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Abstract

To characterize the sites of synaptic vesicle fusion in photoreceptors, we evaluated the three-dimensional structure of rod
spherules from mice exposed to steady bright light or dark-adapted for periods ranging from 3 to 180 minutes using conical
electron tomography. Conical tilt series from mice retinas were reconstructed using the weighted back projection
algorithm, refined by projection matching and analyzed using semiautomatic density segmentation. In the light, rod
spherules contained ,470 vesicles that were hemi-fused and ,187 vesicles that were fully fused (omega figures) with the
plasma membrane. Active zones, defined by the presence of fully fused vesicles, extended along the entire area of contact
between the rod spherule and the horizontal cell ending, and included the base of the ribbon, the slope of the synaptic
ridge and ribbon-free regions apposed to horizontal cell axonal endings. There were transient changes of the rod spherules
during dark adaptation. At early periods in the dark (3–15 minutes), there was a) an increase in the number of fully fused
synaptic vesicles, b) a decrease in rod spherule volume, and c) an increase in the surface area of the contact between the
rod spherule and horizontal cell endings. These changes partially compensate for the increase in the rod spherule plasma
membrane following vesicle fusion. After 30 minutes of dark-adaptation, the rod spherules returned to dimensions similar
to those measured in the light. These findings show that vesicle fusion occurs at both ribbon-associated and ribbon-free
regions, and that transient changes in rod spherules and horizontal cell endings occur shortly after dark onset.
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Introduction

There is a remarkable diversity in the structure and protein

composition of specialized regions of the plasma membrane, called

‘‘active zones,’’ where synaptic vesicles dock, fuse and release their

transmitter [1–5]. Structurally, the active zone at conventional

synapses in the central and peripheral nervous system is

characterized by an electron-dense synaptic projection consisting

of a web of particles, a corona of synaptic vesicles, a cytomatrix of

filaments, proteins that regulate exocytosis and endocytosis, and

synaptic vesicles that are hemi-fused (e.g., docked) or fully fused

(e.g., forming an omega figure) with the plasma membrane [2,6–

9]. There is also a close alignment of the active zone with a

postsynaptic specialization, known as the postsynaptic density

[5,10].

The active zone of photoreceptors, auditory and vestibular hair

cells, and electroreceptors differ from conventional synapses. They

contain at least one large and distinct electron-dense structure,

which is shaped as a plate or sphere, called a synaptic ribbon or

body [11–16]. Synaptic vesicles are distributed throughout the

cytoplasm of the terminal and a small population of these vesicles

is tethered to the synaptic ribbon. Synaptic vesicle fusion is

thought to mainly occur at the base and in the immediate vicinity

of the synaptic ribbon [17–22]. However, synaptic vesicles are also

located and fuse at ribbon-free sites of saccular inner hair cells and

goldfish bipolar cells [12,23–26], implying a more extensive active

zone in these cell types. There is variability in the plasma

membrane of the active zone between the different sensory cell

types. A plasma membrane thickening is present adjacent to the

synaptic body of saccular inner hair cells [12], but not at the

plasma membrane at the base of the synaptic ribbon or in ribbon-

free regions of photoreceptor terminals [11,13–15]. There is also a

variable alignment of postsynaptic membrane densities and

receptors; for instance, cochlear inner hair cell synaptic bodies

are closely aligned with VIIIth nerve afferents [27]. In contrast,

cone synaptic ribbons are distributed at variable distances to

nearby horizontal cell endings, and more distant OFF-bipolar cell

dendrites [13,28,29].

The site of transmitter release from photoreceptors has not been

completely established. In both rods and cones, transmitter release

is thought to mainly occur at an active zone located at the base of

the synaptic ribbon where L-type Ca2+ channels are concentrated,
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and not from ribbon-free regions [11,20,30–34]. In addition,

freeze-fracture studies of rabbit and monkey cones show fused

synaptic vesicles along the base of the synaptic ribbon and the

adjacent plasma membrane, referred to as the slope of the synaptic

ridge [14]. In contrast to inner hair cells [12,17,23] there has been

no evaluation of photoreceptor terminals focused on the

distribution and location of hemi-fused and fully fused synaptic

vesicles to map transmitter release sites in these cells.

The photoreceptor synapse releases glutamate continuously at a

high rate in darkness [20,35–37] and it is therefore ideally suited

for in vivo studies concerning how physiological stimuli influence

synaptic structure and transmitter release. We evaluated changes

in rod spherule structure in light- and dark-adapted mice using

conical electron tomography and density segmentation methods

[9,38–43]. This experimental approach addresses limitations

caused by projecting the entire thickness of the section onto a

single plane (‘‘projection artifact’’), which has severely limited

studies using conventional electron microscopy due to the absence

of depth information. The rod spherule reconstructions used in

this study exhibit an isotropy in plane resolution of ,3 or ,6 nm

depending on magnification, which is sufficient to identify hemi-

fused and fully fused vesicles at the plasma membrane [43].

In retinas of both light- and dark-adapted mice, hemi-fused and

fully fused vesicles were located along the entire surface of the rod

spherule adjacent to horizontal cell axonal endings. The first

15 minutes of dark adaptation showed an increase of fully fused

vesicles at ribbon-associated and ribbon-free regions, together with

a decrease in the rod spherule volume and a concomitant increase

in the surface area of the synaptic contact. These findings show for

the first time that transmitter release occurs not only at the

ribbon’s base, but also at regions of the rod spherule located away

from the ribbon.

Results

Rod Spherule
The light-adapted rod photoreceptor axonal terminal or

spherule (blue lines, Fig. 1A) measured 1.560.3 mm radius,

2764 mm2 in surface area and 1362 mm3 in volume (mean 6

SD, n = 49; Table 2). The rod spherule contained a single ribbon

(arrows, Fig. 1A) that was shaped as a crescent and measured

0.4260.2 mm (mean 6 SD, n = 49) in height and 0.0306

0.003 mm (mean 6 SD, n = 21) in width. The arciform density,

a particle measuring ,55 nm in diameter connected the ribbon’s

base to the plasma membrane (Figs. 2A–D; 3A–B). Other

organelles in the cytoplasm included a prominent mitochondrion

(M, Fig. 1A–B), a filamentous cytoskeleton matrix, synaptic

vesicles (Fig. 1B reddish) and coated vesicles (inset, Fig. 2A). The

plasma membrane surface area at the base of the ribbon measured

,0.2 mm2. A synaptic triad made up of the rod terminal,

horizontal cell axonal endings and bipolar cell dendrites was

located at the base of the ribbon. An invagination containing the

horizontal cell endings and bipolar cell dendrites in the rod

spherule measured 8.761.5 mm2 in surface area and 2.560.5 mm3

in volume (mean 6 SD, n = 49) (green lines, Fig. 1A).

Synaptic vesicles measuring ,40 nm in diameter occupied

,75% of the rod spherule volume in light-adapted mice retinas. In

the tomograms, synaptic vesicles in the cytoplasm were spaced

apart by 110–120 nm (center-to-center). Based on center-to-center

spacing, we estimated between 580–750 synaptic vesicles per mm3

of cytoplasm or 5,800–7,500 synaptic vesicles per rod spherule.

This is lower than an earlier estimate of 8,000–27,000 synaptic

vesicles in the cytoplasm of a rod spherule [44]. We estimated in

mouse rod spherules that 272–340 vesicles were tethered to the

synaptic ribbon and 55–65 vesicles were located at the base of the

ribbon. These values are also less than estimates of ,640 to ,770

synaptic vesicles tethered to the synaptic ribbon in salamander and

mammalian rods, respectively [13,20,45] and the earlier estimate

of ,130 vesicles at the base of mammalian rod synaptic ribbons

[45].

The analysis of the three-dimensional structure of the rod

spherule identified a fourth pool, which we called ‘‘docked’’. This

pool contains 460–480 vesicles distributed in 3.060.5 mm2 (mean

6 SD, n = 3) of active zone (,150 vesicles/mm2). The vesicles of

the ‘‘docked’’ pool were hemi-fused with the cytoplasmic leaflet of

the plasma membrane (inset, Fig. 2B). Hemi-fused vesicles were

Figure 1. Rod photoreceptor axons of mouse retina. Panel A shows cross-sections of four rod spherules (blue lines). The principal organelles in
the cytoplasm are electron-dense structure representing the synaptic ribbon (arrows), the mitochondria (M), and invaginations containing the
endings of horizontal and bipolar cell processes (green lines). Synaptic vesicles are not resolved clearly at this magnification. Panel B shows a
reconstructed ribbon synapse. The ribbon appears as a pole that is sandwiched between the endings of horizontal cell (HC) endings at each side and
the bipolar cell (BP) dendrite is below the ribbon. The arciform density appears as a separate particle that links the base of the ribbon to the plasma
membrane. Synaptic vesicles appear as spheres (orange) in the cytoplasm. The yellow line outlines the boundary of the axon terminal. Bars:
A = 1.5 mm, B = 0.15 mm.
doi:10.1371/journal.pone.0016944.g001

Vesicle Docking and Fusion at a Ribbon Synapse
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located near the base of the synaptic ribbon as well as along the

slope of the synaptic ridge, and in ribbon-free regions in apposition

to the horizontal cell endings (white dots, Fig. 2B, D). Docked

vesicles often faced the electron-dense plasma membrane special-

izations of horizontal cell endings that were associated with the

base of the ribbon, and with plasma membrane regions located

away from the ribbon, suggestive of post-synaptic densities of

conventional synapses (red lines, Fig. 2A, C) [10,46]. Thus, the

docked vesicle pool was larger and occupied a greater area than

the conventionally defined synaptic vesicle pool that is associated

with the base of the ribbon and often identified as the readily

releasable pool [45].

Arciform density
We also studied the structure of the arciform density, which

linked the base of the ribbon to the plasma membrane (Figs. 1B;

Figure 2. Distribution of docked vesicles at the region of synaptic contact. The figure shows orthogonal views of a rod synapse. Panel A
shows a single plane of a reconstruction where the synapse is viewed obliquely with respect to the synaptic ribbon. Here, the ribbon appears as a
crescent with arciform densities at both ends. The red lines (also in C) highlight layers of dense material associated with the plasma membrane of the
horizontal cells. Docked vesicles often faced these dense layers that are evocative of the post-synaptic densities in central synapses. The region inside
the circle (arrow) represents the coated vesicle in the inset. Panel B shows a view of the rendered volume of the same reconstruction. The white dots
indicate the location of vesicles that are hemi-fused with the plasma membrane (the docked pool). The inset shows the characteristic structure of
these hemi-fused vesicles. The white circles indicate the tendency of these docked vesicles to be arranged in pairs. Panel C shows a single plane of a
reconstruction where the synapse is viewed perpendicular with respect to the ribbon. Panel D shows a view of the rendered volume of the same
reconstruction. As in B, the endings of horizontal cells are colored blue, docked vesicles are indicated by white dots and the white circles enclose pairs
of docked vesicles. Vesicles with larger diameters than those of the synaptic vesicles were present in horizontal cell endings and bipolar cell dendrites
(blue regions). Bar = 0.20 mm.
doi:10.1371/journal.pone.0016944.g002

Figure 3. The arciform density. Panel A shows that the arciform density (orange) is shaped as a pentamer instead of an amorphous particle. Four
sides of the pentagon are attached to the plasma membrane and the upper side to the plate of the ribbon via two short filaments (arrow). A central
core (green) and surface densities for the attachment of the tethered vesicular pool (red) comprised the ribbon. The yellow line is the perpendicular
view of the plane of the plasma membrane. Panel B shows a top view of the same arciform density. To gain a better view of this region, the ribbon
was removed by density segmentation (see Materials and Methods). This top view reinforces the idea that the arciform density is a cage that links the
ribbon to the plasma membrane (yellow). Bar: 50 nm.
doi:10.1371/journal.pone.0016944.g003
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2A–D). Instead of an amorphous density as seen in conventional

electron micrographs, our study showed the presence of particles

shaped as cages measuring ,55 nm in diameter and exhibiting

pentagonal symmetry (Fig. 3A–B). In contrast to the two-

dimensional grid arrangement in central synapses [9], the cages

were arranged in columns along the base of the ribbon. Pairs of

filaments rising from the upper surface connected the cage to the

base of the ribbon (arrows, Fig. 3A–B). The position and structure

of the filaments are consistent with their identity as Bassoon, a

protein that is required for anchoring the ribbon via RIBEYE [47]

to the arciform density [33]. Bassoon immunoreactivity is located

at the base of the ribbon [48–50] and ribbons are distributed

‘‘free-floating’’ in the cytoplasm of photoreceptors in a bassoon null

mouse mutant, which expresses a non-functional Bassoon protein

[51,52]. Furthermore, Bassoon immunoreactivity is diffusely

distribution in the photoreceptor cytoplasm in the mutant,

suggesting it is not an integral component of the ribbon [52].

Light- and Dark-Adaptation
We studied the structural properties of rod spherules of mice

placed in the dark for 3–5, 15, 30, 60 and 180 minutes (Table 2).

We observed an increase in the dimensions of the horizontal cell

axonal endings from 2.460.5 mm3 in light-adapted mice to

7.661.5 mm3 after 3–5 minutes and to 9.261.4 mm3 after

15 minutes in dark-adapted mice (column labeled Vol. HC,

Table 2). The increase in the dimensions of the horizontal cell

invaginations did not correspond to the changes of the rod

spherule volume (blue lines, Fig. 1A; column labeled Vol.

Terminal, Table 2), suggesting a reduction in the volume of the

rod spherule cytoplasm.

We estimated the surface area of the region of membrane

apposition between the rod spherule and the invaginating

horizontal cell axonal endings (i.e., the region facing the rod

spherule; green outlines, Figs. 1A–B & 4). We expected a small

increase in the surface area of horizontal cell endings (,0.18 mm2)

to correspond to the estimated number of vesicles that fused with

the plasma membrane based on the decrease in rod spherule

cytoplasmic volume. However, the surface area of the invaginating

horizontal cell axonal endings increased from 8.761.5 mm2 in

light to 1963 mm2 after 3–5 minutes and to 21.063 mm2 after

15 minutes in the dark (green, Fig. 4; Area HC endings; Table 2).

After 30 minutes in the dark, the increase in the surface area of

horizontal cell axonal endings reverted to the light-adapted

condition and remained within this range for up to 180 minutes

(Fig. 4).

We also estimated for the first time, the number of fully fused

synaptic vesicles in rod spherules of light- and dark-adapted mice

(Omega Figures/Terminal, Table 2; Figs. 5 and 6 A–D). The fully

fused vesicles, based on their size and shape, and the lack of a

cytoplasmic coat suggests they are exocytotic vesicles rather than

endocytotic vesicles [53,54]. The likelihood that the fully fused

vesicles are exocytotic is also suggested by their increased number

during the short periods of dark adaptation. There was an increase

of fully fused vesicles from 187634 per spherule in light-adapted

animals to 470655 at 3–5 minutes and 1,2806150 at 15 minutes in

dark-adapted animals. Relative to the number of fully fused vesicles

in the light condition (Table 2), the number of fully fused vesicles for

these dark adaptation periods increased by ,280% and ,680%,

respectively. The number of fully fused vesicles decreased to

475665 per spherule at 30 minutes in the dark. The number of

fully fused vesicles after 60 and 180 minutes in the dark was similar

to the number of fully fused vesicles in the light condition.

We calculated that after 15 minutes in the dark, approximately

one half of the vesicles in the rod spherule (2,900–3,750) would

have fused with the plasma membrane (Fig. 4) based on the

increase in the volume and the surface area of the invaginating

horizontal cell axonal endings as well as the number of fully fused

vesicles in the rod spherule (Table 2). After 30 minutes in the dark,

the volume and the surface area of the horizontal cell axonal

endings returned to values determined in the light-adapted

condition (Vol. HC and Area HC endings, Table 2). The number

of omega figures also returned to basal levels after 60 minutes of

dark-adaptation. In addition, rod spherules from light-adapted

retinas were indistinguishable from retinas dark-adapted for 60 or

180 minutes (Table 2).

Compared to estimates from changes in the volume of the rod

spherule, however, the number of omega figures suggests that the

number of vesicles fused at the active zone was smaller and that

the peak number of omega figures occurred at 15 minutes of dark

adaptation instead of 3–5 minutes of dark adaptation (Fig. 5).

Fully fused vesicles were distributed in a continuum that

included both regions in the vicinity of the ribbon as well as at

Figure 4. Changes in surface area. The histogram shows changes in the surface area of rod spherules and horizontal cell endings and bipolar cell
dendrites (blue and green lines, left side) in the light (LA) and the dark (DA). The x-axis plots the time in minutes and the y-axis, the surface area in
mm2. The surface area of the axon terminal did not change significantly (white rectangles). In contrast, the surface area of the horizontal and bipolar
cell endings increased in mice left for 3–5 and 15 minutes in the dark (green rectangle). After 30 minutes in the dark, the horizontal endings returned
to the same size as horizontal cell endings in the light, and they remained in the same size range up to 180 minutes in the dark.
doi:10.1371/journal.pone.0016944.g004
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regions located away from the ribbon (Fig. 6A–D). In approxi-

mately 5% of the rod spherule reconstructions, most fully fused

vesicles were clustered in ribbon-associated regions and a small

number occurred in ribbon-free regions (Fig. 6B). However, in the

majority of the reconstructions, the fully fused vesicles were

distributed near the base of the ribbon, along the slope of the

Figure 5. Vesicle fusion. The x-axis plots the time in the dark and y-axis plot the number of vesicles that fuse with the plasma membrane. The solid
line indicates the number estimated from the decrease in the volume of the axon (mean 6 SD). The dotted line indicates the number estimated from
the increase in the number of omega figures (Table 2).
doi:10.1371/journal.pone.0016944.g005

Figure 6. Distribution of fully fused vesicles or omega figures. Panel A shows a plane from the reconstruction of a ribbon synapse from a
mouse dark-adapted for 15 minutes. The omega figures are located at the base of the ribbon and along the slope of the synaptic ridge, as well at
ribbon-free sites. HC and BP indicate horizontal endings and bipolar cell dendrites, respectively. Panels B–D show the localization of omega figures
(white dots) at ribbon-associated (panel B) and ribbon-free regions of the rod spherule (panels C–D). Bar: 60 nm.
doi:10.1371/journal.pone.0016944.g006

Vesicle Docking and Fusion at a Ribbon Synapse
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synaptic ridge and in ribbon-free regions (red arrows Fig. 6A and

white dots in Fig. 6C, D). In most of the reconstructions, the

majority of omega figures (,60%) were associated with ribbon-

free regions of the rod spherule in apposition to the horizontal cell

axonal endings. Independent of their location in the active zone,

fully fused vesicles exhibited the same diameter as the synaptic

vesicles populating the cytoplasm or hemi-fused with the plasma

membrane (Fig. 6A).

We also studied whether the number of hemi-fused vesicles that

contact the plasma membrane changed during dark-adaptation.

Having shown that the number of omega figures increased after

15 minutes in the dark (Omega Figures/Terminal, Table 2; Figs. 5,

6A), we expected that vesicles that are closest to the plasma

membrane, and presumably the first to fuse with the plasma

membrane following depolarization [55,56] would decrease in

number. In the dark, however, the number of hemi-fused vesicles

per terminal was unchanged and fell within a narrow range (380–

470). The sole exception occurred in mice exposed to the dark for

3–5 minutes where the number of hemi-fused vesicles increased by

,30% (or ,800) per terminal.

Finally, we evaluated the number of coated vesicles in rod

spherules from mice in the light and dark conditions. We expected

that the number of coated vesicles would increase with dark

adaptation because photoreceptor transmitter release is continuous

in the dark [36]. The increase in rod spherule plasma membrane

area following vesicle fusion is presumably accompanied by an

increase in the rate of compensatory endocytosis and the

appearance of coated vesicles [53]. However, we found that the

number of coated vesicles (35–40/terminal) in rod spherules from

light-adapted retinas was similar to the number of coated vesicles in

rod spherules from dark-adapted retinas at each time point.

Discussion

Our findings support a conventional mechanism for neuro-

transmitter release from rod photoreceptors where several

thousand synaptic vesicles fuse at active zones in ribbon-associated

and ribbon-free regions of the rod spherule that are in apposition

to horizontal cell endings. Supporting this conclusion is a

synchronized series of events that occur with depolarization of

the rod spherule in the dark, including a decrease in the rod

spherule volume (Table 2), a large increase of hemi-fused (docked)

vesicles (Fig. 7) and an increase in the number of fully fused

(omega figures) vesicles during the first 30 minutes of darkness

(Table 2; Figs. 2A–D; 6A–D). There was an absence of intrace-

llular cisterns or vacuoles near the synaptic ribbon that would have

been indicative of compound vesicle fusion [57–60]. Finally,

synaptic vesicles were not selectively depleted at the base of the

synaptic ribbon [30] in the dark conditions used in these studies.

Synaptic vesicle fusion at ribbon-associated regions
The synaptic ribbon, the prominent presynaptic structure in

photoreceptor terminals, is associated with a large number of

vesicles that are either attached to its surface by short filaments or

are nearby the ribbon [11,13,14]. We defined the ribbon-

associated region of the rod spherule by the presence of a synaptic

ribbon, and included the plasma membrane at the base of the

synaptic ribbon (synaptic ridge) and the adjacent plasma

membrane [14]. There is a high density of hemi-fused and fully

fused vesicles near the base of the synaptic ribbon and along the

slope of the synaptic ridge in light and dark (Figs. 2B, D and 6B),

consistent with earlier structural and physiological findings of

transmitter release from this region of the photoreceptor terminal

[18,20,22].

Several different functional roles have been proposed for

synaptic ribbons, including participation in vesicle transport (i.e.,

conveyor belt, safety belt or capacitor), vesicle capture from the

cytoplasm, vesicle priming for docking and fusion, and compound

vesicle fusion [30,45,59,61–64]. Synaptic ribbons could also play a

role in clustering and organizing a high density of the molecular

components that mediate synaptic vesicle docking and fusion [17].

The perpendicular orientation of the synaptic ribbon with respect

to the plasma membrane allows for an increase in the number of

hemi-fused or docked vesicles, since fusion sites occurs along both

sides of the ribbon. Consistent with this idea is the localization

near the base of the ribbon of several proteins that are associated

with the cytomatrix of the active zone and participate in docking,

priming and fusion of synaptic vesicles, including Munc13-1,

RIM2 and CAST1 [33,49,65–68]. Furthermore, in central

synapses, the presynaptic scaffolding protein, Bassoon participates

in clustering of synaptic vesicles [69].

Voltage-gated Ca2+ channel subunits are also central components

of the molecular matrix mediating vesicle exocytosis at synaptic

ribbon active zones. An earlier freeze fracture study described large

intramembrane particles aligned with the base of the ribbon [14].

These likely include the voltage-gated Ca2+ channels [70,71]. There

is also a higher level of a1 subunit Ca2+ channel immunostaining

near the base of the synaptic ribbon [33,72,73]. These observations

are consistent with a higher density of Ca2+ entry sites near synaptic

ribbons or bodies in cochlear inner hair cells, bipolar cells and cone

photoreceptors [22,25,26,31,74–77].

Figure 7. Model of rod photoreceptor ribbon synapse. To impart
three-dimensionality, the synaptic ribbon, the tethered vesicular pool
and the endings of the horizontal cells were extended along the z-axis.
Docked vesicles are located at ribbon-associated (green) and at ribbon-
free regions (red circles) the synaptic terminal. The distribution of
docking and fusion sites along the entire synapse could account for the
capacity of ribbon synapses to release glutamate in a rapid and
sustained manner during prolong depolarization.
doi:10.1371/journal.pone.0016944.g007

Vesicle Docking and Fusion at a Ribbon Synapse
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Furthermore, mouse mutants lacking either the b2 or Ca(v) 1.4

a1-Ca2+ channel subunits are characterized by an abnormal or

absent ERG b-wave, and for the Ca(v) 1.4 a1-Ca2+ channel

subunit mutant, there is a loss of synaptic ribbons in the rod

spherules [78–81]. A mouse mutant lacking CaBP4, a calmodulin-

like Ca2+ binding protein that interacts with Ca(v) 1.4 Ca2+

channels, also shows defects in the ERG b-wave and reduction of

the number of synaptic ribbons [82]. Findings from these mutants

are congruent with the idea that Ca2+ channels in photoreceptors

are closely associated with the synaptic ribbon.

The findings of a high density of hemi- and fully fused synaptic

vesicles (Fig. 6), and the molecular components, including Ca2+

channels that participate in transmitter release at ribbon-

associated regions of the rod spherule suggests a highly efficient

positioning of docked vesicles in the ribbon active zone. This

arrangement would support rapid transmitter release from rods

including synchronous fusion of multiple vesicles that might occur

with strong depolarization [37,58,60,83–86].

Synaptic vesicle fusion at ribbon-free regions
Hemi-fused and fully fused vesicles were commonly observed in

ribbon-free regions of rod spherules in apposition to horizontal cell

axonal endings in both light- and dark-adapted retinas (Fig. 6). These

findings extend earlier reports of docked vesicles and clusters of vesicles

in ribbon-free regions of goldfish bipolar cells following treatment

with Co2+ and the PKC activator phorbol 12-myristate [24,25].

Furthermore, extensive depletion of docked vesicles by strong K+

depolarization from regions up to 800 nm from the synaptic body of

saccular hair cells [23] supports the idea that vesicle fusion occurs at

active zones in ribbon-free regions of the rod spherule.

Increasing the Ca2+ levels in rod spherules to mediate vesicle

fusion in ribbon-free sites could be accomplished by several

different mechanisms. For instance, Ca2+-induced Ca2+ release

from endoplasmic reticulum, which elevates intracellular Ca2+

levels in rod spherules and enhances sustained transmitter release

from salamander and mouse rods [87–90], could evoke vesicle

fusion. In addition, there could be an increase of intracellular Ca2+

by diffusion from Ca2+ entry sites at or near the synaptic ribbon as

suggested for goldfish bipolar and hair cells [25,76,91]. Focal

synaptic vesicle fusion at ribbon-free sites may be evoked directly

by Ca2+ from local Ca2+ channels, since diffuse L-type Ca2+

channel immunostaining is distributed to all regions of the

salamander [92–94] and mouse rod spherule [72,73]. Increases

of rod spherule Ca2+ levels would support both evoked and

spontaneous synaptic vesicle exocytosis at ribbon-free sites of

bipolar cell terminals and hair cells [22,24–26,95].

Reduced and altered photoreceptor to bipolar cell synaptic

transmission occurs in bassoon mutants, which are deficient in a

functional Bassoon protein [52]. In rod photoreceptors of the

bassoon mutant, neurotransmission is thought to be mediated by

ectopic ribbon synapses and a few remaining ribbon synapses [52].

However, synaptic vesicle fusion could also occur at active zones in

ribbon-free sites of bassoon mutant rod spherules, since postsynaptic

elements (fig. 3; [52]) and several presynaptic proteins that

participate in synaptic vesicle docking and fusion remain in the

mutant rod spherules [33]. Furthermore, pan a1 and Ca(v)1.4 a1

Ca2+ channel immunoreactivity are diffusely distributed in the

terminals of young bassoon mutants [73]. Hemi-fused and fully

fused synaptic vesicles observed at active zones in ribbon-free

regions of wild type mouse rod spherules (Figs. 6 & 7), if present in

the bassoon mutant, would likely support neurotransmission.

Consistent with this idea is the slow and sustained exocytosis

from bassoon mutant cochlear inner hair cells, which lack anchored

ribbons, but have docked synaptic vesicles [84,96].

Omega figures
Fully fused vesicles at the plasma membrane are commonly

referred to as ‘‘omega figures’’. The membranes of fully fused

vesicles are continuous with the plasma membrane and they form

a pore between the extracellular space and the lumen of the

vesicle. Omega figures and synaptic vesicles have a similar size and

they lack a cytoplasmic coat in electron micrographs [1,53,97].

Their presence is inferred to reflect vesicle exocytosis and

transmitter release based on classic studies of the neuromuscular

junction [98].

Omega figures were readily apparent in the rod spherule

tomograms, and they had a similar appearance in all regions of the

rod spherule (Fig. 6A–D). They were similar in size to vesicles in

the cytoplasm and tethered to the synaptic ribbon. Furthermore,

there were no obvious differences in their cytoplasmic coats.

Together these findings support our proposal that the omega

figures reflect exocytosis in both ribbon-associated and ribbon-free

regions. An alternative hypothesis, that omega figures at the

ribbon mediate exocytosis and omega figures at ribbon-free

regions mediate endocytosis, suggests different functional roles for

identically appearing organelles, an unlikely and unprecedented

possibility. The omega figures differed markedly in their

appearance from coated pits and other endocytotic intermediates

involving clathrin that were readily visualized in the tomograms

(not shown) [53,54,99]. The presence of coated pits and vesicles, a

feature of clathrin-mediated mechanisms, is reported in isolated

photoreceptors, and in photoreceptor terminals in situ and in vitro

(retinal slices) [11,100–105]. Consistent with these observations is

a high level of expression of clathrin and clathrin accessory

proteins, including dynamin and amphiphysin in photoreceptor

terminals [106,107]. Furthermore, the omega figures are not likely

to be synaptic vesicles undergoing a ‘‘kiss-and-run’’ exocytosis,

where synaptic vesicles have a transient fusion with the plasma

membrane [108,109]. This mode of exocytosis is not present or

rare at conventional synapses [110–112]. ‘‘Kiss-and-run’’ exocy-

tosis has not been observed in bipolar cells [24,26,113] and it is

unlikely to occur in photoreceptors [44]. Therefore, the most

parsimonious explanation for the omega figures observed in both

ribbon-associated and ribbon-free regions are fused synaptic

vesicles undergoing exocytosis.

Exocytosis and endocytosis; changes in the rod terminal
surface area and volume

To evaluate vesicle exocytosis and endocytosis in the rod

spherules, we measured simultaneously the surface area and the volume

of the invaginating horizontal cell endings in light- and dark-

adapted mice (Table 2) and compared these changes to the

number of fully fused vesicles. Mice dark-adapted for 3 to

15 minutes showed an increase in the surface area of the contact

between the rod spherule and horizontal cell endings, which

correlated with an increase in the number of fully fused vesicles,

and a decrease in the volume of the rod spherule. Based on these

findings, we conclude that vesicle exocytosis a) accounts principally

for the increase in the number of fully fused vesicles, and b)

contributes to the synchronized expansion of the rod terminal

surface area and the decrease in the volume of the rod spherule

during the short duration dark conditions. Therefore, in mice

dark-adapted for 30 minutes or more, the decrease in the surface

area of the axon spherule in apposition to horizontal cell endings

(Table 2) is due to compensatory endocytosis.

The decrease in the volume of the cytoplasm of rod spherules

suggests that 2,500–3,000 synaptic vesicles fuse at rod spherule

active zones during the first 30 minutes of dark-adaptation. On

this basis, we expected a modest increase of the surface area of the
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rod synaptic contact reflecting vesicle fusion at the active zone.

Unanticipated however, was the marked increase in rod terminal

surface area, which would require .200,000 vesicles fusing with

the plasma membrane to compensate for the loss in the spherule’s

volume. Since the rod spherule cytoplasm is estimated to contain

5,800–7,500 synaptic vesicles, we propose that a mechanism

opposing the loss of the rod spherule volume involves both an

increase in rod terminal surface area concomitant with swelling of

the horizontal cell endings (a balloon-within-a-balloon). A

consequence of this ‘‘balloon-within-a-balloon’’ model is the

expectation that horizontal cell endings are dynamic and prevent

the collapse of rod spherules by swelling and shrinking during early

stages of dark-adaptation.

Morphological changes similar to those described by a ‘‘balloon-

within-a-balloon’’ model have been observed in other vertebrate

photoreceptors. Photoreceptor membrane invaginations called

diverticula are located in rod spherules [13,100,114,115]. In cat

rod spherules, there was a slight increase of the surface area

(0.660.56 vs. 1.4260.61 mm; p,0.1) of diverticula at two hours of

dark-adaptation [13]. Interestingly, an earlier qualitative study of

the chicken retina reports extensive invaginations within the rod

spherule that are greatest an hour after the onset of darkness and

their disappearance after three hours in the dark [100]. Coated

vesicles, which are observed in both the mouse and chick retina,

appear to be more frequent in the chick retina, and this may be

related to the extent of the membrane invaginations and the longer

periods of dark adaptation used in this study. Together, these

observations suggest that the rates of exocytosis and endocytosis in

rod spherules differ at the beginning of the dark-adaptation period

in both mouse and chicken, and that these rates equilibrate over a

period of 30 minutes for mouse (Table 2) and 180 minutes for

chicken rod spherules. The similarity of the time course in the

changes of spherule area in these two species, suggests the same

cellular mechanisms mediate exocytosis and endocytosis during

dark-adaptation in vertebrate rod photoreceptors.

There are other dynamic changes in the structure of non-

mammalian photoreceptor terminals in light and dark [103,116].

For instance, in turtle cones, after one-hour in the dark, there is

extensive invagination of the pedicle that is reversed by light

exposure; in darkness, there is an increase in the surface density of

the invaginating processes, consistent with our observations of an

increase in the surface area of the rod spherule at the beginning of

dark-adaptation. There are also dynamic morphological changes

of horizontal cell endings associated with synaptic activity in teleost

cones during light adaptation [116–118]. Fish horizontal cell

dendritic spinules appear and increase the synaptic contact area in

light-adapted cone terminals and they rapidly disappear at light

offset. Spinule dynamics are concurrent with the changes in the

feedback signal recorded from horizontal cells, suggesting they are

sites of horizontal cell-cone communication, and that changes of

the area of synaptic contact in fish cone synapses could provide a

mechanism for cone modulation [116,119]. These findings with

our observations of changes in rod spherule size with dark

adaptation are consistent with a high level of structural plasticity of

photoreceptor synapses.

Exocytosis; docked vesicle pool
We anticipated that the hemi-fused (docked) vesicle pool would

decrease in rod spherules during dark adaptation, based on an

earlier study in which, following depolarization with high-K+

saline, saccular hair cell ribbon synapses showed a decrease of

73% of the number of docked vesicles at ribbon-associated and

ribbon-free zones [23]. Similarly, strong depolarization of goldfish

bipolar cells results in a loss of about 50% of the synaptic vesicles

tethered to the synaptic ribbon [59]. Surprisingly, in the rod

spherule, we found that the number of docked vesicles was

independent of the length of time that the mice were left in the

dark. The differences between our findings and the saccular hair

cell and bipolar cell studies may be due to differences in the

experimental design. Whereas we used an in situ preparation with

vesicle release evoked by darkness, the in vitro preparations with the

saccular hair cells were depolarized by high K+ for 30 minutes and

the bipolar cells were depolarized by strong electrophysiological

stimulation or high K+. The strong depolarization protocols used

for the hair cell and the bipolar cell presumably evoke greater

vesicle fusion than the dark evoked depolarization of rods.

In summary, shortly after dark onset, depolarization induces

several thousand synaptic vesicles to fuse at active zones in rod

spherules. The distribution of hemi-fused and fully fused vesicles

indicates that docking and exocytosis occurs along the entire

region of the rod spherule facing the horizontal cell axonal

endings, and not just at or near the synaptic ribbon’s base (Figs. 6

& 7). The distribution of vesicle fusion sites supports the hypothesis

that the entire pre-synaptic terminal, not just the limited region

around the synaptic ribbon’s base, participates in transmitter

release from rod photoreceptors.

Materials and Methods

Ethics Statement
Animal care and use protocols (ARC #1998-064-41A and ARC

#1998-014-13C) were approved by the UCLA Animal Care and

Use Committee. All of the animal studies were performed in

accordance with ARVO’s Use of Animals in Ophthalmic and

Visual Research and PHS Policy on Humane Care and Use of

Laboratory Animals. Male and female C57Bl/6J mice, 10 to

12 weeks old (The Jackson Laboratories, Bar Harbor, Maine),

were housed with 12 hour light-dark cycle. Light-adapted mice

were housed under room illumination (,750 lux) and the eyes

were collected at the mid-point of the light phase. Dark-adapted

mice were placed into a light-tight box at the mid-point of the light

phase for 3–5, 15, 30, 60 and 180 minutes. Mice were euthanized

by cervical dislocation, which is approved by the AVMA Panel on

Euthanasia (2000).

Preparation of Specimens
The eyes were rapidly removed and dissected under a dim red

light (Wratten IR filter 87C). The eyecups were washed briefly in

HEPES/NaCl/glucose buffer, pH 7.2 and immersed in a solution

containing 2.5% paraformaldehyde and 2% glutaraldehyde in

0.1 M Na phosphate buffer, pH 7.2, for 3 hours at room

temperature. Dissection of the eye and fixation of the eyecup

was estimated to take 1–3 minutes.

The eyecups were cut into quadrants and immersed in 0.1 M

Na cacodylic buffer, pH 7.4, with 3% glutaraldehyde and 0.5%

tannic acid for 30 minutes at room temperature. They were

washed in 0.1M Na cacodylic buffer and 4% sucrose, post-fixed in

OsO4 for 90 minutes and incubated in 0.5% uranyl acetate for

48 hours at 4uC. The retinal samples were dehydrated in graded

solutions of ethanol and passed through one change of propylene

oxide. The quadrants were trimmed to 2 mm2 pieces, embedded

in Epon and cured for 48 hours at 60uC. Thin sections (grey-to-

silver interference color) were cut perpendicular to the vitreous

using a RMC MTX Ultramicrotome. Sections were collected on

carbon-coated mesh grids and stained with uranyl acetate and lead

citrate. For all conical series, 10 nm diameter gold particles, used

as fiduciary markers for image alignment were deposited on the

sections before coating them with carbon.
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Conical Tomography
All methods were developed in our laboratories and have been

described previously [9,38–43]. For each experimental condition

(Table 1), we collected three conical series using a Gatan 650

Single Tilt Rotating Holder in a FEI Tecnai 12 electron

microscope at 120 KV. The images were collected with a 2k62k

CCD Gatan camera using a minimum-dose method: searching the

section at a magnification of 2,7006 and focusing away from the

area of interest. The specimens were tilted at 55u and rotated in 5u
increments through a complete 360u turn. Collection of the

conical series started with an un-tilted projection of the region.

After completing the series, the specimen was brought back to 0u
tilt to collect a final projection. The difference in the distance

between the same gold particles in both projections was used to

determine specimen shrinkage from radiation damage.

Alignment and preliminary reconstruction required putting the

three Euler angles, a, b, and c, and the x and y shifts into a

common reference system. The x and y shifts were obtained from

the coordinates of the gold particles that were deposited on the

surface of the section. First, a gold particle was selected as the

center for all the projections of the conical series. After centering,

the images were aligned using the coordinates of 5–6 gold particles

present in all images of the series. After alignment, preliminary

three-dimensional maps were calculated using a weighted back

projection algorithm. To improve resolution, the preliminary

maps were refined using projection matching. First, we performed

a global alignment where the projections were iteratively cross-

correlated with re-projections of an updating reconstruction.

Second, a local alignment was performed to correct for the

deformations induced by radiation damage. This strategy

involved: a) partition of the preliminary reconstruction into sub-

volumes, b) extraction of corresponding sub-areas for each sub-

volume from the micrographs of the tilt series, c) re-projection of

each sub-volume according to the orientation parameters, and d)

refinement of these parameters by correlating each sub-area to the

corresponding computed projection. The thickness of the plasma

membrane was also used to estimate the resolution of the refined

conical maps. Since there was a significant variability in the

distribution of the densities comprising the triple-layered unit

membrane structure, we measured the distance between the

centers of the layers in the plasma and vesicular membrane.

Consistent with our work on neocortical synapses [9,41–43], the

resolution of the conical maps at 11,0006 was ,6 nm, and at

31,0006 it was ,3 nm in all directions.

The Amira (www.amiravis.com) software package was used to

visualize the reconstructed synapses as well as those segmented

using JUST (Java User Segmentation Tool), a program that

combines the 3D watershed algorithm with supervised classifica-

tion [40]. Semiautomatic segmentation involves: a) creation of a

three-dimensional watershed map of the volume, b) extraction of

the background noise, c) extraction of vesicles, plasma membranes

and gold particles, d) extraction of regions with high, medium and

low densities and e) composition of a final segmentation map

where all segmented structures were analyzed and conflicting

assignments resolved.

Measurements of the volume and the surface area of both the

rod spherule and the horizontal cell endings cells were estimated

from single projections using the ImageJ software package

(rsbweb.nih.gov/ij/). For each experimental condition, we traced

the outline of the rod spherule, horizontal axonal endings and

bipolar cell dendrite using the freehand selection tool (green,

Fig. 1A). From the perimeters, the radius of the equivalent sphere

Table 1. List of reconstructions.

Reconstruction Condition Magnification

05_28 Light 11,000

06_03 Light 11,000

07_10 Light 11,000

06_26 Dark (3–5 min) 11,000

06_30 Dark (3–5 min) 11,000

08_03 Dark (3–5 min) 11,000

05_11 Dark (15 min) 15,000

05-13 Dark (15 min) 15,000

05_22 Dark (15 min) 15,000

04_22 Dark (30 min) 11,000

05_05 Dark (30 min) 15,000

05_19 Dark (30 min) 15,000

07_29 Dark (60 min) 11,000

07_31 Dark (60 min) 11,000

08_01 Dark (60 min) 11,000

06_12 Dark (180 min) 11,000

06_15 Dark (180 min) 11,000

08_04 Dark (180 min) 11,000

doi:10.1371/journal.pone.0016944.t001

Table 2. Changes in rod spherules during dark adaptation.

Vol. Terminal (mm3) Vol. HC Endings (mm3) Area HC Endings (mm2) Omega Figures/Terminal

Light-adapted

13.062.0 (49) 2.460.5 (49) 8.761.5 (49) 187634 (3)

Dark-adapted

3–5 min 14.061.5 (32) 7.661.5 (32) 19.063.0 (32) 470655 (3)

15 min 13.861.5 (28) 9.261.4 (28) 21.063.0 (28) 12806150 (3)

30 min 13.561.5 (33) 2.461.0 (33) 9.061.0 (33) 475665 (3)

60 min 13.061.5 (46) 4.261.0 (46) 12.563.0 (46) 4569 (3)

180 min 14.062.0 (41) 3.061.0 (41) 10.063.0 (41) 246632 (3)

The measurements express mean6SD and the number of measurements in parentheses. The number of omega figures was the average contained in three
reconstructions.
Vol. = volume; HC = horizontal cell.
doi:10.1371/journal.pone.0016944.t002
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was calculated and used to estimate surface areas and volumes.

Since the bipolar dendrites are smaller and did not change like the

horizontal cell endings, they were included in the calculation.

The number of hemi- (docked) and fully fused (omega figures)

vesicles was obtained from the conical tomograms. To estimate

surface area, we measured the length of the membrane in the x-y

plane and counted the number of slices that contained the

membrane in the z-plane. Next, we estimated the number of

docked vesicles and omega figures. Vesicles where the region of

contact was a single leaflet of the plasma membrane represented

the docked pool (Inset, Fig. 2A). Small, uncoated vesicles that are

fused with the plasma membrane and form a pore that is

continuous with the extra-cellular space were defined as omega

figures. Since the reconstruction was ,50 nm in thickness, hemi-

fused vesicles and omega figures with more than 2/3 of the

diameter within the reconstructed volume were counted as 1, those

which were one half of their diameter as one-half and less than

that were not included in the counts.

The number and distribution of hemi- and fully fused vesicles

relative to the plasma membrane was determined by labeling their

centers using the landmark editor feature of Amira (Figs. 2 B, D; 6

B–D). The landmark function was also used to measure the center-

to-center spacing of vesicles at the plasma membrane, synaptic

ribbon and distributed to in the cytoplasm. The distance between

neighboring vesicles was calculated using the formula:

!((x02x1)2+(y02y1)2+(z02z1)2), where x, y and z are the coordi-

nates of these centers. The angle formed by three consecutive

vesicles was calculated with the formula: arccos((v1Nv2)/

(|v1|*|v2|)), where v1 and v2 are vectors, (N) is the dot product

and |v1|*|v2| are the multiplied normalized vectors. The

thickness of the membranes was estimated from the distance

between the centers of the dense layers flanking the electron-lucent

core [9,42,43].
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