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Abstract

On the Uniqueness of Higher Energy Stationary States of the Schrödinger–Newton

System

by

Robert Leo Hingtgen

This thesis is a study of the uniqueness of the higher stationary states of the Schrödinger–

Newton system under the assumption of spherically symmetric solutions. We begin with a

theory of dark matter put foward by Bray [2] involving the Einstein–Klein–Gordon system of

equations, and then pose the Schrödinger–Newton system as the low–field nonrelatavistic limit

of the Einstein–Klein–Gordon system. From here, by imposing spherical symmetry, we show

that the potential term in the Schrödinger–Newton system can be seen as a nonlinear perturba-

tion from the Coulomb potential 1
r on the half–line [0,∞). After proving uniqueness of bound

states for the Hydrogen atom on the half–line, we then proceed by defining weighted Banach

spaces for which the Schrödinger operator representing the Hydrogen atom on the half–line is

Fredholm of index 0. In the last chapter, we detail an iteration scheme involving the implicit

function theorem to show a correspondence between bound state solutions of the Hydrogen

atom on the half–line and bound state solutions of the full Schrödinger–Newton system to prove

the uniqueness result.
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Chapter 1

Introduction

One of the earliest accounts of our awareness as a species to what we now call dark

matter is attributed to Fritz Zwicky in the 1930s [21] with his study of the Coma cluster by use

of the Virial Theorem. The Theorem is an elegant argument suggesting a need for the existence

of additional matter, more than the mass-to-luminosity ratio of recorded galaxy clusters at the

time would suggest. Over the following eight decades following Zwicky’s original work, the as-

tronomically observed evidence for the existence of dark matter has accumulated tremendously.

From Rubin & Ford’s work in the early 1970s on flat rotation curves of disk galaxies [7] to

gravitational lensing observed in collisions of galaxy clusters (such as the Bullet Cluster), the

question of whether or not dark matter exists has been definitively answered in the affirmative.

For the interested reader, a detailed recreation of Zwicky’s original argument can be found in

the appendix.

However, while existence is accepted, the precise character of what dark matter is has

yet to come to a unambiguous conclusion. For this work, we will primarily focus on a theory
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of dark matter known as the scalar field dark matter (SFDM) theory, which is also known as

the wave dark matter (WDM) theory or Bose–Einstein condensate (BEC) theory. Our work

began from a paper [2] by Hubert Bray that gave a Lagrangian theory for a version of SFDM in

which the scalar field representing dark matter arose from a geometrical consideration. A more

detailed accounting of this fact is presented in the next section of this paper, while the larger

details are left to the appendix.

In general, this version of scalar field dark matter is represented by spherically symmetric

solutions to the Einstein–Klein–Gordon equation. The current accepted cosmological paradigm

is the ΛCDM model, Λ Cold Dark Matter (Λ representing the cosmological constant), in which

the dark matter is slowly varying or slow moving. As such, understanding the dynamics of this

SFDM theory can be done in the nonrelatavistic low-field limit. In this case, the Einstein-Klein-

Gordon system of equations reduces to the Schrödinger–Newton system, and the third section

of this paper is devoted to this proof.

The Einstein–Klein–Gordon equations have also been used in the study of boson stars

[1], and the Schrödinger–Newton system has also been used to describe wave function col-

lapse due to gravitational interaction [14]. In these situations, as well as the one considered

in this work, knowledge pertaining to the character of bound (stationary) state solutions to the

Einstein–Klein–Gordon & Schrödinger–Newton system is paramount. The existence of a dis-

crete countable family of stationary state solutions to both systems has been known for some

time [13] [1], and there has been many results showing that the ground state (lowest energy

eigenvalue stationary state) is unique in a myriad of conditions. [11] [5] Numerical models

strongly suggest that the higher bound states are, in fact, unique. [14] [10] However, what has
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eluded rigorous mathematical proof up to this point is the uniqueness of these higher stationary

state solutions.

Our goal for this work is to present an argument for showing the uniqueness of the higher

bound states of the simpler Schrödinger–Newton system under the assumption of spherically

symmetric solutions, with a future project purposed to extending these results to the higher en-

ergy spherically symmetric stationary states of the Einstein–Klein–Gordon system. At chapter

four, the argument begins in earnest by showing that the potential term in the Schrödinger–

Newton system can be viewed as a nonlinear perturbation of the Coulomb potential on the

half–line [0,∞). In the fifth chapter we collect some properties of solutions to the linearization

of the Schrödinger–Newton system, which is the Hydrogen atom on the half–line. In particular

we show that the eigenvalues of the Hydrogen atom on the half–line are simple (i.e. each bound

state in unique). Chapter six is devoted to showing that the operator representing the Hydrogen

atom on the half–line is in fact a Fredholm operator of index 0 over a particular weighted Ba-

nach space. Concluding in chapter seven, we present a sketch of an iteration scheme involving

the implicit function theorem to achieve the desired result.

This thesis is a current work-in-progress towards the result of proving uniqueness of the

higher bound states under the assumption of spherically symmetric solutions. The implicit func-

tion theorem gives us a smooth extension of the eigenvector/eigenvalue pairs of the Hydrogen

atom on a neighborhood of the parameter β = 0. What remains to be shown is:

• the extension of each eigenvalue/eigenvector pair continues up to β = 1.

• the Fredholm property on the Frechet derivative at every point, 0≤ β≤ 1, is maintained.
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Chapter 2

An Action Functional for Scalar Field Dark

Matter

The metric dependent Einstein–Hilbert action is given by

L(g) =
∫

U
(R−2Λ)dVg,

where U is a pre–compact open set of a spacetime N, R the scalar curvature, and Λ the cosmo-

logical constant. For a metric that is a critical point of the Einstein–Hilbert action, one recovers

Einstein’s equation in a vacuum,

G+Λg = 0 ⇐⇒ Ric− 1
2

Rg+Λg = 0.

This derivation can be found in the appendix for the curious reader. Going further, from the

works of Cartan [4] and Weyl [20], Einstein’s equation with cosmological constant is the only

result one can expect for metrics that are critical points of functionals of the form

∫
Φ(U)

QuadM(M∪M′)dVR4 , M = {gi j}, M′ = {gi j,k}.
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where Φ : Ω⊂N→R4 is a coordinate chart of a spacetime N, and QuadM(M∪M′) is shorthand

for

QuadM(M∪M′) = ∑
α,β

Fαβ(M)mαmβ,

a general quadratic expression in elements from the set of metric components and their deriva-

tives and Fαβ functions on M = {gi j}.

In [2], action funtionals dependent upon a choice of connection ∇ as well as a choice of

metric g are considered.

FΦ,U(g,∇) =
∫

Φ(U)
QuadM(M′∪M∪C′∪C)dVR4 , C = {Γi jk}, C′ = {Γi jk,l}.

In particular, the author of [2], suggests a theory of scalar field dark matter in which the scalar

field manifests as the deviation of the choice of connection ∇ on the spacetime from the standard

Levi–Civita connection.

To be more specific, let

D(X ,Y,Z) = 〈∇XY,Z〉g−〈∇XY,Z〉g,

be the (0,3)-tensor representing the difference between a given connection ∇ and the Levi–

Civita connection ∇. Defining γi jk = D[i jk] to be the antisymmetrization of the tensor Di jk, [2]

considered a specific action meeting the form of the general action functional above,

FΦ,U(g,∇) =
∫

U
(R−2Λ− c1|dγ|2− c2|γ|2)dVg,

where c1 and c2 are constants, and | · | is the norm on k–forms given by the Hodge dual, i.e.

|γ|2dVg = γ∧?γ.
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Defining the vector field v by,

γ = ?(v∗)

where v∗ is the 1–form dual to v in the metric g and ? is the Hodge star operator, then moving

from terms of γ to terms of v, and leaving the following computations to the appendix, we have

the following: |γ|2dVg = −|v|2dVg and |dγ|2dVg = −(∇ · v)2dVg. Thus, the action functional

takes the form,

FΦ,U(g,∇) =
∫

U
(R−2Λ+ c1(∇ · v)2 + c2|v|2)dVg.

Assuming a pair (v,g) of vector field v and metric g is a critical point of the action functional

above leads to the following system of equations

G+Λg = c2(v∗⊗ v∗)− 1
2
[c1(∇ · v)2 + c2|v|2]g

∇(∇ · v) = c2

c1
v.

If we now define the following scalar function f as,

f =
(

c1

c2

)1/2

∇ · v.

and introduce the constants ϒ and µ0

c2

c1
= ϒ

2, c2 = 16πµ0,

the system then becomes

G+Λg = 8πµ0

[
2

d f ⊗d f
ϒ2 −

(
|d f |2

ϒ2 + f 2
)

g
]

�g f = ϒ
2 f ,
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which is the Einstein–Klein–Gordon system with a very specific energy–momentum tensor.

Note that �g in the formula above denotes the d’Alembertian operator. Thus solutions to the

Einstein–Klein–Gordon system with a cosmological constant in geometrized units (G = c =

1) arise naturally as critical points of the given action functional. As the components of the

connection ∇ can be written as

Γi jk =

(
1
ϒ

)
(?d f )i jk +

1
2
(gik, j +g jk,i−gi j,k),

we find the scalar function f encapsulates the deviation of ∇ from the Levi–Civita connection.

What we have shown, which is an abridged version of Bray’s work in [2], is a theory of scalar

field dark matter that arises from deviation from the Levi–Civita connection on a spacetime.

Furthermore, it is conjectured in [2] that the only action functionals for which critical

points (g,∇) exist must be of the form

FΦ,U(g,∇) =
∫

U
(cR−2Λ− c1

4!
|dγ|2−QuadM(D))dV.

Which, if true, would imply that the Einstein–Klein–Gordon system is the only result one could

expect from critical points of action functionals of the form

FΦ,U(g,∇) =
∫

Φ(U)
QuadM(M′∪M∪C′∪C)dVR4 ,
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Chapter 3

From Einstein–Klein–Gordon to

Schrödinger–Newton

Here we derive the system of ordinary differential equations for the spherically symmetric

static states of wave dark matter. This is an abridged version of what can be found in [3]. The

spherically symmetric static states are solutions to the Einstein–Klein–Gordon equations,

G = 8π

(
d f ⊗d f +d f ⊗d f

ϒ2 −
(
|d f |2

ϒ2 + | f |2
)

g
)
.

�g f = ϒ
2 f .

(Note: This is not the exact version of the Einstein–Klein–Gordon equation that closed the prior

chapter but a complex version of it. The derivation of which can be understood to come from

the derivation of the previous chapter on the real and imaginary parts of f respectively.) Recall

from the prior section, f is the complex scalar field representing dark matter stemming from the

deviation of the given connection on our spacetime from the standard Levi–Civita connection.
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To begin, the spherically static metric is given by

g =−e2V (r)dt2 +

(
1− 2M(r)

r

)−1

dr2 + r2dθ
2 + r2 sin2

θdφ
2,

and define,

Φ(r) = 1− 2M(r)
r

,

so the metric takes the simpler form,

g =−e2V (r)dt2 +Φ(r)−1dr2 + r2dθ
2 + r2 sin2

θdφ
2.

In the low–field limit, the functions M(r) and V (r) regain their typical Newtonian meaning of

total mass inside a ball of radius r and gravitational potential at radius r respectively.

To find solutions to the Einstein–Klein–Gordon system, we begin by first collecting the

nonzero Christoffel symbols for the metric g, and they are

Γ
t
tr = Γ

t
rt =Vr Γ

θ

rθ = Γ
θ

θr = r−1

Γ
r
tt =Vre2V

Φ Γ
θ
φφ =−sinθcosθ

Γ
r
rr =−

1
2

Φ
−1

Φr Γ
φ

rφ
= Γ

φ

φr = r−1

Γ
r
θθ =−rΦ Γ

φ

θφ
= Γ

φ

φθ
= cotθ

Γ
r
φφ =−r sin2

θΦ.

Using these equations, and the component formula for the Riemann curvature tensor,

Rµνρ
α =−∂µΓ

α
νρ +∂νΓ

α
µρ−Γ

σ
νρΓ

α
µσ +Γ

σ
µρΓ

α
νσ.
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we find that the nonzero components of the Ricci tensor are precisely the diagonal terms,

Rictt = (Vrr +V 2
r +2r−1Vr)e2V

Φ+
1
2

Vre2V
Φr.

Ricrr =−(Vrr +V 2
r )−

1
2

VrΦ
−1

Φr− r−1
Φ
−1

Φr

Ricθθ = 1−Φ− 1
2

rΦr− rVrΦ

Ricφφ = sin2
θ

(
1−Φ− 1

2
rΦr− rVrΦ

)
.

Using these formulas we find that the scalar curvature associated to the metric is

R =−2(Vrr +V 2
r +2r−1Vr)Φ−VrΦr +2r−2(1−Φ− rΦr).

Hence the nonzero components of the Einstein tensor are as follows.

Gtt = r−2e2V (1−Φ− rΦr)

Grr =−r−2
Φ
−1(1−Φ−2rVrΦ)

Gθθ = r2
[
(Vrr +V 2

r + r−1Vr)Φ+
1
2

r−1
Φr +

1
2

VrΦr

]
Gφφ = r2 sin2

θ

[
(Vrr +V 2

r + r−1Vr)Φ+
1
2

r−1
Φr +

1
2

VrΦr

]

For wave dark matter the energy momentum tensor, T , is

T =
d f ⊗d f +d f ⊗d f

ϒ2 −
(
|d f |2

ϒ2 + | f |2
)

g.
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Thus the nonzero components of the energy momentum tensor are

Ttt = e2V | f |2 +ϒ
−2| ft |2 +ϒ

−2e2V
Φ| fr|2

Ttr = Trt = ϒ
−2( ft fr + ft fr)

Trr =−Φ
−1| f |2 +ϒ

−2e−2V
Φ
−1| ft |2 +ϒ

−2| fr|2

Tθθ = ϒ
−2r2(−ϒ

2| f |2 + e−2V | ft |2−Φ| fr|2)

Tφφ = ϒ
−2r2 sin2

θ(−ϒ
2| f |2 + e−2V | ft |2−Φ| fr|2).

Now, solving Einstein’s equation, G = 8πT , is nothing more than equating the components of

G and T that have been found. The equations coming from the θθ and φφ components are

identical, and thus we only obtain the following four equations.

1−Φ− rΦr = 8πr2[| f |2 +ϒ
−2e−2V | ft |2 +ϒ

−2
Φ| fr|2]

0 = ft fr + ft fr

1−Φ−2rVrΦ = 8πr2[| f |2−ϒ
−2e−2V | ft |2−ϒ

−2
Φ| fr|2]

ϒ
2r2
[
(Vrr +V 2

r + r−1Vr)Φ+
1
2

r−1
Φr +

1
2

VrΦr

]
= 8πr2(−ϒ

−2| f |2 + e−2V | ft |2−Φ| fr|2)

From the following well known formula for the coordinate expression of the d’Alembertian,

�g f =
1√
|g|

∂λ(
√
|g|gλµ

∂µ f ).

the Klein–Gordon equation becomes,

−e−2V ftt +VrΦ fr +
1
2

Φr fr +2r−1
Φ fr +Φ frr = ϒ

2 f .

The four equations coming from the Einstein equation paired with the Klein–Gordon equation
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form an overdetermined system of equations. As such, it suffices to solve the following system.

1−Φ− rΦr = 8πr2[| f |2 +ϒ−2e−2V | ft |2 +ϒ−2Φ| fr|2]

1−Φ−2rVrΦ = 8πr2[| f |2−ϒ−2e−2V | ft |2−ϒ−2Φ| fr|2]

−e−2V ftt +VrΦ fr +
1
2 Φr fr +2r−1Φ fr +Φ frr = ϒ2 f .

Lastly, with the added assumption that the complex scalar field f takes the form f (t,r) =

F(r)eiωt for F a real–valued function and ω a constant real, the system above reduces to three

coupled ordinary differential equations,

Mr =
4πr2

ϒ2

[
(ϒ2 +ω2e−2V )F2 +ΦF2

r
]

ΦVr =
M
r2 − 4πr2

ϒ2

[
(ϒ2−ω2e−2V )F2−ΦF2

r
]

Frr +
2
r Fr +VrFr +

1
2

Φr
Φ

Fr = Φ−1(ϒ2−ω2e−2V )F.

Of particular to note, the ansatz f (t,r) = F(r)eiωt , led to the system above being independent

of time t, hence we are looking at static solutions.

From [3], the low–field limit of the system above comes from imposing the approxima-

tions

e2V ≈ 1, Φ≈ 1,
Vr

ϒ‖V‖∞

≈ 0,
Φr

ϒ‖V‖∞

≈ 0,

in particular, imposing the condition that the metric approximates the Minkowski metric,

g≈−dt2 +dr2 + r2dθ
2 + r2 sin2

θdφ
2,

By further adding the assumption that the group velocities of the wave dark matter are much

less than the speed of light, i.e. the system is in the nonrelativistic limit as well, gives the

approximations,

ω

ϒ
≈ 1,

Fr

ϒ‖F‖∞

≈ 0.
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Thus, in the low–field nonrelativistic limit, the coupled system of ordinary differential

equations above reduce to [3]

Mr = 4πr2 ·2F2

Vr =
M
r2

Frr +
2
r

Fr = 2ϒ
2V F.

The second equation is the standard inverse square law of gravitation from Newtonian theory,

while the first equation tells us that 2F2 represents the mass-energy density of the dark matter

at radius r. However, by combining the first two equations above, the system can be written

equivalently as

(rV )rr = 8πrF2

(rF)rr = 2ϒ
2rV F.

Which is precisely the Schrödinger–Newton system as seen in the next chapter.

Thus, we recover the commonly referenced result [9] that the Schrödinger–Newton system

is the low–field nonrelativistic limit of the Einstein–Klein–Gordon equation. We have arrived

at the Schrödinger–Newton system via a very particular avenue, but in the next section we

will introduce the system in generality. We lose no focus of our goal in doing so, and other

applications of this system can come into view with this level of generality. [16]

13



Chapter 4

Character of the Schrödinger–Newton system

For a single particle of mass m, the time–independent Schrödinger–Newton equations in

R3 take the form

− ~2

2m
∆ψ+Uψ = λψ,

∆U = 4πGm2‖ψ‖2.

where ψ is the wavefunction, U is the gravitational potential energy, ~ is Planck’s constant, G

the gravitational constant, and λ is the energy eigenvalue. The following change of variable,

ψ =

(
~2

8πGm3

) 1
2

S, λ−U =
~2

2m
V,

gives the Schrödinger–Newton system written in a ‘cleaner’ form as

∆S =−SV,

∆V =−S2.
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We will consider solutions under the assumption of spherical symmetry (V , S only dependent

on radial distance from orgin, r), thus the system further reduces to

(rS)′′ =−SV,

(rV )′′ =−rS2.

In finding a solution to the Schrödinger–Newton system, as it is a coupled system of

second order differential equations, we require initial data on S, V , and their first derivatives.

To begin, our initial assumption of spherically symmetric solutions requires that S and V are

even functions of r, i.e. S(−r) = S(r) for r ∈ [0,∞) (similar for V ). Even functions have a

vanishing derivative at 0, thus our initial assumption on the character of our solution forces

S′(0) =V ′(0) = 0.

There are also two scale invariances within the system. First, if the triple (r,S,V ) is a

solution to the Schrödinger–Newton system, then so is the triple

(α−1r,α2S(α−1r),α2V (α−1r))

for α a constant real number. At this time, we define the normalization integral of S as

I =
∫

∞

0
r2S2dr.

It should be noted, that when I is finite, under the scaling (r,S) 7→ (r̂, Ŝ) = (α−1r,α2S(α−1r)),

that the normalization integral transforms as I 7→ Î = α4I. The second scale invariance is simply

that if the triple (r,S,V ) is a solution, then so is the triple (r,−S,V ).

The second scale invariance allows one to assume that the initial value of S, i.e. S0 = S(0),

is nonnegative. The first scale invariance can be used to either set the normalization integral to
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1, or to set a specific value for S0 or V0. In [13], Moroz and Tod set S0 = 1, varied possible

values for V0, and applied a ‘shooting method’ to give analytical justification for the following.

• there is a discrete family of finite smooth solutions (bound states) labelled by the positive

integers; the nth solution S having n−1 zeroes;

• for these bound state solutions, S is normalizable, or equivalently, I is finite;

• the energy eigenvalues for each bound state are negative, increasing monotonically with

n towards zero.

• the ground state is nondegenerate, i.e. the dimension of the associated eigenspace to the

lowest eigenvalue is one–dimensional.

It should be noted that the last bullet point has been studied extensively. In fact, Lieb

[11] showed the nondegeneracy or uniqueness of the ground state in R3 without imposing the

assumption of spherically symmetric solutions. And Choquard et al. [5] showed the uniqueness

of the ground state regardless of the dimension of the ambient space. In [14] Moroz et al.

found strong numerical evidence that the higher energy bound states were also nondegenerate,

but analytical justification of this statement has not yet come to fruition. The goal for the

remainder of this discussion will be setting up and posing an argument for this result by way of

the linearization of the Schrödinger–Newton system and the implicit function theorem.
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4.1 V as a perturbation from the Coulomb Potential

For what follows we will consider ψ = rS. In this view the Schrödinger–Newton system

becomes 
ψ′′ =−ψV

(rV )′′ =−1
r ψ2

Focusing on the second equation (rV )′′ =−1
r ψ2, and integrating gives

(rV )′(y) =V0−
∫ y

0

1
r

ψ
2dr,

as (rV )′(0) = (V + rV ′)(0) =V0. Integrating again and dividing by r gives an integral formula-

tion for V as

V (r) =V0−
∫ r

0

(
1
x
− 1

r

)
ψ

2dx.

We use this formulation of V to compute a series for V in inverse powers of r, i.e. the

Taylor series of V as r approaches ∞. The first term in the series

lim
r→0+

V
(

1
r

)
=V0−

∫
∞

0

1
x

ψ
2dx+ lim

r→0+

[
r
∫ 1

r

0
ψ

2dx

]

exists for a normalizable solution ψ, as
∫

∞

0 ψ2dx < ∞ in this case. Recall the definition of V

given as λ−U = ~2

2mV . Since U is a gravitational potential that decays to 0 as r→ ∞, besides a

scale given by constants m and ~, we have an explicit expression for the energy eigenvalue λ,

λ =V0−
∫

∞

0

1
x

ψ
2dx.

To find the higher order terms, we will use a change of variable u = 1
r . Direct computation

yields

dV
du

(0) = lim
u→0+

∫ 1
u

0
ψ

2dx = I = 1,
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where we have exploited the scale invariance to set I = 1. Continuing on,

d2V
duu =− 1

u2 ψ
2
(

1
u

)
.

Let us momentarily pause here to note some other properties ψ has as a normalizable solution

to the system. In [13], the following was shown

• For normalizable solutions to exist it must be that V0 > 0.

• V is monotonically decreasing on [0,∞) and has a zero at some finite value of r.

• At a normalizable solution ψ, and for r = b with V (b) =−C2, then for r > b

0≤ ψ(r)≤ ψ(b)e−Cr.

Because of this, for u close enough to 0, we have

0≤ d2V
du2 ≤ ψ

2(b)
e−

C
u

u2 ,

which implies that limu→0+
d2V
du2 = 0.

For the sake of completeness, we show two remaining computations. First,

d3V
du3 =

2ψ2(1
u)

u3 +
2ψ(1

u)ψ
′(1

u)

u4

The exponential decay seen in the solution ψ as u→ 0+ forces the same property in the deriva-

tive, i.e. ψ′→ 0 as u→ 0+. Thus, limu→0+
d3V
du3 = 0. Second,

d4V
du4 =

4ψ(1
u)ψ

′(1
u)

u5 −
6ψ2(1

u)

u4 −
2ψ(1

u)ψ
′′(1

u)

u6 −
2
[
ψ′(1

u)
]2

u6 .

All of the terms in the prior formula go to zero as u→ 0+ with the possible exception of the last

term. While we know that ψ′→ 0 as u→ 0+, we have not yet given justification that it decays
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to zero faster than any polynomial. This is no issue however, a quick application of L’Hopital

gives

lim
u→0+

2
[
ψ′(1

u)
]2

u6 = lim
u→0+

2ψ(1
u)ψ

′(1
u)V (1

u)

3u7 = 0.

In the above computation ψ′′ = −ψV was used. And so limu→0+
d4V
du4 = 0. From this point on

taking further derivatives will have only terms that are polynomial in ψ(1
u), ψ′(1

u), and V (1
u) in

the numerator. As V (1
u) approaches a finite value as u→ 0+ we have that

lim
u→0+

dnV
dun = 0 for n≥ 5.

Because of this the function F(r) = V (r)−λ− 1
r is a C∞([0,∞)) non–analytic function.

The integral representation of F is as follows,

F(r) =
∫

∞

r

(
1
x
− 1

r

)
ψ

2dx

In this sense V can be thought of as a nonlinear perturbation of the Coulomb potential, and the

equation ψ′′ =−ψV in the Schrödinger–Newton becomes

−ψ
′′− 1

r
ψ−λψ−F(ψ)ψ = 0,

where F(ψ) is shorthand for F(ψ)(r) denoting the dependence of the nonlinear perturbation F

on ψ. Because of this, the character of the solutions to the linearized equation

−ψ
′′− 1

r
ψ−λψ = 0

becomes of interest.
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Chapter 5

The Hydrogen Atom on the Half–Line [0,∞).

The equation that closed the prior section was precisely the Schrödinger equation with the

Coulomb potential on the half–line, which is also called the equation for the Hydrogen Atom

on the half–line. From Theorem IX.26 of [18] we have that weak solutions to the equation(
− d2

dr2 +V (r)
)

ψ = Eψ,

for E a complex number, are C∞ functions on an open region Ω if V (r) is equal to a C∞ function

on the same open region Ω. Thus as V (r)−−1
r on (0,∞), we have that solutions to

−ψ
′′− 1

r
ψ−λψ = 0

are C∞ on (0,∞). For what follows, let us take λ of the form λ = −β2 for β ≥ 0. Thus we

looking for solutions of ψ′′+(1
r −β2)ψ = 0.

We expect solutions, ψ, of the equation to have a zero at r = 0 to counteract the singularity

in the Coulomb potential. For large values of r, the solution ψ solves the asymptotic equation

ψ
′′−β

2
ψ = 0,
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which has solutions ψ = eβr, e−βr. As we expect our solutions to normalizable on the half–line,

we see that ψ has the asymptotic behavior of e−βr. Thus, we ‘peel off’ this behavior of ψ at

r = 0 and as r nears infinity by assuming that ψ has the following form: ψ = re−βrϕ. Doing so

leads to the following

0 = ψ
′′+

(
1
r
−β

2
)

ψ

0 = e−βr[rϕ
′′+(2−2βr)ϕ′+(1−2β)ϕ]

Thus ϕ is a solution to rϕ′′+(2−2βr)ϕ′+(1−2β)ϕ = 0. By multiplying by 2β,

2βrϕ
′′+(2−2βr)2βϕ

′+(1−2β)2βϕ = 0.

Writing ϕ = F(2βr), and calling s = 2βr, we find that F satisfies the following differential

equation

sF ′′+(2− s)F ′+αF = 0, where α =
1−2β

2β
.

At this point, we employ a power series method of solution to the above problem. If we

take F to be of the form F(s) = ∑
∞
m=0 amsm, then we have the following recurrence relation

amongst the coefficients of F ,

am+1 =
(m−α)am

(m+1)(m+2)
,

with a0 being arbitrary. In particular a0 is analoguous to S0 in the original Schrödinger–Newton

system, and we have the freedom to specify this value for a particular choice of initial condition

or for normalizing our solution.

From this point, we have two cases, either α ∈ N and the series for F terminates at some

point or α /∈ N. We first give an argument for why it must be that α ∈ N. If this is not the
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case, i.e. α /∈ N, then for large values of m, we have that the recurrence relation asymptotically

becomes

am+1 ≈
am

m+3
.

If we call N ∈N, the number for which m > N implies the asymptotic relation above holds with

sufficient accuracy, then F can be written approximately as

F ≈
N

∑
m=0

amsm +2aN+1sN−1[es− s−1].

Which gives an approximation for ψ as

ψ≈ re−βrg(r)+ r f (r)eβr

for f (r), g(r) polynomials. However, this contradicts our assumption that ψ is normalizable, i.e

if this were the case then ψ /∈ L2([0,∞)). Thus, it must be the case that α ∈ N.

Thus, assume that α = n. As α = 1−2β

2β
, we then have

β =
1

2(n+1)
, and −β

2 =− 1
4(n+1)2 ,

which is perhaps unsurprising given the standard formula for the energy levels of the Hydrogen

atom, E =−13.6eV
n2 . Also, our recurrence relation collapses into the formula

ak = (−1)k (n+1) · · ·(k+2)
k!(n− k)!

[
a0

n+1

]
, 0≤ k ≤ n,

in which the numerator is understood to be equal to 1 if k+ 2 > n+ 1. This shows that F is

actually a generalized Laguerre polynomial.

F(s) =
[

a0

n+1

]
L1

n(s),
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Thus we have found a countable family of solutions to the Hydrogen atom on the half–line

given by

ψn(r) =
[

a0

n+1

]
re−

r
2(n+1) L1

n

(
r

n+1

)
,

with associated eigenvalue λn = − 1
4(n+1)2 . In the following sections, arguments that the solu-

tions found above are the only solutions to the Hydrogen atom on the half line will be presented,

as well as proof that the eigenvalues are in fact simple.

5.1 The zeroes of the generalized Laguerre polynomials

As we saw in the previous section, solutions to the equation

sF ′′+(2− s)F ′+αF = 0

are precisely the generalized Laguerre polynomials L1
n(s). A quick computation shows that for

each n ∈ N, the generalized Laguerre polynomial L1
n(s) also satisfies the equation

[s2e−sF ′]′+nse−sF = 0

Defining the following

p(s) = P(s) = s2e−s

q(s) = nse−s

Q(s) = (n+1)se−s.

Then as Q(s)≥ q(s) we are precisely in the situation to invoke the Sturm comparison theorem.

If we assume that L1
n(s) has m zeroes and list them x1,x2, . . . ,xm, then by Sturm comparison
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L1
n+1(s) has at least a zero in each interval (x1,x2),(x2,x3), . . . ,(xm−1,xm). Thus, for the mo-

ment, at minimum we can guarantee that L1
n+1(s) has at least m−1 zeroes.

The final statement in the previous paragraph relies upon the fact that zeroes of the gen-

eralized Laguerre polynomials are of multiplicity one. Clearly this must be the case, otherwise

a zero of multiplicity higher than one would be a zero of the generalized Laguerre polynomial

as well as its derivative. By viewing the generalized Laguerre polynomial in a Taylor series

centered about this zero paired with the fact that the generalized Laguerre polynomial satis-

fies a second order ordinary differential equation, one would find that the generalized Laguerre

polynomial would be identically zero.

Moving forward, the polynomial expansion of L1
n(s) is

L1
n(s) =

n

∑
k=0

(n+1)n · · ·(k+2)
k!(n− k)!

(−s)k,

where the coefficient in the sum is understood to be 1 when k + 2 > n+ 1. This shows that

L1
n(0) = (n+1). Use this to define ϕn(s) = 1

n+1 L1
n(s), and to define

G(s) =
ϕn+1(s)
ϕn(s)

.

Thus G(0) = 1. The coefficient on the x–term of ϕn(s) is −n
2 , and this shows that

G′(0) =
−n+1

2 − [−n
2 ]

12 =−1
2
.

And so G is initially decreasing. Since ϕn(s) satisfies the same differential equation as L1
n(s),

we have that G satisfies the following differential equation,

xG′′+[2− x(1−2(lnϕn)
′)]G′+G = 0.

24



Now let x1 denote the first zero of ϕn(s), i.e. ϕn > 0 on [0,x1). We aim to show that ϕn+1(s)

has a zero in the interval [0,x1). Suppose this is not the case, thus G > 0 on the entirety of the

interval [0,x1).

At s = 0, G′(0)< 0, and we aim to show that G′ < 0 on the whole interval [0,x1). If this is

not the case, i.e. call y ∈ [0,x1) a zero of G′, then y is either where a local minimum of G occurs

(y is a zero of multiplicity one of G′) or G′′(y) = 0 (y is a zero of G′ of multiplicity higher than

1). In either case G′′(y)≥ 0. Then from the differential equation G satisfies, we find

yG′′(y)+G(y) = 0

This is a clear contradiction. Thus G′ < 0 on the interval [0,x1). Thus G(s) < G(0) = 1 on

[0,x1) which is equivalent to saying ϕn+1(s)< ϕn(s) for all s ∈ [0,x1). And this is sufficient to

show that ϕn+1(s) has a zero in the interval [0,x1]. And thus we have shown that L1
n+1(s) has at

least m zeroes.

On the other hand, letting xm denote the last zero of ϕn(s), then without loss of generality

we may assume that ϕn(s)> 0 on (xm,∞). From the definition of the Laguerre polynomials

L1
n(s) =

n

∑
k=0

(n+1)n · · ·(k+2)
k!(n− k)!

(−s)k,

we notice the change in parity of the highest degree term in moving from L1
n(s) to L1

n+1(s). In

particular, as the end behavior of ϕn(s) is ϕn→ ∞ as s→ ∞, we see that ϕn+1→−∞ as s→ ∞.

In the case that ϕn+1(s) has m zeroes in the intevral [0,xm], as both ϕn(0) = ϕn+1(0) = 1 and

the zeroes of both ϕn and ϕn+1 are simple, we have that ϕn and ϕn+1 must have the same sign

initially in the interval (xm,∞). Thus, the change in end behavior shows that ϕn+1 must have a

zero in (xm,∞). Thus we have shown that ϕn+1 has at least m+1 zeroes.
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It is clear that ϕ1(s) = 1− 1
2 s, and thus ϕ1 has one zero. Thus, by an inductive process,

and the argument above, we have that ϕn has at least n zeroes. And as the degree of ϕn is equal

to n, we have that ϕn has exactly n zeroes for each n ∈ N. In particular, this gives that each

solution ψn of the Hydrogen atom on the half–line

ψn(r) =
[

a0

n+1

]
re−

r
2(n+1) L1

n

(
r

n+1

)
,

has exactly n+1 zeroes.

5.2 The only eigenvalues are λn

For a moment, if we go back and look at the Schrödinger–Newton system

(rS)′′ =−SV

(rV )′′ =−rS2.

or it’s equivalent formulation with ψ = rS
ψ′′ =−ψV

(rV )′′ =−1
r ψ2

We notice a connection with our solutions to the Hydrogen atom on the half–line

ψn(r) =
[

a0

n+1

]
re−

r
2(n+1) L1

n

(
r

n+1

)
namely the zero at r = 0. As such we now give rigid definition of exactly what Hilbert space

we are working in.

Thus define,

H1 : D(H1)⊂ L2([0,∞))→ L2([0,∞)), H1ϕ =−ϕ
′′− 1

r
ϕ,
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with the domain of our operator H1 being

D(H1) = {ϕ ∈ H2([0,∞)) | ϕ(0) = 0},

the Sobolev space of functions with square integrable weak derivatives up to second order with

a specified value of 0 at r = 0. We argue that in solving the eigenvalue problem

H1ϕ = µϕ,

that the only eigenvalues are of the form λn.

Thus assume that there is an eigenvalue µ with λn < µ < λn+1 and an associated eigen-

function ϕ with H1ϕ = µϕ. But then we have the following

ψ
′′
n +

(
1
r
+λn

)
ψn = 0

ϕ
′′+

(
1
r
+µ
)

ϕ = 0.

By taking p = P = 1 and q = 1
r +λn <

1
r + µ = Q, the Sturm comparison theorem gives that

ϕ has at least one zero in each interval (0,x1),(x1,x2), . . . ,(xn−1,xn), where 0,x1,x2, . . . ,xn are

the n+1 zeroes of ψn. As ϕ ∈ D(H) and therefore ϕ(0) = 0, we have that ϕ has at least n+1

zeroes.

Next assume to the contrary that ϕ has no zero in the interval [xn,∞). Without loss of

generality we may assume that ψn and ϕ are nonnegative on [xn,∞) (if not, just replace ϕ with

−ϕ, etc.). Now, the Wronskian, W (ϕ,ψn) = ϕψ′n−ϕ′ψn has as it’s derivative

W ′(ϕ,ψn) = ϕψ
′′
n−ϕ

′′
ψn

= (µ−λn)ϕψn ≥ 0.
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In particular W ′(ϕ,ψn)(xn)= 0 and W ′(ϕ,ψn)> 0 on (xn,∞). And W (ϕ,ψn)(xn)=ϕ(xn)ψ
′
n(xn)>

0 as ψn > 0 on (xn,∞) and zeroes of ψn are of multiplicity one. However, this would imply that

the Wronskian is bounded away from 0 as r→ ∞, which contradicts ϕ,ψn ∈ D(H1). Thus, ϕ

has a zero in the interval [xn,∞), and thus has n+2 zeroes.

But, as µ < λn+1, this same argument can be performed with ϕ and ψn+1 in place of

ψn and ϕ respectively. This would show that ψn+1 has at least n+ 3 zeroes, which is a direct

contradiction of the fact that ψn+1 has exactly n+2 zeroes. Thus, there can not be an eigenvalue

µ between λn and λn+1 for any n ∈ N.

5.3 The simplicity of the eigenvalues λn

Recall our regularity result, i.e. Theorem IX.26 [18], which states that weak solutions to

the equation (
− d2

dr2 +
1
r

)
ψ = Eψ,

for E a complex number are C∞ functions on (0,∞). If we assume that ψ and ϕ are two eigen-

functions of H1 associated to the eigenvector λn, then we have ψ,ϕ are C∞ on (0,∞). Thus it

immediately follows that the Wronskian of ψ and ϕ is also C∞ on (0,∞).

Our assumption that ϕ and ψ both satisfy H1ρ = λnρ gives that W ′(ϕ,ψ) = 0, and as such

is constant on the interval (0,∞). As ϕ,ψ ∈ D(H), and therefore decay to 0 as r→ ∞, we must

have that W (ϕ,ψ) = 0. Thus ϕ and ψ are linearly dependent. Thus, after normalizing each

solution, the dimension of the eigenspace associated to λn is exactly one.
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Chapter 6

A Fredholm operator of index zero

In this section we define a slight variation on our operator H1. In view of what is to come

in chapter 7, it will be of interest that our operator is Fredholm of index 0. The operator H1 does

not have this property, but an analogue of H1 defined on weighted Banach spaces does. Thus

define

H : D(H)⊆ L2([0,∞),(1+ r)2)→ L2([0,∞),(1+ r)2)

with D(H) = {ϕ ∈ H2([0,∞),(1+ r)2) | ϕ(0) = 0}, and

H =− d2

dr2 −
1
r
−λn,

where λn =− 1
4(n+1)2 .

As we will see in section 6.2, the domain of the operator H, D(H), is a Banach space

itself. We give the definition of H above as it will suit different needs in the sections to come

to consider H as both an operator from L2([0,∞),(1+ r)2) to itself and a mapping H : D(H)→

L2([0,∞),(1+ r)2). This chapter is primarily devoted to proving the following
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Theorem: The mapping H : D(H)→ L2([0,∞),(1+ r)2) is a Fredholm operator of index zero.

A result that will be proven in parts over the coming sections. We begin by laying some

groundwork in the form of inequalities that will play a vital role for the remainder of this chapter

as well as the next.

6.1 Some important inequalities

For shorthand in what follows, the spaces L2
w and H2

w will be used to signify the weighted

Hilbert spaces L2([0,∞),(1+r)2) and H2([0,∞),(1+r)2) respectively with weight w(r) = (1+

r)2. Also ‖·‖ and ‖·‖w will be used to represent the L2 norms in the unweighted and weighted

spaces respectively. Lastly, common notations appended with w such as Aw and A⊥w will be

used to mean closure and orthogonal complement with respect to the weighted spaces.

Let {yk} be a sequence of elements in Ran(H), hence there is a sequence of elements

{xk} ⊂ D(H) with yk = Hxk. Thus,

yk =−x′′k −
1
r

xk−λnxk.

By multiplying by xk(1+ r)2 to both sides and integrating, we have

∫
∞

0
xkyk(1+ r)2dr =−

∫
∞

0
x′′k xk(1+ r)2dr−

∫
∞

0

1
r

x2
k(1+ r)2dr−λn

∫
∞

0
x2

k(1+ r)2dr.

Integration by parts twice shows that

−
∫

∞

0
x′′k xk(1+ r)2dr = ‖x′k‖2

w +‖xk‖2.

And the Holder and Young inequality gives

∫
∞

0
ykxk(1+ r)2dr ≤ ‖xk‖w‖yk‖w ≤

γ

2
‖xk‖2

w +
1
2γ
‖yk‖2

w
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for an arbitrary positive constant γ. If we take γ =−2λn, then

∫
∞

0
ykxk(1+ r)2dr ≤−λn‖xk‖2

w +(n+1)2‖yk‖2
w.

Thus by canceling the −λn‖xk‖2
w terms, we have

‖x′k‖2
w +‖xk‖2 ≤ (n+1)2‖yk‖2

w +
∫

∞

0

1
r

x2
k(1+ r)2dr.

Clearly, ∫
∞

0

1
r

x2
k(1+ r)2dr =

∫
∞

0

1
r

x2
kdr+

∫
∞

0
rx2

kdr+2‖xk‖2.

We will deal with each of these integrals individually.

Beginning again with

yk =−x′′k −
1
r

xk−λnxk.

And multiplying by xkr to both sides and integrating, we have

∫
∞

0
xkykrdr =−

∫
∞

0
x′′k xkrdr−

∫
∞

0
x2

kdr−λn

∫
∞

0
x2

krdr.

Integration by parts gives

−
∫

∞

0
x′′k xkrdr = ‖

√
rx′k‖2.

And use of the Holder and Young inequalities again give

∫
∞

0
ykxkrdr ≤ −λn

2
‖
√

rxk‖2 +2(n+1)2‖
√

ryk‖2.

Thus

1
8(n+1)2 ‖

√
rxk‖2 +‖

√
rx′k‖2 ≤ 2(n+1)2‖

√
ryk‖2 +‖xk‖2.
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As ‖
√

rx′k‖2 ≥ 0 and ‖
√

ryk‖2 ≤ ‖yk‖2
w, we have

∫
∞

0
rx2

kdr ≤ 16(n+1)4‖yk‖2
w +8(n+1)2‖xk‖2.

We now bound the last remaining integral. Let ε > 0 be sufficiently close to 0, and for

what follows we will take δ > 0 small enough so that 2δ lnδ+ ε < 1
2 and also so that on the

interval (0,δ) we have (lnr)2 < ε

16r +1. It is clear that

∫
∞

0

1
r

x2
kdr =

∫
δ

0

1
r

x2
kdr+

∫
∞

δ

1
r

x2
kdr.

and ∫
∞

δ

1
r

x2
kdr ≤ 1

δ
‖xk‖2.

Without loss of generality δ < 1, so integration by parts on the first term gives

∫
δ

0

1
r

x2
kdr = [xk(δ)]

2 lnδ+
∫

δ

0
2xkx′k| lnr|dr,

where the negative from the integration by parts formula was absorbed by the lnr term to give

| lnr| in the integrand. For the first term above, Holder’s inequality and that ‖·‖w is a stronger

norm than ‖·‖ gives

[xk(δ)]
2 lnδ =

[∫
δ

0
x′kdr

]2

lnδ≤ ‖x′k‖2
δ lnδ≤ ‖x′k‖2

wδ lnδ.

The second term via Holder’s inequality becomes

∫
δ

0
2xkx′k| lnr|dr ≤ ε

2
‖x′k‖2 +

8
ε

∫
δ

0
x2

k(lnr)2dr.

By the assumption we placed on δ

∫
δ

0
2xkx′k| lnr|dr ≤ ε

2
‖x′k‖2

w +
1
2

∫
δ

0

1
r

x2
kdr+

8
ε
‖xk‖2
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Thus ∫
∞

0

1
r

x2
kdr ≤ ‖x′k‖2

w[2δ lnδ+ ε]+

[
16
ε
+

1
δ

]
‖xk‖2.

Putting this all together, we have

∫
∞

0

1
r

x2
k(1+ r)2dr ≤ 16(n+1)4‖yk‖2

w +[2δ lnδ+ ε]‖x′k‖2
w +

[
8(n+1)2 +

16
ε
+

1
δ
+2
]
‖xk‖2.

And so from our assumption that 2δ lnδ+ ε < 1
2 , we have

‖x′k‖2
w ≤

[
(n+1)2 +16(n+1)4

1−2δ lnδ− ε

]
‖yk‖2

w +

[
8(n+1)2 + 16

ε
+ 1

δ
+1

1−2δ lnδ− ε

]
‖xk‖2.

Our goal now is to find a bound on the H2
w norm of the xk in terms of the weighted norm

of yk and the unweighted L2 norm of the xk terms. By direct computation

‖xk‖2
w =

∫
∞

0
x2

k(1+ r)2dr = ‖xk‖2 +2
∫

∞

0
rx2

kdr+
∫

∞

0
r2x2

kdr.

The last term
∫

∞

0 r2x2
kdr is the only term we have not found an explicit bound for. By following

the same argument for bounding the
∫

∞

0 rx2
kdr term, we find

1
8(n+1)2

∫
∞

0
r2x2

kdr ≤ 2(n+1)2‖yk‖2
w +‖xk‖2 +

∫
∞

0
rx2

kdr.

Thus for constants A(n) and B(n), dependent on n ∈ N, we have

‖xk‖2
w ≤ A(n)‖yk‖2

w +B(n)‖xk‖2.

For the second derivative term, as

−x′′k = yk +
1
r

xk +λnxk,

the triangle inequality gives

‖x′′k‖2
w ≤ 3[‖yk‖2

w +‖1
r

xk‖2
w + |λn|2‖xk‖2

w].
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The middle term breaks into

‖1
r

xk‖2
w =

∫
∞

0

1
r2 x2

kdr+2
∫

∞

0

1
r

x2
kdr+‖xk‖2.

Similarly the only term we have yet to bound is ‖1
r xk‖2. Via integration by parts,

∫
∞

0

1
r2 x2

kdr = 2
∫

∞

0

1
r

xkx′kdr.

And application of the Holder and Young inequalities one more time yields

∫
∞

0

1
r2 x2

kdr ≤ 1
2

∫
∞

0

1
r2 x2

kdr+2‖x′k‖2.

And thus ∫
∞

0

1
r2 x2

kdr ≤ 4‖x′k‖2
w.

Using prior inequalities we have found, we know that
∫

∞

0
1
r x2

kdr, ‖xk‖2
w, and ‖x′k‖2

w can be

bounded by ‖yk‖2
w and ‖xk‖2. Thus, we have a bound on the second derivative x′′k . By putting

all of these results together, we have

‖xk‖2
H2

w
≤ A(ε,δ,n)‖yk‖2

w +B(ε,δ,n)‖xk‖2,

for A(ε,δ,n), B(ε,δ,n) constants dependent on n and the choice of ε and δ.

6.2 H is closed as an operator on L2
w, bounded as a map on H2

w.

Recall the domain of H given by D(H) = {ϕ ∈ H2
w | ϕ(0) = 0}. Assume that there is a

sequence {ψn} ⊆ D(H) with ψk→ ψ in L2
w, and yk = Hψk with yk→ x in L2

w. To show that H

is closed as an operator on L2
w we must show that ψ ∈ D(H) and x = Hψ.
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As ‖·‖w is a stronger norm than the usual L2 norm, the inquality at the end of section 6.1

gives that ‖ψk−ψ‖H2
w
→ 0 as k→ ∞. Thus ψ ∈ H2

w. And

[ψ(0)]2 =
[∫

∞

0
ψ
′−ψ

′
kdr
]2

=

[∫
∞

0

1
1+ r

(ψ−ψk)
′(1+ r)dr

]2

≤ ‖ψ′−ψ
′
k‖2

w

∫
∞

0

1
(1+ r)2 dr ≤ ‖ψ−ψk‖2

H2
w
.

Thus as the left hand side is independent of k, taking the limit of both sides shows that ψ(0) = 0,

hence ψ ∈ D(H).

From section 6.1, we have that

∫
∞

0

1
r

ψ
2
k(1+ r)2dr ≤ A(ε,δ,n)‖Hψk‖2

w +B(ε,δ,n)‖ψk‖2,

which shows that {1
r ψk} is Cauchy in L2

w therefore 1
r ψk→ 1

r ψ in L2
w. But then yk→−ψ− 1

r ψ−

λnψ = Hψ as k→ ∞. Thus, by the uniqueness of limits, x = Hψ. And so, H is closed.

Now, for the boundedness of H on H2
w. For ϕ ∈ D(H), the triangle inequality gives

‖Hϕ‖2
w ≤ 3[‖ϕ′′‖2

w +‖1
r

ϕ‖2
w + |λn|2‖ϕ‖2

w],

and as we saw earlier,

∫
∞

0

1
r

ϕ
2dr ≤ ‖ϕ′‖2

w[2δ lnδ+ ε]+

[
16
ε
+

1
δ

]
‖ϕ‖2

∫
∞

0

1
r2 ϕ

2dr ≤ 4‖ϕ′‖2
w.

Thus for a fixed choice of ε and δ, there exists some positive M ∈ R such that

‖Hϕ‖2
w ≤M‖ϕ‖2

H2
w
,

and thus H is bounded.
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6.3 The Kernel of H

As we saw in section 5, for the operator H1 : D(H1)⊂ L2([0,∞))→ L2([0,∞)), we found

that Ker(H1−λn) = span(ψn), for ψn the eigenvector of H1 with eigenvalue λn. As

ψn(r) = re−
r

2(n+1) L1
n

(
r

n+1

)
,

decays exponentially as r→∞, we have that ψn ∈D(H)= {ϕ∈H2
w | ϕ(0)= 0}. Thus Ker(H)=

span(ψn) and is clearly of dimension one.

6.4 The range of H is closed

We begin this section with a theorem. A theorem reminiscent of the standard Sobolev

embedding result for bounded open domains in R. For the sake of completeness the Kondrachov

compactness theorem [8] tells us that for any bounded open intevral [0,R) in the half–line that

H1([0,R)) compactly embeds in C([0,R]). As the supremum norm on continuous functions over

a compact set is stronger than the L2 norm over the same compact set, we have that H1([0,R))

compactly embeds in L2([0,R]).

Theorem: The Banach space H1
w([0,∞)) with weight w(r) = (1+ r)2 compactly embeds in

L2([0,∞)).

Proof. Let {ϕn} be a sequence in H1
w([0,∞)), and assume that {ϕn} is uniformly bounded, i.e.

there exists a positive M ∈ R such that ‖ϕn‖H1
w
≤ M. As we will see shortly, the introduction

of the weight w(r) = (1+ r)2 allows one to effectively truncate the sequence {ϕn} outside of

some compact set [0,R]. Inside of the compact set [0,R] the standard Kondrachov compactness
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theorem applies. This can be seen explicitly in the following inequality,

‖ϕn−ϕm‖2 =
∫ R

0
(ϕn−ϕm)

2dr+
∫

∞

R

(1+ r)2

(1+ r)2 (ϕn−ϕm)
2dr

≤
∫ R

0
(ϕn−ϕm)

2dr+
1

(1+R)2 ‖ϕn−ϕm‖H1
w

≤
∫ R

0
(ϕn−ϕm)

2dr+
2M

(1+R)2 .

Then there exists R1 ∈ R large enough that 2M
(1+R1)2 < 1

2 , and by the Kondrachov compactness

theorem there is a subsequence {ϕ1
n} ⊆ {ϕn} such that for N1 ∈ N and any m,n > N1,

∫ R1

0
(ϕ1

n−ϕ
1
m)

2dr <
1
2
.

Thus, for m,n > N1 we have ‖ϕ1
n−ϕ1

m‖2 < 1.

Proceeding by induction, we can assume that for each j ∈N there exists R j ∈R and N j ∈N

with {ϕ j
n} a subsequence {ϕ j

n} ⊆ {ϕ j−1
n } and for all m,n > N j, we have ‖ϕ j

n−ϕ
j
m‖2 < 1

j . Now,

define yn to be the diagonal sequence {ϕn
n}. Clearly, {yn} ⊆ {ϕn}, and by definition for each

k ≥ n, {yk}k≥n ⊆ {ϕn
k}. Thus for ε > 0, by the archimidean property there exists some p ∈ N

such that 1
p < ε. And for m,n > Np,

‖yn− ym‖2 ≤ ‖ϕp
n −ϕ

p
m‖2 <

1
p
< ε.

Hence {yk} is Cauchy in L2, and so {ϕn} has a convergent subsequence in L2.

Momentarily let us return to the operator H1 : D(H1)⊆ L2→ L2 defined by H1 =− d2

dr2 − 1
r

with domain D(H1) = {ϕ∈H2 | ϕ(0) = 0}. It is clear that C∞
0 ([0,∞)), the space of infinitely dif-

ferentiable functions vanishing at the boundary, is contained within D(H1). Thus H1 is densely

defined, and so the adjoint H∗1 is well–defined. A quick application of integration by parts shows
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that H1 is a symmetric operator, thus H1 ⊆ H∗1 . In particular,

H∗1 =− d2

dr2 −
1
r
.

While it is possible that D(H1)⊂ D(H∗1 ), Theorem IX.26 of [18] gives that solutions to H∗1 ϕ =

λϕ for λ ∈ R will be C∞ on the interval (0,∞). From here, the arguments of section 5.3 in

particular imply that Ker(H∗1 −λn) = span(ψn).

As we have remarked before, the weighted norm ‖·‖w is stronger than the usual L2 norm.

In particular, for any ϕ ∈ D(H), we have ‖ϕ‖H2 ≤ ‖(1+ r)2ϕ‖H2 , thus ϕ ∈ D(H1). In this

manner, on L2 the operator H1−λn extends H. Thus, it is clear that Ran(H)⊂Ran(H1−λn). In

what follows, all closures and orthogonal complements will be with respect to the unweighted

inner product on L2. We have the following string of containments

Ran(H)⊆ Ran(H1−λn) = [Ker(H∗1 −λn)]
⊥ = [span(ψn)]

⊥.

Now, for the actual argument of the range being closed. Let us take y ∈ Ran(H)
w

, where

the script w indicates that the closure is being taken in the weighted L2
w space. Then there exists

a sequence {yk} ∈ Ran(H) with yk → y in L2
w. As the L2

w norm is stronger it is also true that

yk→ y in L2, thus

Ran(H)
w ⊆ Ran(H)⊆ [span(ψn)]

⊥.

(Note that this is not saying that all elements of Ran(H)
w

are perpendicular to ψn in the weighted

inner product 〈·, ·〉w, but that all elements Ran(H)
w

are perpendicular to ψn in the unweighted

inner product.) Thus it is safe to assume that y, yk ∈ [span(ψn)]
⊥. By the definition of the yk,

there exists xk ∈ D(H)∩ [span(ψn)]
⊥ (as Ker(H) = span(ψn)) with yk = Hxk. There are now

two possibilities for the sequence {xk}.
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• Either the {xk} are uniformly bounded in L2.

• Or the {xk} are not uniformly bounded in L2.

Let us at first assume that the {xk} are not uniformly bounded in L2. Thus, there is no

positive M ∈ R such that ‖xk‖ ≤M for all k ∈ N. Stated equivalently, limk→∞‖xk‖= ∞. Define

αk = ‖xk‖ and zk =
1

αk
xk. Thus Hzk =

1
αk

yk and ‖zk‖= 1 for all k ∈N. The inequality at the end

of section 6.1 gives

‖zk‖2
H2

w
≤ A(ε,δ,n)

‖yk‖2
w

α2
k

+B(ε,δ,n)‖zk‖2.

As yk converges in L2
w, the terms ‖yk‖2

w are bounded, and limk→∞
1

αk
yk = 0. Thus, ‖zk‖H2

w
is

uniformly bounded, and as the H2
w norm is stronger than the H1

w norm the previous theorem

gives a subsequence of {zk} that converges in L2. Without loss of generality, let us assume that

we have passed to the convergent subsequence and thus assume zk converges to some z in L2.

The inequality above gives that zk → z in H2
w, and Hzk → 0 in L2

w. As H is a closed

operator, we have Hz = 0 which implies that z ∈ span(ψn). Thus z = βψn. And so, assuming

that ψn is normalized

β = 〈z,ψn〉=
〈

lim
k→∞

zk,ψn

〉
= lim

k→∞

〈zk,ψn〉= 0.

This shows that z = 0, but

0 = ‖z‖= lim
k→∞

‖zk‖= 1.

A clear contradiction.

Thus, it must be the case that the {xk} are uniformly bounded. Thus, there is some M ∈R
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such that ‖xk‖ ≤M for all k ∈ N. So, the inequality from section 6.1

‖xk‖2
H2

w
≤ A(ε,δ,n)‖yk‖2

w +B(ε,δ,n)‖xk‖2,

gives us that {xk} is uniformly bounded in H2
w. Thus, by our theorem there is an L2 convergent

subsequence. Passing through to this subsequence and assuming xk → x in L2, the inequality

immediately gives us that xk → x in H2
w (and thus clearly in L2

w). Lastly, H being a closed

operator immediately implies that y = Hx for x ∈ D(H). Thus y ∈ Ran(H), and so the range of

H is closed in the topology generated by the weighted norm on L2
w.

6.5 The Cokernel of H

For H : D(H) ⊆ L2
w → L2

w, the domain of the adjoint H∗ is defined to be the set of all

vectors ρ for which there exists a µ ∈ L2
w such that

〈Hϕ,ρ〉w = 〈ϕ,µ〉w, ∀ϕ ∈ D(H),

and the adjoint H∗ is defined to be H∗ρ = µ. As H is densely defined the adjoint H∗ exists (i.e.

is well–defined). A quick application of integration by parts shows that

0 = 〈Hϕ,ρ〉w−〈ϕ,µ〉w

=
∫

∞

0
ϕ

[
µ+ρ

′′+
1
r

ρ+λnρ+
4

1+4
ρ
′+

2
(1+ r)2 ρ

]
(1+ r)2.

Thus, as D(H) is dense in L2
w, we have

H∗ρ = Hρ− 4
1+ r

ρ
′− 2

(1+ r)2 ρ.
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If we define the following map F : L2
w → L2 by F(ϕ) = (1+ r)2ϕ, direct computation

shows

[(1+ r)2
ϕ]′ = 2(1+ r)ϕ+(1+ r)2

ϕ
′

[(1+ r)2
ϕ]′′ = 2ϕ+4(1+ r)ϕ′+(1+ r)2

ϕ
′′,

and so F is well–defined as a map from D(H) to D(H1). It is clear that F is R–linear and

injective. A similar computation to the one above shows that for ρ∈D(H1) that 1
(1+r)2 ρ∈D(H).

Thus F( 1
(1+r)2 ρ) = ρ, and so F is surjective, and F−1 is defined as division by (1+ r)2.

A direct computation shows that F restricts to a bijective linear map, F : Ker(H∗)→

Ker(H). As Ker(H) = span(ψn), we have that F is an isomorphism F : Ran(H)⊥w→ [span(ψn)]

from the fact that Ran(H)⊥w = Ker(H∗). Thus H has cokernel of dimension one.

Thus we have shown that H : D(H)→ L2
w is a bounded map with closed range and finite

dimensional kernel and cokernel. Thus H is a Fredholm operator with index

ind(H) = dim(Ker(H))−dim(CoKer(H)) = 1−1 = 0.
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Chapter 7

An argument for the nondegeneracy of each

eigenstate

At the end of section 4 we saw that a bound state of the Schrödinger–Newton system must

satisfy

−ψ
′′− 1

r
ψ−λψ−F(ψ)ψ = 0,

where F , given by

F(r) =
∫

∞

r

(
1
x
− 1

r

)
ψ

2dx

was the nonlinear perturbation of the potential V from the Coulomb potential with the en-

ergy eigenvalue λ. Denote the Banach space that is the domain of H as H = D(H) = {ϕ ∈

H2
w | ϕ(0) = 0}, and define a map

G : H ×R2→ L2
w×R
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by

G(ϕ,λ,β) =

(
−ψ

′′− 1
r

ψ−λψ−βF(ψ)ψ , ‖ϕ‖2−1
)
.

From our previous work if ψn is the normalized (in L2) eigenvector of the Hydrogen atom on

the half–line associated to the eigenvalue λn then

G(ψn,λn,0) = (Hψn,0) = (0,0).

is codifying nothing more than the solutions to the Schrödinger equation with the Coulomb

potential found earlier. Perhaps unsurprisingly, the linearization of G involves the operator

H from chapter 6 as well. We will show how the Fredholm properties on H extend to the

linearization of G about the points (ψn,λn,0) with a goal in mind to invoke the implicit function

theorem and extend these solutions in the parameter β about a neighborhood of β = 0.

From this point we will argue why this process can be extended until β = 1, i.e. at a

solution of the Schrödinger–Newton system, and justify why this solution inherits the same

nondegeneracy of each eigenstate that the Schrödinger equation on the half–line enjoys.

7.1 The Frechet Derivative of G

For computing the Frechet derivative of G it will be easier to denote G as G = (G1,G2)

with G1 : H ×R→ L2
w and G2 : H ×R2→ R. Let us look at our nonlinear perturbation F , for

ϕ ∈H ,

F(ϕ)ϕ =

[∫
∞

r

(
1
x
− 1

r

)
ϕ

2dx
]

ϕ(r) = ϕ

∫
∞

r

1
x

ϕ
2dx− ϕ

r

∫
∞

r
ϕ

2dx,

the inequalities in section 6.1, namely the bounds on
∫

∞

0
1
r ϕ2dr and

∫
∞

0
1
r2 ϕ2dr, show that

F(·)· : H → L2
w is well–defined. We first compute the Frechet derivative of F as it will arise in
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computing the Frechet derivative of G. For ϕ,h ∈H , computation shows

F(ϕ+h)(ϕ+h)−F(ϕ)ϕ = h
∫

∞

r

(
1
x
− 1

r

)
ϕ

2dx+2ϕ

∫
∞

r

(
1
x
− 1

r

)
ϕhdx

+ϕ

∫
∞

r

(
1
x
− 1

r

)
h2dx+2h

∫
∞

r

(
1
x
− 1

r

)
ϕhdx+h

∫
∞

r

(
1
x
− 1

r

)
h2dx.

Let us call the first two terms (that are linear in h) an operator B,

Bh = h
∫

∞

r

(
1
x
− 1

r

)
ϕ

2dx+2ϕ

∫
∞

r

(
1
x
− 1

r

)
ϕhdx

The inequalities in section 6.1 show that

lim
h→0

‖F(ϕ+h)(ϕ+h)−F(ϕ)ϕ−Bh‖
‖h‖H2

w

= 0

and thus B = ∂F
∂ϕ
(ϕ) is the Frechet derivative of F evaluated at ϕ. To be more formal

∂F
∂ϕ

∣∣∣
(ψ)

(h) = h
∫

∞

r

(
1
x
− 1

r

)
ψ

2dx+2ψ

∫
∞

r

(
1
x
− 1

r

)
ψhdx

Routine computation gives the following,

∂G1

∂ϕ

∣∣∣
(ψ,λ,β)

=− d2

dr2 −
1
r
−λ−β

∂F
∂ϕ

∣∣∣
(ψ)

.

∂G1

∂λ

∣∣∣
(ψ,λ,β)

=−ψ

∂G1

∂β

∣∣∣
(ψ,λ,β)

=−F(ψ)ψ

∂G2

∂ϕ

∣∣∣
(ψ,λ,β)

= 2〈ψ, ·〉

∂G2

∂λ

∣∣∣
(ψ,λ,β)

= 0

∂G2

∂β

∣∣∣
(ψ,λ,β)

= 0.
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With this we can write the Frechet derivative of G in terms of a block matrix,

DG|(ψ,λ,β) =

 − d2

dr2 − 1
r −λ−β

∂F
∂ϕ

∣∣∣
ψ

−ψ −F(ψ)ψ

2〈ψ, ·〉 0 0


At an eigenvalue–eigenvector pair of the Schrödinger equation (ψn,λn,0), we have

DG|(ψn,λn,0) =

 H −ψn −F(ψn)ψn

2〈ψn, ·〉 0 0

 .
In the following sections, we will show how the Fredholm properties of H pass through to the

2×2 block matrix

D =
∂G

∂(ϕ,α)

∣∣∣
(ψn,λn,0)

=

 H −ψn

2〈ψn, ·〉 0


and to the whole derivative DG|(ψn,λn,0).

7.2 D is Fredholm index 0

As norms on a finite product of Hilbert spaces are equivalent, without loss of generality

assume that we are working in the euclidean norm of the product of the Hilbert spaces H ×R2

and L2
w×R respectively, i.e.

‖(ϕ,λ,β)‖H×R2 =
√
‖ϕ‖2

H2
w
+ |λ|2 + |β|2

‖(ϕ,α)‖L2
w×R =

√
‖ϕ‖2

L2
w
+ |α|2.

To show that D is Fredholm index 0, we must check that D is bounded, has closed range,

and finite dimensional kernel and cokernel. We will check that these follow from the Fredholm
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properties of H directly. To show that D is bounded, let (ϕ,α) ∈ H ×R, and compute the

following,

‖D(ϕ,α)‖2
L2

w×R
= ‖(Hϕ−αψn,2〈ψn,ϕ〉)‖2

L2
w×R

= ‖Hϕ−αψn‖2
L2

w
+4|〈ψn,ϕ〉|2 ≤ [‖Hϕ‖L2

w
+ |α|‖ψn‖L2

w
]2 +4|〈ψn,ϕ〉|2

≤ 2‖Hϕ‖2
L2

w
+2|α|2‖ψn‖2

L2
w
+4‖ψn‖2‖ϕ‖2

which comes from the inequality 2ab≤ a2 +b2 as well as the Cauchy–Schwarz inequality. As

H is bounded, and as the L2 norm is weaker than the H2
w norm, there exists an M ≥ 0 such that

‖D(ϕ,α)‖2
L2

w×R
≤ [2M+4‖ψn‖2]‖ϕ‖2

H2
w
+2‖ψn‖2

L2
w
|α|2.

Thus taking K2 = max{2M+4‖ψn‖2,2‖ψn‖2
L2

w
}, we have

‖D(ϕ,α)‖L2
w×R ≤ K‖(ϕ,α)‖H2

w×R,

thus D is bounded.

Now, assume that (ϕ,α) ∈ Ran(D), then there is a sequence {(ϕk,αk)} ⊆ Ran(D) with

(ϕk,αk) → (ϕ,α) in L2
w ×R. Thus, there is also a sequence {(xk,ck)} ⊆ H ×R such that

D(xk,ck) = (ϕk,αk). As Ker(H) = span(ψn), let us write xk = x‖,k + x⊥,k with the parallel and

perpendicular components taken with respect to span(ψn). Thus, there exists {dk} ⊂ R such

that xk = dkψn + x⊥,k. Then ϕk

αk

=

 H −ψn

2〈ψn, ·〉 0


 xk

ck

=

 Hx⊥,k− ckψn

2dk

 .
It follows from the uniqueness of limits that dk→ α

2 in R. As Ran(H) = [span(ψn)]
⊥, where the

orthogonal complement is taken in the unweighted standard L2 inner product, the pythagorean
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theorem gives us that

‖ϕk‖2
L2

w
≥ ‖ϕk‖2 = ‖Hx⊥,k‖2 + |ck|2‖ψn‖2 ≥ |ck|2

(recalling that ‖ψn‖= 1.) Thus {ck} is Cauchy in R and thus converges, hence ck→ c for some

c ∈ R. As Hx⊥,k = ϕk + ckψn, it is clear that {Hx⊥,k} converges in L2
w to ϕ+ cψn.

From the inequality

‖x⊥,k‖2
H2

w
≤ A(ε,δ,n)‖Hx⊥,k‖2

w +B(ε,δ,n)‖x⊥,k‖2,

and an argument very similar to the one at the end of section 6.4, it must be that the sequence

{x⊥,k} is uniformly bounded in L2. Then the theorem from section 6.4 gives the existence of

an L2–convergent subsequence of {x⊥,k}. Pass through to this subsequence without loss of

generality and hence one more use of the inequality above implies that {x⊥,k} is Cauchy in

H = D(H). Thus take xk,⊥→ x⊥. Thus xk→ α

2 ψn + x⊥ in H . As H is bounded and therefore

closed, we have α

2 ψn + x⊥ ∈ D(H) = H and H(α

2 ψn + x⊥) = Hx⊥ = ϕ+ cψn.

Thus (α

2 ψn + x⊥,c) ∈H ×R, and

D

 α

2 ψn + x⊥

c

=

 H −ψn

2〈ψn, ·〉 0


 α

2 ψn + x⊥

c

=

 ϕ

α

 .
Thus (ϕ,α) ∈ Ran(D), and so the range of D is closed.

Now, assume that (ϕ,α) ∈ Ker(D). Write ϕ = bψn +ϕ⊥ using the same decompisition as

above, i.e. breaking ϕ into it’s parallel and perpendicular components to ψn in the inner product

on L2. Then 0

0

= D

 ϕ

α

=

 H −ψn

2〈ψn, ·〉 0


 ϕ

α

=

 Hϕ⊥−αψn

b
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Thus b = 0, so ϕ = ϕ⊥. In L2, we have that Ran(H) = [span(ψn)]
⊥, thus

α = 〈αψn,ψn〉= 〈Hϕ⊥,ψn〉= 0.

And so Hϕ⊥ = 0. But then this would imply that ϕ⊥ ∈ Ker(H) = span(ψn), which implies that

ϕ⊥ = 0. Thus, (ϕ,α) = (0,0). Thus, Ker(D) = {(0,0)}, and is therefore of dimension 0.

For ϕ ∈ [span(ψn)]
⊥ with the orthogonal complement coming from the unweighted inner

product, we have

D

 ϕ

0

=

 Hϕ

0

 .
If ϕ ∈ span(ψn), i.e. ϕ = αψn for some α ∈ R, then

D

 ϕ

0

=

 0

2α


This shows that D(H ×{0}) = Ran(H)×R. And

D

 0

c

=

 −cψn

0


shows that D({0}×R) = span(ψn)×{0}. Thus, as Ran(H) = [span(ψn)]

⊥ in the standard L2

inner product, we have that D(H ×R) = L2
w×R. Thus D is onto, and therefore the dimension

of the cokernel of D is 0. Thus D is also Fredholm index 0.
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7.3 DG|(ψn,λn,0) is Fredholm index 1

Before moving onto the full Frechet derivative of G, let us pause and return to our nonlin-

ear perturbation

F(ϕ)ϕ = ϕ

∫
∞

r

1
x

ϕ
2dx− ϕ

r

∫
∞

r
ϕ

2dx = A(r)ϕ−B(r)
ϕ

r
.

As we saw in section 6.1

A(r) =
∫

∞

r

1
x

ϕ
2dx≤

∫
∞

0

1
r

ϕ
2dr ≤ K(ε,δ)‖ϕ‖2

H2
w
.

B(r) =
∫

∞

r
ϕ

2dx≤ ‖ϕ‖2 ≤ ‖ϕ‖2
H2

w
.

Which gives that

|F(ϕ)ϕ|2 ≤ K(ε,δ)‖ϕ‖4
H2

w

[
ϕ

2 +
ϕ2

r
+

ϕ2

r2

]
.

Thus, the inequalities in section 6.1 state that

‖F(ϕ)ϕ‖L2
w
≤ K(ε,δ)‖ϕ‖3

H2
w
,

where in the last computations K(ε,δ) represented a perhaps different constant at each step, but

a constant nonetheless. This, of course, shows nothing more than the fact that for a fixed ϕ, the

multiplcation operator F(ϕ)ϕ : R→ L2
w given by [F(ϕ)ϕ](z) = zF(ϕ)ϕ is bounded.

It is clear that

DG|(ψn,λn,0)


ϕ

α

z

= D

 ϕ

α

+ z

 −F(ψn)ψn

0

 .
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As D is bounded, ‖D(ϕ,α)‖L2
w×R ≤M‖(ϕ,α)‖H2

w×R for M some positive real number. Then

‖DG|(ψn,λn,0)(ϕ,α,z)‖
2
L2

w×R
≤ ‖D(ϕ,α)‖2

L2
w×R

+ |z|2‖(−F(ψn)ψn,0)‖2
L2

w×R

≤M2‖(ϕ,α)‖2
H2

w×R
+K2(ε,δ)‖ψn‖3

H2
w
|z|2.

If we take N2 = max{M2,K2(ε,δ)‖ψn‖3
H2

w
}, then

‖DG|(ψn,λn,0)(ϕ,α,z)‖
2
L2

w×R
≤ N2‖(ϕ,α,z)‖2

H2
w×R2 .

Thus DG|(ψn,λn,0) is bounded.

It is also clear that

DG|(ψn,λn,0)


ϕ

α

0

= D

 ϕ

α

 ,

and so the range of DG|(ψn,λn,0) equals the range of D, which was L2
w×R. Thus the range of

DG|(ψn,λn,0) is closed and the dimension of the cokernel is zero.

For (ϕ,α,z) ∈ Ker(DG|(ψn,λn,0)), we have

 0

0

= DG|(ψn,λn,0)


ϕ

α

z

= D

 ϕ

α

+ z

 −F(ψn)ψn

0

 .

As D is invertible, we have  ϕ

α

= zD−1

 −F(ψn)ψn

0

 .
This shows that

span


D−1

 −F(ψn)ψn

0


×{1}

= Ker(DG|(ψn,λn,0)).
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Thus the kernel of DG|(ψn,λn,0) is of dimension one. Thus, DG|(ψn,λn,0) is Fredholm of index 1.

7.4 The argument for uniqueness

We now present the argument for our uniqueness result. Essentially the result falls from

an application of the implicit function theorem. From section 7.2 we found that the operator

D =
∂G

∂(ϕ,α)

∣∣∣
(ψn,λn,0)

=

 H −ψn

2〈ψn, ·〉 0


was Fredholm of index 0. In particular, as D is both invertible and bounded, the closed graph

theorem gives that D−1 is also bounded. Thus, by the implicit function theorem, there are C1

extensions of λn and ψn in terms of the parameter β. To be more explicit, there is a neighborhood

[0,ε) of β = 0 such that

G(ψn(β),λn(β),β) = (0,0), for β ∈ [0,ε).

An operator being Fredholm is also an open condition with respect to the operator norm.

To be clear, by defining the following extension of D in terms of β as

D(β) =
∂G

∂(ϕ,α)

∣∣∣
(ψn(β),λn(β),β)

=

 − d2

dr2 − 1
r −λn(β)−β

∂F
∂ϕ

∣∣∣
ψn(β)

−ψn(β)

2〈ψn(β), ·〉 0

 ,
there is also a neighborhood of β = 0 such that D(β) is Fredholm on this neighborhood. From

[6], the Fredholm index is a homotopy invariant, and thus D(β) being Fredholm on this neigh-

borhood will in fact imply that D(β) is index 0 on the neighborhood as well. It remains to

be shown that these C1 extensions of ψn and λn can be defined on the entirety of the interval
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β ∈ [0,1] and not just on a neighborhood of β = 0. The current argument for this, that has yet

to be proven in detail, is an iteration scheme involving the implicit function theorem.

To give a sketch, the paragraph above details an initial neighborhood [0,ε) of β = 0 for

which C1 extensions of ψn and λn are defined and D(β) is Fredholm index 0. For β = ε or

arbitrarily close to ε we then use the implicit function theorem again as well as the openness of

the Fredholm condition to find a neighborhood of ε such that the C1 extensions are defined and

on which D(β) is Fredholm index 0. It remains to be shown that this process can be iterated in

a manner such that the radii on the successively defined neighborhoods in the iteration schema

do not tend to zero, or in particular, remain bounded away from zero until β = 1. Once this

has been shown, the C1 extensions of ψn and λn are defined for β ∈ [0,1], and furthermore this

process details the construction of an open set An (open tube) in H ×R× [0,1] containing the

C1 extensions.

Returning now to the definition of G given as G : H ×R2→ L2
w×R

G(ϕ,λ,β) =

(
−ψ

′′− 1
r

ψ−λψ−βF(ψ)ψ , ‖ϕ‖2−1
)
,

and by restricting the definition of G to G : An → L2
w×R we then have that the point (0,0) ∈

L2
w×R is a regular value of G. This follows as DG|(ψn(β),λn(β),β) is Fredholm of index 1 for all

β ∈ [0,1]. (as D(β) is Fredholm index 0 for β ∈ [0,1] and an argument similar to that in section

7.3) Because of which DG|(ψn(β),λn(β),β) is onto with a bounded right inverse for each β ∈ [0,1].

Therefore, again by the implicit function theorem [12], we have that G−1((0,0)) is a C1 Banach

submanifold of An of dimension 1. At this point, the uniqueness result is immediate. Suppose

ψn(1) and ϕ are two normalized linearly independent eigenvectors associated to λn(1), then we
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arrive at an immediate contradiction. This either contradicts the submanifold structure at the

point (ψn(1),λn(1),1), or contradicts the Fredholm index of DG|(ψn(1),λn(1),1).

As a final remark, it should be noted that this will give uniqueness of the higher energy

stationary states, but precisely for the states of the Schrödinger–Newton system that arise as the

apex (β= 1) of a stalk originating at an eigenvalue/eigenvector pair of the Hydrogen atom on the

half–line (β = 0). It only now remains to show that all higher bound states of the Schrödinger–

Newton system can be reached in this manner. At the current time, there are two possible

sketches for a proof of this result

1. Show that the number of zeroes in a solution ψn(β) is also homotopy invariant.

2. Prove that the argument above can be carried in reverse: Beginning at β = 1, argue an

iterative scheme of C1 extension of solutions down to β = 0.

Either of these arguments assure that the matchmaking process between bound state solutions

of the Hydrogen atom on the half–line and the Schrödinger–Newton system is, in fact, bijective.
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Appendix A

Zwicky, the Virial Theorem, and Dark Matter

Let O represent and orgin fixed in space, and let ri and vi denote the time dependent

position and velocity vectors of the ith particle in a system of n mass particles of masses, mi,

respectively. We let r jk = |r j− rk|, and follow the convention that w =
√

(w ·w) for vectors w.

Define the moment of inertia, I, by

I =
1
2

n

∑
k=1

mkr2
k =

1
2

n

∑
k=1

mk(rk · rk).

and the Virial of the system as

Vir =
n

∑
k=1

= rk ·Fk =
n

∑
k=1

mkrk · r̈k

By differentiating the moment of inertia twice with respect to time, we find

Ï =
n

∑
k=1

mkv2
k +

n

∑
k=1

rk ·mkr̈k = 2KT +Vir,

where KT is the total kinetic energy of the system.
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If the system interacts gravitationally with potential given by U ,

U =− ∑
1≤ j<k≤n

Gm jmk

r jk
.

then by Newton’s second law, the kth particle satisfies the equation

mkr̈k =
n

∑
j=1
j 6=k

Gm jmk

r3
jk

(r j− rk).

Now, the Virial of the system takes a very particular form,

Vir =
n

∑
k=1

mkrk · r̈k =
n

∑
j,k=1
j 6=k

Gm jmk

r3
jk

(r j · rk− r2
k).

From the law of cosines we find r j · rk− r2
k = 1

2(r
2
j − r2

k − r2
jk). Thus we can split the last sum

above into three separate sums,

1
2

n

∑
j,k=1
j 6=k

Gm jmk

r2
jk

r2
j −

1
2

n

∑
j,k=1
j 6=k

Gm jmk

r2
jk

r2
k −

1
2

n

∑
j,k=1
j 6=k

Gm jmk

r jk
.

By the symmetry r jk = rk j, it is clear that the first two sums cancel each other, and the third is

2U . Thus,

Vir =U.

Thus

Ï = 2KT +U = KT +E =−U +E,

for E the total energy of the system via conservation of energy KT +U = E.

Let us now define the two time averages.

KT = lim
t→∞

1
t

∫ t

0
KT (τ)dτ, and U = lim

t→∞

1
t

∫ t

0
U(τ)dτ.
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and state the Virial theorem.

Virial Theorem: The time averages KT and U exist and satisfy the equation 2KT =−U if and

only if lim
t→∞

t−1İ = 0.

Proof. Clearly, as KT =−U +E and E is a constant, if one of KT or U exists, then so does the

other. This equation also implies that KT =−U+E, hence the equation 2KT =−U is equivalent

to KT =−E.

Now, taking the equation Ï = KT +E and integrating once followed by dividing by t, gives

İ
t
=

1
t

∫ t

0
KT (τ)dτ+E +

K
t
,

for some constant K. This clearly shows that KT =−E if and only if lim
t→∞

t−1İ = 0.

Let us note that the condition limt→∞ t−1İ = 0 is precisely equivalent to saying that the

time average of the second time derivative of the moment of inertia is 0,

d2I
dt2 = lim

t→∞

1
t

∫ t

0
Ï(τ)dτ = lim

t→∞
[t−1İ(t)− t−1I(0)] = 0.

as İ(0) is finite.

And now, we may present Zwicky’s classic argument. For what follows each vector rk

now represents the position of a nebula in a cluster of n stars. For a mechanically stationary

cluster, the moment of inertia oscillates about a constant value [17], thus the time average of

its derivative will vanish. Thus, we are in the precise case in which the Virial theorem can be

applied. And so

−U = 2KT =
n

∑
k=1

mkv2
k .
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From Newtonian mechanics it is known that a self–gravitating sphere of constant density ρ,

mass M , and radius R, has potential energy U is given by

U =−3GM 2

5R
.

Thus assuming a uniform distribution of the cluster total mass M about a sphere of radius R

gives

3GM 2

5R
=

n

∑
k=1

mkv2
k

Using a second bar to denote a second average, this time over nebulae velocity, we find

M =
5Rv2

3G
.

In general, the assumption of uniform distribution will not be fulfilled. But, the actual potential

energy U will have a value, that at least in order of magnitude, will be correctly given by the

equation above. Zwicky used this to assume that

M >
Rv2

5G

is a conservative estimate of the minimum value of the total mass.

By the relation v2 = 3v2
s between the squared average velocity and the squared average

velocity along the line of sight, and the observations of the Coma cluster available at the time

of Zwicky [21], v2
s = 5×1015cm2 sec−2, we find

M > 9×1046gr.

As the Coma cluster contains about one thousand nebulae, the average mass of one of these

nebulae is

M > 9×1043gr = 4.5×1013M�,
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where M� = 2×1033gr is the mass of the sun. Given that the luminosity of an average nebula is

about that of 8.5×107 suns, the above would imply that the conversion factor, γ, from luminos-

ity to mass for nebulae in the Coma cluster would be on the order of γ = 500, as compared with

γ′ = 3 for the Kapteyn stellar system (another well studied star system as of Zwicky’s time). It

was this discrepancy that led Zwicky to believe the existence of dark matter.

58



Appendix B

Derivation of vacuum Einstein Equation with

Cosmological constant

We first define the Einstein–Hilbert action

L(g) =
∫

U
(R−2Λ)dVg.

Where U is a pre–compact open subset of M, R is the scalar curvature, Λ is the cosmological

constant, and dVg is the volume form, which in any right–handed coordinate basis, has the form√
|g|dx1∧dx2 · · ·∧dxn.

Let us see what happens when we suppose a metric gab is a critical point of the Einstein–

Hilbert action L(g). Let g(s) be a variation of g = g(0). Call h = ġ(0). (We will denote

differentiation with respect to the parameter of our variation with a dot)

Our supposition is that

d
ds

L(g(s))
∣∣∣
s=0

= 0,
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or ∫
U

ṘdVg +(R−2Λ)dV̇g = 0.

Lemma For a differentiable non–singular matrix valued function A(t),

d
dt

det(A(t)) = det(A(t))tr(A′(t)A−1(t)).

Proof. We write the determinant of A(t) as a multilinear function of its n rows a1, . . . ,an. Then

d
dt

det(A(t)) = lim
h→0

[
det(a1(t +h), . . . ,an(t +h))−det(a1, . . . ,an)

h

]
By adding and subtracting terms, and using the multilinearity,

d
dt

det(A(t)) = lim
h→0

[
n

∑
k=1

det
(

a1(t), . . . ,ak−1(t),
ak(t +h)−ak(t)

h
, . . . ,an(t +h)

)]

By the continuity of the determinant function, we may bring the limit inside,

d
dt

det(A(t)) =
n

∑
k=1

det(a1, . . . ,a′k, . . . ,an).

Now, let Ci j denote the cofactor matrix relative to A(t), then

det(a1, . . . ,a′k, . . . ,an) =
n

∑
j=1

a′k jCk j.

Recall the definition of the adjugate matrix, Adj = CT , as it is the transpose of the cofactor

matrix. Hence what we just found above states,

det(a1, . . . ,a′k, . . . ,an) = (A′Adj)kk.

Thus, it is clear that d
dt det(A(t)) = tr(A′(t)Adj). Lastly, due to the linearity of the trace and that

Adj = det(A)A−1, we have

d
dt

det(A(t)) = det(A(t))tr(A′(t)A−1(t)).
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We now immediately make use of the lemma to find the variation of dVg. Thus,

dV̇g =
d
ds

[
√
|g|dx1∧·· ·∧dxn]

∣∣∣
s=0

=
1

2
√
|g|
|g|tr(g−1h)dx1∧·· ·∧dxn

=
1
2

tr(g−1h)dVg.

It is not difficult to see that tr(g−1h) = 〈h,g〉, using the inner product on tensors. Thus dV̇g =

1
2〈h,g〉dVg.

We now turn to the variation of the scalar curvature. We shall follow the convention that an

index following a comma denotes differentiation with respect to some chosen coordinate basis,

while an index following a semi–colon denotes covariant differentiation. Einstein summation

notation will be used extensively. We will also perform the variation using normal coordinates

at a point p for the metric g = g(0). Thus at p, assume the coordinate system has the properties

that gi j|p = δi j, Γk
i j(p) = 0, and ∂ig jk|p = 0. [15]

The Riemann curvature tensor can be expressed in the following manner in a chosen co-

ordinate system,

Ri jk
l = Γ

l
ik, j−Γ

l
jk,i +Γ

m
ikΓ

l
jm−Γ

m
jkΓ

l
im.

The scalar curvature R is given by R = gi jRi j = gi jRik j
k. Thus,

R = gi j[Γk
ik, j−Γ

k
jk,i +Γ

m
ikΓ

k
jm−Γ

m
jkΓ

k
im]

And so,

Ṙ = ġi jRik j
k +gi j ˙[Γk

ik, j−Γk
jk,i +Γm

ikΓk
jm−Γm

jkΓk
im].
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As gikgkl = δil , we have that

hikgkl +gikġkl = 0.

So, after some manipulation, we find ġml =−gmihikgkl , which once evaluating at s= 0 in normal

coordinates where gmi = δmi, we find,

ġml =−hml.

When differentiating the terms quadratic in the Christoffel symbols, once evaluated in

normal coordinates at s = 0,

˙(Γm
i jΓ

k
km) = Γ̇

m
i jΓ

k
km +Γ

m
i jΓ̇

k
km = 0.

Thus, we have

Ṙ =−hi jRi j +gi j[Γ̇k
i j,k− Γ̇

k
k j,i].

By direct computation, we have

Γ
k
i j,m =

1
2

gkl
,m[gil, j +g jl,i−gi j,l]+

1
2

gkl[gil, jm +g jl,im−gi j,lm]

which implies,

Γ̇
k
i j,m =

1
2

˙(gkl
,m)[gil, j +g jl,i−gi j,l]+

1
2

gkl
,m[hil, j +h jl,i−hi j,l]

+
1
2

˙(gkl)[gil, jm +g jl,im−gi j,lm]+
1
2

gkl[hil, jm +h jl,im−hi j,lm]

At s = 0, in normal coordinates,

Γ
k
i j,m

∣∣∣
s=0

=
1
2
[gik, jm +g jk,im−gi j,km],
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thus,

Γ̇
k
i j,m = ˙(gkl)Γl

i j,m

∣∣∣
s=0

+
1
2
[hik, jm +h jk,im−hi j,km].

Using these formulas give

Γ̇
k
i j,k− Γ̇

k
k j,i = hik, jk−

1
2

hi j,kk−
1
2

hkk, ji + ˙(gkl)Γl
i j,k

∣∣∣
s=0
− ˙(gkl)Γl

k j,i

∣∣∣
s=0

.

Thus, evaluating in normal coordinates at s = 0,

gi j[Γ̇k
i j,k− Γ̇

k
k j,i] = hik,ik−hii,kk−hklΓ

l
ii,k +hklΓ

l
ki,i.

Now, for a symmetric 2–tensor,

hi j;k = hi j,k−Γ
m
kihm j−Γ

n
k jhin.

and

hi j;kl = hi j,kl−Γ
m
ki,lhm j−Γ

m
kihm j,l−Γ

n
k j,lhin−Γ

n
k jhin,l,

hence in normal coordinates,

hi j;kl = hi j,kl−Γ
m
ki,lhm j−Γ

n
k j,lhin.

Plugging this in above gives

gi j[Γ̇k
i j,k− Γ̇

k
k j,i] = hik;ik−hii;kk.

So,

Ṙ =−hi jRi j +hik;ik−hii;kk,

or in other words,

Ṙ =−〈h,Ric〉g +divg(divg(h))−�gtr(h).
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Thus, we have

0 =
∫

U
[−〈h,Ric〉g +divg(divg(h))−�gtr(h)+

1
2
(R−2Λ)〈h,g〉g]dVg.

Via Stokes theorem, we have that divg(divg(h)) and �gtr(h) will only contribute boundary

terms. Thus, the assumption that h is compactly supported in U will cause these terms to

vanish. And so,

0 =
∫

U
〈−h,Ric− 1

2
Rg+Λg〉gdVg.

As this must hold for all variations, we see that

Ric− 1
2

Rg+Λg = 0,

which is just G+Λg = 0.
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Appendix C

Derivation of the Einstein–Klein–Gordon

equations

We begin with the action functional of the form

FΦ,U(g,∇) =
∫

U
(R−2Λ− c1|dγ|2− c2|γ|2)dV,

and define the vector field v by,

γ = ?(v∗)

where v∗ is the 1–form dual to v and ? is the Hodge star operator. As the metric gab is a Lorentz

metric,

?γ = ?? (v∗) = (−1)1(4−1)(−1)1v∗ = v∗,
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which implies the following

|γ|2dV = 〈γ,γ〉dV = γ∧?γ

= ?(v∗)∧ v∗ =−(v∗∧?v∗)

=−〈v∗,v∗〉dV =−〈(v∗)],(v∗)]〉dV =−〈v,v〉dV

=−|v|2dV.

Properties of the Hodge star also give

?? (d ? (v∗)) = (−1)4(0)(−1)1d ? (v∗) =−d ? (v∗).

which implies that,

|dγ|2dV = 〈d ? (v∗),d ? (v∗)〉dV = d ? (v∗)∧?d ? (v∗)

= d ? v∗∧ (div(v)) = div(v)d ? v∗

=−div(v)? (?d ? v∗) =−div(v)∧?(div(v))

=−(∇ · v)2dV.

where we have used the formula ∇ ·v = div(v) = ?d ? (v∗). Thus, the action functional takes the

equivalent form,

FΦ,U(g,∇) =
∫

U
(R−2Λ+ c1(∇ · v)2 + c2|v|2)dVg.

We next perform variations with respect to the vector field v and the metric g to compute

the associated Euler–Lagrange equations. We first consider the variation of the vector field v.

Letting w = v̇, it is clear from |v|2 = 〈v,v〉 that ˙|v|2 = 2〈v,w〉. In any choice of coordinates, the

divergence of v takes the form,

∇ · v = vi
,i +Γ

i
i jv

j,
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which easily shows that

d
ds

(∇ · v) = wi
,i +Γ

i
i jw

j = ∇ ·w.

Thus, in performing the variation, we find,

0 =
∫

U
(2c1(∇ · v)(∇ ·w)+2c2〈v,w〉)dV.

A quick use of Leibnitz’s rule gives

∇b((∇ · v)wb) = (∇ · v)(∇ ·w)+(∇b(∇ · v))wb

= (∇ · v)(∇ ·w)+ 〈∇(∇ · v),w〉.

As the left hand side is a divergence term, our assumptions about the variations of v being

compactly supported in U imply that the left hand will contribute nothing when integrated, thus

0 =
∫

U
〈−2c1∇(∇ · v)+2c2v,w〉dV.

And as this holds for all variations, w, we find,

∇(∇ · v) = c2

c1
v.

For performing the variation of the metric, g, we recall the following formulas from ap-

pendix B.

d
ds

R =−〈Ric,h〉+div(div(h))+�tr(h).

d
ds

dVg =
1
2
〈g,h〉dVg.

In an arbitrary coordinate system, let g denote the determinant of the components of gab evalu-

ated in these coordinates. Using another well known formula for the divergence of v,

∇ · v = 1√
−g ∑

i

∂

∂xi (v
i√−g).
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we find,

d
ds

(∇ · v) = d
ds

(
∑

i

∂vi

∂xi +
1√
−g ∑

i
vi 1

2
√
−g

∂(−g)
∂xi

)
=

d
ds

(
1
2g ∑

i
vi ∂g

∂xi

)
.

Thus,

d
ds

(∇ · v) =− 1
2g2 g〈g,h〉∑

i
vi ∂g

∂xi +
1

2g ∑
i

vi ∂

∂xi (g〈g,h〉)

=−〈g,h〉
2g ∑

i
vi ∂g

∂xi +
〈g,h〉

2g ∑
i

vi ∂g
∂xi +

1
2 ∑

i
vi ∂

∂xi (〈g,h〉)

=
1
2
〈v,∇〈g,h〉〉.

Now, taking ν = v∗ to be the 1–form dual to v, i.e. νa = gabvb, we find

d
ds
|v|2 = d

ds
(gabvavb) = habvavb

= habgac
νcgbd

νd = hcd
νcνd

= 〈h,ν⊗ν〉.

Let B denote the integrand of the action functional. Performing the variation and ignoring

the terms that will only contribute to the boundary, we find

0 =
∫

U
[−〈Ric,h〉− c1(∇ · v)〈v,∇〈g,h〉〉+ c2〈ν⊗ν,h〉]dVg +

1
2

B〈g,h〉dVg.

Focusing on the second term in this integral.

(∇ · v)〈v,∇〈g,h〉〉= (∇ava)(vb
∇b〈g,h〉)

= (∇ava)[∇b(vb〈g,h〉)− (∇cvc)〈g,h〉]

= (∇ava)∇b(vb〈g,h〉)− (∇cvc)2〈g,h〉

= ∇b(vb
∇ava〈g,h〉)−∇c(∇dvd)vc〈g,h〉− (∇eve)2〈g,h〉.

68



And by what we found earlier performing the variation of v, ∇a(∇ · v) = c4
c3

va, hence

c1(∇ · v)〈v,∇〈g,h〉〉= c1∇b(vb
∇ava〈g,h〉)− c2|v|2〈g,h〉− c1(∇ · v)2〈g,h〉.

The first term is a divergence term, and once integrated, will vanish based upon our assumptions

on the variation. So,

0 =
∫

U
〈−Ric− c2|v|2g− c1(∇ · v)2g+ c2(ν⊗ν)+

1
2

Bg,h〉dVg.

As this holds for all variations, we find

G+Λg =
1
2
[−c1(∇ · v)2− c2|v|2]g+ c2(ν⊗ν).

Thus we have the following system of equations

G+Λg = c2(ν⊗ν)− 1
2
[c1(∇ · v)2 + c2|v|2]g

∇(∇ · v) = c2

c1
v.

To simplify the understanding of these formulae, we introduce a new function f with the

property,

f =
(

c1

c2

)1/2

∇ · v.

Thus the second formula above implies that

v =
(

c1

c2

)1/2

∇ f .

As by definition, ∇ f is dual to d f , we also have ν =
(

c1
c2

)1/2
d f . Thus, we have the following,

c2(ν⊗ν) = c1(d f ⊗d f ), c1(∇ · v)2 = c2 f 2, c2|v|2 = c1|d f |2,
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which gives an equivalent system of eqautions in terms of f ,

G+Λg = c1

[
d f ⊗d f − 1

2

(
|d f |2 + c2

c1
f 2
)

g
]

� f =
c2

c1
f .

And, via the Koszul formula, the connection Γ has components,

Γi jk =

(
c1

c2

)1/2

(?d f )i jk +
1
2
(gik, j +g jk,i−gi j,k).

We lastly, introduce the constants ϒ and µ0 defined by

c2

c1
= ϒ

2, c4 = 16πµ0.

We thus obtain the Einstein–Klein–Gordon system of equations with a cosmological constant

in geometrized units (the gravitational constant and speed of light set to 1),

G+Λg = 8πµ0

[
2

d f ⊗d f
ϒ2 −

(
|d f |2

ϒ2 + f 2
)

g
]

� f = ϒ
2

where G is the Einstein curvature tensor, f is the scalar field representing dark matter, Λ is

the cosmological constant, and ϒ is some new fundamental constant of nature that is yet to be

determined. For those who approach wave dark matter from a particle physics viewpoint instead

of the geometric viewpoint described here, the fundamental constant ϒ is the mass m of the dark

matter particle related by m = ~ϒ

c . [3]
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Appendix D

Scale Invariance for the Schrödinger–Newton

system

Let us begin with a triple (r,S,V ) thats is a solution to the Schrödinger–Newton system

(rS)′′ =−SV

(rV )′′ =−rS2.

We aim to find values α and β such that the triple

(r̃, S̃,Ṽ ) = (λαr,λβS(λαr),λβV (λαr)

is also a solution. For what follows, a Ṡ will denote differentiation with respect to r̃ and S′ will

denote differentiation with respect to r. A quick application of the chain rule gives,

˙̃S =
d
dr̃

[S̃(r̃)] =
dS̃
dr

dr
dr̃

= [λβ+αS′(λαr)]λ−α = λ
βS′(λαr).
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Similarly, one can find ¨̃S = λβS′′(λαr). Now,

d2

dr̃2 (r̃S̃) = 2 ˙̃S+ r̃ ¨̃S

= λ
β[2S′(λαr)+λ

αrS′′(λαr)]

= λ
β−2α[λ2αS′(λαr)+(λ2αrS′(λαr))′]

= λ
β−2α[λαS(λαr)+λ

2αrS′(λαr)]′

= λ
β−2α[λαrS(λαr)]′′.

At this point we make use of the fact that (rS)′′ =−rSV , hence

d2

dr̃2 (r̃S̃) = λ
β−2α[−λ

αrS(λαr)V (λαr)]

= λ
−β−2α[−r̃S̃Ṽ ].

Effectively the same computations as above show that

d2

dr̃2 (r̃Ṽ ) = λ
−β−2α[−r̃S̃2].

Thus the triple (r̃, S̃,Ṽ ) is a solution to the Schrödinger–Newton system when β+2α = 0. Thus

take β = 2 and α =−1.
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Appendix E

The Sturm Comparison Theorem

For the sake of completeness, we present a proof of the Sturm comparison theorem.

Theorem: (Sturm) Let p,q,P and Q be continuous functions on an interval [a,b]. Also assume

(p(t)u′)′+q(t)u= 0 and (P(t)v′)′+Q(t)v= 0, and assume that p(t)≥ P(t)> 0 and Q(t)≥ q(t)

on the interval [a,b]. If y1 and y2 are succesive zeroes of u then

• either there exists a x ∈ (y1,y2) with v(x) = 0.

• or there exists a λ ∈ R such that v = λu.

Proof. Assume that c,d are consecutive zeroes of the function u, and assume that u > 0 on

the interval (c,d). Let us also assume that v does not have a zero in the interval [c,d]. Direct

computation yields the following

[u
v
(pu′v−Puv′)

]′
=

P(u′v− v′u)2

v2 +(p−P)(u′)2 +(Q−q)u2

Integrating both sides from c to d and making use of the fact that u(c) = u(d) = 0 gives that

−
∫ d

c

P(u′v− v′u)2

v2 =
∫ d

c
(p−P)(u′)2 +

∫ d

c
(Q−q)u2
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As the right hand side is nonnegative and P > 0 it must be that W (u,v) = u′v− v′u = 0. Thus

there exists λ ∈ R such that v = λu.
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