(T)/CBS data for 1-body, 2-body, and 3-body energies

used in the development of MB-pol.[37, 38] However, differently from MB-pol that employs

geometry-dependent charges to reproduce the ab initio dipole moment surface of Ref. 64, fq-

MB-pol employs fixed multipole-derived charges[164] calculated at the ωB97M-V/aug-cc-pVQZ

level of theory,[165–167] for an isolated water molecule in the corresponding optimized geometry.

The multipole-derived charges were then mapped into the M-site (qM) and the two H atoms (qH)

according to the same scheme adopted by MB-pol and originally introduced in the TTM2.1-F

model, resulting in qM =−1.151790e and qH = 0.575895e.

2.3 Computational details

All TTM2.1-F, TTM3-F, TTM4-F, MB-pol, and fq-MB-pol calculations were carried

out using in-house software based on DL POLY2,[168] while all AMOEBA03, AMOEBA14,

iAMOEBA, AMOEBA+, and AMOEBA+CF calculations were carried out using Tinker.[169]

The 2-body and 3-body CCSD(T)/CBS reference energies are taken from Refs. 37 and 38.

The reference structures for the water clusters, along with the associated interaction and many-

body energies calculated at the CCSD(T)/CCSD(T)-F12 level of theory within the SAMBA

scheme,[170] are taken from Ref. 1. The reference harmonic frequencies calculated at the

2-body:many-body CCSD(T):MP2 level of theory are taken from Refs. 2 and 3, while the

harmonic frequencies for all polarizable and explicit many-body models were calculated from the

corresponding optimized cluster structures.
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2.4 Results

To assess the ability of the different models considered in this study to represent many-

body effects in water from the gas to the condensed phase, the following sections present a

systematic analysis of interaction energies, many-body energy decompositions, and harmonic

frequencies for small clusters (Fig. 2.1), as well as relative energies for configurations extracted

from centroid molecular dynamics (CMD)[171–175] simulations of liquid water carried out at

ambient conditions with MB-pol in Ref. 148.

Figure 2.1: Structures of the (H2O)n clusters, with n = 1−6, used in the analysis of interaction
and many-body energies as well as harmonic frequencies.
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2.4.1 Analysis of 2-body and 3-body energies

The interaction energies (Eint in Eq. 2.3) for the minimum-energy structures of the water

dimer and trimer (isomers 1 in Fig. 2.1) calculated using both polarizable and explicit many-body

models are listed in Table 2.1. Also reported in Table 2.1 are the corresponding 2-body and

3-body energies contributing to the interaction energy of the water trimer. We note here that, by

definition (Eq. 2.3), the interaction energy for the water dimer also corresponds to the 2-body

energy.

At the 2-body level, all polarizable models predict interaction energies for the water dimer

that are close to the CCSD(T)/CBS reference value. Only the TTM3-F and MB-UCB models

predict noticeably more attractive interactions, with 2-body energies of -5.30 kcal/mol and -5.44

kcal/mol, respectively, which are ∼5% lower than the reference CCSD(T)/CBS value. Although

most polarizable models predict reasonably accurate interaction energies for the water trimer, large

deviations from the CCSD(T)/CBS reference values are found for TTM4-F, which underestimates

the interaction strength by 1.90 kcal/mol, and AMOEBA+, which instead overestimates the

Table 2.1: Interaction energies (Eint) for the minimum-energy structures of the water dimer
and trimer (isomers 1 of (H2O)2 and (H2O)3 in Fig. 2.1). Also listed are the 2-body and 3-body
energies contributing to Eint of the water trimer. All energies are in kcal/mol.

Model
(H2O)2 (H2O)3

E2 E3 E2B E3B
CCSD(T) -5.06 -16.21 -13.74 -2.47
TTM2.1-F -5.07 -15.82 -13.59 -2.22
TTM3-F -5.30 -16.23 -15.01 -1.21
TTM4-F -5.03 -14.31 -11.80 -2.51
AMOEBA03 -5.21 -16.00 -13.18 -2.81
iAMOEBA -5.22 -15.58 -13.91 -1.67
AMOEBA14 -4.91 -16.23 -12.99 -3.25
AMOEBA+ -5.20 -17.09 -14.29 -2.80
AMOEBA+CF -5.00 -16.32 -13.75 -2.57
MB-UCB -5.44 -16.40 -14.21 -2.20
fq-MB-pol -5.07 -16.20 -13.74 -2.46
MB-pol -5.05 -16.15 -13.69 -2.45
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interaction strength by 0.88 kcal/mol. For both water dimer and trimer, MB-pol and fq-MB-pol

provide quantitative agreement with CCSD(T)/CBS, with deviations being always within 0.06

kcal/mol of the reference values.

When the interaction energy of the water trimer is decomposed into the corresponding

individual many-body contributions, it is found that TTM3-F overestimates 2-body effects and

underestimates 3-body effects by more than 1.0 kcal/mol. Similar trend, although to a lesser

extent, is found for AMOEBA14, which instead underestimates 2-body effects and overestimates

3-body effects by ∼0.8 kcal/mol. This analysis indicates that the apparent agreement with the

CCSD(T)/CBS interaction energy for the water trimer exhibited by TTM3-F and AMOEBA14

results from nearly perfect error compensation between 2-body and 3-body effects.

On the other hand, TTM4-F significantly underestimates 2-body energies by ∼2.0

kcal/mol but is able to quantitatively reproduce 3-body energies. The opposite trend is pre-

dicted by iAMOEBA which is able to correctly reproduce 2-body energies but underestimates

3-body contributions by ∼1.0 kcal/mol. The different performance exhibited by TTM4-F and

iAMOEBA in reproducing 3-body energies is directly correlated to the different representations

used by these two models to describe polarization effects, with TTM4-F being specifically param-

eterized to reproduce the polarizability of a water molecule and iAMOEBA neglecting mutual

polarization between water molecules.

Table 2.1 shows that both MB-pol and fq-MB-pol quantitatively reproduce the CCSD(T)/

CBS reference values for the 2-body and 3-body energies of the water trimer. This demonstrates

that the ability of these models to accurately predict the interaction energies of both water dimer

and trimer thus results from a quantitative account of both 2-body and 3-body effects.

While the comparisons reported in Table 2.1 demonstrate that, although with different

levels of accuracy, most polarizable models are able to represent 2-body and 3-body energies for

the minimum-energy structures of the water dimer and trimer, they do not provide any information

about 2-body and 3-body effects for distorted configurations that exist in liquid water at different
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temperatures and pressures. Therefore, to assess the ability of both polarizable and explicit

many-body models to describe the multidimensional 2-body and 3-body energy landscapes, Figs.

2.2 and 2.3 show correlations between 2-body and 3-body energies calculated with each model

and the corresponding CCSD(T)/CBS reference values for 1000 dimer and trimer configurations

randomly extracted from the original MB-pol training sets.[37, 38] To guarantee fair comparisons

between all models, the MB-pol and fq-MB-pol models shown in Figs. 2.2 and 2.3 were re-fitted

to the reduced 2-body and 3-body training sets obtained after removing from the original training

sets the same 1000 configurations used for the correlation analysis.

Fig. 2.2 shows that all polarizable models exhibit significant deviations from the reference

CCSD(T)/CBS 2-body energies. This is particularly evident for TTM4-F and AMOEBA+ that are

associated with RMSDs of 2.28 and 4.38 kcal/mol, respectively. Overall, among the polarizable

models, TTM3-F, AMOEBA03, iAMOEBA, AMOEBA+CF, and MB-UCB display similar

RMSDs of ∼1.2-1.3 kcal/mol, while TTM2.1-F and AMOEBA14 provide the closer agreement

with the CCSD(T)/CBS reference energies, with RMSDs of ∼1.0 kcal/mol. In contrast, both

MB-pol and fq-MB-pol exhibit the same accuracy as CCSD(T)/CBS over the entire range of

2-body energies, with RMSDs of ∼0.05 kcal/mol, which are more than one order of magnitude

smaller than those associated with the polarizable models.

Importantly, both AMOEBA+CF and MB-UCB do not display the large (positive) de-

viations from the CCSD(T)/CBS 2-body energies that are instead associated with AMOEBA+.

Considering the progressive development of the AMOEBA models described in Section II, these

differences can be traced back to the fact that both AMOEBA+CF and MB-UCB include explicit

terms parameterized to mimic charge transfer, which improves the description of short-range

interactions in more distorted water dimers. In this regard, it should be noted that, although these

parameterized charge transfer terms adopt relatively simple functional forms and, therefore, are

not sufficient to achieve CCSD(T)/CBS accuracy over a wide range of 2-body energies as shown

in Fig. 2.2, they effectively mimic the same role played by the 2-body PIP adopted by MB-pol
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Figure 2.2: Correlation plots for the 2-body energies. Plotted on the x axes are the 2-body
CCSD(T)/CBS reference energies from Ref. 37. On the y axes are the corresponding 2-body
energies calculated with both polarizable and explicit many-body models. Also shown in the
bottom right panel is the distribution of 2-body energies in the test set used for this analysis.
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and fq-MB-pol. Using a multidimensional 2-body PIP to supplement a classical description of

permanent electrostatics, polarization and dispersion was found to be necessary to guarantee an

accurate representation of the global energy landscape of the water dimer over a wide range of

molecular distortions.[37, 163]

Fig. 2.3 shows that, with the exception of TTM3-F, all polarizable models considered

in this study are able to reproduce CCSD(T)/CBS 3-body energies relatively better than the

corresponding 2-body energies. Specifically, all models are associated RMSDs smaller than ∼0.2

kcal/mol relative to the reference values. This is in agreement with previous observations that

3-body energies in water are primarily due to polarization, which can be properly accounted for

using classical representations based on physically-motivated parameterizations of molecular

polarizabilities.[130] TTM3-F not only displays the largest RMSDs (∼0.4 kcal/mol) but also

provides a poor correlation with the reference CCSD(T)/CBS values, significantly underestimating

attractive 3-body energies. Since Fig. 2.3 shows that the closely related TTM2.1-F and TTM4-F

models perform significantly better than TTM3-F, the large deviations associated with TTM3-F

can be attributed to the fact that this model employs a single polarizable site that may not be

sufficient for a correct representation of the anisotropy of 3-body effects within a Thole’s damping

scheme.

Fig. 2.3 shows that all AMOEBA models, with the exception of iAMOEBA, tend to

slightly overestimate the strength of 3-body interactions, which results in a slope greater than

1. Among the polarizable models, AMOEBA+CF overall provides the best correlation with

the CCSD(T)/CBS reference data with an RMSD of ∼0.13 kcal/mol. As in the case of 2-body

energies, Fig. 2.3 shows that both MB-pol and fq-MB-pol also provide quantitative agreement

with the CCSD(T)/CBS 3-body energies a, with RMSDs of ∼0.04 kcal/mol. Considering that

the core representation of 3-body energies in both MB-pol and fq-MB-pol builds upon a slightly

modified version of the polarization scheme adopted by TTM4-F, the different level of accuracy

achieved by MB-pol and fq-MB-pol compared to that of polarizable models can be attributed to
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Figure 2.3: Correlation plots for the 3-body energies. Plotted on the x axes are the 3-body
CCSD(T)/CBS reference energies from Ref. 38. On the y axes are the corresponding 3-body
energies calculated with both polarizable and explicit many-body models. Also shown in the
bottom right panel is the distribution of 3-body energies in the test set used for this analysis.
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the ability of the 3-body PIP to correct for intrinsic deficiencies associated with purely classical

representations of 3-body interactions based on many-body polarization. This is particularly

relevant at short range where the overlap of the monomer electron densities is responsible for

3-body effects (e.g., 3-body exchange-repulsion, correlation, and dispersion, as well as more

subtle effects such as coupling of exchange and correlation to the dispersion interaction) that do

not have well-defined classical analogs.

2.4.2 Analysis of many-body energies is small water clusters

The deviations from the reference many-body energies calculated for (H2O)n clusters,

with n = 4− 6, using the TTM, AMOEBA, MB-UCB, and MB-pol models are compared in

Fig. 2.4. As shown in Eq. 2.3, the interaction energy for each cluster is defined as the difference

between the total energy of the cluster and the energies of the individual water molecules kept at

the same geometry as in the cluster. By removing the contributions associated with the monomer

distortions, the interaction energies thus allow for direct comparisons of molecular interactions as

predicted by the different models, without being “contaminated” by differences in the description

of the 1-body energies specific to each model.

Fig. 2.4 shows that TTM2.1-F, TTM3-F, AMOEBA03, iAMOEBA, and AMOEBA14

benefit from significant error compensation between individual many-body terms. For example,

the absolute 2-body deviations for the hexamer isomers are as large as 2.65 kcal/mol for TTM2.1-

F, 5.31 kcal/mol for TTM3-F, 1.38 kcal/mol for AMOEBA03, 3.91 kcal/mol for iAMOEBA, and

3.81 kcal/mol for AMOEBA14. These models are correspondingly associated with large, but of

opposite sign, 3-body deviations whose absolute values are up to 2.85 kcal/mol for TTM2.1-F,

5.12 kcal/mol for TTM3-F, 0.95 kcal/mol for AMOEBA03, 3.91 kcal/mol for iAMOEBA, and 2.31

kcal/mol for AMOEBA14. The observed error compensation in these models stems primarily from

an insufficient representation of 2-body permanent electrostatics and van der Waals energies that

need to be compensated by unphysically large contributions from many-body polarization, which
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is particularly evident at the 3-body level. Interestingly, the analysis of many-body energies shows

that TTM3-F displays notably larger errors than its predecessor model TTM2.1-F. This can be

partially attributed to the TTM3-F model employing a single polarizable site, which was a choice

made during the parameterization as a compromise between accuracy and computational efficiency

but may be insufficient to correctly reproduce anisotropic electric fields.[52] In the AMOEBA03,

iAMOEBA, and AMOEBA14 models, the aforementioned deficiencies in the representation

of permanent electrostatics may be due to the adoption of undamped interactions between the

multipoles. Since, by construction, iAMOEBA only includes up to 3-body contributions, the

iAMOEBA errors for all εnB terms with n > 3 are equal, but opposite in sign, to the corresponding

CCSD(T)/CCSD(T)-F12 reference values. It should be noted that AMOEBA14 exhibits larger

deviations than the original AMOEBA03 model, indicating that the representation of permanent

electrostatics and polarization worsened during the parameterization of AMOEBA14 when the the

ForceBalance algorithm was used to simultaneously reproduce both ab initio and experimental

data.

On the other hand, TTM4-F, AMOEBA+, AMOEBA+CF, and MB-UCB do not benefit

from significant error compensation and exhibit, overall, relatively smaller deviations than their

predecessor models. For example, the absolute deviations on the 2-body energies of the hexamer

isomers are up to 4.0 kcal/mol for TTM4-F, 1.70 kcal/mol for AMOEBA+, 0.91 kcal/mol for

AMOEBA+CF, and 2.06 kcal/mol for MB-UCB, while the corresponding absolute 3-body devia-

tions are as large as 0.70 kcal/mol for TTM4-F, 0.90 kcal/mol for AMOEBA+, 0.30 kcal/mol for

AMOEBA+CF, and 0.73 kcal/mol for MB-UCB. The improved description of many-body effects

in these polarizable models can be attributed to the adoption of more advanced representations of

both permanent electrostatics and polarization. Specifically, TTM4-F uses the same fully damped

scheme for the electrostatics as TTM2.1-F and TTM3-F but employs a more flexible damping

function along with distinct Thole parameters for intermolecular and intramolecular interactions.

On the other hand, contrary to previous AMOEBA models, both AMOEBA+, AMOEBA+CF

30



4

2

0

2

4

E 
(k

ca
l/m

ol
)

TTM2.1-FTTM2.1-FTTM2.1-F
(H2O)4

1 2 3

(H2O)5

1
2
3

4
5

6
7

(H2O)6

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

TTM3-FTTM3-FTTM3-F

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

TTM4-FTTM4-FTTM4-F

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

AMOEBA03AMOEBA03AMOEBA03

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

iAMOEBAiAMOEBAiAMOEBA

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

AMOEBA14AMOEBA14AMOEBA14

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

AMOEBA+AMOEBA+AMOEBA+

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

AMOEBA+CFAMOEBA+CFAMOEBA+CF

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

MB-UCBMB-UCBMB-UCB

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

4

2

0

2

4

E 
(k

ca
l/m

ol
)

fq-MB-polfq-MB-polfq-MB-pol

1 2 3

1
2
3

4
5

6
7

1
2
3

4
5
6

7
8

2 3 4
NB

4

2

0

2

4

E 
(k

ca
l/m

ol
)

MB-polMB-polMB-pol

1 2 3

2 3 4 5
NB

1
2
3

4
5

6
7

2 3 4 5 6
NB

1
2
3

4
5
6

7
8

Figure 2.4: Deviations, ∆E, from the CCSD(T)/CCSD(T)-F12 reference values for individual
many-body energies calculated for (H2O)n clusters, with n = 4−6, using both polarizable and
explicit many-body models.
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and MB-UCB adopt fully damped expressions for permanent electrostatics and include explicit

charge penetration and charge transfer terms. Interestingly, the analysis of many-body energies

for the water clusters indicates that the MB-UCB model predicts relatively larger 2-body errors for

non-cyclic than cyclic isomers of the pentamer and hexamer clusters. This suggests that MB-UCB

describes relatively more accurately water arrangements with cooperative hydrogen-bonding

than those with anti-cooperative hydrogen-bonding, which is likely owed to MB-UCB using

anisotropic atomic polarizabilities that provide better representations of planar structures with

concerted water arrangements.

Finally, independently of the cluster size and structure, MB-pol, which includes explicit

2-body and 3-body terms integrated with a classical representation of polarization similar to that

adopted by the TTM4-F model, exhibits small deviations for each individual n-body energy. In

particular, the 2-body and 3-body deviations for the hexamer isomers never exceed 0.27 kcal/mol

and 0.14 kcal/mol, respectively, with the larger deviations (0.33 kcal/mol) being associated with

4-body energies. Importantly, fq-MB-pol, which adopts a simplified representation of permanent

electrostatics, exhibits 2-body and 3-body deviations (∼0.15 kcal/mol) comparable to those

associated with those predicted by the original MB-pol model.

Overall, the deviations on the interaction energies shown in Fig. 2.5 are found to increase

with cluster size for all models, since the errors associated with each individual term of the MBE

adds up. Importantly, the cyclic isomers of each clusters are associated, on average, with the

largest deviations. Since these isomers are characterized by extended hydrogen-bonded chains

of (nearly) equivalent water molecules, the difficulties in reproducing the CCSD(T)/CCSD(T)-

F12 reference energies suggest that purely classical polarization terms may be insufficient for a

quantitative description of water structures dominated by cooperative effects.

Motivated by a similar analysis carried out for density functional theory (DFT) models

of water,[176] we apply the same scoring scheme developed in Ref. 1 to quantify the accuracy

of both polarizable and explicit many-body models in reproducing the CCSD(T)/CCSD(T)-F12
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Figure 2.5: Comparisons between the interaction energies of the low-lying isomers of (H2O)n

clusters, with n=4-6, (see Fig. 2.1) obtained at the CCSD(T)/CCSD(T)-F12 level of theory within
the SAMBA scheme in Ref. 1 and the corresponding values calculated with both polarizable
and explicit many-body models.

reference data. The resulting scores assigned to each model based on the ability to reproduce

interaction and many-body energies for (H2O)n clusters with n = 4, 5, and 6 are reported in Table

2.2. In this analysis, the maximum total unsigned error over all isomers of each (H2O)n cluster is

defined as:

∆EMB
unsigned, max = maxi

[(
NB

∑
j
|E j

model −E j
re f |

)]
(2.14)

The maximum absolute error in the interaction energy over all isomers of each (H2O)n cluster is
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defined as:

∆EMB
int, max = maxi

[∣∣∣∣∣
(

NB

∑
j

E j
model −E j

re f

)∣∣∣∣∣
]

(2.15)

The relative energy difference between isomer 1 and isomer 2 of each (H2O)n cluster is defined

as:

∆Edi f f = E isomer1
int −E isomer2

int (2.16)

Following Ref. 1, the scores for the maximum total unsigned error and maximum absolute error

are equal to 100 points if these errors are less than 1.0 kcal/mol, with additional 10 points

deducted for each increment of 0.5 kcal/mol in the error. Using the CCSD(T)/CCSD(T)-F12

reference values of −0.87, −1.29, and −0.29 kcal/mol, for the tetramer, pentamer, and hexamer

clusters, respectively,[1] a score of 100 points is assigned if the relative energy difference between

isomers 1 and 2 is within 0.1 kcal/mol of the reference value and 10 points are deducted for

every additional 0.1 kcal/mol thereafter. If a positive value is predicted for the relative energy

difference, 0 points are assigned to the model. For scores that are negative, the sign of the relative

energy difference is correct, but the difference is greater than 1.0 kcal/mol from the reference,

and the value falls outside the bounds of chemical accuracy.

For each cluster, a small value for ∆EMB
int, max accompanied by a large value for ∆EMB

unsigned, max

indicates that the model benefits from error compensation between individual many-body contri-

butions. Table 2.2 shows that TTM3-F displays the largest difference between the scores of the

maximum unsigned error (-110) and maximum absolute error (90) for the hexamer cluster. This

indicates that, while the total interaction energy is apparently accurate, it is the result of significant

error compensation between individual terms of the MBE. Similar trends, although less pro-

nounced, are found for iAMOEBA and AMOEBA14. On the other hand, among the polarizable

models, AMOEBA+CF and MB-UCB earn high scores for both ∆EMB
int, max and ∆EMB

unsigned, max.

It should be noted that MB-pol and fq-MB-pol score perfectly for each cluster size, indicating

that these models do not rely on error compensation to correctly reproduce the corresponding
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CCSD(T)/CCSD(T)-F12 reference interaction energies.

In the case of the tetramer, all models predict the correct sign for ∆Edi f f , and the associated

errors fall within 1.0 kcal/mol of the reference value, with only AMOEBA+ having a notably

smaller score of 30. For the pentamer, the TTM4-F score is -80 points, indicating that, while

Table 2.2: Errors and associated scores assessing the accuracy of both polarizable and explicit
many-body models in describing interaction and many-body energies for (H2O)n clusters, with
n = 4−6. ∆EMB

unsigned,max (Eq. 2.14) and ∆EMB
int,max (Eq. 2.15) are the maximum total unsigned

error and maximum absolute total error in the many-body energy decomposition, respectively,
while ∆Edi f f (Eq. 2.16) is the energy difference between the interaction energies of isomers 1
and 2 of each cluster. All energies are in kcal/mol.

Model Cluster ∆EMB
unsigned, max Score ∆EMB

int, max Score ∆Edi f f Score

TTM2.1-F
(H2O)4 1.78 80 1.30 90 -0.58 70
(H2O)5 3.90 40 1.50 80 -1.55 70
(H2O)6 5.45 10 1.86 80 0.64 0

TTM3-F
(H2O)4 5.87 0 0.67 100 -0.67 80
(H2O)5 9.06 -70 0.51 100 -0.95 60
(H2O)6 11.18 -110 1.12 90 -0.21 100

TTM4-F
(H2O)4 3.15 50 3.15 50 -0.65 70
(H2O)5 3.67 40 3.67 40 -3.00 -80
(H2O)6 4.46 30 4.45 30 1.96 0

AMOEBA03
(H2O)4 1.58 80 0.49 100 -0.83 100
(H2O)5 1.75 80 0.73 100 -1.29 100
(H2O)6 2.94 60 0.59 100 -0.65 60

iAMOEBA
(H2O)4 4.50 20 1.16 90 -0.95 100
(H2O)5 7.47 -30 1.38 90 -0.72 40
(H2O)6 9.66 -80 2.14 70 -0.75 50

AMOEBA14
(H2O)4 3.48 50 0.70 100 -0.57 60
(H2O)5 4.79 20 0.82 100 -1.14 80
(H2O)6 7.05 -30 0.59 100 -0.03 70

AMOEBA+
(H2O)4 1.58 80 1.58 80 -1.56 30
(H2O)5 2.43 70 2.40 70 -0.96 60
(H2O)6 2.32 70 2.27 70 -0.88 40

AMOEBA+CF
(H2O)4 0.47 100 0.43 100 -0.71 80
(H2O)5 0.96 100 0.60 100 -1.09 70
(H2O)6 1.72 80 0.53 100 -0.07 70

MB-UCB
(H2O)4 1.77 80 0.83 100 -0.72 80
(H2O)5 3.15 50 1.34 90 -0.91 60
(H2O)6 2.85 60 1.39 90 -0.59 70

fq-MB-pol
(H2O)4 0.14 100 0.14 100 -0.79 100
(H2O)5 0.31 100 0.31 100 -1.01 70
(H2O)6 0.62 100 0.62 100 -0.31 100

MB-pol
(H2O)4 0.26 100 0.26 100 -0.80 100
(H2O)5 0.51 100 0.51 100 -1.10 80
(H2O)6 0.84 100 0.84 100 -0.32 100
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getting the ranking of the isomers correct, this model predicts an overly large energy difference.

In the case of the hexamer, both the TTM2.1-F and TTM4-F models score 0 points, meaning that

they predict an incorrect order for isomers 1 (prism) and 2 (cage). AMOEBA03 earns a perfect

score for the tetramer and pentamer clusters, but fails at correctly reproducing the energetics

of the hexamer isomers. MB-pol and fq-MB-pol, on the other hand, score perfectly for the

tetramer and hexamer clusters, but perform slightly less well for the pentamer cluster. Since

MB-pol and fq-MB-pol are built on top of a classical representation of permanent electrostatics

and polarization similar to that adopted by TTM4-F, their performance for the pentamer isomers

indicates that the 2-body and 3-body PIPs have more difficulties compensating for the relatively

large errors predicted by TTM4-F for these clusters.

2.4.3 Harmonic frequencies of water clusters

While the comparisons reported in the previous sections allow for a quantitative assess-

ment of the ability of the different models to represent interaction and many-body energies for

various minimum-energy structures of small water clusters, they do not provide any information

about the overall morphology of the underlying multidimensional PES. Specific insights into

the PES curvature in the neighborhoods of the minimum-energy structure of each isomer can be

obtained from the analysis of the corresponding harmonic frequencies. For this purpose, Fig. 2.6

shows the deviations associated with both polarizable and explicit many-body models relative to

the reference 2-body:many-body CCSD(T):MP2 harmonic frequencies reported in Ref. 2, 3.

Among the polarizable models, all TTM models, which employ a 1-body term exhibiting

spectroscopic accuracy,[64] are able to quantitatively reproduce the harmonic frequencies of

an isolated water molecule. However, differences in the representation of many-body effects

discussed in the previous sections lead to large variations in the ability of these models to

reproduce the harmonic frequencies of larger clusters. In particular, independently of the cluster

size and structure, TTM2.1-F systematically overestimates the harmonic frequencies of both free
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and hydrogen-bonded OH stretches. TTM3-F displays the opposite behavior, predicting relatively

large redshifts for all OH stretching vibrations, while TTM4-F exhibits intermediate behavior,

overestimating the vibrational frequencies of the free OH stretches while underestimating those

of the hydrogen-bonded OH stretches. These trends indicate that TTM2.1-F predicts hydrogen

bonds that are too weak while both TTM3-F and TTM4-F overestimate the strength of the

hydrogen bonds. All TTM models accurately reproduce the harmonic frequencies of the bending

vibrations. Qualitative differences are found in the low-frequency region of the spectra, with

0 500 1000 1500 2000 2500 3000 3500 4000

2-body:many-body CCSD(T):MP2 ω (cm-1)

Figure 2.6: Deviations from reference 2-body:many-body harmonic frequencies of (H2O)n

clusters, with n = 1−6,[2, 3] calculated with both polarizable and explicit many-body models.
The light red and blue backgrounds correspond to red and blue shifts relative to the reference
values. Each harmonic mode, indicated by a stick line, is colored based on the associated
frequency according to the colorbar displayed at the top of the figure.

37



TTM4-F, in general, overestimating (by up to ∼150 cm−1) the harmonic frequencies of vibrational

modes between 500 cm−1 and 1000 cm−1, and both TTM2.1-F and TTM3.F systematically

underestimating the harmonic frequencies of most of these modes. Since vibrational modes

below 1000 cm−1 correspond to collective rearrangements of the hydrogen-bond network, these

differences suggest that all TTM models, for different reasons, may have difficulties in correctly

representing the hydrogen-bond dynamics in liquid water and its temperature dependence, which

is in agreement with previous observations.[113, 116, 177]

Fig. 2.6 shows that AMOEBA03, AMOEBA+, AMOEBA+CF, and MB-UCB tend to

largely underestimate, up to 200 cm−1), the frequencies of the free OH stretching vibrations

above 3700 cm−1, which is traced back to the inability of these models to correctly predict the

harmonic frequencies of an isolated water molecule. On the other hand, while these models

still underestimate by ∼100 cm−1 the frequencies of weakly hydrogen-bonded OH stretches

(at ∼3500 cm−1), they significantly overestimate, by up to ∼150-200 cm−1, the frequencies of

strongly hydrogen-bonded OH stretches of the prism, cage, book1, and cyclic chair isomers of

the hexamer cluster. Considering that these models underestimate the harmonic frequencies of

the symmetric and asymmetric OH stretches of an isolated water molecule, the relatively large

blueshifts predicted for OH stretches at ∼3200 cm−1 imply that the effective “solvochromatic

shifts” for these vibrational fequencies can be up to ∼400 cm−1, pointing to some deficiencies of

these models in representing strong hydrogen bonds. AMOEBA03, AMOEBA+, AMOEBA+CF,

and MB-UCB predict similar deviations within 100 cm−1 of the reference values for the bending

vibrations (∼1700 cm−1), although larger variations are found in the ability of these models to re-

produce collective vibrations (below 1000 cm−1). In particular, while AMOEBA03, AMOEBA+,

and AMOEBA+CF still exhibit deviations within 100 cm−1 of the reference values, relatively

larger deviations of up to ∼150 cm−1 are associated with MB-UCB in this frequency region.

These relatively large deviations suggest that, as the TTM models, MB-UCB may not be able to

correctly describe the dynamical rearrangements of the water hydrogen-bond network.
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Table 2.3: Absolute deviation (AD), average absolute devitation (AAD), and maximum absolute
deviation (MAD) in cm−1 for the harmonic frequencies of selected isomers of (H2O)n clusters
with n = 1−6 calculated with both polarizable and explicit many-body models.

H2O (H2O)2 (H2O)3 (H2O)4 (H2O)5 (H2O)6 (H2O)6 (H2O)6 (H2O)6
isomer 1 isomer 1 isomer 1 isomer 1 isomer 1 isomer 1 isomer 2 isomer 3 isomer 6

TTM2.1-F
AD -1.38 -5.39 -0.44 -1.01 1.59 2.25 2.12 1.75 3.80

AAD 1.38 14.57 27.47 60.28 62.91 46.32 50.88 59.79 60.70
MAD 2.36 33.66 97.25 213.33 252.42 384.57 352.9 293.6 259.55
Score 100 90 60 0 -20 -90 -70 -40 -20

TTM3-F
AD -1.38 -31.71 -56.61 -66.37 -65.18 -62.14 -64.37 -64.44 -62.25

AAD 1.38 31.71 56.62 66.37 65.22 64.64 64.37 64.44 62.26
MAD 2.36 145.79 240.43 174.67 180.29 193.36 191.60 193.22 182.82
Score 100 30 -20 20 10 10 10 10 10

TTM4-F
AD -1.38 7.75 7.75 10.41 1.82 7.29 9.32 9.13 -2.88

AAD 1.38 30.19 46.30 62.17 53.73 89.70 66.78 60.31 52.33
MAD 2.36 86.99 101.60 148.92 128.08 449.83 327.32 192.82 124.14
Score 100 60 50 30 40 -120 -60 10 40

AMOEBA03
AD -140.08 -49.6 -29.7 -6.9 -4.0 -17.3 -11.1 -4.9 -5.9

AAD 140.08 76.0 54.3 47.3 48.8 46.0 46.3 49.4 46.5
MAD 188.6 190.3 197.3 197.9 199.1 220.0 207.0 208.7 201.1
Score 10 10 10 10 10 -10 0 0 0

iAMOEBA
AD -141.95 -74.6 -73.0 -73.0 -74.4 -68.0 -72.1 -71.6 -72.1

AAD 141.95 84.6 80.1 80.4 82.6 76.8 78.6 79.1 82.0
MAD 189.7 269.2 264.0 215.8 200.5 239.5 239.8 234.3 200.8
Score 10 -30 -30 0 0 -10 -10 -10 0

AMOEBA14
AD -141.7 -73.4 -47.6 -39.2 -37.9 -44.4 -41.0 -38.5 -39.9

AAD 141.7 78.3 74.2 66.1 59.7 65.8 63.6 61.1 59.9
MAD 189.8 198.8 215.6 195.9 196.7 229.2 209.7 198.2 195.4
Score 10 10 0 10 10 -10 0 10 10

AMOEBA+
AD -129.3 -60.2 -20.5 -9.7 -5.5 -23.3 -17.9 -9.0 -3.1

AAD 129.3 71.2 72.7 47.5 48.7 54.4 52.5 48.7 51.4
MAD 188.0 191.4 194.7 189.0 186.2 187.0 194.3 186.4 184.3
Score 10 10 10 10 10 10 10 10 10

AMOEBA+CF
AD -141.61 -61.61 -28.82 -21.99 -22.86 -28.90 -23.17 -21.02 -26.31

AAD 141.61 77.29 78.01 46.00 47.10 48.36 47.03 50.04 47.06
MAD 189.94 193.98 190.30 182.44 183.37 196.42 184.40 183.95 184.36
Score 10 10 10 10 10 10 10 10 10

MB-UCB
AD -143.54 -30.73 -4.59 27.54 26.73 -1.40 12.86 20.04 11.77

AAD 143.54 99.58 83.23 80.75 78.39 61.38 70.42 73.05 62.48
MAD 192.23 195.65 203.18 199.47 199.15 202.58 216.20 210.44 206.40
Score 10 10 0 10 10 0 0 0 0

fq-MB-pol
AD -1.39 0.45 0.56 -0.91 -3.64 0.35 -0.85 -3.31 -6.26

AAD 1.39 3.93 4.92 10.55 12.96 9.04 10.03 11.58 13.07
MAD 2.37 12.95 19.81 35.92 38.20 28.58 30.00 33.05 45.06
Score 100 100 100 90 90 90 90 90 80

MB-pol
AD -1.38 -1.84 -1.67 -5.13 -6.00 -2.75 -3.28 -5.44 -7.29

AAD 1.38 4.36 4.67 11.58 15.61 7.78 8.88 12.65 16.52
MAD 2.36 11.97 16.53 31.40 46.22 24.10 23.02 38.55 49.37
Score 100 100 100 90 80 90 90 90 80

As shown in Fig. 2.6, independently of the cluster size, both MB-pol and fq-MB-pol

accurately reproduce the harmonic frequencies of all vibrational modes, with deviations always

being within 50 cm−1 of the reference values. Since MB-pol and fq-MB-pol adopt the same

1-body term as the TTM models, the higher accuracy displayed in reproducing the harmonic

frequencies is a direct consequence of both MB-pol and fq-MB-pol being able to quantitatively

reproduce each individual term of the MBE in Eq. 6.4, as discussed in Section IVB.

Table 2.3 reports the average deviations (AD), average absolute deviations (AAD), and

maximum absolute deviations (MAD) from the reference 2-body:many-body CCSD(T):MP2
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harmonic frequencies[2, 3] calculated for the same water clusters analyzed in Fig. 2.6. To quantify

the accuracy of each model in reproducing the reference values, we follow Ref. 1 and assign a

score of 100 if the MAD is below 20 cm−1 and deduct 10 points for each additional increment

of 20 cm−1, until 0 points are reached. Since the TTM models use a highly accurate 1-body

term, they score perfectly for the water monomer. However, the agreement with the reference

harmonic frequencies deteriorates significantly for larger clusters, which can be attributed to

deficiencies in the representation of the underlying interactions as discussed in Section IVB. On

the other hand, the AMOEBA and MB-UCB models tend to suffer from large average absolute

errors, with all models, except iAMOEBA, benefiting from error compensation as indicated by

smaller average errors. Since these models already exhibit large deviations from the reference

harmonic frequencies of the water monomer, the deviations observed for larger clusters result from

inaccuracies in the description of both intramolecular and intermolecular potential energy surfaces.

It should be noted that all polarizable models exhibit large maximum deviations on the order of

200-400 cm−1, which, as shown in Fig. 2.6, are associated with OH stretching vibrations. Since

these vibrations report directly on the local hydrogen-bonding environment,[178] these large

deviations indicate that the TTM, AMOEBA, and MB-UCB models may not be able to correctly

describe the structural and dynamical properties of the hydrogen-bond network. In contrast,

both MB-pol and fq-MB-pol perform uniformly well for all cluster sizes and structures, with the

corresponding MAD never exceeding 50 cm−1, which is in agreement with previous studies of

vibrational spectra of water in both gas and condensed phases.[137, 145, 148–151, 156, 157]

2.4.4 Liquid water

After determining the accuracy in reproducing interaction and many-body energies of

small water clusters, and associated harmonic frequencies, this section investigates the ability

of the different models to reproduce the energy landscape of liquid water. Since CCSD(T)/CBS

simulations for liquid water in periodic boundary conditions are currently unaffordable, in the
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following comparisons MB-pol is used as a reference. Although this choice is arbitrary, it can be

justified by considering that several studies have demonstrated that MB-pol correctly reproduces

structural, thermodynamic, dynamical, and spectroscopic properties of liquid water across a wide

range of temperatures.[1, 39, 145, 148–151] For this analysis, we use molecular configurations

corresponding to 5 ps of a longer CMD trajectory, which includes nuclear quantum effects,[171–

175] carried out with MB-pol at 298.15 K for a system containing 256 water molecules.[148]

Fig. 2.7 shows that, among the polarizable models, TTM3-F and iAMOEBA more

closely follows MB-pol, with average deviations per molecules of -0.15 kcal/mol and 0.31

kcal/mol, respectively, and maximum absolute deviations of 0.26 kcal/mol and 0.45 kcal/mol,

respectively. These models are followed by AMOEBA14 that displays average and maximum

absolute deviations of 0.48 kcal/mol and 0.57 kcal/mol, respectively. Interestingly, these three

models perform rather well in this analysis despite displaying relatively poor agreement with the

reference CCSD(T)/CCSD(T)-F12 many-body energies for small clusters. This suggests that,

as already discussed in Section III B, the apparent better agreement with the MB-pol binding

energies for liquid water likely results from error compensation between individual many-body
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Figure 2.7: Average (AD), average absolute (AAD), and maximum absolute (MAD) deviations
of the binding energy per molecule relative to the corresponding MB-pol values along 5 ps of a
longer MB-pol CMD trajectory carried out at 298.15 K in Ref. 148.
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Table 2.4: Average deviation (AD), average absolute deviation (AAD), and maximum absolute
deviation (MAD) per molecule, calculated with both polarizable and explicit many-body models
relative to the MB-pol binding energies per molecule along 5 ps of a MB-pol CMD trajectory
carried out at 298.15 K in Ref. 148.

Model AD (kcal/mol) AAD (kcal/mol) MAD (kcal/mol)
TTM2.1-F -1.50 1.50 1.61
TTM3-F -0.15 0.15 0.26
TTM4-F -1.98 1.98 2.16

AMOEBA03 0.80 0.80 0.94
iAMOEBA 0.31 0.31 0.45

AMOEBA14 0.48 0.48 0.57
AMOEBA+ 1.13 1.13 1.28

AMOEBA+CF 0.59 0.59 0.67
MB-UCB 0.64 0.64 0.75
fq-MB-pol -0.02 0.02 0.03

contributions.

Relatively larger average deviations per molecule are instead found for TTM2.1-F (-1.50

kcal/mol), TTM4-F (-1.98 kcal/mol) and AMOEBA+ (1.13 kcal/mol), while AMOEBA+CF and

MB-UBC provides similar average deviations on the order of 0.6 kcal/mol.

The comparisons in Fig. 2.7 show that the use of fixed atomic charges does not prevent

fq-MB-pol from quantitatively reproducing the original MB-pol trajectory. Considering that

permanent electrostatics is purely pairwise additive in both MB-pol and fq-MB-pol, the agreement

shown in Fig. 2.7 provides further evidence for the ability of the 2-body PIP adopted by these

models to correct for inherent deficiencies in classical representations of molecular interactions

at short range and demonstrates that (small) differences in the representation of the 1-body

charge distributions do not affect the accuracy of explicit many-body models in describing the

interactions between water molecules, from small clusters to the liquid phase.

To provide a more immediate assessment of the ability of each model to reproduce the

energy landscape of liquid water, Table 2.5 ranks all models based on the corresponding standard

deviations shown in Fig. 2.7. Considering that ∼ 4.5 molecules are within the first hydration

shell as determined from the oxygen-oxygen radial distribution function (RDF) calculated with
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Table 2.5: Average absolute deviations and corresponding scores calculated for the first hydration
shell in liquid water using both polarizable and explicit many-body models relative to the MB-
pol binding energies along 5 ps of a MB-pol CMD trajectory carried out at 298.15 K in Ref. 148.
See text for details.

Model
Average absolute deviation (kcal/mol)

Score
for the first hydration shell

TTM2.1-F 6.750 89
TTM3-F 0.675 99
TTM4-F 8.910 85

AMOEBA03 3.600 94
iAMOEBA 1.395 98

AMOEBA14 2.160 96
AMOEBA+ 5.085 91

AMOEBA+CF 2.655 95
MB-UCB 2.880 95
fq-MB-pol 0.090 100

MB-pol at 298.15 K and 1 atm (which quantitatively agrees with the experimental RDF[39]), a

score of 100 points is assigned if the average absolute deviation per molecule multiplied by 4.5

from the MB-pol binding energies is within 0.593 kcal/mol, which corresponds to kBT at 298.15

K, with kB being Boltzmann’s constant, and 1 point is then deducted for each additional increment

of kBT. As already inferred from the analysis of Fig. 2.7, Table 2.5 shows that most polarizable

models, with the exception of TTM4-F and AMOEBA+, provides similar performance relative

to MB-pol, with scores between 81 and 88. This analysis shows that, already considering only

the energetics of the first hydration shell in liquid water, this analysis the deviations of the TTM,

AMOEBA, and MB-UCB models from MB-pol are, in all cases, larger than kBT, which suggests

that MD simulations of liquid water carried out with these polarizable models would likely sample

different regions of the underlying multidimensional energy landscape from those sampled with

MB-pol and, consequently, would lead to different molecular structures.
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2.5 Conclusion

In this study we presented an assessment of state-of-the-art polarizable water models with

flexible monomers based on a systematic analysis of interaction energies, many-body effects, and

harmonic frequencies calculated for molecular systems of increasing size. For water clusters,

comparisons were made with reference data calculated at the CCSD(T)/CBS level of theory, the

current “gold standard” for chemical accuracy, while MB-pol was used as a reference for liquid

water since it has been shown that this model accurately reproduces structural, thermodynamic,

dynamical, and spectroscopic properties of water across the phase diagram.

Overall, our analysis indicates that significant progress has been made in the development

of polarizable water models, although the path has not always been smooth and straight as

demonstrated by early models (e.g., TTM2.1-F and AMOEBA03) often outperforming most

recent models (e.g., TTM3-F, TTM4-F, iAMOEBA, and AMOEBA14). In particular, comparisons

of interaction and many-body energies provide support for an early observation by (author?) that

models able to more closely reproduce high-level ab initio data also appear to provide a more

balanced description of the properties of water from the gas to the condensed phase.[47] This

suggests that some caution should be used in relying on the agreement with experimental data

for bulk properties during the parameterization procedure since, given the high dimensionality

of the parameter space, the apparent agreement with experiment may often be the result of

fortuitous error compensation. In particular, several polarizable models considered in our analysis

appear to benefit from significant error compensation between 2-body and 3-body energies,

which consequently leads to incorrect representations of hydrogen-bond strengths depending on

the system size and structure as demonstrated by relatively large deviations from the reference

OH-stretch harmonic frequencies of water cluster which are associated with all polarizable

models.

The errors associated with 2-body and 3-body energies calculated with polarizable models
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for distorted dimer and trimer configurations indicate that it may be difficult to tune the relatively

simple functional forms adopted by popular polarizable models (e.g., TTM and AMOEBA

models) to quantitatively account for each individual many-body contribution and, at the same

time, be able to correctly describe structural, thermodynamic, and dynamical properties of liquid

water. Even the most advanced polarizable models (e.g., AMOEBA+CF and MB-UCB), which

provide improved descriptions of the energetics of small water clusters by adopting relatively

more sophisticated parameterizations of various physical contributions to the interaction energies,

do not display significant improvement in the description of the harmonic frequencies of water

cluster and the energy landscape of liquid water. This suggests that, while rigorous and systematic

physics-based parameterizations certainly improves the description of water systems in the

neighborhoods of minimum-energy structures, the relatively simple functional forms adopted by

polarizable models may not allow for a quantitative representation of the entire multidimensional

energy landscape.

On the other hand, our analysis indicates that, independently of the system size and spe-

cific water arrangements, explicit many-body models (e.g., MB-pol and fq-MB-pol) effectively

provide CCSD(T)/CBS accuracy for both minimum-energy and distorted structures. As discussed

in previous studies,[132] this accuracy is owed to the flexibility of short-range 2-body and 3-body

PIPs to correct for inherent deficiencies associated with classical representations of molecular

interactions. Despite recent claims about certain polarizable models being comparable in per-

formance to MB-pol,[108] the present analysis demonstrates that, as it should be expected after

considering the different theoretical frameworks these models are built upon and the nature of the

approximations used in the parameterization process, many-body models provide significantly

higher accuracy and predictive power than existing polarizable models. Importantly, the analyses

presented in this study also demonstrated that, with the development of more advanced represen-

tations of low-order n-body interactions, foregoing geometry-dependent atomic charges appear to

have negligible impact on reproducing the CCSD(T)/CBS reference values, as illustrated by the
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accuracy achieved by the fq-MB-pol model, which is able to accurately reproduce interaction and

many-body energies and harmonic frequencies of small water clusters as well as the energetics of

liquid water despite adopting fixed atomic charges.

Moving forward we believe that future developments of both polarizable and many-

body models should continue in parallel and exploit synergies instead of aiming to compete. In

particular, many-body models should serve as a reference for side-by-side comparisons that would

provide guidance for systematic parameterizations of new polarizable models. In this regard,

Ref. 1 provides extensive reference data calculated with MB-pol for various properties of water

across the entire phase diagram which could be used to develop more balanced parameterizations

of polarizable models capable of approaching ”the right answers for the right reasons”. On

the other hand, while it has been shown that the same theoretical/computational framework

adopted by MB-pol can be applied to more complex aqueous systems[179–190] and molecular

fluids,[63, 191] future efforts should focus on the development of explicit many-body models

for simulations of larger molecular systems in both gas and condensed phases, with the same

accuracy exhibited by MB-pol for water.

2.6 Supplementary Material

Tables with interaction energies and harmonic frequencies of water clusters calculated

with both polarizable and many-body explicit models.

2.7 Data Availability

The coordinates of all optimized clusters used in the analyses of the interaction and

many-body energies as well as harmonic frequencies, along with the coordinates of the CMD

trajectory used in the analysis of the energetics of liquid water are available at:
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https://github.com/paesanilab/polarizable water models. Any other data generated and

analyzed for this study that are not included in this Article and its Supplementary Material are

available from the authors upon request.

2.8 Acknowledgements

We thank Colin Egan, Kartik Rallapalli, Kelly Hunter, and Jay Hu for useful discussion.

We also thank Pengyu Ren, Jean-Philip Piquemal, and Chengwen Liu for guidance with the

AMOEBA+ and AMOEBA+CF models, and Akshaya Das and Theresa Head-Gordon for provid-

ing all the data for the MB-UCB model. This research was supported by the U.S. Department of

Energy, Office of Science, Office of Basic Energy Science through Grant No. DE-SC0019490.

All graphs were generated using Matplotlib.[192] All calculations used resources of the Extreme

Science and Engineering Discovery Environment (XSEDE), which is supported by the National

Science Foundation through Grant No. ACI-1053575, under allocation TG-CHE110009, and the

Triton Shared Computing Cluster (TSCC) at the San Diego Supercomputer Center (SDSC).

Chapter 2 is in full a reprint of the material as it appears in “Lambros, E., & Paesani, F.

(2020). How good are polarizable and flexible models for water: Insights from a many-body

perspective. The Journal of Chemical Physics” The dissertation author was the primary author of

this paper.

47



Chapter 3

A Many-Body, Fully Polarizable Approach

to QM/MM Simulations

We present a new development in quantum mechanics/molecular mechanics (QM/MM)

methods by replacing conventional MM models with data-driven many-body (MB) representations

rigorously derived from high-level QM calculations. The new QM/MM approach builds on top

of mutually polarizable QM/MM schemes developed for polarizable force fields with inducible

dipoles and uses permutationally invariant polynomials to effectively account for quantum-

mechanical contributions (e.g., exchange-repulsion, and charge transfer and penetration) that are

difficult to describe by classical expressions adopted by conventional MM models. Using the

many-body MB-pol and MB-DFT potential energy functions for water, which include explicit

2-body and 3-body terms fitted to reproduce the corresponding CCSD(T) and PBE0 2-body

and 3-body energies for water, we demonstrate a smooth energetic transition as molecules are

transferred between QM and MM regions, without the need of a transition layer. By effectively

elevating the accuracy of both the MM region and the QM/MM interface to that of the QM region,

the new QM/MB-MM approach achieves an accuracy comparable to that obtained with a fully

QM treatment of the entire system.
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3.1 Introduction

Quantum mechanics/molecular mechanics (QM/MM) approaches that integrate quantum

chemistry (QM) with molecular mechanics (MM), have been used to describe systems that cannot

be completely modeled by a pure QM or MM approach. These methods, which treat a smaller

subsystem (S) via a quantum mechanical framework and the surrounding environment (E) using a

force field, were initially described by Warshel and co-workers in 1972, wherein they partitioned

the σ and π electrons of a molecule into separate empirical and semi-empirical treatments.[193]

The current QM/MM formalism was originally proposed in the seminal 1976 study by Warshel

and Levitt, where a protein was split into separate QM and MM subsystems, which interacted via

a dielectric coupling.[194]

In their infancy these QM/MM approaches were used to study small chemical reactions,

such as halide exchange reactions of the form CH3Cl +Cl− which needed a solvent to be

accurately modeled.[33] Following the development of efficient interfaces between popular QM

and MM software,[33] along with advances in computational power, it became possible to simulate

larger and more complex systems, such as enzymatic and other biomolecular reactions.[34, 35]

Furthermore, QM/MM saw success in the simulation of spectroscopic experiments of complex

molecular systems.[36]

With regards to the formalism, most QM/MM approaches rely on an “effective Hamilto-

nian” which couples the properties of the electronic density of the subsystem S to a set of point

charges representing the environment E. This coupling, known as the electrostatic embedding

(EE), is commonly used with non-polarizable force-fields, as all electrostatic interactions between

the two regions can be taken into account in a relatively straightforward and cost-effective way.

However, in EE only the QM density is polarized by the environment and not vice versa. In

particular, this implies that the interaction between the QM subsystem and the environment is

the same, independently of the electronic state of the QM subsystem and/or the effects of an
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external field. The solution to this conundrum, known as a “polarizable embedding” (PE), allows

for the self-consistent equilibration of the classical degrees of freedom used to represent the

electrostatic distribution of the environment, described with a polarizable force field[195–198],

with the electronic density in the QM region. Early approaches to the PE method involved

simple iterations over an electrostatic embedding scheme where the inducible dipoles could be

back-polarized by point charges fit to the electronic density until the system converged.[199–202]

A related approximation to the polarizable embedding was introduced with the LICHEM inter-

face, which couples generic QM and MM software using a partially self-consistent polarization

scheme, compromising some accuracy for a more generalized interface and grater computational

efficiency.[203, 204]

By solving the QM equations and the MM polarization equations in a fully coupled

fashion, some recent approaches adopt a more intimate coupling between the electron density in

the QM region and the polarization in the MM region, with the latter being modeled by inducible

point dipoles (IPD)[205–213], fluctuating charges[214–219], Drude oscillators.[220–225], or

using a response kernel.[226, 227] In this contribution, we limit our discussion to IPD-based

approaches, as this is the polarization model adopted by both the MB-pol [37–39] and AMOEBA

[54, 58] models used in this analysis. We note, in passing, that an IPD polarization scheme

is also present in other advanced QM/MM methods, such as the effective fragment potential

method[228] and the X-pol method[229].

Several implementations exist of fully polarizable IPD-based QM/MM schemes[205, 209,

211, 230–232]. Over the years, these implementations have been extended to simulations of

various molecular properties, with the QM subsystem in either the ground or an excited state,

hydration properties and, more recently, ab initio multiscale molecular dynamics[210, 211, 218,

219, 223–225, 233, 234].

Beyond the issues associated with coupling the QM and the MM regions, QM/MM faces

another methodological roadblock: diffusive breakup of the QM region. During a molecular
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dynamics simulation in solution, molecules that were originally assigned to the QM region

can diffuse apart, which lead to an effective exchange between QM and MM molecules. Such

situations can result in low-accuracy MM molecules, which, by construction, cannot undergo any

chemical transformation, moving into the original QM region of interest, while high-accuracy

QM molecules are dispersed in the original MM region. So-called adaptive QM/MM schemes

attempt to overcome this limitation by adaptively partitioning the molecules in the QM and MM

regions at each step.[235–238] Although appealing, adaptive QM/MM schemes suffer from some

drawbacks associated with the inherent differences between QM and MM descriptions of the

energies and corresponding forces. Due to this, when a molecule is switched between QM and

MM treatments during re-partitioning, the whole system can experience a large change in energy

causing a discontinuity in the force. This can, for example, happen if the minima of the QM and

MM energy landscapes are shifted relative to each other, which implies that a molecule located in

a minimum energy configuration on the MM energy landscape can be thrust into a high-energy

configuration when transitioned to the QM energy landscape.[235, 236, 239] In simulations, this

behavior is manifested as unphysical dynamics along with structural artifacts at the QM/MM

boundary.[34, 235, 236, 239, 240] In this thread, advances in adaptive QM/MM have focused

on suppressing and reducing energetic discontinuities at the QM/MM boundary, often by using

a transition layer to smoothly transition atoms between QM and MM treatments.[238] These

techniques range from simple smoothing functions to more complex distance-based partitioning

approaches which have been shown to conserve energy and smooth forces. [34, 236–239, 241–

254]

Unfortunately, while these adaptive approaches improve energy conservation and alleviate

some of the discontinuities in the forces, which, consequently, smooth out boundary artifacts that

may occur, they do not solve the underlying issue in that the system is being represented by two

different potential energy functions.[238] Furthermore, adoption of transition layers increases the

computational cost of QM/MM simulations, as some schemes can result in up to 2N additional
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QM calculations for N molecules in the transition layer, though more modern partitioning schemes

have been shown to significantly reduce that number. [236, 238, 239, 246, 250]

Other approaches using advanced representations of the energy landscape have attempted

a more rigorous treatment of QM/MM systems. Effective and exchange fragment models (EFP

and XFP respectively) partition the system into ab initio and effective fragment (EF) components,

where the two regions interact via one electron integrals between ab initio and EF molecules.[255–

259] Recent EFP approaches have further developed this by integrating exchange-repulsion style

interaction potentials across the QM/MM boundary in order to account for some quantum effects

missing from the core EFP interaction. [260] The Gaussian electrostatic model (GEM) uses a

density fitting formalism to represent the MM region using molecular electron densities. [261]

Incorporated into a QM/MM approach, GEM allows both the QM and the MM regions to be

represented by an electron density, and thus affords the scheme much greater accuracy when

evaluating QM/MM interactions. [262, 263] Building on these previous QM/MM approaches, we

propose a new development, QM/MB-MM, in which the MM region is represented by data-driven

models rigorously derived from the many-body expansion of the interaction energy. In this study,

we describe the QM/MB-MM scheme using water as a prototypical example where the MB-MM

region is described by the MB-pol[37–39] and MB-DFT[61] models. MB-pol and MB-DFT

are many-body water models that include explicit terms fitted to reproduce 2-body and 3-body

energies calculated at the CCSD(T) and DFT levels of theory, respectively. We demonstrate

that QM/MB-MM combined with a polarizable embedding scheme effectively elevate QM/MM

calculations to quantum mechanical levels of accuracy, specifically, CCSD(T) for MB-pol and

PBE0 for MB-DFT. Importantly, by combining a PBE0 representation of the QM region with

a MB-DFT model fitted to PBE0 2-body and 3-body data to represent the MM region, we

demonstrate that energy discontinuities at the QM/MM boundary are largely suppressed and

reduced to negligible effects.
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3.2 Theory and Computational Details

All QM/MM calculations were carried out with the PBE0 functional along with the D3

dispersion correction using the aug-cc-pVQZ basis set.[166, 264–266] Gaussian16[267] was used

for the QM calculations while an in-house code was used to handle the MB-pol and MB-DFT

components incorporated into the QM/MM coupling framework.

3.2.1 Explicit many-body models: MB-pol and MB-DFT

MB-pol and MB-DFT are explicit many-body models based on the many-body expansion

(MBE) which represents the energy of a system as the sum of individual n-body contributions in

a system of N molecules with n ≤ N.[37–39]

This is formally expressed as:[40]

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i< j

ε2B(ri,r j)+
N

∑
i< j<k

ε3B(ri,r j,rk)+ ...+ εNB(r1, ..,rN) (3.1)

where ε1B represents the energy required to distort an individual monomer from its equilibrium

geometry, and εnB with n > 1 are the n-body energies that are recursively defined as:

εnB = εn(1, ...,n)−
N

∑
i=1

ε1B(ri)−
N

∑
i< j

ε2B(ri,r j)−
N

∑
i< j<k<...<n−1

ε(n-1)B(ri,r j, ..rn−1). (3.2)

For molecules with localized electron density and large band gap, such as water, this

expansion converges very quickly, with the sum of 2-body and 3-body energies contributing

∼90-95% to the total interaction energy.

The MB-pol[37–39] and MB-DFT[61] models include explicit representations for the

first three terms of the MBE, while implicitly accounting for all higher order, n > 3 body terms

53



through a classical polarization term,

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i> j

ε2B(ri,r j)+
N

∑
i> j>k

ε3B(ri,r j,rk)+Epol (3.3)

In these models, the 1B term is described by the Partridge-Schwenke potential energy surface,

which was originally calculated at the configuration interaction level of theory and subsequently

refined to quantitatively reproduce the experimental rovibrational transitions.[64] The 2-body

term consists of three contributions:

ε2B = Esr
2B +Eelec +Edisp (3.4)

where Esr
2B is a 4th-degree permutationally invariant polynomial (PIP)[65] representing short-range

interactions within a water dimer. Eelec is described by Coulomb interactions between geometry

dependent point charges which reproduce the ab initio dipole moment surface of a water molecule.

[64] Lastly, the 2-body dispersion interaction is expressed as

Edisp =−∑
i, j

f (δi j)
C6,i j

R6
i j

(3.5)

where i and j are indices for atoms on two separate water monomers, f (δi j) is the Tang-Toennies

damping function with a fitted parameter δi j,[66] and C6,i j are the dispersion coefficients calcu-

lated from the asymptotic reference energies of the water dimer as in CC-pol.[45] The explicit

3-body term,

ε3B = Esr
3B (3.6)

represents short-range 3-body interactions and is represented by a 4th-degree PIP[65]. In MB-pol,

these explicit 2B and 3B terms were fitted on top of an implicit many-body polarizable term (Epol

in Eq. 5.8) to reproduce 2B and 3B energies calculated at the CCSD(T) level of theory in the

complete basis set (CBS) limit.[37, 38] In the MB-DFT model, the explicit ε2B and ε3B terms
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were instead fitted to 2B and 3B energies calculated at the PBE0-D3/aug-cc-pVQZ level of theory

using the same procedure described in Ref. 61.

3.2.2 The QM/MM interaction with MB-pol and MB-DFT

In this section, we briefly overview the theory of IPD-based polarizable QM/MM at the

self-consistent field level of theory, i.e., Hartree-Fock (HF) or DFT. A more detailed overview can

be found in a recent review[268]. The MB-pol and MB-DFT polarization energy is variational with

respect to the polarization degrees of freedom, which means that the coupled QM/MM equations

and energy can be conveniently obtained starting from a variational energy functional[209, 212]

of the SCF density P and the IPDs µµµ

E (P,µµµ) = E QM(P)+E MM(µµµ)+E Coup(P,µµµ) (3.7)

where E QM(P) and E MM(µµµ) represent the purely quantum mechanical and classical contributions

to the energy, and E Coup(P,µµµ) describes the coupling between the two regions. The MM and

coupling terms can then be combined into a general “environmental” E Env(P,µ) term:

E (P,µµµ) = E QM(P)+E Env(P,µµµ) (3.8)

which is expressed as a sum of the MM contribution (E FF ), the polarization energy (Ẽ Pol), and

the electrostatic QM/MM coupling (E QM/MM):

E Env(P,µµµ) = E FF + Ẽ Pol(P,µµµ)+E QM/MM(P) (3.9)

The first term in Eq. 3.9 represents the energy of the MM region as described by a force field,

which depends on neither the electron density nor the induced dipoles on the MM atoms, as well

as any non-electrostatic interactions between the QM and MM regions, such as van der Waals
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interactions between molecules in the QM and MM regions:

E FF = EMM
non−elec +EQM/MM

non−elec. (3.10)

For the MB-pol and MB-DFT models which, besides the standard dispersion energy term, also

incorporate 2B and 3B PIPs to account for short-range quantum-mechanical effects (e.g., charge

transfer and penetration) missing in standard force fields, the first term of Eq. 3.10 becomes

EMB−pol
non−elec = Edisp +E2b,sr +E3b,sr (3.11)

Here, EMB−pol
non−elec sums up all the dispersion, and short-range 2B and 3B terms for the MM region

alone, as well as all possible cross terms for pairs and triples of molecules split between the QM

and MM regions. The 2B and 3B PIPs included in the QM/MM interaction, therefore, act as

correction terms, allowing, in principle, the QM/MM energy to achieve the same accuracy as in

purely QM calculations. In contrast, when the MM region is described with a standard polarizable

force field, such as AMOEBA, the non-electrostatic QM/MM interaction only includes a van

der Waals term represented by a force-field specific functional force, such as a standard 12-6

potential, or, for AMOEBA, a buffered 14-7 potential[54, 58, 203, 209, 212]:

EAMOEBA
non−elec = EvdW (3.12)

We note here that in the QM/MB-pol scheme, the non-electrostatic interactions are modeled in

a purely classical fashion, i.e., the associated energy contribution does not depend on the QM

density, but only on geometrical parameters. This allows one to achieve high accuracy on the

energy and structures without complicating the QM equations, but cannot reproduce quantum

confinement effects on the QM density, which might be relevant to compute properties and model

spectroscopies[228, 269, 270]. A density-dependent correction for MB-pol and MB-DFT is
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currently under active investigation.

The second term of Eq. 3.9 is the most relevant one for the coupling of the QM and

classical subsystems, as it describes the QM/MM polarization:

Ẽ Pol(P,µµµ) =
1
2

µµµ
†Tµµµ −µµµ

†(EMM +EQM(P)), (3.13)

where µ is a vector that collects all the IPD, T describes the Thole-damped dipole interaction

tensor, and

EQM
i (P) = ∑

α

Zα

Rα − ri

|Rα − ri|3
−∑

µν

Pµν

∫
χµ(r)χν(r)

r− ri

|r− ri|3
d3r (3.14)

is the electric field due to the QM density at the i-th polarizable site.[37, 232] We remark that the

QM field is the sum of the contributions of the nuclei, with charges Zα at positions Rα , and of the

electronic density, that has been expanded in a basis of atomic orbitals χ . Finally, the third term

in Eq. 3.9 represents the interaction of the electron density with the static charges:

E QM/MM(P) = qqq†VVV QM(PPP), (3.15)

where VVV QM is the QM electrostatic potential and qqq is a vector that collects all the point charges,

that represent the permanent electrostatic distribution in MB-pol and MB-DFT. The coupled

QM/MM equations are easily obtained by minimizing the variational energy functional in eq. 3.7

with respect to the QM density and the IPDs, taking into account the constraints on the density.

In particular, by differentiating with respect to the elements of the density matrix, we get the

QM/MM Fock (Kohn-Sham, KS) matrix:

Fµν = Fvac
µν +qqq†VVV µν −µµµ

†Eµν , (3.16)

where Fvac is the standard Fock (KS) matrix and VVV µν ,EEEµν are standard potential and electric

field one-electron integrals.[209] The polarization equations are obtained by differentiating with
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respect to the IPD:

Tµµµ = EMM +EQM(P). (3.17)

We note that the QM and polarization equations are coupled, as the Fock (KS) matrix depends

on the IPDs, while the right-hand side of the polarization equations depends on the QM density.

Within a SCF approach, the coupled equations are solved by computing the IPDs at each SCF

cycle by solving eq. 3.17 either with a direct method or iteratively, and then using them to

assemble the environment contribution to the Fock (KS) matrix, which is in turn diagonalized to

get a new density, until convergence is achieved.

For the QM/AMOEBA polarizable QM/MM scheme, a few modifications need to be

introduced, as the model is non variational and includes higher order multipolar moments into the

permanent electrostatic distribution. A detailed derivation of the electrostatic and polarization

interactions can be found in the relevant literature.[209, 212]

In our analysis, we also consider a simplified polarizable embedding scheme implemented

in the LICHEM software.[203, 204] In this scheme, the electrostatic interaction between QM and

MM regions is separated into two components. The first component accounts for the polarization

of the QM region induced by the point charges in the MM region, while the second component

accounts for the back-polarization of the the MM region induced by the polarized QM charges.

For multipolar models that contain permanent dipoles and quadrupoles, such as AMOEBA, a set

of six point charges are octahedrally distributed about each atom to guarantee that the permanent

multipole moments are correctly described.[203]

In this work, the fully self-consistent polarizable QM/MM scheme is referred to as fsc-

QM/MB-MM, and the partially self-consistent polarizable QM/MM scheme implemented in

LICHEM is referred to as psc-QM/MB-MM.
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3.3 Results and discussion

3.3.1 Water dimer

As an initial demonstration, Fig. 3.1 shows the QM/MB-MM interaction energies of the

water dimer calculated along MP2/aug-cc-pVQZ scans obtained by optimizing the positions

of the hydrogen atoms for each fixed oxygen-oxygen distance. In this analysis, both possible

QM/MB-MM partitions were examined, with the QM region containing either the hydrogen-bond

donor or the hydrogen-bond acceptor. The QM/MB-MM energies, calculated using both the fully

self-consistent polarizable (fsc-QM/MB-MM)[209, 212, 213] and the partially self-consistent

polarizable (psc-QM/MB-MM)[203, 204] schemes, are compared against the corresponding full

MB-MM and QM values calculated with MB-pol and PBE0-D3, respectively. The kink in the

plot occurring at ∼2.7 Å corresponds to configurations that shift from a “sheared” geometry,

where the two water molecules are symmetrically flipped, to a “hydrogen-bonded” geometry, as

displayed in the upper left panel of Fig. 3.1.

When the QM water molecule donates the hydrogen bond, the fsc-QM/MB-pol energies

lie close to the MB-pol reference values in the neighborhood of minimum-energy geometry

(between 2.7 and 3.2 Å), with the largest deviation of ∼ 0.1 kcal/mol occurring near the kink

at 2.7 Å. The psc-QM/MB-pol scheme yields comparable results, although it tends to slightly

overestimate the interaction strength, giving rise to a larger maximum error of ∼ 0.25 kcal/mol in

correspondence of the kink. When the partition is reversed, such that the QM water molecule

becomes the hydrogen-bond acceptor, a much larger overall error is observed in both QM/MB-

MM schemes. In this case, the fsc-QM/MB-pol scheme overestimates the interaction energy by

∼ 0.3 kcal/mol at the kink, while underestimating the interaction energy at the minimum by about

0.2 kcal/mol. The psc-QM/MB-pol scheme predicts a larger error of ∼ 0.5 kcal/mol at the kink

but reproduces the minimum energy within 0.05 kcal/mol of the reference MB-pol value.

The bottom panels of Fig. 3.1 compare the reference MB-pol and PBE0-D3 interaction
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energies to the corresponding QM/MB-DFT values where, as described in Section 4.2, the

MB-DFT model was fitted to reproduce 2B and 3B PBE0-D3/aug-cc-pVQZ energies. Similar

to the QM/MB-pol case, when the QM water molecule is the hydrogen-bond donor, the fsc-

QM/MB-DFT scheme underestimates the PBE0-D3 interaction energies, with the largest error

of about 0.1 kcal/mol found at the kink. The psc-QM/MB-DFT scheme predicts an error of ∼

0.2 kcal/mol for the same configuration. When the QM/MM partition is switched and the QM

water molecule becomes the hydrogen-bond acceptor, both the fully and partially self-consistent

schemes overestimate the reference PBE0-D3 interaction energy at the kink, with the errors

being ∼0.3 and ∼0.5 kcal/mol, respectively. The fsc-QM/MB-DFT scheme underestimates

the interaction energy at the minimum by ∼0.1 kcal/mol, while the psc-QM/MB-DFT scheme

overestimates it by ∼0.1 kcal/mol.
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Figure 3.1: Comparison of the QM/MM interaction energy against the MB-pol and PBE0-
d3 values over the MP2/aug-cc-pvqz optimized dimer scan. a) QM/MB-pol results with the
QM water molecule as the hydrogen-bond donor. b) QM/MB-pol results with the MM water
molecule as the hydrogen-bond donor. c) QM/MB-DFT results with the QM water molecule
as the hydrogen-bond donor. d) QM/MB-DFT results with the MM water molecule as the
hydrogen-bond donor.
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Because QM/MB-pol and QM/MB-DFT only differ in the identity of the 2B and 3B PIPs

(along with the Tang-Toennies damped dispersion), the shift in the interaction energies from

QM/MB-pol, which closely reproduces the MB-pol values, to QM/MB-DFT, which instead closely

reproduces the PBE0-D3 values, is due to the MB-DFT PIPs correctly compensating the core

QM/MM electrostatic interaction. If the QM/MM electrostatic interaction is sufficiently similar to

the core MM electrostatic interaction, these results suggest that the 2B and 3B corrections used in

MB-pol and MB-DFT can be successfully integrated into a QM/MM scheme to correctly account

for the deficiencies in the core QM/MM interaction. In both QM/MB-pol and QM/MB-DFT,

smaller overall deviations from the corresponding MB-pol and PBE0-D3 reference values are

observed when the QM water molecule donates the hydrogen bond compared to those found when

the QM water is the hydrogen-bond acceptor. Furthermore, between these two partitions, the

QM hydrogen-bond donor case predicts a minimum that is slightly shifted to a shorter distance,

indicating a slightly more attractive interaction between water molecules. On the other hand, in

the QM hydrogen-bond acceptor case, the minimum is shifted significantly to a larger distance (by

∼0.15 Å), indicating that both QM/MB-pol and QM/MB-DFT overall predict a more repulsive

interaction relative to the MB-pol and PBE0-D3 references, respectively. This“repulsive shift”

observed in the QM hydrogen-bond acceptor case carries out to the region beyond the minimum,

where both QM/MB-pol and QM/MB-DFT consistently underestimate the interaction energies

as the two water molecules are taken apart. This indicates that, depending on which molecule

(QM or MM) is the hydrogen-bond donor, the difference between the QM/MB-MM and MB-MM

descriptions of the underlying electrostatic interactions may become significant and possibly

incompatible with the corrections provided by the PIPs at short range.

In the short-range region, where the two water molecules are closer than 2.7 Å, they adopt

a symmetrically flipped “sheared” geometry. Due to the symmetry of these dimer configurations,

the two possible QM/MM partitions are virtually identical and, consequently, predict the same

QM/MM energies. The close vicinity of the water molecules in these configurations makes
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the distinction of the QM and MM regions somewhat blurred, which implies that the QM/MM

electrostatic interaction become more quantum mechanical in nature, with the point charges

and dipoles of the MM molecule penetrating the electron density of the QM molecule. The

consistently higher error of ∼0.5 kcal/mol observed for these configurations can thus be attributed

to the expected incompatibility of the short-range PIPs, which were optimized for a purely

MB-MM description of the interaction energies, with the QM/MM electrostatics.

3.3.2 Water 2-body energies

With the previous section evaluating the performance of QM/MB-pol and QM/MB-DFT

for an optimized water dimer scan where the geometries of the two water molecules lied close

to the corresponding minimum-energy conformation, this section explores the performance of

QM/MB-pol and QM/MB-DFT for a set of 1000 dimers with more distorted molecular geometries

randomly extracted from the original MB-pol 2B training set.[37] Fig. 3.2 shows correlations

between 2-body energies calculated with the QM/MB-pol, QM/MB-DFT, and QM/AMOEBA14

schemes, and the corresponding CCSD(T) and PBE0-D3 reference values for this set of distorted

dimers. For this analysis, the CCSD(T) 2B energies in the complete basis set limit were taken

from the original MB-pol reference[37] while the corresponding PBE0-D3 values were calculated

with Gaussian16 using the aug-cc-pVQZ basis set. In order to exclude from this analysis overly

distorted dimers whose CCSD(T)-based geometry-dependent MB-pol charges may significantly

deviate from those predicted by PBE0-D3, and thus provide a more electrostatically consistent

QM/MM interaction, the RMSDs reported in Fig. 3.2 are calculated considering only configura-

tions whose maximum intramolecular OH bond length is shorter than 1.16 Å, corresponding to

the 90th percentile of the entire set. It should be emphasized that, in actual QM/MM simulations,

these distorted dimers with elongated OH bonds should effectively be included in the QM region

since they represent configurations involved in the water autoionization process.

The RMSDs relative to the CCSD(T) 2B energies are 0.92, 0.60, and 0.69 kcal/mol for the
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Figure 3.2: Correlations between the QM/MM interaction energies of 1000 water dimers
calculated with AMOEBA14, MB-pol, and MB-PBE0 representing the MM region, and PBE0-
D3 representing the QM region, and the corresponding CCSD(T) (panels a) and PBE0-D3
(panels b) values. Each RMSD is calculated for configurations whose maximum intramolecular
OH bond length is shorter than 1.6 Å.
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fsc-QM/AMOEBA14, QM/MB-pol, and QM/MB-DFT schemes, respectively. A similar trend is

found for the RMSDs calculated relative to the PBE0-D3 2B energies, with values of 1.04, 0.69,

and 0.60 kcal/mol for QM/AMOEBA14, QM/MB-pol, and QM/MB-DFT, respectively. Slightly

smaller values are obtained using the partially self-consistent scheme, with QM/AMOEBA14,

QM/MB-pol, and QM/MB-DFT being associated with RMSDs of 0.96, 0.50, and 0.59 kcal/mol,

respectively, relative to the CCSD(T) 2B energies, and 1.14, 0.62, and 0.50 kcal/mol, respectively,

relative to the PBE0-D3 2B energies.

The overall decrease in the RMSD values observed for the QM/MB-pol and QM/MB-DFT

schemes relative to QM/AMOEBA14 is attributed to the ability of the PIPs adopted by the explicit

many-body models to account for short-range quantum-mechanical effects (e.g., charge transfer

and penetration) which cannot be quantitatively recovered by the purely classical expressions

used in the QM/AMOEBA14 scheme. QM/MB-pol, which employs PIPs specifically fitted to

account for the difference in 2B energies between the 2B CCSD(T) reference energies and the

classical components of the 2B MB-pol energies, shows the smallest RMSD relative to CCSD(T).

Correspondingly, QM/MB-DFT, which uses the same PIPs as MB-pol but fitted to PBE0-D3

2B reference energies, shows the smallest QM/MM RMSD relative to PBE0-D3. These results,

which hold for both the fully and partially self-consistent schemes, suggest that, respective to

their references, the PIPs fitted to CCSD(T) and PBE0-D3 are able to compensate, at least in

part, for the differences between the actual quantum-mechanical 2B energies (ε2B in Eq. 4) and

the corresponding classical 2B terms (i.e., Eelec and Edisp in Eq. 4), even for distorted dimer

configurations.

It is particularly interesting to note that the psc-QM/MB-pol and QM/MB-DFT exhibit

lower RMSDs than their fully-consistent counterparts. This apparently counterintuitive result

can be understood by considering that the partially self-consistent QM/MM scheme may benefit

from a more “MM-like” representation of the QM/MM electrostatics, as part of the QM/MM

polarization is evaluated using the MM functional form. Specifically, in the psc-QM/MB-MM, the
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MB-MM region gets back-polarized by the polarized QM point charges, instead of the electron

density as in the fully self-consistent QM/MB-MM scheme, which makes part of the QM/MM

polarization more similar to that of the MM model. As a result, this more MM-like treatment of

the QM/MM electrostatics within the psc-QM/MM scheme is, by construction, more compatible

with the PIPs of the MB-pol and MB-DFT models which were fitted to the differences between the

2B CCSD(T) and PBE0-D3 energies, respectively, and the classical electrostatic and dispersion

terms.

3.3.3 QM/MM partitions for the water hexamer

With the the two previous sections focusing on dimer configurations, which report at most

on 2-body contributions to the interaction energies, in this section we examine the ability of the

QM/MB-MM scheme to reproduce the energetics of the water hexamer isomers. Here, it should

be emphasized that as MB-pol and MB-DFT were explicitly trained only up to the 3B energy, they

do not have any prior knowledge of systems containing more than 3 water molecules.[37, 38, 61]

While the analysis described in the following will specifically focus on the prism isomer,

which is the lowest-energy isomer of the water hexamer,[137] analogous analyses for other low-

lying isomers are reported in the Supporting Information. Starting with the cluster containing one

water molecule in the QM region, water molecules are successively included in the QM region

until a total of five water molecules are placed in the QM region. As water molecules are added,

one at a time, all possible QM/MM partitions are examined. This analysis thus examines the

effects of adding (subtracting) water molecules to (from) the QM region, as it might happen during

adaptive QM/MM simulations in solution. The interaction energies calculated for the different

QM/MM partitions as a function of number of water molecules in the QM region are shown in

Fig. 3.3 where they are compared with the corresponding MB-pol and PBE0-D3 values. Within

each column of Fig. 3.3, the QM/MM partitions keep the number of QM and MM molecules

constant but permute the QM and MM indices, which allow us to assess the performance of the
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QM/MB-pol and QM/MB-DFT schemes depending on all possible spatial arrangements of the

QM and MM water molecules within the prism cluster.

With one water in the QM region, the interaction energies calculated for the different

QM/MM partitions using both the fully and partially self-consistent QM/MB-pol schemes lie,

Figure 3.3: Interaction energies of the prism isomer (isomer 1 in Ref. 1) of the water hexamer
calculated using QM/MB-pol and QM/MB-DFT for all possible QM/MM partitions involving
1 to 5 water molecules in the QM region using fully self-consistent (fsc) and partially self-
consistent (psc) cross-polarization between the QM and MM regions. The grey line is the
MB-pol reference energy and the blue line is the PBE0-D3 reference energy. The numbers at
the top of each column determine the number of water molecules in the QM and MM regions
(num QM / num MM).
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on average, within ∼1.5 kcal/mol of the reference MB-pol energies, with only one partition of

the psc-QM/MB-pol scheme displaying a deviation of ∼2.3 kcal/mol. Successively including

one water to the QM region linearly shifts the distribution of QM/MB-pol energies towards

the QM value. When the QM/MM partition contains five water molecules in the QM region,

the QM/MB-pol energies lie within 0.6 and 1.5 kcal/mol of the PBE0-D3 value for the fsc-

QM/MB-pol and psc-QM/MB-pol schemes, respectively. On the other hand, fsc-QM/MB-DFT

and psc-QM/MB-DFT calculations for the partition with one water molecule in the QM region

predict interaction energies that are within 1.0 and 2.0 kcal/mol, respectively, of the reference

PBE0-D3 value. The successive addition of water molecules results in fsc-QM/MB-DFT and

psc-QM/MB-DFT interaction energies that are within 1.5 and 1.3 kcal/mol, respectively, of the

PBE0-D3 reference value for the partition containing five water molecules in the QM region.

The largest deviations (up to 2.25 kcal/mol for fsc-QM/MB-DFT and up to 3.54 kcal/mol for

psc-QM/MB-DFT) relative to the PBE0-D3 value are found for the symmetric partition with

three water molecules in both the QM and MM regions. Furthermore, independently of using

the partially or fully self-consistent schemes, the largest deviations in the distributions of both

QM/MB-pol and QM/MB-DFT interaction energies are associated with configurations in which

the QM water molecule is a double hydrogen-bond acceptor from two MM water molecules. This

is consistent with the results in Section 3.3.1 where the case of the MM donor (QM acceptor)

displays the largest error in the scan of the water dimer potential energy surface.

Compared to the QM/MB-pol interaction energies, which are increasingly weighted

towards the PBE0-D3 reference value as the number of water molecules in the QM region

increases, the QM/MB-DFT results remain relatively close to the PBE0-D3 reference value,

independently of how the water molecules are partitioned in the QM and MM regions. The

different trend found for interaction energies calculated with QM/MB-pol and QM/MB-DFT as a

function of the number of water molecules in the QM region can be explained by considering

that the only differences between the MB-pol and MB-DFT potential energy functions derive
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from the differences in the corresponding 2B and 3B PIPs. Since the MB-pol PIPs were fitted

to CCSD(T)/CBS 2B and 3B energies, this implies that, when the QM/MM partition includes

only one water molecule in the QM region, all possible 2B and 3B energies within the hexamer

contains contributions from the corresponding MB-pol PIPs. In the opposite limit, when five

water molecules are placed in the QM region, only 6 out of 15 2B energies and 10 out of 20 3B

energies include contributions from the corresponding MB-pol PIPs. As a result, the QM/MB-pol

interaction energy approaches the PBE0-D3 reference value as the number of water molecules in

the QM region increases because the contributions from the MB-pol PIPs become progressively

smaller. In contrast, since the MB-DFT PIPs were fitted to PBE0-D3 2B and 3B energies, all

possible 2B and 3B contributions to the QM/MB-DFT interaction energy, independently of the

QM/MM partition, are effectively described at the PBE0-D3 level (either through actual PBE0-D3

calculations in the QM region or through the MB-DFT PIPs in the MM region). As a result, the

QM/MB-DFT interaction energies remain relatively close to the PBE0-D3 reference value for

all different partitions, that the QM/MB-DFT scheme enables smooth transitions between QM

regions described by an arbitrary DFT model and MM regions described by the corresponding

MB-DFT potential energy function, which is particularly appealing for QM/MM simulations in

solution.

Fig. 3.3 shows that, while the psc-QM/MB-pol and psc-QM/MB-DFT scheme displayed

smaller RMSDs than the corresponding fully self-consistent schemes for energetics of water

dimers (Fig. 3.2), they predict wider spread than the corresponding fully self-consistent schemes

in the interaction energies of the prism hexamer, depending on the spatial arrangements of the

water molecules in the QM and MM regions. In particular, the psc-QM/MB-pol and psc-QM/MB-

DFT calculations predict the largest spread of 4.5 kcal/mol for the symmetric QM/MM partition,

with 3 water molecules in both QM and MM regions, which must be compared with a spread

of ∼1.5 kcal/mol predicted by the corresponding fully self-consistent schemes. This symmetric

QM/MM partition contains the largest number of different spatial arrangements of the QM and
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MM molecules, resulting in 20 total permutations, as well as the largest number of 2B (9) and 3B

(18) QM/MM energies. The large number of 2B and 3B QM/MM interactions serves to amplify

possible inaccuracies of the 2B and 3B PIPs as even relatively small errors in the description of

individual 2B and 3B energies add up, resulting in larger total errors and, consequently, wider

spreads for interaction energies calculated for different QM/MM partitions. Importantly, as shown

in Figs. S10 and S11 of the Supporting Information, both psc-QM/MB-DFT and fsc-QM/MB-

DFT are able to reproduce, on average, the interaction energies and relative stabilities of the

water hexamers predicted by PBE0-D3, independently of the QM/MM partition. This suggests

that, when employed in adaptive QM/MM simulations, QM/MB-DFT would correctly sample the

same water configurations as in fully QM simulations.

The analysis reported in Fig. 3.3 underscores the importance of many-body polarization

effects in QM/MM calculations. In particular, the relatively wider spreads associated, on average,

with interaction energies of the water hexamer calculated with the psc-QM/MB-pol and psc-

QM/MB-DFT schemes are due to the neglect of fully self-consistent polarization effects between

the QM and MM regions, which are included in the corresponding fsc-QM/MB-pol and fsc-

QM/MB-DFT schemes. These findings are further underscored by observing that both fully and

partially self-consistent polarization schemes predict similar spreads of the interaction energies for

the two limiting QM/MM partitions, with 1 and 5 water molecules in the QM region, respectively,

which correspond to the two QM/MM partitions with the smallest contributions from mutual

polarization between the QM and MM regions.

3.4 Conclusions

We presented here a new development in QM/MM, integrating the MB-pol and MB-DFT

models into a polarizable embedding, allowing the dipoles in the MM region to self-consistently

equilibrate with the density in the QM region. On top of this embedding, the PIPs used in MB-pol
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and MB-DFT, which are fitted to recover the CCSD(T) and PBE0-D3 energies at the 2B and 3B

levels, are incorporated into the QM/MM interaction. We show that use of both QM/MB-pol and

QM/MB-DFT increases the overall accuracy of the QM/MM interaction, as the PIPs account for

the leading order dispersion and repulsion energies. Using both partially and fully self consistent

mutual polarization between the QM and MM region, we show that a fully self consistent scheme

is required to fully capture the polarization effects in larger and more complex water clusters.

More importantly, we demonstrate a consistent treatment between QM and MM regions. Using

MB-DFT, the MM region can be represented at the same level of accuracy as an arbitrary DFT

functional used in the QM region. In our case, using PBE0-D3 as the functional of choice, we

can consistently represent an entire QM/MM system, with the pure MM, QM, and QM/MM

interactions at the PBE0-D3 level of theory. As demonstrated in our analysis of the water hexamer,

this consistent scheme mitigates the change in energy when a molecule is added to or removed

from the QM region, as might happen during an adaptive QM/MM simulation. The QM/MB-DFT

scheme offers the advantage that, since both QM and MM components as well as the QM/MM

interaction are treated at the same level of accuracy, the need for a transition layer is reduced

or eliminated, though it should be noted that some levels of QM theory do not have analytical

gradients, and can thus become prohibitively expensive for dynamical QM/MM simulations. In

more succinct terms, this approach can be thought of as treating the entire system under the same

”effective” Hamiltonian, with different, but numerically equivalent representations for the QM

and MM components.
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Analyses of the interaction energies of eight low-lying isomers of the water hexamer

calculated using different QM/MM partitions.
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Chapter 4

General many-body framework for

data-driven potentials with arbitrary

quantum mechanical accuracy: Water as a

case study

We present a general framework for the development of data-driven many-body (MB)

potential energy functions (MB-QM PEFs) that represent the interactions between small molecules

at an arbitrary quantum-mechanical (QM) level of theory. As a demonstration, a family of MB-QM

PEFs for water are rigorously derived from density functionals belonging to different rungs across

Jacob’s ladder of approximations within density functional theory (MB-DFT) as well as from

Møller-Plesset perturbation theory (MB-MP2). Through a systematic analysis of individual many-

body contributions to the interaction energies of water clusters, we demonstrate that all MB-QM

PEFs preserve the same accuracy as the corresponding ab initio calculations, with the exception

of those derived from density functionals within the generalized gradient approximation (GGA).

The differences between the DFT and MB-DFT results are traced back to density-driven errors
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that prevent GGA functionals from accurately representing the underlying molecular interactions

for different cluster sizes and hydrogen-bonding arrangements. We show that this shortcoming

may be overcome, within the many-body formalism, by using density-corrected functionals

that provide a more consistent representation of each individual many-body contribution. This

is demonstrated through the development of a MB-DFT PEF derived from density-corrected

PBE-D3 data, which more accurately reproduce the corresponding ab initio results.

4.1 Introduction

Molecular mechanics (MM) models, with tunable parameters, are the workhorse of

computer simulations. While the earliest MM models were parameterized using simple point-

charge and pairwise potentials to reproduce experimental observables, recent MM models are

constructed with first-principles approaches using parameters derived from high level ab initio

reference data. Polarizable force fields (FFs)[72, 197, 272] and machine learning (ML) models[19–

29] have now taken the center stage as the models of choice for molecular dynamics (MD) and

Monte Carlo (MC) simulations.

Among ML models, neural networks (NNs) have become increasingly popular in com-

putational molecular sciences. Atomistic NNs describe the target multidimensional potential

energy surface (PES) using a set of descriptors that represent the immediate local environment

around each atom.[19, 20, 23, 24] NN models rely on using regression algorithms to train flexible

potential energy functions (PEFs) on large sets of reference data that are calculated at the highest

level of theory compatible with the system’s size and complexity.[19, 20, 23, 24, 273–275] While

the restrictions on the functional forms used to represent the target PES are somewhat loose,

ML models must satisfy rotational, translational, and permutational invariance, and must be able

to uniquely describe a molecular configuration.[19, 20, 24, 65, 276–281] Some ML models are

trained on gas-phase reference data and, while useful for studying individual molecules and small
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clusters, are not adequate to accurately describe systems in the condensed phase where long-range

many-body effects may play important roles.[282] On the other hand, since gas-phase reference

data are generated for small systems, they are not only relatively cheap and fast to calculate,

but can also be computed using higher levels of theory compared to models trained on large

condensed-phase systems.[27] For small molecules the reference data are usually calculated using

coupled cluster (CC) theory, including single, double, and perturbative triple excitations, i.e.,

CCSD(T), often in the complete basis set (CBS) limit, currently the “gold standard” for molec-

ular interactions. Towards this end, some ML approaches, which include ∆-machine learning

procedures applied to permutationally invariant polynomials (PIPs),[65] allow for a ML model

to be trained to an effective higher level of theory by training a correction to a core potential

generated at a lower level of theory, using a sparser number of higher-level data points.[283, 284]

ML approaches based on NNs and PIPs have also been developed to model chemical reactions in

the gas-phase and at solid surfaces.[277–280, 285–289] In order to implicitly include many-body

effects, some ML models are trained on entire sets of condensed-phase configurations, which

are expensive to generate and must consequently use a lower level of theory, commonly density

functional theory (DFT), for the reference data.[15, 31, 290]

An alternative way to represent condensed-phase systems using ML approaches is to

adopt a hybrid data-driven/physics-based scheme where a data-driven model, which captures

(short-range) quantum-mechanical interactions, is integrated with a physics-based model of

many-body interactions, which are represented by classical expressions.[291–293] Examples

of hybrid data-driven/physics-based models are the MB-pol and related MB-nrg PEFs that are

able to accurately predict the properties of water[1, 37–39] and various aqueous systems[179–

181, 183–187], as well as molecular fluids,[62, 63] from the gas to condensed phases. Both

MB-pol and MB-nrg PEFs are rigorously derived from the many-body expansion (MBE) of the

energy and use PIPs[65] to capture short-range quantum-mechanical effects arising from the

overlap of the electron densities of individual monomers (e.g., Pauli repulsion, and charge transfer
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and penetration), which are missing in conventional force fields. The MB-DFT PEFs generalize

the MBE formalism adopted to develop the MB-pol PEF of water by replacing the 2-body (2B)

and 3-body (3B) terms, which were originally calculated at the CCSD(T)/CBS level of theory,

with corresponding terms calculated using an arbitrary density functional.[61] It has been shown

that the MB-DFT PEFs closely reproduce the structural properties of liquid water calculated from

fully ab initio MD simulations carried out with the same density functional.[61]

The MB-DFT family of hybrid data-driven/physics-based PEFs is particularly appealing

for quantum mechanics/molecular mechanics (QM/MM) simulations of systems that are either too

computationally expensive to be treated at a fully quantum-mechanical (QM) level or cannot be

described using molecular mechanics (MM) models since they involve rearrangements of chemical

bonds. Likewise, while ML approaches can, by construction, model bond rearrangements, their

behavior is highly dependent on the composition the datasets and level of theory used in the

training process. In principle, these problems do not affect QM/MM simulations where the

total system is divided into a smaller QM subsystem, which includes all molecular species that

are involved in the chemical transformation, and a MM region, which describes environmental

effects.[193, 194] However, conventional QM/MM approaches suffer from energy discontinuities

at the boundary between the QM and the MM region which appear due to the different accuracy

of the QM and MM models in representing the underlying molecular interactions. Another

shortcoming of conventional QM/MM calculations arises when they are applied to studying

chemical reactions in solutions where, due to diffusion, molecules initially assigned to the MM

region may enter the QM region and, vice versa, molecules initially assigned to the QM region

may enter the MM region during the MD simulation. To overcome this problem, several adaptive

QM/MM schemes have been proposed where the QM region is dynamically repartitioned at every

MD step in order to prevent diffusive breakup. This is generally accomplished by introducing

transition layers that smooth over the QM/MM boundary discontinuity.[34, 235, 236, 236–239,

239–254] This suggests that “elevating” the accuracy of the MM model to the same level as the
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QM model would effectively remove these discontinuities and significantly improve the realism

and predictive power of QM/MM calculations.[294]

In this context, pure ML models of the MM region do not lend themselves well to QM/MM

simulations since point charges must, at least, be assigned to the MM atoms to capture Coulombic

interactions between the MM region and the QM electronic density through a minimal electrostatic

embedding scheme.[295] In contrast, MB-DFT PEFs[61] and other polarizable models like

AMOEBA[54, 58] can directly couple to the QM region using a polarizable embedding scheme

which allows the environment to dynamically respond to the QM density via the polarization

of inducible multipole moments on the MM atoms.[205–213, 294] In principle, when used in

QM/MM calculations, the MB-DFT PEFs can not only elevate the accuracy of the MM region

to be consistent with that of the QM region but, by construction, their 2B and 3B PIPs help

recover quantum-mechanical effects in the QM/MM interaction which are missing in QM/MM

calculations with conventional (either polarizable or nonpolarizable) force fields, thus allowing

the entire QM/MM system to be consistently treated at the same level of theory.[294] However, in

the case of water, the original MB-DFT PEFs[180] were built upon the same Thole-type scheme

adopted by MB-pol to represent permanent electrostatics and polarization derived from high-level

QM calculations,[37–39] which implies that they are not able to strictly reproduce many-body

energies calculated ab initio using the corresponding DFT models. This is a problem in QM/MM

calculations in water where the MM region is described by a MB-DFT PEF and the QM region

by the corresponding DFT model because the associated QM/MM electrostatic interactions

may be substantially different from those predicted by the original MB-pol electrostatic model

underlying the MB-DFT PEFs, which results in an unbalanced representation of short-range

many-body effects between the QM and MM regions.[294] This problem is particularly evident

in configurations with strong polarization. For example, we observed that when the hydrogen-

bond donor in the water dimer is assigned to the QM region described by a DFT model and

the hydrogen-bond acceptor is described by the corresponding MB-DFT PEF, the underlying
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QM/MM electrostatic interactions are very similar to the pure MM electrostatic interactions

provided by the MB-DFT PEF. This allows the 2B and 3B PIPs of the MB-DFT PEFs to correctly

recover the reference QM energy of the water dimer. In contrast, when the QM/MM partition

is flipped such that the hydrogen-bond donor is assigned to the MM region represented by the

MB-DFT PEF, the QM/MM electrostatic interactions become appreciably different from the

pure MM electrostatic interactions provided by the MB-DFT PEF, which prevents the PIPs of

the MB-DFT PEFs from correctly recovering the ab initio DFT energy.[294] Furthermore, the

higher-body nB terms (n ≥ 4) of the MB-DFT PEFs are fully described by the polarization term

of MB-pol, which implies that they are identical in all MB-DFT PEFs, regardless to which density

functional a particular MB-DFT PEF is derived from.[61] As a consequence, if a given density

functional displays sufficiently different polarization effects from those represented by MB-pol,

the original MB-DFT PEFs[61] are not able to correctly reproduce higher-body nB interactions

(n ≥ 4) provided by that density functional. Finally, the 1B term of the original MB-DFT PEFs for

water, which describes the intramolecular distortions in an isolated water molecule, is represented

by the same Partridge-Schwenke PEF[64] used in MB-pol[37–39], which was derived from

high-level QM calculations and further refined to reproduce the rovibrational transitions of an

isolated water molecule in the gas phase. This implies that the intramolecular distortion energies

in the original MB-DFT PEFs do not properly reproduce the corresponding DFT 1B energies.[61]

In this study, we introduce an efficient theoretical/computational framework for the

development of MB-QM PEFs that consistently reproduce each individual many-body energy

contribution calculated ab initio using the corresponding QM model. While MB-QM PEFs can

be developed for generic (small) molecular fluids at an arbitrary QM level of theory, the present

study focuses on MB-QM PEFs for water derived from ab initio data calculated using various

density functionals belonging to different rungs across the Jacob’s ladder of DFT approximations

as well as from second-order Møller-Plesset (MP2) perturbation theory. While these MB-QM

PEFs are intended for use in future QM/MM simulations, this first study focuses on the theoretical
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details and assessment of the accuracy of the MB-QM PEFs through a systematic analysis of the

energetics of small water clusters. By analyzing each many-body contribution to the interaction

energies, we find that density functionals derived within the generalized gradient approximation

(GGA) and hybrid density functionals suffer from relatively large density-driven errors. This

leads to the over-delocalization of the electron density which, in turn, results in (unphysically)

larger higher-body energies whose magnitude cannot correctly be captured by the purely classical,

many-body polarization term adopted by the MB-DFT PEFs. We show that, within the theoretical

framework based on the many-body formalism that is introduced here, it is possible to develop

density-corrected MB-DFT PEFs that remove, at least partially, these density-driven errors and

provide a more accurate description of individual many-body contributions to the interactions

between water molecules.

4.2 Theory

4.2.1 MB-QM

The MBE expresses the total energy, Etot , of an N-body system as the sum of individual

n-body energy contributions, εnB, where n ≤ N,[40]

Etot(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i< j

ε2B(ri,r j)+
N

∑
i< j<k

ε3B(ri,r j,rk)+ ...+ εNB(r1, ..,rN) (4.1)

Here, ε1B represents the energy of an isolated monomer, and the n-body energies are defined

recursively as

εnB = εn(1, ...,n)−
N

∑
i=1

ε1B(ri)−
N

∑
i< j

ε2B(ri,r j)−
N

∑
i< j<k<...<n−1

ε(n-1)B(ri,r j, ..rn−1). (4.2)
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It has been shown that the MBE converges quickly for systems with localized electron densities

and large band gaps. For example, the sum of 2B and 3B energies contributes to ∼96-99% of the

total interaction energy in water.[40, 170, 296–301] Exploiting the fast convergence of the MBE,

several many-body PEFs for water[37–39, 45, 127] and other molecular fluids[62, 63, 302, 303]

have been derived from high-level QM data. In this study, we generalize the many-body formalism

originally adopted by the MB-pol PEF[37–39] to the development of many-body PEFs for generic

(small) molecules at an arbitrary QM level of theory. As examples, we introduce several MB-DFT

PEFs for water derived from various density functionals belonging to different rungs across

the Jacob’s ladder of DFT approximations (MB-DFT) as well as from MP2 perturbation theory

(MB-MP2).

Briefly, the MB-QM PEFs approximate eq 6.4 to the sum of explicit 1B, 2B, and 3B terms

along with a polarization term implicitly representing classical many-body interactions:

Etot(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i> j

ε2B(ri,r j)+
N

∑
i> j>k

ε3B(ri,r j,rk)+Epol (4.3)

Each term of eq 5.8 is fitted to reproduce the corresponding ab initio data calculated at the same

QM level of theory. Specifically, the 1B term is represented by a PIP[65] that accurately describes

intramolecular distortions. The 2B term incorporates three different energy contributions:

ε2B = Esr
2B +Eelec +Edisp (4.4)

where Esr
2B describes short-range 2B interactions and is represented by a 4th-degree PIP.[37, 61]

Eelec represents permanent electrostatics between point charges that reproduce the ab initio dipole

moment of an isolated molecule. Following ref 294, in the MB-QM PEFs for water introduced

here, the point charges are kept fixed to the values that reproduce the dipole moment of a water

molecule in its equilibrium geometry. However, the present MB-QM scheme is general and

allows for using geometry-dependent charges if deemed necessary for achieving higher accuracy.
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The last term in eq 5.9, Edisp, describes the 2B dispersion energy that is expressed as

Edisp =−∑
i, j

f (δi j)
C6,i j

R6
i j

(4.5)

where f (δi j) is the Tang-Toennies damping function[66], i and j are atom indices on two separate

water monomers, and C6,i j are the dispersion coefficients. The 3B term of the MB-QM PEFs

describes short-range 3-body interactions and, as in the case of ε2B, is represented by a 4th-degree

PIP,

ε3B = Esr
3B. (4.6)

4.2.2 Density-corrected DFT

The Kohn-Sham theory allows for minimizing the exchange-correlation (XC) functional

given by[13]

F [n] = TS[n]+EH[n]+EXC[n]. (4.7)

where n(r) is the ground-state density of the system, TS is the non-interacting kinetic energy, and

EH and EXC define Hartree and exchange-correlation energies, respectively. The exact F [n] gives

rise to derivative discontinuities for total energies at integer values of the number of electrons

(N),[304] a feature that is missing in GGA and hybrid GGA density functionals which, by

construction, provide smooth functions of N. As a consequence, the derivatives of these density

functionals are inaccurate,[304] which results in an incorrect Kohn-Sham potential and, in turn,

poor orbital energies. As the potential generated by these density functionals show a constant

shift with respect to the exact potential, these errors do not affect the density. Unsurprisingly, for

this reason, most density functionals engender accurate electron densities, which suggests that

DFT errors are primarily functional-driven rather than density-driven. In this regard, it should,

however, be noted that density functionals constructed in unconstrained forms may give rise to

unphysical electron densities despite providing a good representation of the energies.[305]
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Probably the most significant contributor to density-driven errors is the self-interaction

error (SIE). In wavefunction theory, Coulomb interactions are incorporated as pairwise two-

electron potentials, where an electron does not interact with itself. However, in Kohn-Sham

theory, since the energy is a functional of the one-electron density, it is impossible to remove the

interaction of the electrons with themselves as each electron interacts with the entire density. As

a consequence, most density functionals are unable to satisfy the following conditions for the

one-electron system,[306]

Ts =
∫

d3r
|∇n|2

8n
, EX =−EH, EC = 0. (4.8)

where EX and EC are the exchange and correlation energies. The inability to satisfy eq 4.8 gives

rise to the SIE. Although for many-electron systems the self-interaction energy can be formally

defined as the sum of the energies of each orbital interacting with itself,[307] correcting for the

SIE has been found not to be straightforward.[308] For hybrid density functionals, mixing a

fraction of Hartree-Fock exchange with the XC functional leads to incomplete cancellation of the

SIE, thus giving rise to smaller density-driven errors compared to pure functionals.[309–311]

Besides the SIE, another contributor to density-driven errors is the delocalization error,

which is a many-electron effect resulting in unphysical delocalization of the electrons and low

energies for the delocalized electrons.[308, 312–314]

One possible workaround to minimize DFT density-driven errors is the use of an accurate

electron density. However, this effectively makes the minimization of density-driven errors

impractical because finding a highly accurate electron density is more expensive than the DFT

calculation itself. In this context, with the absence of derivative discontinuities in the energy

provided by the GGA functionals, the use of the Hartree-Fock density, nHF, in the orbital-

dependent functionals is free from density-driven errors[306] and makes the overall computational
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cost of the density-corrected energy, EDC−DFT, similar to that of the original DFT energy,

EDC−DFT ≈ EHF +
(
ẼXC

[
nHF]−EHF

X
)

(4.9)

Although approximate, using the Hartree-Fock density, nHF, to calculate EDC−DFT in a non-

self-consistent way has been shown to minimize density-driven errors in DFT calculations of

various properties (e.g., electron affinities,[315] noncovalent interactions,[316–319] spin gaps

for coordination compounds[319]) with minimal additional computational cost. It should be

noted that other approaches have also been proposed in the literature to correct the SIE in DFT

calculations.[320, 321]

4.3 Computational details

All MB-DFT PEFs were fitted to ab initio data calculated with GGA density functionals

(BLYP[322, 323] and PBE[324] belonging to rung 2 functionals), meta-GGA density functionals

(B97M-rV[325] belonging to rung 3 functionals), hybrid density functionals (B3LYP,[323, 326]

PBE0,[327] and M06-2X,[328] belonging to rung 4 functionals) and range-separated density

functionals (ωB97M-V[329] belonging to rung 4 functionals). The empirical D3 correction was

added to all density functionals that do not account for dispersion energy.[330] Similarly, the

MB-MP2 PEF was derived from the corresponding data calculated at the MP2 level of theory.

Both DFT and MP2 calculations were carried out with the aug-cc-pVQZ basis set[166, 266] using

Q-Chem[331] and ORCA[332] quantum chemistry packages. The Euler-Maclaurin-Lebedev

(99,590) grid[333, 334] was used in all DFT calculations to minimize possible grid errors since it

has been shown that the accuracy of more recent density functionals are particularly sensitive to

the choice of the integration grid.[335]

The 1B, 2B, and 3B training sets used in the development of each MB-DFT and MB-MP2

PEF comprise 5000 monomers, 42508 dimers, and 12347 trimers, respectively. The 1B training
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set was generated using in-house software following the same procedure described in previous

studies,[62, 63] while we used the same 2B and 3B training sets used in the development of the

MB-pol PEF.[37, 38]

The dipole polarizabilities for the free O and H atoms were computed at the corresponding

DFT and MP2 levels of theory. The effective polarizabilities used in the MB-DFT and MB-MP2

PEFs were calculated as:

αe f f = α f ree

(
Ve f f

Vf ree

)4/3

(4.10)

where Ve f f and Vf ree are the effective and free volumes of the O and H atoms in H2O calculated via

the XDM model[336–338] as implemented in Q-Chem.[339] The atomic charges were calculated

using the CM5 method[340] and then distributed on the actual sites representing the MB-QM H2O

molecule (i.e., the fictitious site along the bisector of the HOH angle and the two H atoms)[37]

according to the procedure described in ref 51.

All the density-corrected DFT calculations were performed in two steps, where a fully

self-consistent Hartree-Fock calculation was performed prior to a single non-self-consistent DFT

calculation where the orbitals of the HF calculation were used to generate the DFT density.

In the analysis of the energetics of the water clusters presented in section 4.4, the binding

energies are defined as

Ebind = Ecluster −nEH2O
opt (4.11)

where Ecluster is the total energy of n-molecule cluster and EH2O
opt is the energy of an isolated water

molecule in the optimized geometry. The corresponding interaction energies are defined as

Eint = Ecluster −∑
i

EH2O
i (4.12)

where Ecluster is the same total energy as in eq 4.11 and EH2O
i is the energy of the i-th water

molecule in the same geometry as in the cluster. All MP2 optimized geometries used in the
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analyses of the energetics of the water clusters are taken from ref 1.

4.4 Results and discussions

4.4.1 Many-body analysis of the MB-QM PEFs

In this section we analyze the ability of the MB-DFT and MB-MP2 PEFs to reproduce

results obtained from ab initio calculations carried out at the corresponding QM level of theory.

Correlation plots between the 2B and 3B energies calculated with the different QM methods

and the corresponding values obtained with the MB-QM PEFs are shown in Figures 4.1 and

4.2, respectively. Analogous correlation plots for the 1B energies are included in the Supporting

Information.

Independently of the QM level of theory, the MB-QM PEFs are able to quantitatively

reproduce the 1B, 2B, and 3B reference energies, with RMSDs of ∼0.08, ∼0.12, and ∼0.03

kcal/mol respectively. In the case of the 2B and 3B energies, the high correlation between the QM

data and the corresponding MB-QM values indicates that the 4th-degree PIPs used to supplement

the representation of short-range 2B and 3B interactions in the MB-QM PEFs are sufficiently

flexible to “capture” quantum-mechanical contributions (e.g., Pauli repulsion, charge transfer

and penetration) which, arising from the overlap of the monomers’ electron densities, cannot be

quantitatively represented by classical expressions commonly used in conventional force fields.
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Figure 4.1: Correlation plots between the 2B QM reference energies and the values obtained
with the corresponding MB-QM PEFs calculated for the 42508 configurations of the 2B training
set.

Figure 4.2: Correlation plots between the 3B QM reference energies and the values obtained
with the corresponding MB-QM PEFs calculated for the 12347 configurations of the 3B training
set.
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As discussed in previous studies,[1, 72] the analysis of individual many-body contributions

to the interaction energies of small water clusters allows for an overall assessment of the accuracy

of a given water model. In this context, it should be emphasized that, since the MB-QM PEFs are

trained on data that contain information only up to 3B term of the MBE, they do not have any prior

knowledge of systems containing more than three water molecules. Figure 4.3 displays the MB-

QM errors relative to the corresponding QM values for each individual many-body contribution

(i.e., from 2B to 6B energies) to the interaction energy of the prism isomer that corresponds to the

minimum-energy isomer of the water hexamer.[137, 341–343] While the corresponding analyses

for the first eight low-energy hexamer isomers are reported in the Supporting Information, Table

4.1 lists the MB-DFT and MB-MP2 errors for each individual nB energy averaged over all eight

isomers. As discussed in section 4.3, since the interaction energies, by definition, remove all

contributions due to monomer distortions, the present many-body analysis allows for a direct

and quantitative comparison of the MB-DFT and MB-MP2 PEFs in their ability to reproduce the

corresponding QM nB contributions to the interaction energy.

Figure 4.3 shows that the absolute magnitude of the 2B and 3B errors associated with the
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Figure 4.3: Errors in individual many-body energies, nB, associated with the MB-QM PEFs
relative to the corresponding QM reference values for the prism isomer of the water hexamer.
The MP2 optimized geometry of the prism isomer is from ref 1.
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MB-QM PEFs range between 0.1 and 0.3 kcal/mol, with the MB-DFT PEFs fitted to M06-2X-D3

and BLYP-D3 data displaying the largest 2B errors. The overall low errors for the 2B and 3B

energies are consistent with the low RMSDs reported in Figures 4.1 and 4.2. In the case of

M06-2X-D3, relatively larger errors are not only associated with the 3B term but are also found

at the 4B and 5B levels, as discussed in more detail in ref 72. The large average 3B error (0.7

kcal/mol) associated with M06-2X-D3 can be explained by considering that the water hexamer

contains 20 distinct trimers and M06-2X-D3 displays the largest 3B RMSD of 0.035 kcal/mol

(Figure 4.2). It should be noted that, although similar trends are also found for the other isomers

as shown in Figures S3 - S10 of the Supporting Information, the more planar hexamer isomers

(i.e., the book, boat, and chair isomers) display significantly larger 2B and 3B errors compared to

the three-dimensional isomers (i.e., the prism and cage isomers). This difference is primarily due

to error accumulation in the highly symmetric planar isomers, where repeated dimer and trimer

subunits contribute many-body energies with same signed errors, resulting in the total error to

add up.

As shown in Table 4.1, the average 4B error is disproportionately large relative to the

magnitude of the total error for all MB-QM PEFs, except those derived from B3LYP-D3 and MP2

data. The largest 4B error (1.07 kcal/mol) is associated with the MB-DFT PEF fitted to PBE-D3

Table 4.1: Average errors associated with the QM methods considered in this study relative to
the reference QM values calculated for the first low-energy isomers of the water hexamers. The
MP2 optimized geometries of the water hexamer isomers are from ref 1.

∆ENB
avg (kcal/mol)

Method 2B 3B 4B 5B 6B Total
BLYP-D3 0.19 0.08 0.45 0.06 0.00 0.79
B3LYP-D3 0.36 0.08 0.24 0.03 0.01 0.72
PBE-D3 0.46 0.07 1.07 -0.06 0.02 1.57
PBE0-D3 0.38 0.07 0.72 -0.03 0.01 1.16
M06-2X-D3 -0.10 0.70 0.67 -0.08 0.01 1.20
B97M-rV 0.27 0.07 0.56 -0.03 0.00 0.89
ωB97M-V 0.31 0.07 0.42 -0.00 0.00 0.81
MP2 0.35 -0.06 0.33 0.01 -0.01 0.62
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data. Importantly, despite 4B effects generally contributing less than 5% to the total interaction

energy in water clusters,[72, 170, 297, 298, 344, 345] the error in the 4B term accounts for most of

the total error associated with the MB-DFT PEFs. By construction (see section 4.2), 4B energies

in the MB-QM PEFs are represented completely by a classical many-body polarization term that is

expressed according to a modified Thole-type model.[53] Table I shows that MB-QM PEFs fitted

to ωB97M-V and MP2 data are associated with relatively small 4B errors, similar to those found

for MB-pol relative to CCSD(T)/CBS,[1] while large 4B errors are associated with MB-DFT

PEFs fitted to PBE-D3, PBE0-D3, and M06-2X-D3 data. Given the trend observed in the 4B

errors associated with MB-DFT PEFs fitted to density functionals belonging to different rungs

across the Jacob’s ladder of DFT approximations, we posit that the magnitude of the 4B errors

stems from density-driven errors (i.e., self-interaction and delocalization errors) which plague, to

various extent, all density functionals. As discussed in section 4.4, the electron self-repulsion

is explicitly non-local and should, in principle, be removed via the exchange-correlation energy.

In practice, most exchange-correlation functionals contain substantial local components and are

thus unable to correctly compensate for the interactions of the electrons with themselves. This

results in (unphysical) over-delocalization of the electron density in order to minimize the electron

self-repulsion. In turn, this over-delocalization of the electron density causes the higher-order

terms of the MBE to be (artificially) more quantum-mechanical in nature and, consequently, not

amenable to the purely classical representation based on many-body polarization which is adopted

by the MB-QM PEFs.

4.4.2 Density-driven errors in the DFT description of molecular interac-

tions in water

In this section we analyze density-driven errors in DFT models of water with a particular

focus on the dependence of these erorrs on both the rung of the density functional and the cluster

size.
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Interaction energies of water clusters

Our analysis indicates that common GGA functionals tend to overbind the water clusters,

likely due to the presence of relatively large density-driven errors (Figure S11 and S12). To test

this hypothesis, we use HF orbitals in non-self-consistent DFT calculations of the interaction and

many-body energies of water clusters, which was shown to reduce the impact of density-driven

errors.[346] Figure 4.4 shows the errors in the interaction energies (∆EDC
int ) calculated for various

water clusters, from the dimer to the hexamer, using both the self-consistent (SC) and density-

corrected (DC) versions of the GGA BLYP-D3 and PBE-D3 functionals, and corresponding

hybrid GGA B3LYP-D3 and PBE0-D3 functionals. For all clusters, PBE-D3 is found to be

the most susceptible to the density-driven errors. Independently of the density functional, the

density-driven error defined as ∆EDC
int = EDC

int −ESC
int increases from the dimer to the hexamer. In

particular, ∆EDC
int per molecule lies within 0.73 and 0.82 kcal/mol for BLYP-D3 and decreases

to 0.39-0.44 kcal/mol for B3LYP-D3,[323, 326] which contains 20% Hartree-Fock exchange

(Figure S13). A similar trend is found for the PBE-D3 and PBE0-D3 functionals, with the former

displaying ∆EDC
int per molecule between 0.93 and 1.06 kcal/mol, and the latter between 0.44 and

0.56 kcal/mol. It should be noted that PBE0-D3 contains 25% Hartree-Fock exchange.[327]

To assess the overall accuracy of the density-corrected functionals, Table 4.2 lists the

errors associated with each density-corrected functional relative to the CCSD(T)/CBS reference

values[1] for the interaction energies of the first eight low-energy isomers of the water hexamer.

For this analysis, the errors are defined as ∆ECCSD(T )
int =EDC

int −ECCSD(T )
int , where EDC

int and ECCSD(T )
int

are the interaction energies calculated with the density-corrected functionals and at CCSD(T)/CBS

level of theory, respectively. A large mean unsigned error (MUEs) of 4.91 kcal/mol is found for

BLYP-D3(DC), whereas PBE-D3(DC) and B3LYP-D3(DC) provide comparable MUEs of 2.56

kcal/mol and 2.05 kcal/mol, respectively. Despite being a hybrid functional as B3LYP-D3(DC),

PBE0-D3(DC) provides a much smaller MUE of 0.43 kcal/mol, which is comparable to that

found for M06-2X-D3(DC) (MUE = 0.42 kcal/mol) and ωB97M-V(DC) (MUE = 0.56 kcal/mol).
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Figure 4.4: Density-driven errors in the interaction energies of (H2O)n clusters, with n = 2−6,
associated with BLYP-D3, B3LYP-D3, PBE-D3, PBE0-D3 relative to the corresponding density-
corrected functionals. The errors are defined as ∆EDC

int = EDC
int −ESC

int , where EDC
int and ESC

int are
the interaction energies calculated with the density-corrected and self-consistent functionals,
respectively.

It should be noted that the hexamer isomers can be broadly classified in two distinct

groups, one containing three-dimensional structures, where each water molecule is involved in

three hydrogen bonds (i.e., the prism and cage isomers), and one containing two-dimensional

structures, where each water molecule is involved in two hydrogen bonds (i.e., the cyclic isomers),

with the book-type isomers being in between and sharing features that are common to both

groups. In this context, it is worth mentioning that, with the exception of BLYP-D3(DC) and

ωB97M-V(DC), all density-corrected functionals analyzed in this study exhibit significantly

lower accuracy for the three-dimensional isomers.
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Table 4.2: Errors (in kcal/mol) in interaction energies for the first eight low-energy isomers
of the water hexamer associated with the density-corrected functionals PBE-D3(DC), PBE0-
D3(DC), BLYP-D3(DC), B3LYP-D3(DC), M06-2X-D3(DC) and ωB97M-V(DC) relative to
the CCSD(T)/CBS reference values. The errors are defined as ∆ECCSD(T )

int = EDC
int −ECCSD(T )

int ,
where the reference ECCSD(T )

int values are taken from ref 1.

Isomer
PBE-D3 PBE0-D3 BLYP-D3 B3LYP-D3 M06-2X-D3 ωB97M-V

(DC) (DC) (DC) (DC) (DC) (DC)
Prism 3.76 1.05 5.44 2.82 -1.16 0.50
Cage 3.32 0.67 5.26 2.54 -0.66 0.73

Book1 2.55 -0.01 4.92 2.06 -0.21 0.65
Book2 2.51 -0.03 4.91 2.06 -0.12 0.68

Bag 2.48 -0.05 4.91 2.05 -0.20 0.58
Cyclic chair 1.97 -0.56 4.65 1.62 -0.40 0.42
Cyclic boat 1 1.92 -0.54 4.57 1.61 -0.32 0.45
Cyclic boat 2 1.98 -0.50 4.61 1.63 -0.33 0.43

MUE 2.56 0.43 4.91 2.05 0.42 0.56

Many body decomposition analysis

It has been shown that 2B and 3B effects contribute to 96-99% of the total interaction

energy in water,[41, 72, 297] which implies that the ability of a given water model to correctly

reproduce 2B and 3B energies mainly determines the accuracy with which the model is able to

describe the total interaction energy and relative stability of different water clusters.

Figure 4.5 shows the density-driven errors, ∆EDC
nB = EDC

nB −ESC
nB (n = 2−6), calculated for

each individual nB contribution to the interaction energies of the first eight low-energy isomers of

the water hexamer. Here, EDC
int and ESC

int are the interaction energies calculated with the density-

corrected and self-consistent functionals, respectively. Due to relatively large density-driven

errors, the MUE for ∆EDC
2B is 6.22 kcal/mol for PBE-D3 and 4.69 kcal/mol for BLYP-D3. Adding

a fraction of Hartree-Fock exchange systematically reduces these errors, with the corresponding

MUEs being 3.45 kcal/mol and 3.25 kcal/mol for PBE0-D3 and B3LYP-D3, respectively. More

recent functionals show significantly smaller errors, resulting in MUEs of 1.08 kcal/mol and 0.93

kcal/mol for M06-2X-D3 and ωB97M-V, respectively, which confirms that density-driven errors

are less severe for hybrid, meta-GGA and range-separated functionals.
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The analysis of ∆EDC
2B shown in Figure 4.5 also indicates that, at the 2B level, density-

driven errors tend to overbind the water clusters, as the 2B errors are positive for all density

functionals examined in this study. This is in agreement with similar results recently obtained

with the SCAN functional.[16] The trend in 3B density-driven errors is not as consistent as for the

2B errors. The largest MUE (0.47 kcal/mol) is found for M06-2X-D3, with the MUE for all other

density functionals ranging from 0.14 kcal/mol to 0.34 kcal/mol. Interestingly, with the exception

of the cyclic isomers, PBE-D3 and PBE0-D3 display negative ∆EDC
3B for all hexamer isomers,

which implies that 3B density-driven errors tend to underbind these clusters. Independently of the

cluster structure, all other density functionals display positive 3B density-driven errors, except

B3LYP-D3 that provide negative ∆EDC
3B for the prism and cage isomers.

The comparisons with the reference CCSD(T)/CBS n-body energies shown in Figure 4.6

indicate that the PBE0-D3(DC) and M06-2X-D3(DC) functionals provide the smallest MUE

at both 2B (0.27 kcal/mol and 0.65 kcal/mol, respectively) and 3B (0.27 kcal/mol and 0.53

kcal/mol, respectively) levels. Relatively large 2B errors are still found for the GGA functionals
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Figure 4.5: Errors in nB energies (n = 2−6) associated with PBE-D3, PBE0-D3, BLYP-D3,
B3LYP-D3, M06-2X-D3 and ωB97M-V relative to the corresponding density-corrected values
calculated for the first eight low-energy isomers of the water hexamer. Errors are defined
as ∆EDC

nB = EDC
nB −ESC

nB , where EDC
int and ESC

int are the interaction energies calculated with the
density-corrected and self-consistent functionals, respectively.
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(although significantly smaller than those associated with the corresponding self-consistent

density functionals), with MUEs of 2.77 kcal/mol and 6.47 kcal/mol for the PBE-D3(DC) and

BLYP-D3(DC) functionals, respectively. The 2B MUE for the ωB97M-V(DC) functional is 0.94

kcal/mol for the 2B. Interestingly, independently of the isomer structure, all density-corrected

functionals are associated with 2B and 3B errors of opposite signs relative to the CCSD(T)/CBS

reference values. This results in fortuitous error compensation between 2B and 3B energies

which, in turn, leads to apparently better agreement with the CCSD(T)/CBS total interactions

energies for all hexamer isomers. Considering that the density-corrected functionals provide an

approximate, yet reliable, representation of the interactions which is, at least, partially “free” of

density-driven errors, the remaining deviations from the CCSD(T)/CBS values are likely due to

inaccuracies in the density functionals, along with the localization errors associated with using

Hartree-Fock densities in DFT calculations.[347]
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Figure 4.6: Errors in nB energies (n = 2−6) associated with the density corrected PBE-D3(DC),
PBE0-D3(DC), BLYP-D3(DC), B3LYP-D3(DC), M06-2X-D3(DC) and ωB97M-V(DC) relative
to the corresponding CCSD(T)/CBS reference values[1] calculated for the first eight low-energy
isomers of the water hexamer. Errors are defined as ∆ECCSD(T )

nB = EDC
nB −ECCSD(T )

nB , where EDC
nB

and ECCSD(T )
nB are the nB energies calculated with the density-corrected functionals and at the

CCSD(T)/CBS level of theory,[1] respectively.
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Binding energies of the water hexamer isomers

Since the binding energies of all hexamer isomers lie within ∼1 kcal/mol, following

ref 16, we focus our attention to the prism, cage, book-2, and cyclic chair-2 isomers. Based

on the CCSD(T)/CBS reference values, the binding energies for these four hexamer isomers

follow this order: prism < cage < book-2 < cyclic chair-2, with the prism isomer being the

most strongly bound isomer. The energy difference between the prism and cyclic chair-2 isomers

is 0.88 kcal/mol at the CCSD(T)/CBS level. As shown in Figure 4.7a, the GGA functionals

largely overbind all hexamer isomers, with MUE from the reference CCSD(T)/CBS data being

5.19 kcal/mol and 2.15 kcal/mol for PBE-D3 and BLYP-D3, respectively. The hybrid GGA

functionals provides smaller MUE of 3.24 kcal/mol and 1.69 kcal/mol for PBE0-D3 and B3LYP-

D3, respectively. Importantly, all these functionals provide the incorrect energy ordering of

the isomers, predicting the cage isomer to be the most stable isomer. On the other hand, the

more recent functionals (i.e., M06-2X and ωB97M-V) predict the correct energy ordering, with

the ωB97M-V binding energies being very close to the reference CCSD(T)/CBS values, which

results in a MUE of 0.58 kcal/mol. The relatively large MUE of 2.71 kcal/mol associated with the

M06-2X-D3 functional is mainly due to this functional largely overbinding the prism and cage

isomers.

Figure 4.7b shows that the overbinding tendency associated with all self-consistent density

functionals is removed upon applying the density correction. Overall, the density-corrected

functionals provide binding energies that are in significantly closer agreement with the reference

CCSD(T)/CBS values, although they tend to slightly underbind all hexamer isomers, which may

be related to localization errors associated with using Hartree-Fock densities.[347] Specifically,

the density correction decreases the MUE associated with the PBE-D3 and PBE0-D3 functionals

to 1.72 kcal/mol and 0.81 kcal/mol, respectively. Relatively large MUE are still obtained with

the density-corrected BLYP-D3 (3.70 kcal/mol) and B3LYP-D3 (2.23 kcal/mol) functionals. As

for the corresponding self-consistent density functionals, none of the density-corrected PBE-D3,
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Figure 4.7: Binding energies of the prism, cage, book-2 and cyclic chair-2 isomers of the
water hexamer calculated with PBE-D3, PBE0-D3, BLYP-D3, B3LYP-D3, M06-2X-D3 and
ωB97M-V, along with the corresponding CCSD(T)/CBS reference values. Panels a) and b)
report binding energies calculated with the self-consistent and density-corrected functionals,
respectively.

PBE0-D3, BLYP-D3, and B3LYP-D3 functionals is able to reproduce the correct energy ordering

of the hexamer isomers, with all four density functionals predicting the cage isomer to be the

lowest-energy isomer.

Since hybrid, meta-GGA and range-separated functionals are less prone to density-driven

errors, the differences in binding energies calculated with the self-consistent and density-corrected

versions of M06-2X-D3 and ωB97M-V are significantly smaller than those obtained with the GGA

and hybrid GGA functionals. Specifically, the MUE associated with the density corrected M06-

2X-D3 and ωB97M-V functionals are 0.39 kcal/mol and 2.41 kcal/mol, respectively. Interestingly,

this analysis indicates that applying the density correction somewhat deteriorates the ability of

ωB97M-V to reproduce the CCSD(T)/CBS binding energies of the water hexamer isomers.

Density-corrected MB-DFT PEFs

To further investigate the effects of density-driven errors on the ability of density func-

tionals to reproduce many-body interactions in water, we developed a density-corrected MB-DFT
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PEF, dubbed MB-PBE(DC), which was trained on 1B, 2B, and 3B energies calculated with the

corresponding density-corrected PBE-D3(DC) functional. Due to the lack of a suitable machin-

ery for calculating atomic charges, polarizabilities and C6 coefficients using density-corrected

functionals, the corresponding PBE0-D3 values were used for these quantities, which seems to

be a good compromise as the presence of a fraction of Hartree-Fock exchange partially reduces

density-driven errors.

Figure 4.8 shows the errors associated with the MB-PBE and MB-PBE(DC) PEFs for

each individual many-body contribution to the interaction energies of the first eight low-energy

hexamer isomers relative to the corresponding values calculated with the self-consistent PBE-

D3 and density-corrected PBE-D3(DC) functionals, respectively. As the density-driven errors

are minimized in the MB-PBE(DC) PEF, the corresponding 4B energies, which, as discussed

in section 4.2, are entirely represented by classical polarization in the MB-DFT PEFs, are

significantly closer to the reference CCSD(T)/CBS values. Specifically, the 4B MUE associated

with the MB-PBE(DC) PEF is 0.64 kcal/mol which must be compared to a value of 1.07 kcal/mol
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Figure 4.8: Errors in nB energies (n = 2− 6) associated with MB-PBE and MB-PBE(DC)
relative to the corresponding PBE-D3 and PBE-D3(DC) values calculated for the first eight
low-energy isomers of the water hexamer. Errors are defined as ∆EMB−DFT

nB = EMB−DFT
nB −

EDFT
nB , where EMB−DFT

nB and EDFT
nB are the nB energies calculated with the MB-DFT PEFs and

corresponding (self-consistent and density-corrected) functionals, respectively.
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reported in Table 4.1 for the analogous MB-PBE PEF trained on PBE-D3 data. Importantly,

Figure 4.8 shows that not only the 4B error but also the errors for all other nB terms are

significantly smaller when the density correction is taken into account as demonstrated by the

higher accuracy provided by the MB-PBE(DC) PEF compared to the analogous MB-PBE PEF.

Figure 4.9 shows the interaction energies calculated with PBE-D3, PBE-D3(DC) and their

corresponding MB-PBE and MB-PBE(DC) PEFs, respectively, along with the CCSD(T)/CBS

reference values. As density-driven errors tend to overbind the isomers of the water hexamer,

PBE-D3 predicts lower interaction energies than CCSD(T)/CBS. On the other hand, PBE-D3(DC)

systematically underbinds all isomers. The density correction significantly improves the de-

scription of the interaction energies of the MB-PBE(DC) PEF, by effectively reducing the errors

associated with all nB contributions to the interaction energy (Figure 4.8). The MB-PBE PEF dis-

plays a MUE of -1.51 kcal/mol relative to PBE-D3 whereas the density-corrected MB-PBE(DC)
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Figure 4.9: Interaction energies of the first eight low-energy isomers of the water hexamer
calculated with the PBE-D3 and PBE-D3(DC) functionals, and the corresponding MB-PBE and
MB-PBE(DC) PEFs along with the reference CCSD(T)/CBS values.
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PEF displays a MUE of -0.96 kcal/mol relative to PBE-D3(DC). A direct comparison of the errors

are shown in Figure S14.

It should be noted that, while PBE-D3(DC) displays a significantly lower MUE (2.56

kcal/mol) relative to CCSD(T)/CBS than PBE-D3 (4.67 kcal/mol), the MB-PBE(DC) PEF is

associated with a slightly higher MUE (3.52 kcal/mol) relative to CCSD(T)/CBS than the MB-

PBE PEF (3.16 kcal/mol). This is due to the signs of ∆ECCSD(T ) (Figure 4.6) and ∆EMB−DFT

(Figure 4.8), which make these errors add up for the MB-PBE(DC) PEF while partially cancelling

out for the MB-PBE PEF.

4.5 Conclusions

In this study, we have presented a general theoretical framework for the development

of data-driven many-body PEFs (MB-QM) in which the individual terms of the many-body

expansion of the energy are rigorously derived from electronic structure data calculated at an

arbitrary QM level of theory. As a demonstration, we have introduced a family of MB-QM

PEFs for water which are rigorously derived from density functionals belonging to different

rungs across Jacob’s ladder of DFT approximations (MB-DFT) as well as from Møller-Plesset

perturbation theory (MB-MP2).

All MB-QM PEFs, except those derived from the GGA functionals, are shown to retain

the same accuracy of the corresponding QM methods for the energetics of small water clusters

and associated many-body energy contributions. Due to the presence of relatively large density-

driven errors, ab initio DFT calculations carried out with the GGA functionals analyzed in this

study (PBE-D3 and BLYP-D3) yield appreciable smaller 4B energies compared to analogous

calculations carried out with the corresponding MB-DFT PEFs. Since in the MB-DFT PEFs all

higher-than-3B contributions are described by classical many-body polarization, the difference

between the MB-DFT and DFT results can be traced back to density-driven errors that prevent
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density functionals, in particular those derived within the GGA, from accurately representing

individual many-body contributions. In this regard, the analysis of the energetics of the isomers of

the water hexamer shows that density-driven errors in the DFT representations of the interactions

in water primarily affect 2B and 3B energies.

To further investigate the effects of density-driven errors in the DFT descriptions of the

interactions in water, for each density functional considered in this study, we have analyzed a

corresponding density-corrected functional obtained by using Hartree-Fock densities in non-self-

consistent DFT calculations. Except for ωB97M-V, all density-corrected functionals provide

better agreement with the reference CCSD(T)/CBS data. Motivated by the improved performance

of the density-corrected functionals, we have developed a density-corrected MB-DFT PEF, MB-

PBE(DC) from density-corrected PBE-D3 data, and shown that it more closely reproduces the

corresponding ab initio many-body energies than the analogous MB-DFT derived from self-

consistent PBE-D3 data. The different performance of self-consistent and density-corrected

functionals in reproducing the energetics of water clusters indicates that, while not essential

for hybrid and range-separated functionals, accounting for density-driven errors is a necessary

requirement in the development of MB-DFT PEFs derived from GGA functionals. These findings

suggest that density-driven errors affect the convergence of the many-body expansion in water

and indicate that the accuracy of a given density functional may vary significantly depending on

both the size and hydrogen-bonding arrangements of the system under examination.
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Chapter 5

Assessing the accuracy of the SCAN

functional for water through a many-body

analysis of the adiabatic connection formula

We present a systematic analysis of the accuracy of a series of SCANα functionals for

water, with varying fractions (α) of exact exchange, which are constructed through the adiabatic

connection formula. Our results indicate that that all SCANα functionals exhibit substantial

errors in the representation of the water 2-body energies. Importantly, the inclusion of exact

exchange is found to have opposite effects on the ability of the SCANα functionals to describe the

interaction energies of water clusters with 2-dimensional and 3-dimensional hydrogen-bonding

arrangements. These errors are found to directly affect the ability of the SCANα functionals to

describe the structure of liquid water at ambient conditions, which is investigated using explicit

many-body models (MB-SCANα) derived from the corresponding SCANα data. In particular, it

is found that all MB-SCANα models predict a more compact first hydration shell, which results

in a denser liquid with a more ice-like structure. These apparent opposite trends can be explained

by the inability of the SCANα functionals to provide a balanced description of the water 2B and
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3B energies at the fundamental level. The analyses presented in this study provide new insights

that can guide future developments of improved exchange-correlation functionals for aqueous

systems.

5.1 Introduction

Density functional theory (DFT) approaches have been used to calculate the properties of

various molecular systems, from small molecules to liquids and solids where more expensive,

post-Hartree-Fock methods become prohibitively inefficient.[348–351] Originally built upon the

Hohenberg and Kohn theorems,[12] DFT was later formulated in its modern version by Kohn

and Sham who introduced the exchange-correlation energy functional in the expression of the

total energy functional.[13] Although in principle exact, the solution of the Kohn-Sham equations

becomes approximate in practice because the exact exchange-correlation energy functional is

unknown.[352]

The earliest approximation to the exact density functional, known as the local density

approximation (LDA), was inspired by work by Slater who, a decade earlier, had proposed

an approximation to the exact exchange term in Hartree-Fock theory based on a functional

of the electron density.[353] Formally, the LDA is derived from the corresponding terms of

the homogeneous electron gas, and assumes that the electron density is purely “local”. This

assumption of locality implies that the LDA approximation holds only for systems with very

slowly varying densities as the density is assumed to be uniform at every point.[13] Besides

its tendency to overestimate atomization energies,[354] the LDA also tends to overestimate the

strength of hydrogen bonds in aqueous systems, predicting shorter oxygen-oxygen distances in

small water clusters.[355, 356] Despite these aforementioned problems, the LDA also provided

some of the first theoretical predictions of crystal structures under pressure. [357] First order

corrections to the LDA, initially proposed in 1969 by Herman, Van Dyke, and Ortenburger,
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were based on an analytic approach that eventually became the modern-day generalized gradient

approximation (GGA) as developed by Langreth, Perdew, and Becke, among others.[358–363]

Modern GGA functionals, such as the PBE functional,[364] perform relatively better

than the LDA functional for aqueous systems, but still result in broad disagreement with various

experimental data, including the over-structuring of liquid water at ambient conditions.[176, 365]

These GGA functionals were further extended to incorporate second-order corrections to the LDA

using the Laplacian of the electron density, leading to meta-GGA functionals. [360, 366] By the

late 90s, several meta-GGA functionals had been developed,[360, 367–369] which eventually

evolved into more recent implementations, such as the B97M-V[370] and SCAN [14] functionals.

It should be noted that most modern meta-GGA functionals use the kinetic energy density, τ ,

rather than an explicit Laplacian of the density. Both SCAN, which satisfies all 17 known

constraints on the exact meta-GGA functional, and B97M-V are able to partially overcome

the over-structuring of liquid water and provide better agreement to experiment for various

properties,[4, 15, 371, 372] albeit often the comparisons with the experimental data are made

with results obtained from simulations carried out at higher temperature.[4, 372]

In an attempt to improve the accuracy of DFT models, hybrid exchange-correlation

functionals were developed starting from the adiabatic connection formula,[373]

Exc[ρ] =
∫ 1

0
Exc,λ dλ (5.1)

In practical applications, the hybrid exchange-correlation functionals approximate the integral in

eq 5.1 as a fractional sum of the non-interacting limit, which is described by the exact exchange,

and the fully interacting limit, which is described by the exchange-correlation energy calculated

with a given GGA or meta-GGA functional.[373] The original expression for Exc[ρ] was later

refined into a 3-parameter fractional sum, with separate coefficients for the exact exchange term

representing Exc,0, and the exchange and correlation terms representing Exc,1.[374] Following
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the rationale introduced by Perdew, Ernzerhof, and Burke,[375] PBE0 and, later on, SCAN0

were proposed as hybrid versions of the corresponding base functionals (i.e., PBE and SCAN,

respectively) without using any fitted parameters and adopting 25% exact exchange.[264, 376]

Bundled with SCAN0, the double-hybrid SCAN0-2 functional was also shown to provide an

accurate description of various molecular systems.[376]

Recently, the SCAN functional has been gaining popularity as a functional suitable for

studies of liquid water. Yao and Kanai used SCAN to characterize the temperature dependence of

nuclear quantum effects in liquid water.[15] Sharkas et. al. used small water clusters to show

that the self-interaction error in the SCAN functional primarily affects the two-body (2B) term

of the many-body expansion (MBE) of the energy.[16] Other studies used SCAN to analyze the

equilibrium of high- and low-density liquid water at negative pressure.[17, 18] More recently, Xu

et. al. studied the isotope effects in liquid H2O and D2O using a deep neural network potential

(NNP) trained on the SCAN functional.[30]. A similar NNP was used to investigate the properties

of supercooled water,[31] as well as the equilibrium between liquid water, ice Ih, and Ic,[5] and

the ice Ih/XI transition.[32]

Building upon these studies, particularly the many-body analysis reported in ref 16, we

provide here an assessment of the accuracy of the SCAN functional in predicting the properties

of water. Our analysis uses the adiabatic connection formula to systematically investigate the

effects of exact exchange on the individual terms of the MBE as well as on the structure of liquid

water at ambient conditions and the description of hydrogen bonding in the water dimer. We

demonstrate that, by modulating the fraction of exact exchange, small errors in the representation

of the low-order terms of the MBE can lead to substantial changes in the structure of liquid water.

Interestingly, our analysis indicates that the inclusion of exact exchange has opposite effects

on the description of different hydrogen-bonding motifs, improving the accuracy of SCAN for

3-dimensional structures, while deteriorating its performance for 2-dimensional arrangements of

water molecules.
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5.2 Theory and Computational Details

All electronic structure calculations were performed with Q-Chem[331] using the SCAN

functional[14] with the aug-cc-pVQZ basis set.[166, 266] The amount of exact exchange was

specified using the “general” exchange functional section in Q-Chem. All molecular dynamics

(MD) simulations were carried out in the isobaric-isothermal (NPT) ensemble for 1 ns with a 0.2

fs timestep using in-house software based on the DL POLY2 simulation package,[168] which was

modified to include the MB-DFT models.[61] The temperature was controlled via Nosé–Hoover

chains (NHC) of four thermostats coupled to each degree of freedom.[377] The NPT ensemble

was generated according to the algorithm described in ref. 378. A radial atom–atom cutoff

distance of 9.0 Å was applied to the non-bonded interactions and the Ewald sum was used to

treat long-range electrostatics.[379] The reference structures for the water hexamers, with their

associated many-body interaction energies calculated at the CCSD(T)/CCSD(T)-F12 level of

theory within the SAMBA scheme,[170] are taken from ref 1.

5.2.1 Hybrid Density Functionals

Hybrid density functionals are derived from the adiabatic connection formula[380–384]:

Exc[ρ] =
∫ 1

0
Exc,λ dλ (5.2)

In eq 5.2, the electron-electron coupling goes through a continuum of partially interacting states,

where the integration variable, λ , varies from 0 to 1, changing the system from a non-interacting

Kohn-Sham reference system to a fully interacting system, with each intermediate state having

the same ground-state electron density. The integrand in eq 5.2 is formally expressed as the
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exchange-correlation potential energy at a given λ ,

Exc,λ = ⟨Ψλ |Vee|Ψλ ⟩−
e2

2

∫ ∫
ρ(r)ρ(r′)
|r− r′|

dr dr′ (5.3)

where Vee is the electron-electron interaction operator and ρ is the density. At the non-interacting

limit (λ = 0), the integrand becomes the exact exchange energy of the Kohn-Sham orbitals,

while at the fully interacting limit the integrand is calculated using a given density functional

approximation (DFA). As discussed in the introduction, the integral in eq 5.2 is approximated

by a linear interpolation of the λ = 0 and λ = 1 states, and becomes a fractional sum of the

two.[373] The most general formulation of this sum is given by

Exc = αEexact
x +(1−α)EDFA

x +EDFA
c (5.4)

where Eexact
x is the exact exchange, and EDFA

x and EDFA
c are the DFA exchange and correlation

terms. Eq. 5.4 can be rewritten as[375]

Exc =
1
n

Eexact
x +

(
1− 1

n

)
EDFA

x +EDFA
c (5.5)

for an integer n corresponding to the lowest order of Moller-Plesset perturbation theory needed

to reproduce the atomization energies. Given the overall good performance of 4th order Moller-

Plesset perturbation theory (MP4), PBE0 and SCAN0 use n = 4 (corresponding to α=0.25).[264,

376] In this work, we refer to the hybrid SCAN functionals with varying fractions of exact

exchange, α , as SCANα .

5.2.2 Explicit Many-Body Models: MB-pol and MB-DFT

MB-pol[37–39] and MB-DFT[61] are explicit many-body models derived from the MBE

of the energy, which represents the energy of a system of N “bodies” (i.e., distinct atoms or
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molecules) as the sum of all the individual n-body contributions, with n ≤ N.[40] The MBE is

formally expressed as

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i< j

ε2B(ri,r j)+
N

∑
i< j<k

ε3B(ri,r j,rk)+ ...+ εNB(r1, ..,rN) (5.6)

where ε1B represents the distortion energy of an individual monomer from its equilibrium ge-

ometry, and each εnB with n > 1 represents the n-body energy which is defined recursively

as

εnB = εn(1, ...,n)−
N

∑
i=1

ε1B(ri)−
N

∑
i< j

ε2B(ri,r j)−
N

∑
i< j<k<...<n−1

ε(n-1)B(ri,r j, ..rn−1). (5.7)

The MBE converges quickly for atoms and molecules with localized electron densities and

sufficiently large band gaps, such as water[170] and other molecular fluids.[62? ]

The MB-pol and MB-DFT models include explicit representations of the first three

terms of the MBE, implicitly accounting for all higher-order (n > 3) body terms via classical

polarization,

EN(r1, ..,rN) =
N

∑
i=1

ε1B(ri)+
N

∑
i> j

ε2B(ri,r j)+
N

∑
i> j>k

ε3B(ri,r j,rk)+Epol (5.8)

The 1B term in both MB-pol and MB-DFT models is described by the Partridge-Schwenke

potential energy surface calculated at the configuration interaction level of theory and subse-

quently refined to quantitatively reproduce the experimental rovibrational transitions of a water

molecule.[64] The 2B term consists of three contributions:

ε2B = E2B,sr +Eelec +Edisp (5.9)

where E2B,sr is represented by a 4th-degree permutationally invariant polynomial (PIP)[65]
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describing the short-range interactions within a water dimer. Eelec is described by a Coulomb

potential between geometry dependent point charges that reproduce the ab initio dipole moment

surface of a water molecule.[64] Finally, the 2B dispersion energy is given by

Edisp =−∑
i, j

f (δi j)
C6,i j

R6
i j

(5.10)

where i and j are indices for two atoms on two separate water molecules, f (δi j) is the Tang-

Toennies damping function with a fitted parameter δi j,[66] and C6,i j is the dispersion coefficient

between atoms i and j which is calculated from the asymptotic reference energy of the water

dimer as originally introduced in the CC-pol model.[45] The explicit 3-body (3B) term,

ε3B = E3B,sr (5.11)

describes short-range 3B interactions and is represented by a 4th-degree PIP[65]. In MB-pol, the

2B and 3B PIPs are fitted on top of an implicit many-body polarizable potential (Epol in eq 5.8) in

order to reproduce 2B and 3B energies calculated at the CCSD(T) level of theory in the complete

basis set (CBS) limit.[37, 38] Similarly, the explicit ε2B and ε3B terms of the MB-DFT models

are fitted to 2B and 3B energies calculated with a given DFA, using the same procedure described

in ref 61.

In this study, we introduce a series of MB-DFT models for water, denoted as MB-SCANα ,

fitted to 2B and 3B energies calculated with the SCANα functionals, including different fractions

(α) of exact exchange. The accuracy of each MB-SCANα model is assessed through a systematic

analysis of the MBE, the structure of liquid water at ambient conditions, and the potential energy

profile along the hydrogen-bonding coordinate in the water dimer.
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5.3 Results and Discussion

5.3.1 Many-Body Analysis of the Water Hexamer

As a first demonstration of the role played by the exact exchange in determining the

strength of the interactions between water molecules, Figure 5.2 plots the errors relative to the

CCSD(T)/CBS reference values which are associated with the n-body (with n = 2−6) energies

calculated using the SCANα functionals for the first eight low-energy isomers of the water

hexamer displayed in Figure 5.1. Figure 5.3 shows the corresponding total interaction energies

(panel a) and the relative interaction energies (panel b) as a function of α . The relative interaction

energies are calculated by minimizing the total signed error with respect to the corresponding

CCSD(T)/CBS reference values. By removing energy contributions due to monomer distortions,

the analysis of the interaction energies allows for a direct comparison of the molecular interactions

specific to each fraction of exact exchange. As discussed in section 2, the interaction energies

were calculated at the SCANα/aug-cc-pVQZ level of theory with varying fractions of exact

exchange corresponding to α=0.00 (pure SCAN functional), 0.05, 0.10, 0.15, 0.20, and 0.25

(hybrid SCAN0 functional).

In the analysis of the MBE for the prism isomer shown in Figure 5.2a, the 2B term

calculated with α=0.00 exhibits an error of -5.74 kcal/mol. The error progressively decreases

with increasing α , reaching a value of -4.96 kcal/mol at α=0.25. The 2B term for the cage

isomer displays errors ranging from -5.69 kcal/mol for SCANα with α=0.00 to -4.98 kcal/mol for

SCANα with α=0.25. Both book isomers display similar 2B errors of -4.83 and -4.90 kcal/mol

for α=0.00, and reduced errors of -4.65 and -4.66 kcal/mol when α=0.25. Interestingly, the

lowest errors (-4.63 and -4.65 kcal/mol for book-1 and book-2, respectively) are obtained when

α=0.20. The bag isomer displays a 2B error of -4.95 kcal/mol when α=0.00, with an error of

-4.63 kcal/mol when α=0.25. The cyclic isomers display opposite behavior as a function of

α . Specifically, the 2B error in the cyclic chair is the smallest (-3.95 kcal/mol) at α=0.00 and
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Isomer 1 Isomer 2 Isomer 3 Isomer 4

Isomer 5 Isomer 6 Isomer 7 Isomer 8

Prism Cage Book 1 Book 2

Bag Cyclic Chair Cyclic Boat 1 Cyclic Boat 2

Figure 5.1: Structures of the first eight low-energy isomers of the water hexamer, (H2O)6.

the largest (-4.31 kcal/mol) at α=0.25. Similarly, the two cyclic boat isomers exhibit errors of

-3.92 and -3.87 kcal/mol at α=0.00, and -4.22 and -4.19 kcal/mol at α=0.25. This general trend

indicates that the accuracy of the 2B term in the SCANα functionals increases with α in isomers

that display 3-dimensional hydrogen-bonding arrangements (i.e., prism and cage isomers). The

opposite trend is observed for ring-like structures (i.e., the cyclic isomers) for which the addition

of any fraction of exact exchange deteriorates the accuracy of the 2B term relative to the pure

SCAN functional.

All SCANα functionals are associated with significantly smaller errors for all higher-body

terms, which systematically decrease in magnitude as α increases. In particular, both prism and

cage isomers, which are characterized by fully 3-dimensional hydrogen-bonded structures, display

maximum errors of -0.08 and -0.12 kcal/mol for the 3B term, and a similarly small maximum

error of -0.04 kcal/mol for the 4B term at α=0.00. Relatively larger 3B and 4B errors (on the

order of -0.5 kcal/mol and 0.15 kcal/mol, respectively) are found for the book-1, book-2, and

bag isomers described by the pure SCAN functional, with errors decreasing as α increases. All

cyclic isomers exhibit 3B and 4B errors of approximately -0.8 kcal/mol and -0.25 kcal/mol when
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Figure 5.2: Errors in the individual terms of the MBE for the first eight low-energy isomers
of the water hexamer calculated with the SCANα functionals relative to the CCSD(T)/CBS
reference values of ref 1. The alternating grey and white shaded sectors separate each individual
nB term of the MBE, with the corresponding errors associated with each SCANα functional
shown as bars with varying shades of blue.

α = 0.00, with errors decreasing as the fraction of exact exchange increases from α=0.00 to

α=0.25. For all isomers, independently of α , the 5B and 6B errors are always small, ranging

from 10−4 to 10−2 kcal/mol.

This analysis highlights the limitations of the pure SCAN functional (α=0.00) in pro-

viding a balanced representation of 2B and higher-body energies, with the former being largely

overestimated. Importantly, this “asymmetry” is not corrected by including any fraction of exact

exchange (up to α = 0.25). In particular, while improving the description of 2B energies in

the hexamer isomers with 3-dimensional hydrogen-bonding arrangements, the inclusion of any

fraction of exact exchange deteriorates (approximately by the same amount) the description of

2B interactions in cyclic structures.

The errors in the individual terms of the MBE directly translate into the different ability of

the SCANα functionals to predict the relative stability of the hexamer isomers. Figure 5.3a shows

the total interaction energy for all isomers as a function of α . Starting from the prism isomer,

the 3-dimensional isomers display substantially distinct interaction energies which become less
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Figure 5.3: Total (panel a) and relative (panel b) interaction energies of the first eight low-energy
isomers of the water hexamer calculated with the SCANα functionals. The CCSD(T)/CBS
reference values are taken from ref 1. The relative interaction energies for each SCANα

functional are aligned to the CCSD(T)/CBS reference values by minimizing the total signed
error.

negative with increasing α . Moving from the cage to the book and bag isomers, the interaction

energies become progressively more clustered, and closer to the values obtained with α=0.25.

Once the 2-dimensional isomers (the cyclic chair and boat isomers) are reached, all SCANα

functionals effectively predict the same interaction energy obtained with α=0.25.

As shown in Figure 5.3b, the SCANα functional with α=0.25 predicts relative interaction

energies that closely follow the CCSD(T)/CBS reference values, while all other values of α

display progressively divergent curves as α decreases. Importantly, the SCANα functionals

with α < 0.25 are found to progressively overbind the low-energy isomers and underbind the

high-energy isomers. This results in the pure SCAN functional (α = 0.00) predicting an energy

difference of ∼4 kcal/mol between the prism and cyclic-boat-2 isomers, which is ∼1 kcal/mol

larger than the corresponding CCSD(T)/CBS value.

The similarity of the total interaction energies between all values of α found in Figure 5.3a
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for the three cyclic isomers may be explained by the opposite trend displayed by the corresponding

2B and higher-body terms. For these isomers, Figure 5.2 shows that the lower error in the 2B

term found for small values of α is countered by higher errors in the 3B and 4B terms, and vice

versa as α increases. This trend is further analyzed in Figure S3 of the Supporting Information

which shows the ∆∆E relative to α=0.0 Finally, it should be noted that the 2B terms for the

isomers with 3-dimensional structures show the largest variance in the associated errors, which

correspondingly elicits the relatively wider distribution of interaction energies seen in Figure 5.3b.

These results suggest that the fraction of exact exchange included in the SCANα functionals acts

primarily on the 2B term of the MBE, leaving all other (higher-order) terms less dependent on α .

5.3.2 Liquid Water

While the previous section examines the effects of modulating the fraction of exact

exchange within the SCAN functional on the energetics of small water clusters, this section seeks

to connect the differences among the SCANα functionals to the ability of these functionals to

describe the structure of liquid water at ambient conditions. For this purpose, MD simulations

were carried out at 298.15 K and 1 atm in the NPT ensemble with the MB-SCANα models

fitted to the corresponding SCANα 2B and 3B energies. Based on the analysis of the previous

section, since the errors in the SCANα 4B and higher-body terms are effectively equivalent to

those associated with MB-pol,[1] the MB-SCANα models provide an accurate representation

of the SCANα functionals, despite only the corresponding 2B and 3B energies are explicitly

used in their parameterization (see Figure S1 in the Supporting Information). Following ref 61,

three distinct MB-SCANα models are constructed for each SCANα functional by progressively

replacing the MB-pol 2B and 3B terms with the SCANα counterparts. The MB-SCANα models

are thus labeled as (2B+3B)-MB-SCANα , (2B)-MB-SCANα , and (3B)-MB-SCANα to indicate

that both the 2B and 3B, only the 2B, and only the 3B terms are represented by fits to the

corresponding SCANα 2B and 3B energies, with all other terms being represented as in MB-
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pol. As demonstrated in ref 61, the MB-DFT models are able to reproduce, at a fraction of

the associated computational cost, the results obtained from the corresponding ab initio MD

simulations.

Figure 5.4 displays the oxygen-oxygen (O-O) radial distribution functions (RDFs) cal-

culated with the (2B+3B)-MB-SCANα (panel a), (2B)-MB-SCANα (panel b), and (3B)-MB-

SCANα (panel c) models. All (2B+3B)-MB-SCANα models (panel a) predict O-O RDFs that are

systematically shifted (by ∼0.3Å) to the left of the corresponding experimental curve,[385, 386]

indicating overly attractive interactions between the water molecules. This is a direct consequence

of all SCANα functionals overestimating, especially at the 2B level, the strength of the low-order

many-body interactions between water molecules as shown in Figures 5.2 and 5.3. Besides this

common feature, significant variation exists in the ability of the different (2B+3B)-MB-SCANα

models to reproduce the experimental O-O RDF. In particular, the (2B+3B)-MB-SCANα model

with α=0.00 predicts a significantly less structured second solvation shell. As α increases, the

(2B+3B)-MB-SCANα models predict an increasingly more structured liquid. In this context,

a value of α=0.15 appears to be the “optimal” compromise, leading to an O-O RDF that is in

closer agreement with the experimental curve, although the peaks of the solvation shells are

consistently higher and the “valleys” between consecutive shells are consistently deeper than in
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Figure 5.4: O-O RDFs calculated from NPT MD simulations carried out at 298 K and 1 atm
using the (2B+3B)-MB-SCANα (panel a), (2B)-MB-SCANα (panel b), and (3B)-MB-SCANα

(panel c) models. The experimental RDFs at 295 K are taken from refs 385 and 386.
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the experimental RDF.

The general trend observed in the O-O RDFs calculated with the (2B+3B)-MB-SCANα

models is also reproduced by the O-O RDFs calculated with the (2B)-MB-SCANα models

(Figure 5.4b), where only the 2B term of MB-pol is replaced with the 2B term fitted to the

corresponding SCANα 2B energies. On the other hand, all (3B)-MB-SCANα models, which

replace only the 3B term of MB-pol with the corresponding SCANα 3B, closely reproduce the

experimental O-O RDF (Figure 5.4c), effectively achieving the same accuracy of the MB-pol

model. The close correspondence between the O-O RDFs calculated with the (2B+3B)-MB-

SCANα and (2B)-MB-SCANα models combined with the agreement between the (3B)-MB-

SCANα and experimental RDFs provide clear evidence that the inability of the pure SCAN

functional (α = 0.00) to reproduce the shape of the experimental RDF is primarily due to intrinsic

deficiencies of the SCAN functional in correctly predicting the 2B energies as shown in Figure 5.2.

Similar conclusions can be drawn from the analyses of the O-H and H-H RDFs reported in the

Supporting Information.

The differences in the O-O RDFs calculated with the three sets of MB-SCANα models di-

rectly translate in the differences seen in the corresponding O-O cumulative distribution functions
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Figure 5.5: O-O CDFs calculated from NPT MD simulations carried out at 298 K and 1 atm
using the (2B+3B)-MB-SCANα (panel a), (2B)-MB-SCANα (panel b), and (3B)-MB-SCANα

(panel c) models. The experimental RDFs at 295 K are taken from refs 385 and 386, and 387 at
295K.

115



(CDFs) shown in Figure 5.5 and densities listed in Table 5.1. In particular, both the (2B+3B)-

MB-SCANα and (2B)-MB-SCANα models predict CDFs that deviate significantly from the

experimental and MB-pol curves, systematically overestimating the coordination number between

2.5 Åand 4.5 Å. On the contrary, all (3B)-MB-SCANα models are effectively indistinguishable

from each other and in quantitative agreement with the experimental and MB-pol curves. As a

consequence, both the (2B+3B)-MB-SCANα and (2B)-MB-SCANα models predict significantly

higher densities, which systematically decrease as the fraction of exact exchange increases. On

the other hand, all (3B)-MB-SCANα models predict densities that are in quantitative agreement

with the experimental value of 0.997 g/cm3, independently of α .

It should be noted that the density calculated with the (2B+3B)-MB-SCANα model with

α = 0.00 is larger than the values obtained in ref 4 using ab initio MD simulations carried out

with the pure SCAN functional at 330 K (1.05±0.027 g/cm3) and in ref 5 using MD simulations

carried out with a DNN model trained on SCAN data for bulk configurations. In this context, it

has been shown that density fluctuations in ab initio simulations of liquid water are particularly

sensitive to both system’s size and plane wave cutoff, which may be a possible reason for the

differences considering that all MB-SCANα simulations were carried out for a system consisting

of 256 water molecules while 64 molecules were used in the ab initio MD simulations of ref 4.

Besides these technical differences, it should also be noted that, as discussed in ref 16, SCAN

calculations of the water interactions are affected by non-negligible self-interaction errors that

depend on the system’s size. Since the (2B+3B)-MB-SCANα models are only trained on the low-

order terms of the MBE, it follows that they cannot “capture” self-interaction errors that develop

in larger systems. We believe that this is the main reason, besides the different temperatures

and system sizes used in the simulations, for the different density values obtained from the

ab initio MD simulations with SCAN reported in ref 4 and the present simulations with the

(2B+3B)-MB-SCANα model (α = 0.0). To test this hypothesis, it would particularly interesting

in the future to compare ab initio SCAN simulations corrected for the self-interaction error (e.g.,
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Table 5.1: Density (in g/cm3) of liquid water calculated from MD simulations carried out in the
NPT ensemble at 298 K and 1 atm using the three sets of MB-SCANα models. As a reference,
the experimental density is 0.997 g/cm3, while the MB-pol density is 1.007 g/cm3.[1]

α (2B+3B)-MB-SCANα (2B)-MB-SCANα (3B)-MB-SCANα

0.00 1.14 1.16 1.00
0.05 1.12 1.14 1.00
0.10 1.10 1.12 1.00
0.15 1.08 1.09 1.01
0.20 1.07 1.08 1.01
0.25 1.04 1.04 1.01

using the FLOSIC scheme of ref 16) with simulations carried out with (2B+3B)-MB-SCANα

models trained on 2B and 3B energies that are similarly corrected for the self-interaction error.

While the different nature of the training sets (bulk configurations for the DNN model of

ref 5, and 1B, 2B, and 3B energies, along with 1B dipoles and polarizabilities, for the (2B+3B)-

MB-SCANα models) may also be responsible for the different density values predicted by the

two models, we believe that further investigations are needed to systematically determine both

merits and shortcomings of DNN and MB-DFT models in reproducing ab initio data across the

phase diagram of water.

While the RDFs report on the distributions of inter-atomic distances between pairs of

atoms, direct insights into 3-dimensional arrangements of the water molecules in the liquid can

be gained from the analysis of the tetrahedral order parameter, qtet , defined as[388]

qtet = 1− 3
8

3

∑
j=1

4

∑
k= j+1

(
cos(ψ jk)+

1
3

)2

(5.12)

Here, ψ jk is the angle between the O atom of the central water molecule and the O atoms of two

neighboring water molecules. A qtet value of 1 indicates a perfectly tetrahedral arrangement,

while smaller values correspond to more disordered arrangements.

The analysis of qtet calculated with the (2B+3B)-MB-SCANα models shown in figure 5.6a

demonstrates that these models predict a progressively more tetrahedral structure as α increases,
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as indicated by the rightward shift and heightening of the main peak at qtet ∼ 0.75. For small

values of α , the observed larger values of qtet relative to MB-pol can be explained by the larger

coordination numbers predicted by the MB-SCANα models (Figure 5.5a) and the higher densities

reported in Table 5.1. Since, by definition, qtet only considers the four nearest water molecules,

without accounting for any additional molecule in the solvation shell, the qtet distribution for the

MB-SCANα model with α = 0.00, which corresponds to the pure SCAN functional, indicates a

more compact, but geometrically ice-like structure of liquid water at ambient temperature. The

results shown in Figure 5.5a also indicate that, as α increases, the (2B+3B)-MB-SCANα models

approach a less compact structure, which is accompanied by a decrease in density and, at the

same time, a more pronounced ice-like signature.

While an analogous trend is predicted by the (2B)-MB-SCANα models (Figure 5.6b),

the (3B)-MB-SCANα models (Figure 5.6c) closely reproduce the MB-pol distribution. The

close correspondence between the qtet distributions for the (2B+3B)-MB-SCANα and (2B)-

MB-SCANα models, along with the agreement between the (3B)-MB-SCANα and the MB-pol

results further suggests that the compact, ice-like structure predicted by the (2B+3B)-MB-SCANα

models with α = 0.00 is rooted in the inability of the SCAN functional to correctly reproduce 2B

interactions between water molecules (Figure 5.2).
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Figure 5.6: Distributions of the tetrahedral order parameter, qtet , calculated from NPT MD
simulations carried out at 298 K and 1 atm using the (2B+3B)-MB-SCANα (panel a), (2B)-MB-
SCANα (panel b), and (3B)-MB-SCANα (panel c) models.
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5.3.3 Hydrogen Bonding in the Water Dimer

In an attempt to rationalize the differences seen in the O-O RDFs, densities, and tetrahedral

order parameters calculated with the three sets of MB-SCANα models, this section examines

the ability of the SCANα functionals to describe hydrogen bonding in the water dimer. To this

purpose, Figure 5.7 shows the deviations, ∆ν̃ , in the harmonic frequencies of the water monomer

and dimer calculated with the SCANα functionals relative to the reference CCSD(T):MP2

harmonic frequencies reported in refs 2 and 3. This analysis indicates that the deviations associated

with the OH harmonic frequencies (marked in blue) of both H2O and (H2O)2 systematically move

from negative to positive values as α increases. In particular, for the water monomer, the pure

SCAN functional (α=0.00) predicts a red shift of ∼30 cm−1, while a blue shift of ∼75 cm−1

is associated with SCAN0 (α=0.25). While the same shifts are found for harmonic vibrations

involving the free OH bonds in the water dimer, the harmonic frequency of the hydrogen-bonded

OH (labeled as OH∗ in the figure) is appreciably underestimated by the pure SCAN functional,

resulting in ∆ν̃ =−75 cm−1. This red shift, indicative of a relatively stronger hydrogen bond

compared to the reference CCSD(T):MP2 value, directly correlates with the higher liquid density

obtained from NPT simulations carried out with the (2B+3B)-MB-SCANα model with α = 0.00.

The progressive blue shift observed in the harmonic frequency of the hydrogen-bonded OH

parallels the decrease in the liquid density predicted by the corresponding (2B+3B)-MB-SCANα

models. Importantly, Figure 5.7 shows that the closest agreement between the CCSD(T):MP2

and SCANα harmonic frequencies of the hydrogen-bonded OH is obtained with α = 0.15, which

is the same fraction of exact exchange that provides the closet agreement with the experimental

RDFs in the analysis of the (2B+3B)-MB-SCANα models (Figure 5.4).
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Figure 5.7: Deviations from the reference 2-body:many-body harmonic frequencies of (H2O)n,
with n = 1− 2,[2, 3] calculated using SCANα functionals with α=0.00-0.25. The light red
and blue backgrounds correspond to red and blue shifts relative to the reference values. Each
harmonic mode, indicated by a stick line, is colored according to the associated frequency
according to the colorbar displayed at the bottom of the figure. For each value of α , the
harmonic frequency for the hydrogen-bonded OH is highlighted with a yellow box, as indicated
by the inset graphic.

5.4 Conclusion

In this study, we presented a systematic analysis of the role played by the exact exchange in

describing the water interactions by investigating the accuracy of a series of SCANα functionals,

with varying fractions (α) of exact exchange, which are constructed through the adiabatic

connection formula. Our analysis demonstrates that all SCANα functionals are unable to correctly

represent 2B interactions between water molecules, with errors relative to the CCSD(T)/CBS

reference values that are on the order of 4-5 kcal/mol for the isomers of the water hexamer.

Importantly, we show that the inclusion of exact exchange has opposite effects on the ability

of the SCANα functionals to describe the interaction energies of the hexamer isomers with

2-dimensional and 3-dimensional hydrogen-bonding arrangements. Specifically, while the errors

relative to the CCSD(T)/CBS reference values decrease going from α = 0.00 (pure SCAN

120



functional) to α = 0.25 (hybrid SCAN0 functional) for the prism and cage isomers, the opposite

trend is found for the planar isomers (i.e., cyclic chair and cyclic boat isomers). These deficiencies

are found to be directly related to the ability of the SCANα functionals to describe the structure of

liquid water at ambient conditions, which is investigated through MD simulations carried out with

the corresponding many-body MB-SCANα models. In particular, we have found that the MB-

SCANα model with α = 0.00, which corresponds to the pure SCAN functional, predicts a denser

liquid, with a more compact first hydration shell. On the other hand, the MB-SCANα model with

α = 0.25, which corresponds to the hybrid SCAN0 functional, predicts a more ice-like structure.

These differences can be explained by the different accuracy with which the SCANα functionals

describe hydrogen bonding and the individual many-body contributions to the interaction energies

at the fundamental level as determined from the analysis of the harmonic frequencies of the

water dimer and the energetics of the hexamer isomers. The analysis of the dimer and hexamer

clusters as well as the structure of liquid water at ambient conditions indicates that the SCANα

functional with α=0.15 provides the closer agreement with the CCSD(T)/CBS reference energies

and experimental O-O RDFs. However, it should be noted that this “optimal” MB-SCANα model

with α = 0.15 still provides a more attractive O-O RDF, which results in a higher liquid density

at ambient conditions, although the overall structure of the liquid is predicted to be more ice-like.

These apparent opposite trends can be explained by the inability of the SCANα functionals to

provide a balanced description of 2B and 3B interactions between water molecules. While these

findings suggest that some caution should be exercised when the SCAN functional is used in

computer simulations of liquid water, ice, and other aqueous solutions,[4, 5, 15, 30, 32, 389] they

also provide fundamental insights into both merits and shortcomings of the SCAN functional

which can guide future theoretical developments.[16, 390]
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Chapter 6

Elevating Density Functional Theory to

Chemical Accuracy for Water Simulations

through a Density-Corrected Many-Body

Formalism

Density functional theory (DFT) has been extensively used to model the properties of

water. While maintaining a good balance between accuracy and efficiency, no density functional

has so far achieved the degree of accuracy necessary to correctly predict the properties of

water across the entire phase diagram. Here, we present density-corrected SCAN (DC-SCAN)

calculations for water which, minimizing density-driven errors, elevate the accuracy of the SCAN

functional to that of coupled-cluster theory, the “gold standard” for chemical accuracy. Building

upon the accuracy and efficiency of DC-SCAN within a many-body formalism, we introduce a

data-driven many-body potential energy function, the MB-SCAN(DC)PEF, that can quantitatively

reproduce coupled-cluster reference energetics of water clusters. Importantly, the properties of

liquid water calculated from molecular dynamics simulations carried out with the MB-SCAN(DC)
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PEF are found to be in excellent agreement with the experimental data, which thus demonstrates

that MB-SCAN(DC) is effectively the first DFT-based model that correctly describes water from

the gas to the liquid phase.

6.1 Introduction

Its anomalous behavior[391] and importance to life[392] make water one of the most

studied chemical compounds. Among its many unique properties is the high value of the

heat capacity which allows water to resist sudden temperature changes, thus permitting living

organisms to survive without experiencing significant temperature fluctuations.[393] In addition,

the dynamic nature of the water hydrogen-bond network plays a central role in several fundamental

processes, including transport and diffusion in bulk solutions and at interfaces, and hydration of

hydrophobic and hydrophilic solutes.[394] For example, protein folding is thought to be driven by

the hydrophobic effect.[395] Finally, countless chemical reactions involving charged species take

place efficiently in liquid water due to its high dielectric constant.[396–401] It thus not surprising

that a myriad of simulation studies have been devoted to developing a fundamental understanding

of both chemical and physical properties of water in different environments and under different

thermodynamic conditions.[70, 72, 351]

Density functional theory (DFT)[12, 402] is one the most important tools available to

computational chemists and physicists for ab initio simulations of molecular systems in the

condensed phase since it offers a good balance between accuracy and computational cost.[403,

404] However, as discussed in the “Methods” section, the accuracy of a DFT calculation depends

upon the accuracy of the underlying exchange-correlation (XC) functional, which allows for

recasting the many-body electronic structure problem into a (self-consistent) single-particle

problem formulated in terms of the Kohn-Sham equations.[13] The simplest XC functional,

the local spin density approximation (LSDA),[13, 405, 406] was shown to correctly predict the
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structure of metallic crystals under pressure,[407–409] but was unable to fulfill its promises

for water simulations, overestimating the strength of the hydrogen bonds and, consequently,

predicting a too packed and overstructured liquid phase.[355, 356] These limitations hindered the

ability of the LSDA functional to describe the properties of water, even qualitatively.

Climbing the Jacob’s ladder of DFT approximations,[410] the next generation of XC

functionals, which were developed within the generalized gradient approximation (GGA),[363,

364, 411] dominated the scene of ab initio simulations of water for a long time, owing to

their higher accuracy compared to LDA and affordable computational cost. Initial successes

of the GGA functionals included relatively accurate binding energies for various water clusters

and a reasonable description of the structure of liquid water.[348, 355, 412, 413] However,

it became soon evident that serendipitous error cancellation was the primary reason behind

the apparent accuracy of GGA simulations of liquid water, making the predictive power more

accidental than consistent.[176, 414–416] For example, it was found that GGA functionals

generally underestimate the density of liquid water, while predicting denser ice phases.[417]

The third rung of the Jacob’s ladder of DFT approximations includes meta-GGA function-

als [418, 419] that perform significantly better than both LDA and GGA functionals due to the

inclusion of the kinetic energy density. Among them, the strongly constrained and appropriately

normed (SCAN) functional has gained particular attention because it satisfies all 17 known

exact constraints that can be satisfied by a meta-GGA functional.[14] Without being fitted to

any bonded system, SCAN was shown to enable accurate predictions for various properties of

molecules and solids.[420] In particular, for molecular dynamics (MD) simulations of liquid

water, SCAN was found to outperform its predecessor GGA functionals.[4, 421] Importantly,

accounting for intermediate-range dispersion interactions, the SCAN functional allows for a more

accurate description of the energy differences among water clusters and ice phases,[420, 421]

while, when used in MD simulations, it predicts a density of liquid water which is appreciably

closer to the experimental value compared to values obtained with GGA functionals.[4]
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Despite its relatively higher accuracy, SCAN, as all GGA and meta-GGA function-

als, is still prone to density-driven errors (defined in the following section), including self-

interaction[320] and delocalization errors.[312, 422–424] It was shown that self-interaction errors

in the SCAN functional primarily affect 2-body contributions (defined in the “Results” section)

to the interaction energies of water clusters.[16] On the other hand, inclusion of a fraction of

Hartree-Fock exchange (also known as exact exchange) in a SCAN hybrid was found to partially

reduce density-driven errors in calculations for various water systems.[6, 425] However, it was

found that increasing the fraction of Hartree-Fock exchange beyond 15% did not improve the

accuracy of hybrid SCAN functionals, progressively shifting the structure of liquid water towards

that of ice.[425] A systematic analysis of hybrid SCAN functionals with varying fractions of

Hartree-Fock exchange demonstrated the inability of these functionals to accurately represent

2-body interactions between water molecules, with errors up to ∼5 kcal/mol for the water hex-

amer relative to reference values calculated using coupled cluster theory with single, double,

and perturbative triple excitations, i.e., CCSD(T), in the complete basis set (CBS) limit,[425]

the ‘gold standard” method for molecular interactions.[426] In this context, a neural-network

potential, NNP-SCAN0, was recently trained on a modified SCAN0 functional that incorporates

10% Hartree-Fock exchange.[6] (It is worth noting that, in its original formulation, the SCAN0

functional mixes 25% Hartree-Fock exchange with 75% SCAN exchange.[376]) Despite provid-

ing better agreement with experimental data than SCAN for several properties of liquid water

measured at ambient conditions, this improved agreement was achieved by actually performing

the NNP-SCAN0 simulations at 330 K.[6]

While all previous studies suggest that SCAN is overall one of the most accurate XC

functionals, they also indicate that any further improvement of the accuracy of DFT models

for water requires removing, at least partially, the associated density-driven errors. To this

end, we introduce here a data-driven many-body potential energy function (PEF) for water,

MB-SCAN(DC), which is rigorously derived within a many-body formalism applied to density-
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corrected SCAN (DC-SCAN) data for individual many-body contributions to the interaction

energies between water molecules.

Density-corrected DFT (DC-DFT),[315, 346, 427–433] where the Hartree-Fock density

is used instead of the Kohn-Sham density, is known to mitigate density-driven errors in GGA

and meta-GGA functionals, especially nonempirical ones. In this regard, density-driven errors

associated with calculations carried out on water clusters using the GGA PBE functional were

found to be significant.[433]

Here, we show that both binding and interaction energies calculated with the DC-SCAN

functional for various water clusters are close to the CCSD(T)/CBS reference values, with DC-

SCAN correctly reproducing each individual many-body contribution to the interaction energies.

Importantly, we demonstrate that the MB-SCAN(DC) PEF preserves the accuracy of DC-SCAN

and enables simulations of liquid water with significantly higher accuracy than all previous

DFT-based models reported in the literature (including both ab initio and neural network models),

predicting structural, thermodynamic, and dynamical properties in quantitative agreement with

experiment.

Results

6.1.1 Theoretical background.

In ground-state Kohn-Sham DFT,[13] the energy is self-consistently minimized as:

E = min
n

{
F [n]+

∫
d3r n(r)v(r)

}
(6.1)

where the minimizing n(r) is the ground-state density, v(r) is the external potential, and F [n]

includes the exact non-interacting kinetic and Hartree electrostatic energy terms plus an exchange-

correlation (XC) energy. Since the exact XC functional is unknown, different DFT approximations
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have been developed to solve eq 6.1.

The total-energy error ∆E associated with different DFT approximations can be written

as the sum of the functional-driven error, ∆EF, and the density-driven error, ∆ED:[431]

∆E = ∆EF +∆ED (6.2)

The functional-driven error ∆EF = Eapprox
XC [nexact]−Eexact

XC [nexact] arises from the difference be-

tween the approximate XC functional, F [n], and the (unknown) exact functional, while the

density-driven error ∆ED = Eapprox
XC [napprox]−Eapprox

XC [nexact] arises from using an approximate

density n(r) to solve eq. 6.1. In most systems, the functional-driven error is the main contribution

to the total error.[428, 431]

By many measures, the best nonempirical functionals predict more accurate densities

for neutral atoms than the heavily-parameterized empirical functionals or even Hartree-Fock

theory.[305] But they still make density-driven delocalization errors[304, 308] that can dominate

the total error under special conditions.[307, 429]

Independent of the specific form and parametrization, standard approximate XC func-

tionals still deviate from the piecewise-linear behavior of the exact functional for fractional

charges,[304] causing excess charge delocalization and resulting in incorrect densities.[304, 308]

For certain systems, the density-driven error thus become the dominant contributor to the total

error.[431, 434] This error can be understood by considering that the classical electrostatic re-

pulsion term that is part of F [n] in eq. 6.1 contains a self-interaction contribution due to each

electron interacting with itself.[307, 320] While this self-interaction contribution should, in the-

ory, be compensated by the XC energy, approximate XC functionals contain substantial local

components that prevent them from quantitatively removing electron self-interactions. As a

result, the electron density thus tends to over-delocalize in order to minimize the many-electron

self-interactions,[312–314] leading to fractional charges that underestimate the energy predicted
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by the piecewise-linear behavior of the exact functional.[304, 435]

Using a more accurate density can mitigate errors due to the over-delocalization of the

electron density.[315, 428, 436] However, obtaining an accurate density from wavefunction

theories, such as Møller-Plesset peturbation theory and coupled cluster theory, is computationally

significantly more expensive than the corresponding DFT calculations. An approximate, yet

efficient, approach to reducing density-driven errors in DFT calculations consists in using the

Hartree-Fock density, nHF(r) because, by construction, it does not suffer from either electron over-

delocalization or self-interaction errors.[315, 346, 428, 431, 433] The resulting density-corrected

DFT (DC-DFT) energy can then be written as:

EDC−DFT ≈ EHF +
(
Eapprox

XC
[
nHF]−EHF

X
)

(6.3)

The occupied Hartree-Fock (HF) orbitals are used here in place of those from a self-

consistent calculation with the approximated functional. If Eapprox
xc is not fitted to any bonded

system, then neither is eq. 6.3. Eq. 6.3 takes advantage of the understood overall cancellation

between semilocal approximations to the exchange and correlation energies; there is no corre-

sponding overall cancellation in the potentials or functional derivatives. In meta-GGA functionals,

the exchange-correlation energy depends explicitly not only on the electron density but also on the

non-interacting kinetic energy density, and both these ingredients differ from HF to Kohn-Sham

(KS) theory, but, importantly, for a meta-GGA functional like SCAN both the HF and the KS

kinetic energy densities can be used to recognize iso-orbital and uniform density limits and to

interpolate between them. In extensive molecular tests, SCAN evaluated on the Hartree-Fock

density was found on average to be more accurate than self-consistent SCAN, and even more

accurate than all but a few hybrid functionals.[437] It is very possible for a density functional to

yield accurate energies on physical densities and yet have an inaccurate functional derivative and

thus an inaccurate self-consistent electron density, because the functional derivative yields the
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response of the functional to an arbitrary (and not necessarily physical) small density variation.

For example, a self-consistent semilocal functional like SCAN cannot bind a full extra electron

to an isolated neutral atom, but using the Hartree-Fock density for the negative ion yields an

accurate electron affinity from such functionals.[438] It should be noted that density correction

also has some limitations: (1) It can only correct part of the error of an approximate density

functional. (2) Because it is not self-consistent, it cannot provide Hellmann-Feynman forces on

the nuclei. (3) Going beyond the level of the Hartree-Fock approximation can incur not only the

cost of the higher-level density but also the cost of inverting it to find an effective one-electron

potential.[439]

Eq. 6.3 can be used to calculate individual n-body energies, εnB, from one-body (1B) to

N-body (NB), which enter the many-body expansion (MBE) of the energy for a system containing

N (atomic or molecular) monomers:[40]

EN(1, . . . ,N) =
N

∑
i=1

ε
1B(i)+

N

∑
i< j

ε
2B(i, j)+

N

∑
i< j<k

ε
3B(i, j,k)+ . . .+ ε

NB(1, . . . ,N), (6.4)

In the case of water, ε1B(i) in eq 6.4 corresponds to the distortion energy of the ith water

molecule in the system from the equilibrium geometry of the corresponding free molecule, and all

higher-order n-body energies, εnB(2, . . . ,n), can be calculated recursively from the lower-order

terms.[170] The data-driven many-body formalism originally introduced with the MB-pol PEF

for water proceeds from monomer to dimer to trimer, successively calculating the 1B, 2B, and 3B

energies over a wide distribution of molecular configurations and then fitting them to analytic

potential energy functions. The 4B and higher-order terms of eq. 6.4 are replaced by a classical

many-body polarization model. Once the PEFs are known, fast but very accurate classical

molecular dynamics calculations for finite temperature or fully-relaxed geometry optimizations

for zero temperature can be performed. It should be noted that for the equilibrium geometries of

molecules and solids self-consistent SCAN already performs quite well.[14, 420] Here, we show
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that DC-SCAN provides an accurate but inexpensive alternative to the accurate but expensive

CCSD(T) parametrization of a data-driven many-body PEF for water, suggesting many possible

future applications of DC-SCAN that we are beginning to explore.

6.1.2 2-body interactions in water.

Our analysis of the ability of the SCAN functional to represent the interactions between

water molecules begins with the comparison in Fig. 6.1 between the total 2-body (2B) energies

second term on the right-hand side of eq. 4) calculated for the low-energy isomers of the

water hexamer using the (self-consistent) SCAN and SCAN0 functionals, and the corresponding

(density-corrected) DC-SCAN and DC-SCAN0 functionals. Also shown for reference are the

CCSD(T)/CBS values reported in ref. 1. It should be noted that the hexamer holds a special

space along the path that connects individual water molecules in the gas phase to liquid water

since it is the smallest water cluster for which the low-energy isomers are characterized by

three-dimensional arrangements that are reminiscent of the three-dimensional structure of the

hydrogen-bond network found in the liquid phase. In addition, the large number of low-energy

isomers makes the hexamer cluster the prototypical system to assess the ability of different

water models to correctly reproduce many-body interactions in water.[72] Fig. 6.1 shows that the

SCAN functional displays fairly large errors compared to the reference values, with a maximum

unsigned error (MUE) of 4.59 kcal/mol. In contrast, DC-SCAN predicts 2-body energies that

are in quantitative agreement with the CCSD(T)/CBS values, resulting in a MUE of only 0.08

kcal/mol. By effectively eliminating the errors in the representation of 2-body interactions, the

application of the density correction thus addresses the main shortcoming of the SCAN functional

applied to water.[16] Fig. 6.1 also shows that SCAN0, the hybrid variant of SCAN with a 25%

fraction of Hartree-Fock exchange, only provides a minor improvement in the representation

of the 2-body energies, resulting in a MUE of 4.48 kcal/mol. It should be noted that SCAN0

provides a slightly more accurate description of the three-dimensional isomers (i.e., prism and
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cage isomers) but a worse description of the planar isomers (i.e., cyclic isomers) compared

to SCAN. Importantly, the density correction applied to SCAN0 does not result in a similarly

dramatic improvement as found for SCAN, with DC-SCAN0 still displaying a relatively large

MUE of 2.26 kcal/mol.

The analysis of the effects associated with various dispersion corrections, which is reported

in Supplementary Fig. 1), indicates that the addition of any form of dispersion energy worsens

the accuracy of both SCAN and DC-SCAN. Specifically, all the dispersion-corrected SCAN

functionals considered in our analysis, SCAN-D3(0), SCAN-D3(BJ), and SCAN-VV10, are found

to overbind the hexamer isomers, which results in larger deviations from the CCSD(T)/CBS

values compared to their dispersion-free counterparts. Similarly, inclusion of larger fractions (α)

of Hartree-Fock exchange deteriorates the ability of hybrid SCANα and DC-SCANα functionals

to reproduce the interaction energies of the hexamer isomers, resulting in significant overbinding

(Fig. S2). It is also worth noting that neither DC-SCAN+dispersion nor DC-SCANα (where α
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Figure 6.1: 2B energies of the water hexamer isomers. 2-body energies calculated for the
first eight low-energy isomers of the water hexamer using SCAN, DC-SCAN, SCAN0 (with
25% exact exchange), and DC-SCAN0, along with the corresponding CCSD(T)/CBS reference
values from ref. 1. The 2-body energy, on average, contributes ∼80-85% to the total interaction
energy in water.[72] The errors associated with a given functional relative to the CCSD(T)/CBS
values are roughly the same for each isomer.
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Figure 6.2: Comparison of dimer interaction energies a) Errors in 2-body energies calculated
with SCAN and DC-SCAN relative to CCSD(T)-F12b values for dimers with an oxygen-oxygen
distance shorter than 5.5 Å which were extracted from an NPT simulation of liquid water carried
out with MB-pol[37–39] at ambient conditions. b) CCSD(T)-F12b, SCAN and DC-SCAN
interaction energies calculated for an unrelaxed scan of the water dimer along the O· · ·H distance.
The inset of panel b shows the errors associated with DC-SCAN and SCAN relative to the
CCSD(T)-F12b reference values as a function of r(O· · ·H).

is the fraction of HF exchange) perform as well as DC-SCAN. This suggests that the addition

of the dispersion correction and/or a fraction of Hartree-Fock exchange actually worsens the

functional-driven error of SCAN for water.

To further investigate the impact of the density correction on the energetics of various

water systems, in Fig. 6.2 we analyze the interaction energies of dimers extracted from a classical

MD simulation of liquid water carried out in the isobaric-isothermal (NPT) ensemble at ambient

conditions using the MB-pol PEF.[37–39] (The interaction energy is the binding energy without

its 1-body contribution.) For this analysis, we consider dimers with an oxygen-oxygen (O· · ·O)

distance shorter than 5.5 Å, which approximately corresponds to the radius of the first two

solvation shells in liquid water.[39, 385, 386] It should be noted that, by definition, the interaction

energy of a water dimer exactly corresponds to the associated 2-body energy. Fig. 6.2a shows the

errors, ∆E, in 2-body energies calculated with SCAN and DC-SCAN relative to the corresponding
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reference values calculated at the CCSD(T)-F12b level of theory. As expected, DC-SCAN

exhibits significantly smaller errors compared to SCAN for all dimers, independent of the O· · ·O

distance. Specifically, the maximum error associated with DC-SCAN is -0.47 kcal/mol, which

must be compared with a maximum error of -1.38 kcal/mol calculated with SCAN. It is also

important to analyze the errors as a function of the O· · ·O distance since they directly affect the

ability of the SCAN and DC-SCAN functionals to correctly predict the cohesive energy, and thus

the structure, of liquid water. Fig. 6.2a shows that the 2-body energies calculated with SCAN only

start to approach the CCSD(T)-F12b values at ∼4.5 Å, with a MUE of 0.25 kcal/mol associated

with dimers with an O· · ·O distance up to 4.5 Å, and a MUE of 0.16 kcal/mol for all dimers up to

an O· · ·O distance of 5.5 Å. In contrast, the 2-body energies calculated with DC-SCAN converge

to the CCSD(T)-F12b values at 3.5Å, with a MUE of 0.09 kcal/mol obtained for dimers with an

O· · ·O distance up to 3.5 Å, which decreases to 0.07 kcal/mol when all dimers up to an O· · ·O

distance of 5.5 Å are considered.

Fig. 6.2b shows a comparison between the interaction energies calculated at the CCSD(T)-

F12b, SCAN, and DC-SCAN levels of theory for an unrelaxed scan of the water dimer along

the O· · ·H distance, starting from the dimer optimized geometry. This comparison provides

further evidence for DC-SCAN predicting 2-body energies in close agreement with the CCSD(T)-

F12b values. In contrast, SCAN systematically overbinds the water dimer, which is particularly

evident in the minimum-energy region (r(O· · ·H) ∼ 1.9 Å). It is worth noting that SCAN gives

slightly better agreement with CCSD(T)-F12b at long range, before asymptotically converging

to DC-SCAN results. The reason behind SCAN giving slightly better result than DC-SCAN at

long-range is the cancellation in SCAN of the density-driven errors (which overbind) with the

lack of dispersion.
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6.1.3 Binding energies of water clusters.

It is known that the binding energies of the low-energy isomers of the water hexamer

lie within a few kcal/mol from each other[137] while the two most stable isomers (D2d and S4)

of the water octamer are degenerate.[111] Table 6.1 shows that the SCAN functional predicts

significantly different binding energies relative to the CCSD(T)-F12b results of ref. 440 for both

sets of clusters, with an overall MUE of 6.54 kcal/mol. Interestingly, the error per water molecule

is higher for the 3-dimensional isomers (prism and cage isomers) than for the planar isomers of

the water hexamer, and increases for the two isoenergetic isomers of the octamer.

Table 6.1 also includes the binding energies calculated in ref. 16 with SCAN corrected for

the self-interaction energy using the Fermi–Lowdin orbital self-interaction correction (FLOSIC)

scheme.[441] Relative to SCAN, FLOSIC-SCAN is able to reduce the errors in the binding

energies of all water clusters analyzed in Table 6.1, resulting in a MUE of 1.65 kcal/mol. The

error per water molecule remains nearly constant for the prism, cage, and book-2 isomers of

the hexamer but increases for the cyclic boat-2 isomer. The FLOSIC-SCAN error per molecule

is smaller for the two isoenergetic isomers of the water octamer. The comparisons reported in

Table 6.1 show that DC-SCAN performs better than FLOSIC-SCAN, with an overall MUE of

0.69 kcal/mol relative to CCSD(T)-F12b. As found with FLOSIC-SCAN, also in the case of

Table 6.1: Errors (in kcal/mol) in binding energies relative to the CCSD(T)-F12b values of
ref. 440 calculated for representative isomers of the water hexamer and octamer using SCAN,
FLOSIC-SCAN (from ref. 16) and DC-SCAN. The values in parentheses correspond to the
errors per molecule. The last row reports the corresponding MUEs and MUEs per molecule.

SCAN FLOSIC-SCAN DC-SCAN
Hexamer: Prism 5.69 (0.95) -1.62 (-0.27) -0.73 (-0.12)
Hexamer: Cage 5.68 (0.95) -1.66 (-0.28) -0.62 (-0.10)
Hexamer: Book 2 5.42 (0.90) -1.56 (-0.26) -0.41 (-0.07)
Hexamer: Cyclic boat 2 4.79 (0.80) -2.43 (-0.41) -0.12 (-0.02)
Octamer: D2d 8.84 (1.10) -1.31 (-0.16) -1.15 (-0.14)
Octamer: S4 8.84 (1.10) -1.31 (-0.16) -1.13 (-0.14)
MUE 6.54 (0.97) 1.65 (0.26) 0.69 (0.09)
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DC-SCAN the error per molecule remains constant for the prism, cage, and book-2 isomers of the

water hexamer but decreases for the cyclic boat-2 isomer. However, contrary to FLOSIC-SCAN,

DC-SCAN predicts a slightly larger error per molecule for the two isoenergetic octamer isomers

than for the prism, cage, and book-2 isomers of the hexamer. The overall MUE per molecule

of 0.04 kcal/mol indicates that the binding energies predicted by DC-SCAN are in excellent

agreement with the CCSD(T)-F12b reference values for all clusters analyzed in Table 6.1.

6.1.4 Many-body interactions in water.

Although the results presented in Fig. 6.1 and Table 6.1 demonstrate that, by correcting

density-driven errors, DC-SCAN is able to accurately reproduce the interaction energies of small

water clusters, the analyses of the previous sections do not provide any direct information about

the ability of DC-SCAN to correctly describe many-body effects in water. The competition and

interplay of many-body effects have been shown to play a critical role in determining structural,

thermodynamic, and dynamical properties of aqueous systems, from small clusters to bulk

solutions and interfaces.[44, 61, 137, 184, 341]

To investigate the impact of the density correction on individual n-body (nB) contributions

to the interactions between water molecules, many-body decomposition analyses were carried

out for the two isoenergetic isomers of the octamer. Errors relative to the CCSD(T)-F12b

reference values are shown in Fig. 6.3 for each n-body energy calculated with the SCAN and

DC-SCAN functionals. This analysis provides further evidence for the density-driven errors in

the SCAN functional primarily affecting 2-body energies, with SCAN displaying large negative

deviations from the CCSD(T)-F12b values, which confirms the tendency of the SCAN functional

to overbind water clusters.[16] After application of the density correction, the errors in the 2-body

energies reduce to only ∼0.3 kcal/mol for calculations carried out with the DC-SCAN functional.

Importantly, Fig. 6.3 shows that the impact of the density correction is minimal for all nB energies

with n > 2.
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Figure 6.3: Errors in nB interaction energy of water octamers. Errors relative to CCSD(T)-
F12b reference values for each nB energy contribution to the interaction energies calculated
for the two isoenergetic isomers, a) D2d and b) S4, of the water octamer using the SCAN and
DC-SCAN functionals.

After demonstrating that, by removing density-driven errors, the DC-SCAN functional

effectively provides chemical accuracy for binding, interaction, and many-body energies of

various water clusters, the 2B, 3B, and 4B energies, as well as the total interaction energies of the

low-energy isomers of the water hexamer calculated using the SCAN and DC-SCAN functionals

are compared in Fig. 6.4 with the analogous values calculated with the corresponding MB-SCAN

and MB-SCAN(DC) potential energy functions (PEFs) described in the “Methods” section. Also

shown for reference are the CCSD(T)/CBS values reported in ref. 1. The errors associated z

many body energy components and interaction energies for SCAN, DC-SCAN along with their

corresponding MB-PEFs, i.e. MB-SCAN and MB-SCAN(DC), with respect to the benchmark

CCSD(T)/CBS are presented in Supplementary Figs. 7. As already discussed in the case of

the octamer isomers, density-driven errors are most pronounced at the 2B level, with MUEs

of 4.59 kcal/mol and 0.08 kcal/mol associated with SCAN and DC-SCAN, respectively. The

MUEs reduce to 0.59 kcal/mol and 0.38 kcal/mol at the 3-body level. The comparisons shown

in Fig. 6.4a and Fig. 6.4b demonstrate that both the MB-SCAN and MB-SCAN(DC) PEFs are
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Figure 6.4: Many-body and interaction energies for the isomers of the water hexamer. a)
2-body (2B) b) 3-body (3B) c) 4-body (4B) and d) total interaction energies of the first eight
isomers of the water hexamer calculated using SCAN, DC-SCAN, MB-SCAN, MB-SCAN(DC),
along with the CCSD(T)/CBS reference values of ref. 1.

able to quantitatively reproduce the 2-body and 3-body energies calculated ab initio with the

corresponding SCAN and DC-SCAN functionals. Since, by construction, nB energies with n > 3

in the MB-SCAN and MB-SCAN(DC) PEFs are entirely represented by a classical polarization

term, the errors associated with these energies are not strictly related to those calculated ab initio

with the corresponding SCAN and DC-SCAN functionals. In this regard, Fig. 6.4c shows that

the 4-body energies predicted by the MB-SCAN and MB-SCAN(DC) PEFs tend to underbind
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the hexamer isomers relative to CCSD(T)/CBS, whereas the 4-body energies calculated with

the SCAN and DC-SCAN functionals tend to overbind the same clusters. However, it should

be noted that in both cases the 4-body errors are small for all eight isomers, with SCAN and

MB-SCAN providing MUEs of 0.17 kcal/mol and 0.35 kcal/mol, respectively. The corresponding

MUEs for DC-SCAN and MB-SCAN(DC) are 0.16 kcal/mol and 0.21 kcal/mol, respectively.

The total interaction energies of the eight low-energy hexamer isomers calculated with

the SCAN and DC-SCAN functionals, and the corresponding MB-SCAN and MB-SCAN(DC)

PEFs are compared with the CCSD(T)/CBS reference values in Fig. 6.4d. Both DC-SCAN

and MB-SCAN(DC) provide excellent agreement with the CCSD(T)/CBS reference values,

displaying MUEs of 0.53 kcal/mol and 0.36 kcal/mol, respectively. In contrast, suffering from

large density-driven errors at the 2-body level, SCAN and MB-SCAN systematically overbind all

eight isomers.

6.1.5 Structural and dynamical properties of liquid water.

The last question that remains to be addressed is whether the high accuracy displayed

by the MB-SCAN(DC) PEF in reproducing the multidimensional energy landscape of water

clusters is sufficient to correctly predict the properties of liquid water. To this end, classical MD

simulations for a periodic box containing 256 molecules were carried out with the MB-SCAN(DC)

PEF in the NPT ensemble at 1 atm and various temperatures between T = 250 K and T = 350 K.

The lengths of the MD trajectories were 2.6 ns for T < 298 K and 2 ns for T ≥ 298 K. Fig. 6.5

shows that the MB-SCAN(DC) PEF correctly reproduces the temperature-dependence of the

density of liquid water at 1 atm, underestimating the experimental values by only ∼0.01 g/cm3

at all temperatures. At 298 K, MB-SCAN(DC) predicts a density of 0.986 g/cm3, which is in

close agreement with the experimental value of 0.997 g/cm3. The temperature of maximum

density calculated by fitting a 5th-order polynomial to the MB-SCAN(DC) results is 280 K,

in nearly quantitative agreement with the experimental value of 277 K. The MB-SCAN(DC)
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Figure 6.5: Density of liquid water. Temperature-dependence of the density of liquid water at 1
atm calculated from classical NPT simulations carried out with MB-SCAN(DC) along with the
results from SCAN-AIMD,[4] SCAN-NNP,[5] and SCAN0-NNP (with 10% HF exchange)[6]
simulations. The MB-pol results are from ref. 1, while the experimental data are from the NIST
Chemistry WebBook.[442]

results are compared in Fig. 6.5 with those reported in the literature from MD simulations

with SCAN[4] (SCAN-AIMD) as well as with NNPs trained on SCAN[5] (SCAN-NNP) and

SCAN0[6] (SCAN0-NNP) data. These comparisons demonstrate that the MB-SCAN(DC) PEF

predicts a liquid density at 330 K which is in significantly closer agreement with experiment than

the value calculated in ref. 4 from ab initio MD simulations with SCAN.
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Particularly interesting is the comparison of the MB-SCAN(DC) PEF with the two NNPs

models trained on SCAN[5] and SCAN0[6] data. Fig. 6.5 shows that, despite being trained on

SCAN data, the SCAN-NNP model is unable to correctly reproduce the density value calculated

from ab initio MD simulations with SCAN at 330 K. A closer agreement between the density

values calculated from the SCAN-AIMD and SCAN-NNP simulations was obtained after applying

a reweighting procedure.[5] In addition, the SCAN-NNP model predicts a more pronounced

temperature-dependence of the liquid density compared to experiment, overestimating both the

value and the temperature of the density maximum.[5] A slightly more accurate prediction of

the liquid density at 330 K is provided by the SCAN0-NNP model,[6] although no ab initio MD

simulations with SCAN0 have been reported to compare with. Given the increased popularity of

NNPs trained on DFT data, we believe that the differences between SCAN-AIMD and SCAN-

NNP results deserve further investigation to assess the ability of NNPs to faithfully represent

the target DFT models. In this context, it should be noted that in a previous study[425] we

found that MD simulations carried out with the MB-SCAN PEF predict a liquid density of

1.14 g/cm3 at 298 K, which is significantly different from the value of 1.05 g/cm3 obtained

from ab initio simulations with SCAN.[4] This difference is not due to the different size of the

water systems studied in the two sets of simulations (256 molecules for MB-SCAN[425] and

64 molecules for SCAN-AIMD[4]). An explanation for this difference, proposed in ref. 425,

considers that any PEF rigorously derived from the many-body expansion of the energy (MBE) is

strictly faithful to its parent quantum-mechanical method only when the latter does not display

spurious delocalization of the electron density which affects the convergence of the MBE in an

unphysical manner. We believe that the present analysis of the SCAN and DC-SCAN functionals,

along with the corresponding MB-SCAN and MB-SCAN(DC) PEFs, provides support for the

interpretation presented in ref. 425 that density-driven errors are responsible for the differences

between MD simulations carried out with the SCAN functional and the MB-SCAN PEF. The

temperature dependence of the enthalpy of vaporization and isothermal compressibility calculated
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Figure 6.6: Structure of liquid water. Oxygen-oxygen (gOO) radial distribution function (RDF)
calculated from NPT simulations carried out with the MB-SCAN(DC) PEF at 298 K and 1 atm.
The MB-pol RDF is from ref. 39, while the experimental RDF at 295 K is from ref. 385.

from classical MD simulations with MB-SCAN(DC) are shown in Supplementary Figs. 12 and

13.

Fig. 6.6 compares the oxygen-oxygen (gOO) radial distribution function (RDF) calculated

from MD simulations carried out with the MB-SCAN and MB-SCAN(DC) PEFs at 298 K and

1 atm with the corresponding experimental data.[385, 386] The MB-SCAN(DC) PEF provides

excellent agreement with the experimental RDF, slightly overestimating the height of the first

peak while underestimating the height of the “valley” between the first two peaks.

As shown in Supplementary Fig. 11, these small differences can be attributed to the neglect

of nuclear quantum effects in classical MD simulations. The inclusion of nuclear quantum effects

in path-integral molecular dynamics (PIMD) simulations with MB-SCAN(DC) indeed slightly

lowers the height of the first peak and raise the “valley” between 3.2 Å and 4.0 Å similarly to what

previously observed in the gOO calculated with the MB-pol PEF.[39] As expected, the inclusion of
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nuclear quantum effects also improves the agreement with the experimental oxygen-hydrogen and

hydrogen-hydrogen RDFs (Supplementary Fig. 11). In contrast, as already discussed in ref. 425,

the MB-SCAN PEF predicts a denser and more unstructured liquid. Based on the analyses

discussed above, the differences between the MB-SCAN and MB-SCAN(DC) oxygen-oxygen

RDFs can be unambiguously attributed to density-driven errors that affect SCAN many-body

energies, particularly at the 2-body level, which are used to train the corresponding MB-SCAN

PEF.

To provide further insights into the ability of the MB-SCAN(DC) PEF to describe the

properties of liquid water, we also calculated the temperature dependence of the self-diffusion

coefficient, D, from a 500 ps-long MD simulation carried out in the microcanonical (NVE)

ensemble for a periodic box containing 256 molecules using the equilibrium density determined

from the corresponding NPT simulations. D was calculated from the velocity autocorrelation

function of the center of mass of each water molecule according to

D =
1
3

∫
∞

0
⟨vi(t)vi(0)⟩dt, (6.5)

where vi is the center of mass velocity of the ith water molecule. Fig. 6.7 shows that the MB-

SCAN(DC) PEF is able to correctly predict the diffusion coefficient between 250 K and 350 K.

In particular, at 298 K, the diffusion coefficient predicted by the MB-SCAN(DC) PEF is 0.212

A2/ps, which is in excellent agreement with the experimental value of 0.229 A2/ps. At higher

temperatures, larger fluctuations in the particle velocity lead to a wider distribution of self-

diffusion. This is in contrast to the value of 0.106 A2/ps obtained in ref. 15 from MD simulations

carried out with an adaptive neural network model trained on SCAN data (SCAN-NNP in

Fig. 6.7). In contrast to the MB-SCAN(DC) PEF, the SCAN-NNP model severely underestimates

the diffusion coefficient of liquid water over the entire temperature range, although the agreement

with experiment apparently improves as the temperature decreases.
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Figure 6.7: Self-diffusion of liquid water. Temperature-dependence of the self-diffusion
coefficient of liquid water calculated from NVE simulations carried out with the MB-SCAN(DC)
PEF. The SCAN-NNP data are from ref. 15, the MB-pol results are from ref. 1, while the
experimental data are from refs. 443, 444 and 445.

Discussion

An ab initio representation of water across all the different phases has been an elusive goal

since the early days of computer simulations.[119–122]. Although models based on correlated

wavefunction theories (WFT) can, in principle, provide such a long-sought after ab initio repre-
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sentation of water without resorting to ad hoc approximations or empirical parameterizations, the

associated computational cost precludes the application of WFT models to systems containing

more than a handful of water molecules. This effectively leaves DFT as the only viable approach

to ab initio simulations of water.[351] However, it has been shown that existing XC functionals

are not particularly accurate in their predictions of the properties of water,[72, 176] suffering

from both functional-driven and density-driven errors.

In this study, we have demonstrated that the density-corrected SCAN (DC-SCAN) func-

tional effectively removes density-driven errors from the water 2-body energies, which brings

both binding and interaction energies of different water clusters very close to reference values

calculated at CCSD(T)/CBS level of theory. Although not as pronounced as for the 2-body

energies, the density correction also reduces density-driven errors in all higher-body terms of the

many-body expansion (MBE) of the energy calculated for water using the DC-SCAN functional,

with each individual many-body term being in quantitative agreement with the corresponding

CCSD(T)/CBS reference values. In this context, it should be noted that a previous study[16] found

a significant but less complete improvement for water clusters (Table 6.1) via a self-consistent

FLOSIC self-interaction correction to SCAN. Ref. 16, however, did not find evidence for a major

improvement from density correction, probably because the FLOSIC density is less localized

than the Hartree-Fock and exact densities are. Although it should be kept in mind that the

DC-SCAN functional, as does the parent SCAN functional, still suffers from functional-driven

errors, which can be large for some chemical systems such as stretched H+
2 , the analyses presented

here demonstrate that these functional-driven errors are negligible for water. In the future, it

would be important to test the performance of DC-SCAN for more-general chemical applications.

Importantly, our analyses suggest that, in principle, ab initio MD simulations with the DC-SCAN

functional should be able to provide a consistently accurate description of the properties of water.

However, the requirement of using the Hartree-Fock density in a non-self-consistent SCAN calcu-

lation at each MD step would make ab initio MD simulations with DC-SCAN not straightforward
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to implement and expensive to perform.

While ab initio MD simulations with DC-SCAN are currently not feasible, we have

shown that the improved accuracy of the DC-SCAN functional can be exploited to develop

a data-driven many-body potential energy function, the MB-SCAN(DC) PEF, which indeed

provides a highly accurate representation of water, from small clusters in the gas phase to the

liquid phase. MB-SCAN(DC) is rigorously derived from the DC-SCAN MBE and adopts a

hybrid data-driven/physics-based scheme, where a data-driven model, which captures (short-

range) quantum-mechanical interactions arising from the overlap of the electron densities of

individual molecules at the 2-body and 3-body levels (e.g., Pauli repulsion, and charge transfer

and penetration), is integrated with a physics-based model of many-body interactions, which

is represented by classical many-body electrostatics. Importantly, we have demonstrated that

the MB-SCAN(DC) PEF achieves high accuracy by quantitatively reproducing each individual

term of the DC-SCAN MBE for water, providing a correct representation of both short- and

long-range many-body contributions. Since the DC-SCAN functional exhibits chemical accuracy

for each individual term of the MBE for water and the MB-SCAN(DC) PEF quantitatively

reproduces the DC-SCAN many-body energies, the MB-SCAN(DC) PEF effectively provides

the first demonstration of a DFT-based model that correctly describes the properties of water,

at the computational cost of advanced polarizable force fields.[72] Future applications of the

MB-SCAN(DC) PEF will focus on modeling the phase diagram of water, which was shown to be

only qualitatively reproduced by NNPs trained on SCAN data.[5, 446] We expect MB-SCAN(DC)

to be especially well suited to modeling the liquid/vapor equilibrium, which involves the making

and breaking of hydrogen bonds.

Finally, we want to emphasize that the many-body formalism adopted by the MB-

SCAN(DC) PEF for water is general and has already been used in the development of data-

driven many-body PEFs for various aqueous systems[179, 180] and molecular fluids[62, 63]

which were trained on (expensive) CCSD(T) data. It thus follows that the significantly lower
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computational cost associated with DC-SCAN calculations can enable the routine development

of MB-SCAN(DC) PEFs for generic (small) molecules which are trained on DC-SCAN data but

effectively display CCSD(T) accuracy. In this context, it should be noted that the MB-Fit soft-

ware infrastructure[447] for many-body PEFs combined with the MBX many-body energy/force

calculator[448] interfaced with i-PI[449] and LAMMPS[450] already provides a robust platform

for MD simulations of generic molecules in the gas, liquid, and solid phases using MB-SCAN(DC)

PEFs.

methods

Many-body expansion. Building upon the demonstrated accuracy of the MB-pol PEF

for water[1, 37–39] and following the same theoretical/computational approach employed in

development of DFT-based many-body PEFs,[61, 425, 451] we used eq. 6.4 to develop a data-

driven many-body PEF, MB-SCAN(DC), that consistently reproduces each term of the MBE

for water calculated using the DC-SCAN functional. Briefly, MB-SCAN(DC) includes explicit

representations of 1B, 2B, and 3B energies, and describes all higher-order nB energy terms

(n > 3) through classical many-body polarization. Specifically, ε1B in eq. 6.4 is represented by the

Partridge-Schwenke PEF,[64] while ε2B and ε3B are represented by terms describing permanent

elecrostatics, dispersion energy, and induction, which are combined with short-range permu-

tationally invariant polynomials (PIPs)[65] fitted to reproduce 2B and 3B energies calculated

with DC-SCAN for the same training sets of water dimers and trimers used in the develop-

ment of MB-pol.[37, 38] A detailed description of the theoretical and computational framework

adopted in the development of data-driven many-body PEFs for water can be found in the original

references.[37, 38, 61, 425, 451] It should be noted that, since our many-body PEFs directly

target the underlying molecular interactions, differences in the representation of the 1-body (1B)

term of eq. 5 have been found to be negligible for modeling the properties of liquid water[451]
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and the air/water interface.[452]

All DFT calculations were performed with the aug-cc-pVQZ basis set[166, 266] using

Q-Chem[453] quantum chemistry packages. Since the SCAN functional is particularly sensitive

to the real-space grid, all SCAN and DC-SCAN calculations are performed on the highly dense

Euler-Maclaurin-Lebedev (99,590) grid[333, 334] (58,410 points per atom). In this regard, the

results of a sensitivity analysis reported in Table S1 suggest that the SG2 grid[335] (∼8,000

points per atom) should also be sufficient to converge SCAN calculations. In case only smaller

grids are available, we recommend to use r2SCAN,[454] which often achieves an accuracy

similar to SCAN. Single-point energy calculations using explicitly correlated coupled cluster,

CCSD(T)-F12b, theory[455] were performed in the CBS limit by extrapolating [456, 457] the

energy values obtained with the cc-pVTZ-F12 and cc-pVQZ-F12 basis sets along with associated

auxiliary and complementary auxiliary (CABS) basis sets[458, 459] using the ORCA quantum

chemistry package.[332]

Data availability

Any data generated and analyzed for this study that are not included in this Article and its

Supplementary Information are available from the authors upon request.

Code availability

The MB-SCAN and MB-SCAN(DC) PEFs are available in MBX,[448] and can be used

in MD simulations with LAMMPS[450] and i-PI.[449] All computer codes used in the analysis

presented in this study are available from the authors upon request.
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Chapter 7

Conclusion

First, many modern polarizable water models, which attempt to describe the interactions

between water molecules using relatively simple, classical functional forms, often suffer from

error cancellation between individual many-body terms and cannot quantitatively describe the

entire energy landscape of water. More recent models such as AMOEBA+CF and MB-UCB

which adopt more advanced electrostatics, as well as classical representations for charge-transfer

interactions, perform more reliable across the terms in the many-body expansion, but still fail

to quantitatively describe the free energy landscape around its minima. Based on our analyses,

explicit many-body models such as MB-pol and fq-MB-pol provide CCSD(T)/CBS level accuracy

for equilibrium and distorted geometries.

With respect to QM/MM simulations, we demonstrate that by using a many-body potential

trained to match the level of theory in the QM region, the boundary discontinuity between the

QM and MM regions can be suppressed. This allows for the entire QM/MM system to be

treated under the same effective level of theory, so that the physics in both the QM and MM

regions are quantitatively the same, and permitting the use of transition layer free adaptive

QM/MM simulations, dramatically reducing computational expense and eliminating structural and

dynamical artifacts due to a hybrid treatment between regions. In effect this many-body QM/MM
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scheme allows for full ab-initio accuracy simulations at the cost of QM/MM. Furthermore for

such QM/MM systems we have developed a set of generalized many-body PEFs called MB-QM

which are trained to reproduce an arbitrary level of theory. These models are explicitly trained

up to the 3B to a particular ab-initio method, while the underlying electrostatic parameters e.g.

charges and polarizabilites are derived from the same level of theory, so that even the implicitly

described higher order terms are treated at ab-initio level of accuracy. In this vein, certain classes

of functionals, in particular GGAs like PBE suffer from large density over-delocalization, which

leads to long-range quantum mechanical effects extending into higher-order many-body terms,

which cannot be recovered by the implicit classical representation used in the MB-QM models.

Instead, using using density-corrected versions of those functionals, where the functional is

evaluated on the Hartree-Fock density reduces over-delocalization errors to tame the higher-order

terms. This indicates, that while our potentials are technically generalizable to any level of theory,

care must be taken to choose methods which do not suffer from severe over-delocalization so that

the MB-QM model can faithfully reproduce its corresponding level of theory.

Regarding the SCAN functional, we presented a systematic analysis of the energetic and

structural effects of the fraction of exact exchange (α) used in hybrid SCANα functionals, which

are constructed through the adiabatic connection formula. We demonstrate that the SCANα

functionals are unable to correctly describe the 2B interactions of water for all values of α , from

α=0.0 to α=0.25, and that there is a structural heterogeneity in the response of water clusters to

increasing the value of α . All low lying isomers of the water hexamer show large 2B errors on the

order of 4-5 kcal/mol, but that this error decreases with larger α for isomers with 3-dimensional

hydrogen bonding arrangements, while it correspondingly increases for 2-dimensional isomers

whose hydrogen-bonds are confined within a plane. The errors that were observed for water

cluster, extend to the ability of SCANα to describe the structure of liquid water, where through

simulations of the corresponding many-body models of SCANα , MB-SCANα , increasing the

fraction of exact exchange produces a more structured, ice-like water, with al pha=0.15 providing
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the closest agreement with both the reference CCSD(T) energies and experimental O-O RDF

at ambient conditions. Finally, we demonstrated that using DC-SCAN, a scheme where the

SCAN functional is evaluated on the Hartree-Fock density, CCSD(T) level of accuracy can be

achieved. By effectively suppressing the density driven errors in the SCAN functional, this

scheme represents the first DFT based model that can quantitatively reproduce the properties of

water from the gas to condensed phases.
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Paesani. Low-order many-body interactions determine the local structure of liquid water.
Chem. Sci., 10(35):8211–8218, 2019.

[62] Marc Riera, Alan Hirales, Raja Ghosh, and Francesco Paesani. Data-driven many-body
models with chemical accuracy for ch4/h2o mixtures. J. Phys. Chem. B, 124(49):11207–
11221, 2020.

[63] Marc Riera, Eric P Yeh, and Francesco Paesani. Data-driven many-body models for
molecular fluids: Co2/h2o mixtures as a case study. J. Chem. Theory Comput., 16(4):2246–
2257, 2020.

[64] Harry Partridge and David W Schwenke. The determination of an accurate isotope
dependent potential energy surface for water from extensive ab initio calculations and
experimental data. J. Chem. Phys., 106(11):4618–4639, 1997.

[65] Bastiaan J Braams and Joel M Bowman. Permutationally invariant potential energy surfaces
in high dimensionality. Int. Rev. Phys. Chem., 28(4):577–606, 2009.

[66] KT Tang and J Peter Toennies. An improved simple model for the van der waals potential
based on universal damping functions for the dispersion coefficients. J. Chem. Phys.,
80(8):3726–3741, 1984.

[67] JA Barker and RO Watts. Structure of water; a monte carlo calculation. Chem. Phys. Lett.,
3(3):144–145, 1969.

[68] Aneesur Rahman and Frank H Stillinger. Molecular dynamics study of liquid water. J.
Chem. Phys., 55(7):3336–3359, 1971.

[69] Bertrand Guillot. a reappraisal of what we have learnt during three decades of computer
simulations on water. J. Mol. Liq., 101(1-3):219–260, 2002.

158



[70] Carlos Vega and Jose LF Abascal. Simulating water with rigid non-polarizable models: A
general perspective. Phys. Chem. Chem. Phys., 13(44):19663–19688, 2011.

[71] I Shvab and Richard J Sadus. Atomistic water models: Aqueous thermodynamic properties
from ambient to supercritical conditions. Fluid Phase Equilib., 407:7–30, 2016.

[72] Gerardo Andrés Cisneros, Kjartan Thor Wikfeldt, Lars Ojamäe, Jibao Lu, Yao Xu, Hedieh
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[301] Lars Ojamäe and Kersti Hermansson. Ab initio study of cooperativity in water chains:
Binding energies and anharmonic frequencies. J. Phys. Chem., 98(16):4271–4282, 1994.

[302] Riccardo Conte, Chen Qu, and Joel M Bowman. Permutationally invariant fitting of
many-body non-covalent interactions with application to three-body methane–water–water.
J. Chem. Theory Comput., 11(4):1631–1638, 2015.

[303] Qingfeng Wang and Joel M Bowman. Two-component ab initio potential energy surface for
co2—h2o extension to the hydrate clathrate co2@(h2o)20 and vscf/vci vibrational analyses
of both. J. Chem. Phys., 147(16):161714, 2017.

177



[304] John P Perdew, Robert G Parr, Mel Levy, and Jose L Balduz Jr. Density-functional theory
for fractional particle number: Derivative discontinuities of the energy. Phys. Rev. Lett.,
49(23):1691, 1982.

[305] Michael G Medvedev, Ivan S Bushmarinov, Jianwei Sun, John P Perdew, and Konstantin A
Lyssenko. Density functional theory is straying from the path toward the exact functional.
Science, 355(6320):49–52, 2017.

[306] Adam Wasserman, Jonathan Nafziger, Kaili Jiang, Min-Cheol Kim, Eunji Sim, and Kieron
Burke. The importance of being inconsistent. Annu. Rev. Phys. Chem., 68:555–581, 2017.

[307] Eberhard Engel and Reiner M Dreizler. Exchange-correlation energy functional. pages
109–217. Springer, 2011.

[308] Yingkai Zhang and Weitao Yang. A challenge for density functionals: Self-interaction error
increases for systems with a noninteger number of electrons. J. Chem. Phys., 109(7):2604–
2608, 1998.

[309] Fenglai Liu, Emil Proynov, Jian-Guo Yu, Thomas R Furlani, and Jing Kong. Comparison
of the performance of exact-exchange-based density functional methods. J. Chem. Phys.,
137(11):114104, 2012.

[310] Takao Tsuneda and Kimihiko Hirao. Self-interaction corrections in density functional
theory. J. Chem. Phys., 140(18):18A513, 2014.

[311] Junwei Lucas Bao, Laura Gagliardi, and Donald G Truhlar. Self-interaction error in density
functional theory: An appraisal. J. Phys. Chem. Lett., 9(9):2353–2358, 2018.

[312] Erin R Johnson, Paula Mori-Sánchez, Aron J Cohen, and Weitao Yang. Delocalization
errors in density functionals and implications for main-group thermochemistry. J. Chem.
Phys., 129(20):204112, 2008.

[313] Aron J Cohen, Paula Mori-Sánchez, and Weitao Yang. Challenges for density functional
theory. Chem. Rev., 112(1):289–320, 2012.

[314] Adrienn Ruzsinszky, John P Perdew, and Gabor I Csonka. Binding energy curves from
nonempirical density functionals. i. covalent bonds in closed-shell and radical molecules.
J. Phys. Chem. A, 109(48):11006–11014, 2005.

[315] Min-Cheol Kim, Eunji Sim, and Kieron Burke. Ions in solution: Density corrected density
functional theory (dc-dft). J. Chem. Phys., 140(18):18A528, 2014.

[316] Min-Cheol Kim, Hansol Park, Suyeon Son, Eunji Sim, and Kieron Burke. Improved dft
potential energy surfaces via improved densities. J. Phys. Chem. Lett., 6(19):3802–3807,
2015.

[317] Min-Cheol Kim, Eunji Sim, and Kieron Burke. Communication: Avoiding unbound anions
in density ffunctional calculations. J. Chem. Phys., 134:171103, 2011.

178



[318] Yeil Kim, Suhwan Song, Eunji Sim, and Kieron Burke. Halogen and chalcogen binding
dominated by density-driven errors. J. Phys. Chem. Lett., 10(2):295–301, 2018.

[319] Suhwan Song, Min-Cheol Kim, Eunji Sim, Anouar Benali, Olle Heinonen, and Kieron
Burke. Benchmarks and reliable dft results for spin gaps of small ligand fe(ii) complexes.
J. Chem. Theory Comput., 14(5):2304–2311, 2018.

[320] John P Perdew and Alex Zunger. Self-interaction correction to density-functional approxi-
mations for many-electron systems. Phys. Rev. B, 23(10):5048, 1981.

[321] Kushantha PK Withanage, Sharmin Akter, Chandra Shahi, Rajendra P Joshi, Carlos Diaz,
Yoh Yamamoto, Rajendra Zope, Tunna Baruah, John P Perdew, Juan E Peralta, and
Koblar A. Jackson. Self-interaction-free electric dipole polarizabilities for atoms and their
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