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Abstract

Gatekeepers and Trailblazers: Essays in Microeconomics

by

Michèle C Müller-Itten

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Haluk Ergin, Co-chair

Professor William Fuchs, Co-chair

This thesis studies dynamic markets with endogenous entry, where access hurdles are either
an explicit feature of the market or an implicit result of productive externalities.

The first chapter concerns markets of influence, where formal gatekeepers are in charge
of selecting and promoting the most promising ideas. I model this as a two-sided matching
market between a continuum of experts and a finite number of gatekeepers under sequential
directed search. Real-world examples include academic publishing, venture capitalism or
political agenda setting. Uniqueness of the resulting equilibrium allows for clear-cut pre-
dictions: First, sorting may fail in equilibrium. Second, gatekeepers may have an incentive
to add artificial delay. Such red tape occurs in equilibrium – and only at the top – when
the impact of two gatekeepers is very different. Third, artificial delay may improve equilib-
rium sorting and thereby enhance welfare. Finally, the bottom gatekeeper may endogenously
specialize on a quality-irrelevant attribute.

In other applications, there are no formal gatekeepers who regulate market access, yet
endogenous access hurdles play a similarly selective role. In this vein of research, the second
chapter studies the evolution of labor market composition under mentoring externalities.
This chapter is joint work with Aniko Oery. We provide a continuous time, overlapping
generations framework to analyze the costs and benefits of affirmative action policies if
mentoring complementarities are present. Senior workers reduce the young population’s
educational cost through mentoring, and thus act as ‘trailblazers’ for future generations. In
such a framework, the main trade off is between using the most able workers and reducing
mentorship misallocation. We identify conditions under which persistent market intervention
is warranted to improve long-term surplus. We also contrast different channels through which
the planner can affect market outcomes, and highlight the benefits of educational fellowships
over hiring restrictions.
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Chapter 1

Gatekeeping under Asymmetric
Information

1.1 Introduction

Access to influence is often controlled by a small number of gatekeepers: Political motions
must be endorsed by a member of parliament, academics vie for publication in a handful of
top scientific journals, and hosts of startup companies compete for financial support from
a limited number of venture capitalists. In all of these applications, market participants
are heterogeneous with respect to their desirability and information is imperfect and often
asymmetric. The impact of this informational friction is felt on both sides of the market:
Uninformed gatekeepers have to base all decisions on noisy signals, and experts on the other
side can no longer fully anticipate match outcomes. This risk of rejection forces experts
to strategically target their search, which affects the equilibrium both in terms of match
outcomes and strategic incentives.

Understanding the allocation process is crucial since realized matches ultimately shape
public opinion, lawmaking, the direction of future research and technological progress. Yet,
several relevant questions remain without satisfactory answers: For instance, under what
conditions is matching assortative? How can gatekeepers attract better matches? Do these
strategic considerations differ for the best and the worst gatekeeper? What are the welfare
implications of this nonstandard competitive environment?

To address these questions, this paper proposes a tractable dynamic matching model
where a continuum of experts seek to promote ideas through one of finitely many channels,
each of which is controlled by a separate gatekeeper. An expert can propose to at most one
gatekeeper at any given time, and then has to stand by idly while the gatekeeper makes
her final match decision. Being unable to fully anticipate the success of a given proposal
and eager to find a match as quickly as possible, the impatient expert thus has to balance
high-impact options against less competitive ‘safe bets’. Three characteristics determine his
optimal proposal order over gatekeepers: the impact of each channel, response times, and his
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(a) The top gatekeeper receives proposal of ex-
actly those experts with high enough qual-
ity x ≥ x̂ (dashed line). Among these pro-
posals, better experts generate better sig-
nals and thus match more frequently (solid
line).

0 x 1

1

(b) The bottom gatekeeper receives proposals
from experts with quality below x̂ as well
as from those that were previously rejected
by the top gatekeeper. Since she accepts
all proposals, her proposal and match dis-
tribution coincide.

Figure 1.1: Proposal and match distribution for the stylized example discussed in the introduc-
tion.

equilibrium acceptance odds. Since time is particularly precious to an expert with several
promising avenues, the cost of each proposal is endogenously determined.

A gatekeeper’s objective is straightforward: She seeks to match with the highest-quality
experts subject to a finite flow capacity. Due to informational frictions, she however has
to base her decision on an imperfect signal of expert quality – taking into account that her
acceptance criteria not only affects which proposals she accepts, but also who proposes to
her in the first place. Contrary to the impatient experts, the long-lived gatekeepers do not
discount the future.

Example 1. To illustrate how experts’ directed search affects match outcomes, consider
a stylized case with two gatekeepers. The impact of the bottom gatekeeper is normalized to
one and she immediately accepts all proposals. The top gatekeeper has an impact of two,
but takes six months before deciding on any proposal and only accepts those with a high
enough signal. As a result, only the highest-quality experts propose to the top gatekeeper
first: Their signal draws are usually high, so they expect their proposal to be accepted.
Lower-quality experts instead prefer to match immediately with the bottom gatekeeper in
order to avoid the delay of a rejected proposal.

Consequently, the top gatekeeper here only receives proposals from the upper tail of the
quality spectrum. She however rejects even good experts with positive probability. These
experts go on to propose to the bottom gatekeeper, who therefore receives proposals of all
qualities, as illustrated in Figure 1.1. �

The discussion of expert incentives in this simple setup may suggest that sorting naturally
ensues in equilibrium, in the sense that high impact gatekeepers are more selective than their
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low-impact counterparts and that only the best experts first propose to the top gatekeeper.
When endogenizing gatekeeper’s acceptance strategies however, both sides of the market
may display nonmonotone equilibrium behavior. Specifically, I identify limiting conditions
that either guarantee or prevent each of the sorting failures and illustrate via examples how
these situations may occur under realistic parameter values. This serves as a cautionary tale
when an uninformed outsider makes inferences from observed equilibrium behavior. In doing
so naively, he may well end up drawing false conclusions on agents’ actual desirability.

The strategic targeting by experts shapes gatekeepers’ proposal distribution, and it seems
natural that they may seek to exploit it in their favor. In the simple example of Figure 1.1, ex-
perts’ self-selection essentially filters out the lowest-quality proposals for the top gatekeeper.
The filtering here is perfect due to the unconditional acceptance by the bottom gatekeeper.
In an actual equilibrium, this effect is less pronounced but the basic intuition maintains: A
gatekeeper may prefer to decrease her own desirability in order to reduce her inflow of pro-
posals, but then accept the remaining proposals more easily. By guiding experts’ proposal
strategy through incentives, she partially circumvents her informational disadvantage.

To incorporate such manipulation, I allow gatekeepers to artificially delay acceptance
decisions beyond the (exogenously given) time required for signal generation, which I refer
to as ‘red tape’. In a setup with two gatekeepers, I show that such red tape occurs in
equilibrium and only at the top, exactly when the impact differential is large. In reality,
multiple forms of red tape are imaginable, ranging from unnecessary delay over specific
customization requirements to gratuitous access hurdles that make it more costly to contact
to a gatekeeper.1 The intuition presented here applies to all of them, even though the exact
impact on the match distribution may vary slightly.

It is worth highlighting that these results obtain even when signal generation is completely
costless. If reviewing proposals is instead taxing for gatekeepers, this yields an additional
reason to employ disincentives: Fewer proposals means less resources are wasted to evaluate
experts that are ultimately rejected. Any such consideration would only strengthen the
result.

The existence of red tape has important efficiency implications and may come at a sig-
nificant social cost. Nevertheless, I identify conditions under which red tape improves match
assortativity and thereby actually raises welfare. As such, even when technological inno-
vations allow drastic reductions in response times, it may not be socially optimal to fully
exploit these possibilities.

When experts differ on an observable, quality-irrelevant attribute, gatekeepers have yet
another way of exploiting expert self-selection: By conditioning proposal acceptance on the

1Monetary proposal costs also act as a (more efficient) form of red tape. Indeed, such “money burning”
actually completely discourages the worst experts from proposing, in addition to pushing some intermediate
ones towards other gatekeepers first. However, gatekeepers may be opposed to such policies for fairness
considerations if experts face heterogeneous budget constraints (Cotton, 2013) or if proposal costs are borne
by someone other than the expert, for example because research departments directly reimburse journal
submission costs.
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attribute, the gatekeeper becomes more easily accessible to experts within a target group,
and in turn receives more proposals from that group. Such horizontal differentiation occurs
for instance within academic publishing, where lower-ranked journals often specialize in a
specific sub-discipline while the top journals span the entire field. This asymmetry can be
motivated from the nonstandard competitive framework that they are participating in.

Indeed, there is an immediate negative effect from specialization: Nontarget proposals
are now rejected to make room for target proposals with a lower signal. However, as experts
react to these new acceptance rules, the gatekeeper also secures additional proposals in the
target group and loses some nontarget proposals. As such, specialization partially replaces
a gatekeeper’s own proposals with those that previously went to her competitor first. Now,
since experts from the upper tail of the quality distribution first propose to the top gate-
keeper, the sign of this indirect effect depends on the strategic position of the gatekeeper: It
is positive for the bottom gatekeeper, but negative for the top (who would rather conserve her
own proposals). As such, the top gatekeeper doesn’t have any incentives for specialization,
but the bottom gatekeeper endogenously limits his scope when the indirect effect outweighs.

Unfortunately, equilibrium strategies are less straightforward since the top gatekeeper
may still react to a differential acceptance policy of her competitor, even if she never uni-
laterally specializes. As such, the asymmetry between gatekeepers’ taste for specialization
is an off-equilibrium result – the endogenous occurence of specialization however maintains
even in equilibrium.

Related Literature. Equilibrium sorting is a central concern in the decentralized match-
ing literature. Limiting my discussion to the case of non-transferable utility where match
surplus is divided exogenously, Gale and Shapley (1962) establish that aligned preferences
alone are sufficient to ensure assortative matching in the absence of search frictions. When
search is time-consuming but match opportunities arise randomly, Smith (2006) shows that
assortative matching ensues under the preference structure considered here: Equilibrium
matches are characterized by an interval-partition over the type space, in the sense that
agents within the same interval match up while all others keep searching. Stochastic as-
sortative matching remains an equilibrium even under informational frictions, where agents
merely observe a noisy signal of their potential partner’s type (Chade, 2006). The introduc-
tion of directed search however breaks assortativity, as Chade et al. (2014) show in closely
related model with costly but simultaneous, one-shot search. These nonmonotonic equilib-
rium strategies maintain under the sequential search considered here. However, they no
longer occur independently for the two sides. More generally, the main advantage of the
present framework lies in its tractability: Contrary to the former model, equilibrium is (es-
sentially) unique and well defined for any finite number of gatekeepers. It is thanks to these
clear equilibrium predictions that a meaningful discussion of gatekeepers’ competitive in-
centives becomes possible. Moreover, the multiplicity in their setting is generated by the
fact that experts can make proposals at a single point in time – they cannot later pursue
new options if their initial proposals do not work out. In applications where no such hard
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deadline exists, the current framework may thus offer a better fit.
Previous papers have explored competition among academic journals, albeit in a partial

equilibrium setup.2 The driving factor in these models is the assumption of a costly refereeing
process, resulting in direct savings from any reduction in submission rates. In contrast,
gatekeepers here are motivated purely by improvements in their match outcomes and as such
the present analysis supplements, rather than restates, these previous findings. Moreover,
by embedding these tradeoffs into a general equilibrium framework, I am able to identify
an asymmetry which is consistent with the empirical observation that editorial delays are
substantially longer at top journals.

The paper is organized as follows: Section 1.2 establishes the formal model and Sec-
tion 1.3 identifies the unique equilibrium, which may or may not entail sorting failures
depending on conditions specified in Section 1.4. Extending the model, Section 1.5 then
analyzes gatekeeper behavior in this non-standard competitive environment. Section 1.6
highlights several applications of the model and discusses potential extensions motivated by
their idiosyncrasies.

1.2 The Model

This paper studies a decentralized, two-sided matching market with heterogeneity on both
sides and a common preference. What sets it apart from the classic setup is the strategic
meeting technology and the asymmetric information structure.

Formally, I consider a continuous time game where short-lived, impatient experts seek
to broadcast their ideas. For expositional simplicity, I refer to an expert by the quality
x ∈ X = [0, 1] of his idea. Experts are born continuously at unit flow rate: During each
time interval dt, a mass dt of experts arrive according to distribution F . I assume that F is
continuous with full support over the quality space X and admits a differentiable density f .

On the other side, let J denote the finite set of long-lived gatekeepers who control separate
channels of influence. The size of gatekeeper j’s sphere of influence, or her impact, is publicly
known and denoted by the exogenous parameter γj > 0.3 Within her limited per-period
capacity κj ∈ [0, 1], a gatekeeper seeks to accept (and promote) the most worthwhile ideas.4

2Weitzman (1979), Oster (1980), Heintzelman and Nocetti (2009) and Salinas and Munch (2015) char-
acterize the optimal submission strategies for academic authors. The decision problem they solve is identical
to the one faced by individual experts in this paper. Baghestanian and Popov (2015) further endogenize au-
thors’ effort level and explore the impact of exogenous changes in the publishing process. Leslie (2005), Azar
(2005, 2007) and Cotton (2013) discuss the possible benefits of long editorial decision times and monetary
submission costs at a single journal.

3In Section 1.6, I discuss an extension where impact is endogenously determined.
4The qualitative results carry over if gatekeepers’ cardinal utility ranking is different – as long as they

all share the same ordinal preference which is strictly increasing in x, even the worst expert is weekly better
than a vacancy and exceeding capacity is costly enough to discourage additional matches even with the most
attractive expert x = 1. For simplicity, I henceforth assume that the utility from accepting expert x is
exactly equal to x.
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Total capacity is insufficient for all proposals,
∑

j∈J κj < 1, which rules out trivial situations
where the least attractive gatekeeper summarily accepts all proposals.

I abstract away from any goodness-of-fit issues by assuming that guaranteed and instanta-
neous acceptance by gatekeeper j carries the same utility γj for all experts. Although experts
share this common preference, they do not behave in the same way because acceptance is
neither guaranteed nor instantaneous. Indeed, while experts are perfectly aware of their own
type, gatekeepers only observe a noisy signal σ of a proposer’s quality, independently drawn
from G(σ|x). For tractability, I assume G(·|x) has full support over a closed interval Σ ⊆ R
and admits a density g(σ|x) that is differentiable in both arguments.5 I assume that signals

obey the strict monotone likelihood ratio property (MLRP), meaning that g(σ̃|x)
g(σ|x)

is increasing

in the expert’s type x for all signals σ̃ > σ.6 Generating this signal is a time-intensive but
costless process, resulting in a nontrivial response time Tj > 0, during which the expert can-
not explore any other options. However, once reached, a gatekeeper’s acceptance decision is
final in the sense that the expert is prohibited from approaching the same gatekeeper again.
Experts expire upon a successful match or after unsuccessfully exploring all options.

Since promotion decisions cannot be fully anticipated by experts and are costly in terms
of wasted time, experts face the dilemma of wanting to be accepted by the most prestigious
gatekeeper while trying to avoid lengthy rejection cycles. Formally, an expert arriving at time
t and being accepted by gatekeeper j at time t+∆t exits the game with utility e−r∆tγj, where
r > 0 is the common discount rate. For notational simplicity, when there is no ambiguity I
sometimes refer to e−rTj as δj. An expert chooses when to propose to an individual gatekeeper
j, but then has to wait until he hears back Tj units of time later. For some applications,
it is more reasonable to interpret Tj as an active time investment for establishing contact,
attending meetings or customizing the product. In this case, a higher discount rate reflects
the increased opportunity cost.

For tractability, I want to focus on the situation where expert history is completely pri-
vate, and thus also need to shut down any inferences thereon that could be made from
calendar time.7 For that reason, I assume that gatekeepers can condition their acceptance
strategy only on the observed signal aj : Σ → [0, 1], where aj(σ) denotes the acceptance

5It is without loss of generality to restrict signals to the unit interval Σ = [0, 1], but allowing for standard
exponential signals simplifies exposition later on.

6The model can be adapted to include gatekeeper-specific signal distributions Gj(·|x). Most qualitative
results carry over, with the exception of the asymmetry in Theorems 3 and 5 (both gatekeepers may now use
red tape in equilibrium or deviate to a specialization strategy) and the conditions that guarantee monotone
equilibria in Theorem 2 (these are no longer sufficient since the double secant property fails).

7Apart from realism, this assumption greatly simplifies the inference problem for gatekeepers as the signal
is now the sole base of inference on a specific expert’s type. In contrast, if it were known that an expert has
already been rejected five times, the previously generated signals must have been rather unattractive. Thus,
even if the most recent signal is very high, a gatekeeper has cause for suspicion. As gatekeepers incorporate
this source of information, acceptances become less and less likely for later proposals, thereby impacting
experts’ optimization problem.

Such considerations partially survive even if expert history and arrival times are private, as any gatekeeper
approached at t = 0 knows that she is an expert’s first choice.
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Before time begins, gatekeepers simultaneously set aj : Σ → [0, 1].

x Expert x proposes to a gatekeeper in J .

j

Nature draws an independent signal σ ∼ G(· |x).

j

σ

a r

The proposal is accepted with probability aj(σ).

j′

Expert x proposes to a gatekeeper in J \ {j}.

Nature draws an independent signal σ′ ∼ G(· |x).

j′
σ′

(e−r(Tj+Tj′ )γj′ , x)

a r

The proposal is accepted with probability aj′(σ
′).

Utilities are realized and the expert exits the game.

t0

t1

t2

Tj

Tj′

Figure 1.2: Sample history for an expert arriving at time t0 and selecting proposal order ω =
(j, j′, ...).

probability of a proposal with signal σ. Formally, I consider an extensive form game where
gatekeepers simultaneously commit to time-invariant acceptance strategies before time be-
gins,8 and experts thereafter choose the timing of their individual proposals.

Time-invariance of the acceptance decision leads to two immediate simplifications: No
impatient expert ever delays proposing to a new gatekeeper, and experts of quality x face
the same tradeoffs irrespective of their arrival time. As a result, optimal expert behavior
is characterized by a (possibly random) proposal order ψx ∈ ∆Π(J), where a specific
permutation ω = (ω1, ..., ω|J |) ∈ Π(J) represents the strategy of proposing first to gatekeeper
ω1 and moving on to ωk+1 as soon as the expert is rejected by ωk. To clarify, Figure 1.2
represents a sample history for a specific expert.

Consequently, let αj(x) =
∫

Σ
aj(σ)g(σ|x)dσ denote the (expected) acceptance rate

among proposals of a specific quality. Under any pure proposal order ω, the fraction of
experts x eventually proposing to gatekeeper j is given by the cumulative rejection probability
of all previous proposals,

πj(x|ω) =

ω−1(j)−1∏
k=1

(1− αωk(x)),

8 In the absence of commitment, the suggested time-invariant equilibria remain subgame perfect as
long as off-equilibrium beliefs have everybody expect equilibrium play from that point forward. (The only
exception are the spontaneous specialization results in Section 1.5.2, which require gatekeeper commitment.)
However, additional time-variant equilibria may arise in the no-commitment case.
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where ω−1(j) denotes j’s position in permutation ω. For general proposal orders ψ, the
proposal rate is given by the expectation πj(x) =

∑
ω∈Π(J) ψx(ω)πj(x|ω). In turn, the

realized match rate between gatekeeper j and experts x is equal to the product µj(x) =
αj(x)πj(x). Whenever I want to stress the dependence on a specific parameter ξ, I include
it in the notation as µj(x|ξ).

As a result, I can write an expert’s payoff under any pure proposal order ω ∈ Π(J) as

U(ω|x) =

|J |∑
k=1

e−r
∑k
m=1 Tmµωk(x|ω)γωk (1.1)

which is the sum over his match rate µj(x) with each gatekeeper j, multiplied by the instan-
taneous payoff γj and discounted by the total delay of this specific match. An expert who
exits the game unmatched yields a payoff of zero. On the other hand, gatekeeper j’s per-unit
total matches are given by Mj(aj) =

∫
X
µj
(
x|(aj, a−j)

)
f(x)dx, yielding her a total match

value of

Vj(aj) =

∫
X

xµj
(
x|(aj, a−j)

)
f(x)dx.

In addition, gatekeeper j faces a unit penalty of K > 1 on any flow rate in excess of κj,
bringing her final payoff to Vj −K ·max {0,Mj − κj}.9

Consequently, a (subgame perfect) equilibrium of the game(
(γj, Tj, κj)j∈J , {G(·|x)}x∈X , F

)
specifies an acceptance strategy aj : Σ → [0, 1] for each gatekeeper j and a contingent
proposal order ψx : ([0, 1]Σ)J → ∆Π(J) for each expert x, such that

(i) For each vector of acceptance strategies a = (aj)j∈J , the proposal order ψx(a) maxi-
mizes the payoff of expert x, meaning U(ω|x, a) ≥ U(ω′|x, a) for any ω, ω′ ∈ Π(J) with
ψx(a)(ω) > 0.

(ii) The acceptance strategy aj maximizes the payoff for gatekeeper j, meaning

Vj(ãj|a−j, {ψx(α̃j, α−j)}x∈X)−K ·max
{

0,Mj(ãj|a−j, {ψx(α̃j, α−j)}x∈X)− κj
}

is maximized at ãj = aj.

1.3 Equilibrium Analysis

1.3.1 Expert behavior

Since there is a continuum of agents, experts are only indirectly competing with each other
through their impact on gatekeeper capacity, but face independent decision problems con-
ditional on gatekeepers’ acceptance strategies. This simplifies equilibrium analysis, as it is

9This flexible way to introduce capacity constraints has been used previously by, e.g. Che and Koh
(2015).
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sufficient to analyze an isolated expert with given acceptance chances αj(x) at each gate-
keeper j. Indeed, a close look at Equation (1.1) reveals that those are the only ingredients
that determine his payoff U(ω|x).

Decomposing the payoff into the individual proposals, one observes that the expected
utility of submitting to gatekeeper j is history dependent: While high-prestige options re-
main, it is a bad move to approach a low-impact gatekeeper with almost certain acceptance
since that may cost the possibility of reaching for the most attractive channel. Similarly, a
lengthy response time is particularly costly when multiple other venues have to be delayed.
Fortunately, the underlying preference ordering is more straightforward, and it is possible
to reformulate experts’ payoffs to get rid of that history dependence while preserving their
strategic behavior. This observation has previously been made by Heintzelman and Nocetti
(2009) (drawing largely on Weitzman (1979)’s optimal search theory), who study the ex-
pert’s decision problem in a partial equilibrium framework. I offer an independent proof in
the appendix.

Lemma 1.3.1. Let

zj(αj) =
e−rTjαjγj

1− e−rTj(1− αj)
.

Then expert x’s optimal proposal order is according to decreasing zj(αj(x)) score.

Proof. See Appendix A.1.1.

Intuitively, the zj score captures both the expected discounted benefit e−rTjαjγj from an
isolated proposal to j as well as the externality imposed from delaying any further proposals
by Tj in the case of rejection, which happens with probability 1 − αj. Consequently, high
impact makes a gatekeeper more attractive but doesn’t affect the externality, while fast
response times or high acceptance rates both increase the value of a proposal and decrease
its externality. The simplification pins down which proposal rates can occur in equilibrium
and how these are affected by changes in external parameters.

Corollary 1.3.2. Proposal rates πj(x) are nondecreasing in αj(x) and γj and nonincreasing
in Tj in the sense that any feasible πj(x) is weakly lower than all feasible π̃j(x) under αj(x) ≤
α̃j(x), γj ≤ γ̃j or Tj ≥ T̃j. Changes in opponent parameters have the opposite effect: πj(x)
is nonincreasing in αk(x) and γk and nondecreasing in Tk for all k 6= j.

Proof. See Appendix A.1.1.

The dependence of πj(x) on external parameters is entirely driven by their impact on
the relative zj scores. For that reason, one game parameter is conspicuously absent from
Corollary 1.3.2: the overall discount factor r. Since changes in expert impatience affect all
zj-scores simultaneously, changes in this parameter can attract more proposals from experts
at one end of the quality spectrum and reduce those from the other end.

Finally, each expert eventually exhausts all options, and exits the game unmatched if
and only if all gatekeepers reject his proposals. Since both the individual signal draws σ and
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the acceptance probabilities aj(σ) are history-independent, changes in an expert’s proposal
order have no bearing on his overall match probability.10

Observation 1. The overall match probability for a given expert is independent of proposal
order and equal to 1−

∏
j∈J(1− αj(x)).

It is thanks to this property that equilibrium uniqueness can be established in Theorem 1.

1.3.2 Gatekeeper behavior

Having thus characterized experts’ best responses for any vector of gatekeepers acceptance
strategies, it follows that gatekeepers optimally employ cutoff strategies in the first stage.11

Lemma 1.3.3. In any equilibrium under private expert history, gatekeepers employ cutoff
rules. More formally, the optimal strategy aj : Σ → [0, 1] of gatekeeper j is equivalent to a
cutoff strategy in the sense that there exists a cutoff σj ∈ Σ such that

aj(σ) = 1σj(σ) =

{
1 if σ ≥ σj
0 otherwise

at almost all σj ∈ Σ.

Proof. See Appendix A.1.2.

This result is nontrivial because gatekeepers move first and as such have to internalize
the indirect effect of their acceptance decision on the experts’ behavior.12 However, since
proposal rates are nondecreasing in αj(x), they actually act as an amplifier – and any accep-
tance strategy that favors high-quality ideas (which the cutoff rule does best) has a doubly
positive impact on the match distribution.13

10This would be true even if one adds a small monetary cost cj > 0 to each option, as an expert would
only ever pursue gatekeeper j if and only if δjγjαj ≥ cj . As such, the set of proposals is still independent
of the order.

11Incidentally, it is due to this result that only the ordinal preference of a gatekeeper matters. The proof
of Lemma 1.3.3 does not depend on any specific utility function and hence cutoff strategies are generally
optimal. If in addition even the worst idea is preferred over a vacancy, the capacity constraint uniquely pins
down a gatekeeper’s best response.

12Under simultaneous proposals (Chade et al., 2014), this observation follows more easily since experts
always match with the best acceptance offer they receive. Moreover, since proposals are made prior to the
gatekeeper’s decision, she doesn’t incorporate the impact of her acceptance strategy onto the distribution
of proposals she receives. As a result, Chade et al. (2014) consider expected expert quality conditional on
proposing to j, generating signal σ and ultimately matching with j, and show that this quality is increasing
in the signal σ. In the sequential case, experts propose after gatekeepers fix their strategy, and as such,
gatekeeper j’s own acceptance strategy impacts the distribution of experts, precluding a similar approach.

13As a corollary from this observation, the basic model maintains whether or not experts observe gate-
keeper decisions. Indeed, if gatekeeper strategies are private, a deviation is not detected by experts and the
amplifying effect of πj(x) is absent. Still, cutoffs favor high-quality proposals, and hence the equilibrium
analysis remains valid. However, as soon as I turn to more interesting strategic considerations such as red
tape in Section 1.5.1, the observability of gatekeeper strategies becomes crucial.
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An important assumption of the model is that no proposals are of negative quality. In
equilibrium, each gatekeeper thus either exhausts her capacity, Mj =

∫
X
µj(x)f(x)dx = κj,

or accepts all proposals, σj = min Σ.14 However, since joint capacity is insufficient and
overall match probability is independent of proposal order, the latter does not occur in
equilibrium.15

Lemma 1.3.4. In any equilibrium, σj ∈ int(Σ) for each j ∈ J , and hence all gatekeepers fill
capacity in equilibrium.

Proof. Certain acceptance by even a single gatekeeper implies that no expert remains un-
matched (see Observation 1), creating a contradiction with the model’s assumption that∑

j∈J κj < 1.16 Categorical rejection σj = max Σ on the other hand violates optimality since
all matches are beneficial to the gatekeeper, and a high enough interior cutoff creates strictly
positive value while respecting capacity.

1.3.3 Equilibrium Characterization

Based on the previous characterization of agent’s best response, it follows that the game
admits an essentially unique equilibrium. More specifically, gatekeeper cutoffs are uniquely
determined, while indifferent experts may split in a number of ways, as long as total matches
are maintained for each gatekeeper. This indeterminacy is inconsequential when only an
F -measure zero of experts is indifferent across submission orders, as is true for exponential
signals under arbitrary cutoffs (see Lemma A.1.2 in the appendix). In such a case, the game
can be analyzed in reduced form as a simultaneous game between gatekeepers, admitting the
succinct proof given here. I complete this proof in the appendix for general signal functions.

Theorem 1. An equilibrium exists. Moreover, gatekeeper cutoffs are uniquely determined
and vary continuously in all external parameters.

Partial proof. To distill the main ideas, I here assume that the optimal submission order
is unique for almost all experts under any cutoffs σ ∈ Σ, which in turn unambiguously
determines proposal rates πj(x|σ) and total matches Mj(σ). An extension to general signal
functions is relegated to Appendix A.1.3, as is the discussion of continuity.

Part I: Best responses are monotone.
Total matches for gatekeeper j are unambiguously given by the function

Mj(σ) =

∫
X

µj(x|σ)f(x)dx.

14Capacity manipulation is not beneficial since the match rate is increasing in σj at every quality level x.
This rules out situations as in Sönmez (1997) where match participants can increase matches with higher
types by underreporting capacity.

15The assumption of nonnegative quality can be relaxed in a situation where total capacity is far smaller
than the inflow of worthwhile proposals, as long as all gatekeepers still fill capacity in equilibrium.

16In a model with small enough monetary cost cj < δjγj , the same argument goes through.
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By continuity of the z scores and the signal distribution G, this function is continuous.
Moreover, both acceptance and proposal rates are decreasing in σj, while the latter is weakly
increasing in σ−j by Corollary 1.3.2. In other words, total matches are strictly decreasing in
σj and weakly increasing in σ−j. As a consequence, the best response function Φ : ΣJ → ΣJ

with
Φj(σ) = min

{
σj ∈ Σ |Mj(σj, σ−j) ≤ κj

}
is monotone over the complete lattice (ΣJ ,≤).17

Part II: Φ has a unique fixed point.
By Tarski’s fixed point theorem, the fixed points of Φ thus also form a nonempty and complete
lattice along with the partial order ≤. Any such fixed point represents an equilibrium of the
game when accompanied by any proposal orders that follow the zj(x) scores.

Finally, by Observation 1, the overall match probability for expert x is equal to 1 −∏
j∈J G(σj|x). As such, any two distinct ordered fixed points σ < σ′ differ in the total flow

of matches∑
j

Mj(σ) =

∫
X

(
1−

∏
j∈J

G(σj|x)

)
f(x)dx >

∫
X

(
1−

∏
j∈J

G(σ′j|x)

)
f(x)dx =

∑
j

Mj(σ
′).

However, since that sum equals total capacity
∑

j κj by Lemma 1.3.4, equilibrium is unique.

The previous theorem relies on the strategic complementarity among gatekeepers. The
intuition for this is twofold: As an expert’s acceptance rate at a competing gatekeeper k
decreases, so does his zk score and he might now propose to gatekeeper j earlier. In addition,
even conditional on proposal order, the expert proposes to j more often since his previous
proposals are now more likely rejected. To counter her surge in proposals, gatekeeper j
therefore also accepts fewer signals. Equilibrium existence follows from Tarski’s Fixed Point
Theorem. Uniqueness on the other hand follows from the fact higher signals lower total
matches irrespective of experts’ proposal orders.

The proof is more involved when a nontrivial mass of experts may be indifferent across
proposal orders. The indeterminacy of πj(x) in this case doesn’t allow a reduced form
discussion of the form above. In Appendix A.1.3, I instead approximate the zj scores by
appropriately chosen step functions znj that preclude expert indifference. Letting σ denote the
limit of the respective equilibrium cutoffs, I then construct expert strategies that implement
σ as equilibrium cutoffs. The delicacy of this part lies in the fact that expert strategies are
defined over an uncountable set X and may not converge pointwise. To circumvent this issue,
I let all experts with identical limiting preference adopt the same mixed proposal strategy in
a way that maintains gatekeepers’ total matches. While the individual expert strategies are
no longer best responses to the perturbed scores znj , they admit a convergent subsequence by

17In the case of an unbounded signal space, a complete lattice is obtained by replacing Σ with Σ̃ =
[inf Σ, sup Σ] ⊆ R ∪ {±∞}. Continuity of Mj(σ) and Lemma 1.3.4 ensure that all fixed points are interior.
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Figure 1.3: Equilibrium outcomes that reproduce the findings of Calcagno et al. (2012). Here,
a small top journal (γ1, κ1) = (1.3, 0.027) competes against a larger bottom journal
(γ2, κ2) = (1, 0.13). Response times are nine months each and the yearly discount rate
is r = 10%. Ex-ante quality and signals are distributed exponentially, x ∼ exp(1)
and σ|x ∼ exp(1/x). Equilibrium cutoffs are σ1 = 5 and σ2 = 2. As in the empirical
findings, 75% of published papers are first intents.

Bolzano-Weierstrass18 and the limit represents a best response under score z and cutoffs σ.
Intuitively, any strict preference is robust to small enough perturbations, and any proposal
order is optimal under exact indifference.

Uniqueness follows from a generalization of Observation 1: Any two distinct gatekeeper
cutoffs σ 6= σ̃ (not necessarily ordered) differ in total matches for a subset of gatekeepers
(Lemma A.1.3).

Lastly, I consider any convergent parameter sequence ξn → ξ and let σn and σ denote the
corresponding equilibrium cutoffs. The limit of any convergent subsequence s = limk→∞ σ

nk

can be implemented as an equilibrium under ξ by the argument above. By uniqueness, this
implies s = σ, and convergence follows since a bounded sequence with a unique subsequence
limit is itself convergent. This completes the proof of continuity.

To illustrate how this formal framework may sharpen our understanding of such matching
markets, let me reconsider an empirical study originally published in Science and give an
alternative explanation for one of their main empirical puzzles.

Example 2. Calcagno et al. (2012) study flows of research manuscripts among journals
by surveying successful authors where their published paper had previously been submitted.
They observe two empirical regularities: First, among papers that were first rejected by one

18Indeed, since all experts with the same limit preference behave in the same way, this reduces the number
of strategies to at most |J |2 (the number of weak orders over J).
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journal and then published at another journal (here called ‘resubmissions’), most – but not
all – ended up at a lower-impact journal than where they were first submitted to. Second,
authors generally target journals efficiently, in the sense that 75% of all publications were
first submitted to the journal that ultimately published them (‘first-intents’). Together,
these two observations lead them to expect that high-impact journals primarily publish first-
intents, while lower journals receive and publish more resubmissions. Unexpectedly, they
find the opposite pattern: the proportion of first-intent publications decreases with impact
factor, except at the very top. To make sense of these findings, the authors suggest that
top journals have a denser competitive neighborhood due to their general focus, and as such
receive resubmissions from more sources.

However, instead of citing network effects, those findings can also be reconciled parsi-
moniously within the current model. Figure 1.3 lists the relevant parameter values and
illustrates key equilibrium predictions. Intuitively, consider that the high-ranked journal has
a small capacity, and the bulk of papers are of relatively low quality. Given their meager
acceptance chances, most experts first submit to the bottom journal, are rejected and there-
after submit to the top. As a result, the top journal receives many more resubmissions than
first-intents. So many in fact, that despite her high equilibrium cutoff, she ultimately pub-
lishes quite a few recycled papers. Conversely, only the very best papers are first submitted
to the top, and in turn there is a small absolute number of papers that are first rejected at
the top and then accepted at the bottom journal.

Put differently, the third finding may owe to averaging effects: In absolute numbers, the
top journal publishes fewer resubmissions than the bottom,19 but since its capacity is small
in comparison, those make up a larger percentage of total publications in Figure 1.3c. �

In the next two sections, I discuss equilibrium sorting and analyze the nonstandard
competitive environment among gatekeepers. To do so, I restrict attention to the case of
just two gatekeepers for tractability. In particular, this restriction ensures that the effect of
an exogenous parameter change on equilibrium cutoffs is unambiguous and intuitive.

Lemma 1.3.5. With only two gatekeepers, a raise in γj or a drop in Tj causes a raise in
gatekeeper j’s cutoff and a drop in her opponent’s cutoff. The changes are strict if there
exists at least one indifferent interior expert x̂ ∈ (0, 1) with zj(x̂) = zk(x̂).

Proof. See Appendix A.2.

In the interest of brevity, the remaining comparative statics results are relegated to
Appendix A.2.

19This is visible from Figure 1.3a. Papers with history ‘Up’ correspond to resubmissions published at
the top journal and those with a ‘Down’ history are published at the bottom journal. Histories 1 and 2
correspond to first-intents at journal 1 and 2 respectively.
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1.4 Sorting Failures

A naive interpretation of the common preference assumption may suggest assortative match-
ing, at least under some weakened notion that accounts for partial information. After all,
all gatekeepers rank experts by proposal quality x, and any expert with certain acceptance
everywhere ranks gatekeepers according to the present discounted value of future impact
zj(1) = e−rTjγj, which I refer to as a gatekeeper’s appeal.

In particular, two natural properties for equilibrium sorting come to mind:

(i) More appealing gatekeepers should be more selective than their less appealing coun-
terparts.

(ii) Only the best experts should propose first to the top gatekeeper.

As the following result shows, both monotonicity properties can fail in equilibrium: A
gatekeeper might set a higher cutoff than a more appealing competitor. Conversely, experts
with particularly poor acceptance rates everywhere have a low opportunity cost of waiting
and therefore are less responsive to differences in response times. As a result, they might
directly propose to the top gatekeeper even when more qualified experts first go after a faster,
low-impact gatekeeper.

Theorem 2. Consider a setup with two gatekeepers, such that e−rT1γ1 > e−rT2γ2.

(i) If the bottom gatekeeper is small (large) enough relative to the top, she is also more
selective (accepting) in the sense that σ2 > σ1 (σ2 < σ1).

Moreover, for any capacity k2 ∈ (0, 1), there exists an upper bound k1 ∈ (0, 1 − k2)
such that equilibrium cutoffs are monotone whenever the top gatekeeper is small enough
κ1 < k1, and these bounds are independent of the parameters (Tj, γj).

(ii) If the bottom gatekeeper responds much faster than at the top, such that δ2 >
γ1

δ1γ1+(1−δ1)γ2
δ1,

there exists a MLRP signal function and capacities (κ1, κ2) such that experts behave
non-monotonically in equilibrium, i.e. z1(x) > z2(x) and z1(x′) < z2(x′) for some
x < x′.

This nonmonotonic behavior is ruled out when the low-impact gatekeeper γ2 < γ1 is
not too much faster or sets a lower equilibrium cutoff.

Proof. See Appendix A.1.4.

It is intuitive that a gatekeeper of disappearing capacity will set a high cutoff indepen-
dent of her competitive position, and that this eventually upsets the first type of equilibrium
sorting. However, the following example illustrates that gatekeepers may behave nonmono-
tonically even when they are of equal capacity.
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Example 3. Consider a setup with two gatekeepers of equal capacity, (γ1, τ1, κ1) = (1.18, 2, 0.2),
(γ2, τ2, κ2) = (1, 1, 0.2) and discount rate r = 10%. Signals are distributed exponentially,
G(σ|x) = 1−xσ. Expert quality is distributed with density f(x, λ) = (λ+ 1)(1−x)λ, where
λ > 0 measures the concentration of expert quality. The distribution converges to a point
mass at 0 as λ→∞ and to the standard uniform distribution as λ→ 0. For this example,
fix λ = 3.

In equilibrium, gatekeepers behave nonmonotonically since σ1 = 0.82 < 0.87 = σ2.
Intuitively, experts apply first to the bottom gatekeeper if and only if x ≤ x̂ = 0.44, but due
to the steep decrease of quality, this represents 90.3% of all experts. In order to counteract
this high proposal rate, the bottom gatekeeper needs to be more selective than the top. �

Experts as well may violate the natural sorting when facing a fast and selective bottom
gatekeeper against a slow but more accepting top gatekeeper. In this comparison, only the
fast turnaround time speaks for the bottom gatekeeper – she accepts fewer proposals and
yields a lower payoff upon acceptance. Her quick decision increases the expected proposal
payoff for all agents by the same factor, but the externality reduction on the delayed top
proposal is most pronounced when rejection at the bottom and acceptance at the top is
a likely outcome.20 As the following example illustrates, ‘average’ experts may then first
choose this low-yield, low-externality option, while the best and worst experts first pursue
the top gatekeeper – the best being motivated by high success rates and the worst by a low
opportunity cost of time.21

Example 4. Consider a situation with two gatekeepers

(γ1, τ1, κ1) = (1.12, 2, 0.30), (γ2, τ2, κ2) = (1, 1, 0.27)

and discount rate r = 10%. Signals and quality are distributed as before, with λ = 0.27.
In equilibrium, the bottom gatekeeper is more selective than the top (σ1 = 1 < 1.3 = σ2)

which causes experts to behave nonmonotonically. Specifically, experts first propose to the
bottom gatekeeper if and only if x ∈ [0.17, 0.79], while both lower- and higher-quality experts
first propose to the top. Figure 1.4 depicts the corresponding equilibrium. �

These sorting failures show that monotone equilibrium behavior is not the ‘default out-
come’. As such, crude inferences from a gatekeeper’s rejection rate to her innate appeal may
be faulty, as may those from an expert’s proposal order to his quality. Neither are they a
mere artifact of the exogenous impact parameter. To illustrate this, the examples in this
section are chosen such that the endogenous mean quality of matches at either gatekeeper

20Put simply, when acceptance at the bottom journal is almost certain, experts care little about additional
delay conditional on rejection. Similarly, when acceptance by the top gatekeeper is extremely unlikely, it
doesn’t matter if the proposal has to be further delayed.

21The actual proof is more mechanical: I consider the secant slopes of the indifference curve and identify
necessary and sufficient conditions under which they move in the same direction. When they do, I derive a
signal structure that ensures multiple crossings between indifference and acceptance curve. When they do
not, the double secant property (Chade et al., 2014, Theorem 1) guarantees a single crossing, and thereby
monotone proposal strategies.
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Figure 1.4: Example equilibrium outcomes for Example 4, where both the best x ≥ x̂H and
the worst x ≤ x̂L experts first propose to the top gatekeeper. Depicted are the
equilibrium flow rate of matches µj(x)f(x) at the top (dark gray) and bottom (light
gray) gatekeeper for each quality level x.

is proportional to the exogenous impact ratio γ1/γ2. In other words, if gatekeepers act as
signaling devices for expert quality, then the relative value for an expert to be matched with
gatekeeper j is exactly equal to the assumed impact γj.

Furthermore, while both of these sorting failures also occur under simultaneous proposals
(Chade et al., 2014), the necessary and sufficient conditions are different for both cases.
In a simultaneous setup, sorting failures occur independently for experts and gatekeepers,
while they here occur among experts only if gatekeepers also set nonmonotone cutoffs. The
latter however is more frequent now: Example 3 shows nonmonotone gatekeeper behavior
under equal capacities, which for simultaneous proposals is restricted to cases where κ2 is
significantly smaller than κ1.22 In Appendix A.1.4, I further show a third type of sorting
failure that is unique to sequential proposals: Even under monotone equilibrium behavior,
some low-quality experts may match more frequently with the top gatekeeper than experts
of higher quality.

1.5 Gatekeeper Competition

Experts’ directed search generates a non-standard competitive environment for gatekeepers.
After simplification however, optimal gatekeeper behavior reduces to finding the capacity-
clearing cutoff and fails to incorporate other realistic and subtle strategic tradeoffs. For that

22The proof mechanics are also more subtle under sequential proposals since the top gatekeeper is less
shielded from cutoff decisions at the bottom: In the simultaneous setup, experts first make any number of
proposals, based on which gatekeepers make match offers that are finally accepted or rejected by experts.
Although each expert can only accept a single offer, all experts prefer being matched with the top gatekeeper.
As such, and conditional on expert proposals, changes in the bottom’s offer strategy have no bearing on the
proposals received by the top nor on the acceptances of offers made. In a sequential world, this isolation
breaks down; for even conditional on experts’ proposal order, acceptance changes at the bottom directly
affect how many experts will make further proposals.
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reason, I now restrict attention to monotone equilibria and expand the model to a richer
strategy space.

1.5.1 Red Tape

Among the real-world choices of gatekeepers are various considerations that determine their
attractiveness in the eyes of experts: Ease of access, regulatory hurdles, customization re-
quirements or response times. I study one such consideration by allowing gatekeepers some
freedom in choosing their turnaround times Tj. In particular, I assume that there exists an
exogenously given minimal response time τj, but a gatekeeper can costlessly set any longer
response time Tj ≥ τj.

23 I am interested in knowing whether gatekeepers ever choose to set
unnecessarily long Tj > τj. When they do, I refer to such spurious delay as red tape, a
term that generically describes ‘seemingly unnecessary tasks or actions that are required in
order to get something.’24 Indeed, while adding red tape may seem purely wasteful at first
sight, it may actually benefit the infinitely patient gatekeeper j by nudging experts towards
strategies that improve her proposal distribution.

Endogenizing response times in this way does not upset equilibrium uniqueness and as
such allows clear predictions regarding the presence and amount of red tape under monotone
strategies. Most importantly, the competitive environment between gatekeepers creates an
asymmetry where the bottom gatekeeper always minimizes turnaround times in equilibrium,
while the top chooses a strictly positive amount of red tape when the impact differential
γ1 − γ2 is sufficiently large.

Theorem 3. Consider a setup with two gatekeepers who can add arbitrary red tape in the
form of delayed turnaround, Tj ≥ τj. Label gatekeepers such that the ‘top’ gatekeeper 1 is
more attractive in the absence of red tape, e−rτ1γ1 ≥ e−rτ2γ2.

If κ1 is sufficiently small, a unique equilibrium exists. There is no red tape at the bottom,
T2 = τ2 and the optimal response time T ∗1 at the top is increasing in γ1 and unbounded. The
equilibrium thus exhibits red tape at the top T ∗1 > τ1 under sufficiently high impact γ1.

Proof. See Appendix A.1.5.

To illustrate the central proof ideas, consider a marginal increase in red tape dTj > 0
accompanied by a capacity-preserving cutoff reduction dσj < 0. Any strict expert preference

23Certainly, assuming an exogenous lower bound on response times is still a rather coarse assumption.
Reality may be better described by a decreasing cost function that captures the organizational challenges
to speeding up proposal evaluations. The lower-bound assumption corresponds to a situation where costs
for Tj < τj exceed the maximal gatekeeper payoff of one, and drop to zero thereafter. Any additional cost
reductions beyond τj only make longer response times even more attractive in the eyes of the gatekeeper.
One advantage of the lower-bound assumption is that it allows me to clearly identify excessive delay as
Tj > τj .

24According to “Definition of Red Tape”, Merriam-Webster, accessed October 02, 2015, www.merriam-
webster.com/ dictionary/red%20tape.

http://www.merriam-webster.com/dictionary/red%20tape
http://www.merriam-webster.com/dictionary/red%20tape
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z1(α(x|σ1)) ≷ z2(α(x|σ2)) is maintained after this marginal change, implying that the pro-
posal rate πj(x) remains unaltered for all but the marginal expert x̂. Pointwise higher accep-
tance rates through the cutoff decrease thus imply a higher match rate dµj(x) = g(σj|x)πj(x)
for all x 6= x̂.

To maintain j’s total matches Mj, the marginal expert x̂ thus has to propose strictly
less often, so that the net effect for j is a substitution away from matches with x̂ towards
matches with other experts x 6= x̂. The net impact on her payoff is proportional to∫

X

(x− x̂)g(σj|x)πj(x)f(x)dx (1.2)

where x− x̂ is the payoff difference between matches with x and x̂, which are substituted at
rate g(σj|x)πj(x)f(x). The deviation is thus profitable if and only if x̂ is low enough.

Up until this point, there is no difference across the two gatekeepers, and the analysis thus
shows that even the bottom gatekeeper’s best response involves red tape in off-equilibrium
situations. An asymmetry arises however from experts’ proposal behavior and the monotone
equilibrium assumption: Since π1(x) ≥ π2(x) if and only if x ≥ x̂, the top gatekeeper
receives more (less) proposals with a positive (negative) quality difference x− x̂. Moreover,
the monotone equilibrium cutoffs25 σ2 < σ1 together with MLRP imply that g(σ2|x) is
‘dominated’ by g(σ1|x), loosely speaking. In other words, even if the bottom gatekeeper
faced the same proposal rates π1(x) as the top, additional red tape would be less profitable
for her. Together, the two arguments imply that unless Equation (1.2) is negative for the
bottom gatekeeper (she wants to reduce delay), x̂ is low enough that the top gatekeeper
actually wants to further increase red tape. This of course rules out red tape at the bottom
in equilibrium.26

The proof also highlights the top gatekeeper’s rationale for adding red tape. Indeed,
as in any filtering problem, noisy quality perception causes her to balance two types of
mistakes: Accepting low-quality proposals and rejecting high-quality ones. In a situation
where almost everyone first proposes to the top gatekeeper (which occurs as γ1 grows), a
combination of red tape and cutoff adjustment can reduce both error types; red tape reduces
low-quality proposals while the cutoff drop increases acceptance everywhere. Since matches
are jointly determined by proposal and acceptance rate, red tape allows the gatekeeper to
reduce matches with low-quality experts in favor of those with higher quality.

However, while discouraging early proposals through red tape reduces the inflow of pro-
posals, their distribution is now adversely selected. Indeed, the top gatekeeper now hears
only from previously rejected experts, implying that proposal rates have gone down over some
range x ∈ [x̃, x̂], but the change ∆πj(x) < 0 is increasing in quality x. Naturally, this limits
the attractiveness of delay as red tape. The problem of adverse selection can be partially

25Indeed, the capacity bound k1 identified in Theorem 2 ensures monotone equilibrium cutoffs independent
of response times.

26More generally, if gatekeepers face finite marginal costs to reducing response times below τ j , the bottom
gatekeeper competes on time in order to attract better proposals.
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avoided for other forms of red tape, such as a purely wasteful monetary cost cj that is due
upon proposal and destroyed thereafter. In contrast to delay, the lowest-quality experts with
acceptance rates below erTjcj/γj now refrain from proposing altogether. Similar to delay
however, such red tape also affects the optimal proposal order of higher-quality experts,27

and as such reduces proposals both from the very bottom and from the marginal expert x̂.
Adverse selection only affects the latter reduction and consequently, gatekeepers generically
prefer monetary proposal costs to delay,28 as long as they can ensure that proposal costs are
borne privately by the individual expert. At least within academic publishing however, long
time lags are more frequent than submission fees, presumably due to the fact that experts are
often reimbursed for any monetary costs. In other applications, such as political lobbying,
ethical reasons preclude (or at least discourage) monetary fees: Politicians have to expect
serious scrutiny if it becomes known that they demand payments before even considering
their constituents’ concerns. Both of these reasons motivate my primary focus on delays
rather than fees.

The main takeaway of Theorem 3 is that unnecessarily long delays may occur precisely
because gatekeepers are competing with each other for experts’ proposals. Extending the
basic intuition beyond the formal two-gatekeeper case, the result seems to suggest that
delays are particularly long among high-ranked gatekeepers. Empirical data from economic
journals reported in Table 1.1 indeed exhibits high correlation between impact factor and
first response time. A similar effect is reported by Ellison (2002) who analyses determinants
for the slow-down in economic publishing and attributes most weight to the negative link
between review speed and journal rank.

Although red tape may be beneficial to the top gatekeeper, I have yet to consider its
externality on the other agents. Impatient experts are now facing longer match delays, and
the competitive gain by the top gatekeeper may lower the bottom gatekeeper’s payoff. As it
turns out however, equilibrium effects are more subtle: A red tape equilibrium is accompanied
by cutoff adjustments that may actually increase payoff for those experts who value easier

27Heintzelman and Nocetti (2009) include such a monetary cost in their analysis and show that the scores
assigned to gatekeepers are now given by zj(α) = (δjαγj − cj)/(1− δj(1− α)).

28Intuitively, there always exists a profitable, capacity-preserving deviation dcj > 0, dTj < 0 and dσj < 0
that maintains x̂ as the indifferent expert and replaces some of the worst proposals with higher-quality
matches. This generalizes Heintzelman and Nocetti (2009)’s observation by incorporating gatekeepers’ ca-
pacity concern.

29I use response times reported in Azar (2007), restricting my sample to economic journals and ignore
the four journals in accounting and finance, mainly because finance journals distinguish themselves through
high submission fees. For some journals, the author lists both mean and median first response times over
several subsamples of all publications (e.g. rejections only, revisions only). To avoid oversampling individual
journals based on data availability, I restrict myself to the mean first response time for first submissions only,
or the closest report thereof.

I retrieved the 2001 impact factors from the Journal Citation Reports, ISI Web of Knowledge,
http://admin-apps.webofknowledge.com/JCR/JCR on September 19th, 2015. Missing data for Berkeley
Economics Journals was replaced by 2009 ISI impact factor data compiled by the Tepper School of Business,
accessed September 20th, 2015, https://server1.tepper.cmu.edu/barnett/rankings.html.

http://admin-apps.webofknowledge.com/JCR/JCR
https://server1.tepper.cmu.edu/barnett/rankings.html
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log10(impact.factor) 89.49∗∗∗(22.11) 45.27 (28.87)
Intercept 124.84∗∗∗ (7.52) 113.30∗∗∗(10.42)

Table 1.1: First response times at economic journals as a function of impact factor.29 There is a
highly significant positive relationship between a journal’s impact factor and editorial
delays (p-value 0.16%), once the obvious outlier representing the Quarterly Journal
of Economics × is removed. The coefficient remains positive but loses its significance
when the outlier is included.

access to the top above a fast response. Similarly, the bottom gatekeeper now matches more
frequently with experts close to x̂ with an ambiguous impact on his payoff.

Since red tape equilibria are not Pareto ordered, I consider the alternative welfare measure
of social impact

W =
∑
j∈J

γj

∫
X

xµj(x)f(x)dx. (1.3)

True to the modeling framework, this notion assumes that ideas promoted by gatekeeper j
attain an impact of γj, fixing the social value of an x-j match to xγj. In other words, it is
socially more efficient that the best ideas be promoted through the most influential channels.

As Theorem 4 hereafter shows, red tape can actually help to achieve this goal by in-
centivizing experts to sort more efficiently. Intuitively, if the more influential gatekeeper
responds too quickly, she becomes flooded with proposals and consequently has to set an
extremely high signal cutoff. Red tape diverts some low-quality proposals to the bottom
gatekeeper, allowing both of them to employ more similar cutoffs. For signal distributions
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satisfying the strong monotone likelihood ratio property30

g(σ1|x)G(σ2|x)

g(σ2|x)G(σ1|x)
<
g(σ1|x′)G(σ2|x′)
g(σ2|x′)G(σ1|x′)

∀σ1 > σ2,∀x < x′ (sMLRP)

this improves the overall quality distribution of matched experts µ1(x) + µ2(x) in the sense
of first-order stochastic dominance. Lemma A.1.8 in the appendix establishes this property
for any exponential signal distributions. In this case, red tape simultaneously improves the
mean quality of experts matched with the top gatekeeper as well as the total quality of
matched experts, and as such necessarily improves social impact.

Theorem 4. Consider a setup with two gatekeepers such that γ1 > γ2, with κ1 sufficiently
small compared to κ2 so as to ensure monotone equilibrium strategies. If the signal distri-
bution satisfies (sMLRP) and τ1 is low enough, then some red tape is welfare-enhancing.

Proof. See Appendix A.1.5.

The welfare result in Theorem 4 implies that there exists a lower bound on the optimal
response time T1. Whenever the minimal response time τ1 lies below this bound, red tape
is welfare enhancing. Admittedly, this bound partly depends on the second response time
τ2, and as such the statement doesn’t speak to the welfare impact of red tape under joint
reductions in minimal response times. However, a closer look at the proof identifies red tape
as beneficial exactly in situations where the marginal expert x̂ is particularly low. In other
words, red tape improves welfare if and only if the vast majority of experts first propose
to the top gatekeeper, which occurs if the impact differential γ1 − γ2 is large, if experts are
particularly patient or if response times are generally short.31 As such, a stronger conclusion
is warranted: Even if technological innovations drastically lower all minimal response times
τj, it is socially preferable that the top gatekeeper do not reduce delay as much as technically
feasible. By keeping some red tape T1 > τ1, she nudges the lowest quality experts towards
the bottom gatekeeper first, thereby improving total match surplus.

Simultaneously, this analysis is also relevant to a market designer who controls gatekeep-
ers’ impact γj. By way of example, committee membership in the senate is an important
determinant of a politician’s influence (McCubbins et al., 1994, p.18). Ideally, the designer
would like to appoint the gatekeeper with the highest-quality matches to a key position.
However, shifting impact from gatekeeper 2 towards gatekeeper 1 upsets equilibrium sorting
due to a surge in low-quality proposals. Fortunately, red tape allows the designer to main-
tain equilibrium matches by ensuring that the two gatekeepers retain a similar score in the

30Property (sMLRP) is equivalent to log-supermodularity of the reverse hazard rate.
31Indeed, z1(x)− z2(x)→∞ as γ1 − γ2 →∞, and zj(x)→ γj as either r →∞ or Tj → 0. Under any of

these limits, all experts first propose to the top gatekeeper.
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experts’ eyes even as the actual impact differential grows.32 This observation runs contrary
to popular wisdom, where red tape and aggregation of power is often seen as a hallmark
of corruption.33 In the present setup instead, red tape is used as an allocation mechanism
in the absence of price discrimination, and it may be valuable if the brunt of the delay is
privately borne by experts and of minimal concern for welfare.

Indeed, by considering only the final match distribution, social impact (1.3) does not
directly associate any cost to the slow-down of the match process incurred from red tape.
As such, it does not incorporate the notion that experts’ ideas may become obsolete before
a match occurs. This is true of the model more generally, as I assume that expert quality x
does not decline over time and exits are voluntary. Nevertheless, the result generalizes for a
patient social planner with sufficiently low discount factor ρ > 0, since

W ′ =
∑
j∈J

γj

∫
X

e−ρT j(x)xµj(x)f(x)dx −→ W as ρ→ 0+,

where
(
T 1, T 2

)
(x) = (T1, T1 + T2) for x > x̂ and

(
T 1, T 2

)
(x) = (T1 + T2, T2) for x < x̂

measures the total delay incurred before match x− j is realized.

The role of editorial delays has been studied before in a partial equilibrium framework
(Leslie, 2005; Azar, 2007; Heintzelman and Nocetti, 2009), mostly with a focus on contrasting
them to monetary submission costs.34 Associating an explicit cost to refereeing (i.e. signal
generation), these papers articulate why journals want to raise submission hurdles. However,
the arguments presented here do not rely on reductions in refereeing load, and as such are in
addition to the previously identified channels. Finally, since none of these previous models
incorporates adjustments made by other journals, they do not allow welfare statements of
the type considered here.

32The appropriate increase in red tape maintains indifference for the marginal expert x̂, that is
z1(x̂|γ1, T1) = z2(x̂|γ2, T2). In the present setup, the planners problem is only well-defined under either
an upper bound on T1 or a lower bound on γ2. This is because as γ2 → 0, the marginal expert remains
indifferent if and only if T1 →∞.

33Seminal papers in development economics identify two main channels: In Shleifer and Vishny (1993),
a central bureaucrat with monopoly power raises the official costs for services through red tape, and then
charges bribes in exchange for lower access hurdles. In Banerjee (1997), a corrupt official is tasked with the
allocation of goods to cash-constrained buyers. The official has to allocate goods efficiently for fear of de-
tection by the government. However, rather than identifying buyers’ valuation through price discrimination,
the official charges maximal fees and implements red tape as a sorting mechanism.

34If such proposal fees are feasible, they represent a more efficient deterrent than red tape since they
simultaneously delay proposals from x̂ and fully discourage proposals from the bottom end of the quality
distribution. I here concentrate on situations where monetary payments are ruled out for ethical or fairness
concerns, or do not serve as a deterrent for instance because submission costs are paid for directly by the
department.
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1.5.2 Second-tier Specialization

Another way in which actual gatekeepers set themselves apart is through horizontal dif-
ferentiation, meaning that a gatekeeper caters primarily to a specific subset of the expert
population. By way of example, academic journals often focus on a specific subdiscipline,
even when the subject matter is not related to an article’s quality per se.

To capture such tradeoffs, I here assume that incoming experts have an exogenous,
quality-irrelevant type θ ∈ {A,B} and that gatekeepers can condition their acceptance
decision on θ. Specifically, I assume that in each time interval dt, an equal mass of experts of
either type arrives, each representing the same quality distribution F . I say that gatekeeper
j specializes in θ if she more easily accepts proposals of that type, i.e. σθj < σθ

′
j for θ 6= θ′.

The following example illustrates the possible advantage from such specialization.

Example 5. Consider a situation with two gatekeepers

(γ1, τ1, κ1) = (1.1, 0.5, 0.22) and (γ2, τ2, κ2) = (1, 1, 0.41)

and common discount rate r = 10%. Signals are distributed exponentially, G(σ|x) = 1 −
e−(1−x)σ, and the density function of expert quality is f(x) = 15

8
(1− x)2(1 + x)2.

In the baseline scenario where experts only differ with respect to quality, the unique
equilibrium with red tape is given by ((T1, σ1), (T2, σ2)) = ((10.33, 2), (1, 1)). Figure 1.5a
depicts the resulting match distribution of each gatekeeper.

When gatekeepers can condition their acceptance on expert type θ ∈ {A,B}, the bottom
gatekeeper has a strict incentive to deviate from her previous strategy and instead specialize
on an arbitrary target type. Figure 1.5b depicts the change in her match distribution if she
instead sets her cutoffs at (σA2 , σ

B
2 ) = (0.58, 1.58). By contrast, any specialization worsens

the total match quality of the top gatekeeper. �
The asymmetry among gatekeepers in the previous example has an intuitive explanation.

Indeed, specialization affects a gatekeeper’s match distribution through both a direct and
an indirect effect. The former is considering the impact of specialization conditional on
experts proposal order and is always negative: When a gatekeeper specializes on type A,
she starts accepting such proposals with signals below the prior cutoff σj and instead re-
jects B-proposals with signals above σj. The indirect effect however comes from changes
in experts’ proposal order: Her change in cutoffs raises the acceptance rate and hence the
zj score for experts of type A, while lowering that of B types. As a result, the expert re-
ceives more first proposals in her target group and loses some in her nontarget group. By
specializing, the bottom expert thus gains A proposals above x̂ and loses B proposals below,
where x̂ denotes the indifferent expert in a monotone equilibrium. In contrast, when the top
gatekeeper contemplates specialization, she expects to recruit any additional A proposals
below x̂ while losing B proposals above. Intuitively speaking, the bottom gatekeeper thus
specializes whenever the positive indirect effect outweighs the negative direct effect. The
top gatekeeper on the other side is affected negatively by both effects, and hence generally
prefers to maintain a global signal cutoff.
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(a) Baseline match distribution for
top and bottom gatekeeper. Low
quality experts x ≤ x̂ first pro-
pose to 2.

f (x)
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(b) Match distribution µ2(x)f(x) for the bottom gate-
keeper with (solid line) and without specialization
(dashed). The dotted line shows the quality density
f(x).

Figure 1.5: An example where the bottom gatekeeper can improve her match distribution by
specializing.

Unfortunately, the intuition misses one technical aspect that complicates the formal anal-
ysis: While the total matches are maintained by the capacity constraint, some direct gains
might offset indirect losses or vice versa. For extreme cases, this may offset the negative
conclusion reached above for gatekeeper 1, as illustrated by the next example.

Example 6. Maintaining the baseline example from above, suppose the lower bound
τ1 = 1.5 on gatekeeper 1’s response time is so high that she does not employ red tape.
In this case, the top gatekeeper can improve her payoff by specializing, as illustrated in
Figure 1.6.

Intuitively, in this situation the value of Equation (1.2) is negative for the top gatekeeper,
meaning that the marginal expert x̂ = 0.8 is much higher than the mean quality x̃ lost by a
raise in threshold. Prehibited from reducing her response times, the top gatekeeper instead
turns to specialization in order to replace some direct losses (around x̃) with indirect gains
(around x̂). �

In such a situation, the equilibrium presence of red tape comes in handy since it ensures
that any marginal direct change is of equal mean quality as the marginal indirect change.
This enables me to formally rule out deviations through specialization for the top gatekeeper.

Theorem 5.A. Assume that signals are distributed exponentially. Consider a monotone
equilibrium σ1 ≥ σ2 where expert types θ ∈ {A,B} are unobservable and the top gatekeeper
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(a) Match distribution for the top gatekeeper with (solid
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(b) Direct net losses are here com-
pensated with indirect net gains.

Figure 1.6: An example where the top gatekeeper can improve her match distribution by special-
izing.

employs red tape, T1 > τ1. Then as expert types become observable, the top gatekeeper cannot
improve his payoff through specialization.

Proof. See Appendix A.1.6.

Since the bottom gatekeeper never employs red tape in equilibrium by Theorem 3, her
marginal direct change may be of strictly lower quality than the marginal indirect change.
Thus, to give a sufficient condition for a profitable specialization, one needs to ensure both
that the direct effect is strong enough and that indirect net losses do not compensate direct
net gains. Both are satisfied when there are many experts of indifferent quality (f(x̂) is high)
and the slope of the density at that point is not too negative in comparison. Both conditions
can be achieved without altering the tails of the quality distribution, and indeed are satisfied
often for moderate values as highlights Example 5 above.

Theorem 5.B. Fix any monotone equilibrium (σ1, σ2) with the possibility of red tape. De-
note the equilibrium response times at the top by T1 and the indifferent expert by x̂. When
f(x̂) is large enough and either f ′(x̂) ≥ 0 or f ′(x̂) = O(f(x̂)2), then the bottom gatekeeper a
strict incentive for specialization.

More formally, consider any sequence of ex-ante quality distributions F n and capacities
(κn1 , κ

n
2 ) such that the same gatekeeper cutoffs (σ1, σ2) along with the response times (T1, τ2)

remain an equilibrium for each n. Suppose further that for any c > 0, there exists N ∈ N
such that fn(x̂) > c and −(fn)′(x̂) < c · fn(x̂)2 for all n ≥ N . In this case, the bottom
gatekeeper can strictly improve her payoff through specialization for n large enough.
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Figure 1.7: An equilibrium with specialization at the bottom. Here, the bottom gatekeeper spe-
cializes on either type θ ∈ {A,B} with equal probability. The resulting match dis-
tributions in both the target and nontarget group are drawn in thin lines, with the
mean in bold.

Proof. See Appendix A.1.6.

The second part of Theorem 5 has important implications for equilibrium behavior as well,
for it gives sufficient conditions under which at least one gatekeeper specializes. However,
although the top gatekeeper cannot benefit by unilaterally specializing, this does not mean
she will not respond to a differential strategy by the bottom gatekeeper. For that reason,
equilibria will generally involve mixing as illustrated below.

Example 5 (continued). In the first example of this section, there exists an equilibrium
with observable expert types θ ∈ {A,B} such that the bottom gatekeeper specializes with

equal probability on either type (σθ2, σ
β̃
2 ) = (0.58, 1.60), while the top gatekeeper maintains

an unique cutoff σ1 = 2.01. Figure 1.7 illustrates the equilibrium match distributions for
each gatekeeper. �

Ruling out equilibrium specialization for the top gatekeeper is unfortunately not gener-
ally possible.35 Thus, while Theorem 5 identifies sufficient conditions for the endogenous
emergence of specialization, it does not rule out specialization by both gatekeepers in equi-
librium. What it does say, however, is that the first impetus for specialization always comes
from the bottom gatekeeper, and never from the top.

1.6 Applications and Potential Extensions

By referring to the two sides of the market as experts and gatekeepers, I purposely adopt
generic language to encompass a wide range of real-world instances.

35The main reason for this is that any equilibrium now includes at least two marginal experts x̂θ and

x̂θ̃. As a result, the profitability of non-marginal deviations becomes dependent on the value of the quality
density f(·) everywhere, among all other parameters.
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A first instance of the framework is familiar to all academics and pertains to scientific
publishing or grant applications. Authors (experts) are usually restricted from submit-
ting their papers to multiple journals or grant agencies (gatekeepers) simultaneously36 and
wait several months until a publication decision is reached (Ellison, 2002). I focus on noise
in the refereeing process as the main informational friction, a phenomenon that has been
documented by several empirical studies.37 As such, I abstract away from bias or noise in
the author’s personal assessment of a manuscript’s quality and take journal impact as ex-
ogenous,38 but I briefly explore how to incorporate either two-sided imperfect information
or endogenous impact at the end of this section.

A second instance of the model concerns technology adoption, whereby inventors ap-
proach managers of big corporations in the hope of selling a product or technology, or ven-
ture capitalism where startups seek funding from investors. In both instances, the inventor
is more familiar with the venture, and approaching potential customers or investors is taxing,
both in terms of active time investment (search costs, customization, meetings) and passive
delays while waiting to hear back from a potential partner. As search here is not necessarily
exclusive, these models carry features of both simultaneous and sequential proposals. How-
ever, I argue hereafter that the pertinent features of such a setting are better captured by
the present model than by a purely simultaneous setting as in Chade et al. (2014).

Third, gatekeepers are also present in political debate: In an indirect democracy such as
the United States or the United Kingdom, only elected officials can suggest new laws. Thus,
any interest group (expert) wishing to draft a new bill needs to find a lawmaker (gatekeeper)
willing to sponsor it. Simplifying reality, I assume the only disagreement about the social
value of a specific proposal stems from imperfect knowledge, which is more pronounced on
the side of the lawmaker. Lawmakers vary in their degree of political influence as determined
by committee membership or their persuasion power.39

Finally, the model also offers insights with respect to high-end labor markets, where
job applicants spend significant time preparing for each individual application, customizing
their portfolio and sometimes even earning additional, industry-specific credentials.

As with any model, some of the assumptions made in this paper are rather stylized. The
actual applications motivate several important extensions, some more tractable than others.

36For grant applications, the most common restrictions concern simultaneous submissions within the same
agency, see for example ”Frequently Asked Questions”, National Science Foundation, accessed August 14th,
2015, http://www.nsf.gov/pubs/gpg/faqs.pdf.

37See for example Bohannon (2013); Langfeldt (2001); Rothwell and Martyn (2000); Welch (2014).
38Two other notable features I abstract away from are reputation effects on the part of the scientist (each

individual submission is evaluated on its own merit) and added value from the revision process. However,
as long as the latter is positively correlated with a journal’s ranking, it can partially be incorporated in the
impact value.

39This study of the political process differs from the existing gatekeeping literature in political economy
(see Crombez et al. (2006)). While I focus on the interaction between constituents and politicians, previous
papers analyze the interior organization of legislative bodies and disagree on whether individual committees
can block proposals before they enter the general debate.

http://www.nsf.gov/pubs/gpg/faqs.pdf
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Let me briefly consider some of them here:
First, I assume that a gatekeeper’s impact is exogenously determined and not affected by

the quality of her realized matches. In instances where γj measures grant amounts or political
persuasion power, that assumption is more easily accepted than in academic publishing for
example, where journal impact is determined by the quality of prior publications.40 To cap-
ture this feedback effect, the mean quality of matches seems to be an appropriate measure of
influence, i.e. γj = Vj/Mj. Incorporating such a notion would give insight into new strategic
considerations such as misrepresenting capacity and the extent of vertical differentiation. On
the technical side however, the main downside to this approach is an indeterminacy brought
about by multiplicity of subgame equilibria. Specifically, there can be several ways in which
experts may respond to gatekeeper strategies which are not payoff equivalent. This creates
issues when studying a gatekeepers strategic tradeoffs since he cannot anticipate whether
a deviation would increase or decrease her payoff. To avoid this issue, in future work I
plan to consider an ‘overlapping-generation’ framework where gatekeepers can choose dif-
ferent strategies for each generation of experts, but impacts are determined by the realized
matches of the previous generation. Since experts now again face exogenous impact, their
search behavior is uniquely determined (up to indifference in the zj-scores). On the other
hand, this framework is rich enough to consider gatekeepers’ long-term strategic positioning.

A second modeling assumption concerns the informational environment. By postulating
one-sided imperfect information, I assume that experts are perfectly informed about their
own desirability. For grant applications, political ventures or the technological potential of
startup firms, it seems reasonable to assume that experts are more adept judges of quality.
In academic publishing however, opinions diverge on whether authors or reviewers see more
clearly. Chade et al. (2014) make the important observation that a world with two-sided
imperfect information is equivalent to one where gatekeepers draw affiliated signals. Intu-
itively, referring to the expert’s signal ‘x+noise’ as his type, gatekeeper evaluation now has
a common component ‘−noise’. Since experts now simultaneously learn about their true
quality, the equivalence to a history-independent zj-score breaks down, and it seems neces-
sary to reduce the analysis to just two gatekeepers for tractability. For that case however,
it can be shown that conditional on marginal acceptance probabilities, more experts first
approach the high-impact gatekeeper when signals are more affiliated (more uncertainty is
on the expert side) – leading one to expect that such situations exhibit more crowding at the
top. Intuitively, acceptance at the bottom is now bitter-sweet, since it simultaneously raises
the expert’s own quality estimate, which causes him to regret his low aim. Unfortunately, a
meaningful comparison about equilibrium behavior is complicated by the fact that changes
in relative noise have a heterogeneous effect on experts’ marginal acceptance probabilities,
and the extent depends largely on the specific cutoffs employed in equilibrium. All-in-all,
while solving a specific two-gatekeeper game with two-sided asymmetric information seems
tractable, it appears difficult to draw insightful equilibrium comparisons.

40Even so, Card and DellaVigna (2013) mentions that journal reputations are sticky and remain broadly
stable over the years, so reality is probably a mixture between exogenous and endogenous factors.
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In this paper, I assume that match utilities are non-transferable throughout and equal to
the quality or impact of one’s match partner. While this is not an uncommon assumption,
it fits some applications better than others. For venture capital, ownership negotiations are
an integral part of the match process. As such, it may seem more suitable to assume that
match surplus is determined jointly by a supermodular41 function φ(x, γj) which can be split
arbitrarily across the two match partners. Importantly however, if surplus is split according
to exogenously determined shares (β, 1 − β) between experts and gatekeepers,42 then the
qualitative findings from this paper carry over, albeit under modified zj scores that take into
account the new payoff structure,

zj(αj, x) =
e−rTjαjβφ(x, γj)

1− e−rTj(1− αj)
.

Since experts’ own quality now directly affects their payoff, they no longer share the same
score function – higher-quality experts are now even more eager to match quickly – but the
qualitative reaction to parameter changes are maintained. Similarly, gatekeeper’s cardinal
preferences now differ, but they still seek to match with the highest-quality experts and as
such the qualitative tradeoffs remain: red tape might still occur (possibly both at the top
and the bottom) and by improving assortativity, it can still be welfare-improving.

In situations where experts can approach multiple gatekeepers simultaneously but propos-
als are costly, experts face a portfolio choice problem (Chade and Smith, 2006). However,
this doesn’t imply that these applications are better described by the one-shot model in
Chade et al. (2014), for although experts are no longer restricted to a single proposal per
moment of time, they are also not restricted to a single opportunity for proposals. Indeed,
a defining feature of their college application model is that all proposals must be made si-
multaneously, and if an expert forgoes proposing to a specific gatekeeper j, he can no longer
seek out j in case his other proposals don’t work out. It is this possibility of regret that gen-
erates equilibrium multiplicity and thus prevents an unambiguous reduced-form discussion
of gatekeeper competition.43 Such a strict deadline is generally absent in grant applications,
venture capitalism, technology adoption or political debate, where experts can pursue new
options if the initial proposals don’t work out. Therefore, while both models simplify reality

41Supermodularity maintains assortative matching as the socially efficient outcome.
42Such an split is obtained under Nash bargaining with threat points zero, which fits a situation where

match decisions are made before surplus negotiations take place and any match dissolution implies foregone
capacity for the gatekeeper and an immediate exit for the expert.

It also seems like an interesting and nontrivial extension to implement more general solutions of Nash
bargaining, where the threat points are determined endogenously from continuation payoffs, which would
need to go hand-in-hand with public history to ensure that everybody can correctly anticipate their match
payoffs.

43Intuitively, consider a mediocre expert who proposes to both gatekeepers. As his acceptance rate at the
top increases, his marginal benefit from a ‘safety proposal’ to the bottom gatekeeper decreases and he may
limit himself to only proposing to the top gatekeeper. As such, although his acceptance rate weakly increases
at both gatekeepers, the expert’s equilibrium match probability goes down, contrary to the monotonicity
resulting from Observation 1.
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for the sake of tractability, I argue that assuming a limit on the number of simultaneous
rather than on the number of sequential proposals both better captures the essence of the
applications considered here and offers greater tractability benefits.

Throughout this analysis, I have assumed that gatekeepers have no control over the
precision of their screening technology by exogenously restricting the conditional signal dis-
tributions to G(·|x). Interesting questions can be raised if gatekeepers can instead improve
their signal precision through either monetary investments or a more time-intensive review
process.44 In general, such an increase in signal precision will have a doubly positive effect
on matches: A direct improvement of the gatekeeper’s own proposal filtering and an indirect
raise in the quality of proposals.45 The relative strength of these incentives for the top or
bottom gatekeeper will however crucially depend on distributional assumptions regarding
ex-ante quality and signal structures. Moreover, since the indirect part of a gatekeeper’s
match improvement stems from a reordering of expert proposals, the private incentives out-
weigh social welfare considerations, and there will generally be inefficiently high investment
in such screening technology.

Lastly, one may care to relax the assumption of private expert history, at least to the point
of making arrival times public. Indeed, especially since the advent of internet technology,
it is often possible to detect how long an idea has already circulated. To avoid inference
issues, the model promises to actually be more tractable if the full proposal history is known
rather than just the arrival time.46 As acceptance histories become conditional on proposal
history, experts’ proposal order gets computationally more heavy, but a setup with just two
gatekeepers seems tractable and insightful. It seems of particular policy interest to analyze
how this impacts match delays. On one side, there is likely going to be an acceptance
penalty for second submissions (due to previous low signal draw), forcing experts to target
their first proposal more strategically. At the same time, this also raises the potential returns
from proposing boldly, as the top gatekeeper becomes particularly optimistic about his first
proposals. It seems likely that either effect can outweigh for an individual expert depending
on the exact distributional assumptions.

1.7 Conclusion

This paper develops a model for sequential directed search in a two-sided matching market.
The framework captures important tradeoffs that guide decisions in many areas including

44I here concentrate on situations where gatekeepers commit to a signal precision before the game begins.
An alternative setup would be one where gatekeepers solve an optimal stopping problem to determine
how deeply to investigate each proposal. Unfortunately, the latter problem requires explicit distributional
assumptions even for a single gatekeeper.

45Indeed, any capacity-clearing cutoff σ′j will raise acceptance rates above some quality x0 and lower those
below. As a result, experts both propose and match more often with j if and only if x ≥ x0.

46The latter may generate incentives for experts to wait idly in order to pool with those of a different
proposal history. However, for the most tractable case of two gatekeepers, the two are equivalent since first
proposals always happen right upon arrival.
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academic publishing, political decision-making, venture capitalism and grant allocations.
Heterogeneous experts all seek to match with the most influential gatekeepers, but inherent
quality differences endogenously create an endogenous distinction in their sensitivity to delay.
In turn, the long-lived gatekeepers may exploit this aversion by using unnecessary delay
or horizontal differentiation to influence experts’ search decisions. Apart from these new
findings, the main contribution of the paper is to provide a tractable equilibrium framework
that speaks to a broad range of applications and offers exciting opportunities for future
research.
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Chapter 2

Mentoring and the Dynamics of
Affirmative Action

For decades, affirmative action has remained a topic of heated debate and wildly opposing
opinions. While some view it as a form of discrimination against historically favored social
classes, others see in it the only way of confronting the reality that race and gender still
matter for educational achievement and employment outcomes (see e.g. Sotomayor (2014)).
Part of the political discourse focuses on arguments of justice and righting historical wrongs,
topics which cannot be addressed through economic research. However, the economic angle
of productivity tradeoffs is least as relevant for policy decisions.

There is empirical evidence that race and gender affect an individual’s career prospects
irrespective of his or her innate ability (Milkman et al., 2014; Ellison and Swanson, 2009).
Such differences in hiring rates may arise through preference bias, where decision makers in-
nately favor members of a certain groups, or it may come through statistical discrimination,
where rational utility-maximizers infer imperfectly observable information on productivity
from correlated, but utility-irrelevant characteristics such as race or gender (for a compre-
hensive survey, see Fang and Moro (2011)). In particular, certain groups may be stuck in an
equilibrium with little skill investment and poor employment prospects, while more fortunate
types owe their high returns to education to favorable equilibrium beliefs.

We here focus on a third channel that comes from complementarities among productive
members of the same type. Specifically, we consider mentorship relations between senior
professionals and young students. It has been empirically shown that mentoring relationships
are stronger and more common between members of the same demographic group (Ibarra,
1992; Dreher and Cox Jr., 1996) and that the availability of similar role models affects the
academic performance of individuals (Carrell et al., 2010). In such a world, an uneven
composition of the senior workforce may result in tangible productivity differences among
junior workers that affect schooling and employment decisions.

This paper considers a model that incorporates the trade-off between the strong men-
toring complementarities in a homogeneous work force and the optimal use of innate ability
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that is common to workers of all types. Our results can be applied to minorities of any type,
such as gender, race, disability status or other demographic characteristics. Specifically, we
consider a continuous-time overlapping generations model where established mentors lower
the cost of education to the incoming cohort. This mentorship boost differs across types and
is increasing in the availability of mentors of one’s own type.

Due to the lack of suitable mentors, minority students face more hurdles in their educa-
tion and are less likely to obtain a degree than their peers of equal ability.1 This affects their
employment prospects in the unsaturated labor market during the latter part of their pro-
fessional life. We assume that firms are either too small or myopic in order to internalize the
long-run mentorship dynamics, and thus care only about short-term productivity without
regard to the fact that today’s hires affect tomorrow’s candidate pool.

The properties of the mentorship boost function determine the dynamics of this system,
including steady state properties and instantaneous surplus. We show that both a completely
homogeneous and a balanced work force can be stable steady states of the economy. A
homogeneous work force makes maximal use of the mentoring complementarities, while a
balanced base of mentors optimally promotes the innate ability of all workers and often
increases total labor force participation by harnessing the talent of both types.

The goal of the paper is to develop conditions under which regulations can be used
to increase total productivity of the economy and to compare the effectiveness of different
policies. In particular, we are interested in the following questions: Under which conditions
does regulation improve long-term labor productivity? How radical and long-lived should
the optimal policy be? Who are the losers and winners of different policies?

Our main result shows that a sufficiently patient planner may intervene persistently
in favor of the minority. Indeed, the long-term benefits of additional minority mentors
may outweigh the subsidy required to attract them. This is in contrast to much of the
public discourse that sees affirmative action as a temporary policy tool to correct a historical
imbalance.2 An efficient strategy achieves this goal quickly, the reasoning goes, and thereby
renders itself obsolete in a relatively short amount of time. Our model is able to capture the
history-dependence that underlies this argument. It can formalize how temporary programs
may divert the long-time convergence from one steady state to a more efficient one. However,
it also proposes another rationale for affirmative action, beyond the mere correction of a
suboptimal starting point: Myopic individuals fail to fully internalize mentoring tradeoffs.
This prevents them from implementing the surplus-maximizing level of diversity on their
own, and justifies ongoing market intervention.

1Along these lines, the academic senate at Berkeley writes: “Information about grants, the politics of
a department, or opportunities for participation in professional activities are often shared with younger
colleagues upon meeting them in social settings to which some groups may have less access. Lacking power
and access to the occasions in which power is shared, some groups are offered different opportunities for
participation in the academic world.” (SWEM (2012), p.18)

2Consider for example the debate following the Supreme Court decision to uphold a ban on affirmative
action in Michigan’s public university admissions (Kahlenberg et al., 2014). Most arguments center around
the question of whether or not historical racial discrimination has been overcome.
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We also compare different policies instruments, such as educational subsidies and work-
place hiring quotas under varying assumptions on wage determination. In our framework,
educational subsidies are the most versatile tool to influence labor force evolution. When
it comes to maintaining the optimal workforce composition however, hiring quotas are just
as effective as long as the competitive environment allows for type-specific signing bonuses.
When wage setting is restricted for exogenous reasons (such as cultural norms or firm-intern
politics), hiring quotas however cause a significant crowding out of majority workers. The
dire employment prospects dampen their investment, yet some of them still pursue an ex-post
worthless education.

Related Literature. Our analysis provides a rationale for effective affirmative action,
which is in contrast to some previous theoretical research. Our opposing predictions stem
from differing assumptions on the source of the hiring imbalance. Indeed, when taste-based
discrimination is at work, affirmative action is essentially a zero-sum game where the benefit
to the minority is offset by a direct utility loss of the majority. Under statistical discrimi-
nation, larger minority participation need not translate into updated beliefs. Quite to the
contrary: Under certain parameter values, employment quotas may actually reinforce neg-
ative stereotypes against certain groups Coate and Loury (1993). The intuition is simple:
When minority employment is mandated by law, firms may have to hire minority members
even if they are unskilled. This in turn may actually reduce the minority’s returns to educa-
tion and thereby further lower equilibrium skill investment. A similar conclusion is reached
when agents infer their personal success probability from their own type’s employment his-
tory as in Chung (2000). In an unregulated market, observing successful people with similar
characteristics sheds a positive light on one’s own prospects in the labor market and hence
encourages investment. However, these positive inferences disappear under temporary hiring
restrictions, and agents will not be any more optimistic once the employment constraints
are lifted. It is important to emphasize that these arguments rely purely on informational
inferences and assume no direct productivity benefit from relatable role models.

Together, these models seem to suggest that affirmative action is futile at best, or down-
right harmful at worst. If individuals however receive a tangible productivity boost from
mentoring, we show that a more positive view is warranted.

The group complementarities at the heart of our model have been observed in the em-
pirical literature. Dreher and Cox Jr. (1996) find that not only were female MBA graduates
and students of color less likely to form mentoring partnerships with white men, but these
missing relationships also had a tangible impact on later compensation. Indeed, students
mentored by white men earned on average $16,840 more annually than those with mentors
of other demographic profiles. In a similar vein, Ibarra (1992) analyzes the professional net-
work within an advertising firm and finds that differential patterns of network connectivity
helped men reap greater network returns than a woman in the same position. Bettinger and
Long (2005) find that an increased share of female faculty positively influences course selec-
tion and major choice for female undergraduates in some (though not all) disciplines where
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women are historically underrepresented. Observations by Carrell et al. (2010) also seem to
support the hypothesis of a measurable productivity boost from relatable role models. They
show that assigning a female professor to mandatory introductory science and math classes
significantly increases course grades for female students without hurting male performance,
to the point of eradicating the gender gap in grades and STEM majors.

Contrary to Krishnamurthy and Edlin (2014), we assume no ex-ante differences across
the two groups, which we argue is the more interesting case for long-term policy design.3

The structure of our model is similar to that of Athey et al. (2000), as they study the
intertemporary promotion decision in long-lived firms. As in our model, they assume that
senior workers offer an additive mentorship boost to junior employees, and that the size of
this boost is increasing function in the availability of same-type mentors. We believe that our
two papers are complementary: They offer additional theoretical insight into the family of
boost functions that admit certain steady states, while we restrict our attention to a specific
mentoring function and contrast different ways in which a social planner can guide myopic
firms to a more productive equilibrium. They highlight the possibility of a “glass ceiling”
(a stable steady state that is less diverse than the overall population), and we establish a
rationale for ongoing market intervention. Lastly, by studying the case of an unsaturated
labor market (which seems particularly relevant for high-skill sectors), we show how these
mentoring externalities affect both the intensive and the extensive margin of social surplus.

2.1 Model

We study the continuous-time evolution of a heterogeneous, high-skill labor force, with an
infinite pool of new potential recruits at each moment in time. Upon birth, each junior has
a one-time opportunity to invest into costly education, and thereafter seeks employment in
a competitive and unsaturated labor market. For the sake of simplicity, we assume that
education is instantaneous and the only determinant of later productivity.4 Formally, each
unit mass of educated worker contributes one unit to a firm’s profit flow, while uneducated
workers do not improve firm output. Assuming free entry of firms, this ensures that wages
for educated workers equal one per unit of time.

A worker invests into education if his expected lifetime earnings outweigh the cost of
education. Life expectancy follows a standard exponential distribution with parameter 1,
simplifying expected lifetime earnings to w = 1. Workers are heterogeneous with respect

3By assuming that minorities have innately lower skill levels, Krishnamurthy and Edlin (2014) suggest
that colleges should set higher admission standards for minority students in order to ensure that the same
inferences are made on the ability of its graduates. The analysis fails to explain how those skill differences
are created in the first place, and we believe that any policy recommendations won from such an analysis
could thus be optimal only over a very short horizon.

4Real-world examples that fit this (admittedly stylized) description include any sectors where a diploma
is the main hiring criterion. One may think of specialized exams such as the Bar license for lawyers or the PE
license for engineers, which in and of themselves don’t increase a candidate’s effectiveness but are required
to perform certain functions.
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Figure 2.1: Ability distribution as a function of parameters λ and βi.

to educational cost. Formally, the cost of education c is decreased both by the worker’s
individual ability x and the type-specific strength of mentoring µi. For simplicity, we assume
that there are no complementarities between ability and mentoring efficiency. As a result,
investment is favored whenever

c− x− αµi ≤ w, (2.1)

where α > 0 measures the relative importance of mentoring versus innate skill.
While the two groups may be of different size, there are no differences with respect

to innate ability: Among the infinite pool of juniors born at time t, ability is distributed
according to a decreasing talent function x : [0,∞) → [0,∞) irrespective of type. By
choosing the functional form

x(θ) = λe−λθ,

we are able to isolate the role of talent concentration λ > 0. To account for differences in
pool size, we further introduce scale parameters β1 ≥ β2 > 0 and refer to type 1 as the
dominant type. Formally, a mass βiθ of each type has ability larger than x(θ), for all θ > 0.
The two parameters measure complimentary features of the talent pool. Indeed, the latter
corresponds to total talent in the workforce,

∫∞
0
x(θ/βi)dθ = βi, while the former dictates

how much of it is concentrated among the top candidates, as illustrated in Figure 2.1.
Active workers form mentoring relationships with incoming students, which also reduces

the cost of education. However, mentoring is more effective between workers of the same
type, and mentorship assignment is imperfect.5 Moreover, there are decreasing returns to
scale from mentorship for an individual student. To capture these effects parsimoniously,
we consider first a discrete matching market with nLi seniors of type i and nl students (of
either type). Mentor matching is random, and the likelihood of an individual link depends
on the ratio of seniors to students. Specifically, we assume that each mentor-student link
exists with probability q

nl
, where q denotes the average number of students per mentor. A

student of type i enjoys a mentorship boost of 1 if and only he or she is being mentored by at

5Reasons for this matching friction could pertain to the availability of mentors within a certain sub-
discipline, geographical area or individual firm.
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Figure 2.2: Mentorship boost as a function of mentor availability Λ = Li/l, at various mentor
capacity levels q.

least one same-type mentors.6 By the Law of Rare Events, the number of same-type mentors
per students can be approximated by the Poisson distribution as n grows. The probability of
reaching the critical mentoring mass, and hence the expected mentorship boost, is therefore
equal to

µ(Λ) = 1− e−qΛ,

where Λ = Li/l is the ratio of mentors to mentees. Figure 2.2 illustrates how mentor capacity
q affect this mentorship boost function.

Close inspection of the mentorship boost function reveals interesting dynamics: Since
mentors are increasingly busy during periods of labor growth, students compete more fiercely
for mentorship opportunities. Moreover, all mentorship relations are (weakly) beneficial in
the sense that adding senior workers of either type does no harm to either type, ceteris
paribus. Indirectly however, seniors of the opposite type hurt juniors indirectly. These new
mentors don’t reduce the junior’s own cost of education, but attract additional students from
the opposite type, and thereby dilute the market for mentors.

Two restrictions on the cost parameter are necessary for realism and tractability, so as
to ensure that labor supply never completely dries out or explodes. For the remainder of the
paper, we therefore assume

0 < c− 1− αµ(1) < λ. (H1)

On page 40, we provide intuition for the dynamic implications of these assumptions.

2.1.1 Unregulated Market Dynamics

Since workers’ lifespan follows a standard exponential distribution, the total labor force at
time t can be written as

Li(t) =

∫ t

−∞
e−(t−τ)li(τ)dτ,

6For n large enough, the boundary conditions are satisfied in so far as the link probabilities are non-
degenerate, 0 < q

nl < 1.
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where li(τ) is the mass of type-i workers born at time τ who choose to invest into education.
The advantage of exponential life expectancy is that the mass of workers at a moment t is
a sufficient statistic for future labor force development. Indeed, by Leibniz’ rule, the law of
motion is given by

L̇i(t) = li(t)− Li(t) ∀i ∈ {1, 2} . (2.2)

At each moment in time, individual incentives pin down the mass of new recruits (l1, l2) as
a function of mentor availability (L1, L2) asc− x

(
l1
β1

)
− αµ

(
L1

l1+l2

)
= w or l1 = 0 and c− λ− αµ

(
L1

l2

)
> w,

c− x
(
l2
β2

)
− αµ

(
L2

l1+l2

)
= w or l2 = 0 and c− λ− αµ

(
L2

l1

)
> w,

(2.3)

where wage w equals 1 for the case without market intervention.
By a single crossing argument, these equations uniquely pin down the labor supply.

Lemma 2.1.1. Let R2
+ = {(L1, L2) ∈ R2|L1 ≥ 0, L2 ≥ 0 and (L1, L2) 6= (0, 0)} . Over this

set, Equation (2.3) admits a unique solution (l1, l2) ∈ R2
+ for any senior labor force (L1, L2) ∈

R2
+.

Proof. Consider a total student body of size l, and note that µ(Li/l) is strictly decreasing
in l. Thus, larger values of l attracts fewer students li of either type. In other words, as l
grows, school enrollment l1 + l2 (weakly) drops, implying a single crossing l = l1 + l2.

We say that the economy is in a steady state when L̇i(t) = 0 for both types i ∈ {1, 2}. We
call such a steady state stable whenever a small perturbation does not affect the long-term
convergence, i.e. when there exists ε > 0 such that limt→∞ L(t) = L̂ for all L(0) ∈ R2

+ with

‖L(0)− L̂‖ < ε.
Whenever any one type is completely absent in the labor force, we refer to it as a homo-

geneous labor force L ∈ R>0× {0} ∪ {0} × R>0. As it can easily be seen, the labor supply
of a type may dry out in the long run if and only if even the most able individuals require a
mentorship boost,

c− λ ≥ 1. (H2)

As the following result shows, two homogeneous steady states exist if and only if H2 holds,
and they are stable whenever the inequality is strict. Moreover, there exists at least one
mixed steady state L̂ ∈ R2

>0 if and only if

c− λ− αµ(0.5) < 1, (H3)

and one of them is stable whenever q is big enough.

Theorem 6. The economy admits two homogeneous fixed points(
β1x

−1
(
c− 1− αµ(1)

)
, 0
)

and
(
0, β2x

−1
(
c− 1− αµ(1)

))
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whenever Hypothesis H2 holds. They are stable if and only if the inequality H2 is strict.
The economy also admits a mixed steady state

(
φ̂L̂, (1− φ̂)L̂

)
with φ̂ ∈ (0, 1) and

c− x

(
φ̂L̂

β1

)
− αµ(φ̂) = 1 and c− x

(
(1− φ̂)L̂

β2

)
− αµ(1− φ̂) = 1 (2.4)

if and only if Hypothesis H3 holds. As long as

c− 1− α > 0, (H1+)

one of them is stable for high enough mentoring capacity q.

Proof. See Appendix B.

Proving the existence of stable homogeneous steady states is straightforward and follows
immediately from Hypothesis H2. Indeed, whenever one type’s mentor availability dips below
a certain positive threshold, all educational investment ceases. This further lowers mentor
availability, until that type eventually abstains completely. On the other hand, a mixed
steady state requires a continuous investment by the minority, which occurs exactly when
Hypothesis H3 holds. The assumption H1+ ensures that Hypothesis H1 maintains a strict
inequality in the limit limq→∞ µ(q) = 1. It rules out the knife-edge case where educational
investment grows without bounds as mentor availability improves. If H1+ holds, the mass
of students never exceeds βix

−1(c− 1−α) <∞. Whatever the ratio of mentors to students,

it comes arbitrarily close to that level as the mentoring capacity grows, since µ(Λ)
q→∞−−−−→ 1

pointwise. The proof formally shows that this implies the existence of a stable steady state
near this upper bound.

At this point, it is illuminating to discuss the role of the cost assumptions in Hypothe-
sis H1. Indeed, a homogeneous labor force minimizes mentoring frictions, yielding a steady-
state mentorship boost of µ(1). No positive steady state can possibly exist unless at least the
most able junior obtains an education under this maximal sustainable mentorship boost,

c− λ− αµ(1) < 1. (H5)

Conversely, we want to rule out infinite growth of the labor force. We achieve this by ensuring
that the cost of education is prohibitive for zero-ability individuals under µ(1),

c− αµ(1) > 1. (H6)

Figure 2.3 highlights the unregulated dynamics of a sample economy with three stable
steady states.
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Figure 2.3: Labor force evolution L̇(t) for any initial labor force composition L(t). The three
stable steady states L̂ ∈ {(0.76, 0), (0.65, 0.33), (0, 0.64)} are highlighted in red.
Parameter values are c = 2.1, α = 0.6, λ = 1, β1 = 1.2, β2 = 1, k = 1, q = 3.

2.1.2 Welfare

Due to perfect competition in the hiring market, the surplus is entirely captured by high-
ability students whose expected lifetime earnings outweigh their cost of education. As such,
instantaneous surplus is given by

π(L, l) =
2∑
i=1

∫ li

0

1− c+ x(θ/βi) + αµ

(
Li

l1 + l2

)
dθ

=
2∑
i=1

βi
(
1− e−λ

li
βi

)
+ li

(
1− c+ αµ

(
Li

l1 + l2

))
,

where L = L(t) ∈ R2
+ denotes the instantaneous labor force and l = l(t) the new recruits.

Without intervention, l(t) is defined implicitly by Equation (2.3) and wage w = 1.
Labor force composition affects the unregulated surplus through both the extensive and

the intensive margin. Specifically, as mentoring improves, more students invest into educa-
tion and the cost of education decreases at each ability level. The optimal market interven-
tion trades off these benefits for the minority against the corresponding reduction in majority
mentoring. Formally, a benevolent dictator with full control over individual investments and
discount rate r > 0 solves the Hamilton-Jacobi-Bellman equation

rV (L; r) = max
l∈R2

+

π(L, l) + VL(L; r) · (l−L). (2.5)
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Figure 2.4: Steady-state welfare maxL π
(
(φL, (1− φ)L), (φL, (1− φ)L)

)
under the optimal labor

size at any given mixture φ. Steady-state mixtures are indicated by solid red lines.
As highlighted by the dashed green line, the optimal labor force composition is more
diverse (φ ≈ 0.57) than in the mixed steady state (φ ≈ 0.66). Parameters are as in
Figure 2.3.

Let the solution to this problem be l∗(L; r). The optimal labor force evolution L∗(t) is then
given by the differential equation{

L̇(t) = l∗(L(t); r)−L(t),
L(0) = L0.

Solving for the optimal continuation for arbitrary initial conditions L0 is computationally
infeasible. However, it is possible to characterize the optimum among a more restricted class
of policies, namely those where labor force is artificially constrained to a constant level
L ∈ R2

+.

Theorem 7. Steady-state welfare π(L,L) is maximized at some L∗ ∈ R2
>0. An interior

solution corresponds to a steady state if and only if β1 = β2.

Proof. See Appendix B.

This result has important practical consequences. In particular, it shows that a suffi-
ciently patient planner would intervene persistently in favor of the minority, as long as he
is faced with two groups of unequal size, and skill recruitment is important enough so as to
warrant positive labor supply from both types. Indeed, the result shows one particular in-
tervention that – while not necessarily optimal – generates positive social surplus, and hence
dominates a ‘laisser-faire’ regime. Figure 2.4 highlights the optimal steady-state welfare
along with the ‘native’ stable steady states for the previously discussed parameters.
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2.1.3 Alternative Interpretation: Job Appeal

The additive productivity boost through mentoring is just one interpretation of our model.
Although supported by empirical evidence, the salience of this feature may vary across
sectors. To underline the relevance of our model, we here discuss an entirely different setup
without mentoring tradeoffs that nonetheless yields the same dynamics.

In particular, suppose that the appeal of a particular profession depends on the race and
gender representation of its current workforce. For instance, recent political events have
drawn criticism about the underrepresentation of African Americans in the police force. It
is often argued that the racial imbalance in law enforcement is both cause and result of
poor trust ratings among minorities.7 In a similar way, young girls may steer away from
predominantly male fields not because they doubt their own chances of success (as in Chung
(2000)), but because they inherently enjoy having professors and colleagues of the same
gender.8 By interpreting µ as type-specific extra utility enjoyed from working in the high-
skilled industry, such a setup is equivalent to the previous model.

2.2 Affirmative Action Policy Instruments

Having thus shown conditions under which the policy maker can improve welfare through
market intervention, we here turn our focus to the practical implementation of such a policy.
Since educational decisions are taken individually, a social planner can merely nudge the
independent actors into the right direction. In other words, we have shown that long-term
welfare is higher under different investment decisions, but it remains to show that they can
be modified in such a way.

In this section we contrast two options that allow the policy maker to implement desired
investment levels: Direct modification in the cost of education (through a tuition raise and
fellowships), as well as labor market regulations.

Before we define the specific policies, we add slightly more notation in order to simplify
the discussion. First, we call a hiring quota φ̂ binding at a state L ∈ R2

+ if it requires a more

diverse workforce than what would myopically be implemented, i.e. φ̂ < l1
l1+l2

. Moreover,
while an unsaturated labor market guarantees employment security for all students, this may
no longer be the case in a regulated market. To clarify this effect, we thus use l(t) ≥ l(t) ∈ R2

+

7In a recent article published in the Wall Street Journal, Kesling and McWhirter (2015) mention the
struggle to recruit and retain African-Americans, which they argue is at least partly explained by “black
distrust of police departments”. Diversity at individual departments may vary specifically because high-level
recruiters seek to counteract this imbalance. Indeed, citing the recruitment officer for St.Louis County Police
Department, they write that good quality minority applicants “can write their own ticket” by filling out
applications for multiple departments and then picking the most appealing one. This preferential treatment
of qualified minority applicants under Affirmative Action efforts gives further credence to the type-dependent
wage assumption in Section 2.2.2.

8The effects measured in Bettinger and Long (2005) may in fact measure either expected mentoring
benefits or pure taste preference.
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to denote the mass of educated and employed individuals of each type born at time t,
respectively.

2.2.1 Educational incentives

The most direct market intervention directly modifies the cost-benefit analysis of prospec-
tive students. Because the labor market remains unrestricted, all educated workers find
employment, l = l, and expected returns to education remain equal to w = 1. As such, a
combination of fellowship and/or tuition hikes ∆ ∈ R2 with

c+ ∆i − x
(
li
βi

)
− αµ

(
Li

l1 + l2

)
= 1

allows the policy maker to implement any desired labor market inflow l ∈ R2
+.9

One critical observation from our model is that whenever we discuss fellowships ∆i > 0,
those are assumed to be available to all interested minority students. It is straightforward
to see that ability-based fellowships only affect the extensive margin if the available pool
exceeds the unregulated student supply obtained from Equation (2.3). This may explain
why studies such as Prenovitz et al. (2015) fail to observe additional minority recruitment
for competitive scholarship programs with a very limited budget.

2.2.2 Labor Force Quotas

Alternatively, the policy maker can restrict the recruitment decisions of firms by setting caps
on the type composition of new hires. We here frame quotas as upper bounds on hiring from
the dominant type, which of course is equivalent to minimum participation requirements from
the minority type. Specifically, we assume that a quota φ̂ ∈ [0, 1] specifies the a maximal
fraction of majority workers among all new qualified hires.10 As firm competition ultimately
decides on market wage and the size of the labor force, the outcomes of such a quota depend
on whether the market allows for wage differentials based on minority membership.

Type-specific wage. When wages are determined only through market forces, any im-
balance in the supply of educated workers, (1 − φ̂)l1 > φ̂l2, will affect the market wage
for majority and minority workers. In such a situation, educated minority workers are in
short supply and firms pay a premium in order to attract them, while the oversupply of
majority workers drives down wages. In equilibrium, educational investment guarantees
employment.11

9If budget balance is a concern, note that the policy maker can always recoup any imbalance through a
general tax levied on all agents irrespective of type or education status.

10Only quotas with restrictions on qualification can be effective. Otherwise, firms could always costlessly
meet any quota by hiring unqualified minority workers at a wage of zero.

11By contradiction, any oversupply of educated workers of type i forces ∆i = −1 by firm competition.
However, facing zero expected lifetime earnings, education is wholly unattractive to all type-i individuals.
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In our model, both individuals and firms are risk-neutral and have access to the same
information with regards to future policy changes. Moreover, we restrict the job search of
each individual to a single moment in time, thereby ruling out later employment changes or
anticipatory investment on the eve of expected policy changes. As such, it is here without
loss of generality to assume that any wage differentials take the form of (positive or negative)
hiring bonuses ∆ ∈ R that are paid upon initial appointment.

Adopting a general equilibrium approach, we write down the market-clearing equations
for educated labor (φ̂l, (1− φ̂)l) under a binding quota φ̂ as

0 = φ̂∆1 + (1− φ̂)∆2,

1 + ∆1 = c− x
(
φ̂l
β1

)
− αµ

(
L1

l

)
,

1 + ∆2 = c− x
(

(1−φ̂)l
β2

)
− αµ

(
L2

l

)
.

(2.6)

The first equation is the zero-profit condition for competitive firms, stating that the marginal
benefit of hiring a high-productivity worker (at the required diversity level) is equal to zero.
The latter equations stem from workers’ individual rationality constraints: Facing lifetime
earnings of 1 + ∆i, the marginal worker is indifferent about investing in education. Taken
together, these market clearing conditions uniquely determine the instantaneous cohort l(t) =
l(t) = (φ̂, 1− φ̂)l(t) ∈ R2

>0 as well as type-specific hiring bonuses ∆1 < 0 < ∆2.12

Imposing such a quota is less flexible than educational incentives as it delegates the
decision over labor force size to myopic firms. Nevertheless, for the specific intervention
highlighted in Theorem 7 (a persistent implementation of a non-steady state workforce L∗),
this is without efficiency loss as firms and planner agree on the optimal labor force size |L∗|.

Theorem 8. Consider a case where the optimal steady-state labor force L∗ ∈ R2
+ is more

diverse than what the market would implement, i.e. l1
l1+l2

>
L∗1

L∗1+L∗2
, where l is obtained from

L∗ by solving Equation (2.3).

The policy maker can maintain this labor force through a hiring quota φ∗ =
L∗1

L∗1+L∗2
as long

as type-specific hiring bonuses are feasible.

Proof. See Appendix B.

Common wage. In some industries, social or legal pressure prohibits paying unequal wage
to employees in the same position. In this case, the zero-profit condition rules out hiring
bonuses and forces the market wage to w = 1. Instead, any differential job market prospects
stem from employment insecurity.

12The bounds on individual wage are obtained since the quota is binding, which rules out w = (1, 1).
By the zero-profit condition, one wage is thus bigger and one smaller than one. And since w1 > 1 > w2

would attract even more majority employees, expected equilibrium wages have to satisfy the bounds outlined
above.
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l2l1

l2l1

l2l1

l2l1

unregulated

common wage quota (investment)

common wage quota (employment)

flexible wage quota

Figure 2.5: Labor force participation under different types of market intervention when starting
with the steady-state labor force L ≈ (0.65, 0.33) and implementing a binding quota
φ̂ = 0.5. Common wages compress the total labor force more than flexible wages
(l ≈ 0.39 versus l ≈ 0.96), and lead to an excess supply l1 − l1 ≈ 0.06 of educated
majority workers. For comparison, the last line plots the investment decisions in an
unregulated market l = L. Parameter values are as in Figure 2.3.

Indeed, a binding quota caps the demand for type-1 workers at φ̂

1−φ̂ l2, while all l2 ed-

ucated minority workers are hired. Workers factor this into their cost-benefit analysis as
they contemplate education. As a result, majority investment is dampened and minority
investment ticks up slightly due to reduced competition for mentors. Figure 2.5 illustrates
how overall employment responds to labor market quotas, and how the outcome depends on
the availability of signing bonuses.

Theorem 9. When type-specific wages are infeasible, binding labor force quotas reduce total
investment. More specifically, minority investment and recruitment increases, but less so
than the reduction in majority investment and recruitment.

Furthermore, there is now a positive mass of majority workers who invest into education
and subsequently fail to secure employment.

Proof. See Appendix B.

This result highlights the negative externalities that arise in the presence of common
wages: Workers of the dominant type invest into an ex-post worthless education, wasting
their own resources in the process and diluting mentoring efficiency for everybody else. This
greatly reduces the appeal of workplace quotas in situations where wage is sticky or subject
to social scrutiny. Now, real-world firms can implement favorable work conditions for a
minority without relying on wage premiums. Instead, there may be workplace or schedule
accommodations that particularly appeal to the target minority and hence serve a similar
purpose. The reality thus likely lies in between the two situations outlined here, making
workforce quotas an effective, but less versatile and politically more challenging policy tool
when compared to scholarships.



CHAPTER 2. MENTORING AND THE DYNAMICS OF AFFIRMATIVE ACTION 47

2.3 Conclusion

By analyzing the far-reaching impact of workplace complementarities on long-term welfare,
we hope to contribute to the discussion on affirmative action by reconciling some arguments
from both sides. For instance, opponents of positive discrimination often criticize the per-
sistence of such policies. The very fact that lower admission standards for minority are
still viewed as necessary after decades, the argument goes, demonstrates their ineffective-
ness in bringing about lasting change.13 Our analysis highlights the shortcomings of such
an inference: Indeed, there is room for welfare improvement through policy design in many
situations, and some of them involve ongoing market intervention to correct systematic un-
dervaluation of mentoring externalities.

That being said, minority support programs can be completely ineffective at minority re-
cruitment if they are chosen ‘too small’. As we highlight in Section 2.2, merit-based minority
scholarships must be available in big enough quantity in order to affect the extensive margin
of minority education. Similarly, market interventions must alter labor force composition
enough so as to affect its long-term convergence.

However, our results also warrant some caution when it comes to implementing specific
policies. When mentoring is far more important than innate skill, a homogeneous workforce
may actually prove more efficient. Moreover, when workplace quotas are implemented, a
thorough understanding of wage determination is crucial. Wage stickiness significantly re-
duces potential surplus gains, and the resulting employment uncertainty harms the majority.
Crowding out is far more pronounced under these circumstances, and over-investment now
arises even in an unsaturated labor market.

13See for instance the argument made in Stanford Magazine (Sacks and Thiel, 1996).
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Appendix A

Supplementary Material to Chapter 1

A.1 Additional Proofs

A.1.1 Proofs concerning Section 1.3.1

Proof of Lemma 1.3.1. For any j, k ∈ J and permutation ω over J ′ ⊆ J \ {j, k}, simple
algebra shows that U((j, k, ω)) ≥ U((k, j, ω)) can be rewritten as

0 ≤ δjαjγj + δjδk(1− αj)αkγk + δjδk(1− αj)(1− αk)U(ω)

−
(
δkαkγk + δjδk(1− αk)αjγj + δjδk(1− αj)(1− αk)U(ω)

)
⇐⇒ 0 ≤ δjαjγj

1− δj(1− αj)
− δkαkγk

1− δk(1− αk)
= zj(αj)− zk(αk).

Let ω∗ be an optimal permutation over J and assume by contradiction that there exists
some j, k ∈ J with zj(αj) < zk(αk) and ω∗ = (ω(1), j, k, ω(2)). By the previous argument,

U((j, k, ω(2))) < U((k, j, ω(2))),

and by the definition of U(·), this contradicts optimality of ω∗.

Lemma A.1.1. Whenever experts are best responding, proposal rates πj(x) satisfy∏
k∈P≥j (x)

(1− αk(x)) ≤ πj(x) ≤
∏

k∈P>j (x)

(1− αk(x)) , (A.1)

where P.j (x) = {k 6= j | zk(αk(x)) . zj(αj(x))} for . ∈ {≥, >} denotes upper contour sets
according to the zj-score.1

Proof. The bounds obtain for the degenerate lotteries that place weight only on optimal
permutations ω ∈ Π(J) where ω−1(j) is maximal or minimal respectively.

1In line with convention, any product over the empty set is assumed to be one, i.e.
∏
k∈∅ ∗ = 1 for any

factor ∗.



APPENDIX A. SUPPLEMENTARY MATERIAL TO CHAPTER 1 53

Proof of Corollary 1.3.2. Rewriting

zj(αj) = γj

(
1−

(
1 +

1

erTj − 1
αj
)−1
)

makes it apparent that
∂zj
∂αj

> 0,
∂zj
∂γj
≥ 0 and

∂zj
∂Tj
≤ 0 with strict inequality for all αj > 0.

(And since zk(αk) = 0 if and only if αk = 0, the value πj(x) is uniquely determined and
independent of γj and Tj even when αj(x) = 0.) Monotonicity follows from Lemma A.1.1

as a raise in zj < z̃j increases the upper contour sets in the sense that P>j ⊇ P̃
≥
j and hence

πj ≤
∏

k∈P>j
(1 − αk) ≤

∏
k∈P̃≥j

(1 − αk) ≤ π̃j. Similarly, when another gatekeeper becomes

more attractive through α̃k ≥ αk, γ̃k ≥ γk or T̃k ≤ Tk, the strict increase in zk < z̃k implies
P≥j ⊆ P̃>j and hence πj ≥ π̃j.

A.1.2 Proofs concerning Section 1.3.2

Proof of Lemma 1.3.3. For any gatekeeper strategy aj : Σ → [0, 1], let σj ∈ Σ denote
the unique cutoff that leads to the same total match rate Mj.

2

Using the simple structure of the cutoff rule, the change in acceptance rate at x is given
by(
1−G(σj|x)

)
− αj(x) = −

∫
sj<σj

aj(sj)g(sj|x)dsj +

∫
sj≥σj

(1− aj(sj))g(sj|x)dsj

= g(σj|x)

[
−
∫
sj<σj

aj(sj)
g(sj|x)

g(σj|x)
dsj +

∫
sj≥σj

(1− aj(sj))
g(sj|x)

g(σj|x)
dsj

]
.

For any x′ > x, the monotone likelihood ratio property implies
g(sj |x)

g(s′j |x)
>

g(sj |x′)
g(s′j |x′)

for any

sj ≤ s′j. Unless aj(·) ≡ 1σ(·) almost everywhere, this therefore means that

(
1−G(σj|x′)

)
− αj(x′) > g(σj|x′)

[
−
∫
sj<σj

aj(sj)
g(sj|x)

g(σj|x)
dsj +

∫
sj≥σj

(1− aj(sj))
g(sj|x)

g(σj|x)
dsj

]

=
g(σj|x′)
g(σj|x)

(
1−G(σj|x)− α(x)

)
.

This implies the single crossing property 1−G(σj|x) ≥ αj(x) ⇒ 1−G(σj|x′) > αj(x
′) ∀x′ ≥

x. By monotonicity of πj(·) in αj(x), the same holds for match rates µj(x) = αj(x)πj(x).

2The match rate µj(x) is strictly decreasing in σj by virtue of the strong monotonicity of G(·|x) and
the weak monotonicity πj(x) in αj . While this establishes uniqueness, existence is not as straightforward:
Indeed, the function πj(x|σj) contains discontinuities with respect to σj . However, monotonicity still implies
the existence of a decreasing and convergent sequence of cutoffs σnj → σj such that matches are below

Mj(σ
N
j ) ≤ Mj(aj) ≤ Mj(σj). The subsequent argument highlights that a deviation to a cutoff rule σnj will

eventually be profitable for large enough n. This rules out any other strategies as equilibrium candidates.
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Since total matches are constant across the two, either the two policies are equal for almost
all x,3 or the value to gatekeeper j strictly improves under the cutoff strategy, as low-quality
matches are replaced by more worthwhile ones.

A.1.3 Proofs concerning Section 1.3.3

Lemma A.1.2. Exponential signals G(σ|x) = 1−e−φ(x)σ satisfy the MLRP for any decreas-
ing parameter function φ : X → R+. Moreover, suppose no two gatekeepers have exactly the
same impact, γj 6= γk for any j 6= k ∈ J . In that case, the set⋃

j 6=k∈J

{
x
∣∣ zj(1−G(σj|x)) = zk(1−G(σk|x))

}
has F -measure zero for any gatekeeper cutoffs σ ∈ ΣJ .

Proof. MRLP follows immediately from the definition, since g(σ|x)/g(σ′|x) = e−φ(x)(σ−σ′) is
increasing in x for any σ > σ′. The exponential distribution also implies that acceptance

rates relate to each other as αj = α
σj/σk
k for all experts x. By expanding the z score, one can

rewrite the indifference condition

zj(α
σj/σk
k ) = zk(αk) if and only if Γ1α

σj/σk + Γ2α
1+σj/σk
k + Γ0αk = 0

for Γ0 = δk(1− δj)γk, Γ1 = (1− δk)γj and Γ2 = δjδk(γk−γj). If γj 6= γk, all three coefficients
are positive, implying that the Dirichlet polynomial has at most three real zeros (Jameson,
2006).

Lemma A.1.3. Consider two interior cutoff vectors σ, σ̃ ∈ int
(
ΣJ
)

and let J< =
{
j ∈ J | σ̃j < σj

}
.

Joint total matches over any nonempty J< strictly decrease for any feasible proposal rates
π, π̃ : X → [0, 1]J ,

∑
j∈J<(M̃j −Mj) < 0.

Proof. Fix any expert type x ∈ X and let α, α̃ denote the vectors of marginal acceptance
probabilities for expert x under cutoffs σ and σ̃ respectively, and let z, z̃ denote the corre-
sponding scores. Finally, consider any arbitrary pure optimal proposal order ω, ω̃ ∈ Π(J).

The proof proceeds in three steps. First, I maintain the proposal order ω and update
acceptance rates one-by-one, showing that the value of

µ< =
∑
j∈J<

αj

ω−1(j)−1∏
n=1

(1− αω(n))

weakly decreases in each round, and strictly for dimensions j ∈ J<. Indeed, µ< is weakly
decreasing in the marginal acceptance rate for any k /∈ J<, and by definition of J<, α̃k ≥ αk.

3This happens only if aj(sj) = 1σj
(sj) for almost all signals sj .
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As for any k ∈ J< with mk = ω−1(k) split µ< at summand k as in

µ< =
∑
n<mk
ω(n)∈J<

αω(n)

n−1∏
m=1

(1− αω(m)) +

mk−1∏
m=1

(1− αω(m)) ·
[
αk + (1− αk)

∑
n>mk
ω(n)∈J<

αω(n)

n−1∏
m=mk+1

(1− αω(m))

]
.

The first term is independent of αk and the square brackets contain a weighted sum over two
terms. In addition, note that

∑
n>mk
ω(n)∈J<

αω(n)

n−1∏
m=mk+1

(1− αω(m)) ≤
∑
n>mk

αω(n)

n−1∏
m=mk+1

(1− αω(m)) = 1−
|J |∏

m=mk+1

(1− αω(m)),

where the equality follows by the overall success rate of independent Bernoulli trials. For any
interior cutoffs, the second term of the weighted sum is thus strictly below one, and hence as
αj decreases to αj, weight is shifted towards the smaller term, strictly decreasing the value
of µ<.

Second, having thus updated all acceptance rates (informally expressed as µ<ω > µ̃<ω ),
I now swap neighboring elements of the proposal order until the permutation agrees with
ω̃. By the Bubblesort algorithm (Cormen, 2009), such swaps need to be performed only
over neighboring elements (j, k) that switch their relative order, i.e. ω−1(j) < ω−1(k) and
ω̃−1(j) > ω̃−1(k). Moreover, any such swap only affects the match rate at gatekeepers j and
k, leaving all others unchanged. It follows immediately that swaps over j, k /∈ J< have no
bearing on the value of µ<. Neither do swaps j, k ∈ J< since α̃j+(1−α̃j)α̃k = α̃k+(1−α̃k)α̃j.
Finally, since zj > z̃j and zk ≤ z̃k, any swap between the two elements must be such that j
moves down in the proposal order, i.e. ω−1(j) < ω−1(k) and ω̃−1(j) > ω̃−1(k). The impact
on µ< is therefore given by an additional factor (1 − α̃k) < 1 in the jth term, which again
weakly lowers its value.

Finally, since µ<ω > µ̃<ω ≥ µ̃<ω̃ for any feasible proposal orders, the inequality also holds
over lotteries – and therefore

∑
j∈J< µj(x) >

∑
j∈J< µ̃j(x). By integrating over X, the desired

result follows.

Complement to the proof of Theorem 1. In the main text, I assume that the measure
of indifferent experts is zero for all signal cutoffs σj ∈ Σ. This simplification uniquely pins
down proposal rates and as such allows for the most crisp exposition of the proof details.

To establish general existence, consider step function scores znj : [0, 1] → R+ as znj =
1
n

(
bn zjc + j

|J |+1

)
, where bzc = max {n ∈ N | n ≤ z}. By adding the second term, I ensure

that no expert is ever indifferent across submission orders,4 yet the approximation is such that
znj → zj uniformly for all j. The proof outlined in the main text implies existence of an unique
fixed point σn ∈ ΣJ . By Bolzano-Weierstrass, there exists a convergent subsequence σnk → σ.
I will now construct expert proposal rates that implement cutoffs σ as an equilibrium.

4Indeed, nznj only takes on values within N +
{

j
|J|+1

}
, and these sets are disjoint across gatekeepers.
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To do so, consider any weak order �⊂ J2 and let

X� =
{
x | zj(α(x|σj)) ≥ zk(α(x|σj)) ⇔ j � k

}
⊆ X

denote the set of experts whose z-score agrees with �.
Now for any x ∈ X�, let ωn(x) denote the unique optimal proposal order under cutoffs

σn and score zn, and call the set of all such orders Ωn =
{
ωn(x) | x ∈ X�

}
. Total matches

M(X�) ⊆ [0, 1]J over X� are given by
∫
X�

α(x|σj)πj(x|ω)f(x)dx. This implies that the set
of feasible total proposal rates is spanned by the convex hull of those resulting from ωn ∈ Ωn,
and as such there exists a lottery over proposal orders `n ∈ ∆Ωn such that total matches
M(X�) are maintained even if all experts employ `n. In doing this, I essentially ensure
that all experts with the same (weak) limiting preference over gatekeepers employ the same
strategy (which may however now involve mixing). While this no longer describes a best
response under (zn, σn), it is useful for the following two reasons:

• Since there are finitely many weak orders �⊆ J2, these orders partition the experts
into at most |J |2 sets, all of which employ the same strategy `n� (equal to a lottery
over permutations of J). By Bolzano-Weierstrass, there exists therefore a subsequence
nk such that these expert strategies converge to some limiting `�. I will now establish
that this limit describes a best response for all experts under score z and cutoffs σ.
Since capacities are maintained by definition of `n�, they therefore establish equilibrium
existence.

• To show that `� describes a best response under preference �, I need to show that the
probability of proposing to k prior to j is zero whenever k ≺ j.

To do so, let m ∈ N and consider the set of x ∈ X� such that g(σ|x) ≤ m and

∆zmjk = zj(α(x|σj))− zk(α(x|σk)) >
1

m
.

I refer to the set of all qualifying x as X�m ⊆ X�. Since the derivative of the zj score
is bounded above by γj(e

rTj − 1)−1 and that of α(x|·) is bounded below by −m, there
exists nm0 ∈ N large enough (and independent of x) such that

zj(α(x|σnj ))− zk(α(x|σnk)) ∀x ∈ Xm >
1

2m
∀n ≥ nm0 .

Moreover, by uniform convergence of zn, there also exists nm1 > nm0 large enough such
that

znj (α(x|σnj )) > znk (α(x|σnk)) ∀x ∈ Xm >
1

2m
∀n ≥ nm1 .

In other words, for n large enough, all experts in X�m propose first to gatekeeper j as
a best response to (zn, σn). This limits the weight placed on any proposal order with
ω−1(j) > ω−1(k) through F (X� \X�m). In particular, as m → ∞, this bound goes to
zero and establishes the desired result.
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As for uniqueness, consider by contradiction that σ 6= σ̃ both describe equilibrium cutoffs.
Up to relabeling, the set J< =

{
j ∈ J | σ̃j < σj

}
is nonempty, and hence Lemma A.1.3

implies that total matches for j ∈ J< differ over the two cutoffs. This contradicts the
equilibrium condition

∑
j∈J<Mj =

∑
j∈J< κj =

∑
j∈J< M̃j.

As for continuity of total matches, consider any convergent parameter sequence

(T n, γn, κn)→ (T, γ, κ).

Let σn, σ ∈ ΣJ be the corresponding equilibrium cutoffs. By the same argument as above,
there exists a convergent subsequence σnk → σ̃ along with proposal orders that implement
σ̃ as an equilibrium under (T, γ, κ). By Lemma A.1.3, the limit is unique σ̃ = σ. Assume
by contradiction that σn doesn’t converge. By definition, this implies that there exists ε > 0
and a subsequence nm such that ||σnm − σ|| > ε for all m. However, this sequence also
admits a convergent subsequence σnmt → ˜̃σ by Bolzano-Weierstrass, and the construction
above implements˜̃σ as equilibrium cutoffs under (T, γ, κ). Since ||̃̃σ − σ|| ≥ ε however, this
creates a contradiction with Lemma A.1.3. As a result, equilibrium cutoffs converge.

A.1.4 Proofs concerning Section 1.4

Proof of Theorem 2.

(i) Fix any κ1 ∈ (0, 1) and consider what happens as κ2 → 0. One of two things has to
happen in equilibrium: The bottom gatekeeper either categorically rejects all proposals
by raising his cutoff σ2 → sup Σ, or the top gatekeeper accepts all proposals σ1 → inf Σ.
The limited capacity at the top rules out the latter possibility and implies instead
that the top gatekeeper cutoff converges to an interior σ̃1 < sup Σ = limκ2→0 σ2.5 By
continuity of the equilibrium cutoffs (Theorem 1), there exists k2 > 0 such that κ2 < k2

implies σ2 > σ1.

Conversely, as κ2 → 1 − κ1, almost all proposals get accepted somewhere. In other
words, one of the gatekeepers has to lower her standards completely by setting σj →
inf Σ. By the same argument as above, σ1 is bounded below and hence (σ1, σ2) →
(σ̃′1,min Σ) with σ̃′1 > inf Σ = limκ2→1−κ1 σ2. By continuity, there exists k2 < 1 − κ1

such that κ2 ≥ k2 implies σ2 ≤ σ1.

While these bounds depend on all parameters of the game, there exist more robust
bounds for κ1 to ensure monotonicity. To determine their value, let M̃j denote total
matches for j when all experts approach the bottom gatekeeper first. In this situation,
matches for the bottom gatekeeper are independent of the top cutoff σ1, allowing me
to write

M̃1(σ1, σ2) =

∫
X

α(x|σ1)
(
1−α(x|σ2)

)
f(x)dx and M̃2(σ2) ≡

∫
X

α(x|σ2)f(x)dx.

5Since z1(α1) is increasing in α1 with limit z1(1) > z2(1), there exists a < 1 large enough such that any
expert with α1(x) ≥ a proposes first to 1. This implies that σ1 is bounded from below.
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By the full support assumption, M̃2 is strictly decreasing in σ2, and since the signal
density varies continuously with x, the inverse s = M−1

2 (κ2) exists. Let k1 = M̃1(s, s) ∈
(0, 1− κ2) denote the bottom enrollment under identical cutoffs and exogenously fixed
expert strategies. Whenever κ1 ≤ k1, it follows that

κ1 ≤ k1 = M̃1(s, s) ≤M1(s, s), κ2 = M̃2(s) ≥M2(s, s)

and
κ1 + κ2 = M1(s, s) +M2(s, s),

since total matches are independent of the proposal order. By the monotonicity of
total matches, equilibrium cutoffs are monotone σ1 ≥ s ≥ σ2.6

(ii) Consider first the case δ2 >
γ1

δ1γ1+(1−δ1)γ2
δ1 or equivalently δ1γ1(1 − δ2) < δ2γ2(1 − δ1).

Together with δ1γ1 > δ2γ2, this condition implies δ1 < δ2 and γ1 > γ2. Moreover,
this implies that limα→0+

z1(α)
z2(α)

= δ1γ1(1−δ2)
δ2γ2(1−δ1)

< 1. In other words, there exists α0 > 0

small enough such that z1(α0) < z2(α0), meaning that the indifference curve φ starts
out below the diagonal. As for the acceptance curve, note that any exponential signal
G(σ | x) = 1−e−ψ(x)σ with decreasing ψ : X → [0,∞) satisfies the monotone likelihood
ratio. Moreover, the acceptance function parametrized by (α(x|σ1), α(x|σ2)) simplifies

to α
σ2/σ1
1 , which starts out horizontally whenever σ2 > σ1. By choosing two cutoffs

close enough together such that σ1 < σ2 < log φ(α0)
logα0

σ1 ensures that ψ(α0) > φ(α0),
implying that the acceptance function crosses the indifference function in the upwards
direction somewhere below α0. In other words, there exist 0 < x < x′ = α−1(α0 | σ1)
with z1(x) > z2(x) and z1(x′) < z2(x′). By setting κj = Mj(σ1, σ2), this describes an
equilibrium.

Conversely, assume that γ2 < γ1. The Implicit Function Theorem bounds the slope
of the indifference curve as φ′(α) = φ(α)γ2(γ1−z1(α))

αγ1(γ2−z1(α))
> φ(α)

α
.7 Whenever φ(α) ≥ α, this

implies for the derivatives of the secants that[
φ(α)

α

]′
=
αφ′(α)− φ(α)

α2
≥ 0

and [
1− φ(α)

1− α

]′
=

1− φ(α)− (1− α)φ′(α)

(1− α)2
<

α− φ(α)

α(1− α)2
≤ 0.

In other words, the secants move in opposite direction whenever the indifference curve
lies weakly above the diagonal. Since Chade et al. (2014, Theorem 1) establishes that
the secants of the acceptance curve are both monotone, the two can cross at most

6Indeed, |Mj(σ1, σ2)− κj |j ≥ |Mj(s, s)− κj | for all σ1 ≤ s ≤ σ2 with equality only if σj = s. Moreover,
total matches are strictly increasing in (σ1, σ2), ruling out all other cutoff combinations.

7Simple algebra shows that z′j(α) =
zj(α)
α

(
1− zj(α)

γ1

)
and hence φ′(α) =

z′1(α)
z′2◦φ(α)

can be rewritten as above.
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once over that region. No other crossings are possible whenever δ2 <
γ1

δ1γ1+(1−δ1)γ2
δ1

or σ2 < σ1, since the two conditions make sure that either the indifference or the
acceptance curve lie entirely above the diagonal, respectively. And since z1(1) > z2(1),
those experts with higher quality propose to the top first.

Moreover, the final match allocation may exhibit nonmonotonicities even under monotone
strategies. Intuitively, experts are adversely selected after the first round of proposals, and
this effect may dominate the informativeness of an individual signal when gatekeepers have
similar impact.

Lemma A.1.4. Consider a setup with two gatekeepers, such that e−rT1γ1 > e−rT2γ2. If
z1(1) − z2(1) is small enough, there exists a MLRP signal function and monotone cutoffs
σ2 < σ1 under which equilibrium match rates at the top, µ1(·), decrease over an interval.

Proof. Consider again exponential signals with acceptance curve ψ(α) = αβ for β = σ2/σ1 ∈
(0, 1). Whenever experts first approach the bottom gatekeeper, match rates at the top are
given by µ1(x) = (1−α2(x))α1(x), which is decreasing whenever α1 >

1
2
.8 Fixing some α̃1 ∈

(1
2
, 1), note that z1(α̃1)

z2(1)
= δ1γ1

δ2γ2

α̃1

(1−δ1)+δ1α̃1)
which eventually drops below one as δ2γ2 → δ1γ1.

As a result, one can find α̃2 ∈ (α̃1, 1) and β = ln α̃2

ln α̃1
such that the acceptance curve lies above

the indifference curve over an interval within (1/2, α̃0). To implement this acceptance curve,
consider for instance the exponential signal distribution G(σ | x) = 1 − F (x)σ, choose any

x0 ∈ int(X) and let σj =
ln(1−α̃j)
lnF (x0)

. In this monotone-strategy equilibrium, match rate µj(x)
decreases around x0.

A.1.5 Proofs concerning Section 1.5.1

From now on, I label gatekeepers by decreasing (maximal) appeal, i.e. such that e−rτ1γ1 ≥
e−rτ2γ2.

Lemma A.1.5. Let X ⊆ R describe a compact space. Suppose gi : X → R>0 for i ∈ {1, 2}
satisfies the monotone likelihood ratio property, meaning that g1(x)

g2(x)
is weakly increasing. Let

φ : X → R be a continuous function with finite integral over X that satisfies the single
crossing property

φ(x) ≥ 0 =⇒ φ(x′) > 0 ∀ x′ ≥ x.

In this case,

0 �
∫
X

g1(x)φ(x)dx =⇒ 0 �
∫
X

g2(x)φ(x)dx

for �∈ {≥, >}. Moreover, if g1(x)
g2(x)

is strictly increasing over a set of nonzero measure, then
the latter inequality is strict.

8Indeed, (1 − αβ1 )α1 is decreasing whenever 1 < αβ1 (β + 1). Since α1 >
1
2 , the claim is equivalent to

2β < β + 1, which binds at β ∈ {0, 1} and holds for intermediate β by convexity of 2β .
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Proof. By the Intermediate Value Theorem, the image of φ is an interval. I consider first the
case where 0 ∈ Im(φ), and fix any x0 ∈ φ−1(0). By the full support assumption of the signal
function, the inequality 0 �

∫
X
g1(x)φ(x)dx is preserved when both sides are multiplied by

g2(x0)/g1(x0) > 0. The result now follows from the monotone likelihood ratio property,

0 � g2(x0)

g1(x0)

∫
X

g1(x)φ(x)dx = g2(x0)

(∫
≤x0

g1(x)

g1(x0)︸ ︷︷ ︸
≤ g2(x)
g2(x0)

φ(x)︸︷︷︸
≤0

dx+

∫
≥x0

g1(x)

g1(x0)︸ ︷︷ ︸
≥ g2(x)
g2(x0)

φ(x)︸︷︷︸
≥0

dx

)

≥
∫
X

g2(x)φ(x)dx.

Moreover, when the likelihood is strictly monotone over a nonzero set, the second inequality
is strict.

Finally, if φ(·) is always positive or negative, the same equation holds in the limit as
x0 → 0 or x0 → 1 respectively.

Lemma A.1.6. Consider an equilibrium strategy profile with monotone expert behavior, and
let

x̂ = inf {x | z1 ◦ α(x | σ1) > z2 ◦ α(x | σ2)} ∈ X ∪ {∞} .

The threshold x̂ is defined so that exactly those experts above x̂ first propose to the top
gatekeeper.

If x̂ > inf X, a marginal increase in turnaround time Tj affects gatekeeper j’s matches.
By accompanying such additional delay with a capacity-preserving change in the signal cutoff
σj, gatekeeper j improves her payoff if and only if∫

X

(x− x̂)g(σj | x)πj(x)f(x)dx > 0. (A.2)

If the sign is in the opposite direction, j’s payoff is negatively affected by such a compensated
marginal change.

Finally, if x̂ = inf X, the top gatekeeper can always improve her payoff by adding delay.

Proof. A marginal raise in Tj affects gatekeeper j’s matches only indirectly through the
change in expert behavior. Experts react to a change in Tj if and only if ∂x̂/∂Tj 6= 0, which
is the case for interior x̂ > inf X since ∂zj(αj)/∂Tj < 0 whenever αj > 0.9 As a result, her
total matches and payoff decrease by

∂Bj

∂Tj
= −α̂1α̂2f̂

∣∣∣∣ ∂x̂∂Tj
∣∣∣∣ < 0 and

∂zj
∂Tj

= −x̂α̂1α̂2f̂

∣∣∣∣ ∂x̂∂Tj
∣∣∣∣ < 0,

9A change in Tj affects the indifference condition for all but the worst expert, z1 ◦ α1(x̂) = z2 ◦ α2(x̂)
and hence ∂x̂/∂T1 > 0 and ∂x̂/∂T2 < 0.
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where α̂? = α?(x̂). The absolute values capture the fact that x̂ moves in opposite direction
when the top or the bottom gatekeeper add red tape, but in both instances it lowers the
deviator’s own matches. A marginal raise in the cutoff σj on the other hand lowers acceptance
rates everywhere, and hence(

∂Bj/∂σj
∂zj/∂σj

)
= −

∫
X

(
1

x

)
g(σj|x)πj(x)f(x)dx−

(
1

x̂

)
α̂1α̂2f̂

∣∣∣∣ ∂x̂∂σj
∣∣∣∣ .

By mass-conservation, the two effects cancel out with respect to total matches,

dTj
∂Bj

∂Tj
+ dσj

∂Bj

∂σj
= −

(
dTj

∣∣∣∣ ∂x̂∂Tj
∣∣∣∣+ dσj

∣∣∣∣ ∂x̂∂σj
∣∣∣∣) α̂1α̂2f̂ − dσj

∫
X

g(σj | x)πj(x)f(x)dx = 0.

(A.3)
The combined impact on gatekeeper j’s payoff can thus be written as

dTj
∂zj
∂Tj

+ dσj
∂zj
∂σj

= −
(
dTj

∣∣∣∣ ∂x̂∂Tj
∣∣∣∣+ dσj

∣∣∣∣ ∂x̂∂σj
∣∣∣∣) x̂α̂1α̂2f̂ − dσj

∫
X

xg(σj | x)πj(x)f(x)dx

(A.3)
= −dσj

∫
X

g(σj | x)πj(x)f(x)dx

(∫
X
xg(σj | x)πj(x)f(x)dx∫

X
g(σj | x)πj(x)f(x)dx

− x̂
)
.

(A.4)

For artificial delay that is accompanied by a nontrivial cutoff adjustment dTj > 0 > dσj, the
above has the same sign as

∫
X

(x− x̂)g(σj | x)πj(x)f(x)dx.
Finally, consider the case where x̂ = inf X, in which case Equation (A.2) trivially holds.

As the top adds more and more delay T1 →∞ and compensates this with capacity-preserving
signal cutoffs, x̂ eventually becomes interior and (A.2) continues to hold by continuity, at
least initially. This however implies that adding (sufficient) red tape is a profitable deviation
for the top gatekeeper.

Lemma A.1.7. Consider a capacity-filling, monotone strategy profile σ2 ≤ σ1 such that the
threshold type x̂ defined above is interior to X and almost no experts are indifferent. If the
bottom gatekeeper has a (weak) incentive to add marginal red tape, the top gatekeeper strictly
prefers to add additional delay.

Proof. By the proof of Theorem 2(ii), the monotone behavior of gatekeepers inspires experts
to do the same and rules out expert indifference almost everywhere. When the threshold
type x̂ is interior, it follows that z1 ◦ α(x | σ1) < z2 ◦ α(x | σ2) for x ∈ (inf X, x̂). In other
words, ∂

∂x
z1 ◦α(x|σ1)|x=0 <

∂
∂x
z2 ◦α(x|σ2)|x=0 and additional delay affects matches. Suppose

the bottom gatekeeper has a weak incentive to add red tape, implying by Lemma A.1.6 that

0 ≤
∫
X

(x− x̂)g(σ2 | x)π2(x)f(x)dx,

Since π2(x) < 1 if and only if x > x̂, removing π2(x) from the right side increases the value
of the integrand exactly when it is positive, hence 0 ≤

∫
X

(x− x̂)g(σ2 | x)f(x)dx. As detailed
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in Lemma A.1.5, the monotone likelihood ratio property further implies that this sign is
preserved under a cutoff increase, 0 ≤

∫
X

(x − x̂)g(σ1 | x)f(x)dx. Lastly, π1(x) < 1 if and
only if x < x̂, so introducing π1(x) reduces negative values of the integrand. This strictly10

raises the value of the integral, implying

0 <

∫
X

(x− x̂)g(σ1 | x)h(x)f(x)dx.

By Lemma A.1.6, the top gatekeeper has incentives to add spurious delay.

Proof of Theorem 3. Assume that κ1 ≤ k1(κ2) according to the bound established in
Theorem 2, ensuring monotone equilibrium cutoffs no matter the turnaround times (T1, T2).
The proof proceeds in three steps: First, I reduce the candidate equilibria by showing that
it cannot entail artificial delay by the bottom gatekeeper. Among the remaining strategy
profiles, I then show that there exists an unique equilibrium. Finally, I show that red tape
is increasing in the impact differential.

Part I: No red tape at the bottom. By Lemma A.1.6, any monotone equilibrium candi-
date has an interior threshold type x̂. Moreover, whenever T2 > τ2, the absence of profitable
deviations for the bottom competitor implies that 0 =

∫
X

(x − x̂)g(σ2 | x)π2(x)f(x)dx. By
Lemma A.1.7, this however implies that the top gatekeeper has strict incentives to delay
turnaround even further, contradicting the equilibrium assumption.

Part II: An unique equilibrium exists. Having thus simplified the number of equilibrium
parameters to (T1, σ1, σ2), consider the continuous function Φ : [τ1,∞)→ R with

T1 7→ Φ(T1) =

∫
X

(x− x̂)g(σ1|x)π1(x)f(x)dx,

where x̂ and the cutoffs (σ1, σ2) are given by the unique equilibrium in Theorem 1, vary
continuously in T1 and exhibit monotone strategies by Theorem 2. The comparative statics
in Lemma 1.3.5 imply that as the turnaround time increases to T̃1 > T1 and assuming that
x̂ is interior, the top gatekeeper’s cutoff goes down σ̃1 < σ1. Since total promotions remain
constant, it follows immediately that σ2 must go up simultaneously σ̃2 > σ2. Similarly, as
the top gatekeeper becomes more accepting and the bottom more selective, there is only one
way the top may still respect capacity: Equilibrium must be such that fewer experts propose
to her first, that is x̃ > x̂.

Taken together, I now show that these observations imply the single crossing property

Φ(T1) ≤ 0 =⇒ Φ(T ′1) < 0 ∀T ′1 > T1.

10Indeed, let inf X < x0 < x1 < x̂ and let gmin = minx∈[x0,x1] g(σ1|x) and ε = (x1 − x̂)gminα2(x0) < 0.
The value of the integrand is lowered by at least ε over the set of positive measure (x0, x1), hence its total
value strictly decreases.
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Indeed, whenever x̂ = inf X, the integral is always positive and hence Φ(T1) > 0. As
such, the premise first implies an interior threshold type x̂. Moreover, replacing π1(x) =
1 − 1 {x ≤ x̂}α(x|σ2) with π̃1(x) = 1 − 1 {x ≤ x̃}α(x|σ̃2) adds more weight to negative
integrands x < x̂ and removes weight from positive values x ∈ (x̂, x̃), thereby weakly reducing
the value of the integral. Replacing (x− x̂) by the smaller (x− x̃) strictly reduces values for
all x, hence ∫

X

(x− x̃)g(σ1|x)π̃1(x)f(x)dx < 0.

This strict inequality is maintained under the lower cutoff σ̃1 < σ1 by Lemma A.1.5.
Lastly, since z1(1) → 0 as T1 → ∞, every expert eventually proposes to the bottom

gatekeeper first.11 However, as x̂ → supX, all integrands in Φ become negative and hence
limT1→∞Φ(T1) < 0.

Taken together, it follows that either Φ(T1) < 0 for all T1 ≥ τ1, in which case red
tape is ruled out and equilibrium turnaround times are T1 = τ1, or there exists an unique
T1 ≥ τ1 at which Equation (A.2) binds and no further deviations are profitable. The unique
equilibrium is given by this turnaround time, along with T2 = τ2 and the cutoffs (σ1, σ2)
from Theorem 1.12

Part III: Monotonicity in γ1. Suppose optimal turnaround at impact level γ1 is equal to
T1 > τ1, and let α̂1 = α(x̂ | σ1) describe the equilibrium acceptance rate of the indifferent
expert. In this case, the optimal amount of red tape at any γ̃1 > γ1 can be given in closed
form as

T̃1 = T1 +
1

r
ln

(
γ̃1

γ1

+ (1− α̂1)(1− γ̃1

γ1

)e−rT1
)
, (A.5)

which is increasing in γ̃1. This condition is equivalent to

z1(α̂1|T1, γ1) =
e−rT̃1 γ̃1α̂1

1− e−rT̃1(1− α̂1)
=

e−rT1γ1α̂1

1− e−rT1(1− α̂1)
= z1(α̂1|T̃1, γ̃1),

implying that x̂ is preserved as the indifferent expert. Moreover, Equation (A.5) is strictly
increasing in α̂1, implying that more red tape is necessary to maintain indifference for better
types. In other words,

z1(α1|T̃1, γ̃1) ≥ z1(α1|T1, γ1) ⇐⇒ α1 ≥ α̂1.

However then, ((T̃1, σ1), (τ2, σ2)) describes an equilibrium under γ̃1 since proposal and ac-
ceptance rates are unchanged at all quality levels x̂,13 and the delay is optimal since Equa-
tion (A.2) is unchanged and thus still binding.

11Since strategies are monotone, z2(1) = e−rT2γ2 > e−rT1γ1 is enough to ensure that all experts first
propose to the bottom gatekeeper.

12Capacity clearing follows from Theorem 1 and the contrapositive of Lemma A.1.7 rules out profitable
deviations for the bottom gatekeeper.

13Indeed, the same proposal order remains optimal for experts since z1(α1(x)|T̃1, γ̃1) ≥ z1(α1(x)|T1, γ1) ≥
z2(α2(x)) for all x ≥ x̂ and z1(α1(x)|T̃1, γ̃1) ≤ z1(α1(x)|T1, γ1) ≤ z2(α2(x)) for all x ≤ x̂.
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Lemma A.1.8. Property (sMLRP) is satisfied for exponential signals G(σ|x) = 1− e−φ(x)σ

defined by any decreasing function φ : [0, 1]→ R+.

Proof. For σ2 < σ1, one can write

g(σ1|x)G(σ2|x)

g(σ2|x)G(σ1|x)
=
φ(x)e−φ(x)σ1(1− e−φ(x)σ2)

φ(x)e−φ(x)σ2(1− e−φ(x)σ1)
=
eφ(x)σ2 − 1

eφ(x)σ1 − 1
= 1 +

1− eφ(x)(σ1−σ2)

eφ(x)(σ1−σ2) − e−φ(x)σ2
,

which is strictly increasing in x.

Proof of Theorem 4. As before, asume that κ1 ≤ k1(κ2) according to the bound estab-
lished in Theorem 2. The proof establishes three claims: The top gatekeeper’s equilibrium
cutoff is strictly increasing in T1 for τ1 small enough, the total quality of matches is mono-
tonically increasing in red tape, and both of these properties together imply that red tape is
welfare enhancing.

Part I: Red tape improves the top gatekeeper’s equilibrium payoff. Since overall accep-
tance is independent of submission order, there exists a continuous and strictly decreasing
function s2(σ1) : Σ→ Σ such that all equilibrium cutoffs satisfy σ2 = s2(σ1).14 By virtue of
its monotonicity, this function is almost everywhere differentiable.

Taking into account the equilibrium adjustment of the signal cutoff σ2, additional red
tape T1 > τ1 enhances the top gatekeeper’s equilibrium payoff if and only if∫

X

(x− x̂)
[
g(x|σ1)π1(x)− s′2(σ1)α(x|σ1)g(x|σ2)1 {x ≤ x̂}

]
f(x)dx > 0. (A.6)

The proof is virtually identical to that of Lemma A.1.6, with the only difference being that
σ2 is no longer independent of σ1. Since the additional term in the integral is nonpositive
everywhere, it follows that Equation (A.6) is a stronger condition than Equation (A.2). Nev-
ertheless, both of them are satisfied for x̂ > inf X small enough, which occurs in equilibrium
when the turnaround T1 = τ1 is short enough.15

Part II: Total match quality is increasing in red tape. As T1 increases, the comparative
statics in Lemma 1.3.5 imply that σ1 strictly decreases (∂σ1 < 0) and σ2 strictly increases
(∂σ2 > 0), and by the capacity assumption and Theorem 2, the bottom gatekeeper always

14Formally, s2 is the unique solution to
∫
X

(1− α(x|σ1))(1− α(x|s2))f(x)dx = 1− κ1 − κ2.
15Indeed, since κ1 = B1(σ1, σ2) ≤

∫
X
α(x|σ1)f(x)dx, the top gatekeeper’s equilibrium cutoff is bounded

above by some s < sup Σ. For any x0 > inf X, that implies that his equilibrium acceptance rate α1(x0) is
weakly larger than α(x0|s) > 0 and hence

z1(α1(x0)|T1) ≥ e−rT1γ1α(x0|s)
1− e−rT1(1− α(x0|s))

→ γ1 as T1 → 0.

In other words, there exists T1 > 0 small enough such that z1(α1(x0)|T ′1) > e−rT2γ2 ≥ z2(α2(x0)|T2) for
all T ′1 ≤ T1 no matter the exact equilibrium acceptance odds α1(x0) and α2(x0). By the definition of the
threshold type, this implies x̂ < x0.
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sets a lower cutoff than the top σ2 < σ1. In other words, as T1 goes up, the two cutoffs move
closer together.

An expert’s total odds of being matched is given by µ(x) = 1 − G(σ1|x)G(σ2|x). The
raise in T1 affects these odds by

dµ(x) = −dσ1g(σ1|x)G(σ2|x)− dσ2G(σ1|x)g(σ2|x).

Since capacities always bind in equilibrium, overall matches are not affected by the additional
red tape, i.e. dB =

∫
X
dµ(x)f(x)dx = 0. This being a weighted sum over terms dµ(x) which

vary continuously in x, it follows that at least one of the terms dµ(x0) must be equal to zero.
For any higher quality x > x0, Equation (sMLRP) implies that

>0︷ ︸︸ ︷
−dσ1

dσ2

g(σ1|x)G(σ2|x)

g(σ2|x)G(σ1|x)
> −dσ1

dσ2

g(σ1|x0)G(σ2|x0)

g(σ2|x0)G(σ1|x0)
=

= 0︷ ︸︸ ︷
dµ(x0)

dσ2g(σ2|x0)G(σ1|x0)
+ 1 = 1

and hence, by multiplying both sides with dσ2g(σ2)G(σ1) > 0, it follows that dµ(x) > 0. By
the same argument, it also holds that dµ(x) < 0 for all x < x0.

Together, these two observations imply that (x− x0)dµ(x) > 0 for all x ∈ X, and hence
the total value of all matches increases,

dV = dV − x0dB =

∫
X

(x− x0)dµ(x)︸ ︷︷ ︸
>0

f(x)dx > 0.

Part III: Welfare increases in red tape. One can rewrite the welfare measure in Equa-
tion (1.3) as

W = γ2V + (γ1 − γ2)z1,

where z1 is the top gatekeeper’s equilibrium payoff. By the above arguments, both the total
quality of all matches V and the total equilibrium quality of the top gatekeepers matches z1

are increasing in red tape for low levels of τ1.

A.1.6 Additional proofs for Section 1.5.2

Proof of Theorem 5.A. Consider an alternative strategy σA1 < σ1 < σB1 , along with
the corresponding response times TA1 < TB1 . I construct a marginal deviation dσA1 , dTA1 ,
dσB1 and dTB1 that maintains total matches but strictly increases the payoff for the top
gatekeeper. Since the baseline equilibrium exhibits red tape, Equation (1.2) implies that∫
X

(x − x̂)g(σ1|x)π1(x|σ1)f(x)dx = 0. The marginal deviation will remove dM matches in
group A of mean quality below x̂ and add dM matches in group B of mean quality above x̂.

The former claim is easier since σB1 > σ1 > σ2, and hence experts propose monotonically.
Indeed, by Lemma A.1.5, it follows that

∫
X

(x−x̂)g(σB1 |x)π1(x|σ1, T1)f(x)dx > 0. Any change
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in expert proposal orders may only increase match rates below x̂ and decrease those above.
This is because the current notation assumes first proposals from experts x ≥ x̂ exactly.∫

X

(x− x̂)g(σB1 |x)π1(x|σB1 , TB1 )f(x)dx > 0. (A.7)

Moreover, since delay is chosen optimally,
∫
X

(x − x̂B)g(σB1 |x)π1(x|σB1 , TB1 )f(x)dx ≤ 0 by
Equation (1.2). Obviously, this is smaller than Equation (A.7) only if x̂B > x̂. Moreover,
for any dσB1 < 0, there exists dTB1 > 0 that maintains indifference for expert x̂B even as
his acceptance rate at the top rises (see Equation (A.5)). Choosing dσB1 , dT

B
1 such that

total matches increase by dM , the match rate between the top gatekeeper and x changes by
exactly g(σB1 |x)π1(x|σB1 , TB1 )dσB1 . The mean quality of these additional matches is strictly
higher than x̂ by Equation (A.7).

As for group A, the same reasoning implies that∫
X

(x− x̂)g(σA1 |x)π1(x|σA1 , TA1 )f(x)dx < 0. (A.8)

However, when σA1 < σ2, experts may propose nonmonotonically and as such x̂A may not
be well defined. Yet, the parametric form of the z-score implies that for exponential signals,
there exist two indifferent experts 0 ≤ x̂AL < x̂AH such that exactly those experts with x̂AL <
x < x̂AH propose to the bottom gatekeeper first. To construct the marginal change, I consider
two different cases:

(i) If x̂AH < x̂, consider a simple adjustment dσA1 > 0 chosen such that total matches
decrease by dM (i.e. without a change in response times TA1 ). Match rates decrease
by g(σA1 | x)π1(x|σA1 , TA1 )dσA1 at all x /∈

{
x̂AL , x̂

A
H

}
, and discretely for the indifferent

experts with quality lower than x̂. By Equation (A.8), the mean quality for the lost
matches is therefore strictly below x̂.

(ii) If x̂ ≤ x̂AH , red tape is larger than in the original equilibrium, TA1 > T1. Indeed, any
weakly shorter response time and a lower cutoff σA1 < σ1 raise z1-scores throughout,
and hence any expert above x̂ would still propose to the top gatekeeper first. As a
result, it is possible to consider a marginal change dσA1 > 0 with a decrease in response
time dTA1 < 0 that leaves x̂AH indifferent, and such that total matches decrease by dM .

Furthermore, there exists a feasible response time T̃A1 > T1 that maintains indifference
for x̂ under cutoffs σA1 . For x̂ < x̂AH , there exist some experts above x̂ that now prefer
the bottom gatekeeper, implying that the actual delays are even larger, TA1 > T̃A1 .
This additional delay drops z1 scores everywhere, and as a result, some experts below
x̂ propose first to the bottom gatekeeper, implying x̂AL < x̂. Since low quality experts



APPENDIX A. SUPPLEMENTARY MATERIAL TO CHAPTER 1 67

have a lower value for time, the reduced acceptance chances weigh more heavily for x̂AL
than the delay reduction, and he starts proposing to the bottom gatekeeper first.16

Taken together, it follows that match rates decrease by g(σA1 | x)π1(x|σA1 , TA1 )dσA1 at all
x 6= x̂AL , and discretely for the indifferent expert of quality x̂AL < x̂. By Equation (A.8),
the mean quality for the lost matches is therefore strictly below x̂.

Having thus designed a marginal deviation that replaces some matches of mean quality lower
than x̂ with some of mean quality above x̂, it follows that σA1 < σ1 < σB1 cannot represent a
best response.

Finally, if σ1 ≤ σA1 < σB1 , the top gatekeeper necessarily has slack capacity. Indeed, the
analysis for group B above implies that any cutoff σ′1 > σ1 along with the optimal delay T ′1
yields fewer proposals since x̂′ > x̂. As a result, the top gatekeeper has fewer total matches
in either group. Conversely, for σ′1 < σ1 with x̂′H ≤ x̂, the analysis for group A above implies
that the top gatekeeper receives more proposals and hence more total matches. Thus, the
only situation where she might receive fewer total matches under a lower cutoff is when
x̂′H ≥ x̂. In this case, there exists σ̃1 > σ1 along with its optimal response time T̃1 ∈ [T1, T

′
1]

such that the matches lost by going from (σ′1, T
′
1) to (σ1, T̃

′
1) have a mean quality below

x̂. By further lowering response times slightly to some T 1 ∈ [T1, T̃1], the gatekeeper can
recover the same amount of matches with higher qualities x ∈ [x̂, x̂′H ]. In other words, she
has a profitable deviation since she either exceeds capacity or can do achieve higher-quality
matches by choosing (σ1, T 1).

Proof of Theorem 5.B. Focus first on the case with unobservable expert types, fixing
the equilibrium behavior of gatekeeper one. Let function νn2 : [0, 1 − κ1] → R+ describe
the payoff νn2 (k2) for gatekeeper two under capacity k2 and response time T2 = τ2. I will
first show that this function is locally convex for n large enough, and then show how this
translates into a profitable deviation that involves specialization.

First, the capacity constraint uniquely pins down the optimal cutoff sn2 for the bottom
gatekeeper in a neighborhood of σ2 as Mn

2 (σ1, s
n
2 ) = k2. Hence, the implicit function theorem

pins down the derivative of νn2 in a neighborhood of κ2 as

νn2
′(k2) =

∂V n
2

∂sn2
· ∂s

n
2

∂k2

=
∂V n

2

∂sn2

/
∂Mn

2

∂sn2
.

16Formally, it can be shown that maintained indifference for x̂AH implies

er(T
A
1 +dTA

1 ) − 1

erT
A
1 − 1

=
α(x̂AH | σA1 + dσA1 )

α(x̂AH | σA1 )
.

For exponential signals, the latter is equal to e−dσ
A
1 φ(x̂

A
H) > e−dσ

A
1 φ(x̂

A
L), and hence z1 decreases at x̂AL under

the marginal deviation.
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For the second derivative, evaluated at sn2 = σ2, it follows that

νn2
′′(κ2) =

∂νn2
′

∂sn2
· ∂s

n
2

∂k2

∣∣∣∣
sn2 =σ2

=

(
∂Mn

2

∂σ2

∂2V n
2

(∂σ2)2 −
∂V n

2

∂σ2

∂2Mn
2

(∂σ2)2

)/(
∂Mn

2

∂σ2

)3

. (A.9)

Since total matches are decreasing in a gatekeeper’s own cutoff by Corollary 1.3.2, the func-
tion η2 is locally convex if and only if the numerator is negative.

Considering therefore the different components of the numerator, note first that gate-
keepers’ equilibrium strategies are equal across quality distributions F n, and hence the same
follows for experts’ best response, implying that the marginal expert is equal to x̂ for all
n. Moreover, the existence of red tape implies that x̂ is interior to X and (at least locally)
decreasing in the cutoff σ2. As a result, total matches and the payoff of gatekeeper two
locally satisfy(

Mn
2 (σ1, σ2)

V n
2 (σ1, σ2)

)
=

∫ 1

0

(
1

x

)
α(x|σ2)fn(x)dx−

∫ 1

x̂(σ2)

(
1

x

)
α(x|σ2)α(x|σ1)fn(x)dx.

Differentiating with respect to σ2 and rearranging the individual terms yields a closed form
expression for the denominator in Equation (A.9), with limiting behavior

∂Mn
2

∂σ2

∂2V n
2

(∂σ2)2 −
∂V n

2

∂σ2

∂2Mn
2

(∂σ2)2

=

∫
g(σ2|x)π2(x)fn(x)dx

∫
xg′(σ2|x)π2(x)fn(x)dx︸ ︷︷ ︸

(direct)

−
∫
xg(σ2|x)π2(x)fn(x)dx

∫
g′(σ2|x)π2(x)fn(x)dx︸ ︷︷ ︸

(direct)

+α2(x̂)2α1(x̂)2fn(x̂)2

(
∂x̂

∂σ2

)3

︸ ︷︷ ︸
(indirect)

+O(fn(x̂)) +

(∗)︷ ︸︸ ︷∫
(x−x̂)g(σ2|x)π2(x)fn(x)dx ·α2(x̂)α1(x̂)fn′(x̂)

(
∂x̂

∂σ2

)2

︸ ︷︷ ︸
(mixed)

.

The first term measures the direct effect, which is conditional on expert proposal order.
While it can be shown that this term is always positive, it can also be bounded above by
replacing means with extremal values,

(direct) ≤ max
x,x̃∈X

g(σ2|x)x̃g′(σ2|x̃)− min
x,x̃∈X

xg(σ2|x)g′(σ2|x̃).
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Since g is differentiable, this yields an upper bound that is independent of n.
The second term measures the indirect effect, which measures only the impact through

changes in expert proposal orders. Since fewer experts first propose to the bottom gatekeeper
as she raises her cutoff, ∂x̂/∂σ2 < 0 and hence the entire term is negative and to the order
of fn(x̂)2.

The final term measures the mixed effect, which essentially captures the fact that the
two previous effects need not be balanced each. In other words, while total matches remain
constant and hence total gains equal total losses, it is possible that some direct gains in
the target group are compensated with indirect losses in the nontarget group, or vice versa.
Due to the possibility of red tape, the starred term is negative by Equation (1.2), and it
is bounded below by minx∈X (x − x̂)g(σ2|x)π2(x). Eventually, this term therefore either
becomes negative (if fn′(x̂) > 0) or is dominated by the indirect term.

Either way, the function νn2 is locally convex for n large enough. Moreover, a specialization
strategy shifts some capacity dk from the nontarget group to the target group. Using a Taylor
series approximation, this increases the total match value in the target group by

νn2 (κ2 + dk)− νn2 (κ2) = νn2
′(κ2)dk + νn2

′′(κ2)dk2 + O(dk2)

and lowering that of the nontarget group by

νn2 (κ2 − dk)− νn2 (κ2) = −νn2
′(κ2)dk + νn2

′′(κ2)dk2 + O(dk2).

Since vn2 is locally convex, the deviation is profitable for dk small enough, as

lim
dk→0

1

dk2

(
1

2
νn2 (κ2 + dk) +

1

2
νn2 (κ2 − dk)− νn2 (κ2)

)
= νn2

′′(κ2) + lim
dk→0

O(dk2)

dk2
> 0.

A.2 Comparative Statics

In this section, I consider how changes in exogenous parameters affect equilibrium strategies
and payoffs. The proofs borrow from properties of the least fixed point and are relegated to
the appendix.

First, I show that an increase in capacity affects all experts positively since all gatekeepers
become weakly more accessible. The payoff impact for gatekeepers however is ambiguous.

Lemma A.2.1. As capacities increase κ0
j ≤ κ1

j for all j ∈ J , gatekeepers weakly lower their
acceptance cutoffs in equilibrium. Equilibrium payoffs increase for all experts.

Proof. The least (and by Theorem 1 unique) fixed point of the best response function Φ :
ΣJ → ΣJ is defined as

σ = inf
{
s ∈ ΣJ | Φj(s) ≤ sj ∀j ∈ J

}
.

Since the match rate µj(x) is decreasing in σj, the condition Φj(s) ≤ sj holds if and only
if capacities are slack, i.e. Mj(s) ≤ κj. Moreover, capacities are met under equilibrium
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σ0
j , hence these cutoffs maintain slack capacities under κ1, i.e. Mj(σ

0
j) = κ0

j ≤ κ1
j . By the

definition of the least fixed point, cutoffs are thus lower under κ1, and since lower cutoffs
increase acceptance rates for all experts, their equilibrium payoff increases.

Changes in the pool of match participants can be reformulated to fit the framework above:
First, the arrival of a new gatekeeper j is equivalent to a raise in her capacity from zero to
κj and as such increases experts’ payoff. Second, any additional (time-invariant) inflow of
experts forces all gatekeepers to weakly raise their equilibrium cutoffs by the same logic as
above.

Comparative statics for other parameters are more subtle, since they directly influence
the relative attractiveness of a gatekeeper through her zj score. As intuition would have it,
when a gatekeeper becomes more attractive, she will also have to be more selective in the
new equilibrium.

Lemma A.2.2. Suppose gatekeeper j becomes more attractive through either decreased re-
sponse time T̃j < Tj or increased impact γ̃j > γj. In equilibrium, this leads to a raise in her
cutoff σj ≤ σ̃j.

Proof. By the same arguments as in Theorem 1, the best response function remains monotone
when component j is exogenously fixed at level σj. I refer to this ‘all-but-j’ best-response

function as Φ−j : ΣJ\{j} → ΣJ\{j}. As above, its least fixed point satisfies

σ′−j = inf
{
s−j | M̃−j(σj, s−j) ≤ κ−j

}
.

The change in j’s external parameters raises score zj(x) everywhere, and as a result weakly
decreases π−j(x) by Corollary 1.3.2. With fewer proposals at all quality levels, it follows
that capacities are now slack, M−j(σ) ≤ κ−j, and hence σ′−j ≤ σ−j. This in return implies
that there are more overall matches under (σj, σ

′
−j) than under σj, and hence gatekeeper

j weakly exceeds capacity. For the greatest (and unique) fixed point of the entire game,

σ̃ = sup
{
s | M̃j(s) ≥ κj ∀j

}
, this thus implies that σ̃ ≥ (σj, σ

′
−j), implying the stated

result.

The conclusion of this second statement is weaker since it only speaks to gatekeeper j’s
own equilibrium adjustment. The impact on other gatekeepers is ambiguous, as shows the
following example.

Example 7. Consider a situation with three gatekeepers

(γ1, T1, κ1) = (1.2, 2, 0.2), (γ2, T2, κ2) = (1, 2, 0.3), (γ3, T3, κ3) = (1.1, 2, 0.05)

and discount rate r = 10%. Experts arrive according to the uniform distribution F (x) ≡ 1.
Signals are distributed exponentially, G(σ|x) = 1 − xσ. In this situation, a raise in the
impact of gatekeeper 1 from γ1 = 1.2 to γ̃1 = 5 causes both gatekeeper 1 and 3 to raise their
equilibrium cutoff from (σ1, σ2, σ3) = (3.19, 1.12, 3.34) to (σ̃1, σ̃2, σ̃3) = (3.98, 1.05, 3.62).
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Intuitively, all experts here propose to gatekeeper 1 before gatekeeper 3, even under the
lower impact γ1. Due of this ‘dominance’ (which is illustrative, but not necessary) the surge
in impact γ1 merely steers some proposals away from gatekeeper 2 towards gatekeeper 1, but
leaves the match distribution of gatekeeper 3 unchanged – at least absent cutoff adjustments.
To respect capacity, gatekeeper 1 thus has to become more selective and gatekeeper 2 more
accepting, and the question boils down to whether the increase in σ1 or the decrease in σ2

has a larger impact on matches made by gatekeeper 3. It turns out that in this instance, the
first effect dominates and consequently forces gatekeeper 3 to raise her equilibrium cutoff. �

Fortunately, this ambiguity disappears for the case of only two gatekeepers, since at least
one opponent has to lower her threshold to maintain total capacity. Still, the joint cutoff
adjustment of gatekeepers has ambiguous payoff effects for both sides of the market. While
the formal statement of Lemma 1.3.5 is in the main text, the proof follows below.

Proof of Lemma 1.3.5. Since overall matches remain equal to total capacity, the two
cutoffs need to move in opposite directions, with σj weakly increasing by Lemma A.2.2.
Moreover, absent any cutoff adjustments, the parameter change strictly increases zj(x) ev-
erywhere. In response, a positive measure of experts near x̂ switch proposal order, thereby
upsetting gatekeepers’ individual capacity constraints. By contradiction, it follows that equi-
librium adjustments are strict.
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Appendix B

Supplementary Material to Chapter 2

Proof of Theorem 6. The first part of the theorem is immediate: When costs are so low
that the most able individuals invest even without any mentorship, their labor supply never
dries out. Under Hypothesis H2 however, no workers get educated unless mentor availability
exceeds some positive threshold Λ. This ensures that the opposing type has a steady-state
mentorship boost of µ(1), which determines labor supply through Equation (2.3). Such
a homogeneous steady state is stable since small enough perturbations maintain minority
mentor availability below Λ.

Let us now turn to mixed steady states l = L =
(
φ̂L̂, (1 − φ̂)L̂

)
∈ R2

>0, where the
individual cost-benefit analyses in Equation (2.3) simplify to Equation (2.4). It is easily
verified that Hypothesis H3 is necessary for a steady supply of minority workers, for otherwise
either at least one of the left-side expressions in Equation (2.4) exceeds 1, or total labor
participation L is zero.

As for sufficiency, let φ = inf {φ ≥ 0|c− λ− αµ(φ) < 1} be the minimal mentor avail-
ability required for the most able individual (if any). Under Hypothesis H3, φ ∈ [0, 0.5).
Over the nonempty interval [φ, 1− φ]∩ (0, 1), it is possible to solve each of the conditions in

Equation (2.4) individually for L̂, yielding candidate steady-state labor sizes

L(1)(φ) =
β1

φ
x−1
(
c− 1−αµ(φ)

)
and L(2)(φ) =

β2

1− φ
x−1
(
c− 1−αµ(1− φ)

)
. (B.1)

A share φ̂ ∈ Φ corresponds to a true steady state if and only if these two quantities are
equal, L(1)(φ) = L(2)(φ). If Hypothesis H2 holds, L(1)(φ) = 0 < L(2)(φ) and L(1)(1 − φ) >

0 = L(2)(1 − φ), implying a crossing by continuity of all involved functions. Similarly, if

Hypothesis H2 is false, then φ = 0 and a crossing exists because limφ→0 L
(1)(φ) = ∞ >

limφ→0 L
(2)(φ) and limφ→1 L

(1)(φ) <∞ = limφ→1 L
(2)(φ).

Finally, we establish the existence of a stable mixed steady state for q large enough. To
this end, we first pin down the approximate location of a mixed steady state, and in a second
step show that it must be stable. Formally, let L0 ∈ R2

>0 be such that L0
i = βix

−1(c−1−α),
which is well defined and finite by Hypothesis H1+. We refer to the labor composition as
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φ0 =
L0
1

L0
1+L0

2
∈ (0, 1). Fix an arbitrarily small 0 < δ < min {φ0, 1− φ0}, and note that

δ′ = min

{
L0

1

φ0 − δ
− L0

1

φ0
,

L0
2

1− φ0 − δ
− L0

2

1− φ0

}
> 0. (B.2)

Furthermore, since µ
(
Λ
)
↑ 1 pointwise as q → 1 for any Λ > 0, there exists Q large enough

such that

0 <
L0

1

φ0 − δ
−L(1)(φ0− δ) < δ′ and 0 <

L0
2

1− φ0 − δ
−L(2)(φ0 + δ) < δ′ ∀q ≥ Q. (B.3)

As a result, it follows that for those large values of q,

L(1)(φ0 − δ) = L(1)(φ0 − δ)− L0
1

φ0 − δ︸ ︷︷ ︸
>−δ′

+
L0

1

φ0 − δ
− L0

1

φ0︸ ︷︷ ︸
≥δ′

+
L0

1

φ0
>
L0

1

φ0
= L0

1 + L0
2 =

L0
2

1− φ0

=
L0

2

1− φ0
− L0

2

1− (φ0 − δ)︸ ︷︷ ︸
>0

+
L0

2

1− (φ0 − δ)
− L(2)(φ0 − δ)︸ ︷︷ ︸
>0

+L(2)(φ0 − δ) > L(2)(φ0 − δ)

and

L(1)(φ0 + δ) = L(1)(φ0 + δ)− L0
1

φ0 + δ︸ ︷︷ ︸
<0

+
L0

1

φ0 + δ
− L0

1

φ0︸ ︷︷ ︸
<0

+
L0

1

φ0
<
L0

1

φ0
= L0

1 + L0
2 =

L0
2

1− φ0

=
L0

2

1− φ0
− L0

2

1− (φ0 + δ)︸ ︷︷ ︸
≤−δ′

+
L0

2

1− (φ0 + δ)
− L(2)(φ0 + δ)︸ ︷︷ ︸
<δ′

+L(2)(φ0 + δ) < L(2)(φ0 + δ).

By the same argument as above, this implies a crossing L(1)(φ̂) = L(2)(φ̂) = L̂, and therefore
the existence of a steady state

(
φ̂L̂, (1− φ̂)L̂

)
with composition φ̂ ∈ (φ0 − δ, φ0 + δ). By the

linearization theorem, this steady state is stable if and only if ∂L̇
∂L

is negative definite. Since

L̇(t) = l(t)−L(t), this derivative is equal to ∂l
∂L
−I, where ∂l

∂L
can be obtained by the Implicit

Function Theorem from Equation (2.3) and I is the 2×2 identity matrix. After simplification,

the characteristic polynomial
∣∣∣∂L̇∂L − γI∣∣∣ at the steady state L̂ = (L̂1, L̂2) = (φ̂L, (1− φ̂)L̂) is

proportional to

F (γ) = L̂2(1 + γ)2 + L̂(1 + γ)
[(
φ̂K2 + (1− φ̂)K1

)
− γ
(
φ̂K1 + (1− φ̂)K2

)]
− γK1K2

where Ki = βi
αµ′(L̂i/L̂)

x′(L̂i/βi)
< 0. It is a simple exercise in algebra to rewrite this second order

polynomial as F (γ) = aγ2 + bγ + c, where

a = L̂2 − L̂(φ̂K1 + (1− φ̂)K2) > 0

b = 2L̂2 + L̂(1− 2φ̂)(K1 −K2)−K1K2

c = L̂2 + L̂
(
φ̂K2 + (1− φ̂)K1

)
.
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It can easily be seen that this is an upward sloping quadratic function since a > 0. The
real part of its roots are negative if and only if F (0) = c > 0 and F ′(0) = b > 0, and we
will conclude the proof by showing that these hold for q large enough. Indeed, due to the

functional form of x and µ, we can rewrite K1 as −β1
q
λ
α(1−µ(φ̂))

x(φ̂L̂/β1)
, which vanishes as q →∞,

0 > K1
(2.4)
= −β1

q

λ

α(1− µ(φ̂))

c− 1− αµ(φ̂)
> −β1

q

λ

αe−qφ̂

c− 1− α
> −β1

q

λ

αe−q(φ
0−δ)

c− 1− α
q→∞−−−−→ 0.

Similarly,

0 > K2
(2.4)
= −β2

q

λ

α(1− µ(1− φ̂))

c− 1− αµ(1− φ̂)
> −β2

q

λ

αe−q(1−φ̂)

c− 1− α
> −β2

q

λ

αe−q(1−φ
0−δ)

c− 1− α
q→∞−−−−→ 0.

Total equilibrium labor force on the other hand is bounded away from zero for any q, since

L̂ = β1x
−1
(
c− 1− αµ(φ̂)

)
+ β2x

−1
(
c− 1− αµ(1− φ̂)

)
(B.1)
> (φ0 − δ)L1(φ0 − δ) + (1− φ0 − δ)L2(φ0 + δ)

(B.3)
> L0

1 − δ′(φ0 − δ) + L0
2 − δ′(1− φ0 − δ)︸ ︷︷ ︸

independent of q

(B.2)
> 0.

Together, these results imply that as q grows, the term L̂2 eventually dominates in expressions
b and c, rendering them positive. Thus, there exists Q̃ such that there exists a stable steady
state near L0 for all q ≥ max{Q, Q̃}.

Proof of Theorem 7. Consider L̃ = β1/(c− αµ(1)− 1), which is positive by Hypothe-
sis H6. By continuity and the Extreme Value Theorem, π attains its supremum π(L∗,L∗)
over [0, L̃]2. This supremum is strictly positive and L∗ ∈ R2

+ since π(~0,~0) = 0 and

∂

∂L1

π
(
(L1, 0), (L1, 0)

)∣∣∣∣
L1=0

= λ+ 1− c+ αµ(1) > 0

by Hypothesis H5. Moreover, straightforward substitution1 shows that π(L,L) < 0 whenever
L is outside [0, L̃]2, and hence the local supremum π(L∗,L∗) is a global maximum.

Furthermore, the function πi(Li, βi) = βi
(
1 − e−λ

Li
βi

)
+ Li (1− c+ αµ(Li/L)) is strictly

supermodular since ∂2πi
∂Li∂βi

= λ2/β2
i Lie

−λLi
βi > 0. Since π

(
L,L

)
= πi(L1, β1) +π1(L2, β2), this

therefore implies that the optimal labor force leans towards the dominant type, L∗1 ≥ L∗2.
In addition, any interior solution satisfies the first order condition

∂π(L∗)

∂Li
= x

(
L∗i
βi

)
+ 1− c+ αµ (φ∗i ) + αµ′(φ∗i )φ

∗
i (1−φ∗i )− αµ′(1−φ∗i ) (1−φ∗i )2 = 0, (B.4)

1Indeed, π(L,L) <
∑2
i=1 βi + Li

(
1 + αµ

(
Li/(L1 + L2)

)
− c
)
< 2β1 + 2L̃

(
1 + αµ(1)− c

)
< 0.
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where φ∗i =
L∗i

L∗1+L∗2
.

We can rewrite this equation as 0 = x
(
φ∗L∗

β1

)
+ 1− c+ αµ (φ∗) + α(1− φ∗) [φ∗µ′ (φ∗)− (1− φ∗)µ′(1− φ∗)]

0 = x
(

(1−φ∗)L∗
β2

)
+ 1− c+ αµ (1− φ∗)− αφ∗ [φ∗µ′ (φ∗)− (1− φ∗)µ′ (1− φ∗)] ,

(B.4”)

where φ∗ =
L∗1

L∗1+L∗2
and L∗ = L∗1 + L∗2. In the special case where both pools are of the same

size, β1 = β2, symmetry dictates that φ∗ = 0.5 and the last two terms fall away, making the
conditions equivalent to Equation (2.4), and hence implying that the fully balanced steady
state maximizes surplus. In all other cases where β1 > β2, the solution to Equation (B.4”)
differs from those to Equation (2.4) whenever φ∗µ′ (φ∗)−(1−φ∗)µ′ (1− φ∗) 6= 0 at the stable
steady state.

Proof of Theorem 8. The first order conditions in Equation (B.4”) give necessary con-
ditions for the size and composition of L∗. After multiplying the first equation with φ∗ and
the second with (1− φ∗), their sum simplifies to

0 = φ∗x

(
φ∗L∗

β1

)
+ (1− φ∗)x

(
(1− φ∗)L∗

β2

)
+ 1− c+ α [φ∗µ (φ∗) + (1− φ∗)µ (1− φ∗)]

At this point, it is a simple exercise in algebra to verify that the bonuses

∆i = c− 1− x
(
L∗i
βi

)
− αµ

(
L∗i

L∗1 + L∗2

)
implement l = L∗ and satisfy all market clearing equations (2.6) when starting from L∗.

Proof of Theorem 9. Since all educated minority workers find employment, it follows

immediately that l2 = l2, while the binding quota implies that l1 = φ̂

1−φ̂ l2 ≤ l1. The

partial employment of majority workers reduces their expected lifetime earnings, leading to
indifference conditions c− x

(
l1
β1

)
− αµ

(
L1/l

)
= φ̂

1−φ̂ l2/l1

c− x
(
l2
β2

)
− αµ

(
L2/l

)
= 1.

Writing the equations as a function of the total student body l = l1 + l2 allows us to apply
a similar solution strategy as in Lemma 2.1.1: Indeed, let `∗1(l, l2) be the solution to the first
equation for a given student body l and type-2 enrollment l2. Since x′ < 0 and µ′ > 0, it
follows that

∂`∗1
∂l
< 0 and

∂`∗1
∂l2

> 0. Similarly,
∂`∗2
∂l
< 0, where `∗2(l) is obtained from the second

equation. As such, total student supply `∗1(l, `∗2(l)) + `∗2(l) is weakly decreasing in l, implying
a single crossing l = `∗1(l, `∗2(l)) + `∗2(l).
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The second indifference condition is identical to the case without intervention in Equa-
tion (2.3), and hence the unregulated student body (l01, l

0
2) satisfies `∗2(l01 + l02) = l02. Moreover,

since the quota is binding, it also follows that φ̂ <
l01

l01+l02
or, equivalently, φ̂

1−φ̂ l
0
2/l

0
1 < 1. In

terms of total student supply, it follows that

`∗1(l01 + l02, `
∗
2(l01 + l02)) + `∗2(l01 + l02) = `∗1(l01 + l02, l

0
2) + l02 < l01 + l02,

and hence the quota reduces the total student body l < l01 + l02. The resulting improvement
in mentoring leads to increased educational investment among type-2 individuals, l2 = l2 =
`∗2(l) > l02, and is compensated by a reduction in type-1 investment, l1 = l − l2 < l01.
The dominant type reduces investment despite the improved mentoring only because it now
suffers from uncertain employment, indicating an over-investment into education.
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