
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Connections Between Complexity Lower Bounds and Meta-Computational Upper Bounds

Permalink
https://escholarship.org/uc/item/8tb0q56g

Author
Carmosino, Marco Leandro

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8tb0q56g
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Connections Between Complexity Lower Bounds and Meta-Computational Upper Bounds

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Marco Leandro Carmosino

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Samuel Buss
Professor Shachar Lovett
Professor Ramamohan Paturi
Professor Gila Sher

2019

Copyright

Marco Leandro Carmosino, 2019

All rights reserved.

The Dissertation of Marco Leandro Carmosino is approved, and it is acceptable

in quality and form for publication on microfilm and electronically:

Chair

University of California San Diego

2019

iii

EPIGRAPH

Reality is that which, when you stop believing in it, doesn’t go away.

Phillip K. Dick

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . viii

List of Algorithms . ix

Acknowledgements . x

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Historical Context . 3
1.2 Chapter Overview . 8
1.3 Common Elements . 12

Chapter 2 The Nisan-Wigderson Distinguisher to Predictor Transformation 13
2.1 Introduction . 13
2.2 Formal Preliminaries . 14

2.2.1 Circuits and Circuit Construction Tasks . 15
2.3 Nisan-Wigderson Construction . 15
2.4 Non-uniform NW Reconstruction . 17

2.4.1 Hybrid Argument . 17
2.4.2 Predictor Strategy . 19
2.4.3 Randomized Next-Bit Predictor . 20
2.4.4 Deterministic but Non-Uniform f -Predictor . 23

2.5 Uniform Construction . 24

Chapter 3 Natural Learning . 26
3.1 Introduction . 26

3.1.1 Compression and learning algorithms from natural lower bounds 27
3.1.2 Our proof techniques . 29
3.1.3 Related work . 34

3.2 Definitions and tools . 36
3.2.1 Learning and compression tasks . 36
3.2.2 Natural properties . 37
3.2.3 NW Generator . 38

3.3 Black-box generators . 38

v

3.3.1 NW designs in AC0[p] . 42
3.4 Black-box amplification . 45

3.4.1 Case of AC0[2] . 49
3.4.2 Case of AC0[p] for primes p > 2 . 51

3.5 Natural properties imply randomized learning . 59
3.5.1 A generic reduction from learning to natural properties 59
3.5.2 Application: Learning and compression algorithms for AC0[p] 60
3.5.3 Sketch of Complete Algorithm . 62
3.5.4 Natural properties useful against AC0[p] . 63

3.6 NW designs cannot be computed in AC0 . 66
3.7 Conclusions . 70

Chapter 4 Agnostic Natural Learning . 72
4.1 Introduction . 72

4.1.1 Our approach . 74
4.1.2 Our techniques . 75
4.1.3 Related work . 77

4.2 Preliminaries . 79
4.2.1 Learning algorithms . 79
4.2.2 Tolerant natural properties . 80

4.3 Agnostic learning from tolerant natural properties for AC0[2] 81
4.3.1 The CIKK framework . 81
4.3.2 Extension to the agnostic learning case . 83
4.3.3 Outline of the general method . 84
4.3.4 The case of AC0[2] . 86
4.3.5 The case of AC0[q] for prime q > 2 . 88
4.3.6 Tolerant Natural Properties . 91

4.4 Agnostic learning from tolerant natural properties . 94
4.5 Hardness of removing membership queries . 98
4.6 Open questions . 99

Chapter 5 FG Derandomization . 101
5.1 Introduction . 102

5.1.1 Our Results . 104
5.1.2 Related Work . 106

5.2 Preliminaries . 108
5.2.1 Fine-Grained Hardness Conjectures . 109
5.2.2 Derandomization . 112
5.2.3 Uniform Derandomization . 113

5.3 Arithmetized Fine-Grained Problems . 117
5.3.1 Arithmetizing k-OV . 117
5.3.2 Arithmetizing k-CLIQUE . 119

5.4 Fine-Grained Derandomization . 121
5.4.1 Counting k-OV from Distinguishers . 122

vi

5.4.2 Printing Distinguishers from Failed Derandomization 123
5.5 Heuristics Imply Separations . 132
5.6 Open Questions . 134

Chapter 6 Tighter Connections between Derandomization and Circuit Lower Bounds 136
6.1 Introduction . 136

6.1.1 Our results . 137
6.1.2 Overview of Techniques . 139
6.1.3 Related Work . 140

6.2 Definitions & Tools . 146
6.2.1 Arithmetic circuit complexity classes . 146
6.2.2 Polynomials computable in NE: The class ml-NE 148
6.2.3 Computably subexponential and superpolynomial bounded classes 149
6.2.4 Derandomization of Polynomial Identity Testing . 150
6.2.5 Derandomization of promise-BPP . 152

6.3 Robustness . 153
6.3.1 Robust inclusions. 153
6.3.2 Robust promise classes. 154
6.3.3 Significant separations. 154
6.3.4 Closure properties of robust sets . 155

6.4 PSPACE-complete polynomial . 164
6.4.1 Arithmetizing TQBF . 165
6.4.2 PSPACE-hardness of computing ˜TQBFn . 167

6.4.3 Testing arithmetic circuits for equality with ˜TQBF
d
n 168

6.4.4 Testing arithmetic circuits for equality with c · ˜TQBFn 169
6.5 PIT algorithms vs. circuits over finite fields . 172

6.5.1 Proof of implication (1) of Theorem 105 . 175
6.5.2 Proof of implication (2) of Theorem 105 . 176
6.5.3 Robust derandomization of PITF implies robust circuit lower bounds

over F (forward direction of Theorem 106) . 178
6.5.4 Robust circuit lower bounds over F imply robust derandomization of

PITF (backwards direction of Theorem 106) . 180
6.6 PIT algorithms vs. circuits over the integers . 182
6.7 Promise-BPP vs. Boolean circuit lower bounds . 183

6.7.1 Proof of implication (1) of Theorem 109 . 185
6.7.2 Proof of implication (2) of Theorem 109 . 186
6.7.3 Robust Derandomization of CAPP Implies Robust Boolean Circuit

Lower Bounds (forward direction of Theorem 110) 188
6.7.4 Robust Boolean Circuit Lower Bounds Imply Robust Derandomization

of CAPP (backwards direction of Theorem 110) . 190
6.8 Robustly-often nontrivial useful properties . 191

Bibliography . 196

vii

LIST OF FIGURES

Figure 3.1. A circuit for gz(i) = f (z�Si
). 45

viii

LIST OF ALGORITHMS

Algorithm 1. Informal Randomized Predictor Strategy . 20

Algorithm 2. Next-Bit Predictior, NBi(~y) . 21

Algorithm 3. NW Reconstruction Algorithm DIS(G f ,γ)→ Ĉ f
1/2−1/L 25

Algorithm 4. DP Reconstruction: Ĉ f k

1−δ
7−→ Ĉ f

ε . 48

Algorithm 5. GL Reconstruction (sketch) . 49

ix

ACKNOWLEDGEMENTS

I would like to thank my advisor Russell Impagliazzo for his support and guidance. I

would also like to acknowledge my other co-authors Valentine Kabanets, Antonina Kolokolova,

and Manuel Sabin. Our collaborations made this dissertation possible.

Chapter 3, in part, is based on the material as it appears in “Marco L. Carmosino, Russell

Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learning algorithms from natural

proofs. In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May

29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2016”. The dissertation author was the primary investigator

and author of this paper.

Chapter 4, in part, is based on the material as it appears in “Marco L. Carmosino, Russell

Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Agnostic learning from tolerant

natural proofs. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh Srinivas

Vempala, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, volume 81

of LIPIcs, pages 35:1–35:19. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017”. The

dissertation author was the primary investigator and author of this paper.

Chapter 5, in part, is based on the material as it appears in “Marco L. Carmosino,

Russell Impagliazzo, and Manuel Sabin. Fine-grained derandomization: From problem-centric

to resource-centric complexity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,

and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and

Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs,

pages 27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018”. The dissertation

author was the primary investigator and author of this paper.

Chapter 6, in part, is based on the material as it appears in “Marco Carmosino, Russell

Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Tighter connections between

derandomization and circuit lower bounds. In Naveen Garg, Klaus Jansen, Anup Rao, and

x

José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA,

volume 40 of LIPIcs, pages 645–658. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2015”. The dissertation author was the primary investigator and author of this paper.

xi

VITA

2011 Bachelor of Arts, Hampshire College

2013 Master of Science, University of Massachusetts Amherst

2019 Doctor of Philosophy, University of California, San Diego

xii

ABSTRACT OF THE DISSERTATION

Connections Between Complexity Lower Bounds and Meta-Computational Upper Bounds

by

Marco Leandro Carmosino

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Russell Impagliazzo, Chair

This dissertation presents several results at the intersection of complexity theory and

algorithm design. Complexity theory aims to lower-bound the amount of computational resources

(such as time and space) required to solve interesting problems. Algorithm design aims to upper-

bound the amount of computational resources required to solve interesting problems. These

pursuits appear opposed. However, some algorithm design and complexity lower bound problems

are inextricably connected.

This dissertation explores several such connections. From “natural” proofs of circuit-size

lower bounds, we create learning algorithms. From the exact hardness of problems in polynomial

time, we create algorithms of estimating the acceptance probability of circuits. Finally, from

xiii

algorithms for testing the identity of arithmetic circuits over finite fields, we create arithmetic

circuit-complexity lower bounds.

xiv

Chapter 1

Introduction

Complexity theorists seek the limits of efficient computation. They try to lower bound the

amount of computational resources (eg. time, storage, random bits, communication, observations)

required to solve problems. Algorithm designers try to develop efficient algorithms for problems,

giving upper bounds on the computational resources required for these tasks. These goals appear

opposed. Yet a complexity lower bound also contains information about efficient computation; it

must somehow identify a weakness of any efficient computation.

This thesis studies ongoing attempts to unify algorithm design and complexity theory.

There are entire classes of problems whose solutions rely on understanding and exploiting the

simplicity of efficient computation — the types of weaknesses identified by complexity lower

bounds. Towards characterizing such problems, we seek formal answers to the fundamental

questions:

How and when can an algorithm be extracted from a complexity lower bound?
For what algorithmic tasks are complexity lower bounds necessary?

The natural starting point is problems whose inputs may be computations themselves; we call

such problems meta-computational. Automatic program synthesis, circuit property testing, and

derandomization are just a few examples. Any task where the goal is to transform, analyze,

or construct another computational object is meta-computational. We shall see that algorithm

design for these tasks is inextricably linked to progress on complexity lower bounds.

To define some meta-computational problems formally, first fix a complexity class Λ:

1

a set of functions that can be computed within certain resource constraints. We often define

complexity classes by imposing structure and size restrictions on circuits — devices composed

of small “gates,” each computing a simple function like AND, OR, NOT. Below, we introduce

some fundamental meta-computational problems, where Λ is a variable complexity class. Notice

that the way a Λ-function is presented can vary; it could be a circuit, a “black box,” or an explicit

list of all function values (a truth table). The unifying feature is that, however an input function

is presented, it is guaranteed to come from the class Λ.

Meta-Computational Problems:

• Circuit Acceptance Probability Problem (Λ-CAPP): given a Boolean circuit C from class

Λ, estimate the acceptance probability of C to within small additive error; the quantity

Prx[C(x) = 1]±1/10.

• Circuit Satisfiability (Λ-Circuit-SAT): given a Boolean circuit C from class Λ, decide if

there exists an input to C that makes it accept (ie, print ‘1’)

• Learning (Λ-LEARN): given only the ability to query a Boolean function f from Λ, output

a small circuit approximating f .

• Minimum Circuit Size Problem, (Λ-MCSP): given the complete truth table of a Boolean

function f and a number s, is there a Λ-circuit of size less than s that computes f ?

Intuitively, there are connections between meta-computation and lower bounds because

both endeavors require a deep understanding of all Λ-functions: either to automatically analyze

them, or to prove that some “hard” function is not in Λ. The relationships established by this

thesis include:

• Structured proofs of complexity lower bounds against Λ can be transformed into Λ-LEARN

algorithms. (Chapters 3 and 4)

2

• Popular conjectures of “fine-grained” lower bounds for concrete problems imply very

efficient solutions to Λ-CAPP. (Chapter 5)

• It is impossible to give a non-trivial algorithm for Λ-CAPP without proving arithmetic

circuit lower bounds over finite fields. (Chapter 6)

Before sketching these results in more detail, we give a compressed and biased overview

of complexity theory.

1.1 Historical Context

Computation

Turing Machines (TMs) were introduced in 1936, as the foundation of Alan Turing’s

proof that there is no algorithm for deciding if a sentence of first-order logic is universally valid

[Tur36]. This is a “computability” lower bound. Turing Machines provided a framework for

defining general-purpose computation and constructing programmable systems and algorithms.

Much early work in computability theory resulted in the understanding, summarized by the

“Church-Turing Thesis”, that every reasonable definition of “computation” coincides. Thus, the

notion of an algorithm — a purely mechanical procedure for information processing — is robust.

But the foundations of computer science could not distinguish between problems solvable by

reasonable computers in “a minute” and “the expected lifetime of our universe.”

Computational Complexity

Juris Hartmanis and R. E. Stearns handled this issue, by inventing Computational Com-

plexity [HS65]. Suppose we have created a Turing Machine M for solving a particular problem

L. By “observing” the behavior of a M while it operates, we can upper-bound the amount of

resources it will use (such as tape cells or time steps) to solve L. After this work, computational

models proliferated by defining different types of Turing Machines and counting different types

of resources. These resources are used to define complexity classes of problems solvable by

algorithms within given amounts of resources. Importantly, Hartmanis and Stearns were able to

3

show (using diagonalization) that “more time means more power.” These results are some of the

first examples of complexity lower bounds.

Theorem 1 (Informal Example of a Complexity Lower Bound [HS65]). There exists a decision

problem L which cannot be solved on a TM using t(n) steps, but can be solved on a TM using

t(n)2 steps on binary inputs of length n.

Lower-bounds based on diagonalization are often called “Hierarchy Theorems.” These

theorems have two limitations:

1. The hard languages that witness separation between (for example) t(n) steps and t(n)2

steps are entirely artificial. We would like complexity lower-bounds for natural problems.

2. The hierarchy theorems can only treat a single resource. That is, they compare “more time”

to “less time” and “more space” to “less space,” but they do not compare time to space.

Tractable Problems

Shortly after the introduction of machine-based complexity theory, Alan Cobham and

Jack Edmonds separately identified the class of problems decidable in a polynomial number of

steps as “tractable,” and this definition has served as the first step in understanding the complexity

of a problem since then [Cob65, Edm65]. Formally, a problem is in P (for “polynomial time”) if

there exists some k such that input instances of n-bit size can be decided in at most nk steps on a

deterministic Turing Machine. Though it abstracts many details, this identification of P with

feasible problems at least roughly classifies problems according to their time complexity.

Intractable(?) Problems

The central mystery of computational complexity was independently identified by Cook

and Levin [Coo71, Tra84]. Suppose that we can efficiently recognize the solutions to a search

problem S. That is, given a problem instance and a candidate solution, we can decide if the

solution is valid in P. We call the class of such problems NP. Though many NP problems appear

4

to require brute-force search over the solutions space and thus exponential (not polynomial) time

in the size of the input instance, we cannot (yet?) prove this.

Open Problem 2. Is P equal to NP ?

Another way to define NP is as the set of languages that are solvable using a nonde-

terministic TM — a TM that may “guess” what to do next. Though we can prove hierarchy

theorems, separately, for nondeterministic time and deterministic time, we cannot relate these

resources to each other and get a separation between P and NP

Randomness as a Resource

Early work studied many variants of the Turing Machine model. It was shown that we

can translate algorithms between one-tape, multi-tape, and random-access models with very little

simulation overhead. It became clear that many “mechanical” changes to the underlying notion

of a Turing Machine simply do not matter, up to small quantitative factors. What about more

radical changes?

Suppose we allow the machine to flip coins. Consider probabilistic Turing Machines

— machines that have access to a separate input tape of perfectly random bits [Gil77]. Many

problems have more efficient or simpler algorithms if the TM is allowed to make random choices.

The natural complexity class capturing efficient randomized computation is called BPP, for

“bounded-error probabilistic polynomial time.” We would like to reap the performance and

efficiency benefits of randomized algorithms using deterministic computational devices. But,

currently, we do not know how to efficiently “de-randomize” algorithms.

Open Problem 3. Is P equal to BPP ?

The limitations of current knowledge are far more severe than just an inability to resolve

“tractable” derandomization; we do not even understand non-trivial derandomization. Consider

the trivial derandomization of BPP: for each possible random string r, which must be of

polynomial length — because otherwise, the algorithm would not have time to read it — simulate

5

the BPP algorithm on given input x and random string r. Then, count the number of ACCEPT

outcomes. Accept if the fraction of ACCEPT outcomes is large enough. This trivial procedure

takes exponential time, but it is the best known generic derandomization of BPP. Denote by EXP

the complexity class of exponential-time computations on a deterministic TM. The foregoing

discussion raises the following:

Open Problem 4. Is EXP equal to BPP ?

Concrete Complexity

So far, our historical vignettes have all concerned Turing Machines. Turing Machines

are a uniform model of computation, in the sense that a single TM encodes an algorithm that

processes inputs of any size. Thus, TMs model the complexity of software running on a general-

purpose computer. This neglects the complexity of the underlying hardware. To actually build

a computer, we must synthesize circuits that operate on fixed-length “words” and perform

operations like addition, multiplication, multiplex, etc.

A theoretical account of such circuits was introduced by Shannon in 1938. Briefly: we

fix a set of Boolean functions, call them “gates,” and connect their inputs and outputs by wires.

We can measure the complexity of circuits by counting the number of gates (size) or the length

of the longest path from input to output (depth) [Sha38].

In contrast to machine-based complexity, circuit complexity is non-uniform. A Turing

Machine processes inputs of arbitrary size, a circuit processes inputs of fixed size. So to speak

about solving a decision problem with circuits, we must say that there is a family of circuits,

one for each input length. As with machine-based complexity, we identify “tractability” with

polynomial bounds on resources. The class of polynomial-sized circuits is called P/poly, and

considered the “benchmark” tractable circuits class.

By the Deterministic Time Hierarchy theorems alluded to above, we know:

Theorem 5 (Uniform Separation). P 6= EXP

6

What about P/poly, the circuit analog of P? In this case, diagonalization techniques fail,

and we are faced with:

Open Problem 6. Does P/poly contain EXP ?

Hardness Implies Randomness

We conjecture that reasonable-seeming circuit lower bounds are true — that, is that the

answer to Open Problem 6 above is no. Intuitively, it “should” be the case that problems requiring

exponential time to compute on a deterministic TM do not have polynomial-sized circuits; how

could allowing a different device at each input length so radically alter the complexity of every

problem solved by a deterministic TM? If EXP = P/poly, it would mean that the execution of

every deterministic computation can be radically “compressed” by non-uniform devices. But we

cannot yet prove strong enough circuit lower bounds to refute “EXP = P/poly”, and the role that

circuit lower bounds should play in the structural complexity theory of Turing Machine variants

is not clear at first glance.

A breakthrough result of Nisan and Wigderson showed that if plausible circuit lower

bounds such as “EXP 6= P/poly” are true, then any algorithm in BPP can be non-trivially

simulated by a deterministic algorithm [NW94]. Intuitively, they use the circuit lower bounds

to generate patters that are so complex that they appear random to algorithms with bounded

resources. This insight sparked a rich line of work on hardness vs randomness trade-offs, of

which the following summative result is representative:

Theorem 7 (High-End Hardness to Randomness, [IW97]). If reasonable circuit lower bounds

hold against P/poly then P = BPP

This result lends even more motivation to proving circuit lower bounds. If we had circuit

lower bounds, not only would we understand concrete complexity better, but we could efficiently

derandomize any randomized algorithm and answer Open Question 3 in the most useful way

possible; any efficient randomized algorithm could be simulated by an efficient deterministic

algorithm.

7

Proving Circuit Lower Bounds Seems Hard

Rapid progress was made on circuit lower bounds in the 80’s. Researchers proved

lower bounds against increasingly powerful sub-classes of P/poly [FSS84, Raz87, Smo87].

But progress stalled. An explanation for this stall was developed by Razborov and Rudich.

They showed that if existing circuit-lower bound techniques could be extended to work against

P/poly, then cryptography is impossible [RR97]. Because researchers generally conjecture that

cryptography works, this means that attempts to prove circuit lower bounds against P/poly using

the (very broad) class of arguments identified by Razborov and Rudich are doomed to failure.

1.2 Chapter Overview

We can now sketch in more detail the contents and contributions of each chapter.

Distinguishers Imply Predictors.

This chapter describes the fundamental results from cryptography and pseudorandomness

that we use to study meta-computation and complexity lower bounds. Briefly, the ability to

distinguish structure from random noise entails the ability to learn concepts from a teacher.

Every subsequent chapter relies on this primitive. So, we present it first and in some detail.

This “distinguisher to predictor” construction is implicit in [NW94], the breakthrough result

connecting circuit lower bounds and derandomization.

Natural Circuit Lower Bounds Imply Learning Algorithms.

Most known complexity lower bounds fit the Natural Proofs framework of [RR97].

Natural Proofs against a complexity class Λ implicitly contain an algorithm that distinguishes

between truth-tables of Λ-circuits and random strings with high probability; this can be viewed

as solving an approximate version of the Λ-MCSP problem described above. Razborov and

Rudich showed (under widely-believed cryptographic assumptions) that Natural Proofs cannot

separate P from NP. Thus, the ability of the Natural Proofs framework to capture most known

complexity lower bounds is generally cited as a barrier to separating P from NP.

8

My joint work [CIKK16] covered in Chapter 3 of this thesis shows that the Natural

Proofs framework is also a powerful tool for meta-computational algorithm design. We give a

generic construction of Λ-LEARN algorithms from Natural Proofs against a class Λ, for any Λ

satisfying a certain mild technical condition — Λ must locally compute the design functions

from [NW94]. Our construction immediately yielded the first non-trivial (quasi-polynomial

time) learning algorithms for AC0[p], the class of functions computed by constant-depth circuits

of polynomial size with AND, OR, NOT and counting modulo p gates (where p is a prime).

Obtaining any kind of learning algorithm for AC0[p] was open for 23 years. Previous work gave

a learning algorithm for AC0 (the same class without counting modulo p) in 1993 [LMN93]. Our

main construction has been reused to make progress on questions about learning, complexity,

and cryptography [OS17, IKV18, OS18, Hir18].

While prior work has also developed algorithms from complexity lower bounds, ours

is a rare example of a generic construction. The AC0-SAT, AC0-LEARN, and AC0-COMPRESS

algorithms (and indeed, all known algorithms for Boolean meta-computation) were developed

by adapting Natural proof techniques originally intended for lower bounds against AC0 [IMP12,

LMN93, CKK+15]. Those previous results manually inspect the lower bound proof to uncover

a concrete weakness of the target complexity class, and then exploit it for algorithm design. Our

learning algorithm only needs two pieces of information about Λ: a Natural Proof, which is

treated as a black box, and that Λ satisfies the “local design function” technical condition.

This genericity in our work suggests a structural relationship between proving circuit

lower bounds and constructing algorithms. In future work, I seek to develop a new algorithm

design paradigm tailored to meta-computation, by constructing frameworks for complexity lower

bounds that are meant to be translated into algorithms for meta-computational problems.

Tolerant Natural Circuit Lower Bounds Imply Agnostic Learning Algorithms.

This chapter makes some progress towards generalizing the relationship between Natural

circuit lower bounds and learning algorithms. In subsequent work with the same co-authors, I

9

showed that many Natural Proofs can actually distinguish between random strings and strings

merely close to the truth-table of a Λ-function [CIKK17]. This enables our learning algorithms

(once suitably modified) to tolerate adversarially corrupted answers to queries, obtaining the first

agnostic learning algorithms for AC0[p]. This is a different and more difficult learning model.

Successful construction of a proof-to-algorithm transformation for this model as well suggests

that we should continue to pursue this direction.

Popular fine-grained hardness conjectures imply derandomization.

Fine-grained complexity refines the notion of a tractable problem introduced above. As

problem sizes scale up, the difference between a O(n2)-time algorithm and a O(n)-time algorithm

becomes more pronounced. Fine-grained complexity examines the internal structure of BPP,

distinguishing between randomized time O(nk) and O(nk+1) for every k. We conjecture that

some problems form parameterized hierarchies, where for each k the k-parameter version of the

problem can be solved in nk but not nk−ε time.

Usually, hardness implies derandomization via some version of the hardness to random-

ness tradeoff [NW94]. But the key problems studied in fine-grained complexity are generally

conjectured to be hard for randomized algorithms, instead of non-uniform circuits. Thus standard

hardness-to-randomness tradeoffs cannot conclude derandomization from these conjectures; the

tradeoffs requires hardness against non-uniform circuits.

However, uniform hardness is known to imply an approximate simulation of BPP [IW01,

TV07]. So we should be able to conclude some kind of approximate simulation of BPP from

the popular conjectures of fine-grained complexity. This does not quite work either — the

derandomizations from a uniform hypothesis are only low-end hardness-to-randomness results.

They convert weak hardness (EXP 6= BPP) into slow (sub-exponential time) deterministic

approximations of BPP. A high end uniform derandomization — converting strong hardness

assumptions into fast deterministic approximations of BPP — is open.

In Chapter 5, we show that the hardness assumptions about key problems in fine-grained

10

complexity imply fast deterministic approximations of BPP. To accomplish this, we bring

the seed-extending pseudorandom generators of [KvMS12] into the uniform derandomization

framework mentioned above, and take advantage of recent worst-case to average-case reductions

developed for these key problems by [BRSV17] and the “nice” structural properties of key

problems studied in fine-grained complexity. Our work represents progress towards truly generic

high-end uniform derandomization — our techniques work only when hardness is assumed for

particularly “nice” problems.

Some Circuit Lower Bounds are equivalent to Derandomization.

In Chapter 6, we tighten the connections between circuit lower bounds and derandomiza-

tion for each of the following three types of derandomization:

• general derandomization of promise-BPP (connected to Boolean circuits),

• derandomization of Polynomial Identity Testing (PIT) over fixed finite fields (connected

to arithmetic circuit lower bounds over the same field), and

• derandomization of PIT over the integers (connected to arithmetic circuit lower bounds

over the integers).

We show how to make these connections uniform equivalences, although at the expense of using

somewhat less common versions of complexity classes and for a less studied notion of inclusion.

Our main results are as follows:

1. We give the first proof that a non-trivial (nondeterministic subexponential-time) algorithm

for PIT over a fixed finite field yields arithmetic circuit lower bounds.

2. We get a similar result for the case of PIT over the integers, strengthening a result of

Jansen and Santhanam [JS12] (by removing the need for advice).

3. We derive a Boolean circuit lower bound for NEXP∩ coNEXP from the assumption of

sufficiently strong non-deterministic derandomization of promise-BPP (without advice), as

11

well as from the assumed existence of an NP-computable non-empty property of Boolean

functions useful for proving superpolynomial circuit lower bounds (in the sense of natural

proofs of [RR97]); this strengthens the related results of [IKW02].

4. Finally, we turn all of these implications into equivalences for appropriately defined

promise classes and for a notion of robust inclusion/separation (inspired by [FS11]) that

lies between the classical “almost everywhere” and “infinitely often” notions.

1.3 Common Elements

In each result of this thesis, the Nisan-Wigderson pseudorandom generator (NW-PRG)

plays a key role. In Chapters 3 and 4, we treat the analysis of this PRG as a learning algorithm.

In Chapter 5, we use the NW-PRG as a PRG to obtain uniform derandomizations, again taking

advantage of the algorithmic nature of the analysis of the generator. In Chapter 6, we use a version

of the NW-PRG tailored for arithmetic circuits (due to [KI04]) to establish the equivalences

sketched above.

What is highlighted here is the enormous flexibility obtained by interpreting the proof

that an algorithm is correct as, itself, an algorithm. Thus, we begin the technical content of this

thesis in the next chapter by explaining the ideas behind the NW-PRG, and showing how they

are amenable to being recast as an algorithm.

12

Chapter 2

The Nisan-Wigderson Distinguisher to
Predictor Transformation

2.1 Introduction

“Recognition” is the foundational task of modern learning theory. Intuitively, to “recog-

nize” a concept means the ability to discriminate between positive and negative examples of the

concept. For example, I can “recognize” the difference between pictures of kittens and pictures

of non-kittens — because the pictures of non-kittens are far less pleasing. This facility is part of

my knowlege about the concept of “kitten.” We refer to this very concrete type of recognition as

prediction.

A more subtle type of recognition is detecting the presence or absence of patterns in

general. I can also perform this task. When shown a succession of images, some of which were

generated by flipping a coin at each pixel and some of which were taken with a camera, I am

(generally) able to “recognize” the structures present in a camera image and correctly label those

images as non-random. We will refer to this more abstract type of recognition as distinguishing.

Early work in cryptography observed a beautiful relationship between distinuishing and

predicting [Yao82]. Very roughly, the ability to distinguish patterns in general from random

noise can be used to predict concrete patterns supplied by a teacher. This thesis exploits the

connection between distinguishing and predicting to obtain new results in both computational

complexity theory and learning theory.

13

In this chapter, we describe the Nisan-Wigderson (NW) generator construction [NW94].

This is the starting point for all of our distinguisher to predictor transformations. Informally,

this construction takes as input the truth table of a Boolean function f , and outputs a circuit for

the new function G f mapping “short” input strings to “long” output strings. The function G f is

intended to be a pseudo-random generator (PRG) in the sense that no “small” Boolean circuit

can “distinguish” the uniform distribution from the distribution of G f ’s outputs (on uniformly

random inputs to G f). A circuit that can distinguish these two distribution is said to break the

generator, and is called a distinguisher. Nisan and Wigderson [NW94] prove that if the initial

function f has “high” circuit complexity, then the function G f is indeed a PRG. Moreover, their

proof is constructive in the sense that there is an efficient reconstruction algorithm that, given a

distinguisher for G f and oracle access to f , outputs a “small” Boolean circuit that approximately

computes f . Thus, the NW construction has dual applications, both demonstrated in this thesis:

learning (Chapters 3 and 4) and derandomization (Chapters 5 and 6). We define the generator

formally below, and spend the rest of this chapter describing the associated reconstruction

algorithm.

Our presentation is elementary and follows [AB09], while introducing notation that will

make our later applications of the construction clear. We begin by giving formal definitions of

what it means to “predict” and “distinguish” under resource constraints.

2.2 Formal Preliminaries

Some notation and abbreviations about circuits will be helpful later. All definitions

“native” to the construction will be introduced inline. Let µ be some distribution and C be a

Boolean circuit. We write C(µ) to abbreviate Prx∼µ [C(x) = 1]. We abbreviate “C(x) = 1” by

C(x). A transducer is a multi-output Boolean function. When referring to variable complexity

classes, we often use Λ to mean a “weak” class and Γ to mean a “strong” class.

14

2.2.1 Circuits and Circuit Construction Tasks

For a circuit class Λ and a set of size functions S , we denote by Λ[S] the set of S -size

n-input circuits of type Λ. When no size class is explicitly given, S is assumed to be poly(n).

Below we formalize computational distinguishability and approximate prediction using circuits.

Then we introduce notation for algorithmic transformations of circuits.

Definition 2.2.1 (Circuits (Approximately) Computing f). Let f : {0,1}n → {0,1} be some

Boolean function, and let ε : N→ [0,1] be an approximation bound. Then C f denotes the set of

circuits that compute the function f on all n-bit inputs, and Ĉ f
ε the set of all circuits that compute

f on all but an ε fraction of inputs.

Definition 8 (Distinguishers). Let L : N→N be a stretch function, let 0 < γ < 1 be a gap bound,

and let G = {gm : {0,1}m→ {0,1}L(m)} be a sequence of transducers. A distinguisher for G

with distinguishing gap γ , or a γ-distinguisher against G , is a circuit from the set

DIS(G ,γ) := circuits D on L(m) inputs such that

∣∣∣∣∣ Pr
z∈{0,1}m

[D(gm(z))]− Pr
y∈{0,1}L(m)

[D(y)]

∣∣∣∣∣> γ

Definition 2.2.2 (Circuit Builder Declarations — adapted from [IW01]). Let A and B be indexed

sets of circuits. A T (n)-construction of B from A is a probabilistic machine M (n,α,An) which

outputs a member of Bn with probability at least 1−α in time T (n), where the size of Bn is

poly(|An|). We declare that such a machine exists by writing: A 7−→ B in TIME[T (n)]. Read

this notation as “from A we can construct B in time T (n).” To assert the existence of a T (n)-

construction of B from A, with oracle O , where the machine M is equipped with an oracle for

the language O but otherwise is as above, we write: A 7−→ B in TIMEO [T (n)].

2.3 Nisan-Wigderson Construction

We now define the NW generator formally. First we require designs, set systems with

some nice properties.

15

Definition 9 (Nisan-Wigderson (NW) Design). For parameters n,m,L ∈ N, a sequence of sets

S1, . . . ,SL ⊆ [m] is called an NW design if the sets satisfy:

• Fixed Size: |Si|= n, for all 1≤ i≤ L, and

• Low Overlap: |Si∩S j| ≤ logL, for all 1≤ i 6= j ≤ L.

Nisan-Wigderson designs exist and can be efficiently constructed for any n, m = O(n2),

and L < 2n [NW94], even in AC0[⊕]. We give a such an efficient construction of NW-Designs

in Section 3.3.1, as this is the key technical component of the learning algorithm for AC0[p]

presented in Chapter 3 of this thesis. The NW generator will use designs to evaluate f on many

low-overlap substrings of a “seed” string, building up a much longer output string.

Definition 10 (NW Generator). Let f : {0,1}n → {0,1}. For m = n2 and a stretch function

L(m) : N→ N, where L(m)< 2n, let S1, . . . ,SL ⊆ [m] be a NW design. Define the NW generator

NW(f) = G f : {0,1}m→{0,1}L(m) mapping seeds z to L(m)-length strings as:

G f (z) = f (z�S1
) f (z�S2

) . . . f (z�SL(m)
), (2.1)

where z�S denotes the |S|-length bit-string obtained by restricting z to the bit positions indexed

by the set S.

Theorem 2.3.1 (Uniform NW Reconstruction [NW94, IW01]). There is a uniform randomized

algorithm that, given as input a distinguisher circuit D for the NW Generator defined using f

and an oracle for f , will print a circuit that approximately computes f . Formally:

DIS(G f ,1/5) 7−→ Ĉ f
1/2−1/L in TIME f [poly(L)]

Usually, this reconstruction theorem is used for hardnes vs randomness trade-offs by

taking the contrapositive: if f is hard to approximate using small circuits, then it must be the

case that no small circuit can distinguish between truly random bits and the output of G f . For

16

this standard use of the NW Reconstruction theorem, it does not matter that reconstruction is

algorithmic because circuits are a non-uniform model of computation.

All through this thesis, however, we emphasize the benefits of understanding this recon-

struction procedure as an algorithm. So we use the reminder of this chapter to sketch the key

algorithmic ideas of NW Reconstruction.

2.4 Non-uniform NW Reconstruction

First we describe the non-uniform map from a distinguisher against G f to an approximator

for f . This proof is simple and contains the main ideas used by the reconstruction algorithm, so

we present it first. Two key insights of [NW94] drive the proof:

1. Distinguishing Hybrids: The ability to noticably distinguish fully random sequences

from the output of G f implies the ability to distinguish between partially random sequences

mixed with the output of G f . This is proved by a hybrid argument.

2. Constrained Evaluation: The output of G f is a sequence of mostly-independent evalu-

ations of f , so there are few degrees of freedom left in the output space of the generator

once a seed and a design index are fixed.

2.4.1 Hybrid Argument

First, we formalize the notion of mixing generator outputs with true randomness.

Definition 11 (Generic Hybrids). Let G : {0,1}m→{0,1}L(m) be a transducer. Define a family of

distributions W0, . . . ,WL(m), each over binary strings w1w2 . . .wL(m) ∈ {0,1}L(m) by the following

process: Wi-SAMP :

1. Sample a seed z ∈ {0,1}m uniformly at random

2. For each j ≤ i, w j← G(z) j // place the jth bit of G(z) in w j

17

3. For each j > i, w j←U // place a bit chosen uniformly at random in w j

Think of the hybrid index i as “number of bits used from the generator.” First consider

step (2) applied to W0: ∀ j ≤ i, w j ← G(z) j. Here i = 0, and there are no indices less than or

equal to zero in w. So every bit of W0 is sampled uniformly at random in step (3). Therefore:

W0 ≡UL(m) ≡ Purely random bits

On the other hand, consider step (2) applied to WL(m): ∀ j ≤ i, w j← G(z) j. Here i = `,

which is the last index of w, so after step (2) every bit is filled with generator output. Step (3) is

a no-op, because there are no indicies larger than L(m) in w. Therefore:

WL(m) ≡ G(Um)≡ Full transducer output

We now show that if D is a circuit that can distinguish between these extremal points

(generator output and U this means that D has some expected advantage at distinguishing

between randomly chosen adjacent elements of W .

Lemma 12 (Adjacent Hybrids are Distinguishable). If D ∈ DIS(G,γ) and G is a PRG with

stretch L, then we can expect a non-trivial distinguishing gap for randomly chosen adjacent

pairs of hybrids. Formally:

E
i∈[L]

[D(Wi)−D(Wi−1)]≥ γ/L

Proof (by hybrid argument). For each i ∈ [L], let pi = Pr[D(Wi)]. By possibly negating the top

gate of D′, we can obtain D such that:

Pr[D(G(Um))]−Pr[D(UL(m))]≥ γ (2.2)

Rewrite the distinguishing equation about D as “pL− p0 ≥ γ”. Then expand this distin-

guishing gap into a summation over intermediate i. All terms in the expansion except pL and p0

18

appear both positively and negatively, telescoping the sum and giving the first equality below.

pL− p0 = (pL− pL−1)+(pL−1− pL−2)+ · · ·+(p1− p0)

= ∑
i∈[L]

(pi− pi−1)

≥ γ

Multiplying through by 1/L and rewriting the results using E completes the proof:

(1/L) ∑
i∈[L]

(pi− pi−1)≥
γ

L

Ei∈[L][pi− pi−1]≥
γ

L

Note that there is a loss in the gap at each hybrid pair, proportional to the PRG

stretch/number of hybrids. This loss seems unavoidable by a generic hybrid argument [FSUV13].

2.4.2 Predictor Strategy

Given the ability to distinguish between G f hybrid pairs demonstrated above, we can gain

advantage in predicting f by believing the distinguisher circuit D on carefully-crafted inputs.

Intuitively, this strategy (Algorithm 1) relies on D’s distinguishing gap between hybrids.

If the guessed bit g agrees with f (x) = f (z|Si), then w looks more like a sample from Wi because

f (z|Si) is the ith bit of generator output. If the guessed bit disagrees with f (x), then w looks

more like a sample from Wi−1 because g was selected at random. We know that D is biased (in

expectation) towards samples from Wi by Lemma 12. So if D(w) = 1, this is evidence that the

19

1. Guess f (x) and call this bit g

2. Randomly select i ∈ [L(m)], to pick out a hybrid pair

3. Sample w∼Wi consistent with g = wi

4. Run D(w) and trust it, answering accordingly:

Out(x) =

g if D(w) = 1

// w is a Wi sample =⇒ we guessed f (x) right
¬g if D(w) = 0

// w is a Wi−1 sample =⇒ we guessed f (x) wrong

Algorithm 1. Informal Randomized Predictor Strategy

guess g is correct, so we can obtain some advantage in predicting f by printing g. Similarly, if

D(w) = 0, this is evidence that the guess disagrees with f (x), so we should output ¬g.

The strategy samples from Wi in step 3. This seems circular in a procedure attempting to

predict f , as sampling from Wi certainly requires access to at least i values of f . The designs

will let us “sample” from Wi using only a reasonably-sized lookup table1 of f -values, instead of

access to arbitrary evaluations of f . This is one of the key innovations of the NW construction.

So we can begin by assuming an oracle for these W -samples, and prove the strategy outlined

above does indeed work.

2.4.3 Randomized Next-Bit Predictor

Let~y denote y1, . . . ,yi−1, the first (i−1) bits of G f (z) for z∼Um. In this section we’ll

show that a distinguisher can give us expected advantage in computing the next bit of G f (z).

Essentially, we analyse the correctness of the strategy above without considering the complexity

of sampling from Wi, by just handing our predictor the part of a Wi−1 sample that depends on f -

values. The idea and construction is due to Yao [Yao82]. Our presentation here follows [AB09],

1The final construction will not literally sample from the ith hybrid. It will store a “good enough” set of samples
from the ith hybrid and use those in the predictor.

20

while giving additional details which help to describe the uniform reconstruction algorithm. Note

that this next-bit predictor works for any transducer G, but the part of the argument where we

remove dependence on W samples will be specific to the NW Generator.

1. w← 0L // initialize a string of length L

2. w←~y // fill w0 to wi−1 with PRG output “so far”

3. For each j from i upto L:
w j←U // fill remainder of w with randomness – implicitly guessing f (x)

4.

Output←

{
wi if D(w) = 1
¬wi if D(w) = 0

Algorithm 2. Next-Bit Predictior, NBi(~y)

Lemma 13 (Distinguisher to Randomized Next-Bit Predictor). When constructed from D ∈

DIS(G,γ) the NB circuit has non-negligable advantage in predicting the next bit of G.

Ei∈`

[
Pr
r,z
[NB(~y,r) = yi]

]
≥ (1/2)+ γ/L

Proof. Denote the event “NB(~y) = yi” by PC. Because wi is a random bit, we can think of it as a

guess of yi. There are two events that imply NB is correct:

1. The “guessed bit” is correct and D accepts w. So, D(w) = 1, and wi = yi, which we denote

cg

2. D rejects w, and our guess is incorrect. So, D(w) = 0, and ¬wi = yi, which we denote ¬cg

We decompose the “predictor correct” event PC as follows:

Pr[PC] = Pr[D(w)∩ cg]+Pr[¬D(w)∩¬cg]

21

We’ll transform this expression until we have it in terms of a gap between pi values, which we

have a bound on. Begin by rewriting the joint events, conditioning on correctness of the guess

bit:

Pr[PC] = Pr[D(w)|cg] ·Pr[cg] + Pr[¬D(w)|¬cg] ·Pr[¬cg]

Negate the second event, to get everything in terms of the probability that D(w) = 1. This will

let us phrase both these events in terms of pi and pi−1.

Pr[PC] = Pr[D(w)|cg] ·Pr[cg] + (1−Pr[D(w)|¬cg]) ·Pr[¬cg]

The guess is a bit flipped uniformly at random, so:

Pr[PC] = (1/2) ·Pr[D(w)|cg] + (1/2) · (1−Pr[D(w)|¬cg]) (*)

Now we relate the string that D is invoked on to hybrids, so we can get the expression (*)

in terms of a distinguishing gap. The string w is clearly a sample from Wi−1, because we created

it by concatenating our input~y (i−1 bits of G-output) with L− (i−1) uniformly random bits.

So we can relate pi−1 to pi, by first conditioning on cg.

pi−1 = Pr[D(Wi−1)]≥ (1/2)Pr[D(w)|cg]+ (1/2)Pr[D(w)|¬cg]

Observe that Pr[D(w)|cg] is exactly pi, because we conditioned on the guess bit being correct

— this means that bit i of w is equal to the ith generator output, and so w (conditioned on cg) is

actually a sample from Wi. So the above is:

pi−1 = (1/2)pi +(1/2)Pr[D(w)|¬cg]

22

Re-arranging, we have that:

(1/2)Pr[D(w)|¬cg] = pi−1− (1/2)pi

This is precisely what we wanted: an expression that relates Pr[D(w)|¬cg] to the gap between pi

and pi−1. Now we again use the observation that Pr[D(w)|cg] is exactly pi, substitute the above

into (*), and simplify:

Pr[PC]≥ (1/2)pi +(1/2− (1/2) ·Pr[D(w)|¬cg])

≥ (1/2)pi +(1/2− (pi−1− (1/2)pi))

≥ (1/2)+(pi− pi−1)

By the hybrid bound on pi− pi−1 (Lemma 12), this concludes the proof.

2.4.4 Deterministic but Non-Uniform f -Predictor

We’ll begin by constructing a non-uniform predictor for f from D ∈ DIS(G f ,γ). This

is the standard proof presented in textbooks and [NW94]. First, we’ll simplify our task using

non-uniformity and the probabilistic method. Step (2) of the predictor strategy above selects i, a

hybird pair, uniformly at random. Here we only need a non-uniform predictor, so we can skip

this step and hardwire in a “good” choice of i, as long as one exists.

Lemma 14 (A Good Hybrid Pair Exists). If D ∈D(G,γ), then there exists i• ∈ [L] such that

pi•− pi•−1 ≥ γ/L

Proof (by Averaging Argument). Inspect lemma 12. For any random variable Z, if E[Z] ≥ ρ ,

then at least one of the values of Z must be at least ρ . The expectation is over i ∈ [L], so at least

one i much achieve the overall distinguishing gap bound.

23

Fix i as guranteed by Lemma 14 above. Then we can construct a deterministic predictor

for f . Rewrite the accuracy in Lemma 2 by partitioning the random bits into r̃, which contains

the bits r and those bits of z that are not named in Si. Then average over those bits.

Pr
r,z
[NB(~y,r) = yi] = Er̃

[
Pr
z|Si

[NB(~y,r) = yi|r̃]

]
Use another averaging argument to fix a choice of r̃ that achieves the guranteed prediction

advantage. Finally, observe that~y is fully determined by the bits of z in r̃ but for small overlap

with z|Si , by properties of designs. So we can generate any~y by memorizing a bounded number

of f -values and replace z|Si by input x in the above. This concludes the non-uniform circuit map,

which fixes first i and r̃ by averaging, and then uses hardcoded values of f to generate~y for the

next-bit predictor.

Lemma 15. From a distinguisher for the NW Generator G f , we can non-uniformly construct a

predictor circuit for f .

2.5 Uniform Construction

Notice that the non-uniformity above was only used to obtain f -values and “good”

random bits to select a seed and hybrid index. Thus, a randomized algorithm with query access

to f (a “teacher”) can output, with good probability, a circuit approximately computing f . We

outline this algorithm and make some observations about it’s computational complexity in the

next section.

It consists of a preprocessing stage for fixing a seed and good randomness, and a circuit

construction stage that simply operationalizes the reduction to the next-bit predictor given non-

uniformly above. The algorithm will, with reasonable probability, print a circuit approximating f ,

given access to an f -oracle and distinguisher circuit D ∈ DIS(G f ,γ). To boost the probability of

producing a good circuit C, we repeat the reconstruction above poly(L) times, and estimate, using

24

random sampling and membership queries to f , the agreement between f and each produced

circuit C. We output the best circuit on our list.

PREPROCESSING(i)

1. r←UL // sample randomness for NBi

2. z←Um // sample a “seed” for the PRG

3. For each j in Si: // erase z|Si

z j← ?

4. for each j < i:

• for each completion ẑ j of z|S j :
store f (ẑ) in lookup table T

CIRCUIT-SAMPLER

Pre-process, then build a circuit C from the template:
“On input x ∈ {0,1}n,

1. z|Si ← x // obtaining a ”completed” seed z ∈ {0,1}m

2. For each 1≤ j < i, fix y j to f (z|S j) by lookup in T .

3. print NB(y,r)”

GENERATE & TEST CIRCUITS

We repeat the two routines above t = 100L times and test to ensure we get a good circuit.

1. Ci← Circuit-Sampler 10L2 times, independently

2. xi j←Un, 10L2×10L2 times

3. α̂i← (1/t)∑ j Ci(xi j) == f (xi j)

4. Print Ci with maximal α̂i

Algorithm 3. NW Reconstruction Algorithm DIS(G f ,γ)→ Ĉ f
1/2−1/L

Inspecting the procedure above shows it will run in randomized poly(L, |D|) time and

print a circuit Ĉ computing f with probability 1/2+O(γ/L) over the uniform distribution, as

promised by Theorem 2.3.1.

25

Chapter 3

Natural Learning

3.1 Introduction

Circuit analysis problems, problems whose input or output is a Boolean circuit, are a

crucial link between designing algorithms and proving lower bounds. For example, Williams

[Wil13, Wil14b, Wil14a] shows how to convert non-trivial Circuit-SAT algorithms into circuit

lower bounds. In the other direction, there have been many circuit analysis algorithms inspired by

circuit lower bound techniques [LMN93, Bra10, San10, ST12, IMP12, IMZ12, BIS12, CKS14,

CKK+15, SW15, CK15, CS15, Tal15], but outside the setting of derandomization [NW94,

BFNW93, IW97, IKW02, Uma03, KI04], few formal implications giving generic improvements.

Here we make a step towards such generic connections. While we are not able to show

that an arbitrary way to prove circuit lower bounds yields circuit analysis algorithms, we show

that any circuit lower bound proved through the general natural proofs paradigm of Razborov

and Rudich [RR97] does yield such algorithms. Our main general result is the following.

Theorem 3.1.1 (Main Transfer Theorem, informal version: see Theorem 3.5.1, page 59). Natural

proofs of circuit lower bounds imply learning algorithms for the same circuit class.

Using known natural lower bounds [Raz87, Smo87, RR97], we get quasipolynomial-

time learning algorithms for the hypothesis class AC0[p], for any prime p (polynomial-size

constant-depth circuits with AND, OR, NOT, and MODp gates).

26

Theorem 3.1.2 (Learning for AC0[p]: Simplified version, see Corollary 28 page 61). For every

prime p≥ 2, there is a randomized algorithm that, given membership queries to an arbitrary

n-variate Boolean function f ∈ AC0[p], runs in quasi-polynomial time npoly logn and finds a

circuit that computes f on all but 1/poly(n) fraction of inputs.

No learning algorithms for AC0[p] were previously known. For AC0, a learning algorithm

was given by Linial, Mansour, and Nisan [LMN93]1, based on Håstad’s proof of strong circuit

lower bounds for AC0 [Hås89].

We also apply the general result to immediately obtain the following compression

algorithm, first developed (with somewhat stronger parameters) by Srinivasan [Sri15].

Theorem 3.1.3 (Compression for AC0[p]: Simplified version, see Corollary 29 page 62). For

every prime p ≥ 2, there is a randomized algorithm that, given the 2n-bit truth table of an

arbitrary n-variate Boolean function f ∈ AC0[p], runs in time poly(2n) (polynomial in the input

size), and outputs a circuit computing f of the circuit size at most 2n−nµ

, for some 0 < µ < 1.

3.1.1 Compression and learning algorithms from natural lower bounds

Informally, a natural lower bound for a circuit class Λ contains an efficient algorithm

that distinguishes between the truth tables of “easy” functions (of low Λ-circuit complexity) and

those of random Boolean functions. This notion was introduced by Razborov and Rudich [RR97]

to capture a common feature of most circuit lower bound proofs: such proofs usually come

with efficient algorithms that say something nontrivial about the structure of easy functions in

the corresponding circuit class. In [RR97], this observation was used to argue that any circuit

class with a natural lower bound is too weak to support cryptography: no strong pseudorandom

generator can be computed by a small circuit from the class.

We show that natural circuit lower bounds also imply algorithms for compression and

learning of Boolean functions from the same circuit class (provided the circuit class is not too

1Their algorithm works in a more general learning model without membership queries, but with access to labeled
examples (x, f (x)) for uniformly random x.

27

weak). More precisely, we show how to reduce the task of compressing (learning) Boolean

functions in a circuit class Λ to the task of distinguishing between the truth tables of functions of

low Λ-circuit complexity and those of random functions. The latter task is exactly what is solved

by an efficient algorithm embedded in any natural proof of Λ-circuit lower bounds. Below, we

discuss in turn each algorithmic task entailed by Natural Proofs.

Compression. Recall the compression task for Boolean functions: given the truth table

of a Boolean function f , print a circuit that computes f . If f is unrestricted, the best guarantee

for the circuit size is 2n/n [Lup58, Lup59], and such a circuit can be found in time poly(2n),

polynomial in the truth table size. We might however be able to do much better for restricted

classes of functions. Let Λ be the set of functions computed by some circuit class Λ. Recent

work has shown that we can “mine” specific lower bounds against Λ to compress functions

g ∈ Λ better than the universal construction [CKK+15]. This work suggested that there should

be some generic connection between circuit lower bounds and compression algorithms, but no

such connection was known.

We show that any circuit lower bound that is natural in the sense of Razborov and

Rudich [RR97] yields a generic compression algorithm for Boolean functions from the same

circuit class, provided the circuit class is sufficiently powerful (i.e., containing AC0[p] for some

prime p≥ 2).

A compression algorithm may be viewed as a special case of a natural property: if the

compression fails, the function must have high complexity, and compression must fail for most

functions. Thus we get an equivalence between these two notions for the case of randomized

compression algorithms and BPP-computable natural properties. That is, for an appropriate

circuit complexity class C , a BPP-computable natural property against C implies the existence

of a related C -compression algorithm in BPP, and a C -compression algorithm in BPP implies a

BPP-computable natural property against C . As our compression algorithms are randomized,

we don’t get such an equivalence for the case of deterministic natural properties.

28

Learning. The first stage of our algorithm is a lossy compression of the function in the

sense that we get a small circuit that computes the function on most inputs. Because this first

stage only examines the truth table of the function in relatively few locations, we can view this

stage as a learning algorithm. This algorithm produces a circuit that approximately computes

the given function f with respect to the uniform distribution, and uses membership queries to f .

So it fits the framework of PAC learning for the uniform distribution, with membership queries.

Minimum Circuit Size Problem: Search to decision reduction. Our main result also

yields a certain “search-to-decision” reduction for the Minimum Circuit Size Problem (MCSP).

Recall that in MCSP, one is given the truth table of a Boolean function f , and a parameter s,

and needs to decide if the minimum circuit size of f is less than s. Since an efficient algorithm

for MCSP would be a natural property (with excellent parameters), our main result implies the

following: If MCSP is in BPP, then, given oracle access to any n-variate Boolean function f of

circuit complexity s, one can find (in randomized polynomial time) a circuit of size poly(s) that

computes f on all but 1/poly(n) fraction of inputs.

3.1.2 Our proof techniques

One of the main tools we use is the Nisan-Wigderson generator construction [NW94],

discussed in the previous chapter. Informally, this construction takes as input the truth table of a

Boolean function f , and outputs an algorithm for the new function G f mapping “short” input

strings to “long” output strings. The function G f is intended to be a pseudo-random generator

(PRG) in the sense that no “small” Boolean circuit can “distinguish” the uniform distribution

from the distribution of G f ’s outputs (on uniformly random inputs to G f). A circuit that can

distinguish these two distribution is said to break the generator, and is called a distinguisher.

Nisan and Wigderson [NW94] prove that if the initial function f has “high” circuit complexity,

then the function G f is indeed a PRG. Moreover, their proof is constructive in the sense that

there is an efficient reconstruction algorithm that, given a distinguisher for G f and oracle access

to f , outputs a “small” Boolean circuit that approximately computes f . See Chapter 2 for the

29

formal definitions and statements.

Intuitively, we can use this reconstruction algorithm as a learning algorithm for a Boolean

function f in some circuit class Λ, provided we manage to find an efficient distinguisher for the

NW generator G f . As we shall argue, such a distinguisher for G f is supplied by any natural

proof of Λ-circuit lower bounds (natural property for the circuit class Λ)!

Thus, the main idea of our lossy-compression algorithm is, given the truth table of a

Boolean function f from a circuit class Λ,

• imagine using f as the basis for the NW generator G f ,

• argue that the natural property R for the class Λ is a distinguisher for G f ,

• apply the reconstruction algorithm to R to produce a small circuit that approximates f .

For the described approach to work, we need to ensure that (1) there is an efficient

reconstruction algorithm that takes a distinguisher for G f and constructs a small circuit for

(approximately computing) f , and (2) the natural property for Λ is a distinguisher for G f .

For (1), we use the known efficient randomized algorithm that takes a distinguisher for

G f and constructs a small circuit approximately computing f , provided the algorithm is given

oracle access to f , described in Chapter 2. The existence of such a uniform algorithm was first

observed by Impagliazzo and Wigderson [IW01] (based on [NW94, BFNW93]) in the context

of derandomizing BPP under uniform complexity assumptions. Simulating oracle access to f in

the framework of [IW01] was quite nontrivial (and required the downward self-reducibility of f).

In contrast, we are explicitly given the truth table of f (or allowed membership queries to f),

and so oracle access to f is not an issue!

For (2), we must show that each output of the NW generator, when viewed as the truth

table of a Boolean function, is computable by a small circuit from the circuit class for which we

have a natural lower bound (and so the natural property algorithm can be used as a distinguisher

to break the generator). Looking inside the construction of the NW generator, we note that, for a

30

fixed seed (input) of G f , each bit of the output of G f is the value of f on some substring of the

seed (chosen via a certain combinatorial structure, the NW design). We argue that the circuit

complexity of the truth table output by the NW generator G f is closely related to the circuit

complexity of the original function f .

In particular, we show that if f is in AC0[p], and the NW generator has exponential stretch

(from poly(n) bits to 2nγ

bits, for some γ > 0), then each string output by the NW generator is also

a function in AC0[p]. If, on the other hand, we take the NW generator with certain polynomial

stretch, we get that its output strings will be Boolean functions computable by AC0[p] circuits

of subexponential size. The trade-off between the chosen stretch of the NW generator and the

circuit complexity of the string it outputs will be very important for the efficiency of our learning

algorithms: the runtime of the learning algorithm will depend polynomially on the stretch of the

NW generator. This makes our setting somewhat different than most applications of the NW

generator. We will want to make the stretch as small as possible, but must set it above a threshold

determined by the quantitative strength of the circuit lower bound that we start from. Thus, the

larger the circuit size for which we have lower bounds, the faster the learning algorithms we get.

This is a generic and quantitative way to paraphrase the intuitive observation that the “more” we

understand a cirucit class, the “better” we can learn concepts from that class.

Note that if we break the NW generator based on a function f , we only get a circuit that

agrees with f on slightly more than half of all inputs. To get a better approximation of f , we

employ a standard “hardness amplification” encoding of f , getting a new, amplified function h,

and then use h as the basis for the NW generator. The analysis of such hardness amplification is

also constructive: it yields an efficient reconstruction algorithm that takes a circuit C0 computing

h on more than 1/2 of the inputs, and constructs a new circuit C that computes the original f on

most inputs.

For this amplification to work in our context, we need to ensure that the amplified function

h is in the same circuit class as f , and is of related circuit complexity. We show that standard

tools such as the Direct Product and XOR constructions have the required properties for AC0[2].

31

For AC0[p] where p is prime other than 2, we can’t use the XOR construction (as PARITY cannot

be computed in AC0[p] for any prime p > 2 by Smolensky’s lower bound [Smo87]). We argue

that the MODp function can be used for the required amplification within AC0[p]2.

Thus, our actual lossy-compression algorithm for a circuit class Λ is as follows:

Given the truth table of a function f ∈ Λ,

1. Run the reconstruction algorithm for the NW generator G f ? with the natural
property against Λ as a distinguisher, where f ? is the amplified version of f .
This produces a circuit C0 computing f ? on more than 1/2 of inputs.

2. Run the reconstruction algorithm for hardness amplification to get from C0
a new circuit C that computes f on most inputs.

To turn this algorithm into an exact compression algorithm, we just patch up the errors

by table lookup. Since there are relatively few errors, the size of the patched-up circuit will still

be less that the trivial size 2n/n.

More interestingly, our lossy compression algorithm described above also yields a

learning algorithm! The idea is that the reconstruction algorithm for the NW generator G f runs

in time polynomial in the size of the output of the generator, and so only needs at most that

many oracle queries to the function f . Rather than being given the full truth table of f , such an

algorithm can be simulated with just membership queries to f . Thus we get a learning algorithm

with membership queries in the PAC model over the uniform distribution.

Since the runtime of this learning algorithm (and hence also the size of the circuit for f

it produces) will be polynomial in the output length of the NW generator that we use to learn

f , we would like to minimize the stretch of the NW generator3. However, as noted above,

shorter stretch of the generator means higher circuit complexity of the truth table it outputs.

2We stress that for our purposes it is important that the forward direction of the conditional PRG construction,
from a given function f to a generator based on that f , be computable in some low nonuniform circuit class (such as
AC0[p]). In contrast, in the setting of conditional derandomization, it is usually important that the reverse direction,
from a distinguisher to a small circuit (approximately) computing the original function f , be computable in some
low (nonuniform) circuit class (thereby contradicting the assumed hardness of f for that circuit class). One notable
exception is hardness amplification within NP [O’D04, HVV06, Tre05].

3This is in sharp contrast to the setting of derandomization where one wants to maximize the stretch of the
generator, as it leads to a more efficient derandomization algorithm.

32

This in turn means that we need a natural property that works for Boolean functions of higher

circuit complexity (i.e., natural properties useful against large circuits). In the extreme case,

to learn a polysize Boolean function f in polynomial time, we need to use the NW generator

with polynomial stretch, and hence need a natural property useful against circuits of exponential

size. In general, there will be a trade-off between the efficiency of our learning algorithm for

the circuit class Λ and the usefulness of a natural circuit lower bound for Λ: the larger the size s

such that a natural property is useful against Λ-circuits of size s, the more efficient the learning

algorithm for Λ.

Razborov and Rudich [RR97] showed that the AC0[p] circuit lower bounds due to

Razborov [Raz87] and Smolensky [Smo87] can be made into natural properties that are useful

against circuits of weakly exponential size 2nγ

, for some γ > 0 (dependent on the depth of the

circuit). Plugging this natural property into our framework, we get our quasi-polynomial-time

learning algorithm for AC0[p], for any prime p.

We remark that our approach is quite similar to the way Razborov and Rudich [RR97]

used natural properties to get new algorithms. They used natural properties to break the crypto-

graphic pseudorandom function generator of [GGM86], which by definition outputs functions

of low circuit complexity. Breaking such a generator based on an assumed one-way function F

leads to an efficient algorithm for inverting this function F well on average (contradicting the

one-wayness of F). We, on the other hand, use the NW generator based on a given function f .

The properties of the NW generator construction can be used to show that it outputs (the truth

tables of) functions of low circuit complexity, relative to the circuit complexity of f . Thus a

natural property for the appropriate circuit complexity class (with an appropriate size parameter)

can be used to break this NW generator, yielding an efficient algorithm for producing a small

circuit approximating f .

Discussion. One counter-intuitive development in the theory of pseudorandomness has

been the prevalence of “win-win” arguments. Typically, in a win-win argument in pseudoran-

domness, one takes a construction of pseudorandom generator from a hardness assumption

33

(such as the NW generator mentioned above) and applies it to a function that is not known to

actually be hard. If the construction is still a PRG, that is a win; if it is not, one learns that

the function in question is not hard, and perhaps finds a circuit computing it. Here, we take

this paradigm one step further; ours is a “play-to-lose” argument. We apply the pseudorandom

generator construction to a function f we know not to be hard, in such a way as to guarantee that

the resulting generator G f is not pseudorandom. The win in this argument is that the proof of

the hardness to pseudorandomness connection gives a way of converting the non-randomness

of the generator G f into a way of computing f , thus translating the knowledge that f is easy to

compute into an actual circuit computing f .

3.1.3 Related work

This work was prompted by results that circuit analysis algorithms imply circuit lower

bounds. A natural question is: given that these algorithms are sufficient for circuit lower bounds,

to what degree are they necessary? Apart from derandomization, no other equivalences be-

tween circuit analysis algorithms and circuit lower bounds are known. Some of the known

circuit-analytic algorithmic tasks that would imply circuit lower bounds include: derandomiza-

tion [IKW02, KI04, AvM12, CIKK15], deterministic (lossy) compression or MCSP [CKK+15,

IKW02], deterministic learning [FK09, KKO13], and deterministic (QBF) SAT algorithms

[Wil13, SW15].

Bracketing the hardness vs. randomness setting, special cases of using circuit lower

bounds to construct circuit analysis algorithms abound. Often, lower bounds are the only way

that we know to construct these algorithms. Each of the following results uses the proof of a

lower bound to construct an algorithm. The character and number of these results gives empirical

evidence that there should be generic algorithms for circuit analysis based on generic lower

bounds.

• Parity 6∈ AC0 AC0-Learning [LMN93], AC0-SAT [IMP12], and AC0-Compression

[CKK+15]

34

• MODq 6∈ AC0[p], p,q distinct primes, AC0[p]-Compression [Sri15]

• Andreev’s function 6∈ deMorgan[n3−ε] subcubic formula Compression [CKK+15]

All the lower bounds listed above belong to the natural proofs framework. Given these

results, the obvious conjecture was that natural proofs imply some kind of generic circuit analysis

algorithm. For instance, [CKK+15] suggested that every natural circuit lower bound should

imply a compression algorithm. Already, the original work on Natural Proofs observed:

As long as we use natural proofs we have to cope with a duality: any lower bound
proof must implicitly argue a proportionately strong upper bound. With this
duality in mind, it is no coincidence that the technical lemmas of [Hås87, Smo87,
Raz87] yield much of the machinery for the learning result of [LMN93].

— Razborov and Rudich, 1997

We take a step towards establishing formal and quantitative duality between lower bound

proofs and circuit analysis, by showing that any natural circuit lower bound for a sufficiently

powerful circuit class (AC0[p] or bigger) does indeed lead to a randomized compression algorithm

for the same circuit class. Furthermore, the efficiency of the learning algorithm depends directly

on the strength of the lower bound: stronger lower bounds are transformed into faster learning

algorithms. Though we are nowhere near an optimal transference theorem from lower bounds to

learning algorithms, this is exactly the type of dependence that we would hope for.

The remainder of this chapter. We give the necessary background in Section 3.2.

Sections 3.3 and 3.4 summarize the useful properties of past constructions of black-box gen-

erators and black-box amplifications, which we revisit and modify to implement in AC0[p]. In

Section 3.5, we use those tools to prove our main result that natural properties yield learning

algorithms for circuit classes AC0[p] and above, using a novel “play-to-lose” interpretation of

pseudorandomness. On the other hand, in Section 3.6, we argue that our main result cannot be

applied directly to AC0 because the construction of Section 3.3 is impossible in AC0. Section 3.7

contains concluding remarks and open questions.

35

3.2 Definitions and tools

3.2.1 Learning and compression tasks

Let f ∈ Λ be some Boolean function. The learner is allowed membership queries to f .

That is, the learner may query an input x ∈ {0,1}n to the oracle, getting back the value f (x).

Definition 16 (PAC learning over the uniform distribution with membership queries). Let Λ be

any class of Boolean functions. An algorithm A PAC-learns Λ if for any n-variate f ∈ Λ and for

any ε,δ > 0, given membership query access to f algorithm A prints with probability at least

1−δ over its internal randomness a circuit C ∈ Ĉ f
ε . The runtime of A is measured as a function

T = T (n,1/ε,1/δ , | f |). C̃ and D

Definition 17 (Λ-Compression). Given the truth table of n-variate Boolean function f ∈ Λ, print

some Boolean circuit C ∈ C f computing f such that |C|< 2n/n, the trivial bound.

Definition 18 (ε-Lossy Λ-Compression). Given the truth table of n-variate Boolean function

f ∈ Λ, print some Boolean circuit C ∈ Ĉ f
ε such that |C|< 2n/n, the trivial bound.

The relevant parameters for compression are runtime and printed circuit size. We say that

a compression algorithm is efficient if it runs in time poly(2n), which is polynomial in the size of

the truth-table supplied to the algorithm. Though we count any output circuit of size less than

2n/n as a successful compression, we will of course want to optimize this. In previous work, the

size of the resulting circuits approximately matches the size of circuits for which we have lower

bounds.

We remark that we do not obtain “proper” learning or compression: the output of the

learning (compression) algorithm is an unrestricted circuit, not necessarily from the class to be

learned (compressed).

36

3.2.2 Natural properties

Let Fn be the collection of all Boolean functions on n variables. Recall that Λ and

Γ denote complexity classes, with Λ generally referring to the weaker or “target” class. A

combinatorial property of Boolean functions is a sequence of subsets of Fn for each n.

Definition 19 (Natural Property [RR97]). A combinatorial property R = {Rn}n∈N is Γ-natural

against Λ with density δn : N→ [0,1] if it satisfies the following three conditions:

Constructivity: The predicate fn
?
∈ Rn is computable in Γ

Largeness: |Rn| ≥ δn · |Fn|

Usefulness: For any sequence of functions fn, if fn ∈ Λ then fn 6∈ Rn, almost everywhere.

For each n, δn is a lower bound on the probability that g ∈Fn has Rn. The original

definition in [RR97] sets δn ≥ 2−O(n). However, we show (see Lemma 3.2.1 below) that one

may usually assume that δn ≥ 1/2. Note that “in the wild” nearly all natural properties have δn

close to one and Γ⊆ NC2.

Lemma 3.2.1 (Largeness for natural properties). Suppose P is a P-natural property of n-variate

Boolean functions that is useful against class Λ of size s(n), and has largeness δn ≥ 2−cn, for

some constant c≥ 0. Then there is another P-natural property P′ that is useful against the class

Λ of size s′(n) := s(n/(c+1)), and has largeness δ ′n ≥ 1/2.

The idea is to apply random restrictions to functions that may contain (as sub-functions)

a truth-table in P. Since restictions are easy to compute, any function that embeds a function

from P under restriction is difficult to compute. So usefulness is maintained. Since there are so

many random restrictions, density is significantly improved. We work out the details below.

Proof. Define P′ as follows:

37

The truth table of a given f : {0,1}n→ {0,1} is in P′ iff for at least one string
a ∈ {0,1}k, for k = cn/(c+1), the restriction

fa(y1, . . . ,yn−k) := f (a1, . . . ,ak,y1, . . . ,yn−k)

is in P (as a function on n− k = n/(c+1) variables).

Observe that testing P′ on a given n-variate Boolean function f can be done in time

O(2k) ·poly(2n−k)≤ poly(2n); so we have constructivity for P′. Next, if f : {0,1}n→{0,1} has

a Λ circuit of size less s′(n), then each restricted subfunction fa : {0,1}n−k → {0,1} has a Λ

circuit of size less than s(n− k)≤ s′(n). Finally, a random function f : {0,1}n→{0,1} yields

2k independent random subfunctions, on n−k variables each, and the probability that at least one

of these (n− k)-variate functions satisfies P is at least 1− (1−2−c(n−k))2k
= 1− (1−2−k)2k

,

which is at least 1/2, as required.

3.2.3 NW Generator

Recall the main theorem regarding the NW pseudo-random generator, from Chapter 2:

Theorem 3.2.2 (Uniform NW Reconstruction [NW94, IW01]). There is a randomized algorithm

that, given as input a distinguisher circuit D for the NW Generator defined using f and an oracle

for f , will print a circuit that approximately computes f with advantage proportional to the

stretch of the Generator. Formally:

DIS(G f ,1/5) 7−→ Ĉ f
1/2−1/L in TIME f [poly(L)]

3.3 Black-box generators

The main tool we need for our learning algorithms is a transformation, which we call

black-box generator, taking a given function f : {0,1}n→{0,1} to a family G = {gz}z∈I of new

Boolean functions gz : {0,1}n′ →{0,1} satisfying the following properties:

38

• [NONUNIFORM EFFICIENCY] each function gz has “small” circuit complexity relative to

the circuit complexity of f , and

• [RECONSTRUCTION] any circuit distinguishing a random function gz (for a uniformly

random z ∈ I) from a random n′-variate Boolean function can be used (by an efficient

randomized algorithm with oracle access to f) to construct a good approximating circuit

for f .

Once we have such a black-box generator, we get our learning algorithm as follows. To

learn a function f : {0,1}n→{0,1}, use the natural property as a distinguisher that rejects (the

truth tables of) all functions gz, z ∈ I, but accepts a constant fraction of truly random functions;

apply the efficient reconstruction procedure to learn a circuit approximating f . By nonuniform

efficiency, if f is an easy function in some circuit class Λ, then so is each function gz where z ∈ I.

Next we give a more formal definition of a black-box generator. For a function f , we

denote by Λ f the class of oracle circuits in Λ that have f -oracle gates. Also recall that Λ[s]

denotes the class of Λ-circuits of size at most s.

Definition 20 (Black-Box (ε,L)-Generator Within Λ). For a given error parameter ε : N→ [0,1]

and a stretch function L : N→ N, a black-box (ε,L)-generator within Λ is a mapping GEN that

associates with a given function f : {0,1}n→{0,1} a family GEN(f) = {gz}z∈{0,1}m of Boolean

functions gz : {0,1}`→{0,1}, where `= logL(n), satisfying the following conditions for every

f : {0,1}n→{0,1}:

Small Family Size: m≤ poly(n,1/ε),

Nonuniform Λ-Efficiency: for all z ∈ {0,1}m, gz ∈ Λ f [poly(m)], and

Reconstruction: DIS(GEN(f),1/5) 7−→ Ĉ f
ε in BPTIME f [poly(n,1/ε,L(n))], where we think

of GEN(f) as the distribution over the truth tables of functions gz ∈ GEN(f), for uniformly

random z ∈ {0,1}m.

39

We will prove the following.

Theorem 3.3.1 (Black-Box Generators within AC0[p]). Let p be any prime. For every ε : N→

[0,1] and L : N→N such that L(n)≤ 2n, there exists a black-box (ε,L)-generator within AC0[p].

We will use the NW generator as our black-box generator. For it to be within AC0[p], we

need NW designs to be computable within AC0[p]. We construct NW designs in AC0[p] later

— see the proof of Theorem 3.3.5 in Section 3.3.1. This is feasible because we can encode a

constant amount of finite-field arithmetic in AC0[p], and one of the canonical constructions of

designs is simply exhaustive evaluation of polynomials over a finite field.

Theorem 3.3.2 (NW Designs in AC0[p]). Let p be any prime. There exists a constant dMX ≥ 1

such that, for any n and L < 2n, there exists an NW design S1, . . . ,SL ⊆ [m] with m = O(n2),

each |Si| = n, and |Si ∩ S j| ≤ ` = logL for all 1 ≤ i 6= j ≤ L, such that the function MXNW :

{0,1}`×{0,1}m→ {0,1}n, defined by MXNW (i,z) = z�Si
, is computable by an AC0[p] circuit

of size O(` ·n3 logn) and depth dMX .

Another ingredient we need for the proof of Theorem 3.3.1 is the following notion of

black-box amplification; intuitively, a map that is guranteed to transform a mildly hard function

into an extremely difficult to compute function. If one can compute the “amplified” function

slightly better than random guessing, one can compute the original function extremely accurately.

We will exploit this in our learning and compression algorithms. Let Λ be any circuit class.

Definition 21 (Black-Box (ε,δ)-Amplification within Λ).

For given ε,δ > 0, (ε,δ)-amplification within Λ is a mapping that associates with a given

function f : {0,1}n→ {0,1} its amplified version, AMP(f) : {0,1}n′ → {0,1}, satisfying the

following conditions for every f : {0,1}n→{0,1}:

Short Input: n′ ≤ poly(n,1/ε, log1/δ),

Nonuniform Λ-Efficiency: AMP(f) ∈ Λ f [poly(n′)],

40

Uniform P-Efficiency: AMP(f) ∈ P f , and

Reconstruction:

Ĉ
AMP(f)
1/2−δ

7−→ Ĉ f
ε in BPTIME f [poly(n,1/ε,1/δ)]

We prove the following in the next section (see Theorems 3.4.3 and 3.4.5).

Lemma 3.3.3. Let p be any fixed prime. For all 0 < ε,δ < 1, there is black-box (ε,δ)-

amplification within AC0[p].

Now we are ready to prove Theorem 3.3.1, by composing Black-Box amplification with

the NW designs computable in AC0[p] and the NW reconstruction algorithm.

Proof of Theorem 3.3.1. For a given n-variate Boolean function f , consider its amplified version

f ? = (ε(n),1/L(n))-AMP(f), from the black-box amplification within AC0[p] that exists by

Lemma 3.3.3. We have that f ? is a function on n′ = poly(n,1/ε, logL) = poly(n,1/ε) variables

(using the assumption that L(n)≤ 2n).

Let G f ? : {0,1}m→{0,1}L(n) be the NW generator based on the function f ?, with the

seed size m = (n′)2. Define GEN(f) = {gz}z∈{0,1}m , where gz = G f ?(z). We claim that this

GEN(f) is an (ε,L)-black-box generator within AC0[p]. We verify each necessary property:

Small Family Size: m = (n′)2 ≤ poly(n,1/ε).

Nonuniform AC0[p]-Efficiency: We know that f ? = AMP(f) ∈ (AC0[p]) f [poly(m)].

For each fixed z ∈ {0,1}m, we have gz(i) = (G f ?(z))i, for i ∈ {0,1}`, where ` = logL(n). By

the definition of the NW generator, gz(i) = f ?(z�Si
). By Theorem 3.3.2, the restriction z�Si

, as

a function of z and i, is computable in AC0[p] of size poly(n′) and some fixed depth dMX . It

follows that each gz is computable in (AC0[p]) f [poly(m)].

Reconstruction: The input to reconstruction is D ∈ DIS(GAMP(f),1/5). Let MNW be

the reconstruction machine from the NW construction, and let MAMP be the reconstruction

machine from (ε,1/L)-amplification. We first run M
AMP(f)
NW (D) to get, in time poly(L), a circuit

C ∈ Ĉ
AMP(f)
1/2−1/L(n); note that we can provide this reconstruction algorithm oracle access to AMP(f),

41

since AMP(f) ∈ P f by the uniform P-efficiency property of black-box amplification. Next we

run M f
AMP on C to get C′ ∈ Ĉ f

ε , in randomized time poly(n,1/ε,L(n)).

3.3.1 NW designs in AC0[p]

Here we show that the particular NW designs we need in our compression and learning

algorithms can be constructed by small AC0[p] circuits, for any fixed prime p. Consider an NW

design S1, . . . ,SL ⊆ [m], for m = O(n2), where the sets satisfy the following properties:

• [FIXED SIZE] each set Si is of size n,

• [WIDE VARIETY] the number of sets is L = 2` for `≤ n, and

• [BOUNDED OVERLAP] for any two distinct sets Si and S j, i 6= j, we have |Si∩S j| ≤ `.

We show a particular construction of such a design that has the following property: the index

set [m] is partitioned into n disjoint subsets U1, . . . ,Un of equal size (m/n) ∈ O(n). For each

1≤ i≤ L, the set Si contains exactly one element from each subset U j, over all 1≤ j ≤ n. For

1≤ j ≤ n and 1≤ k ≤ O(n), we denote by (U j)k the kth element in the subset U j.

To describe such a design, we use the following Boolean function g: for 1 ≤ i ≤ L,

1≤ j ≤ n, and 1≤ k ≤ O(n), we define g(i, j,k) = 1 iff (U j)k ∈ Si. We will prove the following.

Theorem 3.3.4 (Local NW Designs in AC0[p]). There exists a constant dNW ≥ 1 such that, for

any prime p, there exists a family of functions g : {0,1}`+2logn→{0,1} that are the characteristic

functions for some NW design with the parameters as above, so that g∈AC0[p] of size O(n2 logn)

and depth dNW .

Proof. Recall the standard construction of NW designs from [NW94]. Let F be a field of size

O(n). Consider an enumeration of L polynomials of degree at most ` over F , with all coefficients

in {0,1}; there are at least 2` = L such polynomials. We associate each such polynomial with a

42

binary string i = i1 . . . i` ∈ {0,1}`, so that i corresponds to the polynomial

Ai(x) =
`

∑
j=1

i j · x j−1

over the field F . Let r1, . . . ,r|F | be some canonical enumeration of the elements of F . For each

binary string i ∈ {0,1}`, we define a set Si = {(r j,Ai(r j)) | 1≤ j ≤ n}. Note that |Si|= n, and

Si defines a set of n pairs in the universe F×F of O(n2) pairs (hence the universe size for this

construction is O(n2)). Finally, any two distinct degree (`−1) polynomials Ai(x) and A j(x) may

agree on at most ` points r ∈ F , and so we have |Si∩S j| ≤ ` for the sets Si and S j, corresponding

to the polynomials Ai(x) and A j(x).

Arrange the elements of the universe [m] on an n× (m/n) grid. The n rows of the grid are

indexed by the first n field elements r1, . . . ,rn, and the columns by all fields elements r1, . . . ,r|F |.

For each j, 1≤ j ≤ n, define U j to be the elements of [m] that belong to the row j of the grid.

We get that every set Si = {(r j,Ai(r j)) | 1≤ j ≤ n} picks exactly one element from each of the

n sets U1, . . . ,Un.

We will argue that this particular design construction is computable in AC0[p] of size

polynomial in `, for each prime p. Let p be any fixed prime (which we think of as a constant).

Let F be an extension field over GF(p) of the least size so that |F | ≥ n; such a field is described

by some polynomial over GF(p) of degree O(logp n), and is of size at most pn = O(n). As

before, let r1, . . . ,r|F | be a canonical enumeration of the field elements in F .

Define the following n× ` matrix M: for 1≤ j ≤ n and 1≤ k ≤ `, we have M j,k = (r j)
k,

where the power (r j)
k is computed within the field F . Then the values Ai(r1), . . . ,Ai(rn) may be

read off from the column vector obtained by multiplying the matrix M by the column vector

i ∈ {0,1}`, in the field F . For a particular 1≤ j ≤ n, we have Ai(r j) = ∑
`
k=1 M j,k · ik. Since each

ik ∈ {0,1}, the latter reduces to the task of adding a subset of ` field elements. Each field element

of F is a polynomial over GF(p) of degree k ≤ O(logn), and so adding a collection of elements

from F reduces to the coordinate-wise summation modulo p of k-element vectors in (GF(p))k.

43

The latter task is easy to do in AC0[p]4.

For any 1≤ i≤ L, 1≤ j ≤ n, and 1≤ k ≤ |F |, g(i, j,k) = 1 iff Ai(r j) = rk. To compute

g(i, j,k), we need to evaluate the polynomial Ai(x) at r j, and then check if the result is equal

to rk. To this end, we “hard-code” the matrix M into the circuit (which incurs the cost at most

O(n` logn) bits of advice). We compute Ai(r j) by computing the matrix-vector product M · i,

and restricting to the jth coordinate of the resulting column vector. This computation involves

O(logn) summations of ` field elements of GF(p) modulo p, over n rows of the matrix M. The

resulting field element is described an O(logn)-element vector of elements from the underlying

field GF(p). Using O(logn) operations over GF(p), we can check if this vector equals the

vector corresponding to rk.

It is easy to see that this computation can be done in some fixed constant depth dNW by

an AC0[p] circuit of size O(` ·n logn), which can be bounded by O(n2 logn), as required.

As a corollary, we get Theorem 3.3.2, which we restate and prove below.

Theorem 3.3.5 (NW Designs in AC0[p], restated). Let p be any prime. There exists a constant

dMX ≥ 1 such that, for any n and L < 2n, there exists an NW design S1, . . . ,SL ⊆ [m] with

m = O(n2), each |Si|= n, and |Si∩S j| ≤ `= logL for all 1≤ i 6= j ≤ L, such that the function

MXNW : {0,1}`×{0,1}m→{0,1}n, defined by MXNW (i,z) = z�Si
, is computable by an AC0[p]

circuit of size O(` ·n3 logn) and depth dMX .

Proof. Let g(i, j,k) be the characteristic function for the NW design from Theorem 3.3.4, where

|i|= `, | j|= logn, and |k|= logn+ logc, for some constant c≥ 1. We have g ∈ AC0[p] of size

O(` ·n logn) and depth dNW . Let U1, . . . ,Un ⊆ [m] be the sets of size cn each that partition [m] so

that every Si contains exactly one element from every U j, 1≤ j ≤ n.

4We code elements of GF(p) by p-wire bundles, where wire i is on iff the bundle codes the ith element of
GF(p). An addition, multiplication, or inverse in the field GF(p) can be implemented in AC0. To add up a tuple of
field elements, we first convert each field element from the representation above to the unary representation (using
constant-depth selection circuits). Then we lead these unary encodings into a layer of p gates, ⊕ j

p, for 0≤ j≤ p−1,
where ⊕ j

p is the gate ⊕p with p− j extra inputs 1. Thus the gate ⊕ j
p on inputs x1, . . . ,xn ∈ GF(p) outputs 1 iff

x1 + · · ·+ xn = j mod p. Note that exactly one of the gates ⊕ j
p will output 1, giving us the desired field element in

our encoding.

44

Let i1, . . . , i` and z1, . . . ,zm denote the input gates of MXNW , and let y1, . . . ,yn denote its

output gates. Associate each gate y j with the set U j of indices in [m], for 1≤ j ≤ n. For each

1≤ i≤ L and each 1≤ j ≤ n, define

y j = ∨cn
k=1 g(i, j,k)∧ (z�U j

)k.

Clearly, the defined circuit computes MXNW , because one and only one of the evaluations

of g will be true. It has size O(` ·n3 logn) and depth dMX ≤ dNW +2, as required.

Let G f be the NW generator based on a function f , using the NW design S1, . . . ,SL from

Theorem 3.3.2. For each fixed seed z, define the function gz : {0,1}`→ {0,1}, for ` = logL,

as gz(i) = (G f (z))i = f (z�Si
), where 1≤ i≤ L. By Theorem 3.3.2, we get gz ∈ (AC0[p]) f . See

Figure 3.1 for the description of a small circuit for gz that combines the AC0[p] circuit for MXNW

with a circuit for f .

MXNW

f

z

i

z�Si

Figure 3.1. A circuit for gz(i) = f (z�Si
).

3.4 Black-box amplification

Here we show that black-box amplification (Definition 21) is possible within AC0[p],

for any prime p ≥ 2, as required for the proof that black-box generators within AC0[p] exist

45

(Theorem 3.3.1). Recall the definition:

Let Λ be any circuit class (e.g., AC0[p] for some prime p ≥ 2). For a function f , we

denote by Λ f the class of oracle circuits in Λ that have f -oracle gates. Also recall that Λ[s]

denotes the class of Λ-circuits of size at most s.

Definition 22 (Black-Box (ε,δ)-Amplification within Λ). For given ε and δ > 0, (ε,δ)-

amplification within Λ is a mapping that associates with a given function f : {0,1}n→{0,1} its

amplified version, AMP(f) : {0,1}m→{0,1}, satisfying the following conditions:

Short Input: m≤ poly(n,1/ε, log1/δ),

Nonuniform Λ-Efficiency: AMP(f) ∈ Λ f [poly(m)],

Uniform P-Efficiency: AMP(f) ∈ P f , and

Reconstruction:

Ĉ
AMP(f)
1/2−δ

7−→ Ĉ f
ε in BPTIME[poly(n,1/ε,1/δ)]

We will show that black-box amplification is possible within Λ = AC0[p], for any prime

p≥ 2.

Remark 23. In our construction, we actually get a better bound on the parameter m: we have

m ≤ O(n · 1/ε · log2(1/δ)), and AMP(f) ∈ Λ f [O(m)]. Moreover, we get that there is a fixed

constant dAmp ≥ 1 such that (for any prime p≥ 2) the depth of the AC0[p] circuit for Amp(f) is

at most dAmp plus the depth of the AC0[p] circuit for f .

For AC0[2], we shall use standard hardness amplification tools from pseudorandomness:

Direct Product and XOR construction. For AC0[p], p 6= 2, we will need to use something else

in place of XOR, as small AC0[p] circuits can’t compute PARITY [Smo87]. We will replace

XOR with a MODp function, while using an efficient conversion from {0,1, . . . , p−1}-valued

functions to Boolean functions, which preserves the required amplification parameters.

46

For a Boolean function f : {0,1}n→ {0,1} and a parameter k ∈ N, the k-wise direct

product of f is f k : {0,1}nk→{0,1}k, where f k(x1, . . . ,xk) = (f (x1), . . . , f (xk)) for xi ∈ {0,1}n,

1 ≤ i ≤ k. It is well-known that the Direct Product (DP) construction amplifies hardness of a

given function f in the sense that a circuit somewhat nontrivially approximating the function f k

may be used to get a new circuit that approximates the original function f quite well [GNW11],

and, moreover, this new circuit for f can be constructed efficiently and uniformly [IW01]. We

shall use the following algorithm due to [IJKW10] that has optimal parameters (up to constant

factors).

Theorem 3.4.1 (DP Reconstruction [IJKW10]). There is a constant c and a probabilistic algo-

rithm A with the following property. Let k ∈ N, and let 0 < ε,δ < 1 be such that δ > e−εk/c.

For a Boolean function f : {0,1}n→{0,1}, let C′ be any circuit in Ĉ f k

1−δ
. Given such a circuit

C′, algorithm A outputs with probability Ω(δ) a circuit C ∈ Ĉ f
ε .

DP Reconstruction Algorithm. The algorithm A in Theorem 3.4.1 is a uniform ran-

domized NC0 algorithm (with one C′-oracle gate), and the produced circuit C is an AC0 circuit of

size poly(n,k, log1/ε,1/δ) (with O((log1/ε)/δ) of C′-oracle gates). We sketch this algorithm

below. It consists of a preprocessing stage and a circuit construction stage. For simplicity, we

allow the constructed circuit to be randomized; it can easily be made deterministic by choosing

all required randomness in the preprocessing stage.

Next, we need to convert a non-Boolean, multi-bit output function f k : {0,1}kn→{0,1}k

into a Boolean function h such that a circuit approximately computing h would uniformly and

efficiently yield a circuit approximately computing f k, where the quality of approximation is

essentially preserved. To this end, we “collapse” the k-bit output of f k to a single number

modulo a prime p, using the Goldreich-Levin construction [GL89] over F = GF(p): For

g : {0,1}m→{0,1}k, define gGL : {0,1}m×Fk→ F to be

gGL(x1, . . . ,xm,r1, . . . ,rk) =
k

∑
i=1

ri ·g(x1, . . . ,xm)i,

47

PREPROCESSING

Randomly pick a set B0 of k strings in {0,1}n. Pick a random subset A⊂ B0 of size k/2. Evaluate
C′ on a k-tuple~b0 that is a random permutation of the strings in B0, and note the answers~a given
by C′(~b0) for the strings in A.

CIRCUIT CONSTRUCTION

Using A and~a from preprocessing, build a randomized circuit C following the template:
“On input x ∈ {0,1}n, if x ∈ A, then output the corresponding answer in ~a. Otherwise, for
m = O((log1/ε)/δ) times,

1. sample a random k-set B such that A∪{x} ⊂ B;

2. evaluate C′ on a k-tuple~b that is a random permutation of the strings in B;

3. if the answers of C′(~b) for A are consistent with~a, then output C′(~b)x (the answer C′ gave
for x), and stop.

If no output is produced after m iterations, output a random bit.”

Algorithm 4. DP Reconstruction: Ĉ f k

1−δ
7−→ Ĉ f

ε

where all arithmetic is over the field F .

We will describe an efficient reconstruction algorithm that takes a circuit computing the

function gGL on more than 1/p+ γ fraction of inputs, for some γ > 0, and produces a circuit

that computes g on more than Ω(γ3) fraction of inputs. The main ingredient of this algorithm is

the following result first proved by Goldreich and Levin [GL89] for the case of p = 2, and later

generalized by Goldreich, Rubinfeld, and Sudan [GRS00] to all primes p.

Theorem 3.4.2 (GL Reconstruction [GL89, GRS00]). There is a probabilistic algorithm A with

the following property. Let h ∈ Fk be arbitrary, and let B : Fk→ F be such that Prr∈Fk [B(r) =

〈h,r〉]≥ 1/p+ γ for some γ > 0, where 〈x,y〉= ∑
k
i=1 xi · yi mod p. Then, given oracle access

to B and the parameter γ , the algorithm A runs in time poly(k,1/γ) and outputs a list of size

O(1/γ2) such that, with probability at least 1/2, the tuple h is on the list.

GL Reconstruction Algorithm. We sketch below the algorithm A of Theorem 3.4.2.

48

Proceed in k rounds, maintaining after round i a list Hi of length-i tuples in F i; the list after
round k is the final output. In round i:

1. Extend each tuple in Hi−1 by one element in all |F | possible ways.

2. For each extended tuple~c ∈ F i, include~c in Hi iff it passes the following test:

Randomly pick m = poly(k/γ) tuples ~s1, . . . ,~sm ∈ Fk−i. For each ~si and
each σ ∈ F , estimate Pr~r∈F i[B(~r,~s) = 〈~c,~r〉+σ]. If at least one of these
estimates is significantly larger than 1/p, then accept; otherwise, reject.

Algorithm 5. GL Reconstruction (sketch)

3.4.1 Case of AC0[2]

Composing Direct-Product and Goldreich-Levin reconstrction (Theorems 3.4.1 and 3.4.2)

we have the following.

Theorem 3.4.3 (Black-Box Amplification within AC0[2]). For any 0 < ε,γ < 1, there is black-

box (ε,γ)-amplification within AC0[2].

Proof. Given f : {0,1}n→{0,1} in AC0[2] of size s, and given 0 < ε,δ < 1, define AMP(f) as

follows:

1. Set k = d(3c) ·1/ε · ln1/γe+1, where c is the constant in Theorem 3.4.1.

2. Define g to be the direct product f k : {0,1}nk→{0,1}k.

3. Define AMP(f) to be gGL : {0,1}nk+k→{0,1} over F = GF(2).

Notice that GL reconstruction is an oracle-algorithm, but we need to print a concrete

circuit good for many inputs. So we pause to show that we can do exactly this by “baking” GL

reconstruction into a circuit in the natural way:

Claim 24 (GL Reconstruction can build circuits instead.). For any γ > 0, we have

Ĉ gGL

1/2−γ
7−→ Ĉ g

1−Ω(γ3)
in BPTIME f [poly(n,k,1/γ)]

49

Proof. Suppose we are given a circuit C′ ∈ Ĉ gGL

1/2−γ
. Let AGL be the Goldreich-Levin algorithm

of Theorem 3.4.2. Consider the following algorithm A1 that attempts to compute g:

For a given input x ∈ {0,1}nk, define a circuit Bx(r) :=C′(x,r), for r ∈ {0,1}k.
Run AGL on Bx, with parameter γ/2, getting a list L of k-bit strings. Output a
uniformly random k-bit string from the list L.

CORRECTNESS ANALYSIS OF A1: By averaging, for each of at least γ/2 fraction of

strings x ∈ {0,1}nk, the circuit Bx(r) := C′(x,r) agrees with gGL(x,r) = 〈g(x),r〉 on at least

1/2+ γ/2 fraction of strings r ∈ {0,1}k. For each such x, the circuit Bx satisfies the condition

of Theorem 3.4.2, and so the GL algorithm will find, with probability at least 1/2, a list L

of O(1/γ2) strings in {0,1}k that contains the string g(x). Conditioned on the list containing

the string g(x), if we output a random string on that list, we get g(x) with probability at least

1/|L| ≥ Ω(γ2). Overall, the fraction of inputs x where A1 correctly computes g(x) is at least

γ

2 ·
1
2 ·Ω(γ2)≥Ω(γ3). The runtime of A1 is poly(|C′|,k,n,1/γ).

By the Direct Product reconstruction of Theorem 3.4.1, we have:

Ĉ f k

1−µ
7−→ Ĉ f

ε in BPTIME f [poly(n,k, log1/ε,1/µ)]

as long as µ > e−εk/c, for some fixed constant c > 0. Combining this with the “circuit-baked”

GL reconstruction from Claim 24 above yields

Ĉ
AMP(f)
1/2−γ

7−→ Ĉ f
ε in BPTIME f [poly(n,1/ε,1/γ)]

as long as γ3 > e−εk/c, which is equivalent to γ > e−εk/c′ , for c′ = 3c. Our choice of k satisfies

this condition.

Finally, we verify that AMP(f) also satisfies the other conditions of black-box amplifica-

tion:

• (f k)GL is defined on inputs of size kn+ k ≤ O(n ·1/ε · log1/γ).

50

• If f ∈ AC0[2] of size s, then f k is in AC0[2] of size O(s · k) = O(s · 1/ε · log1/γ), and

(f k)GL is of size at most the additive term O(k) larger.

• (f k)GL is in P f .

Thus, AMP(f) defined above is black-box (ε,γ)-amplification of f , as required.

3.4.2 Case of AC0[p] for primes p > 2

For AC0[p] circuits, with p > 2, we can’t use the XOR construction above, as PARITY is

not computable by small AC0[p] circuits [Smo87]. A natural idea to amplify a given function f

is to apply the Goldreich-Levin construction gGL over the field F = GF(p) to the direct-product

function g = f k, for an appropriate value of k. Theorem 3.4.2 guarantees that if we have a circuit

that computes gGL on more than 1/p+ γ fraction of inputs, then we can efficiently construct a

circuit that computes g on Ω(γ3) fraction of inputs; the proof is identical to that of Claim 24

inside the proof of Theorem 3.4.3 for the case of AC0[2] above.

The only problem is that the function gGL defined here is not Boolean-valued, but we

need a Boolean function to plug into the NW generator in order to complete our construction of

a black-box generator within AC0[p]. We need to convert gGL into a Boolean function h in such

a way that if h can be computed by some circuit on at least 1/2+µ fraction of inputs, then gGL

can be computed by a related circuit on at least 1/p+µ ′ fraction of inputs, where µ and µ ′ are

close to each other.

We use von Neumann’s idea for converting a coin of unknown bias into a perfectly

unbiased coin [vN51]. Given a coin that is “heads” with some (unknown) probability 0 < p < 1,

flip the coin twice in a row, independently, and output 0 if the trials were (“heads”, “tails”), or 1

if the trials were (“tails”, “heads”). In case both trials came up the same (i.e., both “heads”, or

both “tails”), flip the coins again.

Observe that, conditioned on producing an answer b ∈ {0,1}, the value b is uniform

over {0,1} (as both conditional probabilities are equal to p(1− p)/(1− p2− (1− p)2). The

51

probability of not producing an answer in one attempt is p2 +(1− p)2, the collision probability

of the distribution (p,1− p). If p is far away from 0 and 1, the probability that we need to repeat

the flipping for more than t trials diminishes exponentially fast in t.

In our case, we can think of the value of gGL on a uniformly random input as a distribution

over F . Assuming that this distribution is close to uniform over F , we will define a new Boolean

function h based on gGL so that the output of h on a uniformly random input is close to uniform

over {0,1}. Our analysis of h will be constructive in the following sense. If we are given a

circuit that distinguishes the distribution of the outputs of h from uniform, then we can efficiently

construct a circuit that distinguishes the distribution of the outputs of gGL from uniform over

F . Finally, using the standard tools from pseudorandomness (converting distinguishers into

predictors), we will efficiently construct from this distinguisher circuit a new circuit that computes

gGL on noticeably more than 1/p fraction of inputs.

The construction of this function h follows the von Neumann trick above. Formally we

have the following.

Definition 25 (von Neumann trick function). For an integer parameter t > 0, define the function

EvN : (F2)t →{0,1} as follows: For pairs (a1,b1), . . . ,(at ,bt) ∈ F×F , set

EvN((a1,b1), . . . ,(at ,bt)) =

1 if, for each 1≤ i≤ t, ai = bi

1 if (ai,bi) is the first unequal pair and ai > bi

0 if (ai,bi) is the first unequal pair and ai < bi

It is not hard to see that EvN is computable in AC0. Moreover, for independent uniformly

distributed inputs, the output of EvN is a random coin flip, with bias at most (1/p)t .

Claim 26 (von Neumann trick is small-bias). Let F be the uniform distribution over the field

F = GF(p), and let G = (F 2)t be the uniform distribution over sequences of t pairs of elements

52

from F. Then: ∣∣Prr∈G [EvN(r) = 1]−Prr∈G [EvN(r) = 0]
∣∣≤ p−t

Proof. Conditioned on having some unequal pair in the sample from G , the bias of the random

variable EvN(G) is 0. Conditioned on having no such unequal pair, the bias is at most 1. Note

that the collision probability of the uniform distribution over GF(p) is ∑
p
i=1 p−2 = p−1. So the

probability of having collisions in all t independent samples from F 2 is p−t . Thus, the overall

bias is at most p−t .

Next, given gGL : D→ F , for the domain D = {0,1}m×Fk, define hvN : (D2)t →{0,1}

as follows:

hvN((a1,b1), . . . ,(at ,bt)) = EvN((gGL(a1),gGL(b1)), . . . ,(gGL(at),gGL(bt))).

Theorem 3.4.4 (vNp Reconstruction =⇒ GLp Reconstruction). For any 0 < µ < 1 and 1 >

γ > Ω(µ/(log1/µ)), we have

Ĉ hvN

1/2−µ
7−→ Ĉ gGL

1−1/p−γ
in BPTIME f [poly(k,m,poly(1/µ))]

Proof. Recall some basic definition from pseudorandomness theory. We say that distributions X

and Y are computationally (η ,s)-indistinguishable, denoted by X
η ,s
≈ Y if, for any circuit T of

size s, the probability that T accepts a sample from X is the same as the probability T accepts a

sample from Y , to within ±η .

We want to show that if hvN is predictable with probability better than 1/2, then gGL is

predictable with probability better than 1/p. We will argue the contrapositive: suppose gGL is

unpredictable, and show that hvN is unpredictable. This will take a sequence of steps.

Let D denote the uniform distribution over D, F the uniform distribution over F , and

U the uniform distribution over {0,1}. Assume gGL is unpredictable by circuits of size s

53

with probability better than 1/p+ γ , for some γ > 0. This implies the following sequence of

statements:

1. (D ,gGL(D))
2γ,Ω(s)
≈ (D ,F) (unpredictable⇒ indistinguishable)

2. (D2t ,gGL(D)2t)
4tγ,Ω(s/t)
≈ (D2t ,F2t) (hybrid argument)

3. (D2t ,EvN(gGL(D)2t))
4tγ,Ω((s/t)−poly(t))
≈ (D2t ,EvN(F2t)) (applying hvN)

4. (D2t ,hvN(D2t))
4tγ+p−t ,Ω((s/t)−poly(t))
≈ (D2t ,U) (by Claim 26)

Finally, the last statement implies (via the “indistinguishable to unpredictable” direction)

that hvN cannot be computed on more than 1/2+ µ fraction of inputs by any circuit of size

Ω((s/t)−poly(t)), where µ = Ω(tγ + p−t). For t = O(log1/µ), we get γ ≥Ω(µ/(log1/µ)).

In the standard way, the sequence of implications above yields an efficient randomized

algorithm, with the runtime poly(k,m, log1/µ), for going in the reverse direction: from a

predictor circuit for hvN to a predictor circuit for gGL. To be able to carry out the hybrid argument

with uniform algorithms, we need efficient sampleability of the distribution (D ,gGL(D)). Such

sampling is possible when we have membership queries to f (as gGL ∈ P f); in fact, here it

would suffice to have access to uniformly random labeled examples (x, f (x)). Another issue is

that we need to sample uniformly from Zp, while we only have access to uniformly random

bits. However, it is easy to devise an efficient sampling algorithm for Zp, with the distribution

statistically almost indistinguishable from uniform over Zp.5

We now have all the ingredients to prove the following.

Theorem 3.4.5 (Black-Box Amplification within AC0[p]). For any 0 < ε,γ < 1, there is black-

5We divide an interval [0,2k−1] into p almost equal pieces (all but the last piece are equal to b2k/pc), and
check in AC0 which piece we fall into. The statistical difference between the uniform distribution over Zp and this
distribution is at most p/2k. So we can make it negligible by choosing k to be a large enough polynomial in the
relevant parameters.

54

box (ε,γ)-amplification within AC0[p].

Proof (sketch). The proof is similar to that of Theorem 3.4.3. To amplify a given function f , we

first apply the Direct Product construction to get g = f k (for an appropriate parameter k), then

use the Goldreich-Levin construction to get gGL, and finally apply the von Neumann construction

hvN . The only difference is the use of the von Neumann construction of Theorem 3.4.4. But

the only consequence of this extra step for the parameters of the amplification procedure is the

slightly worse dependence on 1/γ: from 1/γ to (1/γ) · log1/γ ≤ 1/γ2.

For the remainder of this section, we give deferred proofs of standard results in pseudo-

randomness or complexity lower bounds on standard tricks. These lemmas can be skipped on a

first reading.

Yao’s “Distinguisher to Predictor” reduction

The following result is a simple generalization of Yao’s “distinguisher to predictor”

reduction for the case of non-binary alphabets. We give the proof as we could not find a reference

in the literature for this version of the result.

Lemma 3.4.6 (Yao). Let f : {0,1}n→Zp. Suppose there is a function T : {0,1}n×Zp→{0,1}

such that

Prx∈{0,1}n[T (x, f (x)) = 1]−Prx∈{0,1}n,g∈Zp[T (x,g) = 1]≥ ε, (3.1)

then the following algorithm P computes f with probability at least 1/p+ε/(p−1) with respect

to the uniform distribution over {0,1}n:

On input x ∈ {0,1}n, pick a uniformly random g ∈ Zp. Compute b = T (x,g). If
b = 1, then output g; otherwise, output a uniformly random g′ ∈ Zp \{g}.

Proof. Using Bayes’s formula, the probability that the algorithm P above is correct on a uni-

formly random x ∈ {0,1}n, Prx[P(x) = f (x)], can be written as the sum of the following two

expressions:

Prx,g[T (x,g) = 1 | g = f (x)] ·Prx,g[g = f (x)], (3.2)

55

and

Prx,g,g′[T (x,g) = 0 & g′ = f (x) | g 6= f (x)] ·Prx,g[g 6= f (x)] (3.3)

where x is a uniformly random sample from {0,1}n, g is a uniformly random sample from Zp, and

g′ is uniform over the set Zp \{g}. Since g is independent of x, we have Prx,g[g = f (x)] = 1/p.

Thus we can replace the last factor in Eq. (3.2) by 1/p, and the last factor in Eq. (3.3) by

(p−1)/p.

Next, applying Bayes’s formula to the first factor of Eq. (3.3), we can re-write this factor

as

Prx,g[T (x,g) = 0 | g 6= f (x)] ·Prx,g′[g
′ = f (x) | g 6= f (x), T (x,g) = 0],

which equals

Prx,g[T (x,g) = 0 | g 6= f (x)] · 1
p−1

(3.4)

(since f (x) 6= g and g′ ∈ Zp \{g} is independent of x and g).

Putting Eqs. (3.2)–(3.4) together, we get

Prx[P(x) = g(x)] =
1
p
· (Prx[T (x, f (x)) = 1]+Prx,g[T (x,g) = 0 | g 6= f (x)])

=
1
p
· (Prx[T (x, f (x)) = 1]+ (1−Prx,g[T (x,g) = 1 | g 6= f (x)])) .

So we have

Prx[P(x) = g(x)] =
1
p
+

1
p
· (Prx[T (x, f (x)) = 1]−Prx,g[T (x,g) = 1 | g 6= f (x)]) . (3.5)

On the other hand, we have

Prx,g[T (x,g) = 1] =
1
p
·Pr[T (x, f (x)) = 1]+

(
1− 1

p

)
·Pr[T (x,g) = 1 | g 6= f (x)].

56

Therefore, we get

Pr[T (x, f (x)) = 1]−Pr[T (x,g) = 1]

=
p−1

p
· (Pr[T (x, f (x)) = 1]−Pr[T (x,g) = 1 | g 6= f (x)]) , (3.6)

and so, using Eq. (3.1), we have

Pr[T (x, f (x)) = 1]−Pr[T (x,g) = 1 | g 6= f (x)]≥ p
p−1

· ε. (3.7)

Plugging in Eq. (3.7) into Eq. (3.5), we conclude

Pr[P(x) = f (x)]≥ 1
p
+

ε

p−1
,

as required.

The von Neumann function in AC0

It is straightforward to implement the von Neumann trick in AC0 by using the Descriptive

Complexity framework to write uniform AC0 circuits as formulas of first-order logic (FO) over

finite models. Specifically, DLOGTIME-uniform AC0 is captured by FO-formulas over finite

models equipped with the following relations: {=,<,+,×,BIT}. For details on how first-order

logic corresponds to circuit classes, see [BIS90].

To code a length-n string of coinflips s ∈ {H,T}n as a finite model, we think of the

universe set as representing positions or indices into s. Speficially, start with a size-n model

equipped with the “default” relations {=,<,+,×,BIT}, where the universe elements are inter-

preted as the n-initial prefix of N for the purpose of these relations. Then add the following unary

relations to represent the character at each position of s:

57

H(i) =

true if s[i] = H

false otherwise

T (i) =

true if s[i] = T

false otherwise

See definition 25 for a complete description of EvN , the von Neumann trick function.

Using the above coding of strings into finite models, we prove the following:

Lemma 3.4.7. EvN ∈ AC0

Proof. We write the von Neumann trick as a FO forumla by considering, for the t trials, 2t-size

finite models equipped with the heads and tails relations. Our objective is to detect if the first

mismatched pair of indicies is HT or TH, returning true if this pair is TH. We consider a trial to

have failed if both flips match. So our formula should say “the first trial that didn’t fail is TH ”.

For now, assume that the following predicates TRIAL and FAIL are FO-expressible:

T RIAL(i, j) =

true if (i, j) are a trial pair with i < j

false otherwise

FAIL(i, j) =

true if (i, j) are a failed TRIAL pair

false otherwise

We can use FO to detect the first useful trial by asserting that every previous trial failed:

∃i, j(T RIAL(i, j)∧T (i)∧H(j)∧∀k, ` (k < i∧ ` < j =⇒ FAIL(k, `)))

This formula is true if and only if the first useful coinflip is TH. Otherwise, if the first

58

useful trial is HT or there are no useful trials, it is false. This is exactly the behavior we want to

implement the the von Neumann trick. All that remains is to give FO formulas for TRIAL and

FAIL. These are straightforward, because they involve only simple arithmetic on indices of the

string and we have built-in numeric predicates for this.

3.5 Natural properties imply randomized learning

In this section, we prove the general implication from natural properties to learning

algorithms. First we prove the generic reduction from learning (and compression) to natural

properties. Then, as our main application, we use the known natural properties for AC0[p], to get

learning and compression algorithms for AC0[p].

3.5.1 A generic reduction from learning to natural properties

Theorem 3.5.1 (Learning from a natural property). Let Λ be any circuit class containing AC0[p]

for some prime p. Let R be a P-natural property, with largeness at least 1/5, that is useful

against Λ[u], for some size function u : N→N. Then there is a randomized algorithm that, given

oracle access to any function f : {0,1}n→{0,1} from Λ[s f], produces a circuit C ∈ Ĉ f
ε in time

poly(n,1/ε,2u−1(poly(n,1/ε,s f))).

Proof. Let GEN(f) = {gz} be an (ε,L)-black-box generator based on f , for L(n) such that

logL(n)> u−1(poly(n,1/ε(n),s f)). Using the nonuniform Λ-efficiency of black-box generators,

we have that gz ∈ Λ f [poly(n,1/ε)], for every z. Hence, we get, by replacing the f -oracle with

the Λ-circuit for f , that gz ∈ Λ[sg], for some sg ≤ poly(n,1/ε,s f). We want sg < u(logL(n)).

This is equivalent to u−1(sg)< logL(n).

Let D be the circuit obtained from the natural property R restricted to truth tables of size

L(n). By usefulness, we have Prz[¬D(gz) = 1] = 1, and by largeness, Pry[¬D(y) = 1]≤ 1−1/5.

So¬D is a 1/5-distinguisher for GEN(f). By the reconstruction property of black-box generators,

59

we have a randomized algorithm that constructs a circuit C ∈ Ĉ f
ε in time poly(n,1/ε(n),L(n)) =

poly(n,1/ε,2u−1(poly(n,1/ε,s f))), as required.

As discussed in section 3.1.3, stronger circuit lower bounds are transformed into faster

learning algorithms. Unsurprisingly, these dependences follow the same pattern as complexity-

theoretic hardness-randomness tradeoffs. For different usefulness bounds u, we get different

runtimes for our learning algorithm:

• polynomial poly(ns f /ε), for u(n) = 2Ω(n),

• quasi-polynomial quasi-poly(ns f /ε), for u(n) = 2nα

where α < 1, and

• subexponential poly(n,1/ε,2(ns f /ε)o(1))), for u(n) = nω(1).

Corollary 27. Under the same assumptions as in Theorem 3.5.1, we also get randomized

compression for Λ[poly] to the circuit size at most O(ε(n) ·2n ·n), for any 0 < ε(n)< 1 such that

log(ε(n) ·2n ·n)≥ u−1(poly(n,1/ε)).

Proof. We use Theorem 3.5.1 to learn a small circuit that computes f on all but at most ε ·2n

inputs, and then patch up this circuit by hardwiring all the error inputs, using extra circuitry of

size at most O(ε ·2n ·n). This size will dominate the overall size of the patched-up circuit for the

ε satisfying the stated condition.

3.5.2 Application: Learning and compression algorithms for AC0[p]

We have natural properties useful against the class of AC0 circuits with mod p gates, for

any fixed prime p, as given in [RR97]. The lower bound of Razborov [Raz87] (showing that

MAJORITY is not in AC0[2]) embeds a natural property against AC0[2], and the lower bound

of Smolensky [Smo87] (showing that PARITY is not in AC0[p], for any prime p 6= 2) embeds

a natural property against AC0[p] for any prime p > 2. In both cases, the natural property is

NC2-computable, and is useful for circuit size up to 2Ω(n1/(2d)), where d is the circuit depth, and

n is the input size.

60

Theorem 3.5.2 ([RR97]). For every prime p, there is an NC2-natural property of n-variate

Boolean functions, with largeness at least 1/2, that is useful against AC0[p] circuits of depth d

of size up to 2Ω(n1/(2d)).

Below we sketch the corresponding natural properties; proofs are deferred to Section

3.5.4, after we have completed our main application.

Natural Property useful against AC0[2]: For 0≤ a,b≤ n, define a linear transformation

Aa,b that maps a Boolean function f : {0,1}n→ {0,1} to a matrix M = Aa,b(f) of dimension(n
a

)
×
(n

b

)
, whose rows are indexed by size a subsets of [n], and rows by size b subsets of [n]. For

every K ⊆ [n], define the set Z(K) = {(x1, . . . ,xn) ∈ {0,1}n | ∀i ∈ K, xi = 0}. For a size a subset

I ⊆ [n] and size b subset J ⊆ [n], define MI,J =⊕x∈Z(I∪J) f (x).

The natural property of Theorem 3.5.2 for AC0[2] is the following algorithm:

Given an n-variate Boolean function f , construct matrices Mb = Aa,b(f) for
a = n/2−

√
n and for every 0≤ b≤ a. Accept f if, for at least one b, rank(Mb)≥

2n

140n2 .

Natural Property useful against AC0[p], for primes p > 2: Let f be a given n-variate

Boolean function. Without loss of generality, assume n is odd. Denote by L the vector space of

all multilinear polynomials of degree less than n/2 over GF(p). Let f̄ be the unique multilinear

polynomial over GF(p) that represents f on the Boolean cube {−1,1}n (after the linear trans-

formation mapping the Boolean 0 to 1 mod p, and the Boolean 1 to −1 mod p), i.e., f and f̄

agree over all points of {−1,1}n.

The natural property of Theorem 3.5.2 for AC0[p] is the following algorithm:

Given an n-variate Boolean function f , construct its unique multilinear polyno-
mial extension f̄ over GF(p). Accept f if dim(f̄ L+L)≥ 3

4 ·2
n (over GF(p)).

Theorem 3.5.2, in conjunction with Theorem 3.5.1, immediately yields our main applica-

tion.

Corollary 28 (Learning AC0[p] in quasipolytime). For every prime p, there is a randomized

algorithm that, using membership queries, learns a given n-variate Boolean function f ∈ AC0[p]

61

of size s f to within error ε over the uniform distribution, in time quasi-poly(ns f /ε).

Using Corollary 27, we also immediately get the following compression result, first

proved (with somewhat stronger parameters) by Srinivasan [Sri15].

Corollary 29. There is a randomized compression algorithm for depth-d AC0[p] functions that

compresses an n-variate function to the circuit size at most 2n−nµ

, for µ ≥Ω(1/d).

3.5.3 Sketch of Complete Algorithm

Here, we sketch the algorithm implied by Theorem 3.5.1 for the case of AC0[2]. Let

f : {0,1}n→{0,1} be a function in AC0[2] to be learned, given via membership oracle. Let R

be a natural property, and let L = npoly(logn).

1. Design a subroutine for computing AMP(f) = (f k)GL (Theorem 3.4.3) using f as an

oracle.

2. Let D be a circuit simulating the natural property RL. D is a distinguisher between

GAMP(f)(s) for a random s and uniform, as shown in the proof of Theorem 3.5.1.

3. Convert D into C, a weak predictor for AMP(f) on (1/2+Ω(1/L))-fraction of inputs,

using the NW reconstruction algorithm and oracle for AMP(f) that we simulate using

membership queries to f .

4. Use C as the oracle for the Goldreich-Levin reconstruction algorithm (Theorem 3.4.2),

obtaining a predictor C′ for the direct product of f .

5. Use C′ as input to the Direct Product reconstruction algorithm of Theorem 3.4.1, and print

the resulting circuit.

For the case of AC0[p] with p 6= 2, the algorithm is essentially the same, but requires

an additional step in the definition of AMP(f): the von Neumann construction (Theorem 3.4.4)

applied to (f k)GL. Thus, we need the von Neumann reconstruction step inserted between steps 3

and 4 of the complete algorithm above.

62

3.5.4 Natural properties useful against AC0[p]

For the remainder of this section, we present the natural properties useful against the

class of AC0 circuits with mod p gates, for any fixed prime p, as given in [RR97]. This material

may be skipped at a first reading, as it is an exposition of previous results included here solely to

make the presentation of our algorithm self-contained.

We follow the lower bound of Razborov [Raz87] (showing that MAJORITY is not

in AC0[2]) to get a natural property useful against AC0[2], and the lower bound of Smolen-

sky [Smo87] (showing that PARITY is not in AC0[p], for any prime p 6= 2) for the case of AC0[p]

for any prime p > 2. In both cases, the natural property is NC2-computable, and is useful for

circuit size up to 2Ω(n1/(2d)), where d is the circuit depth, and n is the input size.

The case of AC0[2]

Theorem 3.5.3 ([RR97]). There is an NC2-natural property of n-variate Boolean functions, with

largeness at least 1/2, that is useful against AC0[2] circuits of depth d of size up to 2Ω(n1/(2d)).

Proof. For 0 ≤ a,b ≤ n, define a linear transformation Aa,b that maps a Boolean function

f : {0,1}n→{0,1} to a matrix M = Aa,b(f) of dimension
(n

a

)
×
(n

b

)
, whose rows are indexed by

size a subsets of [n], and rows by size b subsets of [n]. For every K ⊆ [n], define the set

Z(K) = {(x1, . . . ,xn) ∈ {0,1}n | ∀i ∈ K, xi = 0}.

For a size a subset I ⊆ [n] and size b subset J ⊆ [n], define

MI,J =⊕x∈Z(I∪J) f (x).

Razborov [Raz87] showed that if rank(Aa,b(f))≥Ω(2n/n2), for a = n/2−
√

n and some

b ≤ a, then f requires AC0[2] circuits of depth d of size at least 2Ω(n1/(2d)). He also showed

the existence of an n-variate Boolean (symmetric) function h such that, for some 0 ≤ b ≤ a,

63

rank(Aa,b(h))≥ 2n

70n2 , and hence, h requires large AC0[2] circuits.

This yields the following natural property useful against large AC0[2] circuits:

Given an n-variate Boolean function f , construct matrices Mb = Aa,b(f) for
a = n/2−

√
n and for every 0≤ b≤ a. Accept f if, for at least one b, rank(Mb)≥

2n

140n2 .

First, observe that such a property of n-variate Boolean function f is computable in NC2:

we first construct O(n) matrices of size at most 2n×2n, and then compute the rank (over GF(2))

of each of them. Thus, this property is NC2-natural.

Secondly, by Razborov’s result mentioned above, any f accepted by the property must

require AC0[2] depth d circuits of size at least 2Ω(n1/(2d)). Thus we have usefulness against

exponential-size circuits.

Finally, to argue largeness, we use the function h mentioned above with rank(Aa,b(h))≥
2n

70n2 , for some 0 ≤ b ≤ a. For each Boolean function f , we will show that either Aa,b(f) or

Aa,b(f ⊕h) has rank at least 2n

140n2 , which implies that at least 1/2 of all Boolean functions are

accepted by our property.

Indeed, since Aa,b is an GF(2)-linear map, and using the subadditivity of rank, we get

rank(Aa,b(h)) = rank(Aa,b(h⊕ f ⊕ f))

≤ rank(Aa,b(h⊕ f))+ rank(Aa,b(f)).

Thus, at least one of Aa,b(f) or Aa,b(f ⊕h) must have the rank at least 1/2 of the rank of Aa,b(h),

as required.

The case of AC0[p] for all primes p > 2

Theorem 3.5.4 ([RR97]). For every prime p > 2, there is an NC2-natural property of n-variate

Boolean functions, with largeness at least 1/2, that is useful against AC0[p] circuits of depth d

of size up to 2Ω(n1/(2d)).

Proof. Let f be a given n-variate Boolen function. Without loss of generality, assume n is odd.

64

Denote by L the vector space of all multilinear polynomials of degree less than n/2 over GF(p).

Let f̄ be the unique multilinear polynomial over GF(p) that represents f on the Boolean cube

{−1,1}n (after the linear transfofrmation mapping the Boolean 0 to 1 mod p, and the Boolean

1 to −1 mod p), i.e., f and f̄ agree over all points of {−1,1}n.

The natural property given by [RR97] is the following:

Given an n-variate Boolean function f , construct its unique multilinear polyno-
mial extension f̄ over GF(p). Accept f if dim(f̄ L+L)≥ 3

4 ·2
n (over GF(p)).

It is easy to see that this property is computable in NC2. It is also argued in [RR97]

that this property has largeness at least 1/2. Finally, it also follows from [RR97], based on

Smolensky’s lower bound proof [Smo87], that any n-variate function f accepted by this property

must have AC0[p] circuits of depth d of size at least 2Ω(n1/(2d)).

Indeed, Smolensky [Smo87] shows that, for every Boolean function f computed by an

AC0[p] circuit of depth d and size s, there exists a multilinear polynomial q over GF(p) of degree

D = O(logd(s/ε)) that agrees with f on all but at most w = ε2n points W of the Boolean cube,

where we think of ε as a small constant (e.g., ε = 0.2). For any such f that also satisfies the

condition dim(f̄ L+L)≥ 3
4 ·2

n, we will show that D≥Ω(
√

n). This would imply that any such

f must have d-depth AC0[p] circuits of size 2Ω(n1/(2d)), as required.

Suppose some f can be approximated by a multilinear degree D polynomial on all

Boolean points except the set W of size w ≤ ε2n, for small constant ε (to be determined).

Suppose that f also satisfies the condition dim(f̄ L+L)≥ 3
4 ·2

n over GF(p). Using Smolensky’s

arguments from [Smo87], we get that at least p2n(3/4−ε) functions from {−1,1}n \W to GF(p)

are computable by multilinear polynomials over GF(p) of degree at most (n−1)/2+D. For

D = λ
√

n, with some λ > 0, the number of distinct multilinear monomials of degree at most

65

(n−1)/2+D is

(n−1)/2+D

∑
i=0

(
n
i

)
=

(n−1)/2

∑
i=0

(
n
i

)
+

(n−1)/2+D

∑
i=(n−1)/2+1

(
n
i

)
≤ 1

2
·2n +D ·

(
n

n−1
2

)
≤ 1

2
·2n +D · 2n√

πn/2
·
(

1+O
(

1√
n

))
(by Stirling’s approximation)

≤ 2n ·
(

1
2
+

2D√
πn

)
= 2n ·

(
1
2
+λ · 2√

π

)
,

which can be made at most (0.51) · 2n, by taking λ a sufficiently small constant (e.g., λ =

√
π/20).

Thus, the number of distinct multilinear polynomials over GF(p) of degree at most

(n− 1)/2+D is at most p0.51·2n
. On the other hand, as mentioned above, there are at least

p(3/4−ε)2n
functions from {−1,1}n \W to GF(p) that are supposed to be computable by such

low-degree multilinear polynomials. For ε small enough so that 3/4− ε > 0.51 (e.g., ε = 0.2),

we get that there are too many functions to be represented by low-degree polynomials. So it

must be the case that the degree D > λ
√

n, for some constant λ > 0.

3.6 NW designs cannot be computed in AC0

In Section 3.3.1 we showed that NW designs (with parameters of interest to us) are

computable by small AC0[p] circuits, for any prime p. It is natural to ask if one can compute

such NW designs by small AC0 circuits, without modular gates. Here we show that this is not

possible. Consider an NW design S1, . . . ,SL ⊆ [n2] where:

• each set Si is of size n,

• the number of sets is L = 2` for `= nε (for some ε > 0), and

66

• for any two distinct sets Si and S j, i 6= j, we have |Si∩S j| ≤ `.

To describe such a design, we use the following Boolean function g: for 1 ≤ i ≤ L, and for

1≤ k ≤ n2, define g(i,k) = 1 iff k ∈ Si. We will prove the following.

Theorem 3.6.1. Let g : {0,1}`+2logn→{0,1} be the characteristic function for any NW design

with the above parameters. Then g requires depth d AC0 circuits of size exp(`1/d).

To prove this result, we shall define a family of Boolean functions fT , parameterized

by sets T ⊆ [n2]: for 1 ≤ i ≤ L, we define fT (i) = 1 iff T ∩ Si 6= /0. Observe that if g(i,k) is

computable by AC0 circuits of depth d and size s, then, for every set T , the function fT (i) =

∨k∈T g(i,k) is computable by AC0 circuits of depth at most d +1 and size O(s · |T |). Therefore,

to prove Theorem 3.6.1, it will suffice to prove the following.

Lemma 3.6.2. There exists a set T ⊆ [n2] such that fT : {0,1}`→ {0,1} requires depth d +1

AC0 circuits of size at least exp(`1/d).

The idea of the proof of Lemma 3.6.2 is to show that for a random set T (of expected

size O(n)), the function fT has high average sensitivity (i.e., is likely to flip its value for many

Hamming neighbors of a randomly chosen input). By averaging, we get the existence of a

particular function fT of high average sensitivity. On the other hand, it is well-known that AC0

functions have low average sensitivity. This will imply that fT must require large AC0 circuits.

We provide the details next.

Recall that the sensitivity of a Boolean function f : {0,1}n→{0,1} at input x ∈ {0,1}n

is defined as the number of Hamming neighbors y ∈ {0,1}n of x (where y and x differ in exactly

one coordinate i, 1 ≤ i ≤ n) such that f (x) 6= f (y). The average sensitivity of a function f ,

denoted AS(f), is the expected sensitivity of f at x, over uniformly random inputs x ∈ {0,1}n.

We use the following result by Boppana [Bop97].

Theorem 3.6.3 ([Bop97]). The average sensitivity of a size s AC0 circuit of depth d is at most

O((logs)d−1).

67

We shall prove the following simple claims that will imply that fT has high average

sensitivity, for a random T ⊆ [n2] of expected size t =O(n). Below we shall choose a set T ⊆ [n2]

by placing each index k, 1 ≤ k ≤ n2, into T with probability t/n2, independently, for t = n/2.

Clearly, the expected size of T is t.

Claim 30. For every 1≤ i≤ L, PrT [fT (i) = 1]≈ 1/2.

Proof. The probability a random set T misses all n positions of Si is

(
1− t

n2

)n
≈ 1− tn

n2

= 1− t
n
,

which is approximately 1/2 by our choice of t.

Claim 31. For every 1≤ i 6= j ≤ L, PrT [fT (i) = 1 ∧ fT (j) = 1]≤ 1/4+o(1).

Proof. We have PrT [fT (i) = 1 ∧ fT (j) = 1] is equal to

PrT
[
T ∩ (Si∩S j) 6= /0

]
+PrT

[
fT (i) = fT (j) = 1 | T ∩ (Si∩S j) = /0

]
·PrT

[
T ∩ (Si∩S j) = /0

]
. (3.8)

Using the fact that |Si∩S j| ≤ `= nε and arguing as in the proof of Claim 30, we get

PrT
[
T ∩ (Si∩S j) 6= /0

]
≤ (t`)/n2

= `/(2n)

= o(1).

Next we have PrT
[

fT (i) = fT (j) = 1 | T ∩ (Si∩S j) = /0
]

equals

PrT
[

fT (i) = 1 | T ∩ (Si∩S j) = /0
]
·PrT

[
fT (j) = 1 | fT (i) = 1 ∧ T ∩ (Si∩S j) = /0

]
.

68

Conditioned on T missing the intersection Si∩S j, the conditional probability that T intersects Si

is

1−
(

1− t
n2

)n−|Si∩S j|
≈

n−|Si∩S j|
2n

≤ 1
2
.

Similarly, conditioned on T missing the intersection Si∩S j but intersecting Si, the conditional

probability of T intersecting S j is also approximately at most 1/2 (following the same calculations

as for the case of Si above).

Putting everything together, we get that PrT [fT (i) = 1 ∧ fT (j) = 1]≤ 1/4+o(1).

Claim 32. For every 1≤ i 6= j ≤ L, PrT [fT (i) 6= fT (j)]≥ 1
5 .

Proof. For every fixed i 6= j, we have

PrT [fT (i) 6= fT (j)]≥ PrT [fT (i) = 1 ∧ fT (j) = 0]

= PrT [fT (i) = 1]−PrT [fT (i) = 1 ∧ fT (j) = 1],

which, by Claims 100 and 31, is at least 1/2−1/4−o(1) = 1/4−o(1)> 1/5.

Claim 33. There exists a set T such that AS(fT)≥ `/5.

Proof. For a string x ∈ {0,1}n, we denote by N(x) the set of all strings y ∈ {0,1}n that differ

from x in exactly one coordinate; that is, N(x) is the set of all Hamming neighbors of x in the

Boolean cube {0,1}n. Also, for a condition A, we denote by {A} the indicator function of A, i.e.,

{A}= 1 if the condition A is true, and {A}= 0 otherwise.

69

We have

E
T
[AS(fT)] = E

T⊆[n2],i∈{0,1}`

[
∑

j∈N(i)
{ fT (i) 6= fT (j)}

]

= E
i

[
∑

j∈N(i)
E
T
[{ fT (i) 6= fT (j)}]

]

= E
i

[
∑

j∈N(i)
PrT [fT (i) 6= fT (j)]

]

≥ E
i

[
∑

j∈N(i)

1
5

]
(by Claim 32)

=
`

5
.

By averaging, there exists a set T , such that AS(fT)≥ `/5.

Now we finish the proof of Lemma 3.6.2. Suppose the function fT given by Claim 33

is computed by an AC0 circuit of depth d + 1 and size s. By Theorem 3.6.3, we get that

AS(fT)≤ O((logs)d). It follows that

`

5
≤ O((logs)d),

which implies that s ≥ exp(`1/d), as required. Thus, our techniques as currently constructed

cannot learn AC0 “directly” — by using the AC0-natural property against AC0.

3.7 Conclusions

For our applications, we need Λ strong enough to carry out a (version of) the construction,

yet weak enough to have a natural property useful against it. Here we show that Λ = AC0[p] for

any prime p satisfies both conditions. A logical next step would be ACC0: if one can get a natural

property useful against ACC0, for example by naturalizing Williams’s [Wil14b] proof, then a

learning algorithm for ACC0 would follow. MODp can be simulated with MODm, m = p ·a gates

70

by duplicating each input to the Modm gate a times (without any penalty in the number of gates),

our construction for MODp can be applied directly by taking p to be any prime factor of m.

Connections between learning algorithms and lower bounds could also be explored in

other settings. In particular, it would be interesting to give such a connection for arithmetic

circuits. In [KI04], the NW generator is used to derandomize polynomial identity testing

based on a polynomial with a large arithmetic circuit lower bound. Since the main reduction

is constructive, one might hope to use it to design learning (or interpolation) algorithms for

multivariate polynomials of small circuit complexity. However, it is unclear what the analogy of

“natural property” would be in this setting.

We conclude with some open questions. Can we get an exact compression algorithm

for AC0[p] (or even AC0) functions that would produce circuits of subexponential size? Can

our learning algorithm be derandomized? Is there a way to get nontrivial SAT algorithms from

natural properties? This is a question about the fine-grained NP-hardness of MCSP. Finally, are

there more applications of a “play-to-lose” attitude towards pseudorandom constructions?

Chapter 3, in part, is based on the material as it appears in “Marco L. Carmosino, Russell

Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learning algorithms from natural

proofs. In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May

29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2016”. The dissertation author was the primary investigator

and author of this paper.

71

Chapter 4

Agnostic Natural Learning

4.1 Introduction

Recently many new connections have been discovered between two complementary

domains: proving circuit lower bounds and designing meta-computational algorithms for

the corresponding circuit classes (see, e.g., [San10, Wil10, Wil11, IMP12, IMZ12, CKK+15,

CIKK16]). In particular, [CIKK16] shows that a natural property (in the sense of Razborov and

Rudich [RR97]) for a (sufficiently powerful) circuit class Λ yields an efficient PAC learning

algorithm for the same circuit class, under the uniform distribution, with membership queries;

this approach led to a first learning algorithm for the class AC0[q] (of constant-depth circuits

with AND, OR, NOT, and modulo q gates), for every prime q, covered by the previous chapter

of this thesis.

Here, we extend those results. The “learning algorithms from natural proofs” technique

of [CIKK16] applies only to realizable case learning: if a function f is computed exactly by

an appropriate circuit class Λ for which there is a natural proof of a circuit lower bound, then

we can learn f using membership queries in time dependent on the strength of the circuit lower

bound. A more realistic learning model is agnostic learning, where we select some “touchstone”

class Λ and attempt to find a hypothesis that isn’t “too far off” from the best Λ-approximation to

the target function.

We show that, even in this agnostic setting, we can (somewhat generically) obtain learning

72

algorithms from natural proofs. We instantiate this framework to give the first membership-query

agnostic learning algorithm over the uniform distribution for AC0[q], the class of constant-depth

circuits of polynomial-size with unbounded fanin AND, OR, NOT, and MODq gates. Previously,

only the case of AC0 circuits was known — albeit for an agnostic algorithm without membership

queries, and with better approximation error [KKMS08].

Theorem 34 (AC0[q] agnostic learning). Let q be any prime. There is a randomized quasi-

polynomial-time algorithm such that, given oracle access to a function f : {0,1}n → {0,1}

that agrees with some unknown function in AC0[q] on at least 1− β fraction of inputs (for

some non-negligible β > 0), the algorithm outputs a circuit that computes f on all but at most

poly(logn) ·β fraction of inputs.

As an interesting special case, we get a quasipolynomial-time agnostic learning algorithm

for n-variate polynomials over GF(q) of low degree (say, at most poly(logn)), for prime q≥ 2

(as every polynomial of degree d is computable by an AC0[q] circuit of size O(nd)). Before our

result, no such learning algorithm for polynomials was known.

For an algorithm with error c(n) ·β , for some function c, we call the factor c(n) the

weakness parameter of the learning algorithm. It is desirable to have c(n) = 1. Our algorithm for

AC0[q] above has weakness poly(logn). In general, we have a trade-off between the quality of a

natural property for the circuit class, and the quality of the resulting agnostic learning algorithm

for the same class. For simplicity, we state here just the result for the best-case scenario; see

Theorem 48 on page 97 for the fully general statement.

Theorem 35 (Ideal-case trade-off). Suppose there is a natural property for a circuit class

C ⊇ AC0[2] that is useful against functions that agree on 1/2+ exp(−Ω(n)) of inputs with

some function of C -circuit complexity exp(Ω(n)). Then, for some constant c > 0, there is a

polynomial-time query agnostic learning algorithm for C with weakness c.

Theorem 35 yields a “search-to-decision” reduction for a version of the Minimal Circuit

Size Problem (MCSP). Define the Minimal Approximate Circuit Size Problem (MACSP) as

73

follows: Given a truth table of an n-variate boolean function f , and parameters s ∈ N and

δ ∈ [0,1], decide if there exists a boolean circuit C of size at most s that agrees with f on all

but at most δ fraction of inputs. (MCSP is a special case of MACSP for δ = 0.) Clearly, if

MACSP is easy (say, in P), then, for a given size bound s (our “budget”), we can determine the

best approximation parameter δ for every given truth table of a boolean function f . But, since

MACSP is an ideal-case tolerant natural property for general circuits, we get by Theorem 35 that

a polynomial-time algorithm for MACSP would yield a polynomial-time algorithm to actually

find a circuit of size poly(s), with an approximation guarantee O(δ).1

Another way to interpret Theorem 35 is as follows. If MACSP is in P, then, given oracle

access to a boolean function f , and a budget s ∈ N, we can learn, in polynomial time, a circuit of

size poly(s) that agrees with f on all but at most O(δ) fraction of inputs, where δ is the error of

the best size s circuit for f . That is, we can learn essentially the best possible circuit for f , given

our budget s on the circuit size.

4.1.1 Our approach

The key observation in adapting to the agnostic setting is that many natural properties

contain even more useful distinguishers than required for realizable-case learning. As defined by

[RR97], the distinguisher from a natural property rejects truth tables that are exactly computed

by Λ-circuits. But existing natural properties give us something even stronger: they reject truth

tables which are just close to those computed by Λ-circuits. Using this observation and the same

“play to lose” distinguisher-to-predictor reduction as in [CIKK16], we obtain agnostic learning

algorithms from such natural properties.

More precisely, we show that if a natural property for a circuit class Λ (containing AC0[q])

is tolerant in the sense that it distinguishes from random the truth tables of functions “close” to

1In [CIKK16], a similar “search-to-decision” reduction was given for MCSP: if a given boolean function f
is exactly computable by a polynomial-size circuit, then one can find a polynomial-size circuit approximately
computing f , given a polynomial-time algorithm for MCSP. In contrast, here we say that if f can be non-trivially
approximated by a polynomial-size circuit, we can find another polynomial-size circuit that achieves the same
approximation error up to a constant factor, given a polynomial-time algorithm for MACSP.

74

the class Λ (of “large” circuit complexity), then it can be used to get an agnostic membership-

query algorithm for learning Λ. We argue that such a tolerant natural property exists for AC0[q]

[Raz87, Smo87, RR97], which is then used to prove our Theorem 34. For AC0[2], we need to

dig inside the arguments of [Raz87], and show that his original circuit lower bound proof does

yield a certain tolerant natural property. For AC0[q], for prime q > 2, we actually need to re-do

the “natural proof” argument of [RR97] by adapting it to the case of GF(q)-valued functions

(rather than boolean functions). Not only does it allow us to get tolerant natural properties for

AC0[q], but also simplifies and streamlines the analysis in [CIKK16] of the learning algorithm

for AC0[q].

By definition, tolerant natural properties can be used for proving average-case circuit

lower bounds (as opposed to the worst-case circuit lower bounds implied by standard natural

properties). Thus the main message of the present chapter can be summarized as follows:

Natural proofs of average-case circuit lower bounds imply agnostic learning
algorithms!

In contrast, the main result of [CIKK16] says that natural proofs of worst-case circuit lower

bounds imply standard (non-agnostic) learning algorithms.

4.1.2 Our techniques

We build upon the framework of [CIKK16] who use a natural property for a given circuit

class Λ in order to devise a learning algorithm for the same class. Recall that a natural property

(in the sense of [RR97]) is an efficient algorithm that tells apart truth tables of functions in

the class Λ (of some “large” circuit complexity u) from those of random functions. To learn

a function f ∈ Λ, for some circuit class Λ that has an associated natural property, the idea is

to apply (as only a thought experiment!) an appropriate “function generator” that maps f to a

family of functions all of which are “easy” (of small Λ circuit complexity) and so will be rejected

by the natural property for the class. Thus an efficient algorithm from the natural property acts

as a distinguisher “breaking” the function generator. If the function generator has an “efficient

75

reconstruction” property, meaning that a distinguisher for the generator can be used to build a

small circuit approximately computing the original function f , we get a learning algorithm for f .

Thus, the actual learning algorithm is using the natural property algorithm as a distinguisher, and

applies the efficient reconstruction procedure (associated with the given function generator) to

build a circuit approximating f . Usually, such a reconstruction procedure requires oracle access

to the function generator; if, however, the function generator is “local” in the sense that such

oracle access to the generator can be efficiently reduced to oracle access to the original function

f , one gets a query learning algorithm for the concept class Λ.

To adapt this approach to the case of agnostic learning, where a function f to be learned

is not in the class Λ, but rather just somewhat close to the class, we need to satisfy the following

requirements: (1) the outputs of the function generator applied to f must be close to the class Λ

(of some circuit size u), and (2) the natural property for Λ must reject not only functions in Λ (of

size u), but also functions that are close to those.

We call natural properties satisfying condition (2) above tolerant. We say that a natural

property has ρ-tolerant u-usefulness for the circuit class Λ if it rejects all truth tables of functions

that agree with some function in Λ[u] (computable by a Λ circuit of size u) on all but at most ρ

fraction of inputs. We show that the natural property for the circuit class AC0[2] from [Raz87]

is in fact ρ-tolerant, for some small but nontrivial ρ > 0, and with large (weakly-exponential)

usefulness u.

With tolerant natural properties in hand, we turn to requirement (1) above: getting

the truth tables output by the function generator on a given function f to be close to those

from the circuit class Λ[u]. We need to take a closer look at the function generator used in

[CIKK16]. It comprises two components: (1) amplification, and (2) Nisan-Wigderson (NW)

generator [NW94] applied to the amplified version Amp(f) of the function f . The purpose of

the amplification component is to “error-correct” f so that even a circuit that computes Amp(f)

with small advantage over random guessing can be used to construct a circuit that computes f

almost everywhere. The NW generator applied to Amp(f) has the properties required of the

76

function generator: locality and efficient reconstruction.

In our case, suppose that f agrees with some function h ∈ Λ on a large fraction of inputs.

Once we apply amplification to both f and h, we get Amp(f) and Amp(h) that are pushed

further apart (as one would expect when using error-correcting codes). In order to keep the

amplified functions close to each other, we will tone down the amplification procedure, which

will adversely affect the approximation error of our learning algorithm, but the error can still be

kept relatively small.

Next we need to ensure that the NW generator when applied to Amp(f) generates a

family of functions such that most of them are sufficiently close to the family generated on

Amp(h). In other words, we would like the generator to almost preserve the relative distance

between the functions it is applied to. This can be achieved as follows. First, we observe that

the definition of the NW generator guarantees that on a random seed z, the functions generated

for Amp(f) and Amp(h) have the expected distance (over random z) equal to the actual distance

between Amp(f) and Amp(h). Thus we have distance preservation in expectation. To make

it concentrated around the expectation, we modify the NW construction by adding a pairwise-

independent generator inside the NW construction. This ensures that the truth tables output by

the modified NW generator are evaluations of Amp(f) (or Amp(h)) on a sequence of pairwise

independent inputs. The required concentration then follows by the Chebyshev bound. A similar

modification of the NW generator was done in [IW97], where an expander-walk generator

was used for even better concentration; we use a simple pairwise generator as it can be easily

implemented in AC0[2], and it provides sufficient concentration for our purposes.

4.1.3 Related work

The concept of agnostic learning was introduced by Kearns et al. [KSS94], where it was

also shown that piecewise linear functions are agnostically learnable. Agnostic learning is also

known for certain geometric patterns [GKS95], and restricted neural networks [LBW96]. More

results are known for the restricted versions of agnostic learning, for instance, when the distribu-

77

tion over examples is uniform. The class of AC0 functions was shown to be (weakly) agnostically

learnable under the uniform distribution by [KSS94]. It was later shown by [KKMS08] that

the well-known LMN learning algorithm of [LMN93] achieves a constant-factor approximation

of the optimal error (improved to the constant factor 2 in [Jac06]), and that a modification of

the algorithm (using L1 regression) achieves the optimal error; the runtime of the algorithm is

quasipolynomial. In fact, the result of [KKMS08] is generic in the following sense: any concept

class of functions with certain “Fourier concentration” (as is the case, e.g., for AC0 functions by

the results of [LMN93]) admits an agnostic learning algorithm under the uniform distribution,

with an optimal error, whose runtime depends on the strength of the Fourier concentration for

the concept class.

In distribution-independent setting, allowing membership queries does not give extra

power to agnostic learning, yet membership queries can help when the distribution is uni-

form [Fel09]. In particular, under the uniform distribution, Gopalan, Kalai and Klivans [GKK08]

and Feldman [Fel10] give polynomial-time agnostic learning algorithms with membership

queries for decision trees.

Agnostic learning of parities is closely related to the well-studied problem of learning

noisy parities, which has a number of applications beyond learning theory, from decoding random

linear codes to cryptography [BFKL93, FS96, Ale03, Lyu05, Pie12].

Under the uniform distribution, agnostic learning of parities (that is, learning parities with

adversarial noise) reduces to learning parities with random noise [FGKP06]. Blum, Kalai and

Wasserman [BKW03] give an algorithm that properly learns length k parities with random noise

under uniform distribution in time and sample size poly((1/(1−2η))2a
,2b), where η < 1/2 is

the noise probability, and ab≥ k. This is in contrast to the NP-hardness of properly learning noisy

parities under arbitrary distributions, which follows from [Hås01]. Later, Lyubashevsky [Lyu05]

improved query complexity of the [BKW03] algorithm to n1+ε , at the expense of bringing the

running time up to 2O(n/ log logn), for η < 1/2− 2−(logn)δ

for a constant δ . A corollary of the

latter result is a subexponential algorithm for decoding n×n1+ε random binary linear codes, in

78

the random noise setting.

Regev [Reg09] considered an extension of learning parity with noise to mod p, which he

called LWE (learning with error). He has shown that an efficient solution to LWE (for some range

of parameters) implies an efficient quantum approximation of two variants of the shortest vector

problem (GapSVP and the shortest independent vectors problem) and presented a public-key

cryptosystem based on its hardness.

Remainder of the chapter.

We start with some basic definitions in Section 4.2. In Section 4.3, we prove our main

result, Theorem 34, by instantiating the “agnostic learning from tolerant natural properties”

framework to the case of AC0[q] circuits, for any prime q. We present this framework in full

generality in Section 4.4, where, in particular, we prove Theorem 35. In Section 4.5, we discuss

the difficulty of removing membership queries from our agnostic learning algorithms for AC0[2]

(as it would have consequences for learning noisy parities). We conclude with some open

questions in Section 4.6.

4.2 Preliminaries

For n-variate boolean functions f and g, we define the distance between them, denoted

DIST(f ,g), to be the number of inputs x where f (x) 6= g(x). We denote by dist(f ,g) the

relative distance DIST(f ,g)/2n. For a class F of n-variate boolean functions, and an n-variate

boolean function f , we define the distance of f from the class F , denoted DIST(f ,F), as

minh∈F DIST(f ,h). The relative distance of f from F is dist(f ,F) = DIST(f ,F)/2n.

4.2.1 Learning algorithms

The concept of agnostic learning was introduced by [KSS94]. As in the PAC model of

Valiant [Val84], we have a distribution over labeled examples (x, f (x)) for some function f , and

we wish to learn f up to a small additive error over the given distribution. However, unlike in

79

the PAC model, we don’t assume that f belongs to some concept class C , but rather that f is

“close” to C . More precisely, setting opt to be the disagreement probability between f and the

best (closest) function h ∈ C , the agnostic learning algorithm is supposed to output, with high

probability 1−δ , a hypothesis that disagrees with f with probability at most opt+ ε , for given

ε,δ ∈ [0,1]. If the underlying distribution over examples is uniform, we say that the concept

class C is agnostically learnable under the uniform distribution.

In the special case where we allow membership oracle, i.e., our learning algorithm has

oracle access to the function f it is trying to learn, we call it a (membership) query agnostic

learning algorithm. If, in addition, the hypothesis error is measured under the uniform distribution,

we call it a query agnostic learning algorithm under the uniform distribution.

The learning algorithms considered in this chapter are query algorithms under the uniform

distribution. However, they don’t achieve the ideal error opt+ ε . Rather, we get an error of

the form c(n) ·opt, for some function c, which we call the weakness parameter of the agnostic

learning algorithm; we also assume that opt is non-negligible and so we can drop the additive

error ε to simplify the notation. For example, in the case of C = AC0[2], our learning algorithm

has weakness poly(logn).

4.2.2 Tolerant natural properties

We extend the definition of a natural property [RR97] to the case of a tolerant property,

which intuitively says that not only all “easy” functions are rejected by the property, but also all

functions “sufficiently close” to the “easy ones” are rejected. Such tolerant properties yield not

just worst-case, but also average-case circuit lower bounds.

Let Fn be the collection of all Boolean functions on n variables. Λ and Γ denote complex-

ity classes. A combinatorial property is a sequence of subsets of Fn for each n.

Definition 36 (Tolerant Natural Property). A combinatorial property {Rn}n≥0 is Γ-natural with

density δ and τ-tolerant u-usefulness, for some functions δ ,τ : N→ [0,1] and u : N→ N, if it

satisfies the following conditions:

80

Γ-Constructivity: Given the truth table of fn, a Γ-algorithm decides if fn∈Rn.

δ -Largeness: |Rn| ≥ δ (n) · |Fn|.

τ-Tolerant u-Usefulness: For all fn ∈ Fn (for large n), if dist(fn,Λ[u(n)])≤ τ(n), then fn 6∈ Rn.

The standard natural property [RR97] is 0-tolerant in our language. For a number of

complexity classes, including AC0[q] for primes q, 0-tolerant natural properties were given in

[RR97]. We prove that the natural property of [Raz87] has in fact (1/n3)-tolerant usefulness

against d-depth AC0[2] circuits of size exp(Ω(n1/(2d))).

Lemma 37 (Tolerant natural property for AC0[2]). There is a P-natural property {Rn}n≥0 with

largeness 1/2, and (1/n3)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[2] circuits.

We also give a tolerant natural property against AC0[q] for prime q.

Lemma 38 (Tolerant natural property for AC0[q]). There is a P-natural property {Rn}n≥0 with

largeness 1/2, and (.15)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[q] circuits

computing functions f : {1,−1}n→ GF(q).

We defer the construction of these natural properties to Section 4.3.6, after using them in

our applications.

4.3 Agnostic learning from tolerant natural properties for
AC0[2]

4.3.1 The CIKK framework

Recall the way non-agnostic learning algorithms follow from natural properties in the

framework of [CIKK16]. Suppose we want to learn a function f in some circuit class Λ; for

simplicity, assume f has polynomial-size circuits of type Λ.

As a thought experiment, imagine the following transformations applied to f . First, we

amplify f , getting a new function F = AMP(f), on polynomially larger inputs, with the property:

81

if we are given a small circuit computing F on at least 1/2 + ε fraction of
inputs, then we can construct a circuit computing the original function f on at
least 1− 1/poly(n) fraction of inputs, in randomized time poly(n,1/ε), using
membership queries to f .

Then F is used as a “hard function” for the NW generator G. For each seed z of the

NW generator, we view the output binary string G(z) of length L as the truth table of an `-

variate boolean function, for `= logL. The crucial observation in [CIKK16] is that the circuit

complexity of this `-variate boolean function is polynomial in the circuit size of the original

function f , which is poly(n).

We need to express this circuit complexity poly(n) as a function of the input size `. Note

that if the stretch L is small, for example, if L = poly(n), then `= O(logn), and so the `-variate

function (whose truth table is) output by G(z) has circuit complexity exponential in its input size

`. Thus, to reduce the circuit complexity of the function output by G(z), we need to increase the

stretch L of the NW generator. For example, by taking L = exp(poly logn), we can ensure that

the circuit complexity of G(z) (for each seed z) is only weakly exponential in the input size `.

The point of using the NW generator to produce truth tables of relatively easy functions

G(z) is that we assumed the existence of an efficient natural property (with sufficient usefulness)

which will accept many random truth tables, but will reject all truth tables of easy functions.

In other words, this natural property provides an efficient (polynomial-time) algorithm that

distinguishes the outputs of the NW generator G from truly random strings. But then, the

analysis of the NW generator construction implies that we get from this distinguisher a new

algorithm that computes F (the function upon which the NW generator was based) on at least

1/2+Ω(1/L) fraction of inputs; where the reconstruction algorithm requires membership oracle

for f . The latter implies — by the aforementioned properties of F = AMP(f) — that we can

construct a circuit computing f on almost all inputs, in time poly(n,L) (again, using membership

oracle for f). Thus we get a learning algorithm from the natural property, using the efficient

reconstruction algorithm for the NW generator and the amplification procedure.

For example, using natural properties against AC0[2] that are useful against circuits

82

of weakly-exponential size [RR97], the above framework yields a learning algorithm, with

membership queries, for functions computable by polynomial-size AC0[2] circuits, running in

quasipolynomial time.

4.3.2 Extension to the agnostic learning case

We wish to apply the same framework to the task of agnostic learning. Suppose we wish

to learn a function f which is only somewhat close to a function h in some circuit class Λ (of

polynomial-size circuits). Suppose that dist(f ,Λ)≤ β , and that h ∈ Λ is the closest function to

f . Assume we are given a membership oracle for f .

To apply the [CIKK16] approach to learn f , we need to ensure the following:

for most seeds z, the function G(z) (for the NW generator based on F = AMP(f))
is rejected by the appropriate natural property for our circuit class Λ.

If so, then we have a distinguisher for the NW generator based on F , and, as before, can efficiently

construct a circuit for computing f almost everywhere.

As f is not in the class Λ, but rather just close to it, the best we can hope for is that the

amplified function F = AMP(f) is also somewhat close to Λ, and that the outputs of the NW

generator G(z) based on F are also somewhat close to the class Λ (of larger circuit size). If we

can guarantee that (most of) the strings G(z) are at relative distance at most τ from Λ[u], then

our natural property with τ-tolerant u-usefulness will be a distinguisher for the NW generator,

and we can reconstruct a circuit approximately computing f .

We need to balance the opposing constraints. On the one hand, to keep F = AMP(f)

close to Λ, we cannot amplify f too much, as the amplification, like an error-correcting encoding,

pushes the originally close functions far apart. On the other hand, the stronger the amplification

applied to f , the smaller the approximation error we get from a circuit for f constructed by the

learning algorithm. As we are restricted by the tolerance parameter τ of our natural property, we

are forced to keep the amplification relatively weak, which in turn implies a weak approximation

error for the learned circuit for f .

83

Suppose that f : {0,1}n → {0,1} is at the relative distance β from some n-variate

function h ∈ Λ[poly]. We will fine-tune the amplification procedure of [CIKK16] so that F =

AMP(f) and H = AMP(h) are at the relative distance at most µ(n), for some µ : N→ [0,1] to

be determined. Then we need to ensure that the outputs of the NW generator on F and on H, for

most random seeds z, produce truth tables of length L that are at the relative distance at most

τ(`) from each other, where `= logL is the input size of such a function output by G(z).

To ensure that the NW generator based on close functions F and H produces strings that

are close (for most seeds z), we modify the NW generator by adding a pairwise-independent

generator as an extra component. (Similar modification to the NW generator, using an expander-

walk generator, was done in [IW97], for a different purpose.) We will show that such a modified

NW generator, when run on functions F and H that are at the relative distance µ(n) from each

other, indeed outputs, for most seeds z, strings GF(z) and GH(z) of length L each, which are

at the relative distance at most 2µ(n) from each other. Expressing 2µ(n) as a function of the

input length `= logL, we get an upper bound on the relative distance between GF(z) and Λ[u]

(as GH(z) ∈ Λ[u] by our assumption that h ∈ Λ[poly]), for most seeds z. Here we choose the

stretch L long enough so that the circuit complexity of the functions GH(z) is at most u, where

u is usefulness of our natural property. For example, for AC0[2], we have usefulness against

weakly-exponential circuit size exp(n1/(2d)) for depth d circuits, and so we can make L to be

quasi-polynomial, exp(poly logn).

4.3.3 Outline of the general method

In converting a tolerant natural property to an agnostic learning algorithm, we go through

the following steps, mostly analogous to the steps in [CIKK16].

Initial assumptions We start with access via membership queries to a Boolean function f . We

are promised that there is a function h ∈C so that dist(f ,h)≤ β , for some parameter β .

We do not have any access to h, but can refer to it in the analysis.

84

Amplification The first step is to perform an amplification construction, Amp(f), to obtain a

function F . Similarly, we can (conceptually) apply Amp(h) to obtain a function H. We

need the following properties:

1. We can simulate membership queries to F via membership queries to f

2. H ∈C

3. We can bound dist(F,H) away from 1/2. The exact bound we will require will

depend on the tolerance of the natural property.

Pseudo-random Function Generator We next convert F to a pseudo-random function gener-

ator, GF
s (I) (and, conceptually, convert H into GH

s (I). For each seed s, GF
s is a Boolean

function on ` bits, producing a truth table of size L = 2`. We call L the stretch of the

generator. We need the following properties:

1. Given s, the truth table for GF
s can be computed via membership queries to F (and

hence, f).

2. For each s, GH
s (I) has small C circuit complexity (as a function of ` bit input I)

3. With good probability over s, dist(GF
s ,G

H
s) is small

Again, the exact quantitative requirements will depend on the quality of the tolerant natural

property. The stronger the circuit lower bound the property is useful against, the smaller

we can make the stretch and so the larger the relative circuit complexity of GH
s in (2) can

be. The more tolerant the property is, the larger the allowed distance in (3) can be. The

greater the density, the smaller the probability over seeds of small distance between GF
s

and GH
s in (3) can be.

Apply tolerant natural property to get a distinguisher Now we use the tolerant natural prop-

erty as a distinguisher, telling the difference between GF
s and a random function of the

same size. The second and third conditions above imply that, for many seeds s, GF
s is

85

close to a function with small C complexity. Thus, the property will not hold for many

such functions (as long as close is within the tolerance, and small within the usefulness

of the property). On the other hand, largeness implies that it will hold for many random

functions. A gap between these two probabilities implies a distinguishing probability. The

size of the distinguisher we obtain will depend on the stretch L and the constructivity of

the property.

Convert distinguisher to a predictor We use the contrapositive of the correctness proof of

the PRFG construction to obtain a predictor that non-trivially predicts F . Note that non-

trivially usually means with advantage at most 1/L over random guessing, so the smaller

the stretch, the better the predictor will be.

Reverse the amplification Finally, we apply the converse of the hardness amplification correct-

ness proof to obtain a circuit that computes the original function f with good probability.

Note that the agreement of the circuit for f will depend on the strength of the hardness am-

plifier we can use (which is largely determined by the tolerance) but also on the prediction

advantage (largely determined by the stretch, itself determined by the usefulness of the

property). Thus, the strongest results will only apply when the tolerance is exponentially

close to 1/2 and the usefulness is exponential.

4.3.4 The case of AC0[2]

We first consider the case of amplification for AC0[2]. The case of AC0[q] for primes

q > 2 can be done in a similar way, where we work with GF(q)-valued rather than Boolean

functions; we sketch the argument in Section 4.3.5 below.

Given a boolean function f : {0,1}n→{0,1}, and a parameter k = k(n) ∈ N, the ampli-

fication Ampk(f) is defined as the Goldreich-Levin (Hadamard code) encoding of the k-wise

86

direct product of f :

AMPk(f) = F(x1, . . . ,xk,b1, . . . ,bk) =
k

∑
i=1

bi · f (xi),

where x1, . . . ,xk ∈ {0,1}n, b1, . . . ,bk ∈ {0,1}, and the summation is modulo 2.

It is shown in [CIKK16] that the error parameter of the learning algorithm for f is a

function of k and the stretch L of the generator.

Theorem 39 ([CIKK16]). Suppose the NW generator based on the function F = AMPk(f), with

output strings of length L, is broken with a constant distinguishing probability. Then, using

the distinguisher and membership queries to f , one can construct a circuit computing f on at

least 1− ε fraction of inputs, for ε ≤ O((lnL)/k). The construction algorithm is a randomized

poly(n,k,L)-time algorithm.

Suppose there is a function h∈AC0[2] such that dist(f ,h)= β . As observed in [CIKK16],

the function H = Ampk(h) ∈ AC0[2] for any k = k(n) ≤ poly(n). It is also easy to argue that

dist(F,H)= 1/2−(1−β)k/2. For a given τ = τ(`), we want to choose k so that dist(F,H)≤ τ/4.

That is, we want (1− β)k ≥ 1− τ/2. Using the inequalities 1+ x ≤ ex (true for all x), and

1− x≥ e−2x (true for all 0≤ x≤ 0.7), we are allowed to take k = τ/(4β).

Then the NW generator based on F outputs a truth table of an `-variate function that has

the expected (over random seeds z to the generator) relative distance at most τ/4 from the class

of AC0[2] circuits of size u, for weakly-exponential circuit size u (for which we have a tolerant

natural property given by Theorem 37). By Markov’s inequality, we get that the actual distance

is at most τ for at least 3/4 fraction of the random seeds z to the generator.2 Thus, for AC0[2],

we can make the stretch L of our generator to be quasipolynomial, L = exp(poly(logn)). Then

`= logL = poly(logn).

2Here, and for the case of AC0[q] for primes q > 2 later, we can use a simple averaging argument and keep
the NW generator as is, because we have natural properties for these classes with very poor tolerance parameters.
However, for the general case, when we may have better tolerance parameters, we achieve better concentration by
combining the NW generator with a pairwise-independent generator.

87

As we have (1/`3)-tolerant natural property for AC0[2] circuits of size u computing

`-input boolean functions (Theorem 37), we set τ = (1/`3), and get that k = (4β`3)−1. As the

τ-tolerant natural property breaks the NW generator based on F , we get by Theorem 39 that f

can be learned up to the error O((logL)/k)≤ O(β · `4)≤ poly(logn) ·β .

Thus we have proved the following.

Theorem 40 (Agnostic learning of AC0[2]). There is a randomized quasipolynomial-time algo-

rithm for agnostically learning, with membership queries, a function f : {0,1}n→{0,1} with

dist(f ,AC0[2])≤ β (for a non-negligible β > 0), producing a circuit that computes f on all but

at most poly(logn) ·β fraction of inputs.

4.3.5 The case of AC0[q] for prime q > 2

Next, we consider the case of agnostic learning for AC0[q] for prime q > 2. While this

follows the general outline of the AC0[2] case, there are some differences. In particular, to keep

the function generators close to functions in AC0[q], we need to consider them as producing

functions which take Boolean {1,−1} inputs to outputs in the range {0, . . . ,q−1} of integers

modulo q. We need to adjust the natural property from [RR97] to handle such functions. This

turns out to actually simplify the argument from [RR97] and to eliminate one step (the von

Neumann construction) from the PRFG construction in [CIKK16]. Our learning algorithm

follows the same general outline as above.

Preconditions We assume membership query access to a Boolean function f : {0,1}n→{0,1},

and a value β and integer d so that we are promised that there is an h in AC0[q] computable

by a depth d circuit and dist(f ,h)≤ β .

Amplification Given a parameter k = k(n), the mod q amplification Ampk,q(f) is defined as the

mod q Goldreich-Levin (Hadamard code) encoding of the k-wise direct product of f :

AMPk,q(f) = F(x1, . . . ,xk,b1, . . . ,bk) =
k

∑
i=1

bi · f (xi),

88

where x1, . . . ,xk ∈ {1,−1}n, b1, . . . ,bk ∈ {0, . . . ,q−1}, and the summation is modulo q.

Note that this function takes on values in {0, . . . ,q−1}. We will extend the class AC0[q] to

include such functions in any of several obvious ways, e.g., by having q output gates with

the one true one selecting the output. We can code inputs taking on such values similarly.

In our construction, we will set k = 1/(10 ·β). Let the functions H and F be defined

by H = Ampk,q(h) ∈ AC0[q] and F = Ampk,q(f). Then dist(F,H) = (1− (1−β)k)(1−

1/q)≤ kβ = .01, since if f and h agree on all k inputs, the functions F and H will agree,

and otherwise, they agree with conditional probability 1/q. Also, H is computable by a

depth d +2 AC0[q] circuit of polynomial size, and a query to F can be simulated with k

queries to f .

Pseudo-random function generator As in [CIKK16], we use a version of the NW generator

with a design based on polynomials over GF(q). We are applying this to the function

F with non-Boolean outputs from GF(q), so the resulting truth table will be, for each

seed s, a vector of values mod q. We will set the stretch L to be quasi-polynomial in n,

L = exp(C · logqd+c n) for some constants C and c, where we need the q in the exponent

of the polylog because of the overhead of GL reconstruction for circuits with outputs in

GF(2). Note that we can construct such a truth table with L queries to F . A subtlety is

that, while we look at the sets in the design as determined by polynomials over GF(q), we

only consider those L polynomials of degree `−1, where `= log2 L, with co-efficients in

{1,−1}.

Call this pseudo-random function generator using F and H respectively, and seed s, GF
s

and GH
s . As noted in [CIKK16], for each seed s, GH

s can be computed by poly(n) sized

circuits of depth d +O(1).

Since for a random seed s and random position I, the value F is queried at is uniform,

Es
[
dist(GF

s ,G
H
s)
]
= dist(F,H)≤ .01. By Markov, we get Pr

[
dist(GF

s ,G
H
s)≥ .1

]
≤ .1.

89

Apply natural property At this point, we apply a tolerant natural property. We need a variant

of natural property that applies to functions with Boolean inputs and outputs in GF(q). It

turns out that the Razborov-Rudich [RR97] natural property for AC0[q] is actually simpler

in this case. We prove the following theorem after completing our application.

Lemma 41 (Tolerant natural property for AC0[q]). There is a P-natural property {Rn}n≥0

with largeness 1/2, and (.15)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[q]

circuits computing functions f : {1,−1}n→ GF(q).

We get that at most 1/10 of the functions GF
s will be of high complexity, whereas a random

function will be of high complexity with probability 1/2. So testing whether a function

has high complexity gives us a poly(L) size distinguisher with constant advantage for

distinguishing GF
s from a random function.

Converting to a predictor Using the standard hybrid argument and proof of correctness for the

NW generator, we can convert this distinguisher into a predictor circuit of size poly(L) and

advantage Ω(1/L) of predicting F(z) over random guessing. (To compute this predictor,

we need to query F and hence f at poly(L) positions; see [CIKK16]. This is the main step

that requires membership queries.)

Converse of amplification Applying the converse of the generalized GL construction and the

direct product theorems, we can convert this predictor circuit into one that computes f

on 1− γ inputs, where (1− γ)Ωk = Ω(1/L). Thus, e−C1γk =C2/L, or γ = O(logL/k) =

O(β · logL) = O(β · logqd+c n). So we get an agnostic learner that works in time and

queries quasi-polynomial in n, and with error at most O(logqd+c n) ·β . (Note that this

assumes β is non-negligible; otherwise, the time and circuit size depend on 1/β as well).

Combining all these pieces, we have the following.

Theorem 42 (Agnostic learning of AC0[q]). Let q > 2 be any prime. There is a randomized

quasipolynomial-time algorithm for agnostically learning, with membership queries, a function

90

f : {0,1}n→{0,1} with dist(f ,AC0[q])≤ β (for a non-negligible β > 0), producing a circuit

that computes f on all but at most poly(logn) ·β fraction of inputs.

4.3.6 Tolerant Natural Properties

We conclude this section by producing the required tolerant natural properties.

Tolerant natural property for AC0[2]

Razborov [Raz87] showed the following natural property for AC0[2]:

Given an n-variate boolean function f , construct certain matrices A1, . . . ,Ab, for
b = n/2−

√
n, of dimensions at most 2n× 2n, and check if at least one of the

matrices has rank at least 2n/(140 ·n2) over GF(2).

More precisely, for a = n/2−
√

n and all i≤ a, define Ai to be the matrix whose rows

are labeled by size a subsets of [n], and whose columns are labeled by size i subsets of [n]. For

K ⊆ [n], let Z(K) = {x ∈ {0,1}n | x|K =~0}. For a row I ⊆ [n] and a column J ⊆ [n], define

(Ai)I,J =⊕x∈Z(I∪J) f (x).

It is possible to show that at least 1/2 of all n-variate boolean functions satisfy this

property; so we have largeness (see [CIKK16]). The usefulness of this property is due to the

following two lemmas. Below we denote by P(D) the linear space of all n-variate degree D

multilinear polynomials over GF(2).

Lemma 43 ([Raz87]). For an n-variate boolean function f and the corresponding matrices

A1, . . . ,Ab, for b = n/2−
√

n, we have for all 1≤ i≤ b that

DIST(f ,P(
√

n))≥ rank(Ai).

Lemma 44 ([Raz87]). For an n-variate boolean function f , if f is computable by a d-depth

AC0[2] circuit of size s, then

dist(f ,P((O(log(s/ε))d))≤ ε.

91

So for ε = 1/n3 and size s < exp(Ω(n1/(2d)))/n3, we get by Lemma 44 that any f

computable by a d-depth AC0[2] circuit of size s is such that DIST(f ,P(
√

n))≤ 2n/n3. Hence,

by Lemma 43, all the corresponding matrices Ai for f have rank at most 2n/n3 ≤ 2n/(140 ·n2)

(for all sufficiently large n), and so f is rejected by the natural property.

Now suppose that h is an n-variate boolean function that is close to f , i.e., for some

0≤ β ≤ 1,

dist(h, f)≤ β ,

where f is as above. Then we get by the triangle inequality that

DIST(h,P(
√

n))≤ (β +n−3) ·2n,

which, in particular, means that for any β ≤ 1/n3, such a function h will also be rejected by the

natural property above.

Thus we have proved the following.

Lemma 45 (Tolerant natural property for AC0[2]). There is a P-natural property {Rn}n≥0 with

largeness 1/2, and (1/n3)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[2] circuits.

Tolerant natural property for AC0[q] for prime q > 2

Here we prove the following.

Lemma 46 (Tolerant natural property for AC0[q]). There is a P-natural property {Rn}n≥0 with

largeness 1/2, and (.15)-tolerant exp(Ω(n1/(2d)))-usefulness against d-depth AC0[q] circuits

computing functions f : {1,−1}n→ GF(q).

Proof. Let M be the vector space of all n-variate multilinear polynomials over GF(q), and

let L be the subspace of those polynomials of degree at most n/2. Given such a multilinear

polynomial f (and any truth table indexed by {1,−1}n over GF(q) defines such a polynomial),

we say that f is high complexity if the dimension dim(L + f ·L)≥ 3/4 ·N, where N = 2n.

92

Note that, for any function f of degree d, L + f ·L is contained within the space of

multilinear polynomials of degree l/2+d, which has dimension at most N(1/2+O(d/
√

n)).

Changing any D values can increase this dimension by at most D (since adding the dimension D

vector space of all functions on these D points to the subspace for the original function includes

the subspace functions for the changed function). So in particular, any high complexity function

must have distance at least 1/5 from any function of degree c
√

n for some c > 0. Since by work

by Razborov [Raz87] and Smolensky [Smo87], any function in AC0[q] of depth d and size s

is within ε distance of a multilinear polynomial over GF(q) of degree O(log(s/ε)d), any high

complexity function must be distance .15 from any function computed by size exp(Ω(n1/(2d+C)))

depth d +C circuits with mod q gates.

At least half of such functions have high complexity. From [Smo87], for p the product

of all l inputs (i.e., the parity of the number of -1 inputs), L + p ·L = M . Then for f any

function, either f has high complexity or p− f does. Because if both have low complexity, then

dim(L + f ·L) = dimL +dim((f ·L)/L)<
3
4
·N,

so dim((f ·L)/L)< (1/4) ·N, and similarly for p− f . Then

dimM = dim(L + p ·L)

≤ dim(L + f ·L +(p− f) ·L)

≤ dimL +dim((f ·L)/L)+dim(((p− f) ·L)/L)

< N/2+N/4+N/4

= N,

a contradiction. Since all functions can be paired up into f , p− f pairs, at least half the functions

have high complexity. Clearly, we can test whether a function has high complexity in poly(N)

time.

93

4.4 Agnostic learning from tolerant natural properties

Next, we consider the case of agnostic learning for any Λ closed under AC0[2]-reductions

using any natural property against Λ with super-constant tolerance and usefulness. This follows

the general outline of the AC0[2] case, but we need to use a variant of the NW pseudorandom

generator to take advantage of the (potentially) better tolerance. We will use Chebyshev instead

of Markov to bound the probability, over random seeds z, that the functions mapped to by the

generator have small distance. Our generic learning algorithm also follows the outline.

Preconditions Let Λ be some complexity class closed under AC0[2]-reductions. Let R be a

BPP-constructive, τ-tolerant, u-useful natural property against Λ, for super-constant τ

with largeness δ > (1/2). Write τ = (1/2)− τ ′, because it will sometimes be easier to

work with τ as an “advantage.” We assume membership query access to a Boolean function

f : {0,1}n→ {0,1}, and a value β so that we are promised that there is an h in Λ with

dist(f ,h)≤ β .

Amplification We use AMPk identically to the specific case of AC0[2], except that we set k

later based on abstract τ and u. Let F = AMPk(f), H = AMPk(h), as before dist(F,H) =

(1/2)− (1/2)(1−β)k, which we call µ .

Pseudo-random function generator As in [CIKK16], we use a version of the NW generator

with a design based on polynomials over GF(2). Recall that the NW design for parameters

n,m,L ∈N is a family of sets S1, . . . ,SL ⊆ [m], of size |Si|= n, for all 1≤ i≤ L, and small

overlap |Si∩ S j| ≤ logL = ` for all 1 ≤ i 6= j ≤ L. It was shown in [CIKK16] that such

designs can be efficiently locally computed by AC0[q] circuits, for any prime q.

Lemma 47 (NW design in AC0[q] [NW94, CIKK16]). Let q be any prime. There is a

constant d0 ∈ N such that, for any n and L < 2n, there exists an NW design S1, . . . ,SL with

parameters as defined above, so that the function MXNW : {0,1}`×{0,1}m → {0,1}n,

94

defined by MXNW (i,z) = z|Si, where z|Si denotes the substring of z indexed by Si, is

computable by an AC0[q] circuit of depth d0 and size poly(`,n).

The NW generator [NW94] based on a boolean function F : {0,1}n → {0,1} is the

new function GF : {0,1}m → {0,1}L defined as GF(z) = F(z|S1) ◦ · · · ◦F(z|SL), where

S1, . . . ,SL is the NW design as above. Lemma 47 implies that if F ∈ AC0[2], then, for each

seed z, the output GF(z) is the truth table of an (` = logL)-variate Boolean function of

AC0[2] circuit complexity at most poly(`,n).

Let H : {0,1}n→{0,1} be another boolean function such that dist(F,H)≤ µ , for some

µ ∈ [0,1]. By the definition of the NW generator, we have that the expected Hamming

distance between the L-bit strings GF(z) and GH(z), over random seeds z, is dist(F,H) ·L≤

µ ·L. For our agnostic learning framework, it is important (as explained in the previous

section) that the NW generator have the concentration property: for most seeds z, the

Hamming distance between GF(z) and GH(z) is close to the expected distance µ ·L.

We achieve this concentration property by adding a pairwise-independent string generator

as a component of the NW generator. Let PI : {0,1}`×{0,1}m′ →{0,1}n be a pairwise

independent generator such that

1. for each i∈ [L], the distribution PI(i,z) over uniformly random z∈{0,1}m′ is uniform

over {0,1}n, and

2. for all i 6= j ∈ [L], the distribution of PI(i,z) and PI(j,z), over uniformly random

seeds z ∈ {0,1}m′ , is uniform over {0,1}n×{0,1}n.

Such generators exist for m′ ≤ n(`+ 1); for example, pick a random 0/1 matrix A of

dimension n× ` and a random 0/1 vector v of dimension n. Let z = (A,v). Define

P(i,(A,v)) = A · i+ v, where A · i denotes the matrix-vector multiplication, and all oper-

ations are over GF(2). It is easy to see that this generator PI(i,z) is computable by an

AC0[2] circuit of polynomial size.

95

Define the modified NW generator G′F : {0,1}m×{0,1}m′ → {0,1}L, based on the n-

variate boolean function F , as follows:

G′F(z1,z2) = F(z1|S1⊕PI(1,z2))◦ · · · ◦F(z1|SL⊕PI(L,z2)),

where Si’s form the NW design, and PI is the pairwise-independent generator as above,

and ⊕ denotes the bit-wise XOR of the corresponding n-bit strings.

Observe that since the generator PI is efficiently locally computable in AC0[2], we still

get (by Lemma 47) that the `-bit function output by G′F , for F ∈ AC0[2], has AC0[2]

circuit complexity at most poly(`,n). Next, the generator G′ allows the same kind of

reconstruction as the original NW generator: given a distinguisher for G′ with a constant

distinguishing probability, one can efficiently construct (using membership queries to

F) a small circuit computing F on at least 1/2+Ω(1/L) fraction of inputs. Finally, the

generator G′F(z1,z2), for uniformly random seeds z1 and z2, outputs L values of F on

pairwise-independent uniformly random n-bit inputs.

From pairwise independence we get that the Hamming distance between G′F(z1,z2)

and G′H(z1,z2), over random z1 and z2, is concentrated around the expectation, by the

Chebyshev bound. More precisely, for F and H with dist(F,H)≤ µ , we have by Chebyshev

that

Prz
[∣∣DIST(G′F(z),G′H(z))−µ ·L

∣∣> ζ ·L
]
<

1
ζ 2 ·L

,

which we will require to be less than 1/4. We parameterize the bound with ζ = (1/4)(1−

β)k. For the selected ζ , and the stretch L we are forced to pick later, this is immediate.

Apply natural property At this point, we apply a tolerant natural property to produce a distin-

guisher circuit for the generator above. This induces the following system of constraints,

which relate the usefulness, tolerance, and density of the property to the stretch and

concentration of the generator. Let Λ-SIZE(G′H(z)) = sH . We require that sH ≤ u(`), to

96

respect the size lower bound. We re-arrange the Chebyshev bound above and see that we

should require µ + ζ < τ(`) to respect tolerance and ensure a good distinguishing gap

from the property. We satisfy the first requirement by setting ` ≥ u−1(sH). The second

one is equivalent to (1/4)(1−β)k > τ ′(`). In this case, the tolerant property can only

accept GF(z) with probability (1/4) but accepts a random function with probability at

least (1/2), giving us a (1/4) distinguishing gap. We can satisfy both constraints by setting

k = Θ(log(τ ′(`))/β).

Converting to a predictor Using a small modification of the standard hybrid argument and

proof of correctness for the NW generator, we can convert this distinguisher into a predictor

circuit of size poly(L) and advantage Ω(1/L) of predicting F(z) over random guessing.

The modified predictor just embeds a construction of PI and shifts/unshifts inputs to

the distinguisher circuit as necessary. (To compute this predictor, we need to query F

and hence f at poly(L) positions; see [CIKK16]. This is the main step that requires

membership queries.) From this step we know that our runtime is at most poly(L), and the

circuit output at this stage is already size poly(L).

Converse of amplification Identical to the case of AC0[q], but with the additional constraints

mentioned above. Note that the runtime of these algorithms is randomized time in the

size of the input circuit, so runtime, number of queries, and output circuit size of this

stage will also be dominated by L. Use of this algorithm imposes the following constraint

from the direct product reconstruction stage: poly(1/L) > e−kε/c. So ε > Θ(log(L)/k).

Substituting in our value for k, this gives us ε = Θ(`β/ log(τ ′(`))) for `= u−1(sH).

Summarizing, we get a generic reduction from tolerant natural properties to agnostic

learning.

Theorem 48 (Tolerant natural properties imply agnostic learning algorithms). Let R be a natural

property against Λ closed under AC0[2] reductions with (1/2− τ ′)-tolerant u-usefulness and

97

largeness δ ≥ 1/2. Then there is a randomized algorithm such that, for any n-ary boolean

functions f and h with dist(f ,h)< β and sh = Λ-SIZE(h), the algorithm, given oracle access to

f , produces a circuit ε-approximating f , for any ε > β ·u−1(poly(sh))/ log(τ ′(u−1(poly(sh)))),

in time poly(max{2u−1(poly(sh)), 1/ε}).

In particular, this means if we have a “perfect” natural property, with exponential useful-

ness u and inverse exponential tolerance τ ′, we have a polynomial-time learning algorithm with

error bound Θ(β). Thus Theorem 35 is a special case of Theorem 48.

4.5 Hardness of removing membership queries

Is it possible to eliminate membership queries from our algorithm, learning just from

random examples? We note that removing membership queries would give us quasipolynomial-

time algorithms for two notoriously difficult problems: learning parities with noise (LPN) for the

case of AC0[2] and a variant of learning with errors (LWE) for AC0[q].

Though learning parities with noise under uniform distribution can be done in polynomial

time with membership queries (by the Goldreich-Levin algorithm [GL89]), without membership

queries this problem is believed to be hard. Learning parities with noise efficiently under uniform

distribution would give learning algorithms for DNFs and k-juntas (and in general, for any

problem reducible to finding a heavy Fourier coefficient of a function) [FGKP06].

In the worst case, LPN is known to be NP-hard (and MAX-SNP-hard). The average-case

hardness of LPN has been considered as early as 1993, when Blum, Furst, Kearns and Lipton

have given a simple construction of a pseudorandom bit generator based on the assumption

that learning parities with constant noise rate is hard [BFKL93]. In practical cryptography,

average-case hardness of LPN is the basis for Hopper and Blum authentication protocol [HB01].

There, the noise rate is usually set to a constant η ∈ (0,1/2), in particular η = 1/8 has been used

in applications [LF06]. Though for AC0[2] our algorithm works for noise up to 1/polylog(n), we

can tolerate constant noise for AC0[q].

98

Hardness of LWE problem follows from worst-case hardness of variants of the lattice

shortest vector problem [Reg09]. Whereas LPN has been used to build ”minicrypt” cryptographic

primitives, LWE has been used for public-key cryptosystems [Ale03, Reg09].

4.6 Open questions

While there are correlation bounds for AC0[q] circuits that say that some explicit functions

cannot be computed by “small” circuits on significantly more that 1/2+1/
√

n fraction of inputs,

we do not know how to get natural properties with tolerance close to 1/2. Getting natural

properties with better tolerance parameters would immediately imply improved parameters

for our agnostic learning algorithms for the corresponding circuit classes. (Of course, getting

stronger correlation bounds for AC0[q], whether obtained by natural proofs or not, is in itself a

very important problem in circuit complexity.)

Can one get a query agnostic learning algorithm for AC0[q] with the optimal error

opt+ε? It seems that, even with ideal tolerance and usefulness, our approach of getting learning

algorithms from natural properties will at best achieve the error O(opt)+ ε . So one needs a new

approach, perhaps inspired by the learning algorithm in this chapter.

In fact, probably the main open problem is to get a more “natural” (understandable)

learning algorithm for AC0[q] than our construction, which combines the NW-style generator

analysis with circuit lower bound proofs. As a possible first step, it would be interesting to get

an alternative agnostic learning algorithm for low-degree polynomials over GF(2).

Chapter 4, in part, is based on the material as it appears in “Marco L. Carmosino, Russell

Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Agnostic learning from tolerant

natural proofs. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh Srinivas

Vempala, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms

and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, volume 81

of LIPIcs, pages 35:1–35:19. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017”. The

99

dissertation author was the primary investigator and author of this paper.

100

Chapter 5

FG Derandomization

In this chapter, we show that popular hardness conjectures about problems from the field

of fine-grained complexity theory imply structural results for resource-based complexity classes.

Namely, we show that if either k-Orthogonal Vectors or k-CLIQUE requires nεk time, for some

constant ε > 1/2, to count (note that these conjectures are significantly weaker than the usual

ones made about those problems) on randomized machines for all but finitely many input lengths,

then we have the following derandomizations:

• BPP can be decided in polynomial time using only nα random bits on average over any

efficient input distribution, for any constant α > 0

• BPP can be decided in polynomial time with no randomness on average over the uniform

distribution

This answers an open question of Ball et al. (STOC ’17) in the positive of whether

derandomization can be achieved from conjectures about fine-grained complexity theory. More

strongly, these derandomizations improve over all previous results achieved from worst-case

uniform assumptions by succeeding on all but finitely many input lengths. Previously, derandom-

izations from worst-case uniform assumptions were only know to succeed on infinitely many

input lengths. It is specifically the structure and moderate hardness of the k-Orthogonal Vectors

and k-CLIQUE problems that makes removing this restriction possible.

101

Via this uniform derandomization, we connect the problem-centric and resource-centric

views of complexity theory by showing that exact hardness assumptions about specific problems

like k-CLIQUE imply quantitative and qualitative relationships between randomized and deter-

ministic time. This can be either viewed as a barrier to proving some of the main conjectures of

fine-grained complexity theory lest we achieve a major breakthrough in unconditional derandom-

ization or, optimistically, as route to attain such derandomizations by working on very concrete

and weak conjectures about specific problems.

5.1 Introduction

Computational complexity can be viewed through two main perspectives: problem-centric

or resource-centric. Problem-centric complexity theory asks what resources are required to solve

specific problems, while resource-centric complexity deals with the relative power of different

computational models given different resource budgets such as time, memory, non-determinism,

randomness, circuit size, etc. (see [GI16] for a discussion). Through complete problems, these

two perspectives often coincide, so that a resource-centric view acts as a fine proxy for answering

questions about the complexity of specific problems. The rapidly progressing field of fine-grained

complexity theory, however, brings attention back to the problem-centric viewpoint, raising

fine distinctions even between problems complete for the same complexity class, and making

connections between problems at very different levels of complexity. To what extent are these

two approaches linked, i.e., to what extent can inferences about the fine-grained complexities of

specific problems be made from general assumptions about complexity classes, and vice versa?

Here, we examine such links between the fine-grained complexity of specific problems

such as the k-Orthogonal Vectors and k-CLIQUE problems and general results about derandom-

ization of algorithms. Derandomization has been a very fruitful study in complexity theory,

with many fascinating connections between lower bounds, showing that problems require large

amounts of resources to solve, and upper bounds, showing that classes of probabilistic algorithms

102

can be ‘derandomized’ by simulating them deterministically in a non-trivial fashion. In particular,

the hardness-to-randomness framework shows that in many cases, the existence of any “hard”

problem can be used to derandomize classes of algorithms. We reconsider this framework from

the fine-grained, problem-centric perspective. We show that replacing a generic hard problem

with specific hardness conjectures from fine-grained complexity leads to quantitatively and

qualitatively stronger derandomization results than one gets from the analogous assumption

about a generic problem. In particular, we show that starting from these assumptions, we can

simulate any polynomial-time probabilistic algorithm (on any samplable distribution on inputs

with a very small fraction of errors) by a polynomial time probabilistic algorithm that uses only

nα random coins, for any α > 0. This type of derandomization previously either assumed the

existence of cryptographic One-Way Functions or exponential non-uniform hardness of Boolean

functions; our assumptions are both much weaker and quite popular.

Thus, the problem-centric conjectures of fine-grained complexity cannot live in isolation

from classical resource-centric consequences about the power of randomness. Viewed another

way, our results can be seen as a barrier to proving some of the key hardness assumptions used

by fine-grained complexity theory. That is, despite recent progress towards proving hardness for

k-Orthogonal Vectors, one of fine-grained complexity’s key problems, in restricted models of

computation [KW17], doing so for general randomized algorithms would immediately prove all

problems in BPP are easy on average (over, say, uniformly chosen inputs). Alternatively, the

reader may choose to be optimistic. “All” we need to do for efficient derandomization is prove

uniform lower bounds for a highly-structured family of problems that live inside P.

Previous derandomization results in the uniform setting ([IW01, GW02, TV07]) used

two properties of the hard problem: random self-reducibility and downward self-reducibility.

To obtain our results, we need problems that have stronger, “fine-grained” versions of both

properties (or can be reduced to problems that do). In particular, we need problems where not

only can instances of size n be reduced to smaller instances of the same problem, but that these

instances are much smaller, of size nε for ε < 1, and that the reduction is “fine-grained”, in that

103

any improvement in the time to solve the smaller instances yields a similar improvement in the

time to solve the larger ones. Luckily, the “core” problems studied in fine-grained complexity

have exactly the desired properties.

5.1.1 Our Results

We obtain two main theorems about the power of BPP from uniform worst-case as-

sumptions about well-studied problems from fine-grained complexity theory. We consider the

k-Orthogonal Vectors (k-OV) and the k-CLIQUE problems, defined and motivated in Section 5.2.1,

and show that (even weaker versions of) popular conjectures about their hardness give two flavors

of average-case derandomization that improve over the classical uniform derandomizations.

All previous derandomizations from uniform assumptions on worst-case hardness only

succeed on infinitely many input lengths. Our work is the first to use worst-case uniform assump-

tions to derandomize BPP for all but finitely many input lengths, giving a standard inclusion. The

only other worst-case uniform assumptions known to imply such results are those so strong as to

imply cryptographic assumptions or circuit lower bounds, hewing closer to the cryptographic or

non-uniform derandomization literature. In contrast, our uniform derandomizations are from

extremely weak worst-case uniform conjectures on simple, natural, combinatorial problems.

Informally, we prove the following:

Informal Theorem 1 (see Theorem 75 on page 124). If k-OV or k-CLIQUE requires nεk time,

for some constant ε > 1/2, to count on randomized machines in the worst-case for all but finitely

many input lengths, then BPP can be decided in polynomial time using only nα random bits on

average over any efficient input distribution, for any constant α > 0.

Randomness can be removed entirely by simply brute-forcing all random bits and taking

the majority of the outputs to give the following more standard full derandomization.

Corollary. If k-OV or k-CLIQUE requires nεk time, for some constant ε > 1/2, to count on

randomized machines in the worst-case for all but finitely many input lengths, then BPP can

104

be decided with no randomness in sub-exponential time on average over any efficient input

distribution.

This conclusion is strictly stronger than the classic uniform derandomizations of [IW01,

TV07]. The weakest uniform assumption previously known to imply such a conclusion was

from those already strong enough to imply the cryptographic assumption of the existence of

One-Way Functions that are hard to invert for polynomial time adversaries [BM84, GKL93,

GL89, HILL99, Yao82] or those implying non-uniform circuit lower bounds [BFNW93].

Our second main theorem, using techniques from [KvMS12], shows how to remove all

randomness within polynomial time if the distribution over inputs is uniform. The only stronger

derandomizations from uniform assumptions were, again, from assumptions already strong

enough to imply circuit lower bounds or from the cryptographic assumption of the existence of

One-Way Permutations that require exponential time to invert [BM84, GL89, Yao82].

Informal Theorem 2 (see Theorem 80 on page 127). If k-OV or k-CLIQUE require nεk time,

for some constant ε > 1/2, to count on randomized machines in the worst-case for all but

finitely many input lengths, then BPP can be decided in polynomial time with no randomness

on average over the uniform distribution.

These results should be viewed through three main points: First, that we conceptually tie

problem-centric conjectures to resource-centric consequences, thus partially reconnecting the

two perspectives on complexity theory that separate in the fine-grained world. Secondly, we add

to the general derandomization literature by achieving quantitatively and qualitatively stronger

derandomization from weak uniform assumptions. Lastly, our results can be seen, pessimistically,

as demonstrating a barrier to proving even weak versions of some of fine-grained complexity

theory’s main conjectures lest we achieve a breakthrough in unconditional derandomization or,

optimistically, as providing a path to achieve such general resource-centric results by instead

considering extremely weak conjectures on very concrete, simple, and structured combinatorial

problems. The reader may determine their own level of optimism.

105

5.1.2 Related Work

We now discuss previous connections between problem-centric and resource-centric

complexity and previous derandomization results.

Connections Between Problem-Centric and Resource-Centric Complexity.

Most connections from problem-centric to resource-centric complexity show that faster

algorithms for OV or related problems give circuit lower bounds. For instance, improvements in

EDIT-DISTANCE algorithms imply circuit lower bounds [AHWW15] and solving OV faster

(and thus CNF-SAT [Wil05]) implies circuit lower bounds [JMV15]. These are all non-uniform

results, however, whereas in this paper we are concerned with machines and their resource-

bounds as opposed to circuits. On the uniform side, [GIKW17] recently showed that the exact

complexity of k-Orthogonal Vectors is closely related to the complexity of uniform AC0, although

a connection between more powerful machine models and fine-grained assumptions was still

not known until now. Further, all of these connections follow from OV being easy. Our work

shows that there are also interesting resource-centric consequences if our fine-grained problems

are hard.

Uniform Derandomization Framework.

The uniform derandomization framework was introduced in [IW01], a breakthrough

paper that showed the first derandomization from a uniform assumption (EXP 6= BPP) in the

low-end setting: a weak assumption gives a slow (but non-trivial, ie, subexponential-time)

deterministic simulation of BPP. This is in contrast to our simulation which retains small

amounts of randomness but is fast (this is a strictly stronger result as it recovers the [IW01]

derandomization as a corollary).

The techniques introduced by [IW01] (and used in all subsequent works, including

ours) for uniform derandomization seem to inherently result in simulations that are sometimes

incorrect, but successfully hide these errors from any efficient adversary. That is, the uniform

derandomizations are, for infinitely many input lengths, “pseudo-time simulations” (see Defini-

106

tion 61), meaning that the deterministic simulation may make some errors, but such bad inputs

are intractable to sample. If a simulation fails in the woods, but nobody is smart enough to hear

it, then is it really wrong?

We build on [TV07], which simplifies the proof of [IW01] to prove that PSPACE 6=

BPP implies a non-trivial deterministic simulation of BPP. The technique of [TV07] care-

fully arithmetizes the PSPACE-complete problem TQBF and uses this as a hard function

in the generator of [IW01]. Our proof substitutes a carefully-arithmetized k-OV problem

from [BRSV17]. Numerous other works study derandomization from uniform assumptions

([Kab01, Lu01, IKW02, GST03, SU09]), but these all focus on assumptions and consequences

about nondeterministic classes.

All worst-case uniform derandomizations, including [TV07] and [IW01], seem to only

be able to achieve simulations of BPP that succeed for infinitely many input lengths because of

how their proofs use downward self-reductions. Our is the first work to achieve simulations on

all but finitely many input lengths, because the k-OV and k-CLIQUE-inspired problems have very

parallelizable downward self reductions; we can reduce to a single much smaller input length

rather than recurse through a chain of incrementally smaller input lengths in the downward

self-reduction.

Heuristics by Extracting Randomness From the Input.

A separate line of work began when [GW02] introduced the idea of using the input

itself as a source of randomness to heuristically simulate randomized algorithms over uniformly-

distributed inputs. If life gives you random bits, you may as well make PRGs. While their

assumptions contain oracles and are mostly non-uniform and average-case, they construct an

algebraic problem inside P whose worst-case uniform hardness can be used in the framework of

[IW01] to get an infinitely-often simulation of BPP in polynomial time. Our work differs in that:

(i) we achieve an almost-everywhere simulation, (ii) our assumptions are based on canonical

fine-grained problems, and (iii) our assumptions aren’t against machines with SAT-oracles.

107

Further, the downward self-reduction of their problem requires an expansion by minors of the

determinant and so they cannot also obtain an almost-everywhere heuristic using our techniques

without placing the determinant in NC1 (as our modification to [IW01] exploits embarrassingly

parallel downward self reductions). It appears very unlikely that the determinant is in NC1.

The work of [KvMS12], generalizing [Sha11], removes the SAT-oracles needed in the

assumptions of [GW02] by showing that the Nisan-Wigderson generator (see [NW94]) remains

secure against non-uniform adversaries even if the seed is revealed to potential distinguishers.

In Section 5.4.2 we will show their arguments can be made uniform so we can derandomize

from uniform assumptions. Seed-revealing Nisan-Wigderson generators are used in [KvMS12]

to obtain polynomial-time heuristics for randomized algorithms, where the uniformly distributed

input is used as a seed to the generator. The derandomizations in [KvMS12] are achieved from

non-uniform assumptions of polynomial average-case hardness. From worst-case and uniform

assumptions we achieve the same derandomizations.

Organization

• §5.2: We introduce conjectures from fine-grained complexity, basic notions of average-case

complexity, and the seed-extending generators of [KvMS12].

• §5.4: We give a strategy for computing k-OV, given that distinguishers for a seed-extending

PRG based on k-OV are uniform. Then, we show how to uniformly generate distinguishers

for seed-extending PRGs if they fail to derandomize BPP.

• §5.5: We apply the derandomization to show BPP 6= EXP under popular conjectures.

• §5.6: We conclude with some open problems about structural complexity inside P

5.2 Preliminaries

Here we give the relevant background from fine-grained complexity theory to motivate

our assumptions, present standard tools from derandomization, and explain the peculiarities that

108

arise specifically in derandomization from uniform assumptions such as average-case tractability

and infinitely-often qualifiers.

All complexity measures of fine-grained problems will refer to time on a randomized

word RAM with O(log(n))-bit word length, as is standard for the fine-grained literature [Wil15,

BRSV17]. Specifically, we will consider such time classs with two-sided bounded error as in

[BRSV17].

We use a convention from [TV07], calling a function t : N→ R+ a nice time bound

if n ≤ t(n) ≤ 2n, t(n) is non-decreasing, t(n) is computable in time poly(n), and t(O(n)) ≤

poly(t(n)) ≤ t(poly(n)). All functions of the form nc, nc log(n), 2logc(n) and 2cn satisfy these

conditions.

5.2.1 Fine-Grained Hardness Conjectures

The problem-centric field of fine-grained complexity theory has had impressive success

in showing the fixed polynomial time (“fine-grained”) hardness of many practical problems

by assuming the fine-grained hardness of four “key” well-studied problems, as discussed in

[BRSV17]. We obtain our results under hardness conjectures about two of these four key

problems: the k-Orthogonal Vectors (k-OV) problem and the k-CLIQUE problem. Evidence

continues to accumulate that these problems are actually hard. Thus, not only is the connection

between problem-centric and resource-centric complexity of independent interest, but the strong

derandomizations of this paper are now supported by plausible conjectures about concrete

problems.

k-CLIQUE.

Denote the matrix multiplication constant by ω . The fastest known algorithm for deciding

if a graph has a k-CLIQUE (given its adjacency matrix) runs in time O(nωk/3), and was discovered

in 1985 [NP85] for k a multiple of three (for other k different ideas are needed [EG04]). It is

conjectured that no algorithm can improve this exponent to a better constant. The parameterized

109

version of the famous NP-hard MAX-CLIQUE problem [Kar72], k-CLIQUE is one of the most

heavily studied problems in theoretical computer science and is the canonical intractable (W[1]-

complete) problem in parameterized complexity; see [ABW15] for a review of the copious

evidence of k-CLIQUE’s hardness and consequences of its algorithm’s exponent being improved.

Recent work has shown that conjecturing k-CLIQUE to require nωk/3−o(1) time, for k a multiple

of three, leads to interesting hardness results for other important problems such as parsing

languages and RNA folding [ABW15, BGL17, BDT16, BT17], and it is known that refuting

this conjecture deterministically would give a faster exact algorithm for MAX-CUT [Wil05]. Our

results hold under a much weaker version of the conjecture:

Definition 49 (Weak k-CLIQUE Conjecture). There exists an absolute constant ε0 > 1/2 such

that, for all k ∈ N a multiple of three, any randomized algorithm that counts the number of

k-CLIQUE’s in an n node graph requires nε0k time.

Note that this conjecture gives leeway for the exponent of the k-CLIQUE algorithm to be

improved so long as it doesn’t get down to k/2; even finding a linear time algorithm for Boolean

matrix multipliaction (ω = 2) would not contradict our conjecture! Further, even if it is possible

to decide the k-CLIQUE problem that quickly, this conjecture still holds unless it is possible to

count all of the k-CLIQUE’s in that time. With a more careful analysis of our techniques to focus

on k-CLIQUE we can actually use the even weaker conjecture that ε0 > ω/(ω +3), as argued in

Section 5.3.

k-Orthogonal Vectors.

Although the k-CLIQUE problem is certainly at least as important as the k-OV problem,

for concreteness we will use the k-OV problem to demonstrate our techniques throughout the

paper. Proofs based on hardness of k-CLIQUE follow identically.

Definition 50 (k-Orthogonal Vectors Problem, k-OVn,d). For an integer k ≥ 2, the k-OVn,d

problem on vectors of dimension d is to determine, given k sets (U1, . . . ,Uk) of n vectors from

110

{0,1}d each, whether there exist ui ∈Ui for each i such that over Z,

∑
`∈[d]

u1` · · ·uk` = 0

If left unspecified, d is taken to be d(n) =
⌈
log2 n

⌉
.

Definition 51 (k-Orthogonal Vectors Conjecture, k-OVC). For any d = ω(logn), for all k ≥ 2,

any randomized algorithm for the k-OVn,d problem requires nk−o(1) time.

For k = 2 the Orthogonal Vectors conjecture for deterministic algorithms has been

extensively studied and is supported by the Strong Exponential Time Hypothesis (SETH) [Wil05],

which states that there is no ε > 0 such that t-SAT can be solved in time Õ(2n(1−ε)) for all values

of t. The natural generalization to k-OV is studied in [BRSV17, GIKW17] and its deterministic

hardness is also implied by SETH — therefore the deterministic k-OV conjecture is weaker than

SETH.

The k-Orthogonal Vectors Conjecture is plausible independent of beliefs about the

complexity of SAT: k-OVC holds unless all first-order graph properties become easy to decide

[GIKW17] and the 2-OV conjecture has recently been proven unconditionally when the model

of computation is restricted to branching programs [KW17]. The k-OVC has also been used

to explain the hardness of many practical and well-studied fine-grained problems such as

Local String Alignment, String Edit Distance, Dynamic Time Warping, and many other rich

string problems [AWW14, BI15, BK15]. Therefore, our inability to produce truly subquadratic

algorithms for all these problems despite extensive study supports the k-OVC. Furthermore, as

with k-CLIQUE, our main results will hold using a much weaker version of the randomized k-OV

conjecture introduced below.

Definition 52 (Weak k-Orthogonal Vectors Conjecture). For any d = ω(logn), there exists an

absolute constant ε0 > 1/2 such that, for all k ≥ 2, any randomized algorithm counting the

number of k-OVn,d solutions requires nε0k time.

111

Remark 53. For all of these conjectures we will also consider the strengthened versions that

assume that all algorithms running in time less than what is required will fail on all but finitely

many input lengths, as opposed to only on infinitely many input lengths. For most natural

problems, an ‘almost-everywhere’ assumption like this seems natural. That is, we don’t expect

that the problem becomes easy for, say, even input sizes and hard on odd input sizes or other

degenerate cases like this, but instead believe that the hardness comes from the structure of the

problem and will simply grow (as opposed to oscillate) asymptotically.

5.2.2 Derandomization

We now define pseudorandom generators (PRGs) in terms of their distinguishers. We

recall a concrete notion of distinguishing some transducer from true randomness from Chapter 2

below.

Definition 54 (Distinguishers). A test T : {0,1}m` → {0,1} is an ε-distinguisher against G :

{0,1}m→{0,1}m`
, denoted T ∈ DIS(G,ε), if:

∣∣∣∣∣ Pr
r∼Um`

[T (r)]− Pr
z∼Um

[T (G(z))]

∣∣∣∣∣> ε

We also will consider the seemingly weaker object of distinguishers that succeed if

they are also given the seed to the PRG. These were studied in [TV07] to relate uniform

derandomization to average-case hardness and in [KvMS12] to derandomize over the uniform

distribution by using the random input itself as the seed to the PRG.

Definition 55 (Seed-Aware Distinguishers). A test T : {0,1}m×{0,1}m` →{0,1} is an ε-seed-

aware distinguisher against G, denoted T ∈ DIS(G,ε), if:

∣∣∣∣∣ Pr
x∼Um,r∼Um`

[T (x,r)]− Pr
x∼Um

[T (x,G(x))]

∣∣∣∣∣> ε

Standard hardness-to-randomness arguments based on presumabely “hard” function

112

typically prove the contrapositive: if derandomization fails, then a distinguisher for the generator

can be produced. Further, from a distinguisher, we can create a small circuit for the supposedly

hard function that the generator was based on. For our purposes, we require an algorithmic version

of this argument for derandomization from uniform hardness assumptions. More specifically, we

will use the following lemma1 originally proved for distinguishers [TV07, IW01] then extended

to seed-aware distinguishers by Lemma 2.9 of [KvMS12]. While the proof of [KvMS12] is

non-uniform, it is easy to see that it can be made constructive, in the same way that [IW01]

gave a constructive version of [NW94]. Thus, DIS(G,ε) in the lemma below can refer to either

regular or seed-aware distinguishers (which justifies overloading this notation).

Lemma 56 (Algorithmic Distinguishers to Predictors ([TV07, IW01])). For every random self-

reducible f , there exists a function G with stretch m bits to m` bits and a constant c such

that

• G(z) can be computed in time (|z|`)c, given oracle access to f on inputs of length at most

|z|

• There exists a polynomial-time randomized algorithm A that, with high probability, given

as input circuit D ∈ DIS(G,ε) for ε at least inverse polynomial and an oracle for f , prints

a circuit computing f exactly.

5.2.3 Uniform Derandomization

Previous techniques for derandomizations from worst-case uniform assumptions seemed

to have inherent caveats: the derandomization only succeeds on average and, even then, only for

infinitely many input lengths. Our results will remove the infinitely-often caveat and so, in this

section, we pay careful attention to infinitely-often simulation. First, we give the definitions of

average-case tractability that arise naturally from uniform derandomization.

1A version of which was discussed in detail by Chapter 2

113

Average-Case Tractability.

We begin with standard definitions of average-case tractability. For an extensive survey

of these notions, see [BT06a].

Definition 57 (t(n)-Samplable Ensemble). An ensemble µ = {µn} is t(n)-samplable if there is

a randomized algorithm A that, on input a number n, outputs a string in {0,1}∗ and:

• A runs in time at most t(n) on input n, regardless of its internal coin tosses

• for every n and for every x ∈ {0,1}∗, Pr[A(n) = x] = µn(x)

With this notion of a samplable ensemble we can now group distributions according to

their complexity. We denote by SAMP[t(n)] the set of all t(n)-samplable ensembles. Next, we

can consider heuristic algorithms that perform “well” on a language L : {0,1}∗→{0,1} when

inputs are sampled according to the distribution µ . The pair (L ,µ) is called a distributional

problem. We now require a notion of “tractability” for distributional problems.

As in the worst-case setting, polynomial resource bounds will be considered efficient.

So, intuitively, we define HeurP as the class of distributional problems that can be solved in

deterministic polynomial with negligible probability of error. Thus, while (L ,µ) ∈HeurP is not

a worst-case guarantee about the easiness of L , HeurP still captures a very strong real-world

notion of tractability: L can be easily decided up to any inverse polynomial probability of error

when inputs are sampled from µ . It is then interesting to see over input distributions over which

a language is tractable. Formally:

Definition 58 (Heuristics for Distributional Problems). For time-bound t : N→ N and error-

bound δ : N→ R+, we say (L ,µ) ∈ Heurδ (n)DTIME[t(n)] if there is a time t(n) deterministic

algorithm A such that, for all but finitely many n:

Pr
x∼µn

[A(x) 6= L (x)]≤ δ (n)

114

For a class of languages C we say (C ,µ) ⊆ Heurδ (n)DTIME[t(n)] if the inclusion (L ,µ) ∈

Heurδ (n)DTIME[t(n)] holds for all L ∈ C .

As in [BT06a], define Heurδ P as the union over all polynomials p of Heurδ DTIME[p(n)]

and HeurP as the intersection over all inverse polynomial δ (n) of Heurδ P. HeurSUBEXP is

defined similarly where SUBEXP = ∩ε>0DTIME
[
2nε
]
.

To describe the randomness-reduced simulations we construct, we define BPTIME with

a limited number of random coins in the natural way.

Definition 59 (Randomized Time with Bounded Coins). We say that a language L is in Ran-

domized Time t(n) with r(n)-Bounded Coins, denoted L ∈ BPTIME[r(n)][t(n)], if there is a

randomized algorithm A running in time t(n) and flipping r(n) coins such that:

∀x ∈ {0,1}n Pr
r∼Ur(n)

[A(x;r) 6= L(x)]≤ 1/3

Coin-bounded random time can be combined with the notion of a heuristic in the natural

way:

Definition 60 (Randomized Heuristics with Bounded Coins). For time-bound t : N→ N, error-

bound δ : N→ R+, and coin-bound r : N→ N we say (L ,µ) ∈ Heurδ (n)BPTIME[r(n)][t(n)] if

there is randomized algorithm A running in time t(n) and flipping r(n) coins such that, for all

but finitely many n:

Pr
x∼µn

[
Pr

r∼Ur(n)
[A(x,r) 6= L (x)]> 1/3

]
≤ δ (n)

For example, HeurBPP[r(n)] denotes the class of distributional problems that, for every

inverse polynomial error, have a polynomial time randomized algorithm using only r(n) random

coins.

Heuristics are allowed to be distribution-specific. That is, for each distribution of interest,

we may construct a different algorithm depending on the distribution. This ordering of quantifiers

makes heuristics a weak notion of average-case tractability. A strong notion of average-case

115

tractability would require a single algorithm to succeed on every “reasonable” distribution. This

intuition is captured by the standard pseudo-algorithm notion, defined formally below.

Definition 61 (Deterministic Pseudo-Time). Let f be a Boolean function and let t(n) be a nice

time bound. We say f ∈ PseudoDTIME[t(n)] if there is a time t(n) deterministic algorithm A

such that for every a and b, for all µ ∈ SAMP[nb] and sufficiently large n,

Pr
x∼µn

[A(x) 6= f (x)]≤ 1/na

As a and b are arbitrary in the definition of PesudoTIME, this gives a strong notion

of average-case easiness since the error must be smaller than any inverse-polynomial fraction

for any polynomially samplable distribution. Thus, while errors may occur in this notion of

tractability, we cannot efficiently sample them.

Infinitely-Often Simulation.

As opposed to an algorithm that decides a language (possibly on average) “for all but

finitely many n” as in Definition 58, an infinitely-often (io-) qualifier can be added to any

complexity class to specify that an algorithm need only succeed on infinitely many input lengths

within the time and error bounds. Thus, to derandomize BPP into io-HeurP over the uniform

distribution is to say that every language in BPP can be simulated on average in polynomial time

by an algorithm that is only guaranteed to succeed for infinitely many input lengths. There is no

guarantee on what those input lengths are or how large the gaps could be between them. This is

obviously a very weak notion of “tractability.”

Non-uniform hardness to randomness trade-offs can derandomize almost-everywhere (the

desired notion of tractability for asymptotic analysis) by assuming almost-everywhere hardness:

that no algorithm works for all sufficiently large input lengths. That is, the ‘infinitely-often’

qualifier on the consequent can be flipped across the implication to be an ‘almost-everywhere’

qualifier on the assumption and vice-versa. Thus, the unrealistic ‘infinitely-often’ notion of

tractability can be dropped by slightly strengthening the assumption to the (as argued in Remark

116

53) realistic ‘almost-everywhere’ hardness. For non-uniform derandomizations this is possible.

Starting with [IW01] and the techniques it introduced, all uniform derandomizations have

been infinitely-often derandomizations unable to flip the io- “across” the hardness vs randomness

tradeoff. Our work is the first that is able to do this in the uniform derandomization framework,

thus removing the ‘infinitely-often’ qualifier from our derandomizations.

5.3 Arithmetized Fine-Grained Problems

5.3.1 Arithmetizing k-OV

For hardness amplification, for a given k, we will use a family of polynomials intro-

duced in [BRSV17] to construct fine-grained worst-case to average-case reductions for k-OVn.

The arithmetized k-OV problem has degree only polylog(n), which enabled classical random

self-reducibility of low degree polynomials for worst-case to average-case reductions inside

polynomial time.

Definition 62 (Arithmetized k-Orthogonal Vectors Family). We arithmetize k-OVn by the col-

lection of polynomials
{

f k
n,d,p : Fknd

p → Fp

}
n,d,p∈N

such that the variables are grouped into sets

of size nd in the form of a matrix Ui ∈ F n×d
p where the n rows ui ∈Ui are each collections of d

variables:

f k
n,d,p(U1, . . . ,Uk) = ∑

u1∈U1,...,uk∈Uk

∏
`∈[d]

(1−u1` · · ·uk`)

Lemma 63 (Worst-Case to Average-Case Reduction for counting k-OV [BRSV17]). Let p be the

smallest prime number larger than nk and d =
⌈
log2(n)

⌉
. If f k

n,d,p can be computed in O(nk/2+c)

time for some c > 0, then k-OVn can be counted in time Õ(nk/2+c)

Derandomization from uniform assumptions typically requires two other properties of the

assumed hard problem: random self-reducibility and downward self-reducibility. We recall from

[BRSV17] that f k
n,d,p satisfies both of these properties. We give a polynomial for k-CLIQUE and

117

show that it also has the necessary properties in Section 5.3.

Random Self-Reducible.

f k
n,d,p is random self-reducible by the following classical lemma [Lip89, FF91] (see

[BRSV17] for a proof). Note that degree log2 n adds negligibly to the random self-reduction

time.

Lemma 64 (Random Self-Reducibility of Polynomials). If f :FN
P→FP is a degree 9<D<P/12

polynomial, then there exists a randomized algorithm that takes a circuit Ĉ 3/4-approximating

f and produces a circuit C exactly computing f , such that the algorithm succeeds with high

probability and runs in time poly(N,D, logP, |Ĉ|).

Downward Self-Reducible.

We will show that f k
n,d,p is downward self-reducible in the sense that, if we we have a

way to produce an oracle for f k√
n,d,p, we can quickly compute f k

n,d,p with it. Compare this to

downward self-reducibility going from input size n to n−1 in previous uniform derandomizations.

We exploit our more dramatic shrinkage and parallelism to later give an almost-everywhere

derandomization, instead of an infinitely-often one.

Lemma 65. If there exists an algorithm A that, on input 1n, outputs a circuit C computing f k√
n,d,p,

then there exists an algorithm that computes f k
n,d,p in time O(nk/2|C|+TIME(A)).

Proof. Using A, we print a circuit C computing f k√
n,d,p in time TIME(A). To solve an instance

of f k
n,d,p, we break up its input as follows.

Intuitively, we break each Ui into
√

n chunks of
√

n rows each which partitions the sum

of f k
n,d,p into

√
nk sub-summands. More formally, for j ∈

[√
n
]

let U j
i ∈ F

√
n×d be the submatrix

of Ui consisting of just the ((j−1)
√

n+1)th, ((j−1)
√

n+2)th, . . . ,((j−1)
√

n+
√

n)th rows.

Now we can feed U j1
1 ,U j2

2 , . . . ,U jk
k as input to C for all j1, j2, . . . , jk ∈

[√
n
]

and sum the

results that C gives. This will give the correct answer by inspection and makes
√

nk calls to

C.

118

5.3.2 Arithmetizing k-CLIQUE

We now construct a family of polynomials from k-CLIQUE that will have the same

downward self-reduciblity and random self-reducibility properties as the k-OV polynomials

above. Under the weak k-CLIQUE conjecture, these polynomials will be useful for uniform

derandomization. We will also discuss how our results hold under an even weaker version of

the k-CLIQUE conjecture. This polynomial was independently constructed in [GR18]. We first

define the k-partite k-CLIQUE problem.

Definition 66 (k-partite k-CLIQUE problem). For an integer k≥ 3, the k-CLIQUEn problem is to,

given k graphs on n nodes such that all the edges are only between the graphs, decide if there is a

k-CLIQUE among them. The input is given as
(k

2

)
biadjacency matrices between the k graphs.

The k-partite k-CLIQUE problem is fine-grained equivalent to the common k-CLIQUE

problem on one graph (i.e. they reduce to each other in O(n2) time). We now introduce a

polynomial that can count k-CLIQUE’s.

Definition 67 (Arithmetized k-Clique Family). For a given k, consider the family of polynomials{
gk

n,p : (Fn×n
p)(

k
2)→ Fp

}
n,p∈N

. Overloading notation, let
(k

2

)
= {(i, j) : 1≤ i < j ≤ k}. Then,

gk
n,p(A

(1,2),A(1,3), . . . ,A(k−1,k)) = ∑
v1,...,vk∈[n]

∏
(i, j)∈(k

2)

A(i, j)
vi,v j

Note that boolean input corresponds to biadjacency matrices that comprise a k-partite

k-CLIQUE instance and that the polynomial counts the number of k-CLIQUE’s so long as p is a

prime larger than nk. Now, instead of following the technique of [BRSV17] to find such a prime in

time Õ(nk/2+c) for any c > 0, we can use the randomness in our contrapositive derandomization

arguments to choose many random primes so that an evaluation of the polynomial over each

prime will be able reconstruct the count via the Chinese Remainder Theorem. Since choosing

random primes is much faster than finding the single large prime, this along with the following

remark will allow us to use a weaker k-CLIQUE conjecture for derandomization.

119

We relate the worst-case hardness of evaluating these polynomials to the worst-case

hardness of k-CLIQUEn with the following lemma.

Lemma 68. Let p being the smallest prime number larger than nk. If gk
n,p can be computed in

O(nk/2+c) time for some c > 0, then k-CLIQUEn can be counted in time Õ(nk/2+c).

Remark 69. The polynomial gk
n,p is guaranteed to be nωk/3−o(1) hard under k-CLIQUE’s hard-

ness for k a multiple of three but a naı̈ve evaluation takes Õ(nk) time. However, interpreting

each matrix of field elements as the biadjacency matrix of a weighted graph, the polynomial

can be evaluated by the methods of [NP85] as shown in [Lin18]. This faster evaluation solves

an open problem of [BRSV17] of finding a polynomial whose computability is tight to its hard-

ness for k-CLIQUE. Importantly, this method will speed up the oracle calls in our downward

self-reduction in our derandomization arugments, allowing for a weaker k-CLIQUE conjecture.

We now show that gk
n,p is random self-reducible and downward self-reducible as required

by the uniform hardness-to-randomness machienary. Random self-reducibility is automatic as

with f k
n,d,p from Lemma 64 (note that our degree is the constant

(k
2

)
and so adds negligibly to the

random self-reduction time), and we will show that gk
n,p reduces to gk

nδ ,p
similarly to f k

n,d,p (we

choose δ different than 1/2 since we can now evaluate the polynomial quickly enough to make

weaker conjectures). Namely, we will show the following lemma.

Lemma 70. If there exists an algorithm A that, on input 1n, outputs a circuit C computing gk
nδ ,p

,

then there exists an algorithm that computes gk
n,p in time O(n(1−δ)k|C|+TIME(A)), for any

δ > 0.

Proof. Using A, we print a circuit C computing gk
nδ ,p

in time TIME(A). To solve an instance

A(i, j), (i, j) ∈
(k

2

)
, of gk

n,p, we break it up as follows.

Let P =
{
{(j−1)nδ +1,(j−1)nδ +2, . . . ,(j−1)nδ +nδ} : j ∈ n1−δ

}
be a partitioning

of [n] into n1−δ sets of size nδ each. Then we can see gk
n,p breaks into sub-summands as follows.

120

gk
n,p(A

(1,2),A(1,3), . . . ,A(k−1,k)) = ∑
P1,...,Pk∈P

 ∑
v1∈P1,...,vk∈Pk

∏
(i, j)∈(k

2)

A(i, j)
vi,v j

 (5.1)

We claim the inner sum can be computed by gk
nδ ,p

if given the right inputs. Say we have

P1, . . . ,Pk ∈ P. We can make new matrices B(i, j) ∈ Fnδ×nδ

p , (i, j) ∈
(k

2

)
as new input for gk

nδ ,p
for

C to solve for us:

To create B(i, j) we consider Pi and Pj and fill B(i, j)’s entries in as A(i, j) restricted to the

submatrix on row indices Pi and column indices Pj. By inspection, these B(i, j) passed as input to

gk
nδ ,p

will yield the inner summand for P1, . . . ,Pk.

Thus, feeding these inputs to C for all P1, . . . ,Pk and summing the results that C gives

will give the evaluation of gk
n,p on A(i, j), (i, j) ∈

(k
2

)
. This takes n(1−δ)k calls to C.

Remark 71. Since constructing circuit C (from broken derandomization) for the above lemma

takes time Õ(nδωk/3+c2) time by using the fast/tight evaluation of gk
nδ ,p

from Remark 69, then

evaluating gk
n,p using the lemma will take Õ(n(1−δ)k+c1 +nδωk/3+c2) time in total, for constants

c1 and c2. Setting δ = 3/(ω +3) is optimal and yields an Õ(n
ω

ω+3 k+c) algorithm for k-CLIQUE

for some constant c. Thus the k-CLIQUE conjecture can be made with ε0 > ω/(ω +3) instead

of ε > 1/2.

5.4 Fine-Grained Derandomization

We will prove our main derandomization results (Theorems 75 and 80) here. Under

either the (weak) k-OV or k-CLIQUE conjectures, we derandomize BPP on average, where ‘on

average’ will have two different flavors. Although all techniques apply similarly to k-CLIQUE,

for concreteness we will use k-OV throughout this section.

We first show in Section 5.4.1 that if we base pseudorandom generators on f k
n,d,p, then

an algorithm printing distinguishers for this PRG can be used to count k-OV solutions quickly.

121

We will then show in Section 5.4.2 how to obtain these distinguisher-printing algorithms if

derandomization doesn’t work on average (for both flavors of “on average”). Thus, a failed

derandomization using these PRGs refutes the k-OV conjecture (similarly for k-CLIQUE).

More specifically, in Section 5.4.2 we will show that the amount of randomness needed

can be shrunk in polynomial time to only nα random bits for any constant α > 0 and still succeed

in deciding the language on average over any efficient distribution on inputs (which implies a fully

deterministic sub-exponential derandomization over all efficient distributions). The second flavor

of derandomization will be shown in Section 5.4.2, that we can fully derandomize in polynomial

time on average over the uniform distribution. Both arguments proceed by constructively mapping

failure of derandomization to distinguisher circuits.

5.4.1 Counting k-OV from Distinguishers

In this section we show that any algorithm producing a distinguisher for G f k
m,d,p (the

generator guaranteed to exist from Lemma 72, using the hard function f k
m,d,p) can be used to

quickly count k-OV solutions.

First, Lemma 72 follows immediately by combining the distinguisher to predictor algo-

rithm of Lemma 56 with the fact that f k
m,d,p is random self-reducible (Lemma 64).

Lemma 72. There is a randomized oracle algorithm A f k
m,d,p that takes any circuit D that is a

distinguisher for G f k
m,d,p and produces a circuit C exactly computing f k

m,d,p, such that A succeeds

with high probability and runs in time poly(m,d, log p, |D|)

As usual, having an oracle to f k
m,d,p, the assumed hard function, is not desirable and our

algorithms dependence on it will need to be removed. We stray from the techniques of [IW01]

and worst-case uniform derandomization in general, by using the fact that our problems are from

the fine-grained world — and thus polynomial-time computable — to simply answer any oracle

queries by brute force! This is (in part) how we can remove the ‘infinitely-often’ qualifier that

plagues all previous worst-case uniform derandomizations.

122

As f k
m,d,p is computable in time O(mkpoly(d, log p)), we get the following theorem

without an oracle by running the algorithm guaranteed in Lemma 72 with each oracle call

answered by the naı̈ve brute force computation of f k
m,d,p.

Lemma 73. There is a randomized algorithm B that takes any circuit D that is a distinguisher

for G f k
m,d,p and produces a circuit C of size poly(m,d, log p, |D|) exactly computing f k

m,d,p. B

succeeds with high probability and runs in time O(mkpoly(m,d, log p, |D|)).

Now we show that, if we have an algorithm producing a distinguisher, then we have an

algorithm counting k-OV.

Theorem 74 (Distinguishers to k-OV Solvers). Let p be the smallest prime number larger than

nk and d =
⌈
log2(n)

⌉
. If there is an algorithm A that, on input 1n, outputs a distinguisher D of

poly(n) size for G f k√
n,d,p , then there exists a randomized algorithm counting k-OVn that runs in

time O(nk/2+c +TIME(A)), where c only depends on |D|.

Proof. Using A, we print a distinguisher circuit D for G f k√
n,d,p . Then, by Lemma 73, we know

there exists a randomized algorithm running in time O(nk/2poly(
√

n,d, log p, |D|)) = O(nk/2+c1)

that yields a circuit exactly computing f k√
n,d,p of size only poly(

√
n,d, log p, |D|) = O(nc2),

where c1 and c2 only depend on |D|. Thus, by Lemma 65, there exists an algorithm computing

f k
n,d,p in time O(nk/2+c2 +(nk/2+c1 +TIME(A))) = O(nk/2+c +TIME(A)) for c = max{c1,c2}.

Finally, this gives us an algorithm running in time Õ(nk/2+c +TIME(A)) to count k-OVn by

Lemma 63.

5.4.2 Printing Distinguishers from Failed Derandomization

We now show that, if either of two (shown in 5.4.2 and 5.4.2 respectively) types of

derandomization fail, we can uniformly print the distinguishers needed in Section 5.4.1 and thus

count k-OV solutions.

123

Randomness-Reduced Heuristics Over Any Efficient Distribution

Our first main result in derandomizing BPP is to reduce the amount of randomness

required to arbitrary inverse-polynomial quantities, over any efficient distribution of inputs. This

simulation trades time for reduced randomness under fine-grained hardness assumptions. More

precisely, the fewer coins we want to use, the larger k we must select for building a PRG based on

k-OV, the longer the runtime of the derandomization. This is the sense in which we have a fine-

grained randomness-reduced simulation of BPP: given a desired inverse-polynomial coin-bound,

our argument produces concrete polynomial time-bounds on the resulting simulation.

Theorem 75. If the weak k-OV conjecture holds almost everywhere, then, for all polynomially

samplable ensembles µ and for all constants α > 0,

(BPP,µ)⊆ HeurBPP[nα]

Thus, for any efficient distribution over inputs that nature might be drawing from and

for any inverse polynomial error rate we specify, we can simulate BPP using only nα random

bits for any constant α > 0 we want. By brute-forcing over all random bits and taking the

majority answer over this randomness-reduced computation we can always trivially create a

fully deterministic simulation to achieve the following more traditional-looking derandomization

result.

Corollary 76. If the weak k-OV conjecture holds almost everywhere, then, for all polynomially

samplable ensembles µ ,

(BPP,µ)⊆ HeurSUBEXP

Remark 77. While we are able to remove the infinitely-often qualifier from our derandomization,

note that for each efficient distribution of inputs and each inverse polynomial error rate we are

guaranteed to have a derandomizing algorithm, whereas [IW01] is able to achieve a single

derandomizing algorithm that works for each efficient distribution . Nonetheless, our result

124

is strictly stronger as it implies, for instance, EXP 6= BPP (shown in Section 5.5) which is the

assumption used to achieve the derandomization of [IW01].

In contrast to typical full derandomizations which brute-forces all seeds to a pseudoran-

dom generator and take majority answer, we now show that choosing a single random seed and

using the generator’s output as our randomness yields randomness-reduced simulations so long as

the generator is efficient enough. Typically, the generator is not fast enough for this application;

‘quick’ complexity-theoretic PRGs are usually given exponential time in their seed length as they

construct pseudorandom strings via queries to problems that have exponential hardness. But

when life gives you uniform random bits, you can make derandomization lemonade in a “single

shot.”

Definition 78 (Randomness-Reduced Simulations). Let A : {0,1}N ×{0,1}N` → {0,1} be a

randomized algorithm that uses N` random bits and let G : {0,1}Nα → {0,1}N`
be a function.

Then for constant α > 0, define the randomness-reduced simulation to be a randomized algorithm

B : {0,1}N×{0,1}Nα → {0,1} using only Nα random bits as B(x,r) = A(x,G(r)). This is an

alternative canonical derandomization.

We now show that if B does not work as a randomness-reduced heuristic, we can

uniformly print a distinguisher for the function G.

Lemma 79 (Failed Randomness-Reduction to Distinguishers). Let A, B, and G be as in Definition

78 such that for language L : {0,1}N →{0,1},

Pr
r∼UN`

[A(x,r) 6= L (x)]≤ 1/10

That is, that A as a good randomized algorithm deciding L for all x ∈ {0,1}N . Yet, also assume

that, for µ samplable in time Na1 and δ (n) = 1/Na2 , it holds that

Pr
x∼µN

[
Pr

r∼UNα

[B(x,r) 6= L (x)]> 1/3
]
≥ δ (N)

125

That is, B as a (randomness-reduced) randomized algorithm does not decide L on average over

µ . Then 1N 7→ DIS(G,1/5) is in randomized time Nc TIME(G) for c depending on a1 and a2.

Proof. Assume the antecedents of Lemma 79. This means that, with probability at least δ (N),

choosing x from µ will result in an x such that

Pr
r∼UNα

[B(x,r) 6= L (x)]> 1/3

If we can find an x′ ∈ {0,1}N that induces this “bad” performance of B on L , the test T (r) =

A(x′,r) will be in DIS(G,1/5). That is, since x′ makes B perform poorly while A still performs

well on all x’s and since B(x′,z) = A(x′,G(z)), the distinguishing gap of T is

∣∣∣∣∣ Pr
r∼UN`

[T (r)]− Pr
z∼UNα

[T (G(z))]

∣∣∣∣∣=
∣∣∣∣∣ Pr
r∼UN`

[A(x′,r)]− Pr
z∼UNα

[B(x′,G(z))]

∣∣∣∣∣> |1/10−1/3|> 1/5

To find such an x′, we simply sample-and-test as in [IW01]: sample Õ(1/δ (N)) possible

xi ∈ {0,1}N’s from µ and, for each of them, define the test Ti(r) = A(xi,r). For each Ti, in

polynomial time we can estimate the fraction of r ∈ {0,1}N`
that Ti accepts on and, by making

calls to G, we can estimate the fraction of G(z) for z ∈ {0,1}Nα

that Ti accepts on in polynomial

time times TIME(G). Thus we can estimate the distinguishing gap for each Ti.

With high probability one of these Ti is a 1/5-distinguisher for G and our estimation of its

distinguishing gap reveals it. Print this circuit.

Randomness-Reduced Simulations from k-OV.

To finish defining a randomness-reduced simulation, we need to use a specific generator

G that, for input length N, stretches Nα coins to N` pseudo-random bits. Thus, consider the

family of simulations Bk using the standard generators G f k√
n,d,p of Lemma 56 that map

√
ns

bits to
√

nb bits, for some fixed s and any b we choose, using f k√
n,d,p as our hard function, for

d = log2 n and p the smallest prime number larger than nk. Set b = s`/α and
√

n = Nα/s. Note

that TIME(G f k√
n,d,p) = poly(N) nk/2 = poly(N) by naı̈vely evaluating f k√

n,d,p at each oracle call,

126

giving an efficient randomness-reduced simulation. Further, since N = poly(n), TIME(G f k√
n,d,p)

also equals nk/2+c for some constant c not depending on k (this will be useful in quickly counting

k-OVn using downward self-reducibility in the following proof). Thus, given an N`-coin machine

A, we have the Nα -coin machine Bk(x,r) = A
(

x,G f k√
n,d,p(r)

)
.

We now prove our main Theorem 75 using this simulation and the above lemma.

Proof of Theorem 75. We proceed towards contradiction. Assume that the weak k-OVn conjec-

ture holds for all but finitely many input lengths, where ε0 = 1/2+ γ for some constant γ > 0,

but that there exists L ∈ BPP, a polynomially samplable distribution µ , constant α , and an

inverse polynomial function δ (N) such that any polynomial-time randomness-reduced algorithm

with coin bound Nα fails in deciding L on average over µ within δ (N) error for infinitely many

input lengths N.

Since L ∈ BPP there is a randomized algorithm A deciding L with probability of error

at most 1/10 over its randomness yet, since any polynomial-time randomness-reduced algorithm

fails to decide L on average, Bk, the randomness-reduced simulation of A described above, fails

on average infinitely often, for any constant k. Thus, the antecedents of Lemma 79 are satisfied

and we can uniformly print D ∈ DIS(G f k√
n,d,p,1/5) in time nc1 TIME

(
G f k√

n,d,p
)
= nc1 nc2nk/2.

This uniform printing of D allows us to apply Theorem 74 to count k-OVn in time

O(nk/2+c3 +nk/2+c1+c2) = O(nk/2+c) = O(n(
1
2+

c
k)k) for any k, where c = max{c1 +c2,c3}. Set-

ting k such that c
k < γ yields our contradictions: on the infinitely many input lengths where Bk

fails to derandomize L , the algorithm counts k-OV faster than nε0k time.

Fast Heuristics for BPP Over the Uniform Distribution

Here we present our second flavor of derandomization: a fully deterministic heuristic for

BPP over inputs sampled according to the uniform distribution.

127

Theorem 80. If the weak k-OV conjecture holds almost everywhere, then

(BPP,U)⊆ HeurP

This strictly improves previous uniform derandomizations over the uniform distribution.

Specifically, [GW02] can be seen to achieve our derandomization identically from a worst-case

uniform assumption if combined with techniques from [KvMS12] except only on infinitely many

input lengths.

We proceed by showing that if a PRG fails to give a good heuristic for BPP over the

uniform distribution, a seed-aware distinguisher for the PRG can be produced uniformly and

efficiently, which can then be used to count k-OV solutions quickly using Theorem 74.

Definition 81 (Input-As-Seed Heuristics). Let A : {0,1}N×{0,1}N` →{0,1} be a polynomial-

time randomized algorithm using N` random bits. Let G : {0,1}N →{0,1}N`
be a deterministic

function. Define the heuristic B : {0,1}N → {0,1} that uses its input as G’s seed as B(x) =

A(x,G(x)).

Now recall the Main Lemma of [KvMS12] giving the consequences of failed heuristics

in the non-uniform setting:

Lemma 82 (Failed Heuristics =⇒ Distinguishers). Let A : {0,1}N ×{0,1}N` → {0,1} and

L : {0,1}N →{0,1} be functions such that

Pr
x∼UN ,r∼UN`

[A(x,r) 6= L (x)]≤ ρ

Let B be the seed-as-input heuristic for A using function G. Then, if B does not succeed on a

(3ρ + ε) fraction of the inputs of a given length, there exists an r′ ∈ {0,1}N`
such that the test

Tr′(x,r) = A(x,r)⊕A(x,r′) is in DIS(G,ε).

The proof of the above lemma uses non-uniformity to obtain a good r′ for distinguishing,

but we can instead uniformly obtain good strings r′ via a sample-and-test procedure. There is

128

some loss in the accuracy of the resulting simulation, but this can be made an arbitrarily small

inverse polynomial via standard error reduction.

Intuitively, if B is a bad heuristic for L , then we could use B(x) = A(x,G(x)) as a seed-

aware distinguisher for G by comparing B(x) to L (x). Unfortunately we cannot afford to print

distinguishers with L -oracles. But since we are guaranteed that A is a good heuristic for L , we

can obtain a deterministic circuit close to L from A, by fixing a string of good random bits r′. If

we compare B(x) and the fixed-coin algorithm A(x,r′), they will also tend to disagree, giving the

necessary distinguishing gap. We can find and fix a good r′ uniformly by showing that the set of

good random strings is dense, and then sampling and testing for goodness. This sample-and-test

process incurs only a constant-factor overhead — a small price to pay for uniformity. Formally:

Lemma 83 (Failed Heuristics =⇒ Uniform Distinguishers). Let A, L , G, and B be as in

Lemma 82 above. Then, if B does not succeed on a (5ρ + ε) fraction of the inputs of a given

length, the map 1N 7→ DIS(G,ε) is uniform and in randomized polynomial time, for infinitely

many N.

Proof. By the assumption that A succeeds on a ρ fraction of input-coin pairs, we know that many

fixings of the coins of A produce an algorithm close to L . We can thus obtain in polynomial

time and with high probability a string r′ ∈ {0,1}N`
such that

Pr
x∼UN

[A(x,r′) 6= L (x)]≤ 2ρ

by repeatedly sampling and testing such fixings of A’s coins. This is the first of several “con-

structive averaging arguments” used here. As above, define the tests,

Tr′(x,r) = A(x,r)⊕A(x,r′)

which output ‘1’ when, for input x, A on fixed coins r′ disagrees with A run on input coins r. To

output a distinguisher, we simply find an appropriate string r′ and then print the circuit Tr′ . This

129

only takes polynomial time. To show that with high probability Tr′ ∈ DIS(G,ε), consider two

cases.

1. T (x,G(x)): We have by definition of B = A(x,G(x)) and the assumption that B is not a

good heuristic that A(x,G(x)) will tend to disagree with L . So A(x,G(x)) will also tend

to disagree with A(x,r′). Thus, the test will be biased towards printing 1 when run with

generator output.

2. T (x,UN`): The algorithm A(x,UN`) will tend to agree with A(x,r′) by our constructive

averaging above. So the test will tend to output 0 when run with true random bits.

These cases correspond to the first and second terms of the distinguishing gap equation

(Definition 55), which we substitute the test into below:

∣∣∣∣∣∣∣∣∣∣
Pr

x∼UN

[
A(x,G(x)) 6= A(x,r′)

]
︸ ︷︷ ︸

(i)

− Pr
x∼UN ,R∼UN`

[
A(x,r) 6= A(x,r′)

]
︸ ︷︷ ︸

(ii)

∣∣∣∣∣∣∣∣∣∣
An upper bound on term (ii) is straightforward by union bound and Fréchet inequality: it is at

most 3ρ . For term (ii), observe that we have the following bounds on relative Hamming distance

from A(x,G(x)) to L , and from A(x,r′) to L at the nth slice:

d(A(x,G(x)), L)≥ 5ρ + ε by assumption on B

d(A(x,r′), L)≤ 2ρ by constructive averaging

So, by triangle inequality, we obtain a lower bound of 3ρ +ε on the first term of the distinguisher

equation (with high probability). Therefore, if our constructive averaging succeeds in finding a

good r′, we have Tr′ ∈ DIS(G,ε). The time to print Tr′ is just the polynomial time to find a good

r′ by repeatedly sampling and running A to test, plus the time to print A as a circuit. Thus the

130

size of the distinguisher printed is only Õ(TIME(A)) — it does not depend on the runtime of the

constructive averaging argument.

Fully Deterministic Heuristics from k-OV.

Here we specify a family of heuristics Bk, by fixing the generator G, that stretches a seed

of length N to N`, as the generators G f k√
n,d,p of Lemma 56. These map

√
ns bits to

√
nb bits, for

some fixed s and any b we choose, using f k√
n,d,p, for d = log2 n and p the smallest prime number

larger than nk. Set b = s` and
√

n = N1/s. All comments about the runtime of the randomness-

reduced heuristic in Section 5.4.2 also apply to this fully deterministic heuristic. Thus, given an

N`-coin machine A, we define the deterministic machine Bk(x) = A
(

x,G f k√
n,d,p(x)

)
.

Note that TIME(G f k√
n,d,p) = poly(N) nk/2 = poly(N) by naı̈vely evaluating f k√

n,d,p at each

oracle call, giving an efficient randomness-reduced simulation. Further, observe that N = poly(n)

so that TIME(G f k√
n,d,p) also equals nk/2+c for some constant c not depending on k (this will

be useful in quickly counting k-OVn using downward self-reducibility in the following proof).

Given L ∈ BPP and A the N`-coin machine for L , define Bk(x,r) = A(x,G f k√
n,d,p(r))

We now prove our main Theorem 80 using this simulation and the above lemma.

Proof of Theorem 80. We proceed by contradiction. Assume that the weak k-OVn conjecture

holds for all but finitely many input lengths, where ε0 = 1/2+γ for some constant γ > 0, but that

there exists L ∈ BPP and an inverse polynomial function δ (N) such that any polynomial-time

deterministic algorithm fails in deciding L on average over µ within δ (N) error for infinitely

many input lengths N.

Namely, since L ∈ BPP there is a randomized algorithm A deciding L with probability

of failing over its coins at most ρ(N) for any inverse polynomial (by standard error reduction),

yet it must be the case that our Bk simulation of A described above fails on average infinitely

often as well, for any constant k. Thus, choose inverse polynomial ε(N) and ρ(N) such that

5ρ+ε ≤ δ (N) and this failure satisfies the preconditions of Lemma 83 and thus we can uniformly

print D ∈ DIS(G f k√
n,d,p ,ε) in time nk/2+c1 .

131

Again this allows us to apply Theorem 74, which counts k-OV in time O(nk/2+c2 +

nk/2+c1) = O(n(
1
2+

c
k)k) for any k, where c = max{c1,c2}. Setting k such that c

k < γ yields

our contradiction: on the infinitely many input lengths where B fails to derandomize L , the

algorithm counts k-OVn faster than nε0k time.

5.5 Heuristics Imply Separations

We now show that, if a deterministic simulation of BPP succeeds infinitely-often and

on average, then BPP doesn’t contain any deterministic time class larger than P. This is strong

limitation on the power of BPP from a strong assumption. Compare this to Corollary 7 of [IW01]

(reproduced below) which starts from a much weaker assumption but gets a corrospondingly

weaker separation. This pair of results reinforces our theme of obtaining high-end analogs to

[IW01].

Theorem 84 (High-end Heuristics for BPP =⇒ Uniform Separation). Suppose (BPP,U)⊆

io-Heur1/3P. Then, for all t(n) = nω(1) time-constructible:

DTIME[t(n)]* BPP

Theorem 85 (Low-End Heuristics for BPP =⇒ Uniform Separation [IW01]). If BPP ⊂

io-Heur1/3TIME[2o(n)]/o(n) then BPP 6= EXP

Intuitively, suppose we were able to fully derandomize, ie, prove BPP ⊆ P. Then

the determinisic time-hierarchy theorem would imply DTIME[nω(1)] * BPP. Thus, proving

a time-hierarchy theorem that is robust to the io- and Heur qualifiers suffices to conclude

DTIME[nω(1)]* BPP from a (BPP,U)⊆ io-HeurP derandomization. We expand ideas from

[IW01] to prove the following sufficient lemma.

132

Lemma 86 (Robust Time Hierarchy Theorem). For all time-constructible t(n):

io-Heur1/3DTIME[t(n)]⊂ DTIME[t(n)3]

Proof. We give a deterministic machine M that runs in time t(n)3 but whose language is not in

io-Heur1/3DTIME[t(n)]:

Let `(n) = log t(n). On input x = u||v, where u is the first n− `(n) bits and v is the last

`(n) bits, M simulates all Turing machines of description length (1/2)`(n) on every n-bit input

that begins with u for t(n) steps. This creates 2.5`(n) =
√

t(n) strings of length t(n) which are the

truth tables of each .5`(n)-size Turing machines that runs in t(n) steps on all of the 2`(n) = t(n)

inputs that begin with u.

It is easy to see with Chebyshev that a random string of length t(n) agrees with any fixed

t(n)-length string on at least 2/3 of its values only with probability 1/O(t(n)). Since there are

only
√

t(n)< O(t(n)) strings that are our truth tables though, by union bound there must exist a

t(n)-length string that disagrees with all of our truth tables on at least 1/3 of each of their values.

Of course this string might have high complexity to generate but, since our analysis here only

involved a Chebyshev bound, a pairwise independent hash family will fool this analysis and

yeild the same conclusion.

Namely, considering a random string from the pairwise independent hash family H =

{〈r, ·〉 : r ∈ {0,1}`(n)} is sufficient for the analysis and so we have that there must exist a specific

〈ru, ·〉 that disagrees with all of the truth tables on at least 1/3 of their values. Thus, since H

is relatively small and its functions are easy to compute, M can find that ru by brute force and

outputs its final binary value as 〈ru,v〉.

Thus, this whole process of M on x = u||v of simulating
√

t(n) Turing Machines on

t(n) inputs for t(n) time and checking all t(n) r’s for the one that fools all of the truth tables

adequately enough takes at most t(n)3 time for large enough n. However, by construction, all

time t(n) Turing machines fail in deciding this language on at least 1/3 of its inputs for all

133

sufficiently large n.

5.6 Open Questions

• We derandomize under hardness conjectures about two of four ‘key’ problems in fine-

grained complexity: k-OV and k-CLIQUE. What about k-SUM and APSP? APSP doesn’t

seem to have a natural hierarchy and so doesn’t fit our framework (although it does reduce

to ZERO-TRIANGLE which generalizes to ZERO-k-CLIQUE and should easily work in

our framework using polynomials similar to those in [BRSV17]). k-SUM however is

actually computable in O(ndk/2e) time and so our downward self-reducibility techniques

are not fast enough to break this conjecture in the contrapositive. The clearest path we see

to getting derandomization without reintroducing the io- qualifier is to find a polynomial

for k-SUM that is also computable in Õ(ndk/2e) time (unlike the one found in [BRSV17]).

• Our derandomizations hold under (randomized) SETH, since SETH implies the k-OV

conjecture. Can a better derandomization be obtained directly from SETH, the stronger

assumption? A stumbling block here is the random self-reduction, an ingredient in all

known uniform derandomization techniques: If t-SAT has a straightforward and efficient

random-self-reduction, PH collapses [FF93, BT06b]. So derandomizing from SETH

directly could require new ideas, or a strange random self-reduction (such as that of

[GST07]). An inefficient random self-reduction for t-SAT shouldn’t collapse PH except

to say that t-SAT has a mildly exponential MA proof which is already known to be true

[Wil16], although most random self-reductions we know are through arithmetization which

seems to always have ‘low’ degree to the point that such a polynomial would still collapse

PH.

• Is a strong “derandomization to hardness” converse possible for these heuristic simulations

134

of BPP? In Section 5.5, we showed a weak converse: our simulation is impossible without

separting DTIME[nω(1)] from BPP. But this is a very different statement from the k-OV or

k-CLIQUE conjectures. In [KvMS12], they show that herusitic simulations of BPP with

inverse-subexponential error rates imply circuit lower bounds, by generalizing techniques

of [KI04]. Do the efficient inverse-polynomial error heuristics we obtain imply any circuit

lower bounds?

• For error-free derandomization, [KI04] shows that circuit lower bounds are necessary. For

inverse-subexponential error heuristics, [KvMS12] shows that circuit lower bounds are

necessary. Is it possible to conclude circuit lower bounds from the almost-everywhere,

inverse-polynomial error heuristics that our techniques produce?

• Could we use the connections established here to show a Karp-Lipton type theorem inside

BPP? What other classical results be ported “down” into the fine-grained structure of P

and executed uniformly? Because hardness vs. randomness trade-offs are common tools

in structural complexity, we hope that our derandomizations are useful for this broader

project.

Chapter 5, in part, is based on the material as it appears in “Marco L. Carmosino,

Russell Impagliazzo, and Manuel Sabin. Fine-grained derandomization: From problem-centric

to resource-centric complexity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,

and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and

Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs,

pages 27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018”. The dissertation

author was the primary investigator and author of this paper.

135

Chapter 6

Tighter Connections between Derandom-
ization and Circuit Lower Bounds

6.1 Introduction

While randomness has become an indispensable tool for algorithm design, many (though

not all) randomized algorithms have later been derandomized, i.e., shown to have equivalent,

comparably fast deterministic algorithms. One highly successful method for derandomization of

whole classes of algorithms has been the “hardness as randomness” paradigm [AW85, BM84,

Yao82, NW94, BFNW93, IW97, STV01, SU05, Uma03]. In this paradigm, problems that are

hard for the type of computation to be derandomized are converted into indistinguishable pseudo-

random generators (PRGs) for the same class, which then replace the random choices of the

randomized algorithm.

It has long been observed that this method seems to require hardness for the non-

uniform version of the class (at least for worst-case derandomization — contrast this with

the heuristic derandomizations of Chapter REFXX). PRGs are a special case of “black-box”

derandomization methods, where the algorithm to be accessed is only modified by replacing the

random decisions with deterministic choices. It is relatively straightforward to show that “black-

box” derandomization requires a circuit bound against the type of algorithm to be derandomized

(see, e.g., [HS82]). Thus, via the hardness as randomness paradigm, strong circuit lower bounds

can be proved equivalent to universal “black-box” derandomization.

136

More surprisingly, there are results that show the reverse direction, that derandomization

requires strong circuit lower bounds, is true even for non-black-box algorithms [IKW02]. In

fact, even derandomizing a specific algorithm, the randomized polynomial identity test (PIT)

of Schwartz and Zippel (also discovered by DeMillo and Lipton) [Sch80, Zip79, DL78], would

imply strong lower bounds for arithmetic circuits [KI04, JS12, AM11]. However, the proofs

of these statements are not direct reductions, but instead go through various complexity class

collapses, and the conclusions in one direction are not usually exact matches for the other.

So, unlike for “black-box” algorithms, we do not usually get a literal equivalence between a

derandomization result and a circuit lower bound (one exception is [JS12]).

In this paper, we tighten the connections between circuit lower bounds and derandomiza-

tion in several ways, for each of the three types of derandomization: general derandomization of

promise-BPP (connected to Boolean circuits), derandomization of PIT over fixed finite fields

(connected to arithmetic circuit lower bounds over the same field), and derandomization of PIT

over the integers (connected to arithmetic circuit lower bounds over the integers). We show

how to make these connections equivalences, although at the expense of using somewhat less

common versions of complexity classes and a less studied notion of inclusion, the “robustly-often”

inclusion introduced by [FS11]. Even for worst-case inclusion, we simplify and strengthen the

known connections in several ways.

6.1.1 Our results

Following [JS12], let ml-NE denote the class of multilinear n-variate polynomials F =

{ fn}n≥0 over a domain D (for D the set of integers or a finite field) whose graph:

{(a1, . . . ,an, fn(a1, . . . ,an)) | n≥ 0, ai ∈D , 1≤ i≤ n}

is in the class NE = NTIME[2O(n)].

• For finite fields, we show that derandomization of PIT implies that some polynomial

137

F ∈ ml-NE does not have polynomial sized arithmetic circuits over the same field, nor

does any polynomially bounded power of F . This is the first result getting circuit lower

bounds from derandomization of a randomized PIT algorithm over fixed finite fields1. See

Theorem 105 on page 172.

• We improve on the advice requirements for known connections between derandomization

of PIT over the integers and arithmetic circuit lower bounds over the integers. See Theorem

107 on page 182.

• Impagliazzo et al. [IKW02] showed that (even nondeterministic) polynomial-time deran-

domization of promise-BPP would imply a Boolean circuit lower bound for NEXP. We

strengthen this to a circuit lower bound for the smaller class NEXP∩ coNEXP. This is the

same class where sufficiently strong circuit lower bounds would imply that promise-BPP⊆

NP. See Theorem 109 on page 183.

• [IKW02] also showed that a Boolean circuit lower bound for NEXP would follow from

the existence of an NP-computable non-empty property of Boolean functions that is

useful for proving superpolynomial circuit lower bounds (in the sense of natural proofs of

Razborov and Rudich [RR97]). We also strengthen this to the lower bound for the class

NEXP∩ coNEXP. See Theorem 111 on page 192.

• The two notions of inclusion and hardness most frequently used in complexity are “every

length” inclusion and hardness, and “infinitely often” inclusion and hardness. Unfortu-

nately, the negation of everywhere inclusion is only infinitely often hardness, and vice

versa. This prevents many of the connections above from being literal equivalences be-

tween lower bounds and derandomization. Using a third notion of inclusion, a variant of

the “robustly often” inclusion of [FS11], we make all four of the above connections into

1Kabanets and Impagliazzo [KI04] prove a related but weaker version of the hardness-to-pseudorandomness
result for finite fields: their arithmetic-complexity hardness assumption is not for a polynomial (defined over all
extension fields), but rather for the function that agrees with the polynomial over a particular extension field.

138

literal equivalences2.

6.1.2 Overview of Techniques

How can we argue that an upper bound on algorithmic complexity (efficient derandom-

ization) yields a lower bound on non-uniform complexity (circuit lower bounds)? The various

results in this area all follow the same general template (see, e.g., [AvM12] for a formal treat-

ment): We assume that we have both a circuit upper bound for some large class such as NEXP,

and a general derandomization technique, and work towards contradiction as outlined below.

Simulation: Meyer, Karp and Lipton [KL82] introduced techniques to give conse-

quences of non-uniform (circuit) upper bounds for uniform classes. Using interactive proofs

[BM88, Sha92], many of these can be extended to show that if a large complexity class C such

as EXP or PSPACE has small circuits, then C also has short (constant-round) interactive proofs

(see, e.g., [BFNW93]).

Derandomization: Invoking the generic derandomization technique in the above sim-

ulation, we get that C can be simulated only with non-determinism.

Contradict a known lower bound: If C is NEXP itself, as in [IKW02] and [Wil14b],

the contradiction comes from some version of the non-deterministic time hierarchy theorem.

An alternate method used by [AM11] is to pad up the non-trivial simulation of C in small non-

deterministic time to show that some analogous class superpoly-C can be simulated in NEXP.

The class superpoly-C will often be strong enough that a lower bound in that class can be shown

by direct diagonalization (see, e.g., [Kan82]). By simulation, NEXP will inherit the same lower

bound.

If both the circuit upper bound assumed and the derandomization assumed are worst-case,

2[JS12] has an alternative method of getting an equivalence for the case of PIT over the integers, but at the
expense of moving to versions of the classes with advice.

139

then the above template can be filled out to get a variety of trade-offs. However, when one or

the other is only assumed to occur for infinitely many lengths of input, care needs to be taken

to compare the input sizes where the simulation is possible, the corresponding lengths where

derandomization is possible, and what non-worst-case versions of the known lower bounds are

true.

6.1.3 Related Work

While the general issue of connections between circuit complexity and derandomization

has been the subject of intense research by many people, the papers most directly parallel to this

work are [IKW02, KI04, AM11, JS12, KMS12]. Here, we briefly describe the main results and

techniques of these five papers, and compare them to our results and techniques.

Promise-BPP.

[IKW02] considers the question of derandomizing promise-BPP. While there are several

other results in the paper, the main result for our purposes is an equivalence between a circuit

lower bound for NEXP and a “non-trivial” simulation of promise-BPP.

Theorem 87 ([IKW02]). NEXP 6⊂ P/poly if and only if promise-BPP⊆∩ε>0io-NTIME[2nε

]/nε .

While this is a strong result, and in fact an equivalence, there are some questions raised by

the details in this statement. Since promise-BPP⊆ P/poly, we know that advice can be powerful

in this context. How significant is the small amount of advice allowed in the sub-exponential

time algorithms for promise-BPP? Is it really necessary or just a by-product of the proof? Can

we get a stronger conclusion if we assume a Circuit Acceptance Probability Problem (estimating

the acceptance probability of a size-n Boolean circuit to within an additive error of at most 1/n;

CAPP) algorithm with no advice? Also, [IKW02] use the “Easy Witness Lemma” to obtain their

result, which is itself derived by a somewhat convoluted indirect derandomization argument. Is

this use of the Easy Witness Lemma necessary?

140

Here, we give some answers to these questions. Using arguments parallel to those in

[AM11, KMS12] with respect to PIT, we remove the Easy Witness Lemma. Then (as [AM11]

did for PIT) we show that sufficiently strong nondeterministic algorithms for promise-BPP

(without advice) imply the stronger conclusion that (NEXP∩ coNEXP) 6⊆ P/poly (Theorem 109).

So there does seem to be a real difference between derandomizations with and without advice.

One use of advice in the original argument is that, if we have a different CAPP algorithm

for every ε > 0, then, for each length, the best value of ε and the algorithm that achieves that

ε can be both given as advice. To remove this advice, we need to have a single algorithm that

runs in nondeterministic sub-exponential time, 2nε(n)
for some computable ε(n) ∈ o(1). This

seems an equally natural definition of a problem being computable in sub-exponential time, and

we adopt it throughout our paper. We prove some closure properties and normal forms for this

notion that might be of independent interest.

Circuit lower bounds and nontrivial useful properties.

Razborov and Rudich [RR97] defined an NP-constructive property useful against P/poly

as an NP-computable predicate on 2n-bit inputs (the truth tables of n-variate Boolean functions)

such that, whenever the predicate holds for infinitely many input lengths of a given family of

Boolean functions f = { fn}n≥0, it follows that f 6∈ P/poly. Call such a property nontrivial if

there are infinitely many input lengths n such that at least one truth table of size 2n satisfies the

property.

It was shown in [IKW02] that the existence of a nontrivial NP-constructive property

useful against P/poly implies that NEXP 6⊆ P/poly. We strengthen this to the circuit lower

bound for NEXP∩ coNEXP for nontrivial NP-constructive properties useful against computably

superpolynomial circuit size. Moreover, we make this connection into an equivalence, using a

variant of the “robustly often” notion of [FS11] (Theorem 111).

141

Polynomial identity testing over the rationals.

[KI04] extends the connections between derandomization and circuit lower bounds to

the arithmetic-complexity setting. In one direction, they show that if both NEXP ⊆ P/poly

and the permanent function has polynomial-size arithmetic circuits over the rationals, then no

nondeterministic sub-exponential time algorithm can solve PIT, even for infinitely many input

sizes. In the other direction, either NEXP 6⊆ P/poly or the permanent requiring super-polynomial

sized circuits gives some nontrivial algorithm for PIT, although not quite an exact converse.

This again raises some questions. Stating the result in the contrapositive, a nontrivial

algorithm for PIT would yield either a Boolean circuit lower bound or an arithmetic circuit lower

bound. Intuitively, Boolean circuit lower bounds should be more difficult, so can we get a similar

result that only mentions arithmetic circuit lower bounds?

This question was addressed in [AM11, KMS12] and [JS12]. First, [AM11] and

[KMS12] give an alternate version of the final contradiction step that allows them to avoid

the Easy Witness Lemma. This not only simplified the proof, but allowed them to replace the

condition that NEXP ⊂ P/poly with the weaker condition that (NEXP∩ coNEXP) ⊂ P/poly.

([KI04] had also shown that (NEXP∩ coNEXP) ⊂ P/poly and the easiness of the permanent

sufficed to show PIT 6∈ NP.) [JS12] show that the Boolean and arithmetic lower bounds can be

in some sense combined. They show that derandomizing a certain version of PIT, low-PIT, in

non-deterministic sub-exponential time is equivalent to proving a super-polynomial lower bound

for circuits with restricted degrees on a multi-linear function whose values can be computed

in NEXP/O(n). However, being determined by the correct advice, the functions where the

arithmetic lower bound would hold in their result are somewhat non-constructive, and when the

advice is incorrect, the corresponding functions might not be defined at all, so they cannot be

combined into one universal function for each length.

We show that by using the [AM11, KMS12] type contradiction step, the two lower bounds

can be replaced by a single arithmetic circuit lower bound for a multilinear polynomial definable

in NEXP∩ coNEXP (Theorem 107), thus removing this somewhat awkward non-uniformity.

142

Polynomial identity testing over a fixed finite field.

The polynomial identity testing problem and arithmetic circuit complexity are also

important over other fields, such as fixed finite fields. Here one fixes some constant-size finite

field F, and then asks for an efficient algorithm to decide if a given arithmetic circuit C over F,

defining a low-degree polynomial p (over F and any finite field extending F), is such that p≡ 0.

The latter can be easily decided by a randomized polynomial-time Schwartz-Zippel algorithm

evaluating p on random points from a sufficiently large (larger than the degree of p) extension

field of F.

Do similar connections between hardness and pseudorandomness hold for fixed finite

fields? Before the work here, almost no such connections were known. There are a number

of obstacles to directly translating the [KI04] techniques to fixed finite fields. First, in the

“derandomization of PIT to arithmetic hardness” direction, [KI04] use the clean algebraic

recursive “expansion by minors” definition of the permanent, a problem complete for #P. While

the same recursion holds for the permanent over finite fields, permanent over finite fields is not

known to be #P complete, or even NP-hard (under deterministic reductions).

Secondly, in the “arithmetic hardness to derandomization of PIT” direction, if the hitting

set generator from [KI04] fails using a given f as the hard function over a finite field, it only

follows that some power of f had a small arithmetic circuit, not f itself. Though this power

of f can be manipulated to obtain an arithmetic circuit that agrees with f over some particular

extension field, the polynomial computed by this circuit would not be identically equivalent to f

(see Section 6.2.4 for the difference between testing for identity and agreement of polynomials

over a finite field). Therefore, a power of f could still have small arithmetic circuits and this

would not contradict the hardness assumption used by [KI04] in the hardness to randomness

direction. Thus, [KI04] has only a weak hardness-to-randomness result in the case of circuits

over finite fields.

We give the first proof that nondeterministic polynomial identity testing over a fixed

finite field yields an arithmetic circuit lower bound (Theorem 105). We avoid the permanent

143

by showing a simulation lemma for an even larger class, PSPACE, using a PSPACE-complete

function of [TV02] with an algebraic recursive definition. We observe that, not only would a

small circuit for this function itself yield the required simulation, but also any circuit for a small

power of the function would have a similar consequence. This matches the type of arithmetic

lower bounds needed to derandomize polynomial identity testing using the hitting set generator

of [KI04]. Thus, the correct connection (over finite fields) is between derandomizing PIT and

proving lower bounds on circuits that compute powers of polynomials.

Equivalence between circuit lower bounds and derandomization.

While the results above come closer to showing that each of these three derandomization

problems are equivalent to a corresponding lower bound, they are not literal equivalences. This

is because of the distinction between infinitely often computation and worst-case computation.

Making worst-case assumptions about algorithms is necessary to get even infinitely often

hardness, but infinitely often hardness only suffices to get algorithms that work infinitely often.

To make versions of our results that are literal equivalences, we consider an interme-

diate notion between worst-case and infinitely-often computation, robustly-often computation

introduced by [JS12]. Informally, an algorithm solves a given problem robustly often if there

are infinitely many intervals of superpolynomially many input lengths where the algorithm is

correct on each length in the interval.

While robust inclusion and separation are somewhat non-standard, they are exactly what

we need to make the connections between circuit lower bounds and worst-case derandomization

into equivalences (Theorems 106, 108, and 110). We feel that this is not a coincidence, and

the “robustness” notion is quite natural and can be justified independently by the following

considerations: as technology improves in general, all computational elements will improve

somewhat. But computational elements will often get more diverse, so that say, the CPU in cell

phones will not be improving its computational power as quickly as the top super-computer

will. A reasonable model is to assume that there are two different Moore’s laws, one for “high-

144

end” technology and one for “low-end”, with different periods of doubling. Thus, high-end

and low-end technologies will be polynomially related in their resources, and the intermediate

technologies will span the range between them. Thus, it is natural to look at polynomially

related ranges of parameters, not just single values. Robust computation does just that, looking at

whether computation is possible not just on infinitely many single input lengths, but whether there

are infinitely many “technology levels” of unbounded polynomial reach where this computation

is possible.

Organization

• §6.2: We cover basic material regarding: arithmetic circuit complexity (Section 6.2.1),

calculation of arithmetic functions by Boolean complexity classes (Section 6.2.2), deran-

domization of PIT (Section 6.2.4), and finally derandomization of promise-BPP (Section

6.2.5).

• §6.3: We introduce the notions of “robust” inclusion and separation that will allow us to

obtain equivalences between lower bounds and derandomization. We establish closure

properties of robustness that are important for our applications.

• § 6.4: We show how to arithmetize TQBF to get a PSPACE-complete polynomial whose

arithmetic circuits can be tested for correctness with a PIT algorithm.

• § 6.5: We give tighter connections between PIT algorithms and arithmetic circuit lower

bounds over finite fields.

• § 6.6: We give tighter connections between PIT algorithms and arithmetic circuit lower

bounds over the integers.

• § 6.7: We give tighter connections between derandomizing promise-BPP and Boolean

circuit lower bounds.

145

6.2 Definitions & Tools

6.2.1 Arithmetic circuit complexity classes

An arithmetic circuit on n variables is a directed acyclic graph with n in-degree 0 nodes

labeled by the variables x1, . . . ,xn (inputs), and one out-degree 0 node (output); each in-degree 2

node is labeled by an arithmetic operation + or ∗; each non-input in-degree 0 node is labeled by

a constant. The size of an arithmetic circuit is the number of nodes (gates) in the graph. Each

arithmetic circuit C(x1, . . . ,xn) computes a polynomial in variables x1, . . . ,xn, which we shall

also denote by C(x1, . . . ,xn).

We will consider arithmetic circuits both over integers and over finite fields. Over the

integers, we shall consider only constant-free circuits, i.e., those circuits where all constant labels

are restricted to the set {0,1,−1}.

For a finite field F, define ASizeF[s(n)] to be the class of all families of n-variate poly-

nomials { fn} over F such that, for all sufficiently large n, the polynomial fn is computed by

some arithmetic circuit Cn of size at most s(n) over F (i.e., the polynomials fn(x1, . . . ,xn) and

Cn(x1, . . . ,xn) are formally the same when viewed as the sums of monomials). Over the integers,

the class ASizeZ[s(n)] is defined analogously.

We denote by ASizeDegF[s(n)] the subclass of ASizeF[s(n)] of families of n-variate

polynomials fn that have degree at most s(n). Over the integers, we denote by ASizeDegZ[s(n)]

the restricted class of polynomial families { fn} that have formal degree at most s(n). Recall that

the formal degree is defined inductively as follows: for input gates, regardless of their label, the

formal degree is 1; an addition gate has the formal degree equal to the maximum of the formal

degree of its input gates; a multiplication gate has the formal degree equal to the sum of the

formal degrees of its input gates. The bounded formal degree is useful as it allows us to bound

the bit-length of any integers computed by a given arithmetic circuit. This is an appealing way to

ensure that it is feasible to evaluate the circuit.

146

“Easy” polynomials.

Over the integers, we shall consider a polynomial f “easy” if some constant multiple

c · f is computable by a “small” arithmetic circuit. More formally, we define ASizeDegMul[s(n)]

as the class of polynomial families { fn} over Z of degree at most s(n) such that, for some

function g : N→ N we have {g(n)× fn} ∈ ASizeDegZ[s(n)] and g is computed by a family

of variable-free ASizeDegZ[s(n)] circuits. Thus, for each input length n, we could compute a

different constant multiple of f . ASizeDegMul is equivalent to the class ASIZEDEG′ of [JS12],

we only formulate it differently to ease the description of our identity tests.

Over finite fields, we shall consider a polynomial f “easy” if some bounded power f d of

f is computable by a “small” arithmetic circuit. More formally, over a finite field F, we define the

class ASizeDegPowF[s(n)] as the class of polynomial families { fn} over F of degree at most s(n)

such that, for some function d : N→ N with d(n)≤ s(n), we have { f d(n)
n } ∈ ASizeDegF[s(n)].

The definition of ASizeDegPowF does not change if we require that the function d(n)≤

s(n) be such that each d(n) = pkn for some kn ∈ N where p is the prime characteristic of the

finite field F. This is a convienent normal form for our hardness to randomness tradeoffs. Below,

we state and prove it formally.

Lemma 88. Let F be a finite field of characteristic p. If f ∈ ASizeDegPowF[s(n)], then there

exists a function k : N→ N such that pk(n) ≤ s(n) and { f pk(n)

n } ∈ ASizeDegF[poly(s(n))].

Proof. Let d(n)≤ s(n) be such that { f d(n)
n } ∈ ASizeDegF[s(n)]. For each n ∈ N, write d(n) =

pk(n)mn where mn is not divisible by p. Suppose fn = gpe1m1
1 . . .gpet mt

t for irreducible polynomials

g1, . . . ,gt , with m1, . . . ,mt not divisible by p. Then f d(n)
n = gpe1 pk(n)m1m(n)

1 . . .gpet pk(n)mtm(n)
t . Since

f d(n)
n is computable by an arithmetic circuit of size at most s(n) and has degree at most s2(n),

Kaltofen’s factoring algorithm of [Kal89] guarantees the existence of t arithmetic circuits

C1, . . . ,Ct over F of size poly(s(n), log |F|) computing the polynomials gpe1+k(n)

1 , . . . ,gpet+k(n)

t .

Define new circuits C′i =Cmi
i , for 1≤ i≤ t. Observe that the product C′1 . . .C

′
t of these circuits

computes the polynomial f pk(n)

n , and has size poly(s(n)).

147

To simplify notation, we will often omit the subscripts F and Z for arithmetic circuit

classes ASize, ASizeDeg, ASizeDegPow, and ASizeDegMul, when the underlying domain is clear

from the context. For instance, in this work we will never have occasion to use ASizeDegMul

over finite fields or ASizeDegPow over Z.

6.2.2 Polynomials computable in NE: The class ml-NE

Fix an arbitrary finite field F= Fpk of characteristic p. Let f = { fn(x1, . . . ,xn)}n≥0 be

an arbitrary family of polynomials over F. For a polynomial f and a monomial m, denote

by coeff(f ,m) the coefficient of f at the monomial m (when f is written out as the sum of

its monomials). For a family f of multilinear polynomials fn over a finite field F, define the

following language:

MONOMIAL(f) = {(a1, . . . ,an,c) | a1, . . . ,an ∈ {0,1}, c ∈ F, coeff(fn,x
a1
1 . . .xan

n) = c}.

We denote by MONOMIAL(fn) the restriction of MONOMIAL(f) to the case of fn, that is,

MONOMIAL(fn) defines the coefficients of the n-variate polynomial fn. For multilinear poly-

nomial families f over the integers, the language MONOMIAL(f) is defined similarly, with the

natural change that the coefficient c be an integer in binary.

We say that a family of multilinear polynomials f = { fn}n≥0 over a finite field F or over

integers Z is in the class ml-NE if MONOMIAL(f) ∈ NE.

Observe that if MONOMIAL(f) ∈ NE, then MONOMIAL(f) ∈ coNE also. Thus, we have

MONOMIAL(f) ∈ NE ⇐⇒ MONOMIAL(f) ∈ (NE∩ coNE), and so ml-NE = ml-(NE∩ coNE);

the same equivalence holds also for the definition of ml-NE used by Jansen and Santhanam [JS12].

Remark 89. The graph definition of ml-NE used by [JS12] and the monomial-coefficient defini-

tion of ml-NE given here are equivalent because of efficient interpolation: If we can compute

each multilinear coefficient of f in NE, then we can compute all 2n coefficients and use them

to evaluate f (x) on any given x; conversely, if we can compute the graph (x, f (x)) in NE, then

148

we can compute f (x) on all Boolean points x ∈ {0,1}n in NE, and use polynomial interpolation

to recover all multilinear coefficients. We use the coefficient definition in our work just for

convenience, as it makes it obvious that one can evaluate polynomials over extensions of finite

fields (which we will need in the context of using hard polynomials to construct pseudo-random

generators).

6.2.3 Computably subexponential and superpolynomial bounded classes

We call a function α : N→R≥0 computably super-constant, denoted by α(n) ∈ωc(1), if

there exists computable, monotone non-decreasing function α ′ : N→ R≥0 with α ′(n)→ ∞ such

that, for all sufficiently large n ∈ N, α(n)≥ α ′(n). Without loss of generality, we may always

assume that our computably super-constant functions α(n) are computable in time poly(n) (see

Lemma 90 below).

The standard definition of NSUBEXP is
⋂

ε>0 NTIME[2nε

]. This is problematic when we

need to run a padding argument for some language in this class, because the amount of padding

required will depend on ε . There is no uniform way to produce the specific ε required for a

particular amount of padding, so any padding argument must rely on advice to get the correct

value of ε . We use our notion of computably super-constant functions to trade a more restricted

class for freedom from advice, and define computably subexponential-time classes as follows:

We say that a language L is in nondeterministic computably subexponential time, denoted

L ∈ NSUBEXPc, if L ∈ NTIME[2n1/α(n)
] for some α(n) ∈ ωc(1). We denote by superpolyc any

function nα(n) for some α(n) ∈ ωc(1).

We will actually need these computably super-constant functions to be efficiently com-

putable. However, we can always get an efficiently computable super-constant function, given

a computable one. So, without loss of generality, we may always assume that our computably

super-constant functions α(n) are computable in time poly(n). A proof appears below, but can

be skipped on a first reading.

149

Lemma 90. For every computably super-constant function α(n), there exists a related super-

constant function β (n) that is computable in time poly(n).

Proof. Define β (n) to be the maximum α(m) over all m ≤ n such that α(m) is computed in

fewer than n steps.

Later we shall need the following simple lemma.

Lemma 91. For any α ∈ ωc(1), there exists a non-decreasing γ ∈ ωc(1) such that γ(n)≤ α(n)

and γ(n2)≤ γ(n)+1. As a consequence, we have γ(nk)≤ γ(n)+ dlogke.

Proof. By definition, there exists a computable non-decreasing α ′(n) such that for some n0,

∀n≥ n0,α(n)≥ α ′(n). Assume, wlog, that n0 ≥ 1. Define γ(n) = min{α ′(n),γ(b
√

nc)+1} for

n > n0; set γ(n) = 0 for n ≤ n0. Thus, γ(n) ≤ α ′(n) ≤ α(n) for n > n0, and γ(n) = 0 ≤ α(n)

otherwise.

To see that the resulting γ is non-decreasing, argue by induction on n. Assume that

γ(k−1)≤ γ(k) for all k < n. As γ(k) = 0 for k≤ n0, and thus non-decreasing up to n0, let n > n0.

If γ(n) = α ′(n), then since α ′ is non-decreasing, γ(n−1)≤min{α ′(n−1),γ(b
√

n−1c+1} ≤

α ′(n−1)≤ α ′(n) = γ(n). Otherwise if γ(n) = γ(b
√

nc)+1≤ α ′(n), then by induction hypoth-

esis γ(b
√

n−1c)≤ γ(b
√

nc), so γ(n−1)≤min{α ′(n−1),γ(b
√

n−1c)+1} ≤ γ(b
√

n−1c)+

1≤ γ(b
√

nc)+1 = γ(n).

To show that γ(n)→ ∞, note that either there are infinitely many n such that γ(n) =

γ(
√

n)+1 or for all large enough n we have γ(n) = α ′(n). In either case, γ is unbounded.

Finally, by definition, γ(n2) ≤ min{α ′(n2),γ(n) + 1} ≤ γ(n) + 1. To show γ(nk) ≤

γ(n)+dlogke, for k = 2r, 1≤ r ∈N, proceed by induction on r. For k which is not a power of 2,

if 2r−1 < k < 2r, then γ(nk)≤ γ(n2r
)≤ γ(n)+ r = γ(n)+ dlogke by monotonicity of γ .

6.2.4 Derandomization of Polynomial Identity Testing

Let F be any finite field. For D ∈ {Z,F}, the Polynomial Identity Testing problem over

D, denoted PITD, is the task to decide if a given arithmetic circuit C over D computes the

150

identically zero polynomial (when the polynomial C is expanded as the sum of monomials).

Stating this definition using sums-of-monomials is crucial, because over a finite field F, testing if

a polynomial agrees with the zero polynomial for all inputs over F is actually coNP-complete.

The sum-of-monomials definition that we use puts PITF ∈ BPP, and thus it is meaningful to ask

for a derandomization of this problem. The low-PITD variant is restricted to test only circuits

that have degree (or, in the case of Z, formal degree) less than their size.

A possible approach to solve PIT is via hitting set generators. A hitting set generator

for PITD is a function H , that on input 1n, outputs a collection of t tuples a1, . . . ,at ∈ Dn such

that, for every arithmetic circuit C(x1, . . . ,xn) over D of size at most n, if C 6≡ 0, then there is

at least one i ∈ [t] where C(ai) 6= 0. In case of a finite field F, we allow the tuples a1, . . . ,at to

come from (F′)n for some extension field F′ of F. Such a collection of t tuples is called a hitting

set of size t for PIT instances of size n.

A hitting set for low-PITD instances of size n is defined in the natural way by restricting to

the circuits of size n that additionally have (formal) degree at most n. We will need the following

hardness to randomness result from pervious work, where [KI04] show that a hard polynomial

f 6∈ ASizeDegPowF[superpolyc] can be used to derandomize low-PITF in subexponential time

(via a hitting set).

Theorem 92 (Hardness to Hitting Arithmetic Circuits [KI04], [JS12]). Let D ∈ {Z,F}, where

F is any finite field. There is a constant c > 0 and a deterministic algorithm that, given oracle

access to an n-variate multilinear polynomial fn over D and parameter 0≤ s≤ 2n, outputs a

collection H of t := snc
tuples in (D′)m, for m := s1/c, satisfying the following:

• case of Z: D′ = Z, and whenever fn is not in ASizeDegMulZ[s], then H is a hitting set for

low-PITZ instances of size m.

• case of F: D′ is an extension field of F of size mc, and if fn is not in ASizeDegPowF[s],

then H is a hitting set for low-PITF instances of size m.

The running time of the algorithm is poly(t).

151

We shall omit the subscripts F and Z in PIT and low-PIT, when it is clear from the

context.

6.2.5 Derandomization of promise-BPP

Derandomizing promise-BPP is equivalent to getting an efficient algorithm for estimating

the acceptance probability of a given Boolean circuit C(x1, . . . ,xn) of size n to within an additive

error 1/n; the latter problem is called Circuit Acceptance Probability Problem (CAPP). We

use the notation promise-BPP ⊆ NSUBEXPc to mean that there is a nondeterministic Turing

machine that runs in computably subexponential time, and solves CAPP with an additive

approximation error 1/n. That is, on a given circuit C(x1, . . . ,xn), the nondeterministic machine

has at least one accepting computation, and every accepting computation yields a value r such

that |Pra∈{0,1}n[C(a) = 1]− r| ≤ 1/n.

We say that promise-BPP⊆ ro?-NSUBEXPc if a NSUBEXPc algorithm correctly approx-

imates CAPP only robustly often.

A possible approach to solve CAPP is via an efficient pseudorandom generator. A

pseudorandom generator (PRG) is a function G that, on input 1n, outputs a collection of t

strings a1, . . . ,at ∈ {0,1}n such that
∣∣Prz∈{0,1}n[C(z) = 1]−Pri∈[t][C(ai) = 1]

∣∣≤ 1/n, for every

Boolean circuit C of size n on n inputs. Such a collection of strings a1, . . . ,at is called a

discrepancy set of size t for circuits of size n.

In the Boolean setting, it was shown by [BFNW93] that the truth table of a superpolyno-

mial circuit-complexity Boolean function can be used to get a subexponential-size discrepancy

set (in subexponential time).

Theorem 93 ([BFNW93]). There exist a constant c > 0 and deterministic algorithm that, given

a 2n-bit string T and a parameter 0≤ s≤ 2n/n outputs a collection of t := 2nc
binary strings

of length m := s1/c satisfying the following: If T (when viewed as the truth table of a Boolean

n-variate function) requires circuit size s, then the collection of these t strings is a discrepancy

set for circuits of size m. The running time of this algorithm is poly(t).

152

6.3 Robustness

To establish equivalences between circuit lower bounds and derandomization, we need

notions that are intermediate between infinitely-often and almost-everywhere. In the spirit

of [FS11], we define “robust” notions of containment and separation for complexity classes.

Our robust ranges are some fixed computably super-polynomial function in length, whereas

the ranges of [FS11] are for every fixed polynomial function. The reason we require this

alternative notion is because the simulation steps of our arguments use superpolynomial amounts

of padding. The [FS11] definition handles fixed polynomial-time translations or translations

with fixed polynomial advice, but not superpolynomial translations. Our definition is an attempt

to make the minimal extention possible to [FS11] that can handle superpolynomial translations.

Thus we do not expect our results to hold under the [FS11] robustness notions, without major

technical innovation in hardness-randomness tradeoffs that dispenses with the necessity for

superpolynomial padding.

For functions l,r : N→ N, called left and right “interval functions”, define the (l,r)-

core of a set S ⊆ N to be the set of intervals [l(m),r(m)] that are entirely contained in S, i.e.,

core(S) = {m ∈ N | ∀n ∈ N (l(m)≤ n≤ r(m) =⇒ n ∈ S)}. A set S is called (l,r)-robust if the

(l,r)-core of S is infinite. Finally, we say that S is computably robust if S is (m1/α(m),mα(m))-

robust for some α ∈ ωc(1). For brevity, we shall call such a set S simply α-robust.

6.3.1 Robust inclusions.

For a language L and a complexity class C , we say that L is uniform robustly often in

C , denoted L ∈ ro?-C , if there is a language N ∈ C such that the set S = {n ∈ N | Ln = Nn}

is computably robust, where Ln = L∩{0,1}n is the nth slice of L. Our definition is “uniform”

compared to the notion of [FS11] because the notion defined there has interval lengths that are

defined by every fixed polynomial function — this is an infinite (but very regular) set of functions

giving interval lengths. Our robust sets have a fixed pair of interval functions.

153

We say that a family f = { fn} of multilinear polynomials (over a finite field F or

over integers Z) is in ro?-ml-NE, robustly often ml-NE, if, for some NE machine M, the set

S = {n ∈ N |M correctly decides MONOMIAL(fn)} is computably robust.

6.3.2 Robust promise classes.

For a language L and a semantic complexity C , we say that L is in uniform robustly

promise C , denoted L ∈ rp?-C , if there is a Turing machine M such that

S = {n ∈ N | for all x ∈ {0,1}n, M(x) is a C -type machine and M(x) decides if x ∈ Ln}

is computably robust.

In general, ro?-C and rp?-C are different for a semantic class C . For example, L ∈

ro?-(NE∩ coNE) if there is a language N ∈ (NE∩ coNE) that robustly often agrees with L. That

is, there is a pair of NE machines M1 and M2 such that, for every x ∈ {0,1}n, exactly one of

M1 and M2 accepts x, and S = {n ∈N |M1 decides Ln and M2 decides Ln} is computably robust,

where Ln is the complement of Ln.

In contrast, L ∈ rp?-(NE∩ coNE) if there is a pair of NE machines M1 and M2 such that

S = {n ∈ N |M1 decides Ln and M2 decides Ln} is computably robust. Note that, in the second

case, the machines M1 and M2 may not be “complementary” on the input lengths outside of S,

and so we may not have any language N ∈ (NE∩ coNE) that agrees with L robustly often: in the

rp?- case, the promise is not required to hold for slices outside the robust set.

6.3.3 Significant separations.

To complement the inclusion types above, we define uniform significant separations

denoted ro?-C 6⊆ SIZE[s(n)]. We write ro?-C 6⊆ SIZE[s(n)] if there is a language L ∈ ro?-C over

computably robust set S such that Ln cannot be computed by a circuit of size s(n) for infinitely

many values n ∈ core(S).

154

Intuitively, a uniform significant separation means that we can always locate hard lengths

for the separated class in the “middle” of large, computably robust intervals. This is different

from the [FS11] notion, which says (intuitively) that hard lengths are never too far apart. Under

our definition, if the robust set comes with a promise, this means that hard lengths are located in

the center of large ranges where the promise holds. This is what our arguments for equivalence

will hinge on. The generalization of this definition to arithmetic circuits and uniform robust

promise classes is obvious. For example, we define two uniform significant separations below.

We say that ro?-ml-NE 6⊆ ASize[s(n)] if there is a polynomial family f = { fn} where for

each n we have fn ∈ ro?-ml-NE, with MONOMIAL(f) correctly decided by some NE machine on

a computably robust set S, such that fn cannot be computed by an arithmetic circuit of size s(n)

for infinitely many values n ∈ core(S). The case of other arithmetic circuit classes (ASizeDeg

and ASizeDegPow) is similar.

We say that rp?-(NE∩ coNE) 6⊆ SIZE[s(n)] if there is a promise problem L ∈ rp?-(NE∩

coNE), with a pair of NE machines correctly deciding L and L̄ over a computably robust set S of

input lengths, such that Ln cannot be computed by a Boolean circuit of size s(n) for infinitely

many input lengths n ∈ core(S).

6.3.4 Closure properties of robust sets

This subsection establishes several useful closure properties of computably robust sets.

This subsection should be skipped on a first reading and returned to once the need for these

closure properties has been demonstrated by our applications. The first-time reader should

continue with Section 6.4 on page 164, which discusses a useful PSPACE-complete function.

Definition 94 (Polynomial-time Honest Turing Reductions). Let L and L′ be langauges. We

say that L′ reduces to L by a polynomial-time honest Turing reduction if L′ can be decided by a

Turing machine M equipped with an oracle for L, where:

• M runs in polynomial time

155

• For any input length n, M does not call the oracle with queries of length less than n

Computable Robustness is closed under honest polynomial time Turing reductions.

Formally:

Lemma 95 (Analog to Lemma 1 of [FS11]). Let L be a paddable langauge. Let L′ be a language

that reduces to L by a polynomial-time honest Turing reduction, and let C be a complexity class

closed under polynomial-time Turing reductions. Then,

L ∈ ro?-C =⇒ L′ ∈ ro?-C

Proof. If L ∈ ro?-C, then there exists some computably robust S such that L ∈C on S. Since C

is closed under polynomial-time Turing reductions, then by definition the machine attempting

to decide L′ by running the L oracle as a “subroutine”, ML′ , is in C. But since we only have

L∈ ro?-C, we must ensure that the input lengths of the L-oracle subroutine are in S, robustly-often,

to show that ML′ actually decides L′.

First, by the polynomial time bound on the reduction, there is some fixed integer k such

that the length of queries to L does not exceed O(nk). By the honesty of the reduction, the length

of queries to L never drops below n. Since L is paddable, we can modify ML′ to fix the size of

queries to L to nk.

Since S is computably robust, we have that there are infinitely many m such that, ∀m′

such that m1/α(m) ≤ m′ ≤ mα(n), m′ ∈ S. Then, given that on input length n every query to L will

be of length nk, we have that ML′ decides L′ on inputs of length n exactly when:

m1/α(m) ≤ nk ≤ mα(m)

For some m ∈ core(S). Define β := α(m)/k. The (n1/β (n),nβ (n))-robust set S′ ⊂ S

produced by taking β intervals around each core of S is a subset of the above intervals. Therefore,

ML′ decides L′ on S′, proving that L′ ∈ ro?-C.

156

Lemma 96 (Closure under some super-polynomial translations). Let S be α-robust, for some

α ∈ ωc(1) such that, for every k ≥ 1, α(nk) ≤ α(n)+ dlogke. Let t(n) = nβ (n) for β (n) :=√
α(n)/2. Then t−1(S) is β -robust.

Proof. Let n̄ be an arbitrary element of the (n1/α(n),nα(n))-core of S. Consider an interval of n’s

such that n̄1/β (n̄) ≤ n≤ n̄β (n̄). We will show that n̄1/α(n̄) ≤ t(n)≤ n̄α(n̄), implying that t−1(S) is

β -robust.

First we obtain the upper bound on t(n), by substituting the maximum value of n into the

definition of t(n):

t(n)≤
(

n̄β (n̄)
)β(n̄β (n̄))

Examining the exponent, note that:

β (mβ (m)) =

√
α(mβ (m))/4

≤
√

(α(m)+ dlogβ (m)e)/4 properties of α

≤
√
(α(m)+ dlogα(m)e)/4

≤
√

α(m)/2

Returning to our bound on t(n) and substituting:

t(n)≤
(

n̄β (n̄)
)√α(n̄)/2

≤
(

n̄
√

α(n̄)/4
)√α(n̄)/2

≤ n̄α(n̄)

Similarly, we check the lower bound on t(n) by substituting the minimum value of n into

157

the definition of t(n):

t(n) = nβ (n)

≥
(

n̄1/β (n̄)
)β(n̄1/β (n̄))

≥ n̄(β(n̄1/β (n̄))/β (n̄))

Looking at the exponent and expanding the definition of β , we have:

β

(
n̄1/β (n̄)

)
β (n̄)

=

√
α
(
n̄1/β (n̄)

)
/4√

α(n̄)/4
≥ 1

α(n̄)

The last inequality holds because
√

α(n̄1/β (n̄))/4 > 1, and
√

α(n̄)/4 < α(n̄). Then t(n) ≥

n̄1/α(n̄) follows, as required.

Lemma 97 (Closure under intervals around cores). Let S be γ-robust, for some γ ∈ ωc(1)

such that, for every k ≥ 1, γ(nk) ≤ γ(n) + dlogke. Let H ⊆ core(S) be an infinite set, and

let α ∈ ωc(1) be the hardness parameter for lengths in H, again such that for every k ≥ 1,

α(nk)≤ α(n)+ dlogke.

Then there exist “low” and “high” functions Tl and Th such that, for

I(n) := [Tl(n),Th(n)] and G := {n | I(n)⊆ S and I(n)∩H 6= /0}

we have the following:

1. G is computably robust.

2. Tl(n)α(Tl(n)) ∈ nωc(1) (hardness is maintained at low lengths).

3. Th(n) ∈ noc(1) (circuits don’t get too large at high lengths).

Proof. Set β ′(n) = min{
√

α(n),γ(n)}, and let β (n) be the “slowed down” version of β ′(n),

using Lemma 91.

158

Define Tl(n) := n2/β (n) and Th(n) := n1/
√

β (n).

Claim 98. The functions Tl and Th defined above satisfy assertions (2) and (3) in the statement

of the lemma.

Proof. Assertion (3) is obviously satisfied by definition. For assertion 2, we examine Tl(n)α(Tl(n)):

Tl(n)α(Tl(n)) =
(

n2/β (n)
)α(n2/β (n))

= n2α(n2/β (n))/β (n).

Looking at the exponent, we have:

2α(n2/β (n))

β (n)
≥ 2(α(n)− log(β (n)))

β (n)
≥ α(n)

β (n)
≥
√

α(n),

where the first inequality is by the assumption on α , and the last inequality is by the definition of

β . Thus, Tl(n)α(Tl(n)) ∈ nωc(1), as required.

Fix an arbitrary m ∈ H, and consider the interval J[m] := [m
√

2β (m),mβ (m)/2]. Clearly,

J[m]⊆ S. We will show that every n ∈ J[m] is in the set G (from the statement of the lemma).

First, we prove the following auxiliary claim.

Claim 99. For every n ∈ J[m], we have β (m)≤ β (n)≤ 2β (m).

Proof. Upper-bounding β (n), we get:

β (nmax) = β (m2β (m)/2)≤ β (m)+ dlog(β (m)/2)e ≤ 2β (m)

. Lower bounding β (n), we get β (nmin) = β (m
√

2β (m))≥ β (m).

Now we can show

Claim 100. For every n ∈ J[m], we have I(n)⊆ S and m ∈ I(n). So, every n ∈ J[m] is in G.

159

Proof. This amounts to verifying the following chain of inequalities:

m1/β (m) ≤ Tl(n)≤ m≤ Th(n)≤ mβ (m),

which we do below, one inequality at a time.

1. m1/β (m) ≤ Tl(n): We have

Tl(n) = n2/β (n)

> n2/2β (m) Claim 99

>
(

m
√

2β (m)
)2/2β (m)

minimize base

> m
√

2β (m)/β (m) simplify

> m1/β (m)
β (m) ∈ ωc(1)

2. Tl(n)≤ m: We have

Tl(n) = n2/β (n)

< n2/β (m) Claim 99

<
(

mβ (m)/2
)2/β (m)

maximize base

< m simplify

160

3. m≤ Th(n): We have

Th(n) = n1/
√

β (n)

> n1/
√

2β (m) Claim 99

>
(

m
√

2β (m)
)1/
√

2β (m)
minimize base

> m simplify

4. Th(n)≤ mβ (m): We have

Th(n) = n1/
√

β (n)

< n1/
√

β (m) Claim 99

<
(

mβ (m)/2
)1/
√

β (m)
maximize base

< mβ (m)/2
√

β (m) simplify

< mβ (m)

To argue that G is computably robust, we will construct an appropriate interval function

δ depending on β , and show how to choose a core element m0 within each interval J[m] so that

m
√

2β (m) ≤ m1/δ (m0)
0 ≤ m≤ mδ (m0)

0 ≤ mβ (m)/2. (6.1)

The chain of inequalities in Eq. (6.1) means that the δ -interval around m0 is contained within

J[m], and hence, by Claim 100, is contained within G. Since there are infinitely many m ∈H, we

get that G is δ -robust.

First we set m0. Take the geometric mean of the exponents of m on the endpoints of the

range above: (
√

2β (m))1/2 · (β (m)/2))1/2 = (2β (m))1/4 · β (m)1/2 · 2−1/2 = 2−1/4 · β (m)3/4,

161

and set m0 = m2−1/4·β (m)3/4
; this will ensure that m0 is centrally located.

To find a setting of δ (n) ∈ ωc(1), consider functions of the form: δ (n)∼ x(zβ (n))1/k.

Given that β (n) ∈ ωc(1) and for x,k,z constants, we have that δ ∈ ωc(1). We will obtain an

appropriate triple of constants such that Eq. (6.1) holds.

First consider the low end, m
√

2β (m) < m1/δ (m0)
0 . Substitute and simplify to bound

m1/δ (m0)
0 below:

m1/δ (m0)
0 =

(
mβ (m)3/4/21/4

)1/x(zβ (m0))
1/k

= mβ (m)3/4/21/4x(zβ (m0))
1/k

Examining the exponent and substituting for m0, we have:

β (m)3/4

21/4x(zβ (m2−1/4·β (m)3/4
))1/k

>
β (m)3/4

21/4x(z(β (m)+ log(2−1/4 ·β (m)3/4)))1/k

>
β (m)3/4

21/4x(z2β (m))1/k

This last expression is tractable. It implies that we require x,z,k such that:

β (m)3/4

21/4x(z2β (m))1/k
> (2β (m))1/2

We derive an analogous constraint for the high end inequality, mδ (m0)
0 < mβ (m)/2.

mδ (m0)
0 =

(
mβ (m)3/4/21/4

)x(zβ (m0))
1/k

= m(β (m)3/4x(zβ (m0))
1/k)/(21/4)

162

Examining the exponent and substituting for m0:

β (m)3/4x(zβ (m2−1/4·β (m)3/4
))1/k

21/4 <
β (m)3/4x(z(β (m)+ log(2−1/4 ·β (m)3/4)))1/k

21/4

<
β (m)3/4x(z2β (m))1/k

21/4

This yields the constraint:
β (m)3/4x(z2β (m))1/k

21/4 <
β (m)

2

Now we can begin to set the constants. First, we make the obvious choice for z, which is

1
2 , because this allows us to combine all terms involving β (m) on both the high and the low end

of the ranges, resulting in the following simplifications:

[low end]:
β (m)3/4−1/k

x21/4 > (2β (m))1/2 and [high end]:
xβ (m)3/4+1/k

21/4 <
β (m)

2
.

Setting k is now straightforward. We want the powers of β (m) appearing in these

exponents to be appropriately bounded, so we require that 3/4−1/k > 1/2 and 3/4+1/k < 1.

Any k > 4 will work, so set k = 5.

Finally we need to set x to take care of constant multiples of β (m) occurring in the

exponents. On the low end, we have less slack and we want: x ·21/4 ≤ 1/2. So set x = 2−5/4.

Substituting into the low end, we have:

β (m)3/4−1/5

2−5/4 ·21/4 =
β (m)3/4−1/5

2−1 = 2(β (m)3/4−1/5)> (2β (m))1/2,

as required. Now we check the high end:

xβ (m)3/4+1/5

21/4 =
2−5/4 ·β (m)3/4+1/5

21/4 =
β (m)3/4+1/5

26/4 <
β (m)

2
.

Therefore, setting m0 = m2−1/4·β (m)3/4
and δ (n) = ((1/2)β (n))1/5

25/4 suffices to show that G is

163

computably robust.

6.4 PSPACE-complete polynomial

To prove circuit lower bounds from the assumption that PITZ is easy, [KI04] used

two facts: (1) the permanent function over Z is #P-complete [Val79] and hence, by Toda’s

theorem [Tod91], also PH-hard, and (2) a PITZ algorithm allows one to test if a given arithmetic

circuit computes the permanent. We can’t use the same approach over finite fields because no

analogue of Toda’s theorem is known there, i.e., it is open whether PH ⊆ PModkP, for some

(prime) k ∈ N.

Instead, we will use a multilinear polynomial family f = { fn}, obtained by arithmetizing

the PSPACE-complete language TQBF, which will be PSPACE-complete over every finite field

F. Using the PSPACE = IP proof ideas [LFKN92, Sha92], we show how a PITF algorithm

allows one to test whether a given arithmetic circuit computes some power f d
n (for small d ∈ N)

of this PSPACE-complete polynomial over F.

The first step, arithmetizing TQBF to get a multilinear polynomial fn that is PSPACE-

complete, already appears in work of Trevisan and Vadhan [TV07] to simplify and optimize

the proofs in [IW01] (in particular, by removing the need for Toda’s theorem in the arguments

of [IW01]). For the second step, using PITF algorithm to test if a given arithmetic circuit

computes some power f d
n , we generalize a standard IP protocol for TQBF so that we can handle

prime powers f pk

n of fn, where prime p is the characteristic of the finite field F. The latter turns

out to be sufficient for our purposes due to Lemma 88, which allows us to assume, without loss

of generality, that a small arithmetic circuit computing f d
n in fact computes some prime power

f pk

n for pk ≤ d.

We provide more details on both of these steps in the following subsections.

164

6.4.1 Arithmetizing TQBF

First we review a construction of [TV07] (based on Shen’s proof [She92] of the result

PSPACE = IP of [LFKN92, Sha92]). Deciding the truth of a quantified Boolean formula in

the prenex normal form (where the propositional part of the formula is a 3-CNF) is known to

be PSPACE-complete. We first define the following “universal” CNF formula θ that can be

instantiated to be any given 3-CNF formula φ in variables~x, thanks to the extra variables~a that

encode which 3-clauses are present in φ :

θn(~a,~x) :=
∧

i, j,k∈[n],b1,b2,b3∈{0,1}

(
xb1

i ∨ xb2
j ∨ xb3

k ∨¬ai, j,k,b1,b2,b3

)
,

where the variable ai, j,k,b1,b2,b3 is true iff the clause xb1
i ∨ xb2

j ∨ xb3
k is present in φ ; here we use

x0 and x1 to denote x̄ and x, respectively. Note that we need O(n3) variables ~a in order to

specify any given 3-CNF in n variables. The universal QBF will be of the form: Φn(~a) :=

∃x1∀x2 . . .∃/∀xn θn(~a,~x).

Next we arithmetize Φn, getting a polynomial that agrees with Φn over all Boolean inputs

(using 1 for true, and 0 for false). We begin by arithmetizing θn:

θ̂n(~a,~x) := ∏
i, j,k∈[n],b1,b2,b3∈{0,1}

(
1− (1− x̂b1

i)(1− x̂b2
j)(1− x̂b3

k) ·ai, j,k,b1,b2,b3

)
,

where x̂0 = 1− x and x̂1 = x. It is easy to see that θ̂n agrees with θn on all Boolean values.

Next we arithmetize the quantifier sequence over~x. We define the following operators on

polynomials, which apply either an appropriate quantifier or a linearization step:

165

∀Xiq(~a,~x) = q�xi←1 ·q�xi←0 universal

∃Xiq(~a,~x) = 1− (1−q�xi←1) · (1−q�xi←0) existential

ΛXiq(~a,~x) = xi ·q�xi←1 +(1− xi) ·q�xi←0 linearization in xi

ΛAiq(~a,~x) = ai ·q�ai←1 +(1−ai) ·q�ai←0 linearization in ai

Starting with ∃x1∀x2 . . .∃/∀xn θ̂n(~a,~x), we define a new formula by inserting the “lin-

earization quantifiers” Λ as follows: between every pair of Qxi and Q′xi+1 quantifiers, where

Q ∈ {∃,∀} and Q′ = ¬Q, we add a sequence of ΛA j for all variables a j, and a sequence of ΛX j

over all 1≤ j ≤ i.

Next we think of all quantifiers in the new formula as operators on polynomials (as

defined above), and apply these operators to the polynomial θ̂n(~a,~x) starting from the right-most

operator. After each application of an operator, we get a new polynomial.

The iterated application of these operators results in a sequence of polynomials. Let

fm(n) = θ̂n be the first polynomial in this sequence, to which no operators have yet been applied.

We let m(n) be the number of operations required to arithmetize all quantifiers over n variables,

and to linearize all relevant variables. It is clear that m(n) is polynomial. At the end of this

process, we will have a multilinear polynomial f0 in variables~a that equals the truth value (0 or

1) of any TQBF specified by a Boolean assignment to the~a variables.

Finally, we define the following combination of the polynomials fm(n), . . . , f0:

T̃QBFn(~z,~a) :=
m(n)

∑
i=0

zi · fi(~a,~x),

using new variables~z. Observe that by fixing exactly one zi = 1 and the other z j = 0, j 6= i, we

can recover from T̃QBFn every polynomial fi.

166

6.4.2 PSPACE-hardness of computing T̃QBFn

The described construction of polynomials fi and the polynomial T̃QBFn can be per-

formed either over Z or in any given finite field F. When carrying out the construction over F,

we still get that each polynomial fi is {0,1}-valued (for 0,1 ∈ F), and that f0(~a) computes the

truth value of any given QBF (specified by the Boolean assignment to~a). Thus, if we can get our

hands on the polynomials T̃QBFn (say by given arithmetic circuits computing T̃QBFn), we will

be able to solve TQBF.

Over a finite field F of characteristic p, to solve PSPACE-complete problems, it suffices

to compute T̃QBF
d
n , for some d = pk.

Lemma 101. Let F be any finite field of characteristic p, and let d = pk for some k ≥ 0. Then

computing T̃QBF
d
n over F is PSPACE-hard.

Proof. Observe that T̃QBF
d
n = (∑i zi · fi)

d = ∑i zd
i · f d

i over F. So we can use T̃QBF
d
n to compute

f d
0 . But since f0 is Boolean-valued, the latter is as good as computing f0 itself.

We also observe that the language MONOMIAL(T̃QBFn) is in LINSPACE.

Lemma 102. MONOMIAL(T̃QBFn) ∈ LINSPACE.

Proof. For a fixed n, the polynomial T̃QBFn is a combination of multilinear polynomials

f0, . . . , fm(n), for some m(n) ∈ poly(n), where each fi is a polynomial in~a (describing some QBF

instance) and in x1, . . . ,x j, for some j ≤ n. For each Boolean assignment to the variables ~a,~x,

we can compute the Boolean value fi(~a,~x) in LINSPACE, since it is just the truth value of some

TQBF instance specified by ~a,~x. Let us denote the resulting Boolean function by f Bool
i . The

standard multilinear extension of f Bool
i equals the polynomial fi.

On the other hand, it is not hard to see that if a Boolean function g is in LINSPACE, then,

for the multilinear extension g′ of g, we have MONOMIAL(g′) ∈ LINSPACE.

Finally, once we can compute the monomial language MONOMIAL(fi) for all 0 ≤ i ≤

m(n), we can also easily compute MONOMIAL(T̃QBFn).

167

In the next subsection, we show that using a PIT algorithm, one can test if a given

arithmetic circuit over a finite field F of characteristic p computes T̃QBF
d
n for some d = pk.

6.4.3 Testing arithmetic circuits for equality with T̃QBF
d
n

Suppose we are given a PIT algorithm. To test if a given arithmetic circuit C computes

the polynomial T̃QBFn, we first let Ci be obtained from C by fixing zi = 1 and all z j = 0 for

j 6= i. These Ci’s are candidate polynomials fi’s. We inductively test that each Ci ≡ fi, starting

at i = m(n) and moving towards i = 0. For i = m(n), we can actually construct an arithmetic

formula θ̂n ≡ fm(n) ourselves and use the PIT algorithm to test that Cm(n) ≡ θ̂n. Then for each

i = m(n)−1, . . . ,0, we check if Ci ≡ Oi[Ci+1], where Oi ∈ {ΛX j ,ΛA j ,∃X j ,∀X j} is the operator

used to construct fi from fi+1. Finally, we use the PIT algorithm to test if C ≡ ∑
m(n)
i=1 zi ·Ci. If

each test above succeeds, then we get that Ci ≡ fi for all i, and that C ≡ T̃QBFn.

Now suppose that we are working over a finite field F of characteristic p, and we want

to test if a given arithmetic circuit C computes Rd
n for some d = pk. We will employ a similar

approach as above, crucially relying on the fact that (x+ y)pk
= xpk

+ ypk
over F.

Theorem 103. Let F be a finite field of characteristic p, and let d = pk for some k ≥ 0. Given

a PIT oracle, one can test in polynomial time if a given arithmetic circuit C computes T̃QBF
d
n .

Moreover, if the degree of C is at most its size |C|, and if d ≤ |C|, then a low-PIT oracle suffices.

Proof. First observe that T̃QBF
d
n = (∑i zi · fi)

d = ∑i zd
i · f d

i . Let Ci be obtained from C by

fixing zi = 1 and z j = 0 for j 6= i. Each Ci is a candidate polynomial f d
i , and we will test that

inductively as follows. For i = m(n), we construct θ̂n = fm(n), and verify, using the PIT oracle,

that Cm(n) ≡ θ̂ d
n .

Observe that qd(y1, . . . ,yt) = q(yd
1, . . . ,y

d
t) for any polynomial q over F. Thus,

f d
i−1(a1,a2, . . . ,x1,x2, . . .) = fi−1(ad

1,a
d
2, . . . ,x

d
1 ,x

d
2 , . . .) = [Oi fi](ad

1,a
d
2, . . . ,x

d
1 ,x

d
2 , . . .),

168

for some operator Oi ∈ {ΛX j ,ΛA j ,∃X j ,∀X j}.

For each operator O , define a new operator Od to be O applied to the dth power of a

variable:

∀d
Yi

q(~y) = q�yi←1 ·q�yi←0

∃d
Yi

q(~y) = 1− (1−q�yi←1) · (1−q�yi←0)

Λ
d
Yi

q(~y) = yd
i ·q�yi←1 +(1− yd

i) ·q�yi←0

Using the fact that (x+ y)d = xd + yd over our field F, one can easily verify that

[Oi fi](ad
1,a

d
2, . . . ,x

d
1 ,x

d
2 , . . .) = Od

i [f
d
i (a1,a2, . . . ,x1,x2, . . .)].

Thus

Ci−1(~a,~x)≡ f d
i−1(~a,~x) ⇔ Ci−1(~a,~x)≡Od

i [f
d
i (a1,a2, . . . ,x1,x2, . . .)].

The latter is equivalent, by induction, to the identity Ci−1(~a,~x)≡ Od
i [Ci(a1,a2, . . . ,x1,x2, . . .)],

which we can test with the help of our PIT oracle. Finally, we also test if C ≡ ∑i zi ·Ci. If all

tests pass, we know that C computes T̃QBF
d
n over F.

For the “moreover” part of the theorem, observe that low-PIT oracle suffices if C has

degree at most |C| and if d ≤ |C|, because then all arithmetic circuits involved in our PIT tests

would also have bounded degree.

6.4.4 Testing arithmetic circuits for equality with c · T̃QBFn

In the case of circuits over the integers, we allow an efficient circuit to compute a constant

multiple of some polynomial f . Therefore, we must modify the identity test, similar to the above.

Theorem 104. Let C be a constant-free arithmetic circuit over Z, and let g be a constant-free,

variable-free arithmetic circuit over Z. Thus, g computes a constant, which we also refer to as g.

169

Given a PIT oracle and a pair of such circuits C and g, one can test in polynomial time

if C computes g · T̃QBFn. Moreover, if the formal degree of C is at most its size |C|, and if the

formal degree of g is at most its size |g|, then a low-PIT oracle suffices.

Proof. Let the circuits C (computing a function) and g computing a constant (with no input

variables) be given as input. We will use identity testing to determine if g · T̃QBFn ≡ p(C).

In the following we will use g to refer to the circuit computing g and the constant value g

interchangably.

Let Ci be obtained from C by fixing zi = 1 and z j = 0 for j 6= i. Each Ci is a candidate

polynomial g fi, and we will test that inductively as follows. For i=m(n), we construct θ̂n = fm(n),

and verify, using the PIT oracle, that Cm(n) ≡ gθ̂n.

For each operator, we require a different identity test. The tests are as described above,

but taking into account the constant factor by which C and T̃QBFn will differ.

The first case: fi = ΛYi[fi−1]. If C indeed computes T̃QBFn, we will have:

Ci = g · fi

= g(yi · fi−1�yi←1 +(1− yi) · fi−1�yi←0) definition of T̃QBFn

= yi ·g fi−1�yi←1 +(1− yi) ·g fi−1�yi←0 distribute

Therefore, in this case we should test the identity:

Ci ≡ yi ·Ci−1�yi←1 +(1− yi) ·Ci−1�yi←0

The next case: fi = ∀Xi[fi−1] = fi−1�xi←1 · fi−1�xi←0. In this case:

170

Ci = g · fi

= g(fi−1�xi←1 · fi−1�xi←0) definition of T̃QBFn

Multiplying both sides by g and re-arranging we have:

gCi = g2(fi−1�xi←1 · fi−1�xi←0)

= g fi−1�xi←1 ·g fi−1�xi←0

Therefore we should test the identity:

gCi ≡Ci−1�xi←1×Ci−1�xi←0

The last case: fi = ∃Xi[fi−1] = 1− (1− fi−1�xi←1) · (1− fi−1�xi←0). So:

Ci = g fi = g(1− (1− fi−1�xi←1) · (1− fi−1�xi←0))

= g−g · (1− fi−1�xi←1) · (1− fi−1�xi←0)

= g− (g−g fi−1�xi←1) · (1− fi−1�xi←0)

To obtain an identity we can test, we multiply both sides by g:

171

gCi = g2−g · (g−g fi−1�xi←1) · (1− fi−1�xi←0)

= g2− (g−g fi−1�xi←1) · (g−g fi−1�xi←0)

Therefore, we should test the identity:

gCi ≡ g2− (g−Ci−1�xi←1)× (g−Ci−1�xi←0)

Since we have circuits for both C and g, it is easy to construct the circuits in the sqeuence

of identity tests. There are m(n) of these tests, which makes the number of calls to the PIT oracle

polynomially bounded.

For the “moreover” part of the theorem, observe that a low-PIT oracle suffices if C has

formal degree at most |C| and if g has formal degree at most |g| because then all arithmetic

circuits involved in our PIT tests would also have bounded degree.

6.5 PIT algorithms vs. circuits over finite fields

In this section, we tighten the connections between derandomization of PIT and arithmetic

complexity over finite fields.

Theorem 105. Fix an arbitrary finite field F. We have

1. low-PIT ∈ NSUBEXPc ⇒ ml-NE 6⊆ ASizeDegPow[superpolyc].

2. ml-NE 6⊆ ASizeDegPow[superpolyc] ⇒ low-PIT ∈ ro?-NSUBEXPc.

Proof sketch. (1) Assume a nondeterministic subexponential-time algorithm for low-PIT, but

that ml-NE has “small” arithmetic circuits. We arithmetize TQBF to get a PSPACE-complete

172

multilinear polynomial f = { fn} over F. This polynomial f turns out to be computable in ml-NE,

and so, by our assumption, some powers f dn
n , for “small” dn, have small arithmetic circuits over

F.

For each n, we nondeterministically guess a small circuit and a small dn. Using the ideas

of the PSPACE = IP proof, we then verify that the guessed circuit computes the polynomial f dn
n .

This verification algorithm uses our assumed low-PIT algorithm, and runs in NSUBEXPc.

Computing powers f dn
n is still PSPACE-complete, and so we get PSPACE⊆ NSUBEXPc.

By padding, we obtain SPACE[superpolyc]⊆ NE. By diagonalization, SPACE[superpolyc] con-

tains a language L of some computably superpolynomial Boolean circuit complexity, almost

everywhere. It follows that the multilinear extension of L over F requires arithmetic circuits of

computably superpolynomial size, almost everywhere. On the other hand, each coefficient of

this multilinear polynomial is computable in SPACE[superpolyc], and hence in NE.

(2) Assume that some family g = {gn} of polynomials in ml-NE is such that all powers

gdn
n , for “small” dn, require superpolynomial arithmetic circuit complexity for infinitely many

input lengths n. By [KI04], we get that low-PIT is in NSUBEXPc infinitely often. The input

lengths where low-PIT is easy (derandomized) correspond to the (smaller) input lengths where

the polynomials gn are actually hard.

To improve this “infinitely often” result to the “robustly often” one, we do the following:

when asked to derandomize low-PIT for a certain input length n, we go to the related smaller

length n′, and consider polynomials over a superpolynomial interval of input lengths above n′

as candidate hard polynomials; we use each such polynomial to construct a candidate hitting

set by [KI04]. If the given interval above n′ contains a length m such that gm is hard, then our

derandomization succeeds. Since there infinitely many intervals containing a length m where

gm is hard, there will be infinitely many intervals of superpolynomial length where our low-PIT

algorithm is correct.

We now lift Theorem 105 to an equivalence, using robustness.

173

Theorem 106. Fix an arbitrary finite field F. We have

low-PIT ∈ ro?-NSUBEXPc ⇔ rp?-ml-NE 6⊆ ASizeDegPow[superpolyc].

Proof sketch. (⇒) We start as in the proof of Theorem 105, implication (1). We get a PSPACE-

complete multilinear polynomial f = { fn} over F such that some powers f dn
n are computable

by small arithmetic circuits, for almost all input lengths n. Since our low-PIT algorithm

is correct for infinitely many superpolynomial intervals of input lengths, we can guarantee

the successful verification of an arithmetic circuit for f dn
n for the corresponding superpolyno-

mial intervals of input lengths only. This yields PSPACE ⊆ ro?-NSUBEXPc, and by padding,

SPACE[superpolyc]⊆ ro?-NE. Finally, by diagonalization and multilinear extension, we get a

family of multilinear polynomals gn over F that require computably superpolynomial arithmetic

circuit complexity almost everywhere, and yet we can compute the coefficients of gn in NE for

infinitely many superpolynomial intervals of input sizes n.

(⇐) As in the proof of Theorem 105, implication (2), we will use hard polynomials

to derandomize low-PIT by [KI04]. The difference now is that a given NE machine computes

a valid polynomial only over some computably robust set S of input lengths n, and that this

polynomial is hard only for infinitely many lengths n∈ core(S). Still we can use this NE machine

to construct a candidate hitting set for a given low-PIT instance so that, for infinitely many

lengths n ∈ core(S), we get a correct hitting set, and so low-PIT⊆ io-NSUBEXPc. To boost this

to the robustly often inclusion, we employ a similar trick as before: use a superpolynomial-size

interval of input lengths to get a collection of candidate hitting sets, and take their union. When

all input lengths fall into an interval where our NE machine computes a valid polynomial, we

get that the union of such candidate hitting sets is well-defined. If, in addition, the polynomial

computed by our NE machine is actually hard on some length in this interval, then we get a

correct hitting set.

In the remaining sub-sections, we give detailed proofs of Theorems 105 and 106 above.

174

6.5.1 Proof of implication (1) of Theorem 105

We argue by contradiction. Suppose there is a low-PIT algorithm running in nonde-

terministic time 2n1/β (n)
, for some β (n) ∈ ωc(1). But, ml-NE ⊆ ASizeDegPow[nα(n)] for every

α(n) ∈ ωc(1).

Our proof consists of the following three major steps: (i) collapsing PSPACE into

NSUBEXPc, (ii) using diagonalization to get hard multilinear polynomials in SPACE[superpolyc],

and (iii) using a padding argument to argue that this hard polynomial is actually computable in

ml-NE, contradicting the assumption that ml-NE contains no hard polynomials.

We provide the details for these three steps in the following three subsections.

Placing PSPACE into NSUBEXPc

Recall our PSPACE-hard multilinear polynomial T̃QBFn over F from Section 6.4. By

Lemma 102, MONOMIAL(T̃QBFn) ⊆ LINSPACE, which is in E. Thus, T̃QBFn ∈ ml-NE, and

so, by assumption, T̃QBFn ∈ ASizeDegPow[s(n)] for s(n) = nα(n), for every computably super-

polynomial size function s(n). With foresight, let us set α(n) := β 1/3(n).

It follows that some powers T̃QBF
dn

n , for dn ≤ s(n), have arithmetic circuits of size at

most s(n) over F. By Lemma 88, there is d′n = pk ≤ dn, where p is the prime characteristic of the

field F, such that T̃QBF
d′n
n is computable by an arithmetic circuit of size at most s′(n) = (s(n))c,

for some c > 0. By standard arguments, we may assume that the circuit has degree at most that

of T̃QBFn
3.

For each n, we nondeterministically guess a circuit Cn of size and degree at most s′(n), and

a number dn ≤ s(n). By Theorem 103, we can test if Cn ≡ T̃QBF
dn

n over F in NSUBEXPc, using

the low-PIT algorithm. Running this algorithm on our guessed instances of size s′(n) will take

time at most 2ncα(n)/β (n)
, which is computably subexponential for our choice of α(n) = β 1/3(n).

3The standard transformation to make a given circuit compute a polynomial of degree at most d is to split the
polynomial computed by every gate of the circuit into d homogeneous polynomials of degree i, for i = 0, . . . ,d,
and keep track of each such homogeneous polynomial by introducing d copies of each gate. This makes the new
circuit size polynomial in the old circuit size. Since we are working over a finite field, we don’t need to worry about
constants getting too big during this transformation of the original circuit.

175

It follows that we can solve TQBF in NSUBEXPc, with the running time poly(2nc/α2(n)
).

Diagonalization

Next, consider a language L ∈ SPACE[nα1.9(n)] that is not in io-SIZE[nα1.8(n)]. Such a

language exists by a standard diagonalization argument [Kan82]: find a circuit of size nα1.85(n)

whose Boolean function cannot be computed by any circuit of size at most nα1.8(n); such a circuit

exists by a counting argument (see, e.g., [PW86]). A “brute-force” algorithm to find such a

circuit needs enough space to store a circuit of size nα1.85(n), a circuit of size at most nα1.8(n), and

an input x ∈ {0,1}n, as well as enough space to evaluate these two circuits on x. The algorithm

will try every large-size circuit, and check that it differs from every small-size circuit on at least

one input of length n.

Let fL be the multilinear extension of L over the field F. Since an arithmetic circuit over

F can be easily simulated by a Boolean circuit of only polynomially larger size, we get that every

power f D
L of fL requires arithmetic circuits of size at least nα1.7(n). Thus, in particular, we get

fL 6∈ ASizeDegPow[nα(n)].

Padding

Finally, we will argue that M := MONOMIAL(fL)∈NE, contradicting our assumption that

ml-NE⊆ ASizeDegPow[nα(n)]. Since L ∈ SPACE[nα1.9(n)], we get that M ∈ SPACE[nα1.9(n)] as

well. Consider the padded language Mpad = {(x,1|x|α
1.9(|x|)

) | x ∈M}. Since α(n) is computable,

we get that Mpad ∈ LINSPACE; this is the place where we use the computability of our time

bounds. Using the fact that TQBF ∈ NTIME[poly(2nc/α2(n)
)] and that Mpad is polynomial-time

reducible to TQBF, we get that M ∈ NE.

6.5.2 Proof of implication (2) of Theorem 105

Assume that some family g = {gn} of polynomials in ml-NE is such that, for some

computably superpolynomial function s(n) = nα(n), there are infinitely many input lengths n ∈N

176

where gdn
n cannot be computed by an arithmetic circuit of size s(n), for any 1≤ dn ≤ s(n).

We will use Theorem 92 to get derandomization of low-PIT. We present our argument in

the following subsections.

Evaluating a hard polynomial over enough points

For every n, let F′ be an extension field of F of size O(s). This extension field can be

constructed efficiently, in time poly(s), by trying all possible polynomials over F of degree

O(logs), until one finds an irreducible polynomial over F.

Since MONOMIAL(gn) ∈ NE, we can compute the coefficients of all 2n monomials of gn

in nondeterministic time poly(2n). Once we have the coefficients, we can evaluate gn on any

given n-tuple of elements from the extension field F′, in time poly(2n). It follows that we can

evaluate gn over all points in (F′)n in nondeterministic time poly(2n).

Building a hitting set

Using Theorem 92, we get, for some constant c > 0, a set of t = s(n)nc
of m-tuples from

(F′)m, for m = s1/c, that is a hitting set for low-PIT instances of size m, provided that n is the

length where gdn
n requires circuit size s(n) for every 1 ≤ dn ≤ s(n). For infinitely many input

lengths n, we will get a valid hitting set of size t for low-PIT instances of size m.

Running time analysis:

We have t = s(n)nc
= nα(n)·nc ≤ 2nc+2

, where the last inequality is because s(n) ≤ 2n.

Using n = mc/α(n), we get that t ≤ exp(md/α(n)), for d = c(c+2).

Next we lowerbound α(n). By Lemma 91, we may assume that α(n) satisfies the

inequality α(nk)≤ α(n)+ dlogke. Using this as well as the fact that n≤ m, we have for large

enough m:

α(n) = α(mc/α(n))≥ α(m)−dlogα(n)/ce ≥ α(m)−dlogα(m)e ≥ α(m)/2.

177

Putting it all together, we get t ≤ exp(m(2d)/α(m)), which is computably subexponential.

This yields low-PIT ∈ io-NSUBEXPc. Next we show how to improve this inclusion from

“infinitely often” to “robustly often”.

Derandomizing low-PIT robustly often

When asked to derandomize low-PIT for a certain input length m, we go to the smallest

length n such that s(n)≥ mc, and consider polynomials gn′ over all lengths n′ such that n≤ n′ ≤

n
√

α(n) as candidate hard polynomials. We use each such polynomial to construct a candidate

hitting set via Theorem 92. If the given interval above n contains a length n′ such that gn′ is hard,

then our derandomization succeeds. Since there infinitely many intervals containing a length n′

where gn′ is hard, there will be infinitely many intervals of superpolynomial length where our

low-PIT algorithm is correct.

It remains to analyze the running time of the described algorithm. It will be dominated

by the value t in Theorem 92 for n′ = n
√

α(n). We get t ≤ (mc)(n
′)c ≤ exp(n(c+2)

√
α(n)) ≤

exp(mc(c+2)/
√

α(n)). Using our earlier lower bound on α of α(n) ≥ α(m)/2, we have t ≤

exp(mc′/
√

α(m)), for c′ = c(c+2)
√

2, and so low-PIT ∈ ro?-NSUBEXPc.

6.5.3 Robust derandomization of PITF implies robust circuit lower
bounds over F (forward direction of Theorem 106)

Again, we argue by contradiction. Suppose there is a low-PIT algorithm running in

nondeterministic time 2n1/β (n)
, for some β (n)∈ωc(1), on a ρ-robust set S for some ρ(n)∈ωc(1).

But, rp?-ml-NE⊆ ASizeDegPow[nα(n)] for every α(n) ∈ ωc(1).

First, we may assume, without loss of generality, that β (n) = ρ(n), and moreover, for

every k ≥ 1, β (nk)≤ β (n)+ dlogke. Indeed, if not, define δ ′(n) := min{β (n),ρ(n)}, and use

Lemma 91 to get δ (n)≤ δ ′(n) satisfying the property δ (nk)≤ δ (n)+ dlogke for all k ≥ 1. It is

easy to see that the δ -intervals around each n∈ core(S) are contained within S, since δ (n)≤ ρ(n);

so we get a δ -robust subset S′ ⊆ S. Also, since δ (n)≤ β (n), we have 2n1/β (n) ≤ 2n1/δ (n)
. Hence,

178

we get a nondeterministic 2n1/δ (n)
-time algorithm deciding low-PIT on a δ -robust set S′ of input

lengths.

Next, as in the proof of Theorem 105, implication (1), our proof consists of the following

three major steps: (i) collapsing PSPACE into ro?-NSUBEXPc, (ii) using diagonalization to

define a hard multilinear polynomial is SPACE[superpolyc], and (iii) using a padding argument to

argue that this hard polynomial is actually computable in rp?-ml-NE, contradicting the assumption

that rp?-ml-NE contains no hard polynomials.

Placing PSPACE into ro?-NSUBEXPc

As before, our PSPACE-hard multilinear polynomial T̃QBFn over F is computable in

ml-E, and so, by assumption, T̃QBFn ∈ ASizeDegPow[s(n)] for s(n) = nα(n), for every α(n) ∈

ωc(1). By Lemma 88, there is d′n = pk ≤ s(n), where p is the prime characteristic of the

field F, such that T̃QBF
d′n
n is computable by an arithmetic circuit of size and degree at most

s′(n) = (s(n))c, for some c > 0.

For each n, we nondeterministically guess a circuit Cn of size and degree at most s′(n),

and a number dn ≤ s(n). By Theorem 103, we can test if Cn ≡ T̃QBF
dn

n over F, using the low-PIT

algorithm. Running this algorithm on our guessed instances of size s′(n) will take time at most

2ncα(n)/β (n)
.

Since the reduction from checking Cn ≡ T̃QBF
dn

n to low-PIT is polynomial-time honest

Turing (Theorem 103) and low-PIT is paddable, we get that TQBF is reducible to low-PIT via

an honest Turing reduction running in time t(n) = (s′(n))c′ = ncc′α(n), for some constant c′ > 0.

Let γ(n) :=
√

β (n)/2 and α(n) := γ(n)/(cc′). We get by Lemma 96 that TQBF is decided by a

nondeterministic 2n1/γ(n)
-time algorithm over a γ-robust set of input lengths.

Diagonalization

For every τ(n) ∈ ωc(1), there is a language L ∈ SPACE[nτ(n)]\ io-SIZE[nτ0.8(n)] (due to

[Kan82]). Let fL be the multilinear extension of L over the field F. Since an arithmetic circuit

179

over F can be easily simulated by a Boolean circuit of only polynomially larger size, we get

that every power f D
L of fL requires arithmetic circuits of size at least nτ0.5(n). Thus we get

fL 6∈ ASizeDegPow[nτ0.5(n)].

Padding

For τ(n)∈ωc(1) to be determined, consider the hard language L and the hard polynomial

fL as defined above. We will argue that M := MONOMIAL(fL) ∈ ro?-NE. This will imply that

fL ∈ rp?-ml-NE, thereby contradicting our assumption that rp?-ml-NE ⊆ ASizeDegPow[nα(n)]

for every α(n) ∈ ωc(1).

Since L ∈ SPACE[nτ(n)], we get that M ∈ SPACE[nτ(n)] as well. Consider the padded lan-

guage Mpad = {(x,1|x|τ(|x|)) | x ∈M}. Since τ(n) is computable, we get that Mpad ∈ LINSPACE.

We have that Mpad is reducible to TQBF by an honest polynomial-time Turing reduction,

and that M is reducible to Mpad via an honest mapping reduction in time nτ(n). It follows that M

is reducible to TQBF via an honest Turing reduction in time nc′′τ(n) for some constant c′′ > 0.

Recall that TQBF is decided by a nondeterministic 2n1/γ(n)
-time algorithm over a γ-robust

set of input lengths. Set γ ′(n) = min{γ(n),γ ′(b
√

nc)+1}, so that by Lemma 91, we have for

every k ≥ 1 that γ ′(nk)≤ γ ′(n)+ dlogke. Set γ ′′(n) :=
√

γ ′(n)/2 and set τ(n) := γ ′′(n)/c′′. We

get by Lemma 96 that M is decided by a nondeterministic 2n1/γ ′′(n)
-time algorithm over a γ ′′-robust

set of input lengths. It follows that rp?-ml-NE 6⊆ASizeDegPow[nτ0.5(n)]. But τ0.5(n)∈ωc(1), and

so we contradict the assumption that rp?-ml-NE⊆ ASizeDegPow[nα(n)] for every α(n) ∈ ωc(1).

6.5.4 Robust circuit lower bounds over F imply robust derandomization
of PITF (backwards direction of Theorem 106)

Assume that there is some family g = {gn} of promise polynomials in rp?-ml-NE on

computably robust set S such that, for some computably superpolynomial function s(n) = nα(n),

there are infinitely many input lengths n∈ core(S) where gdn
n cannot be computed by an arithmetic

circuit of size s(n), for any 1≤ dn ≤ s(n).

180

As in the proof of Theorem 105, we will use Theorem 92 to get derandomization

of low-PIT. We present our argument in the following subsections. Similar to the proof

of Theorem 105, we search an interval to obtain derandomization robustly often. The only

difference is that we are not free to set the size of the interval that we search.

Building a hitting set by searching intervals

Let G be the “good” set of input lengths obtained by applying Lemma 97 to S. Recall,

that G is exactly the set of input lengths n where an interval around a noc(1) function of n is

guaranteed to contain a hard length for g. Suppose we are given a low-PIT instance of size m,

for m ∈ G. Then, we use the following algorithm:

1. Non-deterministically construct the truth table of gm′ , for each m′ ∈ I[m].

2. Construct a HSG from each gm′ (as in Theorem 105, we may need to work over an

extension field of F but this is tractable).

3. Test the circuit on the output of each HSG.

Step 1 will succeed on some path if each m′ ∈ I[m] is also in S, which we have by

definition. Step 2 will succeed (the HSG works) when m = s1/c for a given constant c and

hardness parameter s. We know that there exists m′ ∈ I[m] such that fm′ 6∈ASizeDegPow[m′α(m′)],

and we can pad low-PIT, so deciding PIT on instances larger than m suffices to decide PITm.

Therefore, if m < (m′)α(m′) for all m′ ∈ I[m], then the algorithm will work. But (m′)α(m′) is

minimized at exactly Tl(m)α(Tl(m)), which by Lemma 97 is still mωc(1), and so always exceeds m.

Therefore, this algorithm is correct for any input length in G.

As in Theorem 105, the runtime is dominated by t, the maximal number of tuples

that we need to evaluate to run a HSG. Write t = 2((m
′)c)log(s)

< 2(m
′)c+1

, which is maximized

at m′ = Th(m). But by Lemma 97, Tl(n)α(Tl(n)) ∈ nωc(1). This, along with the fact that G is

computably robust, places low-PIT ∈ ro?-NSUBEXPc.

181

6.6 PIT algorithms vs. circuits over the integers

We have analogous results also for the case of integers Z, with analogous proofs (using

the analysis of [JS12] showing that Kaltofen’s [Kal89] polynomial factorization algorithm over

integers respects formal degree).

Theorem 107. Over Z, we have

1. low-PIT ∈ NSUBEXPc ⇒ ml-NE 6⊆ ASizeDegMul[superpolyc].

2. ml-NE 6⊆ ASizeDegMul[superpolyc] ⇒ low-PIT ∈ ro?-NSUBEXPc.

Theorem 108. Over Z,

low-PIT ∈ ro?-NSUBEXPc ⇔ rp?-ml-NE 6⊆ ASizeDegMul[superpolyc].

Sketched proof of implication (1) of Theorem 107

As in the proof of Theorem 105, we follow three major steps: (i) collapsing PSPACE

into NSUBEXPc, (ii) diagonalization to get a hard multilinear polynomial in SPACE[superpolyc],

and (iii) using a padding argument to argue that this hard polynomial is actually computable in

ml-NE, contradicting the assumption that ml-NE contains no hard polynomials.

Identical to the proof of Theorem 105, except for the following two changes to step (i)

where we cause the collapse:

• Where we would attempt to find a T̃QBF circuit by guessing a single s(n) size circuit over

a finite field, we instead guess two s(n)-size circuits over the integers, one variable-free.

Then, instead of invoking Theorem 103, we invoke Theorem 104 to determine if one of

these circuits computes c× T̃QBF. The runtime analysis is identical.

• In the finite field case, it is obvious that we can evaluate these circuits in time poly(s(n))

to actually compute T̃QBFn, because the bit-size of all intermediate values is always

182

constant for a particular finite field.. In the integer case, we need the additional fact

that ASizeDegMul[s(n)] circuits have bounded formal degree and are constant-free. This

implies that the bit-sizes of the intermediate values computes by ASizeDegMul circuits are

bounded, and so we can in fact evaluate them efficiently in NSUBEXPc.

Sketched proof of implication (2) of Theorem 107

This direction is identical to the proof of Theorem 105, except that it uses the statement

of Theorem 92 over Z from [JS12] and never needs to pass to an extension field. Again, we use

that since ASizeDegMul circuits are constant-free and of bounded formal degree, the bit-sizes of

intermediate values are bounded and they can be evaluated efficiently.

Finally observe that the proof of the robust equivalences for the case of the integers,

Theorem 108, is identical to the proof of the finite equivalence, Theorem 106, save for the same

changes that are required to adapt the proof of implications for the finite case (Theorem 105) to

implications for the integers (Theorem 107), which we just covered above.

6.7 Promise-BPP vs. Boolean circuit lower bounds

Theorem 109. We have

1. promise-BPP⊆ NSUBEXPc ⇒ (NE∩ coNE) 6⊆ SIZE[superpolyc].

2. (NE∩ coNE) 6⊆ SIZE[superpolyc] ⇒ promise-BPP⊆ ro?-NSUBEXPc.

Proof sketch. (1) Assume that CAPP is correctly approximated by an NSUBEXPc algorithm,

but every language in (NE∩ coNE) has small superpolynomial-size Boolean circuits. The latter

means that E⊆ SIZE[superpolyc], and hence, by [BFL91], that E⊆MA[superpolyc], for a related

small superpolynomial time complexity. Using our CAPP algorithm, we get MA[superpolyc]⊆

NSUBEXPc. By padding the inclusion E⊆ NSUBEXPc, we get that TIME[2superpolyc]⊆ NE. Fi-

nally, by diagonalization, we get a language L∈TIME[2superpolyc]⊆NE that requires computably

183

superpolynomial circuit complexity (almost everywhere). Since L̄ ∈ TIME[2superpolyc]⊆ NE, the

conclusion follows.

(2) Assume we have a pair of NE machines that compute L and L̄ for a language L

requiring superpolyc-size circuits infinitely often. By the hardness-randomness tradeoff of

[BFNW93], we get a NSUBEXPc algorithm that correctly approximates CAPP infinitely often;

the input lengths where the CAPP algorithm is correct correspond to the (smaller) input lengths

where the language L is actually hard.

To boost this to the desired promise-BPP⊆ ro?-NSUBEXPc inclusion, we use the same

“interval trick” as in the arithmetic case (Theorem 105, (2)), to show that there is a NSUBEXPc

algorithm that, robustly often, produces a discrepancy set for circuits of size n. Indeed, on input

length n, take the corresponding input length n′ where Theorem 93 requires Ln′ to be hard in

order to build a discrepancy set for circuits of size n. Consider Lm for a superpolynomial interval

of lengths m≥ n′, and concatenate the truth tables of all these Lm’s. This new string must be hard

as it contains a hard substring. Applying Theorem 93 to this hard string, we get a discrepancy

set.

We now extend the two implications of Theorem 109 to the equivalence below, by

carefully adapting the arguments above to the setting of robust inclusions and separations. The

proof will be quite similar to that of Theorem 109, except we will need to carefully maintain the

condition that all operations which change the size of an input preserve membership in robust

sets. Thus, many steps of this argument will be shared with the poof of Theorem 106 about the

finite field setting, and rely on the same lemmas about closure properties of computably robust

sets.

Theorem 110. promise-BPP⊆ ro?-NSUBEXPc ⇔ rp?-(NE∩ coNE) 6⊆ SIZE[superpolyc].

Proof sketch. (⇒) Assume promise-BPP is easy, but no hard language is in rp?-(NE∩coNE). As

in the proof of Theorem 109, implication (1), we conclude that E⊆ SIZE[superpolyc] and so E⊆

MA[superpolyc]. Under our assumption on promise-BPP, we can derandomize MA[superpolyc]

184

only robustly often, getting that E⊆ ro?-NSUBEXPc. By padding, TIME[2superpolyc]⊆ ro?-NE,

and by diagonalization, TIME[2superpolyc] contains a language L that requires superpolyc cir-

cuit size almost everywhere. Since the language {(x,1) | x ∈ L}∪ {(x,0) | x ∈ L̄} is also in

TIME[2superpolyc] ⊆ ro?-NE, we get a pair of NE machines that correctly decide Ln and Ln,

respectively, on a computably robust set of input lengths n.

(⇐) Assume we have a pair of NE machines that correctly compute L and L̄ for some

computably robust set S of input lengths, where L requires superpolyc circuit size for infinitely

many input lengths in core(S). Using these machines, we nondeterministically guess for each n

a candidate hard function on n bits, in time poly(2n). By our assumption, infinitely often, we

get a truly hard function. So we get, using Theorem 93, a correct discrepancy set for circuits of

size n, for infinitely many n, computable in NSUBEXPc. Finally, as in the proof of Theorem 109,

implication (2), we use the “interval trick” to conclude the argument.

In the remaining sub-sections, we give detailed proofs of Theorems 109 and 110 above.

6.7.1 Proof of implication (1) of Theorem 109

Assume that CAPP is correctly approximated by a nondeterministic algorithm running in

time 2n1/β (n)
, for some β (n) ∈ ωc(1), but (NE∩ coNE)⊆ SIZE[nα(n)] for every α(n) ∈ ωc(1).

Collapsing E to NSUBEXPc

The latter assumption implies that E ⊆ SIZE[nα(n)], and so, by [BFL91], that E ⊆

MA[ncα(n)] for some constant c > 0. Using our CAPP algorithm, we derandomize the MA

class, getting MA[ncα(n)] ⊆ NTIME[2ncα(n)/β (n)
]. By setting α(n) := (β (n)/c)1/3, the latter be-

comes computably subexponential nondeterministic time exp(n1/α2(n)). It follows that E ⊆

NTIME
[
2n1/α2(n)

]
.

185

Diagonalization

By standard diagonalization, we get a language L ∈ TIME
[
2nα2(n)

]
6∈ io-SIZE[nα(n)] as

follows. By enumeration, find an n-input Boolean circuit of size nα1.5(n) that differs from every

n-input Boolean circuit of size at most nα(n) on at least one input x ∈ {0,1}n; such a circuit exists

by a counting argument [PW86]. The running time is easily seen to be at most 2nα2(n)
.

Next we show that this hard language L is in NE∩ coNE, contradicting our assumption

that every language in (NE∩ coNE) has circuits of size [nα(n)].

Padding

For the hard language L defined above, consider its graph version M = {(x,0) | x 6∈

L}∪{(x,1) | x ∈ L}. Since L is computable in deterministic time 2nα2(n)
, we conclude that M is

computable within the same time bounds. Define the padded version Mpad = {(x,1|x|α
2(|x|)−|x|) |

x ∈ M} of M. Since α(n) is efficiently computable, we get that Mpad ∈ E. Using E ⊆

NTIME[2n1/α2(n)
], we conclude that M ∈ NE. The latter implies that L ∈ (NE∩ coNE). Hence,

(NE∩ coNE) 6⊆ SIZE[nα(n)]. A contradiction.

6.7.2 Proof of implication (2) of Theorem 109

Assume we have a pair of NE machines that compute L and L̄ for a language L requiring

s(n)-size circuits infinitely often, for some computably superpolynomial s(n) = nα(n).

Our proof structure is similar to that of Theorem 105, and is given in the following

subsections.

Constructing the truth table of a hard function

For every n, we use our NE machines for L and L̄ to construct the truth table of Ln in

nondeterministic time poly(2n) as follows. For each x ∈ {0,1}n, nondeterministically guess

bx = 0 or bx = 1. If bx = 0, guess a witness for x 6∈ L. If bx = 1, guess a witness for x ∈ L. Verify

the correctness of all guessed witnesses over all x ∈ {0,1}n using the pair of NE machines for L

186

and L̄. If all guesses are correct, then output the string of bx’s over all x ∈ {0,1}n and accept;

otherwise, halt and reject.

Note that the described nondeterministic algorithm will accept on at least one nondeter-

ministic computation branch, and whenever it accepts, it outputs the truth table of Ln. Its running

time is clearly poly(2n).

Building a discrepancy set

By Theorem 93, given a 2n-bit truth table of Ln, we get a collection of t = 2nc
binary

strings of length m = (s(n))1/c, for some constant c > 0, that is a discrepancy set for circuits of

size m, for infinitely many input lengths n.

Running time analysis:

Using n = mc/α(n), we get that t ≤ exp(md/α(n)), for d = c2. By Lemma 91, we may

assume that α(n) satisfies the inequality α(nk)≤ α(n)+ dlogke. Using this as well as the fact

that n≤ m, we have for large enough m:

α(n) = α(mc/α(n))≥ α(m)−dlogα(n)/ce ≥ α(m)−dlogα(m)e ≥ α(m)/2.

We conclude that CAPP instances of size m are solvable i.o. in NTIME
[
2m2d/α(m)

]
.

Derandomizing promise-BPP robustly often

To boost this to the desired promise-BPP⊆ ro?-NSUBEXPc inclusion, we use the same

“interval trick” as in the arithmetic case (Theorem 105, (2)). When asked to solve CAPP for a

certain input length m, we go to the smallest length n such that s(n) ≥ mc, and consider truth

tables for Ln′ over all lengths n′ such that n≤ n′ ≤ n
√

α(n). We concatenate all these truth tables

together, getting a binary string of length at most n
√

α(n) ·2n
√

α(n)
, which we view as the truth

table of an n′′-variate Boolean function, for n′′ = O(n
√

α(n)).

We use the constructed truth table to construct a candidate discrepancy set via Theorem 93.

187

If the given interval above n contains a length n′ such that Ln′ is hard, then our constructed truth

table has hardness at least mc, and so we get a true discrepancy set for circuits of size m, which

allows us to solve CAPP for m-size instances. Since there infinitely many intervals containing

a length n′ where Ln′ is hard, there will be infinitely many intervals of superpolynomial length

where our CAPP algorithm is correct.

The running time of the described algorithm will be dominated by the value t in Theo-

rem 93 for n′′ = O(n
√

α(n)). We get t ≤ 2(n
′′)c ≤ exp(n(c+1)

√
α(n))≤ exp(mc(c+1)/

√
α(n)). Using

our earlier lower bound α(n)≥ α(m)/2, we have t ≤ exp(mc′/
√

α(m)), for c′ = c(c+1)
√

2, and

so promise-BPP ∈ ro?-NSUBEXPc.

6.7.3 Robust Derandomization of CAPP Implies Robust Boolean Circuit
Lower Bounds (forward direction of Theorem 110)

We argue by contradiction. Assume that CAPP is correctly approximated by a algorithm

running in nondeterministic time 2n1/β (n)
, for some β (n) ∈ ωc(1), on a ρ-robust set S for some

ρ(n) ∈ ωc(1). But, rp?-(NE∩ coNE)⊆ SIZE[nα(n)] for every α(n) ∈ ωc(1).

First, we may assume, without loss of generality, that β (n) = ρ(n), and moreover, for

every k ≥ 1, β (nk)≤ β (n)+ dlogke. Indeed, if not, define δ ′(n) := min{β (n),ρ(n)}, and use

Lemma 91 to get δ (n)≤ δ ′(n) satisfying the property δ (nk)≤ δ (n)+ dlogke for all k ≥ 1. It is

easy to see that the δ -intervals around each n∈ core(S) are contained within S, since δ (n)≤ ρ(n);

so we get a δ -robust subset S′ ⊆ S. Also, since δ (n)≤ β (n), we have 2n1/β (n) ≤ 2n1/δ (n)
. Hence,

we get a nondeterministic 2n1/δ (n)
-time algorithm correctly approximating CAPP on a δ -robust

set S′ of input lengths.

Next, similar to the proof of Theorem 109, implication (1), we follow three major steps:

(i) collapsing E into ro?-NSUBEXPc, (ii) using diagonalization to define a hard language in

TIME[2nωc(1)
], and (iii) using a padding argument to show that this hard language is actually

computable in rp?-(NE∩ coNE), contradicting the assumption that rp?-(NE∩ coNE) has small

circuits.

188

Collapsing E to ro?-NSUBEXPc

First, E ⊆ rp?-(NE∩ coNE) ⊆ SIZE[nα(n)], for all α ∈ ωc(1). The last containment is

by assumption, and the first containment follows by taking every input length as core and any

function in ωc(1) as the interval function. From this, it follows by [BFL91] that E⊆MA[ncα(n)]

for some constant c > 0. Now we use our CAPP algorithm to derandomize the MA class. The

only difference here is that we must go through Lemma 96 to ensure that the derandomization

works on a robust set.

For any L ∈MA[ncα(n)], there is some poly(ncα(n)) = ncc′α(n) sized circuit with a witness

and input wired in which takes only random bits as input and has the same probability of

acceptance over those bits as the MA protocol run on input x with the given witness. We want

to run CAPP on this circuit and accept if the probability of accepting is over the MA threshold.

The size of input to CAPP on instance length n is therefore t(n) = ncc′α(n), and so to place

MA in ro?-NSUBEXPc we require that S′′ := t−1(S′) be computationally robust. Following

the requirements of Lemma 96, we set γ(n) :=
√

δ (n)/2 and α(n) := γ(n)/(cc′). Using our

CAPP algorithm as described above, this places MA[ncα(n)]⊆ NTIME[2n1/γ(n)
] on input lengths

in γ-robust S′′. Therefore, we have E⊆ ro?-NSUBEXPc.

Diagonalization

This step is identical to the proof of Theorem 109. By standard diagonalization, we can

get a language L ∈ TIME
[
2nτ2(n)

]
6∈ io-SIZE[nτ(n)], for any τ ∈ ωc(1).

Padding

For the hard language L defined above, consider its graph version M = {(x,0) | x 6∈

L}∪{(x,1) | x ∈ L}. Since L is computable in deterministic time 2nτ2(n)
, we conclude that M is

computable within the same time bounds. Define the padded version Mpad = {(x,1|x|τ
2(|x|)−|x|) |

x ∈M} of M. Since τ is efficiently computable, we conclude that Mpad ∈ E⊆ NTIME[2n1/γ(n)
]

on S′′.

189

As in the proof of Theorem 106, to conclude M ∈ rp?-(NE ∩ coNE) from Mpad ∈

ro?-NSUBEXPc we need to pad by a superpolynomial amount, resulting in an input length of

t(n) = nτ2(n) for the Mpad machine. To maintain the robustness of the set of inputs for which the

Mpad algorithm works after this shift in input length, we use Lemma 97. Set γ ′(n) :=
√

γ(n)/2

and τ(n) :=
√

γ ′(n). Then by Lemma 97, M ∈ NTIME[2n1/
√

γ ′(n)
] ⊆ (NE∩ coNE) on some

γ ′-robust set. This is exactly M ∈ rp?-(NE∩ coNE), and gives us the contradiction: we as-

sumed rp?-(NE∩ coNE) ⊆ SIZE[nα(n)] for every α ∈ ωc(1), but M 6∈ SIZE[nτ] and τ ∈ ωc(1),

concluding the proof.

6.7.4 Robust Boolean Circuit Lower Bounds Imply Robust Derandom-
ization of CAPP (backwards direction of Theorem 110)

Assume that there is some promise problem Π in rp?-(NE∩coNE) on computably robust

set S such that, for some computably superpolynomial function s(n) = nα(n), there are infinitely

many input lengths n ∈ core(S) where Πn cannot be computed by a Boolean circuit of size s(n).

As in the proof of Theorem 109, we will use Theorem 93 to get a discrepency set to

derandomize CAPP. Similar to the proof of Theorem 109, we search an interval for hard slices to

obtain derandomization robustly often. The only difference is that we are not free to set the size

of the interval that we search.

Building a discrepency set by searching intervals

Let G be the “good” set of input lengths obtained by applying Lemma 97 to S. Then, we

have that G is exactly the set of input lengths n where an interval around a noc(1) function of n is

guaranteed to contain a hard length for Π. Suppose we are given a CAPP instance of size m, for

m ∈ G. We use the following algorithm:

1. Non-deterministically construct the truth table of Πm′ , for each m′ ∈ I[m].

2. Concatenate together all the above truth tables into one string. By definition of I[m], the

length of this string is upper-bounded by Th(m) ·2Th(m).

190

3. Treating the resulting string as the truth table of a O(Th(m))-variate Boolean function, use

Theorem 93 to get a discrepency set and derandomize the CAPP instance

For step 1, use the method given in the proof of Theorem 109 for nondeterminstically

generating truth tables. The step will succeed on some path if each m′ ∈ I[m] is also in S, which

we have by definition of G from Lemma 97.

We now analyse the application of Theorem 93 to the concatenated truth tables. There are

t = 2O(Th(m)) binary strings in the resulting set. Say that the hard slice for Π is in the worst-case

location for the hardness measure, the smallest element of I[m] which is Tl(m). Then s(Tl(m))1/c

is a lower bound on the size of circuits that the discrepency set will fool. But Lemma 97 tells

us that s(Tl(m)) = Tl(m)α(Tl(m) ∈ mωc(1), and (mωc(1))1/c remains in mωc(1) > m. Therefore, the

resulting set of strings is always discrepency set for circuits of size m ∈ G.

As in Theorem 109, the runtime of our derandomization is dominated by t = 2O(Th(m))c
,

the number of strings in the discrepency set. By Lemma 97, we have that Th(m) ∈ moc(1). By

elementary closure properties of the computably super-constant functions, O(moc(1))c ∈ moc(1).

Therefore, there is a NSUBEXP time algorithm for CAPP on the computably robust set G. This

concludes proof of the theorem.

6.8 Robustly-often nontrivial useful properties

A property of Boolean functions is a family P = {Pn}n≥0 of predicates Pn : {0,1}2n→

{0,1}. We think of Pn as taking the truth table of an n-variate Boolean function as input. We

say that P is NP-computable if there exists a nondeterministic algorithm that computes each

Pn in time poly(2n), for all sufficiently large n ∈ N.

For a function s : N→ N, we say that a property P is useful against SIZE[s] at length

n if, whenever Pn accepts the truth table of a Boolean n-variate function fn : {0,1}n→{0,1},

this means that fn requires circuit size at least s(n). We say that P is nontrivial at length n if

Pn accepts at least one truth table of length 2n.

191

Finally, we say that P is robustly-often nontrivially useful against SIZE[superpolyc]

(denoted ro?-useful) if, for some s(n) ∈ superpolyc,

1. S = {n ∈ N | P is nontrivial at length n} is computably robust, and

2. P is useful against SIZE[s] at length n for infinitely many lengths n ∈ core(S).

As a corollary of Theorem 110, we get the following equivalence between circuit lower

bounds for NEXP∩ coNEXP and the existence of ro?-useful properties.

Theorem 111 (Equivalence Between Circuit Lower Bounds and Useful Properties).

rp?-(NE∩ coNE) 6⊆ SIZE[superpolyc]⇔∃ NP-computable ro?-useful property P

Proof. (⇒) Assume we have a pair of NE machines M1 and M0 that correctly compute L and

L̄, respectively, for some computably robust set S of input lengths, where L requires superpolyc

circuit size for infinitely many input lengths in core(S). Define a property P as follows:

“On input T ∈ {0,1}2n
, guess 2n candidate witnesses a1, . . . ,a2n of length 2O(n)

each, and check, for every 1≤ i≤ 2n, if Ti = b, for b ∈ {0,1}, then Mb(i) accepts
ai as a witness. If succeed for all i’s, then accept. Otherwise, reject.”

Clearly, P is NP-computable. Note that Pn accepts the truth table of Ln (and nothing

else) for the computably robust set S of input lengths n, and so P is robustly-often nontrivial.

Finally, since L requires circuit size superpolyc foro infinitely many input lengths n ∈ core(S),

we get that P is useful against SIZE[superpolyc] at length n for infinitely many n ∈ core(S).

Thus P is ro?-useful.

(⇐) Given an NP-computable property P that is nontrivial on a computably robust set S

of input lengths n, and useful against SIZE[superpolyc] for infinitely many n ∈ core(S), we use

P to nondeterministically guess a truth table T of length 2n, nondeterministically verify that T

is accepted by Pn, and use T as a “hard” Boolean function to derandomize promise-BPP (using

the hardness-randomness tradeoff of Theorem 93).

192

We get that promise-BPP⊆ io-NSUBEXPc, since infinitely often we get a truth table T of

superpolynomial circuit complexity. Using the “interval trick” (as in the proof of Theorem 109,

implication (2)), we boost this inclusion to get promise-BPP ⊆ ro?-NSUBEXPc, which, by

Theorem 110, implies rp?-(NE∩ coNE) 6⊆ SIZE[superpolyc].

We also get a more general theorem that involves fully deterministic properties in the

equivalence.

Theorem 112. The following are equivalent:

1. rp?-(NE∩ coNE) 6⊆ SIZE[superpolyc]

2. there is an NP-computable ro?-useful property

3. there is a P-computable ro?-useful property

Proof. We prove that (1)⇒ (2)⇒ (3)⇒ (1).

• (1)⇒ (2): Assume we have a pair of NE machines M1 and M0 that correctly compute L

and L̄, respectively, for some computably robust set S of input lengths, where L requires

superpolyc circuit size for infinitely many input lengths in core(S). Define a property P

as follows:

“On input T ∈ {0,1}2n
, guess 2n candidate witnesses a1, . . . ,a2n of length

2O(n) each, and check, for every 1≤ i≤ 2n, if Ti = b, for b ∈ {0,1}, then
Mb(i) accepts ai as a witness. If succeed for all i’s, then accept. Otherwise,
reject.”

Clearly, P is NP-computable. Note that Pn accepts the truth table of Ln (and nothing

else) for the computably robust set S of input lengths n, and so P is robustly-often

nontrivial. Finally, since L requires circuit size superpolyc for infinitely many input lengths

n ∈ core(S), we get that P is useful against SIZE[superpolyc] at length n for infinitely

many n ∈ core(S). Thus P is ro?-useful.

193

• (2) ⇒ (3): Assume we have a NP-computable ro?-useful property P . Let R(x,y) be

the witness-checking polynomial-time predicate of the NP algorithm defining P: ∀x ∈

{0,1}2n
x ∈P⇔∃y ∈ {0,1}2cn

R(x,y). Define a new property P ′ to accept a string z of

length 2n +2cn iff z = xy such that R(x,y) is true. This is clearly P-computable. Next we

argue that P ′ is ro?-useful.

Let S be the computably robust set where P is nontrivial. Let α ∈ωc(1) be such that there

are infinitely many m∈ core(S) so that, every m′ in the interval m1/α(m) ≤m′ ≤mα(m) is in

S. Set β (m) = α(m)/2; we have β (m) ∈ωc(1) since computably super-constant functions

are closed under multiplication by constants. Define the robust set S′ by taking β -intervals

around cm for all m ∈ core(S). We get that core(S′) = {cm | m ∈ core(S)}.

We claim that P ′ is a ro?-useful property on S′.

First, observe that P ′ at input length n depends on P at length bn/cc. Since P is useful

at length m for infinitely many m ∈ core(S), we get that P ′ is also useful (for a slightly

smaller, but still superpolynomial circuit size bound) for infinitely many cm ∈ core(S′).

Next we show that P ′ is nontrivial at all lengths n ∈ S′. Take an arbitrary n inside the

β -interval around cm for some m ∈ core(S). We have

(cm)1/β (m) ≤ n≤ (cm)β (m). (6.2)

We get that P ′ is nontrivial at length n if m1/α(m) ≤ n/c ≤ mα(m), which is equiva-

lent to cm1/α(m) ≤ n ≤ cmα(m). By Eq. (6.2), we have n ≤ (cm)α(m)/2 ≤ cmα(m) for

sufficiently large m. We also have cm1/α(m) ≤ (cm)2/α(m) when m1/α(m) ≥ c, or equiv-

alently, when α(m) ≤ (logm)/(logc); we can assume the latter by using α ′(m) :=

min{α(m),(logm)/(logc)} instead of α(m) if necessary. We conclude that P ′ is nontriv-

ial at every n satisfying Eq. (6.2).

• (3)⇒ (1): Given an P-computable property P that is nontrivial on a computably robust set

194

S of input lengths n, and useful against SIZE[superpolyc] for infinitely many n ∈ core(S),

we use P to nondeterministically guess a truth table T of length 2n, verify that T is

accepted by Pn, and use T as a “hard” Boolean function to derandomize promise-BPP

(using the hardness-randomness tradeoff of Theorem 93).

We get that promise-BPP⊆ io-NSUBEXPc, since infinitely often we get a truth table T of

superpolynomial circuit complexity. Using the “interval trick” (as in the proof of Theo-

rem 109, implication (2)), we boost this inclusion to get promise-BPP⊆ ro?-NSUBEXPc,

which, by Theorem 110, implies rp?-(NE∩ coNE) 6⊆ SIZE[superpolyc].

Chapter 6, in part, is based on the material as it appears in “Marco Carmosino, Russell

Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Tighter connections between

derandomization and circuit lower bounds. In Naveen Garg, Klaus Jansen, Anup Rao, and

José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA,

volume 40 of LIPIcs, pages 645–658. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2015”. The dissertation author was the primary investigator and author of this paper.

195

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[ABW15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current
clique algorithms are optimal, so is valiant’s parser. In Venkatesan Guruswami,
editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 98–117. IEEE Computer
Society, 2015.

[AHWW15] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams. Simulating branching programs with edit distance and friends or: A
polylog shaved is a lower bound made. CoRR, abs/1511.06022, 2015.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In
Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Sympo-
sium on, pages 298–307. IEEE, 2003.

[AM11] S. Aaronson and D. van Melkebeek. On circuit lower bounds from derandomization.
Theory of Computing, 7(1):177–184, 2011.

[AvM12] B. Aydinlioglu and D. van Melkebeek. Nondeterministic circuit lower bounds
from mildly de-randomizing arthur-merlin games. In Proceedings of the 27th
Conference on Computational Complexity, CCC 2012, Porto, Portugal, June 26-29,
2012, pages 269–279, 2012.

[AW85] M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic constant
depth circuits. In Proceedings of the Twenty-Sixth Annual IEEE Symposium on
Foundations of Computer Science, pages 11–19, 1985.

[AWW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences
of faster alignment of sequences. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming
- 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science,
pages 39–51. Springer, 2014.

196

[BDT16] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for
maximum weight rectangles. In Ioannis Chatzigiannakis, Michael Mitzenmacher,
Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, volume 55 of LIPIcs, pages 81:1–81:13. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

[BFKL93] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic
primitives based on hard learning problems. In Annual International Cryptology
Conference, pages 278–291. Springer, 1993.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307–318, 1993.

[BGL17] Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for
regular expression membership testing. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 307–318. IEEE Computer Society, 2017.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In Rocco A. Servedio and Ronitt
Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
51–58. ACM, 2015.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within nc1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

[BIS12] Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0

by small height decision trees and a deterministic algorithm for #AC0SAT. In
Proceedings of the 27th Conference on Computational Complexity, CCC 2012,
Porto, Portugal, June 26-29, 2012, pages 117–125, 2012.

[BK15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds
for string problems and dynamic time warping. In Venkatesan Guruswami, editor,
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 79–97. IEEE Computer Society,
2015.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. Journal of the ACM (JACM),
50(4):506–519, 2003.

197

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[BM88] L. Babai and S. Moran. Arthur-merlin games: a randomized proof system, and
a hierarchy of complexity classes. Journal of Computer and System Sciences,
36(2):254–276, 1988.

[Bop97] Ravi B. Boppana. The average sensitivity of bounded-depth circuits. Information
Processing Letters, 63(5):257–261, September 1997.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the
Association for Computing Machinery, 57:28:1–28:10, 2010.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Average-case fine-grained hardness. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 483–496. ACM, 2017.

[BT06a] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and
Trends in Theoretical Computer Science, 2(1), 2006.

[BT06b] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions
for NP problems. SIAM J. Comput., 36(4):1119–1159, 2006.

[BT17] Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes
imply faster clique algorithms. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 311–321. PMLR, 2017.

[CIKK15] Marco Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Tighter connections between derandomization and circuit lower
bounds. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA,
volume 40 of LIPIcs, pages 645–658. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In Ran Raz, editor, 31st
Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016,
Tokyo, Japan, volume 50 of LIPIcs, pages 10:1–10:24. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[CIKK17] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Agnostic learning from tolerant natural proofs. In Klaus Jansen,

198

José D. P. Rolim, David Williamson, and Santosh Srinivas Vempala, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA,
volume 81 of LIPIcs, pages 35:1–35:19. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. Fine-grained de-
randomization: From problem-centric to resource-centric complexity. In Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, edi-
tors, 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs,
pages 27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[CK15] Ruiwen Chen and Valentine Kabanets. Correlation bounds and #sat algorithms for
small linear-size circuits. In Dachuan Xu, Donglei Du, and Dingzhu Du, editors,
Computing and Combinatorics - 21st International Conference, COCOON 2015,
Beijing, China, August 4-6, 2015, Proceedings, volume 9198 of Lecture Notes in
Computer Science, pages 211–222. Springer, 2015.

[CKK+15] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and
David Zuckerman. Mining circuit lower bound proofs for meta-algorithms. Com-
putational Complexity, 24(2):333–392, 2015.

[CKS14] Ruiwen Chen, Valentine Kabanets, and Nitin Saurabh. An improved deterministic
#SAT algorithm for small de Morgan formulas. In Mathematical Foundations of
Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part II, pages 165–176, 2014.

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua
Bar-Hillel, editor, Logic, Methodology and Philosophy of Science: Proceedings
of the 1964 International Congress (Studies in Logic and the Foundations of
Mathematics), pages 24–30. North-Holland Publishing, 1965.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[CS15] Ruiwen Chen and Rahul Santhanam. Improved algorithms for sparse MAX-SAT
and MAX-k-CSP. In Theory and Applications of Satisfiability Testing - SAT
2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, pages 33–45, 2015.

[DL78] R.A. DeMillo and R.J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7:193–195, 1978.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,
17:449–467, 1965.

199

[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter
clique and dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004.

[Fel09] Vitaly Feldman. On the power of membership queries in agnostic learning. Journal
of Machine Learning Research, 10:163–182, 2009.

[Fel10] Vitaly Feldman. Distribution-specific agnostic boosting. In Innovations in Com-
puter Science - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010.
Proceedings, pages 241–250, 2010.

[FF91] Joan Feigenbaum and Lance Fortnow. On the random-self-reducibility of complete
sets. In Proceedings of the Sixth Annual Structure in Complexity Theory Conference,
Chicago, Illinois, USA, June 30 - July 3, 1991, pages 124–132. IEEE Computer
Society, 1991.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets.
SIAM J. Comput., 22(5):994–1005, 1993.

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami.
New results for learning noisy parities and halfspaces. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 563–574. IEEE,
2006.

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit
lower bounds. J. Comput. Syst. Sci., 75(1):27–36, 2009.

[FS96] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator
provably as secure as syndrome decoding. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 245–255. Springer,
1996.

[FS11] L. Fortnow and R. Santhanam. Robust simulations and significant separations. In
Automata, Languages and Programming - 38th International Colloquium, ICALP,
Proceedings, Part I, pages 569–580, 2011.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On
beating the hybrid argument. Theory of Computing, 9:809–843, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GI16] Jiawei Gao and Russell Impagliazzo. Orthogonal vectors is hard for first-order
properties on sparse graphs. Electronic Colloquium on Computational Complexity
(ECCC), 23:53, 2016.

200

[GIKW17] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams.
Completeness for first-order properties on sparse structures with algorithmic ap-
plications. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 2162–2181. SIAM, 2017.

[Gil77] J. Gill. Computational complexity of probabilistic turing machines. SIAM Journal
on Computing, 6(4):675–695, 1977.

[GKK08] Parikshit Gopalan, Adam Tauman Kalai, and Adam R. Klivans. Agnostically
learning decision trees. In Cynthia Dwork, editor, Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008, pages 527–536. ACM, 2008.

[GKL93] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudo-
random generators. SIAM J. Comput., 22(6):1163–1175, 1993.

[GKS95] Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. On the sample
complexity of weakly learning. Inf. Comput., 117(2):276–287, 1995.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In David S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA,
pages 25–32. ACM, 1989.

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-lemma. In
Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, pages 273–301. Springer, 2011.

[GR18] Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-case to average-
case reductions and direct interactive proof systems. Electronic Colloquium on
Computational Complexity (ECCC), 25:46, 2018.

[GRS00] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with
queries: The highly noisy case. SIAM J. Discrete Math., 13(4):535–570, 2000.

[GST03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness vs.
randomness tradeoffs for arthur-merlin games. In 18th Annual IEEE Conference on
Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark,
pages 33–47. IEEE Computer Society, 2003.

[GST07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard
on the worst-case, then it is easy to find their hard instances. Computational
Complexity, 16(4):412–441, 2007.

[GW02] Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from
short advice that is typically good. In José D. P. Rolim and Salil P. Vadhan, editors,

201

Randomization and Approximation Techniques, 6th International Workshop, RAN-
DOM 2002, Cambridge, MA, USA, September 13-15, 2002, Proceedings, volume
2483 of Lecture Notes in Computer Science, pages 209–223. Springer, 2002.

[Hås87] Johan Håstad. Computational Limitations of Small-depth Circuits. MIT Press,
Cambridge, MA, USA, 1987.

[Hås89] Johan Håstad. Almost optimal lower bounds for small depth circuits. In S. Micali,
editor, Randomness and Computation, pages 143–170, Greenwich, Connecticut,
1989. Advances in Computing Research, vol. 5, JAI Press.

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM
(JACM), 48(4):798–859, 2001.

[HB01] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols.
In Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on
the Theory and Application of Cryptology and Information Security, Gold Coast,
Australia, December 9-13, 2001, Proceedings, pages 52–66, 2001.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364
– 1396, 1999.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP.
Electronic Colloquium on Computational Complexity (ECCC), 25:138, 2018.

[HS65] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285–306, 1965.

[HS82] J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute.
L’Enseignement Mathématique, 30:237–254, 1982.

[HVV06] Alexander Healy, Salil Vadhan, and Emanuele Viola. Using nondeterminism to
amplify hardness. SIAM Journal on Computing, 35(4):903–931, 2006.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson.
Uniform direct product theorems: Simplified, optimized, and derandomized. SIAM
J. Comput., 39(4):1637–1665, 2010.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural
properties as oracles. In Rocco A. Servedio, editor, 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of
LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci.,
65(4):672–694, 2002.

202

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability
algorithm for ac0. In Yuval Rabani, editor, Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 961–972. SIAM, 2012.

[IMZ12] Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness
from shrinkage. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
111–119. IEEE Computer Society, 2012.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor,
editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–229. ACM, 1997.

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization
under a uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

[Jac06] Jeffrey C. Jackson. Uniform-distribution learnability of noisy linear threshold
functions with restricted focus of attention. In Proceedings of the 19th Annual
Conference on Learning Theory, COLT’06, pages 304–318, Berlin, Heidelberg,
2006. Springer-Verlag.

[JMV15] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,
Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture
Notes in Computer Science, pages 749–760. Springer, 2015.

[JS12] M.J. Jansen and R. Santhanam. Stronger lower bounds and randomness-hardness
trade-offs using associated algebraic complexity classes. In Christoph Dürr and
Thomas Wilke, editors, STACS, volume 14 of LIPIcs, pages 519–530. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[Kab01] Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for
zero error. J. Comput. Syst. Sci., 63(2):236–252, 2001.

[Kal89] E. Kaltofen. Factorization of polynomials given by straight-line programs. In S. Mi-
cali, editor, Randomness and Computation, volume 5 of Advances in Computing
Research, pages 375–412. JAI Press, Greenwich, CT, 1989.

[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Informa-
tion and Control, 55(1-3):40–56, 1982.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Proceedings of a symposium on the Com-
plexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas

203

J. Watson Research Center, Yorktown Heights, New York., The IBM Research
Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. Computational Complexity, 13(1-2):1–
46, 2004.

[KKMS08] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
Agnostically learning halfspaces. SIAM J. Comput., 37(6):1777–1805, 2008.

[KKO13] Adam Klivans, Pravesh Kothari, and Igor Carboni Oliveira. Constructing hard
functions using learning algorithms. In Proceedings of the 28th Conference on
Computational Complexity, CCC 2013, Palo Alto, California, USA, 5-7 June, 2013,
pages 86–97, 2013.

[KL82] R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(3-4):191–209, 1982.

[KMS12] J. Kinne, D. van Melkebeek, and R. Shaltiel. Pseudorandom generators, typically-
correct derandomization, and circuit lower bounds. Computational Complexity,
21(1):3–61, 2012.

[KSS94] Michael J. Kearns, Robert E. Schapire, and Linda Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2-3):115–141, 1994.

[KvMS12] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom genera-
tors, typically-correct derandomization, and circuit lower bounds. Computational
Complexity, 21(1):3–61, 2012.

[KW17] Daniel M. Kane and R. Ryan Williams. The orthogonal vectors conjecture for
branching programs and formulas. CoRR, abs/1709.05294, 2017.

[LBW96] Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. Efficient agnostic
learning of neural networks with bounded fan-in. IEEE Trans. Information Theory,
42(6):2118–2132, 1996.

[LF06] Éric Levieil and Pierre-Alain Fouque. An improved lpn algorithm. In International
Conference on Security and Cryptography for Networks, pages 348–359. Springer,
2006.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. Journal of the Association for Computing Machinery, 39(4):859–
868, 1992.

[Lin18] Andrea Lincoln. Personal communication, 2018.

204

[Lip89] Richard J. Lipton. New directions in testing. In Joan Feigenbaum and Michael
Merritt, editors, Distributed Computing And Cryptography, Proceedings of a
DIMACS Workshop, Princeton, New Jersey, USA, October 4-6, 1989, volume 2
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 191–202. DIMACS/AMS, 1989.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. J. ACM, 40(3):607–620, 1993.

[Lu01] Chi-Jen Lu. Derandomizing arthur-merlin games under uniform assumptions.
Computational Complexity, 10(3):247–259, 2001.

[Lup58] Oleg B. Lupanov. On the synthesis of switching circuits. Soviet Mathematics,
119(1):23–26, 1958. English translation in Soviet Mathematics Doklady.

[Lup59] Oleg B. Lupanov. A method of circuit synthesis. Izvestiya VUZ, Radiofizika,
1(1):120–140, 1959. (in Russian).

[Lyu05] Vadim Lyubashevsky. The parity problem in the presence of noise, decoding
random linear codes, and the subset sum problem. In Approximation, Randomiza-
tion and Combinatorial Optimization. Algorithms and Techniques, pages 378–389.
Springer, 2005.

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[O’D04] Ryan O’Donnell. Hardness amplification within np. J. Comput. Syst. Sci., 69(1):68–
94, 2004.

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning
algorithms, circuit lower bounds, and pseudorandomness. In Ryan O’Donnell,
editor, 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017,
Riga, Latvia, volume 79 of LIPIcs, pages 18:1–18:49. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017.

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Pseudo-derandomizing learning
and approximation. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David
Steurer, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 -
Princeton, NJ, USA, volume 116 of LIPIcs, pages 55:1–55:19. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

[Pie12] Krzysztof Pietrzak. Cryptography from learning parity with noise. In International
Conference on Current Trends in Theory and Practice of Computer Science, pages
99–114. Springer, 2012.

205

[PW86] M. Paterson and I. Wegener. Nearly optimal hierarchies for network and formula
size. Acta Informatica, 23:217–221, 1986.

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over
a complete basis with logical addition. Mathematical Notes, 41(4):333–338, 1987.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM), 56(6):34, 2009.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[San10] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and
QBF satisfiability. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 183–
192. IEEE Computer Society, 2010.

[Sch80] J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the Association for Computing Machinery, 27(4):701–717, 1980.

[Sha38] C. E. Shannon. A symbolic analysis of relay and switching circuits. Transactions
of the American Institute of Electrical Engineers, 57(12):713–723, Dec 1938.

[Sha92] A. Shamir. IP=PSPACE. Journal of the Association for Computing Machinery,
39(4):869–877, 1992.

[Sha11] Ronen Shaltiel. Weak derandomization of weak algorithms: Explicit versions of
yao’s lemma. Computational Complexity, 20(1):87–143, 2011.

[She92] Alexander Shen. IP = PSPACE: simplified proof. J. ACM, 39(4):878–880, 1992.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, 1987, New York, New York, USA, pages 77–82, 1987.

[Sri15] Srikanth Srinivasan. A compression algorithm for AC0[⊕] circuits using certify-
ing polynomials. Electronic Colloquium on Computational Complexity (ECCC),
22:142, 2015.

[ST12] Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case
hardness for formulas over the full binary basis. In Proceedings of the Twenty-
Seventh Annual IEEE Conference on Computational Complexity, pages 107–116,
2012.

[STV01] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

206

[SU05] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. Journal of the Association for Computing Machinery,
52(2):172–216, 2005.

[SU09] Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus ran-
domness tradeoffs for AM. SIAM J. Comput., 39(3):1006–1037, 2009.

[SW15] Rahul Santhanam and Richard Ryan Williams. Beating exhaustive search for
quantified boolean formulas and connections to circuit complexity. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015, pages 231–241, 2015.

[Tal15] Avishay Tal. #SAT algorithms from shrinkage. Electronic Colloquium on Compu-
tational Complexity (ECCC), 22:114, 2015.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, 20(5):865–877, 1991.

[Tra84] Boris A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force
searches) algorithms. IEEE Annals of the History of Computing, 6(4):384–400,
1984.

[Tre05] Luca Trevisan. On uniform amplification of hardness in NP. In Proceedings of
the thirty-seventh annual ACM symposium on Theory of computing, pages 31–38.
ACM, 2005.

[Tur36] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265,
1936.

[TV02] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complex-
ity via uniform reductions. In Proceedings of the 17th Annual IEEE Conference on
Computational Complexity, Montréal, Québec, Canada, May 21-24, 2002, pages
129–138. IEEE Computer Society, 2002.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complex-
ity via uniform reductions. Computational Complexity, 16(4):331–364, 2007.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst.
Sci., 67(2):419–440, 2003.

[Val79] L. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8:189–201, 1979.

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
November 1984.

207

[vN51] John von Neumann. Various techniques used in connection with random digits. J.
Research Nat. Bur. Stand., Appl. Math. Series, 12:36–38, 1951.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its
implications. Theor. Comput. Sci., 348(2-3):357–365, 2005.

[Wil10] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010, pages 231–240. ACM, 2010.

[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the
26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,
California, June 8-10, 2011, pages 115–125. IEEE Computer Society, 2011.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. SIAM J. Comput., 42(3):1218–1244, 2013.

[Wil14a] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold
gates. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 194–202, 2014.

[Wil14b] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32,
2014.

[Wil15] Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on
popular conjectures such as the strong exponential time hypothesis (invited talk).
In Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on
Parameterized and Exact Computation, IPEC 2015, September 16-18, 2015, Patras,
Greece, volume 43 of LIPIcs, pages 17–29. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

[Wil16] Richard Ryan Williams. Strong ETH breaks with merlin and arthur: Short non-
interactive proofs of batch evaluation. In Ran Raz, editor, 31st Conference on
Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan,
volume 50 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982, pages 80–91. IEEE Computer Society, 1982.

[Zip79] R.E. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings
of an International Symposium on Symbolic and Algebraic Manipulation (EU-
ROSAM’79), Lecture Notes in Computer Science, pages 216–226, 1979.

208

	Signature Page
	Epigraph
	Table of Contents
	List of Figures
	List of Algorithms
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Historical Context
	Chapter Overview
	Common Elements

	The Nisan-Wigderson Distinguisher to Predictor Transformation
	Introduction
	Formal Preliminaries
	Circuits and Circuit Construction Tasks

	Nisan-Wigderson Construction
	Non-uniform NW Reconstruction
	Hybrid Argument
	Predictor Strategy
	Randomized Next-Bit Predictor
	Deterministic but Non-Uniform f-Predictor

	Uniform Construction

	Natural Learning
	Introduction
	Compression and learning algorithms from natural lower bounds
	Our proof techniques
	Related work

	Definitions and tools
	Learning and compression tasks
	Natural properties
	NW Generator

	Black-box generators
	NW designs in AC0[p]

	Black-box amplification
	Case of AC0[2]
	Case of AC0[p] for primes p>2

	Natural properties imply randomized learning
	A generic reduction from learning to natural properties
	Application: Learning and compression algorithms for AC0[p]
	Sketch of Complete Algorithm
	Natural properties useful against AC0[p]

	NW designs cannot be computed in AC0
	Conclusions

	Agnostic Natural Learning
	Introduction
	Our approach
	Our techniques
	Related work

	Preliminaries
	Learning algorithms
	Tolerant natural properties

	Agnostic learning from tolerant natural properties for AC02
	The CIKK framework
	Extension to the agnostic learning case
	Outline of the general method
	The case of AC02
	The case of AC0q for prime q
	Tolerant Natural Properties

	Agnostic learning from tolerant natural properties
	Hardness of removing membership queries
	Open questions

	FG Derandomization
	Introduction
	Our Results
	Related Work

	Preliminaries
	Fine-Grained Hardness Conjectures
	Derandomization
	Uniform Derandomization

	Arithmetized Fine-Grained Problems
	Arithmetizing k-OV
	Arithmetizing k-CLIQUE

	Fine-Grained Derandomization
	Counting k-OV from Distinguishers
	Printing Distinguishers from Failed Derandomization

	Heuristics Imply Separations
	Open Questions

	Tighter Connections between Derandomization and Circuit Lower Bounds
	Introduction
	Our results
	Overview of Techniques
	Related Work

	Definitions & Tools
	Arithmetic circuit complexity classes
	Polynomials computable in NE: The class ml-NE
	Computably subexponential and superpolynomial bounded classes
	Derandomization of Polynomial Identity Testing
	Derandomization of promise-BPP

	Robustness
	Robust inclusions.
	Robust promise classes.
	Significant separations.
	Closure properties of robust sets

	PSPACE-complete polynomial
	Arithmetizing TQBF
	PSPACE-hardness of computing TQBF"0365TQBFn
	Testing arithmetic circuits for equality with TQBF"0365TQBFdn
	Testing arithmetic circuits for equality with cTQBF"0365TQBFn

	PIT algorithms vs. circuits over finite fields
	Proof of implication (1) of Theorem 105
	Proof of implication (2) of Theorem 105
	Robust derandomization of PITF implies robust circuit lower bounds over F (forward direction of Theorem 106)
	Robust circuit lower bounds over F imply robust derandomization of PITF (backwards direction of Theorem 106)

	PIT algorithms vs. circuits over the integers
	Promise-BPP vs. Boolean circuit lower bounds
	Proof of implication (1) of Theorem 109
	Proof of implication (2) of Theorem 109
	Robust Derandomization of CAPP Implies Robust Boolean Circuit Lower Bounds (forward direction of Theorem 110)
	Robust Boolean Circuit Lower Bounds Imply Robust Derandomization of CAPP (backwards direction of Theorem 110)

	Robustly-often nontrivial useful properties

	Bibliography

