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ABSTRACT
The full-shape correlations of the Lyman alpha (Ly𝛼) forest contain a wealth of cosmological information through the Alcock-
Paczyński effect. However, these measurements are challenging to model without robustly testing and verifying the theoretical
framework used for analyzing them. Here, we leverage the accuracy and volume of the 𝑁-body simulation suite AbacusSummit
to generate high-resolution Ly𝛼 skewers and quasi-stellar object (QSO) catalogs. One of the main goals of our mocks is to aid in
the full-shape Ly𝛼 analysis planned by the Dark Energy Spectroscopic Instrument (DESI) team.We provide optical depth skewers
for six of the fiducial cosmology base-resolution simulations (𝐿box = 2 ℎ−1Gpc, 𝑁 = 69123) at 𝑧 = 2.5. We adopt a simple recipe
based on the Fluctuating Gunn-Peterson Approximation (FGPA) for constructing these skewers from the matter density in an
𝑁-body simulation and calibrate it against the 1D and 3D Ly𝛼 power spectra extracted from the hydrodynamical simulation
IllustrisTNG (TNG; 𝐿box = 205 ℎ−1Mpc, 𝑁 = 25003). As an important application, we study the non-linear broadening of the
baryon acoustic oscillation (BAO) peak and show the cross-correlation between DESI-like QSOs and our Ly𝛼 forest skewers.
We find differences on small scales between the Kaiser approximation prediction and our mock measurements of the Ly𝛼×QSO
cross-correlation, which would be important to account for in upcoming analyses. The AbacusSummit Ly𝛼 forest mocks open
up the possibility for improved modelling of cross correlations between Ly𝛼 and cosmic microwave background (CMB) lensing
and Ly𝛼 and QSOs, and for forecasts of the 3-point Ly𝛼 correlation function. Our catalogues and skewers are publicly available
on Globus via the National Energy Research Scientific Computing Center (NERSC) (full link under Data Availability).

Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

Over the last few decades, we have gained an enormous amount of
knowledge about the expansion history of the Universe. With the

★ E-mail: boryanah@berkeley.edu

discovery of the accelerated expansion of the Universe via distance
measurements of Type Ia supernovae (Riess et al. 1998; Perlmutter
et al. 1999), an additional ingredient needed to be introduced into the
cosmological paradigm. This new component, dubbed “dark energy,”
took on the responsibility of explaining the mysterious repulsive
force these measurements were finding. A couple of decades later,

© 2015 The Authors
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the nature of dark energy is still unknown, and several ongoing
and planned surveys have committed to investigating its properties
as their top priority (e.g., DESI, DES, Rubin Observatory) (DESI
Collaboration et al. 2016a; Levi et al. 2019; Flaugher et al. 2015;
Abbott et al. 2018; Dark Energy Survey Collaboration et al. 2016;
LSST Dark Energy Science Collaboration 2012).
These surveys aim to measure the baryon acoustic oscillations

(BAO) (Peebles & Yu 1970), a fixed-scale imprint on large-scale
structure that allows us tomeasure both the angular diameter distance
and the Hubble parameter across cosmic time and thus map out the
expansion rate of the Universe, bringing important insights into the
nature of dark energy. Typically, the BAO peak is measured in the
clustering of galaxies, which are used as tracers of the matter density,
via the two-point correlation function or the power spectrum (see
Eisenstein et al. 2005; Cole et al. 2005, for first detections in data).
Of recent interest are also measurements using quasi-stellar objects
(QSOs), which offer an invaluable probe of the 𝑧 ∼ 1.5 expansion
history of the Universe (e.g. Ata et al. 2018). In addition, when
studying the galaxy and quasar clustering, additional information
can be extracted from the amplitude of the redshift-space distortions
(RSD), which encodes cosmological information in the form of 𝑓 𝜎8,
a quantity sensitive to the growth of structure. The joint analysis of
the growth of structure and the expansion rate has the potential to
stress-test general relativity and constrain the various components of
our cosmic inventory (see e.g., DESI Collaboration et al. 2016a).
The Lyman-𝛼 forest (Ly𝛼 forest) provides a powerful alternative

probe for glimpsing at our Universe’s past. Comprised of a series
of absorption features in the spectra of high-redshift quasars, these
spectral features trace the density of neutral hydrogen, and thus the
dark matter distribution, on scales larger than the Jeans length (Bi
et al. 1992).
Apart from capturing the BAO feature, quasar spectra speck-

led with Ly𝛼 absorption features also contain valuable information
on small scales, i.e. several megaparsecs, accessible via the one-
dimensional flux power spectrum, 𝑃1D (Croft et al. 1998a, 1999;
McDonald et al. 2000; Zaldarriaga et al. 2001; Gnedin & Hamilton
2002; Croft et al. 2002; Viel et al. 2004a; McDonald et al. 2005,
2006; Viel & Haehnelt 2006; Yèche et al. 2017; Iršič et al. 2017b;
Chabanier et al. 2019). Measurements of 𝑃1D, in combination with
cosmic microwave background (CMB) probes, have the potential to
yield tight constraints on fundamental unknowns such as the sum of
the neutrino masses, the shape of the primordial power spectrum, and
some exotic dark matter models (see e.g., Phillips et al. 2001; Verde
et al. 2003; Spergel et al. 2003; Viel et al. 2004b; Seljak et al. 2005,
2006; Bird et al. 2011; Iršič et al. 2017a; Baur et al. 2017; Murgia
et al. 2018, 2019; Nori et al. 2019; Rogers & Peiris 2021b,a).
The ongoing Dark Energy Spectroscopic Instrument (DESI) sur-

vey will achieve an unprecedented precision in the Ly𝛼 forest mea-
surements across all scales, amassing approximately a million quasar
spectra at 𝑧 > 2 over its five years of operation (for various specifi-
cations on the experiment, see Levi et al. 2013; DESI Collaboration
et al. 2016b, 2022; Silber et al. 2022; Chaussidon et al. 2023). Ahead
of such immense improvements in our statistics, a factor of four larger
than current surveys, it is crucial that we diligently stress test our
analysis pipelines and quantify the impact of secondary astrophysi-
cal effects. The most viable path forward is through the development
of synthetic mock datasets (e.g. Le Goff et al. 2011; Font-Ribera et al.
2012; Bautista et al. 2015; Peirani et al. 2014a, 2022a; Sorini et al.
2016a; Farr et al. 2020; Sinigaglia et al. 2022), which must strike the
careful balance of computational efficiency and survey realism.
In this work, we provide a new mock dataset, which aims to build

upon previous such efforts in several key ways. Other large-scale

mocks adopted in the literature tend to compromise on the accu-
racy of their Ly𝛼 forest model, for example, by utilizing lognormal
realizations instead of dark matter simulations, placing a greater em-
phasis on volume. Our mocks, on the other hand, are generated using
the 𝑁-body simulation suite, AbacusSummit, and therefore provide
greater realism in the non-linear regime than the lognormal mocks
while also covering a sufficient volume of ∼100 Gpc3 to satisfy
the requirements of the DESI survey. In addition, the model used
to create them is calibrated on the state-of-the-art hydrodynamical
simulation IllustrisTNG and thus has an advantage over standard ap-
proaches for modeling the large-scale Ly𝛼 forest signal. At the same
time, it is simple enough that it can be applied to an arbitrarily large
number of simulations, without this exercise becoming prohibitively
expensive, as in the case of the hydrodynamical simulations used in
𝑃1D analysis.
A second major goal of this work is to integrate the 1D and 3D

correlation function analyses. Typically, the BAO and 𝑃1D analyses
are carried out as independent probes, with the BAO measurements
being modeled via linear perturbation theory, while the 𝑃1D ones
via hydrodynamical simulations that capture the physics of the inter-
galactic medium (IGM). The joint analysis of these measurements
would not only improve the statistical uncertainty on cosmological
parameters, but also make them more robust to systematic errors
(Font-Ribera et al. 2018). In order to accomplish this, however, we
need a theoretical framework that can be trusted on all scales. While
the mocks presented in this work lack the gas and IGM physics
needed to reliably model the smallest scales targeted by 𝑃1D analy-
ses, 𝑘 ∼ 10 ℎMpc−1, they still support cosmological scales spanning
several orders of magnitude, 0.001 . 𝑘 . 1 ℎMpc−1. They thus al-
low an excellent opportunity to develop novel pipelines and statistics,
beyond the standard BAO analysis, for extracting cosmological in-
formation from the full shape of the 3D correlations (see e.g., Cuceu
et al. 2021). Such work is planned by the DESI collaboration in the
near term, and our mocks provide an important first step towards
reaching these goals. As an example, these mocks provide realistic
connection between the QSOs and the Ly𝛼 forest, allowing for ac-
curate modeling of their cross-correlation down to intermediate and
small scales, which typically elude more simplistic mocks. Given the
high resolution and large volume of theAbacusSummit simulations,
the mocks presented in this work can be used to develop high-fidelity
models for analyzing upcoming measurements of the Ly𝛼 forest.
This paper is organized as follows. In Section 2, we introduce

the simulations and summary statistics employed in this study. In
Section 3, we detail our procedure for generating the Ly𝛼 forest
mocks and present a comparison with the high-vericity Ly𝛼 skew-
ers extracted from the hydrodynamical simulation IllustrisTNG. In
Section 4, we show the outcome of applying our algorithm to six of
the 𝑁-body simulation suite boxes of AbacusSummit. In particular,
we examine the 1D and 3D power spectra as well as the auto- and
cross-correlation of the Ly𝛼 forest and QSOs, demonstrating the im-
pact of non-linear clustering on these observables. We summarize
our findings and discuss relevant implications about future work in
Section 5.

2 METHODS

2.1 Simulations

In this Section, we introduce the two simulation suites relevant to
this work: IllustrisTNG and AbacusSummit.

MNRAS 000, 1–17 (2015)
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Figure 1. Top panel: Comparison of the 1D power spectrum of the Ly𝛼
forest skewers extracted from TNG300-1 (in blue) and eBOSS DR14 (in
black) (Chabanier et al. 2019). We note that the eBOSS power spectrum is
already noise and background substracted, and the Ly𝛼-Si correlations have
been removed, facilitating the comparison with the simulation. The lower
segment of the plot shows the ratio with respect to eBOSS. The agreement
between simulations and observations is reasonably good. In particular, the
discrepancy is . 10% for 𝑘 . 1 ℎMpc−1, and then increases up to 20%
on smaller scales, more prone to resolution effects. Bottom panel: 3D power
spectrum of the TNG300-1 Ly𝛼 forest skewers, with values of the bias and the
redshift distortion parameter given by 𝑏Ly𝛼,TNG = −0.1379 and 𝛽Ly𝛼,TNG =

1.432, respectively. These are slightly different from the eBOSS constraints
of 𝑏Ly𝛼,eBOSS = −0.117 and 𝛽Ly𝛼,eBOSS = 1.669 at 𝑧eff = 2.334 (du Mas
des Bourboux et al. 2020), but still comparable and sufficiently close to the
observations for the purposes of this study.

2.1.1 IllustrisTNG

TheNext Generation Illustris simulation (IllustrisTNG, TNG), which
is run with the AREPO code (Springel 2010;Weinberger et al. 2020),
consists of 9 simulations: 3 box sizes (300, 100 and 50Mpc on a side),
each available at 3 different resolutions, 1–3, with 1 being the highest
and 3 the lowest resolution (see Springel et al. 2018; Naiman et al.
2018; Marinacci et al. 2018; Nelson et al. 2019; Pillepich et al. 2019,
for details). Compared with its predecessor, Illustris (Vogelsberger
et al. 2014a,b; Genel et al. 2014), TNG provides improved agreement
with observations by modifying its treatment of active galactic nuclei
(AGN) feedback, galactic winds and magnetic fields (Pillepich et al.
2018; Weinberger et al. 2017). In addition, various improvements of
the hydrodynamical convergence have been introduced in the code.
In this work, we employ the highest-resolution hydro run of the

largest TNG box, TNG300-1, as well as the lowest-resolution dark-
matter-only run, TNG300-3-DM, at 𝑧 = 2.44, which we use to cali-
brate our Ly𝛼 forest generation procedure (see Section 3). Having a
phase-matched dark-matter-only simulation allows for a fast and di-
rect comparison to the full hydro results. In particular, since the sam-
ple variance of the two boxes is the same, any differences observed
in the power spectra can be attributed to model choices. TNG300-
3-DM also has the benefit of having very similar particle resolu-
tion to the base AbacusSummit boxes: 𝑀part,TNG−300−3−DM =

3.1 × 109 ℎ−1M� and 𝑀part,Abacus = 2.1 × 109 ℎ−1M� .
We make use of the noiseless mock Ly𝛼 forest spectra created and

made publicly available by Qezlou et al. (2022). The spectra are ob-
tained via the fake_spectra package (Bird et al. 2015; Bird 2017),
which calculates the absorption spectra for every ion in the simula-
tion along a chosen set of lines-of-sight. Each particle contributes to
the overall absorption in the spectrum according to a Voigt profile.
The cells are smoothed by an appropriate top-hat kernel. The skewers
used in this study are solely due to Ly𝛼 transmission, and we leave
further exploration of the effect of metal absorption lines on the Ly𝛼
observables for future work.
Throughout this work, we assume that the mean flux evolution is

given by the following empirical relation, corrected for metal absorp-
tion (Faucher-Giguère et al. 2008):

〈𝐹〉 = exp[−1.330 × 10−3 × (1 + 𝑧)4.094] . (1)

In our Ly𝛼 forest skewers, the optical depth is rescaled to match the
expected observed measurement, which at 𝑧 = 2.44 corresponds to
〈𝐹〉 = 0.8101. The high-resolution spectra assume the line-of-sight
direction to be along the 𝑧 axis, with a pixel width of 6.4 km/𝑠 to
resolve well features along the line-of-sight. We note that ideally one
would use all three axes as lines-of-sight to reduce the variance of
the measurements. However, those were not provided as part of the
TNG Ly𝛼 forest data release. Once the skewers are extracted, the
transmission fraction is averaged over adjacent pixels to a final pixel
size of 26 km/𝑠, corresponding to 0.25 ℎ−1Mpc. When employ-
ing its dark-matter-only counterpart, TNG300-3-DM, to generate the
mock skewers, we adopt a pixel size of 0.33 ℎ−1Mpc (6253 cells),
corresponding also to the interparticle spacing of the simulation and
approximately matching the resolution of the AbacusSummit boxes
(0.29 ℎ−1Mpc).

2.1.2 Comparing TNG300-1 with eBOSS

We next compare the one-dimensional (1D) power spectrum mea-
sured from the TNG300-1 simulation with observational data. The
observational results presented here are based on data collected by

MNRAS 000, 1–17 (2015)
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the Sloan Digital Sky Survey (SDSS) (York et al. 2000). In partic-
ular, the sample of Ly𝛼 forest forest observations is selected from
the quasar spectra of the DR14 catalog, which were observed either
by the SDSS-III Collaboration between 2009 and 2014 (as part of
BOSS) or by the SDSS-IV Collaboration in 2014-2015 (as part of
eBOSS). Throughout the paper, we will be referring to this data set
as ‘eBOSS.’
In Fig. 1, we illustrate the 1D power spectrum of the Ly𝛼 for-

est skewers measured in TNG300-1 and weigh it up against eBOSS
DR14 (Chabanier et al. 2019). We note that the eBOSS power spec-
trum is already noise and background substracted, and the Ly𝛼-Si
correlations have been removed, allowing for a direct comparison
with the simulation. It is important to acknowledge that we do not ex-
pect a perfect agreement between observations and simulations, since
uncertainties in the thermal and ionisation history of the intergalactic
medium impact the correlations of the Ly𝛼 forest. We see that the
agreement between simulations and observations is reasonably good,
noting that we do not calibrate the mean flux of TNG to the observed
mean in eBOSS data, which would change the overall normalization.
We observe a discrepancy of . 10% for 𝑘 . 1 ℎMpc−1, and up to
20% on smaller scales. We have checked that a finer gridding of the
TNG gas cells along the line-of-sight (50 ckpc/ℎ) does not mitigate
the small-scale deviation. For the purposes of this work, this is a satis-
factory result. However, we note that TNG has not been exhaustively
tested against observations in the IGM regime (but rather mostly for
galaxy observations) unlike other hydro simulations tailored towards
mimicking the Ly𝛼 forest (see e.g., the Nyx vs. Illustris code com-
parison in Sorini et al. 2018). It is also worth commenting on the fact
that our result exhibits greater tension with eBOSS than can be seen
in the analogous figure in Qezlou et al. (2022). The reason for this
difference is that the eBOSS data vector of Qezlou et al. (2022) uses
a different technique for subtracting the noise contributions than the
official eBOSS analysis1 (Chabanier et al. 2019).
In the lower panel of Fig. 1, we show the 3D power spectrum

defined as follows:

〈 ˜𝛿𝐹 (k) ˜𝛿𝐹
∗ (k′)〉 = (2𝜋)3𝑃(𝑘, `)𝛿𝐷 (k − k′), (2)

where 𝛿𝐷 (k) is the three-dimensional Dirac delta function. In par-
ticular, we bin the power spectrum 𝑃(𝑘, `) into 20 logarithmic 𝑘 bins
ranging from 𝑘 ∈ {(2𝜋)/𝐿box, 15 ℎMpc−1, where 𝐿box is the box
size of the simulation, and 16 ` bins ranging from 0 to 1, and show the
estimated Gaussian error bars (see further discussions in Section 3.5
and Section 4.2). It is evident that on large scales (𝑘 . 0.1 ℎMpc−1),
the error on themeasurements is large due to the small size of the box.
We compare the fitted values of the Ly𝛼 bias and redshift distortion
parameter from TNG, 𝑏Ly𝛼,TNG = −0.1379, 𝛽Ly𝛼,TNG = 1.432,
to the values measured in eBOSS data, 𝑏Ly𝛼,eBOSS = −0.117,
𝛽Ly𝛼,eBOSS = 1.669 at 𝑧eff = 2.334 (see last column of Table 6
in du Mas des Bourboux et al. 2020). While the redshift distortion
parameter is slightly lower in TNG, it is interesting to see that the
values of 𝑏(1 + 𝛽) that set the amplitude of the 3D power along the
line of sight are within 10%.We note that other state-of-the-art hydro
simulations report higher values for 𝛽 (e.g., Chabanier et al. in prep.
find 𝛽 = 1.8), while Givans et al. (2022) finds 𝛽 = 1.35 at 𝑧 = 2.8
in the Sherwood suite of simulations and Arinyo-i-Prats et al. (2015)
find 𝛽 ∼ 1.3 − 1.5 in the relevant redshift range. However, for the
purposes of this study, we consider these matches good enough and
calibrate our mocks to match the TNG measurements, referring to it
as the ‘truth’ from hereon.

1 Established through private communication.

2.1.3 AbacusSummit

AbacusSummit is a suite of high-performance cosmological 𝑁-body
simulations, which was designed to meet and exceed the Cosmolog-
ical Simulation Requirements of the DESI survey (Maksimova et al.
2021). The simulations were run with Abacus (Garrison et al. 2019,
2021), a high-accuracy cosmological 𝑁-body simulation code, op-
timized for GPU architectures and for large-volume simulations, on
the Summit supercomputer at the Oak Ridge Leadership Computing
Facility.
The majority of the AbacusSummit simulations are made up

of the base resolution boxes, which house 69123 particles in a
2 ℎ−1Gpc box, each with a mass of 𝑀part = 2.1 109 ℎ−1M� . While
the AbacusSummit suite spans a wide range of cosmologies, here
we focus on the fiducial outputs (Planck 2018: Ω𝑏ℎ

2 = 0.02237,
Ω𝑐ℎ

2 = 0.12, ℎ = 0.6736, 109𝐴𝑠 = 2.0830, 𝑛𝑠 = 0.9649,
𝑤0 = −1, 𝑤𝑎 = 0). In particular, we employ the 6 base boxes
AbacusSummit_base_c000_ph{000-005}. The reason for our
choice is that full particle outputs are provided for these simula-
tions at 𝑧 = 2.5, which is the redshift of interest for our Ly𝛼 forest
study. For full details on all data products, see Maksimova et al.
(2021). In future work, we plan to extend our mocks to cosmologies
beyond Planck 2018 and adapt our method so that it utilizes only
10% of the particles (available for all AbacusSummit simulations at
𝑧 = 2.5).

2.2 Quasar catalogue

The cross-correlation function of the Ly𝛼 forest with quasars will be
measured by current and next-generation experiments such as DESI.
However, to ensure that our theoretical models can adequately fit
the signal, we need to test our pipelines on synthetic catalogs. To
this end, we generate mock quasar catalogues via AbacusHOD, a
sophisticated routine that builds upon the baseline halo occupation
distribution (HOD) model by incorporating various extensions af-
fecting both the one- and two-halo terms, and in Section 4.3, we
show the cross-correlations of our mock quasar catalogue with the
Ly𝛼 forest spectra. AbacusHOD allows the user to specify different
tracer types: emission-line galaxies (ELGs), luminous red galaxies
(LRGs), and quasistellar objects (QSOs). The full model is described
in detail in Yuan et al. (2022).
In this study, we adopt a simple HOD model for the QSO without

any decorations:

�̄�
QSO
cent (𝑀) = ic

2
erfc

[
log10 (𝑀cut/𝑀)

√
2𝜎

]
, (3)

�̄�
QSO
sat (𝑀) =

[
𝑀 − ^𝑀cut

𝑀1

]𝛼
�̄�
QSO
cent (𝑀), (4)

where 𝑀cut characterizes the minimum halo mass to host a central
galaxy, 𝑀1 the typical halo mass that hosts one satellite galaxy, 𝜎
the steepness of the transition from 0 to 1 in the number of central
galaxies, 𝛼 the power law index on the number of satellite galaxies,
ic the incompleteness parameter, and ^𝑀cut gives the minimum halo
mass to host a satellite galaxy. The parameters we choose for our
QSO catalogs are in units of ℎ−1M�

log10 (𝑀cut) = 13.2, ^ = 1.11, 𝜎 = 0.65, (5)
log10 (𝑀1) = 13.8, 𝛼 = 0.8, ic = 1.0,

which have been selected so as to yield a linear bias of about 𝑏QSO ≈
3.3, roughly matching the quasar bias in du Mas des Bourboux et al.
(2020), and have a number density of 1.75×10−4 [ ℎ−1Mpc]−3 (i.e.,

MNRAS 000, 1–17 (2015)
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1.4 million quasars per box). These numbers are taken from rough
fits to preliminary DESI data.

3 CREATION OF THE MOCKS

Previous large-volume Ly𝛼 forest mocks have been generated using
simple, fast and computationally cheap methods such as lognormal
density maps (e.g., Farr et al. 2020) augmented with approximate
prescriptions to reach the volumes required by the new generation of
surveys. However, models based on Gaussian random fields do not
capture non-linear evolution, as they are generated solely through the
initial power spectrum Coles & Jones (1991); Bi & Davidsen (1997).
Slightly more complex are formalisms involving Lagrangian pertur-
bation theory (see e.g., Bernardeau et al. 2002, for a review) and
COLA Tassev et al. (2013), which extend the modeling capabilities
to the mildly non-linear regime. In pure BAO analyses, the presence
of non-linear structure does not substantially affect the measure-
ment, especially at the high-redshift regime (𝑧 & 2). However, any
full-shape and small-scale analysis of Ly𝛼 forest observables (includ-
ing cross-correlations) will be substantially impacted by non-linear
graviational and astrophysics effects (Cuceu et al. 2022a,b).
This work aims to enable the full-shape analysis of the Ly𝛼 forest

power spectrum, planned to be conducted as part of the DESI Y3 Ly𝛼
science program.While ideally one would strive to generate as realis-
tic mocks as possible, which would mean employing state-of-the-art
hydrodynamical simulations, this is unfortunately not a viable path
forward, as the computational expense associated with generating
Ly𝛼 forest skewers in a volume sufficiently large for modern surveys
is tremendous. In this work, we therefore seek a middle path of us-
ing fully evolved 𝑁-body simulations and adopting an approximate
technique calibrated to a hydro simulation.
In our Ly𝛼 forestmocks onAbacusSummit, we opt for a resolution

of 69123 cells per box, corresponding to an average of one particle per
cell and a mean interparticle distance of 0.29 ℎ−1Mpc. The density
and velocity field grids are obtained as described in Section 3.1.
The resolution is chosen to be comparable to (though still larger
than) the Jeans length at that redshift (100 kpc/ℎ) while avoiding the
creation of too many empty cells, as that would contribute substantial
noise to the density field and the derived optical depth, subsequently.
Since our resolution is limited by the simulation resolution, we are
unable to obtain an accurate estimate of the field at scales lower than
∼0.3 ℎ−1Mpc. Thus, the power spectrum of the skewers 𝑃1D (𝑘 ‖)
measured from modes lying along the line of sight is suppressed,
which also affects the 3D flux power spectrum (Farr et al. 2020).
For this reason, we boost the power spectrum by adding small-scale
fluctuations to the density field, as discussed in Section 3.2.
Next, to convert from dark matter density to optical depth, we

adopt the simple fluctuating Gunn-Peterson approximation (FGPA)
Croft et al. (1998b). While this method is simplistic, it offers a
fast and transparent way of connecting the matter density to that
of neutral hydrogen. More complex techniques do exist, including
the Ly𝛼 Mass Association Scheme (LyMAS; Peirani et al. (2014b,
2022b)), the IterativelyMatched Statistics (IMS; Sorini et al. (2016b)
method, and Hydro-BAM (Sinigaglia et al. 2022). These use a vari-
ety of approaches tuned using smaller hydro simulations that range
frommatching the Ly𝛼 forest probability distribution function and/or
power spectrum to using a supervised machine learning method.
However, these methods have yet to be applied to simulations with
the purpose ofmaking large scale DESImocks. Therefore, in this first
work we focus on using the simpler FGPA approach and leave the

application of these more complex recipes to future work. We adopt
two slight variations of the FGPA approach discussed in Section 3.3.
Finally, we add RSDs to our skewers and convert them to trans-

mission flux spectra in Section 3.4. Those are the result of peculiar
velocities in the inter-galactic medium (IGM) projected along the
line of sight, and manifest themselves as an anisotropy in the power
spectrum and correlation function measurements.

3.1 Calculating the density and velocity fields

The first step in applying the FGPA method to an 𝑁-body simulation
(in our case, AbacusSummit and TNG300-3-DM) is the deposition
of particles onto a grid. In this study, we adopt triangular shape cloud
(TSC) interpolation, to obtain both the density, 𝜌dm (x), and peculiar
velocity 𝑣𝑟 (x) fields. Some studies (e.g., Sorini et al. 2016a) apply
smoothing to the fields to mimic the effect of baryonic pressure on
small scales. However, similarly to Qezlou et al. (2022); Stark et al.
(2015); Newman et al. (2020), we find that when simulating the
neutral hydrogen absorption on scales of ∼1 Mpc, smoothing the
fields has negligible effects. In future work, we plan to revisit our
choice of a particle-to-grid deposition method. While TSC has clear
advantages (especially in the low-density regime) over the lower-
order kernels, i.e. nearest grid point (NGP) and cloud-in-cell (CIC),
tessellation-based methods are even better suited for obtaining a
near exact estimate of the low-density dark matter field (e.g., phase-
space sheet tesselation as in Abel et al. (2012)), which is the most
relevant for Ly𝛼 forest analysis (see e.g., Chabanier et al. 2023, for
an evaluation of these effects).

3.2 Adding small-scale noise

Similarly to Farr et al. (2020), we add small-scale noise to the initial
density field so as tomake up for the deficit in the 1D power spectrum.
This deficit is the result of the effective smoothing on small scales
imposed by the relatively large size of the gas blobs (∼ 0.3 ℎ−1Mpc),
which suppresses the power on small scales. We start by generating
independent Gaussian skewers 𝛿𝜖 for each line-of-sight preserving
the resolution of the original density field. We impose that the 1D
power spectrum of the skewers obeys the following equation Mc-
Donald et al. (2006):

𝑃1D (𝑘) ∝ [1 + (𝑘/𝑘1)𝑛]−1, (6)

normalized so thatVar[𝛿𝜖 ] = 1. These Gaussian skewers are then all
scaled by a factor𝜎𝜖 to control the variance in the extra power added.
This factor, together with 𝑛 and 𝑘1 is a free parameter in our model
and takes a single value determined by the procedure described in
Section 3.5.
The new density skewers are then obtained by multiplying the true

density field skewers by the lognormal field:

𝜌(x) = 𝜌dm (x) (1 + 𝛿ln (x)), (7)

where the lognormal field is given by the lognormal transformation

𝛿ln (x) = exp
[
𝛿𝜖 (x)𝜎𝜖 − 𝜎2𝜖

2

]
− 1 (8)

to ensure zero mean.
Note that the lognormal skewers are generated independently of

each other, so there is no correlation across different lines-of-sight.
We note that the same effect could have been achieved by adding
small-scale fluctuations to the velocity field. However, since only one
of our methods directly uses the velocity field, we opt to be consistent
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and add small-scale noise to only the density field. We also note that
one of the models for generating synthetic Ly𝛼 skewers (see Model 1
in Table 3.5) does not include lognormal noise. The effect of turning
off the extra noise is visible in the power spectrum measurements
shown in Fig. 4.

3.3 Deriving the observed optical depth

To convert the fluctuations in the density field into optical depth,
we adopt two different, but closely related approaches. The first one
of them follows the standard FGPA prescription, while the second
introduces a small modification to it. We detail the two methods
below.

• Method I: Two key assumptions go into the FGPA ap-
proach (Gunn & Peterson 1965): adiabatic expansion of the gas and
photoionization equilibrium in the IGM. The first one implies that the
relationship between density and temperature is well approximated
by (Hui & Gnedin 1997)

𝑇 (x) ∝ 𝜌(x)𝛾−1, (9)

where 𝛾 is the slope of the temperature-density relation, while the
second dictates the connection between the temperature of the gas
and the number of neutral hydrogren atoms:

𝑛HI (x) ∝ 𝜌(x)2𝑇 (x)−0.7. (10)

Here, 𝜌 is the baryonic matter density (Hui et al. 1997). However,
we note that in a collisionless dark-matter simulation, we can only
access the total matter field, as defined in Section 3.1, which we
assume traces the baryonic field reasonably well. Combining these
two equations and noting that the optical depth, 𝜏, is proportional to
the neutral hydrogen column density, 𝑛HI, we arrive at the final form
of the FGPA method (Bi & Davidsen 1997; Croft et al. 1998b)

𝜏(x) = 𝜏0 𝜌(x)𝛼, (11)

where 𝜏0 is the overall normalization resulting from the
temperature-density and photoionization rate assumptions and 𝛼 ≡
2 − 0.7(𝛾 − 1). In our analysis, 𝜏0 and 𝛾 are free parameters chosen
according to the description in Section 3.5. As a helpful reference,
we note that the value of the temperature-density slope in TNG can
be measured to be 𝛾 ≈ 1.5 (Gouin et al. 2022).
The final step in converting the matter field, 𝜌(𝑥), into the “ob-

served” optical depth 𝜏(𝑠) involves converting the real-space 𝜏(𝑥)
into its redshift-space equivalent, 𝜏(𝑠). In addition to the red-
shifting of the Ly𝛼 absorption features due to cosmic expansion,
_obs = _𝛼 (1 + 𝑧), with _𝛼 being the Ly𝛼 wavelength and 𝑧 the ab-
sorption redshift, there is an additional effect of RSDs caused by the
peculiar velocities of neutral hydrogen clouds. We introduce RSDs
into our mocks by treating each cell in our three-dimensional grid as
a gas blob with a mean velocity along the line of sight as calculated in
Section 3.1. The conversion to redshift-space of each skewer can be
expressed as an integral over velocity space of the real-space optical
depth multiplied by some kernel, 𝐾:

𝜏(𝑠) =
∫

𝜏(𝑥)𝐾
(
𝑠 − 𝑥 − 𝑣𝑟

(
𝑥
)
(1 + 𝑧)/𝐻 (𝑧)

)
d𝑥, (12)

where 𝑣𝑟 is the peculiar velocity along the line of sight, while 𝑥 and
𝑠 are the spatial coordinates in real- and redshift-space, respectively.
A typical choice for the kernel in Ly𝛼 mock generation is the Voigt
profile, a Gaussian kernel with a Lorentzian term, or the Doppler
profile, just a Gaussian kernel, both of which aim to account for the
effects of thermal broadening due to the random thermal velocities

of the gas atoms.We implement convolution with the Doppler profile
as an option in our AbacusSummit mocks, but find that it has little
effect on our observables (e.g., the 1D power spectrum), since the
width of the kernel is comparable or smaller than the size of the cells.
We show this in Appendix A. Thus, to simplify our process, we set
𝐾 (𝑥) = 𝛿𝐷 (𝑥), where 𝛿𝐷 is the Dirac delta function, which amounts
to shifting the optical depth of each blob according to its peculiar
velocity. In practice, we need to adopt some particle deposition tech-
nique due to the discreteness of the cells. A standard choice is to
employ a nearest-grid point scheme; however, we opt to use TSC, as
it is higher-order than CIC and NGP.

• Method II: Similarly to the first method, here we also assume
that the optical depth is related to the density field as 𝜏(x) ∝ 𝜌(x)𝛼.
However, the main difference is that in this version, we go directly
from the particle positions and their velocities to the final “observed”
optical depth in redshift space. In particular, we compute a weight
for each particle given by 𝜌dm (x)𝛼−1 × [1+ 𝛿ln (x)]𝛼, where 𝜌dm (x)
is the dark matter density field in real space (see Section 3.1) and
𝛿ln (x) is the lognormal noise field in real space introduced in Eq. 6.
We then displace the line of sight coordinate component of each
particle according to its peculiar velocity as follows:

𝑠 = 𝑥 + 𝑣𝑟 (1 + 𝑧)/𝐻 (𝑧), (13)

where 𝐻 (𝑧) is the Hubble parameter at redshift 𝑧. Adopting TSC
interpolation, we deposit the weighted and displaced particles on the
three-dimensional grid to obtain the observed optical depth 𝜏(𝑠).
Thus, this method yields the optical depth directly in redshift-space
and as such is less computationally intensive. We note that the reason
that this approach leads to the correct form is that the usual particle
deposition results in a density field 𝜌dm ∝ (1+𝛿dm). Therefore, upon
weighting and displacing the particles, we arrive at a field behaving
as [𝜌dm (x)𝛼 × [1 + 𝛿ln (x)]𝛼] (𝑠).

The main difference between the two methods is thatMethod I treats
the individual grid cells as Ly𝛼 absorption clouds with a velocity
determined by the mean in the cell, whereas in Method II, each
particle is approximated as an individual absorber of Ly𝛼 photons.
A downside of the first method is that at low densities, averaging the
velocities of sparsely distributed particles results in a suppression of
the peculiar velocities of dark matter substructures, which translates
as a deficiency in the RSD signal. On the other hand, the second
method can potentially lead to a stronger RSD signal than the true
Ly𝛼 forest, as the thermal velocities of individual particles will be
larger compared with the gas clouds due to the lack of baryonic
pressure in the𝑁-body simulation. In an idealized scenario, one could
consider identifying substructures via some halo-finding algorithm
and deriving the absorption cloud velocities from that, but even this
methodwould not be able to capture correctly the underlying physics,
as it would lack important gas and baryonic physics.

3.4 Obtaining the flux skewers

Finally, we need to transform the optical depth, 𝜏(𝑠), into the trans-
mitted flux fraction, 𝐹 (𝑠), following:

𝐹 (𝑠) = exp [−𝜏(𝑠)] . (14)

When computing power spectra of the Ly𝛼 forest, we typically work
with the transmitted flux contrast:

𝛿𝐹 (𝑠) = 𝐹

〈𝐹〉 − 1, (15)

which is characterized by having a zero mean. As can be seen in
Eq. 11 and Eq. 14, the optical depth is saturated in over-dense regions
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yielding zero flux and hence no information. On the other hand,
more information can be gleaned from low- and intermediate-density
regions, where there is some absorption but not enough to cause the
signal to be saturated.

3.5 Parameter tuning

Our model consists of a number of free parameters defined in Sec-
tion 3.2 and Section 3.3, namely, 𝜏0, 𝜎𝜖 , 𝛾, 𝑛, 𝑘1 (see Eq. 11 and
Eq. 6 for descriptions). To decide on the values of these parame-
ters, we aim to match several key properties of the hydro simulation
Ly𝛼 forest skewers: the mean transmitted flux fraction 〈𝐹〉, the vari-
ance of the low-pass-filtered flux with a cutoff at 𝑘1D = 1 ℎMpc−1,
〈𝐹2〉, the 1D power spectrum, 𝑃1D (or equivalently, 𝑃(𝑘)), up to
𝑘 < 0.8 ℎMpc−1, and the 3D power spectrum, 𝑃3D (or equivalently,
𝑃(𝑘, `)), up to 𝑘 < 0.8 ℎMpc−1 for selected values of `. We note
that we tune our model by comparing the FGPA-derived skewers on
TNG300-3-DM with the full-physics TNG300-1 skewers, as the two
simulations share many properties such as initial seed and cosmic
variance, which enables a direct comparison. We prefer matching
the full shape of the power spectra rather than a compressed statis-
tics such as the bias. The reason for this choice is that due to the
limited sizes of the box, low-wavemode quantities are noisy to mea-
sure. Only once we are satisfied with the match between TNG300-1
and TNG300-3-DM, do we apply our method to the large boxes of
AbacusSummit to obtain the final products. In addition, we find that
the shape of the FGPA-derived power spectra also differs across the
different models, which is an additional advantage of matching to the
1D and 3D power spectra. We describe our process in more detail
below.

• We first measure the 1D and 3D power spectra from TNG300-1
and quantify their error bars. In the case of the 1Dpower spectrum, the
process is straightforward: we Fourier transform the flux contrast 𝛿𝐹
along each skewer and compute the power spectrum, averaging over
all lines-of-sight. We bin the 1D power spectrum into 400 linear bins
ranging from 𝑘 ∈ {0, 12.26 ℎMpc−1}, i.e. spaced by (2𝜋)/𝐿box. To
obtain the error bars on the 1D measurement, we apply jackknifes on
the available skewers. In the case of the 3D power spectrum, we work
with the quantity𝑃(𝑘, `) defined inEq. 2.As before,we bin the power
spectrum into 20 𝑘 bins ranging from 𝑘 ∈ {(2𝜋)/𝐿box, 15 ℎMpc−1}
and 16 ` bins ranging from 0 to 1. We assume that the error bars on
this measurement are well approximated by the Gaussian error:

Δ𝑃(𝑘, `) =

√︄
2
𝑁𝑘

𝑃(𝑘, `), (16)

where we calculate the number of k modes in each 𝑘 and ` bin as
𝑁𝑘 = 𝑘2𝑑𝑘𝑑`/(2𝜋/𝐿box)3 with 𝐿box being the box size.
We next split the tuning process into a slow and a fast step, with

the fast step varying 𝜏0 and 𝜎𝜖 to match the mean and variance of
the flux, and slow step varying 𝛾, 𝑛, and 𝑘1 to additionally match the
1D and 3D power spectra.

• Fast parameters: For a given choice of slow parameters, 𝛾, 𝑛,
and 𝑘1, and a Method (I or II as defined in Section 3.3), we vary the
parameters 𝜏0 and 𝜎𝜖 , so as to minimize the function:

𝜒2mean,std =
[
〈𝐹TNG Hydro〉 − 〈𝐹TNG FGPA〉

]2 + (17)[√︃
Var[𝐹TNG Hydro] −

√︁
Var[𝐹TNG FGPA]

]2
,

where the mean flux 〈𝐹TNG Hydro〉 = 0.8101 is taken
from the empirical relation, i.e. Eq. 1, while the variance,

(Var[𝐹TNG Hydro])1/2 = 0.1878, is computed from the low-pass fil-
tered flux skewers described above. We note that the fast parameters
are optimized separately from the slow ones, which is the reason
that we do not worry about normalizing the 𝜒2. Furthermore, we
implicitly assume that the error on the mean and standard deviation
measurements is comparable. We test this assumption for our default
resolution and find that the two differ only by a small O(1) factor.

• Slow parameters: To decide on the values of the slow param-
eters, we generate a three-dimensional uniform grid with possible
values they can take: we allow 𝛾 to vary between 1.4 and 1.7 and test
6 values in that range (typically, one assumes that 𝛼 ≈ 1.6, which
corresponds to 𝛾 ≈ 1.56); 𝑛 is allowed to vary between -3 and 3,
and we test 200 values in that range; finally, 𝑘1 varies between 0.001
to 1, and we test 200 values in that range. We do not sample 𝛾 as
densely as the other two parameters, as we find that our observables
are weakly affected by this choice.
For each of the two methods (see Section 3.3) and each point in

the three-dimensional grid, we first fit for the mean and variance of
the flux so as to calibrate 𝜏0 and 𝜎𝜖 and then record the mean and
the flux alongside the contribution to the 𝜒2 of the 1D and 3D power
spectra, computed as follows:

𝜒21D =
∑︁
𝑘

[ (𝑃1D,TNG Hydro (𝑘) − 𝑃1D,TNG FGPA (𝑘))
Δ𝑃1D,TNG Hydro (𝑘)

]2
(18)

𝜒23D =
∑︁
𝑘, {`}

[ (𝑃TNG Hydro (𝑘, `) − 𝑃TNG FGPA (𝑘, `))
Δ𝑃TNG Hydro (𝑘, `)

]2
for four selected values of `, namely {0.03, 0.33, 0.66, 0.97} with
a bin width of Δ` ≈ 0.06. We have checked that the parameter
selection is negligibly affected by whether we use only a handful of
` values or the full 𝑃(𝑘, `) vector.
Note: The reason we classify 𝑛 and 𝑘1 as slow parameters is that

the step of generating the Gaussian noise skewers is relatively slow.
Similarly, changing 𝛾 inMethod II requires a rerunning of the TSC
particle deposition step, which is computationally expensive.

• In the final step of this process, we select the values of the
three slow parameters, which will be used in the AbacusSummit
Ly𝛼 forest mocks. To do so, we combine the 𝜒2 values from the 1D
and 3D power spectra. In particular, for each of the two methods
(see Section 3.3), we choose two sets of slow parameters: the first
set corresponds to the best-fit parameters we obtain when minimiz-
ing 𝜒2Model 1 = 𝜒

2
3D, while the second set comes from minimizing

𝜒2Model 2 = 𝜒
2
3D + 𝜒21D. We quote the best-fit values for all four mod-

els (two per method) in Table 3.5. We note that we do not include the
mean and variance 𝜒2 contributions, as those are already calibrated
individually for each model. Additionally, since the errors on the
mean and the variance are much smaller, they would dominate the
selection, and our final objective is to match the power spectra.
We note that while the values of the fast parameters 𝜏0 and 𝜎𝜖 in

the large boxes are quite similar to the TNG-DM boxes, we opt to
recalibrate them to make sure we match the mean and variance of
the flux as best as we can.

To summarize the tuning process, we start by generating a three-
dimensional regular grid, for which each point corresponds to a set
of predetermined values for the three slow parameters. For each set
of three slow parameters, we minimize the absolute difference with
TNG300-1 of the mean and the variance of the flux, adopting the
Nelder-Mead scheme, to find the values of the fast parameters and
record the resulting 1D and 3D power spectrum difference (in terms
of 𝜒2). For each of the 4 models considered in this work, we then
simply report the set of slow and fast parameters that correspond
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Model # Method Fit 〈𝐹 〉
√︁
Var[𝐹 ] 𝜏0 𝜎𝜖 𝛾 𝑛 𝑘1 𝜒21D 𝜒23D 𝑏Ly𝛼 𝛽Ly𝛼

1 Method I P3D 0.801 0.168 0.387 0.000 1.650 — — 242.276 61.138 −0.146 0.920

2 Method I P1D+P3D 0.811 0.187 0.391 0.772 1.450 1.000 0.063 27.536 104.887 −0.129 0.949

3 Method II P3D 0.825 0.212 0.385 1.696 1.500 1.500 1.000 770.975 25.186 −0.130 2.022

4 Method II P1D+P3D 0.810 0.187 0.654 2.116 1.550 0.000 — 131.403 100.800 −0.126 2.330

Table 1. Specifications of the four models used in the creation of the Ly𝛼 forest synthetic catalogs. In particular, we indicate the values of the slow and fast
parameters, 𝛾, 𝑛, 𝑘1, 𝜏0 and 𝜎𝜖 , defined in Section 3.2 and Section 3.3. Descriptions of the two FGPA-based methods (I and II) can be found in Section 3.3, while
the fitting procedure is detailed in Section 3.5. The target values of the mean and variance for these mocks are derived from the hydro simulation TNG300-1 and
are 〈𝐹 〉 = 0.8101 (Var[𝐹 ])1/2 = 0.1878. Model 1 has effectively no small-scale noise added (hence the blanks), while in the case of Model 3, we effectively
add “white” noise, i.e. with no scale-dependence. We also share the measurements of the bias and the redshift distortion parameter, 𝑏Ly𝛼 and 𝛽Ly𝛼, for each
model and compare them with the TNG values of -0.1379 and 1.432, respectively. The number of data points fitted in the 1D power spectrum is 27, while that
for the 3D power is 20, suggesting that Model 2 provides a good fit for the 1D power, while Model 3 does well with matching the 3D power. We note that some
state-of-the-art hydro simulations report higher 𝛽Ly𝛼 values (e.g., Chabanier et al. in prep. find 𝛽Ly𝛼 = 1.8), which agree better with our Models 3 and 4.

−1 0 1 2
ρGDM − 1

−0.3

−0.2

−0.1

0.0
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δG F

TNG− Hydro

TNG− FGPA

Figure 2. Two-dimensional PDF contours comparing the dark-matter-field-
Ly𝛼-flux relation for the TNG300-1 hydro simulation (solid) and one of
our FGPA-based synthetic catalogs (dashed) applied to the low-resolution
dark-matter-only counterpart TNG300-3-DM (Model 3; see Table 3.5). The
levels shown correspond to 2% and 68%. The voxel resolution of the maps
is 0.33 ℎ−1Mpc, and both maps are smoothed with a Gaussian kernel of size
𝜎𝐺 = 3 ℎ−1Mpc for visualization purposes. The similarity between the two
curves confirms that the gas physics has small effect on Ly𝛼 observables on
megaparsec scales.

to the smallest 𝜒2 across all grid points. In the future, we plan to
adopt a more flexible iterative process rather than the preset three-
dimensional grid. However, that would require that we substantially
speed up the power spectrum computation, for example, by adopting
analytical approximations (e.g., Farr et al. 2020). We defer these
ideas for later work, where we explore a more complex model and
utilize larger boxes for calibration.
In Fig. 2, we show the two-dimensional PDF contours compar-

ing the dark-matter-field-Ly𝛼-flux relation for the TNG300-1 hydro
simulation and one of our FGPA-based synthetic catalogs applied
to the low-resolution dark-matter-only counterpart TNG300-3-DM
(Model 3; see Table 3.5). The levels shown correspond to 2% and
68%. The voxel resolution of the maps is 0.33 ℎ−1Mpc and both are
smoothed with a Gaussian kernel of size 𝜎𝐺 = 3 ℎ−1Mpc. Note that
the smoothing is applied for visualization purposes and is not used for

any other figure in this paper. The similarity between the two curves
confirms that the gas physics has small effect on Ly𝛼 observables on
megaparsec scales.
In Fig. 3, we show a couple of skewers passing through the entire

TNG300 box for the “true” Ly𝛼 spectra extracted from TNG300-1
and the synthetic ones obtained using our Model 3 (see Section 3
and Table 3.5) on the low-resolution counterpart TNG300-3-DM.
For visualization purposes, we plot 𝛿𝐹 (𝑟) + 1 ≡ 𝐹 (𝑟)/�̄� (𝑟) for the
skewer on top and 𝛿𝐹 for the skewer on the bottom. Reassuringly,
the simplified FGPA model does an adequate job of matching the
majority of the features present in the full hydrodynamical spectra.
Visible in the comparison of the two is that the true skewers appear
smoother than the FGPAones due to the extra noise added to the latter.
As we will see in Fig. 4, the Model 3 FGPA 1D power spectrum
overshoots the true 1D power spectrum partly due to the addition
of small-scale power. Reassuringly, we have inspected (not shown)
the skewers for Model 1, which has no small-scale power added,
and found the opposite: the FGPA skewers lack small-scale features
comparedwith the true skewers (and their 1D power spectrum, shown
in Fig. 4, is lower, as expected).

3.5.1 Comparing the power spectrum of TNG300-1 and
TNG-300-3-DM

We produce AbacusSummit Ly𝛼 forest mocks for four different
models: two FGPA-based methods (see Section 3.3) calibrated to
match the 3D power spectrum individually and the 1D and 3D power
spectra jointly of the TNG300-1 skewers. In Fig. 4, we illustrate the
level of agreement between the hydro run TNG300-1 and the FGPA
mocks run on the dark-matter-only simulation TNG300-3-DM. We
note that the sample variance is the same in both boxes, which fa-
cilitates the comparison of the models to the “truth.” In addition, on
small scales, the measurement is affected by an interlacing effect due
to the size of the cells and an aliasing effect due to the sparseness of
the lines-of-sight, which scales as 𝑃1D/𝑛2D (McDonald&Eisenstein
2007), where 𝑛2D is the two dimensional density of skewers. Sub-
tracting the aliasing effect theoretically is not trivial, as the skewers
in our mocks are placed in a regular grid rather than randomly, as
would be the case in observations, and thus the formula inMcDonald
& Eisenstein (2007) does not hold. In this work, we opt not to do this,
as the affected 𝑘-modes are beyond our scales of interest. Similarly,
interlacing affects our measurements beyond 𝑘 ∼ 4− 5 ℎMpc−1 and
can be numerically corrected by offsetting the grid by half a cell size
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Figure 3. Skewers of the “true” Ly𝛼 forest flux (solid) and the FGPA prediction (dashed) for our Model 3 (see Table 3.5). It is reassuring to see that the simplified
FGPA model does an adequate job of matching the majority of the features present in the full hydrodynamical spectra. For easier visualization, we are plotting
𝛿𝐹 (𝑟 ) + 1 ≡ 𝐹 (𝑟 )/�̄� (𝑟 ) and 𝛿𝐹 for the skewer on top and bottom, respectively.

and recomputing the Ly𝛼 observables. As this is prohibitively ex-
pensive in the case of the AbacusSummit boxes, which are generated
using a lightweight, single-node script, we choose not to apply it to
the TNG case either, as we try to make the comparison as consistent
as possible (for example, by choosing similar resolution and grid
size).
As expected, Models 2 and 4, which are aiming to fit both the 1D

and the 3D power spectrum, exhibit closest agreement to the “true”
(TNG300-1) 1D power spectrum for 𝑘 < 1 ℎMpc−1. Model 4 over-
predicts the 1D power on the smallest scales, not included in the fits,
probably because of the large amount of extra power added (large
value of 𝜎𝜖 ).
In terms of the 3D power, as expected, Models 1 and 3 show

better agreement with TNG300-1, respectively, than Models 2 and
4. Models 1 and 2, moreover, have noticeably smaller redshift-space
distortions (lower value of the parameter 𝛽). This was also the case in
the FGPA-lognormal mocks presented in Farr et al. (2020), where the
authors addressed this issue by artificially boosting the velocities by
30%. Overall, the four models exhibit a reasonable agreement with
the hydro “truth,” providing a wide selection of synthetic catalogs
for the users of these mocks to have at their disposal.

4 VALIDATION OF THE MOCKS

In this Section, we study observable summary statistics of our Ly𝛼
forest mocks relevant for current and future surveys, namely, the 1D
and 3D power spectrum, and the correlation function, in order to
validate our mocks. In particular, we first introduce the available
large-volume synthetic products on AbacusSummit. We then show
measurements of these statistics from our mock skewers and discuss
their shortfalls and successes in recovering the “true” statistics com-

ing from the hydro simulation, IllustrisTNG. We then compute the
real-space clustering of our AbacusSummit Ly𝛼 forest skewers and
study the effect of non-linear broadening on the BAO peak. We also
compare our measurements against observations from eBOSS (du
Mas des Bourboux et al. 2020).

4.1 Available AbacusSummit products

AllAbacusSummit Ly𝛼 forest mocks are generated on a single node
of the National Energy Research Scientific Computing (NERSC)
Centre’s corimachine using specially developed python scipts with
no external dependencies apart from scipy, numba, and the special-
ized package for reading AbacusSummit products, abacusutils2.
The maximum RAM consumption is capped at 70 GB for any of the
scripts and the total size of all products (6 simulations, 4 mod-
els, 2 lines-of-sight) after applying ASDF ‘blsc’ compression is
50 TB3. As discussed in Section 3.5, we generate mocks for four
separate models (adopting Method I and II to fit the 1D power
spectrum and the 1D+3D power spectrum, subsequently). Our prod-
ucts are available for each of the six fiducial cosmology simula-
tions AbacusSummit_base_c000_ph000-005 (2 ℎ−1Gpc, 69123)
at 𝑧 = 2.5 and each of the four models, and can be downloaded via
Globus (see Data Availability). Each Ly𝛼 forest mock has a resolu-
tion of 0.29 ℎ−1Mpc per cell, corresponding to a total of 69123 grid
cells. Below, we list the specifications of our Ly𝛼 forest and QSO
catalogs for each simulation:

2 The package and instructions for installing it can be found here: https:
//github.com/abacusorg/abacusutils.
3 Available via the package abacusutils.
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Figure 4. 1D and 3D power spectrum of the Ly𝛼 forest generated for the four models presented in this work (see Table 3.5 and Section 3) when applied to the
𝑁 -body simulation TNG300-3-DM (dashed curves) and the “true” measurements from the hydro simulation (solid curves). In the top panels, we show the 1D
power spectrum, 𝑃1D (𝑘) , with the shaded regions indicating jackknife errors, whereas in the bottom ones, we show the ratio between the linear power spectrum
and 𝑃 (𝑘, `) for four different values of ` = {0, 0.33, 0.66, 1}, with the error bars coming from the Gaussian prediction. Note that the sample variance is the
same in both boxes, which facilitates the comparison, and that on small scales, the measurement is affected by the effects of interlacing and aliasing due to the
sparseness of the lines-of-sight (McDonald & Eisenstein 2007) and the cell size. Overall, the four models exhibit a good agreement with the “truth” and provide
a wide variety of synthetic catalogs for the users of these mocks.

• Two full sets of redshift-space optical depth skewers (69122,
with 6912 line-of-sight pixels), one placing the observer along the 𝑦
axis and one along the 𝑧 axis4. These skewers can be easily converted
into flux transmission skewers according to Eq. 14. Each map takes
up 1 TB of disk space and is split into 144 pieces each containing
48×6912 lines-of-sight.

• Two sets of complex 𝛿𝐹 (k) maps (as before, provided for line-
of-sight along 𝑦 and 𝑧 directions) generated by Fourier transforming
the flux contrast field 𝛿𝐹 (x) (69123 cells) and then low-pass filtering
the result, i.e. removing the small-scalemodes, 𝑘max,los > 4 ℎMpc−1
and 𝑘max,perp > 2 ℎMpc−1 along and perpendicular to the line-of-
sight, respectively5. We filter out small scales, which we know are
dominated by baryonic effects missing in our simulations, to save
disk space (each of the Fourier maps is 13 GB). We note that DESI
will measure the Ly𝛼 forest power spectrum down to 2-3 ℎMpc−1,
so these complex maps provide sufficient small-scale information for
modeling the DESI measurements.

• QSO catalogs containing the positions, velocities and host halo
masses of each quasar with RSD effects applied along the 𝑦 and
𝑧 axis. The sample is generated via AbacusHOD as described in

4 We do not generate maps with the line-of-sight direction being along the
𝑥 axis, as the AbacusSummit particle outputs are split into slabs along the
𝑥-axis that we analyze independently for the sake of efficiency.
5 In order to perform the Fourier transform of a 69123 map on a single node,
we consecutively load each slab in 𝑥, apply Fourier transformation in 𝑦 and
𝑧 and then low-pass filter the resulting array, until we are finished with all
slabs and can apply one final low-pass filter along 𝑥.

Section 2.2 with a number density of 1.75 × 10−4 [ ℎ−1Mpc]−3
(i.e., 1.4 million quasars per box) and a bias and redshift distortion
parameter of 𝑏QSO ≈ 3.3 (i.e., 𝛽QSO = 𝑓 /𝑏𝑞 ≈ 0.294), chosen to be
close to the eBOSSmeasurement (duMas des Bourboux et al. 2020).

• Similarly to the complex maps we generate for the Ly𝛼 for-
est quantities, 𝛿𝐹 (k), we also generate complex maps of the quasar
overdensity field, 𝛿QSO𝑔 (k), calculated by Fourier transforming the
quasar overdensity field, 𝛿QSO𝑔 (x), obtained through the TSC in-
terpolation of the redshift-distorted quasar positions on the three-
dimensional grid (69123 cells), and applying a low-pass filter of
𝑘max,los < 4 ℎMpc−1 and 𝑘max,perp < 2 ℎMpc−1.

4.2 Power spectrum

As described in Section 3.5, when deciding on the values of the
free parameters introduced in our model, we try to maximize the
similarity between the power spectrummeasurements from the “true”
Ly𝛼 forest skewers extracted from TNG300-1 and TNG300-3-DM
equipped with our two FGPA-based methods (see Section 3.3 for
descriptions). As a reminder, the 1D power spectrum of the Ly𝛼
forest is measured by Fourier transforming each skewer along the
line-of-sight and averaging over all lines-of-sight to arrive at the final
quantity. Thus, each skewer is treated independently and this statistic
does not take into account any cross-correlation between different
lines-of-sight. On the other hand, the second statistic, 𝑃(𝑘, `) (see
Eq. 2), incorporates the correlation between skewers: 𝑃(𝑘, ` = 0)
measures the power in the transverse direction, whereas 𝑃(𝑘, ` = 1)
measures it in the direction parallel to the line-of-sight.
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The end goal of this project is to generate Ly𝛼 forest mocks in
volumes sufficiently large to aid the analysis of large-scale surveys
targeting quasars such as DESI. For this reason, it is of utmost impor-
tance that we can scale up our algorithm and run it successfully on the
2 ℎ−1Gpc AbacusSummit boxes. We note that as the cell grid of the
data increases substantially between TNG300-1-DM and Abacus-
Summit, it is necessary to refactor and rewrite our scripts altering the
straightforward implementation described in Section 3. Therefore,
verifying that our method yields results comparable to TNG300-3-
DM is an essential step before ourmocks are declared satisfactory. An
additional complexity is that the resolution of TNG300-3 (mean par-
ticle distance of 0.33 ℎ−1Mpc) and the AbacusSummit base boxes
differs slightly (mean particle distance of 0.29 ℎ−1Mpc). Ideally, one
would want to recalibrate the slow parameters (see Section 3.5 for
a definition of “slow” vs. “fast”) for each distinct simulation, but
that would constitute a substantial computational burden. Here, we
demonstrate that the behavior of the AbacusSummit mocks is suf-
ficiently similar given our targeted precision, so we defer a more
complex treatment to future work.
In Fig. 5, we study the 1D and 3Dpower spectrumof the “true” Ly𝛼

forest skewers from TNG300-1 and the skewers obtained for each of
our four models from Section 3.5 applied to AbacusSummit. We
find that the agreement of our mocks with TNG300-1 is similar to
the agreement between TNG300-1 and TNG300-3-DM (see Fig. 4).
We cut the smallest scales shown to 𝑘 < 4 ℎMpc−1, as for these mea-
surements, we employ the complex 𝛿𝐹 maps, which are available up
to 𝑘max,los = 4 ℎMpc−1 and easier to handle than the real-space 𝜏
skewers. It is reassuring that the agreement with TNG300-1 is com-
parable to our findings in Fig. 4, suggesting that the implementation
of the mocks in the larger AbacusSummit boxes has been success-
ful. Remaining differences in the intermediate regime, shared by both
TNG300-3-DM and AbacusSummit can be attributed to differences
in the resolution and the cosmological parameters.
We perform an additional test of dividing the power spectrum by

the linear theory prediction withmatching best-fit bias and 𝛽.We find
that the mock power spectra agree within 10% with the linear theory
result up to 𝑘 . 0.4 ℎMpc−1, after which they begin to diverge
noticeably from linear theory. The agreement within the Method I
Models (i.e., 1 and 2) and within the Method II Models (i.e., 3 and
4) is excellent until 𝑘 . 2 ℎMpc−1, but the two methods show larger
deviations between each other beyond 𝑘 ∼ 0.7 ℎMpc−1, especially
for high ` values.

4.3 Correlation function

Modern surveys will be capable of measuring the spectra of mil-
lions of distant objects and make subpercent measurements of the
flux decrement correlation function over a wide range of scales and
redshifts. This provides a handle of crucial cosmological measure-
ments, such as the angular and redshift scale of the BAO, cosmic
expansion, and the effect of neutrinos on the power spectrum. When
measuring the small-scale clustering of galaxies, one can directly
relate the redshift distortion parameter 𝛽 to the growth of structure;
however, in the case of the Ly𝛼 forest, 𝛽 depends on a second bias
factor that must be determined independently, which comes from a
more general linear theory calculation of RSDs in which the dis-
torted field, in this case 𝜏, undergoes a non-linear transformation, in
this case 𝐹 = exp(−𝜏) (McDonald et al. 2000). One viable way of
doing so is by jointly analyzing the two-point correlation function of
Ly𝛼-Ly𝛼, Ly𝛼-QSO, and QSO-QSO in a “3×2-pt” fashion (Cuceu
et al. 2021). However, to do so reliably, we need to extensively test
our analysis tools on realistic mocks. Hence, this is one of the main

objectives of our data products. In addition, it is well known that
non-linear evolution causes a broadening of the BAO peak in the
correlation function of galaxies. Therefore, it is interesting to ask
whether the BAO peak in the flux correlation function is similarly
broadened. In this work, we explore the auto- and cross-correlation
function of Ly𝛼 and QSO and demonstrate the non-linear broadening
of the Ly𝛼-measured BAO peak for the first time in simulations. This
is crucial to incorporate in and test through our theoretical models,
as we expect that real Ly𝛼 observations will also be affected.
We summarize the flow of the section here to make it easier for

the reader to follow. In Section 4.3.1, we sketch out the calculation
connecting the theoretical power spectrum 𝑃(𝑘, `) to the correlation
function multipoles, bℓ . The utility of this calculation is two-fold: to
convert our simulated power spectrum into the simulated correlation
function via the Hankel transform, we need a smooth function on
very large scales, which we supply via linear theory by fitting the
bias and 𝛽 parameters to the simulated 𝑃(𝑘, `). On the other hand,
we want to compare the simulated correlation function near the BAO
scale with some theoretical model, so use these equations to calculate
the linear theory prediction and also two models of the BAO peak
broadening, defined in Section 4.3.2.

4.3.1 Measuring the correlation function from the power spectrum

To obtain the two-point correlation function measurement from our
mocks, we start by calculating the power spectrum, 𝑃(𝑘, `), as before
(see Eq. 2). We adopt maximum 𝑘max = 1.6 ℎMpc−1 to speed up the
calculations and because for this part of the validation, we are mostly
interested in the BAO scales. We also calculate the multipoles of the
redshift-distorted power spectrum, 𝑃(𝑘, `), via:

𝑃ℓ (𝑘) =
2ℓ + 1
2

∫ +1

−1
𝑃(𝑘, `) 𝐿ℓ (`) 𝑑` , (19)

where 𝐿ℓ is the Legendre polynomial and 𝑃ℓ (𝑘) are the multipoles
of the redshift-distorted power spectrum 𝑃(𝑘, `).
Approximating the error on the measurement as Gaussian, we fit

the 𝑏 and 𝛽 parameters to linear theorywith theKaiser approximation
Kaiser (1987):

�̃�(𝑘, `) = 𝑏2 (1 + 𝛽`2)2 �̃�(𝑘), (20)

where the �̃� signifies this is a theory prediction. Similarly, we fit the
cross-power spectrum between Ly𝛼 and quasars via

�̃�𝑞 (𝑘, `) = 𝑏 𝑏𝑞 (1 + 𝛽`2) (1 + 𝛽𝑞`2) �̃�(𝑘), (21)

to obtain the parameters 𝑏𝑞 and 𝛽𝑞 . For a given choice of 𝑏, 𝑏𝑞 , 𝛽
and 𝛽𝑞 , where 𝑏𝑞 and 𝛽𝑞 are related through 𝛽𝑞 = 𝑓 /𝑏𝑞 , we can cal-
culate the theory-predicted multipoles of the auto-power spectrum,
truncating at the hexadecapole, ℓ = 4,

�̃�ℓ (𝑘) = 𝑏2𝐶ℓ (𝛽)�̃�(𝑘) (22)

where

𝐶ℓ (𝛽) ≡
2ℓ + 1
2

∫ 1

−1

(
1 + 𝛽`2

)2
𝐿ℓ𝑑`

=


1 + 23 𝛽 +

1
5 𝛽
2 ℓ = 0

4
3 𝛽 +

4
7 𝛽
2 ℓ = 2

8
35 𝛽

2 ℓ = 4
. (23)

Similarly, we can express the cross-power spectrum with QSOs as:

�̃�𝑞,ℓ (𝑘) = 𝑏 𝑏𝑞𝐶𝑞,ℓ (𝛽, 𝛽𝑞)�̃�(𝑘) (24)
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Figure 5. Similarly to Fig. 4, 1D and 3D power spectrum of the Ly𝛼 forest skewers extracted from our AbacusSummit mocks using four different models (see
Table 3.5 and Section 3). In this case, the 𝑁 -body simulation (ph000) is much larger than the hydro one (2 ℎ−1Gpc vs. 205 ℎ−1Mpc), which allows us to extend
the power spectrum measurements by about an order of magnitude to larger scales. We cut the smallest scales shown to 𝑘 < 4 ℎMpc−1, as for this measurement,
we use the complex 𝛿𝐹 maps, which are available up to 𝑘max,los = 4 ℎMpc−1. Reassuringly, the agreement with TNG300-1 is comparable to our findings in
Fig. 4 and provides us with confidence as to the validity of our Ly𝛼 forest mocks.

with

𝐶𝑞,ℓ (𝛽) ≡


1 + 13 𝛽 +

1
3 𝛽𝑞 + 15 𝛽 𝛽𝑞 ℓ = 0

2
3 𝛽 +

2
3 𝛽𝑞 + 47 𝛽 𝛽𝑞 ℓ = 2

8
35 𝛽 𝛽𝑞 ℓ = 4

. (25)

Having obtained both the measured and the theoretical multipoles
of the power spectrum, we can combine them into a single data
vector, so as to supplement the poorly measured large scales (𝑘 .
0.01 ℎMpc−1) with the linear theory fit,

𝑃comb
ℓ

(𝑘) = (1 − 𝑤(𝑘))𝑃ℓ (𝑘) + 𝑤(𝑘) �̃�ℓ (𝑘), (26)

where 𝑃ℓ and �̃�ℓ are the predictions fromAbacusSummit and linear
theory, respectively, and weighting function

𝑤(𝑘) ≡ 1
2

[
1 − tanh

(
𝑘 − 𝑘pivot
Δ𝑘𝑤

)]
, (27)

which ensures smooth interpolation between the two limits. We use
Δ𝑘𝑤 = 0.01 ℎMpc−1, but manually fine-tune values of 𝑘pivot for the
different multipoles, based on their noisiness:

𝑘pivot,ℓ=0 = 0.03 ℎMpc−1, (28)

𝑘pivot,ℓ=2 = 0.06 ℎMpc−1, 𝑘pivot,ℓ=4 = 0.09 ℎMpc−1. (29)

We have checked that the choice of a pivot scale for the monopole
and quadrupole ℓ = 0, 2 has negligible effect on the BAO feature.
On the other hand, the hexadecapole, ℓ = 4 is trickier to measure
and hence a rather conservative scale cut is needed to ensure that the
Hankel transform does not misbehave.
Finally, we Hankel transform the power spectrum multipoles into

correlation function multipoles, according to

bℓ (𝑟) =
𝑖ℓ

2𝜋2

∫ ∞

0
𝑘2 𝑗ℓ (𝑘𝑟) 𝑃combℓ

(𝑘) 𝑑𝑘 , (30)

where 𝑗ℓ is the spherical Bessel function, and

b𝑞,ℓ (𝑟) =
𝑖ℓ

2𝜋2

∫ ∞

0
𝑘2 𝑗ℓ (𝑘𝑟) 𝑃comb𝑞,ℓ

(𝑘) 𝑑𝑘 , (31)

for the quasar cross-correlation. The interpolation between theory
and simulations ensures smooth integration and does not affect the
clustering near the BAO scale and for smaller separations, 𝑟 .

4.3.2 Comparing with linear and perturbation theory

One can model the effects of non-linear structure growth on the BAO
feature via an anisotropic Gaussian smoothing of the linear power
spectrum, effectively modifying Eq. 20 (Eisenstein et al. 2007):

�̃�nl (𝑘, `) = exp[−𝑘2Σ2 (`)/2] · �̃�(𝑘) (32)

where �̃�(𝑘) is the linear power spectrum and

Σ2 (`) = `2Σ2‖ + (1 − `2)Σ2⊥ , (33)

where at redshift 𝑧 = 2.4, we expect Σ‖ ' 6.41 ℎ−1Mpc and Σ⊥ '
3.26 ℎ−1Mpc. In principle, this equation implies that �̃�ℓ (𝑘), Eq. 22,
cannot be decomposed into a 𝛽- and a 𝑘-dependent factor, but instead
that the integrals should be re-evaluated for each value of 𝛽. However,
since Σ ' 5 ℎ−1Mpc is expected to be smaller than the peak full-
width half-maximum, following Kirkby et al. (2013), we adopt the
approximation:

𝑃nl,ℓ (𝑘) ' exp(−𝑘2Σ2ℓ (𝛽)/2) · �̃�ℓ (𝑘), (34)

MNRAS 000, 1–17 (2015)



Lyman alpha mocks with AbacusSummit 13

so that each multipole undergoes a different amount of isotropic
broadening according to:

Σ2
ℓ
(𝛽) ≡ 𝑓ℓ (𝛽) · Σ2‖ + (1 − 𝑓ℓ (𝛽)) · Σ2⊥ (35)

where

𝑓ℓ (𝛽) ≡

∫ +1
−1 `2

(
1 + 𝛽`2

)2
𝐿ℓ (`) 𝑑`∫ +1

−1
(
1 + 𝛽`2

)2
𝐿ℓ (`) 𝑑`

=


35+42𝛽+15𝛽2
105+70𝛽+21𝛽2 ℓ = 0
7+12𝛽+5𝛽2
14𝛽+6𝛽2 ℓ = 2
15
11 +

2
𝛽

ℓ = 4

.

(36)

Similarly, we can perform the analogous integral to arrive at the
equations predicting the non-linear broadening in the Ly𝛼-QSO cor-
relation function:

𝑓𝑞,ℓ (𝛽) ≡


35+21𝛽+21𝛽𝑞+15𝛽𝛽𝑞
105+35𝛽+35𝛽𝑞+21𝛽𝛽𝑞 ℓ = 0
7+6𝛽+6𝛽𝑞+5𝛽𝛽𝑞
7𝛽+7𝛽𝑞+6𝛽𝛽𝑞 ℓ = 2
15
11 +

1
𝛽
+ 1

𝛽𝑞
ℓ = 4

. (37)

Next, we study the correlation functions computed from our 𝑁-body
mocks and compare them with linear and perturbation theory, with
the latter following the derived form above.
In Fig. 6, we show the correlation function of the Ly𝛼-Ly𝛼 and

Ly𝛼-QSO tracers for AbacusSummit, linear theory (Eq. 22) and
two BAO models based on Lagrangian Perturbation Theory (LPT):
1) Eisenstein et al. (2007), which applies the Gaussian smoothing
to the entire linear power (Eq. 32); 2) Kirkby et al. (2013), which
decomposes the power spectrum into a ‘wiggle’ and ‘no-wiggle’
component, and only applies the Gaussian smoothing to the peak
component. We refer to these two models as LPT-based, but stress
that they do not adopt the full LPT toolkit to model small scales,
but instead offer BAO scale correction to recover the non-linear
broadening of the BAO peak. The AbacusSummit measurements
are obtained by combining all six boxes for one of the four models
(in particular, Model 1; see Table 3.5), performing a Hankel trans-
form and averaging over them, to get smoother behavior. The BAO
feature is visible in all curves except for ℓ = 4, which is both noisier
and has a weaker BAO signal. We note that the perturbation theory
curve for ℓ = 4 is also lacking a visible peak. It is clear that the sharp-
ness of the linear theory prediction is substantially suppressed in the
simulation, providing strong evidence of non-linear broadening. It
is further reassuring that the perturbation theory predictions are in
good agreement with the simulation at the BAO scale, especially for
ℓ = 0 and ℓ = 2.
On scales smaller than 𝑟 . 80 ℎ−1Mpc, the simplified pertur-

bation theory model of Eisenstein et al. (2007) is inaccurate, as it
over-smooths the power spectrum on small scales. Models that only
smooth the peak component (Kirkby et al. 2013) can be trusted down
to smaller scales. Remaining differences between the simulations and
the Kirkby et al. (2013) model on small scales, i.e. 𝑟 . 30 ℎ−1Mpc,
can be attributed to the various simplifications of the Kaiser model,
which neglects non-linear effects. Nonetheless, these appear to be
quite small for the Ly𝛼 auto-correlation function, indicating that the
Kaiser approximation works surprisingly well in that regime. They
are, however, more pronounced when studying cross-correlations
with the QSOs, suggesting that the QSO field is more affected by
non-linear effects, as one would expect. One of the main uses of our
mocks will be to test the scales at which the Kaiser approximation
breaks down, as this is a central question for the analysis pipelines
being developed.
In Fig. 7,we explore how the broadening changes for two of the four

different models we have adopted in generating the Ly𝛼 forest mocks,
namely, Model 1 andModel 3. We find that this choice has little to no
effect on the broadened BAO feature, and thus the comparison with
perturbation theory remains qualitatively unchanged. Furthermore,
the ℓ = 0 and ℓ = 2multipoles of Models 1 and 3 are very consistent
with each other across a wide range of scales, suggesting that the Ly𝛼
painting technique hardly affects these multipoles. Larger differences
are seen for the ℓ = 4 case, which is noisier and hence more difficult
to measure, so we leave a more detailed study for the future. As in
Fig. 6, the Kaiser approximation of the BAO model provides a poor
match below 𝑟 . 30 ℎ−1Mpc, indicating that the cross-correlations
may need to be modeled beyond the Kaiser approximation with non-
linear effects properly accounted for. Note that when showing the
difference curves, we have rescaled the Model 1 multipoles by the
pre-factors 𝐶ℓ (𝛽) and 𝐶𝑞,ℓ (𝛽) (see Eq. 23 and Eq. 25) to account to
linear order for the different values of 𝛽 (see Table 3.5) and make the
comparison with Model 3 more straightforward to see.

5 SUMMARY

The absorption of Ly𝛼 photons by hydrogen clouds imparts a charac-
teristic signature on the spectra of high-redshift sources, known as the
Ly𝛼 forest. These features, revealing the cosmic web of filamentary
structures, have become a powerful tool for the study of large-scale
structure in observational cosmology through measurements of their
power spectrum and clustering. Accurately measuring these requires
careful accounting of the systematic errors and is essential in order to
extract cosmological constraints. The only reliable way of doing this
is to generate random realizations of multiple Ly𝛼 absorption spectra
in a survey and decorate them with various systematic effects so as to
obtain a maximum realism data set. Examples of such systematics in-
clude a thorough modeling of the quasar continuum, which is used to
infer the transmitted flux fraction, a modeling of the variable spectral
resolution and noise, a calibration of the flux errors, an evaluation
of the impact of redshift evolution, Damped Lyman alpha systems
(DLAs), Lyman limit systems (LLS), metal absorption lines, and the
cosmic ionizing background. Themock surveys needed to investigate
these questions must include a large number of lines-of-sight over
a large volume so as to satisfy the ambitious requirements set by
surveys such as DESI, while also including small-scale fluctuations
which contain a lot of valuable information through redshift-space
distortions and the suppression of the power spectrum. Needless to
say, this is extremely computationally challenging, and cosmologists
typically resolve to having two sets of simulations for modeling the
large- and small-scale observables. While our mocks do not provide
accuracy down to the smallest scales needed to constrain neutrino
and dark matter models, they present a first step to reconciling the
large scales necessary for a BAO peak study and the small scales
used to extract structure growth rate information in a single suite of
mock catalogs.
Our Ly𝛼 forest synthetic catalogs are generated on the largest 𝑁-

body simulation suite AbacusSummit and are publicly available for
six of the base boxes, 𝐿box = 2 ℎ−1Gpc, at the fiducial Planck 2018
cosmology. Mock skewers are available on a regular grid with 69123
cells, and we output four different versions of our recipe per each
observer location (at infinity along the 𝑧 axis and along the 𝑦 axis).
In particular, we utilize the Fluctuating Gunn-Peterson Approxima-
tion (FGPA) and a modification thereof to transform the dark matter
density field into a Ly𝛼 forest catalog (see Section 3 for details on
our methods) and aim to match various Ly𝛼 observables extracted
from a hydrodynamical simulation. Namely, we employ the high-
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Figure 6. Multipoles of the Ly𝛼-Ly𝛼 and Ly𝛼-QSO correlation function, bℓ , comparing measurements from our Ly𝛼 forest mocks on AbacusSummit for
Model 1 (see Table 3.5) with the theoretical prediction from linear theory and the BAO broadening (LPT-based) models of Eisenstein et al. (2007) and Kirkby
et al. (2013). Difference with respect to the simulations is shown in the bottom. We find clear evidence for the broadening of the BAO peak in our simulations
and excellent agreement with the LPT-based models. Note that the Eisenstein et al. (2007) is not suitable on small scales, i.e., below 𝑟 . 80 ℎ−1Mpc, as it
overly suppresses the power. On small scales below 𝑟 . 30 ℎ−1Mpc, the Kirkby et al. (2013) BAO model prediction of the cross-correlation with quasars (right
panel) deviates from the simulation, which we can attribute to the breakdown of the Kaiser approximation and small-scale physics effects (such as non-linear
and Fingers-of-God effects).

realism Ly𝛼 forest skewers produced by Qezlou et al. (2022) for the
hydro run TNG300-1 and calibrate our FGPA-based mocks against
the mean and standard deviation of the transmission flux as well as
the 1D and 3D Ly𝛼 power spectrum. We make the prime choices for
our model parameters through the comparison between TNG300-1
and its low-resolution dark-matter-only counterpart TNG300-3-DM
and find that our simplistic recipe yields a satisfactory agreement
between the power spectra, as presented in Fig. 4. We then go on to
apply this prescription to theAbacusSummit boxes, which have sim-
ilar resolution to TNG300-3-DM, finding that the level of agreement
is retained and the largest scales reachable largely extended by an or-
der of magnitude (see Fig. 5). Next, we study the correlation function
multipoles of Ly𝛼-Ly𝛼 and Ly𝛼-QSO in Fig. 6, which demonstrates
for the first time in Ly𝛼 simulations the effect of non-linear cluster-
ing on the BAO peak. We find differences on small scales between
the linear model (i.e., Kaiser approximation) and our mocks, espe-
cially in cross-correlations with the QSO population, which would
be important to account for in the analysis of Ly𝛼 forest data.

Apart from being useful for testing systematics and the analysis
pipeline, our mocks also open the doors for modeling novel statistics
and joint probes with other tracers. As an example, developing and
testing summary statistics that maximally use the 3D information in
the Ly𝛼 forest such as the 𝑃× estimator of Font-Ribera et al. (2018)
would be crucial to fully realizing the potential of the Ly𝛼 probe. The
question of whether the Ly𝛼 forest measurements from current sur-

veys such as DESI can be utilized to constrain the growth rate 𝑓 (e.g.,
as done in 3×2-pt Ly𝛼-QSO analysis), is also not yet fully resolved.
By grafting the survey properties onto our mocks and performing
the analysis on them as if on real data, we can tackle this problem
and quote forecasts for the expected constraining power. It is also
essential that we understand the scales at which linear theory breaks
from our mocks and develop theoretical models that can recover the
small-scale clustering correctly. Finally, a particularly exciting venue
to explore is the development of combined analysis tools for Ly𝛼
forest and CMB lensing, which promises to break important degen-
eracies in our models (such as the two bias parameters characteristic
of Ly𝛼 observables). As an initial step in near-term work, we plan
to develop a model able to reproduce the joint data vector, using
already available CMB and light cone products (Hadzhiyska et al.
2022, 2023), and successfully glean cosmological information from
it.

Another important direction in which we could further develop
our mocks is by adding realistic observational effects that are other-
wise difficult to study analytically. These include (but are not limited
to) the effects of Damped Lyman alpha systems (DLAs), Lyman
limit systems (LLS), metal absorption lines, and the cosmic ionizing
(UVB) background, which could be added to our mocks following
prescriptions similar to the FGPA method employed in this work. In
later versions of our mocks, we also plan to adopt density estima-
tion techniques better suited for low-density regions such as phase-
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Figure 7. Multipoles of the Ly𝛼-Ly𝛼 and Ly𝛼-QSO correlation function, bℓ , comparing measurements from our Ly𝛼 forest mocks on AbacusSummit for
Model 1 and Model 3 (see Table 3.5) with the theoretical prediction from the BAO broadening (LPT-based) model of Kirkby et al. (2013). The bottom panels
show the difference between the two mock measurements and the Kirkby et al. (2013) BAO model, while the top shows Model 1 and the Kirkby et al. (2013)
prediction matching the bias and 𝛽 values. Reassuringly, the ℓ = 0 and ℓ = 2 multipoles of Models 1 and 3 are very consistent with each other, suggesting that
the Ly𝛼 painting technique has little effect on intermediate and large scales. Larger differences between the two are seen for the ℓ = 4 case, which needs to
be studied in more details. As in Fig. 6, the Kaiser approximation provides a poor match below 𝑟 . 30 ℎ−1Mpc for the cross-correlation, indicating that more
careful modeling needs to be done to achieve sufficient precision. Note that we have rescaled the difference curves (bottom panels) for Model 1 by the pre-factors
𝐶ℓ (𝛽) and 𝐶𝑞,ℓ (𝛽) (see Eq. 23 and Eq. 25) to account to linear order for the different values of 𝛽.

space tessellation, improved velocity field estimation schemes, and
machine-learning methods for painting hydro simulation results on
𝑁-body simulations, which would improve the small-scale synthetic
absorption signal. That way, we also hope to make our model more
flexible to matching the observed power spectrum and correlation
function across a wider range of scales and with a higher level of
accuracy. In addition, we have planned to run our model on the light
cone, so as to enable maximum realism including redshift evolution
and curved sky effects, as well as facilitate joint studies with other
tracers such as the CMB and weak lensing. The Ly𝛼 forest is still a
largely unexplored resource that is brimming with astrophysical and
cosmological information, waiting to be relinquished and utilized to
uncover fundamental truths about our Universe.
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DATA AVAILABILITY

We make all our synthetic maps and catalogues pub-
licly available on Globus through NERSC SHARE at
this link: https://app.globus.org/file-manager?origin_
id=9ce29982-eed1-11ed-9bb4-c9bb788c490e&path=%2F un-
der the name “AbacusSummit Lyman Alpha Forest”. Data points for
the figures are available at https://doi.org/10.5281/zenodo.
7926520.
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APPENDIX A: CONVOLUTION WITH THE DOPPLER
PROFILE

When applying redshift space distortions in our FGPA-based mod-
els, we ignore the effects of thermal broadening due to the random
thermal velocities of the gas atoms. In this Appendix, we illustrate
the impact thermal broadening, as implemented through a Doppler
profile convolution, has on our measured 1D power spectrum. The
obvious advantage of the Voigt profile is that it incorporates a physi-
cal effect and thus addsmore realism to the very small-scale behavior.
On the other hand, it is computationally more expensive than the al-
ternative and ends up yielding qualitatively similar results to what we
obtain when we add small-scale noise (see Section 3.2). Below, we
will show that adopting the Voigt profile has an almost negligible ef-
fect on the power spectrum given the current level of accuracy of our
mocks and scales of interest for the power spectrum, 𝑘 . 3 ℎMpc−1,
and thus, we can justify omit it from the present mocks.
To obtain the Doppler-profile-convolved optical depth in redshift

space, we perform the integral over velocity space for each skewer:

𝜏(𝑠) =
∫

𝑑𝑥
𝜏(𝑥)
𝑏(𝑥) exp

[
−
(
(𝑠 − 𝑥 − 𝑣𝑟 (𝑥))

𝑏(𝑥)

)2]
, (A1)

where 𝑠 and 𝑥 are velocity coordinates, 𝑣𝑟 is the peculiar velocity in
the line-of-sight direction, and

𝑏(𝑥) ≡
√︄
2𝑘𝐵𝑇 (𝑥)
𝑚𝑝

(A2)

is the thermal velocity of the atoms, 𝑘𝐵 the Boltzmann constant, and
𝑚𝑝 the proton mass. We approximate the temperature of the gas as:

𝑇 (𝑥) = 𝑇0 [1 + 𝛿dm (𝑥)]𝛾−1 (A3)

with 𝛿dm being the dark-matter overdensity obtained via TSC in-
terpolation and 𝑇0 = 1.94 × 104 K being the normalization factor
(Qezlou et al. 2022).
From Fig. A1, we see that indeed the effect of convolving with

the Doppler profile on the 1D power spectrum is negligible for our
model, although it does appear to boost slightly the power near 𝑘 ∼
1 ℎMpc−1, reducing the discrepancy between the two curves. We
note that after applying the convolution, we refit 𝜏0 and 𝜎𝜖 (see
Section 3) to fit the mean and variance of the flux. Additionally, we
expect thermal broadening to lead to a suppression of the power on
scales smaller than 𝑘 > 1 ℎMpc−1, which would addmore realism to
ourmocks and lead to a better agreementwith the hydro simulation on
these scales (see the top panels of Fig. 5). We plan to incorporate this
effect into future versions of our mocks, as the change is negligible
given our current precision and scales of interest.

This paper has been typeset from a TEX/LATEX file prepared by the author.

10−1 100 101

k [h/Mpc]

10−3

10−2

k
P

(k
)/
π

TNG

FGPA (no Voigt)

FGPA (Voigt)

Figure A1. 1D power spectrum comparison between the “true” Ly𝛼 forest
extracted from TNG300-1 and the FGPA-generated skewers for the fiducial
model (blue solid; see Table 3.5) with and without a convolution with the
Doppler profile (black and blue dashed, respectively; see Eq. A1). Note that
we refit 𝜏0 and 𝜎𝜖 (see Section 3) to fit the mean and variance of the flux.
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