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Maximizing Interpretability from Complex Experiments in Structural Biology and 

Biochemistry  

Benjamin Asher Barad 

Abstract 

 Proteins are complex macromolecules whose structure informs their function and 

regulation in difficult to predict ways. Understanding their shape, dynamics, and regulation all 

pose major challenges in terms of collecting, analyzing, and interpreting data. In my dissertation 

I describe two contributions to data analysis for determining the structure and dynamics of 

proteins using novel approaches, as well as experimental work querying the function of an 

enzyme with a particularly recalcitrant substrate.  

 In the first chapter of this dissertation, I develop a tool, EMRinger, for the emerging field 

of high resolution electron microscopy that takes advantage of prior physical information about 

model geometry to more effectively determine if the model is built correctly into the map. This 

work adapted the tool Ringer, which had been previously developed in the Alber lab, in order to  

identify the dihedral angle for side chains with the greatest density, and confirm that the 

distribution of those peak positions does not violate the constraints of side chain dihedral angles 

to rotameric positions. This approach allows for orthogonal validation of backbone position in 

density (using the side chain density as a “lever”), which generally improves with refinement and 

is among the most sensitive model-in-map validation tools available for high resolution electron 

microscopy. 

 In the second chapter, I present progress on applying temperature jumps to folded 

proteins to quantify kinetics of the intrinsic motions in proteins that impact their function and 
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regulation. Using a pulsed infrared laser, we raise the temperature of a protein solution in 

nanoseconds, and follow the progression of the structure of the protein using solution x-ray 

scattering. As the protein changes temperature, the conformational equilibrium of the protein 

shifts as higher energy states become more accessible. By following this progress over the 

nanoseconds, microseconds and milliseconds following the heating pulse, we are able to 

reconstruct the relaxation of the protein into its new comformational equilibrium. With this 

information, we can gain kinetic information about the conformational landscapes of our sample, 

and using mutations we correlate the rates we observe with existing structural models of 

dynamics that have been characterized by x-ray crystallography.  

 In the third chapter, I investigate the mechanics of Acidic Mammalian Chitinase, which 

has the role of breaking down the recalcitrant polysaccharide chitin in the stomach and lungs of 

mammals. Mutations to acidic mammalian chitinase have previously been identified that lead to 

either protection against allergic asthma, and previous work has determined that these mutations 

lead to an increase in the activity of the enzyme. In order to better determine how these 

mutations affect activity, I developed new methods to assay chitinase activity. I use these 

methods to characterize the effects of the asthma-associated mutations, as well as investigating 

the role of the individual domains of acidic mammalian chitinase in degrading crystalline chitin 

and the differences in behavior of acidic mammalian chitinase and the other chitinase expressed 

in mammals, chitotriosidase. Additionally, I attempt to engineer hyperactive chitinases, and 

show that direct evolution based on screening with traditional fluorogenic oligomer substrates 

does not necessarily lead effectively to enzymes which are hyperactive against complex 

substrate, emphasizing the need for sensitive and high throughput methods to quantify 

degradation of crystalline chitin. 
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Preface 

The bulk of this chapter appears as Barad et al. preprinted in bioRxiv in 2015, and a 

version of which was ultimately published in Nature Methods later the same year. 

 

The results presented in this chapter describe the construction of a novel approach for 

validating models built out of electron microscopy (cryoEM). In the early 2010’s, developments 

in direct electron detectors and motion correction enabled the structural characterization of 

proteins by electron microscopy to reach resolutions better than 4Å, which enabled the building 

of de novo models. However, because of differences in the way the data is collected in real space 

from electron microscopy, in contrast with the reciprocal space data collection used in x-ray 

crystallography, the existing tools for validation, such as R. While models and maps are made 

iteratively in x-ray crystallography, with the electron density map being generated using the 

phases from the model, in cryoEM the data contains both phase and amplitude information and 

the map can be solved independently of a model. The building and refinement of the model 

happen independently of the refinement of the map. Because of this, three questions become 

relevant for validation: first, to what degree is the map a reasonable representation of the image 

data? Second, to what degree is the model physically reasonable? Third, is the model a good 

representation of the data encoded by the map? Our approach incorporates components of the 

second and third questions by asking whether the model is built into the map in such a way that it 

can be modeled in a physically realistic manner. To determine this, we extended the tool Ringer, 

which was used previously to identify and present statistical evidence for the resolvability of 

alternative states of side chains in high resolution x-ray crystallography. In the process we 

developed a tool which we have dubbed EMRinger. 
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Abstract 

Advances in electron cryomicroscopy allow for the building of de novo atomic models 

into high resolution Coulomb potential maps. While established validation metrics independently 

assess map quality and model geometry, methods to assess the precise fitting of an atomic model 

into the map and to validate the interpretation of high resolution features are less well developed. 

Here, we present EMRinger, which tests model-to-map agreement using side-chain dihedral-

directed map density measurements. These measurements reveal local map density peaks and 

show that peaks located at rotameric angles are a sensitive marker of whether the backbone is 

correctly positioned. The EMRinger Score can be improved by model refinement, suggesting its 

utility as an effective model-to-map validation metric. Additionally, EMRinger sampling 

identifies how radiation damage alters scattering from negatively charged amino acids during 

data collection. EMRinger will be useful in assessing how advances in cryo-EM increase the 

ability to resolve and model high-resolution features. 

 

Introduction 

Recent computational and experimental developments in single particle electron 

cryomicroscopy (cryo-EM) now make it possible, in some cases, to build atomic models without 

any reference structures1. In particular, advances in direct electron detectors2, algorithms to 

classify heterogeneous samples3,4, and motion correction5,6 are positioning cryo-EM to become a 

dominant method for determining the structure of dynamic molecular machines7,8 and membrane 

proteins9,10. Because these structures are otherwise inaccessible to X-ray crystallography or 

NMR11, it is important to determine the reliability of the resulting atomic models, in particular 
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side chain placement, for their eventual use in directing detailed mechanistic studies or drug 

development12.  

All-atom de novo cryo-EM models present several unique challenges for validation13. 

First, the Coulomb potential map itself must be validated to ensure that the images are properly 

recombined and that the resolution estimate is accurate14. These validation challenges are 

primarily addressed by assessing the “gold standard” Fourier Shell Correlation (FSC) between 

two independently refined half maps15. Next the chemical reasonableness of the model is 

assessed using tools that are commonly applied in X-ray crystallography16. Similarly to 

crystallography, it is essential to balance the agreement to experimental data with the deviation 

from ideal geometry, while maintaining acceptable stereochemistry, Ramachandran statistics17, 

side chain rotamers18, and clash scores16. 

The weighting between data and prior structural knowledge is key to the third step of 

model-to-map validation: determining whether the structure is accurately fitted, but not over-

fitted, to the map19. Several cross validation schemes have been proposed recently19-21 and can 

help to ensure that the model is not only reasonable, but also well fitted to the map. However, 

real space correlation coefficient-based metrics are dominated by low-resolution, high-signal 

features and can be complicated by the map B-factor sharpening approaches used prior to model 

building and refinement22. Additionally, these considerations may complicate high resolution 

model-to-map validation and render it difficult to assess the reliability of the highest resolution 

features of EM maps, such as side chain or ligand conformations.  

A potential solution for assessing the reliability of high resolution models is to examine 

statistical signatures of the weaker, high resolution, data. In particular, testing whether cryo-EM 

maps recapitulate the preferred rotameric distributions of protein side chains is particularly 



 5 

appealing since side chains represent the highest resolution features modeled de novo by cryo-

EM structures. For example, the position of Cγ is constrained to avoid “eclipsed” steric overlaps, 

predicting that a small map value peak, contributed by the scattering from Cγ, should occur at 

rotameric χ1 dihedral (N-Cα-Cβ-Cγ) angles near 60°, 180°, and 300° (-60°)23. Previously, we 

have used Ringer24,25 to measure the electron density at all possible positions of the Cγ atom for 

each unbranched side chain under ideal stereochemistry and fixed backbone assumptions. The 

primary conformation, which is usually well modeled by the crystallographic structure, is 

defined by a local peak in the distribution of density vs. dihedral angle.  In addition, secondary 

electron density peaks in this distribution can represent alternative side-chain conformations. 

Across >400 structures, we observed that these secondary peaks were strongly enriched at 

rotameric positions, which suggested that the secondary peaks represented unmodeled alternative 

conformations that are populated enough to rise above the noise levels in the electron density 

map25. 

Here, we examine whether significant side chain density can be observed in EM maps by 

measuring the distribution of map value peaks around the χ1 dihedral angle and testing whether 

the primary peaks are enriched at rotameric positions. Our method, EMRinger, can be used as a 

global validation metric as structure refinement proceeds and highlights specific areas where 

manual intervention can be used to improve the local fit of the model. As an additional 

application, we use EMRinger to probe electron radiation damage to side chains, demonstrating 

how increased electron dose alters the scattering behavior of negatively-charged side chains. The 

EMRinger approach directly reveals the side chain information content of EM maps and is 

complementary to, but independent of, existing validation procedures that report on the 
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resolution of the map, the physical reasonableness of the model, and the detailed fit of the model 

to the map. 

 

Results 

Side-chain χ1 map density sensitively reports on backbone positioning 

EMRinger interpolates the normalized value of the cryo-EM map at each potential 

position of the Cγ position around the χ1 dihedral angle, assuming the currently modeled N, Cα, 

and Cβ atomic positions (Fig. 1.1). We next plot the distribution of map values by dihedral angle 

(Fig. 1.1), which reveals local information about both the map and correctness of the backbone 

of the atomic model. The peak in the distribution represents the most likely position of the Cγ 

atomof the side chain, even when it is not immediately obvious “by eye”. Based on steric 

constraints26 and data mining from high resolution X-ray structures18,27, we expected that high 

quality EM maps with well fit backbone models would be enriched in χ1 peaks near the 

rotameric angles of 60°, 180°, and 300°. 
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Figure 1.1 | EMRinger χ1 map value sampling reports on backbone position and guides side-
chain conformation. 
(a) The side chain of TrpV1 Gln 519 (EMDB 5778, PDB 3J5P) is shown fitted, with a real space 
correlation coefficient (RSCC) of 0.590, to the potential map, shown at an isolevel of 10. (b) The 
EMRinger scan, reflected by the pink ring in a, for Gln 519 of Chain C reveals that the local map 
value peak (at 130º) occurs at a non-rotameric angle (white bars). This peak, shown as a pink dot 
in a, occurs 30º away from the modeled position. (c) The side chain can be rotated so that the χ1 
angle is at the map value peak (RSCC = 0.526). (d) The EMRinger results are unchanged as the 
sampling occurs relative to the backbone atoms, which have not moved. (e) Alternatively, the 
backbone position can be corrected with RosettaCM (DiMaio et al, Nature Methods, In Press) to 
place the model near a χ1 map value peak a small reduction on the overall correlation of the 
residue to the map (RSCC = 0.442). (f) The peak at 175º is now in the rotameric region (grey 
bars). 

 

However, there are several reasons, including noise in the map or an inaccurate model, 

why a side chain peak might occur at a non-rotameric angle. For example, residue Gln519 of 

TrpV128 (PDB: 3J5P) is modeled in a rotameric position, but has a peak at a non-rotameric angle 

in a 3.27 Å resolution map (EMDB: 5778) (Fig. 1.1). The distribution in map values by dihedral 

angle has a single dominant peak, suggesting that there is a local signal above the noise. The lack 

of a distinct peak can mean that the density threshold is too high, that the backbone is grossly 

mispositioned, or that the specific area has particularly local low resolution or high noise. 
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However, we observe singular peaks for most side chains in the TrpV1 map, which further 

suggests that noise is not the dominant reason why the peak occurs in a non-rotameric position.  

Alternatively, a peak in a non-rotameric position can indicate that the model is incorrect. If the 

N, Cα, and Cβ atoms are improperly positioned in the strong potential surrounding the backbone, 

EMRinger will measure the map values in the wrong locations. It is important to note that the 

side chain is already modeled as rotameric and that changing the modeled side chain dihedral 

angle does not affect the result of EMRinger because the measurement relies only on the 

positions of the backbone and Cβ atoms (Fig. 1.1). In contrast, a small backbone adjustment 

places the Cγ in the map value peak, while maintaining a rotameric side chain model, excellent 

stereochemistry, and a good map correlation (Fig. 1.1).  Thus, EMRinger can identify well-fit 

backbone models because the local map value peaks will fall at rotameric angles. Our 

examination of EMRinger plots from several maps suggested that the enrichment of rotameric 

map value peaks could be used to assess the fit of the backbone model and the overall quality of 

the EM map. 

 

EMRinger Score reports on the overall quality of the model and the map 

To test the quality of model to map fit, we quantified the enrichment of EMRinger peaks 

within 30° of rotameric angles as a function of map value threshold. We recorded the position 

and map value of the peak for each side chain χ1 angle in the 3.2Å resolution 20S proteasome 

map (EMDB 5623, PDB 3J9I) and observed that the distribution becomes more sharply peaked 

as the map value cutoff increases (Fig. 1.2, S1.1). At lower thresholds, noise flattens the results, 

with less enrichment for peaks in rotameric regions. Although rotameric regions are sampled 

more at higher thresholds, fewer residues have local map value peaks above these thresholds, and 



 9 

noise from counting statistics dominates (Fig. 1.2). To quantify the relationship between sample 

size and rotameric enrichment, we used the normal approximation to the binomial distribution to 

generate a model-length independent validation statistic: the EMRinger score (Fig. 1.2, S1.2). 

For the 20S proteasome, the EMRinger score is maximized at the 0.242 normalized map value 

threshold and the signal is dominated by 1547 rotameric map value peaks, compared to 555 non-

rotameric peaks (Fig. S1.3).  
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Figure 1.2 | EMRinger reveals statistical enrichment at rotameric χ1 angles in high resolution 
EM maps.  
(a) Histograms of EMRinger peaks observed above multiple map value thresholds. At high 
thresholds, more residues are located in the rotameric regions (grey bars). As the threshold 
lowers, relatively more peaks are added to the non-rotameric regions (white bars). (b) Scanning 
across map value thresholds demonstrates the tradeoff between sampled peaks (left) and fraction 
of rotameric peaks (right). (c) The EMRinger score balances the sample size and the rotameric 
enrichment and is maximized at a threshold of 0.242 for the proteasome structure (blue circle). 
(d) EMRinger scores for maps deposited in the EMDB with atomic models demonstrate the 
relationship between model quality and resolution. A linear fit (R2 = 0.549) highlights how 
refinement of TrpV1 improves from the deposited model (red, PDB 3j5p), the transmembrane 
domain of the deposited model (orange), and a model refined by RosettaCM (green, PDB 3J9J) 
(DiMaio et al, Nature Methods, In Press). 
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Figure S1.1 | Atomic models in cryo-EM maps.  
(a) Two alpha (blue) and two beta (green) subunits of the T20S proteasome are shown as cartoon 
tubes fitted in a 3.2 Å potential map at isolevel 0.25 (EMDB 5623, PDB 3J9I). (b) The same 
subunits are depicted in density at a higher isolevel of 0.35, where sharper features of side chain 
density can be observed. (c) Two subunits of the TrpV1 tetramer are shown in green and blue in 
a 3.27Å potential map at an isolevel of 10 (EMDB 5778, PDB 3J9J) 
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Figure S1.2 | EMRinger Score is unaffected by model size.  
(a) EMRinger plot for a 366 amino acid monomer of the Hepatitis B virus capsid gives a peak 
EMRinger score of 3.25 (EMDB 2278, PDB 3J2V). (b) Histogram of EMRinger map value 
peaks above threshold 6.090 (the threshold of maximum EMRinger score) for the monomer in 
density. (c) EMRinger plot for the full biological 21960 amino acid 60-mer assembly of the 
Hepatitis B capsid gives a nearly identical set of scores to the monomer, with a peak score of 
3.16. The smoother plot is likely due to the averaging out of artifacts due to grid sampling. (d) 
Histogram of EMRinger map value peaks above threshold 5.726 (the threshold of maximum 
EMRinger score) for the 60-mer in density.  
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Figure S1.3 | Histogram of peak counts for EMRinger scan of T20S Proteasome (EMDB 5778, 
PDB 3J9I) at a map value threshold of 0.242 e-/Å3.   
At this threshold, which maximizes the EMRinger score, 1547 rotameric peaks (blue) greatly 
outnumber 555 non-rotameric peaks (red). 
 

Next, we sampled a series of cryo-EM maps deposited in the EMDB, spanning from 3-5 

Å resolution, with atomic models built into the map density (Fig. 1.2, Table S1.1). The top 

scoring maps have scores above 3.0: the T20S proteasome, which used a crystallographic model 

with minimal refinement with MDFF6, and the hepatitis B viral capsid, which was built de novo 

and refined using real space refinement in Phenix29. Both maps are consistently better than 3.5 Å 

local resolution30, likely reflecting the underlying rigidity of the complexes. Recent mammalian 

ribosome structures7,31, which are dynamic and have more variability in resolution, used masking 

to reconstruct the highest resolution regions. Refmac reciprocal-space refinement of de novo 

atomic models of these components results in EMRinger scores above 1.8522.  
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The EMRinger approach confirms the resolution dependence of side chain signals, with a 

strong correlation between decreasing resolutions and decreasing scores (Fig. 1.2). Since a 

random distribution should produce an EMRinger score of 0, the trend line suggests that the χ1 

angle of side chains can be resolved at 4.5 Å resolution or better. We observed similar trends in 

decreasing EMRinger score as maps of the T20S proteasome were progressively low-pass 

filtered (Fig. S1.4). These results demonstrate how the EMRinger score quantifies the standard 

visual check that side chains are resolved in high-resolution maps, providing insight into the 

quality of the high resolution features of the map and the model. 

 

Figure S1.4| Adjusted EMRinger Score degrades rapidly with decreasing resolution.  
The T20S proteasome map (EMDB 5623, PDB 1PMA) is low-pass filtered to resolutions 
ranging from 3.2 to 7 Å. EMRinger scores for each of these filtered maps show a resolution 
dependence and that by 5 Å resolution side chains are no longer distinguishable from noise and 
the EMRinger score is near 0. 
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Table S1.1 | EMRinger analysis of selected maps above 5 Å resolution with atomic models.  
For the transmembrane-only scan of the TrpV1 Channel (EMDB 5778), residues 381-695 of 
each chain of the deposited model (PDB 3J5P) were used. 

EMDB ID PDB ID 
Resolution 
(Å) 

Model 
Length 

EMRinger 
Score Description Year 

5256 3IZX 3.1 2427 1.54 
Cytoplasmic 
Polyhedrosis Virus41 2012 

5995 3J7H 3.2 2616 2.04 Beta-Galactosidase33 2014 

5160 3IYL 3.2 5708 2.18 Aquareovirus42 2010 

5623 3J9I 3.2 3439 3.05 T20S Proteasome6 2013 

5778 3J5P 3.27 1484 0.56 TrpV1 Channel1 2014 

5778 (TM only) 3J5P 3.27 792 1.17 TrpV1 Channel1 2014 

5778 (Refined) 3J9J 3.27 876 2.58 TrpV1 Channel1 2015 

2513 4CIO 3.36 521 1.29 
F420 reducing 
hydrogenase8 2013 

2787 
4V19, 
4V1A 3.4 5326 1.85 

Mammalian 
Mitochondrial 
Ribosome, Large 
Subunit31 2014 

2762 3J7Y 3.4 4806 2.09 

Human Mitochondrial 
Ribosome Large 
Subunit7 2014 

6035 3J7W 3.5 1267 0.96 
Bacteriophage T7 
capsid43 2014 

5764 3J4U 3.5 1757 1.95 
Bordetella 
bacteriophage44 2014 

2278 3J2V 3.5 366 3.26 
Hepatitis B Virus 
Core45 2013 

5925 3J6J 3.6 528 1.23 MAVS filament46 2014 

2764 3J80 3.75 3060 0.9 

40S-eIF1-eIF1A 
preinitiation 
complex47 2014 

2773 4UY8 3.8 1976 0.36 
TnaC stalled E.coli 
ribosome48 2014 

5830 3J63 3.8 915 1.05 ASC Pyrin Domain49 2014 

6000 3J7L 3.8 259 2.08 
Brome Mosaic 
Virus50 2014 
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EMDB ID PDB ID 
Resolution 
(Å) 

Model 
Length 

EMRinger 
Score Description Year 

2763 3J81 4 3225 0.54 

Partial Yeast 48S 
preinitiation 
complex47 2014 

 
5600 3J3I 4.1 604 0.18 

Penicillium 
Chrysogenum Virus51 2014 

2364 4BTG 4.4 898 -0.47 
Bacteriophage phi 
procapsid10 2013 

2677 4UPC 4.5 235 -0.41 
Human Gamma-
secretase52 2014 

2273 3ZIF 4.5 7430 0.13 
Bovine Adenovirus 
353 2014 

5678 3J40 4.5 1848 0.49 
Bacteriophage 
epsilon1519 2013 

5645 3J3X 4.6 4528 -0.05 
Mm Chaperonin, 
Training54 2013 

5895 3J6E 4.7 4705 0.09 
GMPCPP 
Microtubule55 2014 

5646 3J3X 4.7 4528 0.55 
Mm Chaperonin, 
Testing54 2013 

2788 4V1W 4.7 2976 1.27 
Horse spleen 
apoferritin56 2014 

5391 3J1B 4.9 4816 0.2 apo rATcpn-alpha57 2013 

6187 3J8X 5 737 -0.71 
Empty 
Microtubule/Kinesin58 2014 

6188 3J8Y 5 744 -0.16 
ADP-AlF3 
Microtubule/Kinesin58 2014 

5896 3J6F 5 4706 0.06 GDP microtubule55 2014 

5886 3J69 5 579 0.8 nanobody/poliovirus59 2014 
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EMRinger score is highly sensitive to improvements during refinement 

A notable exception to the trend of increasing score with higher resolution is TrpV128 

(Fig. 1.2), which had a low EMRinger score (0.56) despite high resolution map (3.27 Å). This de 

novo model was built manually and not subjected to either real- or reciprocal-space refinement. 

Upon exclusion of the poorly resolved ankyrin domain, the Emringer score increases to 1.17, as 

only the atoms modeled into the highest resolution data remain (Fig. S1.1, Table S1.1). This 

suggests that atomic models may be more appropriate for the high resolution transmembrane 

region than for the 17nkyrin domain. Further rebuilding and refinement using RosettaCM 

(DiMaio et al, Nature Methods, In Press) gradually improved the EMRinger score in most trials 

(Fig. 1.3). Multiple refinement trajectories led to consistent improvements in EMRinger score 

from 1.17 to above 1.75. The best RosettaCM trajectory improves the EMRinger score to 2.58, 

while the validation metrics for an independent reconstruction improve by a small margin (Fig. 

1.3, S1.5, Table 1.1). In contrast to existing measures, such as real-space correlation or FSC, the 

EMRinger score is sensitive to features at lower map values, amplifying improvements in the 

model that only show a minor impact in the agreement-to-density term used by RosettaCM. 

Consistent with the overlap between the geometrical and conformational components of the 

Molprobity score and the Rosetta energy function, refinement also improves MolProbity scores 

dramatically (Table 1.1).  
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Figure 1.3 | EMRinger Scores report on effective refinement of atomic models into EM maps.  
(a) The EMRinger improves during refinement. RosettaCM (DiMaio et al, Nature Methods, In 
Press) trajectories for 9 trials are shown in light green with the final refinement shown in dark 
green. (b) Map value threshold scan for the unrefined model of TrpV1 (red, EMDB 5778, PDB 
3J5P), the transmembrane region of the deposited TrpV1 model (orange), and for the model of 
TrpV1 refined by RosettaCM (green, PDB 3J9J) show the improvement during refinement. (c) 
Analyzing the unrefined (red) and refined (green) models in the transmembrane region highlights 
how portions of the model experience dramatic increases in rotameric peaks after refinement. (d) 
The unrefined (red) and refined (green) TrpV1 models are shown in density (isolevel of 10), 
revealing that small shifts in the placement of backbone of the alpha helix improves EMRinger 
statistics. 
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Figure S1.5 | Histograms of TrpV1 models at multiple map value thresholds.  
(a) Histograms at thresholds of 4, 8, 12, and 16 for EMRinger map value peaks of the 
transmembrane region of the deposited TrpV1 model (EMDB 5778, PDB 3J5P). (b) Histograms 
at thresholds of 4, 8, 12, and 16 for the EMRinger map value peaks of the transmembrane region 
of TrpV1 refined by RosettaCM show improved enrichment at rotameric positions at all 
thresholds. 
 
 
Table 1.1 | Statistics pre- and post-refinement.  
Cross correlation, FSCmask, MolProbity scores and EMRinger score are calculated for the full 
unrefined TrpV1 model (EMDB 5778, PDB 3J5P), the transmembrane domain of the unrefined 
model, an intermediate model during refinement of the transmembrane region, and the final 
refined transmembrane region. 

 Unrefined 
Unrefined 

(Transmembrane 
Region) 

Refinement Step 2 
(Transmembrane 

Region)  

Refinement Final 
(Transmembrane 

Region) 

CC 
(3.27 Å Cutoff) 0.676 0.726 .715 0.728 

CC (Training 
Map) 0.663 0.715 0.708 0.718 

CC (Testing Map) 0.664 0.714 0.705 0.713 

Integrated Model-
Map FSC 
(15-3.4 Å) 

0.473 0.553 0.513 0.526 

All-atom 
Clashscore 

(MolProbity) 
77.90 100.78 2.32 2.09 

Modelled Rotamer 
Outliers 

(MolProbity) 
26.6% 30.94% 0.35% 0% 

Emringer Score 0.56 1.17 1.61 2.58 
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To identify the local changes responsible for these improvements, we analyzed 21-

residue rolling windows along the length of the protein for the percent of peaks that occurred 

near rotameric angles (Fig. 1.3). The specific effects of the RosettaCM refinement can be seen in 

small backbone shifts, which move the C-beta atoms so that the peak value moves into a 

rotameric position (Fig. 1.3). These results demonstrate how small corrections of backbone 

position along secondary structures, introduced through independently-scored refinement 

procedures, can lead to improvements in EMRinger score and the accuracy of the resulting 

model. 

 

EMRinger Score reveals the residue-specific effects of radiation damage 

Radiation damage can severely limit the ability draw biological conclusions from EM 

data32. Because the electron beam also induces motion of the sample, the impact of radiation 

during data collection has been difficult to assess. Recent motion corrected analyses have 

indicated that high-resolution information degrades as a function of total electron dose, likely as 

a result of radiation damage8, and that the signal in the 5Å shell degrades rapidly in the second 

half of data collection6. In addition to these global metrics, previous work has hypothesized that 

differential radiation damage causes negatively charged glutamate and aspartate residues to have 

weaker density than neutral, but similarly shaped, glutamine and asparagine residues8,33,34.  

To quantify the effect of radiation damage on the high resolution features of the map and 

to address whether effects vary by residue type, we used EMRinger for dose-fractionated maps 

of the T20S proteasome. The overall EMRinger score degrades as a function of dose, with a 

sharp loss of signal beginning around the 15th frame, corresponding to a total dose of ~18 e-/Å2 
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(Fig. 1.4). Next, we performed EMRinger analysis on different subsets of amino acids. Amino 

acids with charged side chains generally lost signal more quickly as a function of dose than 

average, whereas aromatic residues were much more resistant to degradation (Fig. 1.4). Most 

notably, negatively charged side-chains appeared to lose signal much faster than positively 

charged side-chains, with EMRinger score dropping to zero by the map centered on the 8th 

frame.  

The divergent results of EMRinger analysis of negatively charged side chains may be in 

part explained by the differential radiation damage effects that have been previously 

hypothesized. However, since a map comprised only of noise (in the extreme of radiation 

damage) should result in a score of zero, this effect is not sufficient to explain negative 

EMRinger scores observed in later frames. We examined the specific behavior of the negatively 

charged residues and observed that the initial map value peaks for some negatively charged 

residues inverted and became a local minimum in later frames (Fig. 1.4). This behavior is in 

contrast to the flattening effect, where a peak slowly degrades into noise, seen generally for other 

residue types (Fig. 1.4). The inversion of the peak may result from the electron scattering factors 

of negatively charged oxygen atoms, which are positive at high resolution but become negative 

at low resolution35. This radiation damage effect would lead to a negative scattering contribution 

near the true (rotameric) position in subsequent maps. Because the rotameric peak of the original 

map can therefore be lowered below the baseline, EMRinger will then identify a new peak at a 

different local maximum in the damaged map. This new local maximum is more likely to occur 

at non-rotameric angles because the original rotameric angle is now suppressed by negative 

scattering contributions in the damaged map. The net effect of the negative scattering behavior 
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could therefore result in an enrichment of peaks at non-rotameric positions and, consequently, a 

negative EMRinger score after significant radiation damage has accumulated. 

 
 

 

Figure 1.4 | Acidic residues are differentially altered by radiation damage.  
(a) Normalized EMRinger scores are plotted for the T20S proteasome model (PDB: 3J9I) against 
maps calculated from 5 frames of data. Scores for the entire model (black), the aromatic residues 
(orange), and the positively charged residues (blue) slowly decrease as a function of dose. In 
contrast, negatively charged residues (red) experience a rapid drop and fall below a random score 
of 0. (b) Proteasome chain D residue Glu 99 shown in density (isolevel 0.18) for maps generated 
from frames 2-6 (red ring), 8-12 (orange ring), 14-18 (green ring), and 20-24 (blue ring), with 
spheres showing local map value peaks. (c) EMRinger plots for Glu 99 of Chain D 
corresponding to the maps in b show that peaks immediately flatten and eventually invert after 
high dose has accumulated. (d) Proteasome chain 1 residue Gln 36 shown in density (isolevel 
0.3) as in b. (e) EMRinger plots corresponding to the maps in d show a gradual loss of signal as 
a function of dose.  
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Discussion 

The dramatic advances in electron cryomicroscopy have created new challenges in 

building, refining, and validating atomic models. EMRinger extends and complements existing 

cryo-EM validation procedures at multiple levels. For example, the idea that high resolution 

features are detectable, confirming the resolution estimate, is quantified by the side chain 

enrichment. Moreover, the enrichment score tests the fine features of the side chain map density, 

which intersects with validating the physical correctness of the modeled backbone. While current 

methods test conformational features independently of agreement with the map, the EMRinger 

tests these features by querying the model and map together. This procedure is responsive to 

small backbone corrections that increase the accuracy of the model and the ability to draw 

mechanistic insights from it.  

Our work confirms that side chain detail can be resolved in these maps by quantifying the 

statistical enrichment of map value peaks at rotameric positions of side chains. Although our 

analysis was restricted to χ1 angles, similar statistical signatures may extend further out along 

many side chains. These statistical signatures, which are present in maps determined without 

model-biased phasing, are a strong indicator that the side chain density that has been identified is 

predominantly signal rather than noise. Our results confirm that recent advances in data 

collection, processing, and refinement are increasing the resolvability of atomic features and 

provide a new metric for assessing the reliability of atomic models generated de novo from high 

resolution cryo-EM maps. 

Whereas model-to-map agreement metrics are normally dominated by low resolution 

features, the EMRinger score reports specifically on statistical signatures in high-resolution data. 

To validate the model-to-map correctness of atomic models from cryo-EM, refinement should 
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result in EM Ringer scores above 1.0 for well-refined structures with maps in the 3-4 Å range. 

EMRinger scores can be used in concert with cross validation procedures21 and with other 

measures, such as gold-standard FSC-based resolution13 and Molprobity statistics16. While it is 

unlikely that maps with highly variable resolution, generated by imaging more dynamic proteins, 

will display as much rotameric enrichment as more static molecules, successes in classification 

of images into different maps representing distinct biochemical states36 should be accompanied 

by increases in EMRinger scores. Similarly, EMRinger scores should quantify improvements in 

resolvability of atomic features due to improved motion correction algorithms or improved 

balance between dose and radiation damage during data collection. The results of the EMRinger 

analysis on dose-fractionated data suggest that reconstructions based on different doses may be 

required to maximize the resolvability of different sets of side chains, just as different degrees of 

sharpening are commonly used now during model building. 

Additionally, the high sensitivity of EMRinger suggests a natural direction for model-

building and refinement. At the resolutions commonly used for model building in EM, there are 

many closely related backbone conformations that can fit the map density with nearly equal 

agreement. Given a nearly finalized backbone position, side chains with non-rotameric peaks can 

be adjusted to fix the Cγ atom in the peak density. Subsequently, the backbone conformation and 

closure to adjacent residues can be optimized to maintain a rotameric side chain conformation, 

similar to the inverse rotamer approach used in some protein design applications37. This 

procedure could, in principle, be iterated many times to converge on backbones that are 

consistent with the map and satisfy the rotameric peak constraints exploited by EMRinger.  

Similar approaches to quantifying statistical signatures in weakly resolved data may also prove 
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helpful for modeling of non-amino-acid structures at lower resolutions, including glycans and 

nucleic acids38,39.  

 

Methods 

All scripts can be found at https://github.com/fraser-lab/EMRinger and can be run using 

Phenix/cctbx python (version numbers greater than 1894).  

 

Map Values 

We loaded CCP4 formated maps using cctbx and used the map voxel values without 

further normalization. The wide range of normalization procedures used in constructing these 

maps explains the large differences in threshold values used for different model-map pairs in our 

study. However, because EMRinger calculations are based on the relative values of a single map, 

we can compare EMRinger scores between maps without further normalization. 

 

EMRinger Map Analysis 

EMRinger, as implemented in the Phenix software package40, is an extension of the 

Ringer protocol developed previously24,25. We adapted EMRinger to work with real-space maps 

and to rotate the Cγ atom by increments of 5˚ around the χ1 dihedral angle (starting at 0˚ relative 

to the amide nitrogen). EMRinger calculates and records the map value from a potential map at 

the position of the atom at each increment using the eight-point interpolation function supplied 

by Phenix. From this scan, EMRinger records the peak map value and the angle at which it is 

achieved. EMRinger is available as the emringer.py script. Real space correlation coefficients 

were measured by the em_rscc.py script.  
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EMRinger Score for Validation 

We sampled all non-γ-branched, non-proline amino acids with a non-H γ atom, and 

measured the percent of map value peaks above a given noise-cutoff threshold that are near 

rotameric (60˚, 180˚, or 300˚) positions. To determine the significance of this distribution, we 

calculated a Z-Score based on a normal approximation to the binomial distribution. EMRinger 

repeats this process across a range of map value thresholds, ranging from the minimum peak map 

value in any scan to the maximum, and returns the highest Z-score calculated in this range. 

(Equation 1) In order to compare Z-scores between models of different structures, the Z-score is 

rescaled to the “EMRinger Score” to account for the total number of amino acids in the model 

(Equation 2). 

(1) !– #$%&'()*+,)-./ = 	
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;<

=>
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;<

=>
∙ C:

;<

=>
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(2) DEFGHI'&	J$%&'()*+,)-./ = 	
CK∙L–,9-*+MNOPQNRST

U-/+.	V+WX()
 

Adjusted EMRinger score does not change when the model and map are multiplied (e.g. 

in the case of a polymer with high symmetry), so that the score is definitive and no issues arise of 

how many monomers should be included in the analysis. An EMRinger score of 1.0 sets an 

initial quality goal for a model refined against a map in the 3.2-3.5Å range, while very high 

quality models at high resolution generate scores above 2.0. Maps that are highly variable in 

resolution may have lower EMRinger Scores unless poorly resolved regions of the map are 

masked out and excluded from the model. Calculation of the EMRinger score is accomplished by 

the emringer_score.py script. Rolling window EMRinger analysis is accomplished by the 

emringer_rolling.py script. 
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Refinement of TrpV1 with RosettaCM 

Refinement of TRPV1 used an iterative local rebuilding procedure to improve local 

backbone geometry as well as fit to the experimental density data (DiMaio et al, Nature 

Methods, In Press).  Refinement began with the deposited PDB structure of TRPV1 (PDB 

3J5P).  The model was trimmed to the transmembrane region (residues 381-695), and bond 

angles and bond lengths were given ideal geometry.  During local rebuilding, 5 cycles of 

backbone rebuilding were run; in each cycle, regions with poor fit to density or poor local 

geometry were automatically identified, and rebuilding focused on these regions.  Each 

rebuilding cycle was followed by side chain rotamer optimization and all-atom refinement with a 

physically realistic force field.  Following this protocol, 1000 independent trajectories were run, 

and the final model was selected by filtering on two criteria:  first, the 80 most nonphysical 

models were eliminated by assessing each model against the Rosetta all-atom force field; second, 

fit-to-density was used to rank models and select the best model from these 10. 

 

Table Statistics 

The cross-correlation was calculated using Chimera’s “Fit in Map” tool across all 

contours and using a resolution cutoff for the calculated map. The integrated FSC was calculated 

between the model and an independent reconstruction over a masked region covering the protein 

only.  The mask was truncated at 6 Å resolution, and we report the integrated FSCmask over high-

resolutions shells only (15 – ~3.4 Å). Molprobity statistics were calculated using the validate tool 

in Phenix nightly build 1894. 
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Radiation Damage Analysis 

To identify the degradation of map signal with radiation damage, we used EMRinger 

with a single model across multiple dose-fractionated maps. For each dose-fractionated map, the 

EMRinger Score is calculated for the model. We calculated additional scores with the amino 

acids being sampled restricted to different classes (such as acidic or aromatic residues). This 

residue-specific sampling is accomplished by the emringer_residue.py script. 
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Preface 

The bulk of this chapter appears as Thompson et al. preprinted in bioRxiv in 2018.  

 

This project was a very challenging experiment and a successful collaboration both 

within the lab and with the Anfinrud lab at NIH, led by Michael Thompson. He worked with the 

Anfinrud lab to develop an approach for very rapid heating of protein solutions using an infrared 

laser (T-jumps), followed by capturing solution small and wide angle x-ray scattering curves 

(SAXS/WAXS) after short time delays. This process is similar to the time-resolved pump-probe 

x-ray scattering experiments that the Anfinrud lab and others have pursued previously. T-jumps 

have major advantages over traditional pump-probe techniques because all proteins respond to 
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temperature, while only a small proportion of proteins are responsive to visible light. T-jumps 

have been used previously in combination with spectroscopy as a method of studying protein 

folding. The novelty of this approach came from the application of the T-jump to folded proteins, 

in order to quickly change the protein’s conformational equilibrium so that its relaxation to the 

new equilibrium can be observed and the different dynamic processes can be kinetically 

characterized. In this paper, we use this novel method to study the model protein cyclophilin A, 

which has multiple characterized dynamic modes that are associated with catalytic activity and 

regulation. Most importantly, we were able to study well-characterized mutants that disrupt 

individual dynamic modes, and in this way associate the kinetics we observed from the 

SAXS/WAXS curves with their respective structural dynamics.  

My role in this project was primarily data analysis – the experiment generated large 

amounts of low resolution data that encoded the scattering of both protein sample and solvent. 

We collected interleaved pre- and post-T-jump SAXS/WAXS curves in order to isolate only the 

effects of temperature from a complex background of radiation damage, x-ray beam intensity, 

and drifting experiment geometry. We collected data for up to 28 time delays, and collected 50 

repeats for each delay in order to improve our signal to noise. It was essential to determine at the 

beamline to what degree we were observing real dynamics, as well as to quantify the kinetics we 

observed as carefully as possible after the fact. The data encodes temperature response from both 

the protein and the solvent, and in order to isolate those signals I developed approaches to scale 

the SAXS/WAXS curves to account for fluctuating beam intensity, subtract on-off pairs, 

automatically report and remove outliers, and average data to maximize the signal-to-noise ratio 

of the time resolved difference data. I also developed the tools to integrate the SAXS/WAXS 

difeferences over the region that encoded the time resolved changes in the protein and developed 
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a library to automatically fit non-linear relaxation curves to this data to as precisely as possible 

quantify the kinetics of the two major processes we observed. The solvent information encodes 

temperature, since the liquid structure of water is responsive to temperature, and I created a 

precise thermometer using singular value decomposition of the solvent regime of the 

SAXS/WAXS curve that allowed us to determine the absolute temperature of the solution before 

and after temperature jumps, which allowed us to associate the relaxation kinetics observed at 

different starting temperatures with temperature to extract the activation entropy and enthalpy of 

the transition. Combining this work with other SAXS/WAXS analysis developed by Alex Wolff, 

we made this toolkit as straightforward to use as possible and made it open source, representing 

the first open source and freely available tool for processing of time resolved SAXS/WAXS data. 

 

Abstract 

Correlated motions of proteins and their bound solvent molecules are critical to function, 

but these features are difficult to resolve using traditional structure determination techniques. 

Time-resolved X-ray methods hold promise for addressing this challenge but have relied on the 

exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature-

jumps (T-jumps), through thermal excitation of the solvent, have been utilized to study protein 

dynamics using spectroscopic techniques, but their implementation in X-ray scattering 

experiments has been limited. Here, we perform T-jump small- and wide-angle X-ray scattering 

(SAXS/WAXS) measurements on a dynamic enzyme, cyclophilin A (CypA), demonstrating that 

these experiments are able to capture functional intramolecular protein dynamics on the 

microsecond timescale. We show that CypA displays rich dynamics following a T-jump, and use 

the resulting time-resolved signal to assess the kinetics of conformational changes in the enzyme. 
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Two relaxation processes are resolved, which can be characterized by Arrhenius behavior. We 

also used mutations that have distinct functional effects to disentangle the relationship of the 

observed relaxation processes. A fast process is related to surface loop motions important for 

substrate specificity, whereas a slower process is related to motions in the core of the protein that 

are critical for catalytic turnover. These results demonstrate the power of time-resolved X-ray 

scattering experiments for characterizing protein and solvent dynamics on the µs-ms timescale. 

We expect the T-jump methodology presented here will be useful for understanding kinetic 

correlations between local conformational changes of proteins and their bound solvent 

molecules, which are poorly explained by the results of traditional, static measurements of 

molecular structure. 

 

Introduction 

Protein motions are critical for functions such as enzyme catalysis and allosteric signal 

transduction1, but it remains challenging to study excursions away from the most populated 

conformations2. Traditional methods that utilize X-rays for structural characterization of 

biological macromolecules, such as crystallography and solution scattering, provide high-quality 

structural information, but this information is both spatially and temporally averaged because the 

measurements are performed on large ensembles of molecules and are typically slower than the 

timescales of molecular motion2,3. To some extent, the spatial averaging inherent to X-ray 

experiments is advantageous, because it reveals the alternative local conformations of a molecule 

that are significantly populated at equilibrium; however, structural states that are not 

significantly populated at equilibrium, such as intermediates along a conformational transition 

pathway, are effectively invisible. The temporal averaging inherent to X-ray experiments also 
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results in a loss of information about how transitions between local alternative conformational 

states are coupled to one another. To gain kinetic information about molecular motion, 

researchers often turn to spectroscopic methods, but it can be difficult to correlate spectroscopic 

observables with high resolution structural models.  

 

Time-resolved X-ray scattering and diffraction can overcome the limitations of traditional 

structure determination for studying the dynamics of biomolecules4–7. In these experiments, a 

fast perturbation is applied to the sample to remove it from conformational equilibrium and 

synchronize conformational changes in a significant fraction of the molecules. Ultrafast X-ray 

pulses, which are short relative to motions of interest, are then used to perform structural 

measurements in real time as the system relaxes to a new equilibrium, providing simultaneous 

structural and kinetic information at high spatial and temporal resolution. Time-resolved X-ray 

experiments can identify transiently-populated structural states along a conformational transition 

pathway, and reveal kinetic couplings between conformations8. Despite this potential to provide 

a wealth of information, especially when combined with molecular dynamics simulation9–12, 

time-resolved experiments have not been broadly applied by structural biologists. To date, 

systems that have been most rigorously studied are those in which a protein conformational 

change is coupled to excitation of a photoactive ligand molecule, because the conformational 

change can be initiated with an ultrafast optical laser pulse (e.g. 13–18). Unfortunately, the number 

of proteins that undergo specific photochemistry as part of their functional cycle is small, and 

there is a fundamental need to develop generalized methods that can be used to synchronously 

excite conformational transitions in any protein molecule and expand the utility of time-resolved 

structural experiments19. 
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Protein structural dynamics are intimately coupled to the thermal fluctuation of the surrounding 

solvent (“solvent slaving”20,21), and thermal excitation of the solvent by infrared (IR) laser 

temperature-jump has been used in numerous pump-probe experiments. These experiments work 

on the principle that absorption of IR photons excites the O-H stretching modes of water 

molecules, and the increased vibrational energy is dissipated through increased rotation and 

translation of the solvent molecules, effectively converting electromagnetic energy into kinetic 

(thermal) energy. Because this process of solvent heating and subsequent heat transfer to the 

protein is much faster 9 than the large-scale molecular motions that define protein conformational 

changes, the sudden T-jump removes conformational ensembles of protein molecules from their 

thermal equilibrium so that their structural dynamics can be measured using relaxation methods 

(Figure 2.1). For example, T-jump perturbations have been coupled to ultrafast spectroscopic 

methods, including Fourier-transform infrared (FTIR) spectroscopy22,23, nuclear magnetic 

resonance (NMR)24–26, and various forms of fluorescence spectroscopy27,28, for the study of 

protein folding and enzyme dynamics. While these methods provide detailed kinetic information, 

they yield only very limited structural information about the underlying atomic ensemble. In 

contrast, the application of T-jumps to time-resolved X-ray scattering and diffraction has been 

very limited. Nearly two decades ago, Hori, et al used temperature-jump Laue crystallography to 

study the initial unfolding step of 3-isopropylmalate dehydrogenase29. That study explored only a 

single pump-probe time delay, which allowed them to observe laser-induced structural changes 

but precluded kinetic analysis. Within the last two years, the laser T-jump method has been 

paired with X-ray solution scattering to explore the oligomerization of insulin in non-

physiological conditions30,31 and hemoglobin32. The results and analysis we present here expand 
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the role of the T-jump method in structural biology, by demonstrating that T-jump X-ray 

scattering experiments can be used as a general method to explore the functional, internal 

dynamics of proteins under solution conditions. Additionally, we provide a detailed outline of a 

data reduction and analysis procedure suitable for T-jump SAXS/WAXS experiments. 

 

The T-jump SAXS/WAXS experiments we describe here used human cyclophilin A (CypA), a 

proline isomerase enzyme that functions as a protein folding chaperone and as a modulator of 

intracellular signaling pathways. CypA has been the subject of many NMR experiments that 

have identified two primary dynamic features of interest (Figure 2.1). First, the active site-

adjacent loops (covering approximately residues 60-80 and hereafter referred to as the “loops” 

region)) are mobile on a ms-timescale33. This region is especially interesting because 

evolutionarily selected mutations along these loops perturb the dynamics of the loop34, alter the 

binding specificity of CypA for substrates such as HIV capsids35, and restrict the host range of 

these viruses36,37. Second, a group of residues that extends from the active site into the core of 

the protein has also been shown to be mobile on a ms-timescale33. Subsequent work 

incorporating multi-temperature X-ray crystallography38, mutagenesis39, and further NMR 

experiments40  have established a relationship between the conformational dynamics of a group 

of side chains in this region and catalysis. Motivated by the sensitivity of the conformational 

state of the active site-core network (hereafter referred to as the “core” region) to temperature38, 

we performed infrared laser-driven T-jumps on buffered aqueous solutions of CypA and 

measured subsequent, time-dependent changes in small and wide angle X-ray scattering 

(SAXS/WAXS). While our measurements provide only low resolution structural information, we 

were able to measure the kinetics of protein conformational changes in CypA. We identified two 
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relaxation processes, and by performing T-jump experiments at a range of different temperatures, 

we were able to calculate thermodynamic properties of the transition states for the underlying 

conformational transitions. Specific mutants in the “loops” or the “core” regions of CypA show 

that the two processes are independent, each representing a distinct and uncoupled reaction 

coordinate on a complex conformational landscape. Collectively, our measurements and analysis 

demonstrate that a wealth of information about a protein’s conformational landscape can be 

obtained by pairing laser-induced T-jump with time-resolved X-ray scattering.  

 

Results 

A method for simultaneous measurement of structural and kinetic details of intrinsic 

protein dynamics 

To measure protein structural dynamics, we utilized a pump-probe method that pairs an 

infrared laser-induced temperature-jump with global measurement of protein structure via X-ray 

solution scattering (Figure 2.1). We performed solvent heating in aqueous protein solutions by 

exciting the water O-H stretch with mid-IR laser pulses (1443nm, 7ns duration). At regularly 

defined time delays following the IR heating pulse (from 562ns to 1ms), we probed the sample 

with high-brilliance synchrotron X-ray pulses from a pink-beam undulator (3% bandwidth at 

12keV, Figure S2.1) that were approximately 500ns in duration, and measured X-ray scattering 

using a large CCD detector that was capable of capturing small and wide scattering angles on a 

single panel. Because the duration of the IR pump pulse was sufficiently short compared to the 

duration of the X-ray probe, the heating was effectively instantaneous with respect to the 

relaxation processes we were able to observe. Data were collected as interleaved “laser on” and 

“laser off” X-ray scattering images, so that each pump-probe measurement could be paired to a 
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measurement made immediately before application of the pump laser (Figure 2.1). We measured 

27 unique pump-probe time delays across four decades of time spanning from 562ns to 1ms, 

performing 50 repeat measurements for each time delay. For each detector image, the individual 

pixel values were azimuthally averaged as a function of the scattering vector magnitude, q, to 

give one-dimensional scattering intensity profiles (I(q) curves). All scattering profiles were 

scaled to a single reference, and the data were analyzed as described below. These pump-probe 

measurements allowed us to monitor structural changes within the ensemble of heated molecules 

in real time as the system relaxed to a new thermal equilibrium following T-jump (Figure 2.1A). 
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Figure 2.1 | Overview of T-jump SAXS/WAXS experiments.   
(a) During a T-jump experiment, an infrared (IR) laser pulse, several nanoseconds in duration, 
vibrationally excites the water O-H stretch and rapidly heats an aqueous solution of protein 
molecules (red curve). Although heating is fast, the kinetic barriers to protein motions cause a 
lag in the structural relaxation to a new thermal equilibrium of conformational states (gray 
curve). (b) Ribbon diagram depicting a single cyclophilin A (CypA) molecule. The “core” 
dynamic residues that are linked to catalysis are colored red, and the site of a key mutation 
(S99T) is identified by a sphere at its Cα position. Likewise, the “loop” region adjacent to the 
active site that helps determine substrate specificity is colored blue, and the site of key mutations 
(D66N/R69H) are also identified by spheres at their Cα positions. (c) A schematic depicting the 
T-jump SAXS/WAXS instrumentation is shown with key features highlighted. A liquid sample 
flows horizontally through the interaction region, where it interacts with mutually perpendicular 
IR pump and X-ray probe beams. Both the pump and probe sources are pulsed, with a defined 
time delay between their arrival at the sample. Small- and wide-angle X-ray scattering 
(SAXS/WAXS) patterns are recorded on a single detector panel. (d) The diagram illustrates the 
data collection sequence used for the experiments described here. For each pump-probe time 
delay, a pair of images was collected such that the first image was a pump-probe measurement 
(“laser on”) and the subsequent image was collected with no application of the pump laser 
(“laser off”). On-off pairs with increasing pump-probe time delays were measured in succession 
until all of the desired delay times were acquired, and this sequence was repeated as many as 50 
times to improve the signal-to-noise ratio of the data. Note that the first measurement within each 
repeat is a control measurement, wherein the probe pulse arrived at the sample before the pump 
pulse (negative time delay). 
 



 46 

 
Figure S2.1 | Typical X-ray energy spectrum of the pink beam (3% energy bandwidth) used for 
the reported SAXS/WAXS measurements. 

 

Calibrating the magnitude of the Temperature-Jump by Singular Value Decomposition 

Because the isothermal compressibility of liquid water is highly temperature-dependent41, 

X-ray scattering from the bulk solvent acts as an exquisitely sensitive thermometer that can be 

used to calibrate the magnitude of the T-jump in our experiments9,30,32. Our instrument 

configuration allowed us to measure low-angle protein scattering and high-angle solvent 

scattering simultaneously on the same detector image. To characterize the temperature-

dependent behavior of the solvent scattering, we performed static SAXS/WAXS measurements 

of our CypA samples as a function of temperature (equilibrium, no IR laser), in addition to our 

time-resolved measurements. We pooled these static, temperature-dependent SAXS/WAXS 

curves (azimuthally integrated I(q) v. q) with the time-resolved SAXS/WAXS curves from our 

T-jump measurements, and performed singular value decomposition (SVD) on a matrix 

constructed from the set of pooled curves (Figure 2.2). Specifically, each column of this matrix 

represents a scattering curve, with each row of the matrix corresponding to a q-bin and the 

entries in the matrix corresponding to measured scattering intensities. The SVD analysis, which 

was performed over the q=0.07-3.45 region of the scattering curves, identified a signal (a left 
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singular vector) whose prominent features were found in the q-region corresponding to the 

scattering of bulk water (q > 1.0) (Figure 2.2). By extracting the entries in the corresponding 

row of the V matrix (containing the right singular vectors as columns), we could determine how 

this singular vector contributed to each scattering curve and demonstrate that its contribution was 

strongly temperature-dependent. Specifically, in the static (no T-jump) scattering curves the 

contribution of this singular vector increased with temperature, and for T-jump measurements 

the contribution of this vector to the observed scattering curves is perfectly correlated to the 

application of the pump laser pulse over sequential laser on-off pairs of X-ray measurements 

(Figure 2.2), providing positive confirmation of a T-jump.  

The identification of a temperature-dependent singular vector provided a simple way to 

measure the magnitude of the laser-induced T-jump. For each of the five static temperatures we 

explored, we calculated the average value of v2,n, the entry in the matrix V that describes 

contribution of the temperature-dependent singular vector (U2) to the nth scattering curve, across 

32 individual X-ray scattering curves. We then plotted the average v2,n vs. temperature and fit the 

data using both linear and quadratic models (Figure 2.2). We examined the residuals for the two 

fits, determined the quadratic fit produced the most appropriate “standard curve” for estimation 

of the sample temperature from the SVD analysis, and used the resulting second-degree 

polynomial to estimate the temperature for each scattering curve in our series of time-resolved 

measurements. We compared the temperatures calculated for neighboring laser on and laser off 

scattering curves, and found the average T-jump produced by our IR heating pulse to be 

approximately 10.7°C on average. The SVD analysis also allows us to judge when cooling of the 

system becomes significant, so that we can identify the maximum pump-probe time delay that is 

valid for our relaxation analysis (Figure 2.2). We observe that v2,n is consistent as a function of 
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pump-probe time delay out to delay times of approximately 562µs, and decreases for longer time 

delays, implying that significant cooling of the sample takes place in less than 1 millisecond. 

Consequently, we limited our subsequent analysis to time delays shorter than 562µs. 

Additionally, we note that following laser T-jump, the solvent reaches a new thermal equilibrium 

faster than the measurement dead time of our experiment (562ns). This observation is consistent 

with other work, in which changes to the structure of bulk solvent following laser T-jump have 

been shown to equilibrate within roughly 200ns42.  
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Figure 2.2 | X-ray scattering from bulk water acts as a sensitive thermometer for T-jump 
experiments.  
(a) Using singular value decomposition (SVD), we can identify a signal whose contribution to 
each scattering curve is strongly dependent on the temperature. The left singular vectors with the 
four highest singular values are shown, with the vector corresponding to the temperature-
dependent signal (U2) colored red. The contribution of this vector (v2,n) to each of 175 
scattering curves is also shown. This set of 175 scattering curves includes static measurements 
(no pump laser) at four different temperatures, followed by two repeats of time-resolved T-jump 
measurements. The T-jump data were collected as “laser on-off” pairs, and within a single repeat 
each successive on-off pair was collected with an increasing pump-probe time delay. Cooling is 
evident at longer pump-probe time delays (denoted by *). (b) To calculate the magnitude of the 
laser-induced T-jump, we used the static data to determine the average value of v2,n as a 
function of temperature, and fit the data using both linear and quadratic models. Based on the 
residuals for the two fits, we chose to use the resulting quadratic equation to determine the 
magnitude of the laser-induced T-jump using the values of v2,n calculated for the time-resolved 
scattering curves by SVD. 
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T-Jump Produces Changes in the X-ray Scattering Profile of CypA 

To determine the effect of the T-jump, we initially averaged all data for a given time 

delay, examined the scattering profiles for differences (Figure 2.3), and observed a small laser-

induced change in the low-q region of the scattering profiles. Next, we sought to increase the 

sensitivity of the experiment by exploiting the structure of the interleaved data collection (Figure 

2.1). We calculated the “on-off difference” between each set of paired “laser on” and “laser off” 

scattering profiles. Following subtraction, we binned the “on-off difference” scattering curves 

according to the associated pump-probe time-delay, performed an iterative chi-squared test to 

remove outliers (χ2=1.5), and averaged the calculated differences for all repeat measurements 

(Figure 2.3). This subtraction and averaging resulted in accurate measurements of “laser on-off 

difference” signals as a function of the pump-probe time delay. Scattering differences at high-q 

(1.0-4.2Å-1) were used to calibrate the final sample temperature after laser illumination as 

described in detail above. It is, however, worth noting here that the shape of the on-off difference 

signal at high-q is nearly identical to the left singular vector used to monitor the temperature by 

SVD. In addition to the high angle signals that were used to measure the temperature from the X-

ray scattering, the averaging and subtraction also revealed time-resolved changes at low-q (0.03-

0.3Å-1), which we analyze below in the context of the average physical dimensions and 

scattering density of the CypA “protein particle.” Here, we use the phrase “protein particle” to 

describe the protein molecule plus the ordered solvent bound to its surface, since both the protein 

and its hydration layer have an electron densities that differ from bulk solvent, and therefore 

contribute to the observed X-ray scattering by the CypA solution. The same T-jump 
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measurements were performed on protein samples and on samples consisting of buffer only 

without protein. After an additional scaling step, average on-off differences for the buffer alone 

were subtracted from average on-off differences for the buffer with protein, which isolated the 

signal changes at low-q due only to the protein.  

 

Figure 2.3 | T-jump data processing involves a combination of scaling and subtraction 
operations that produce time-resolved difference scattering curves.  
For each “laser on-off” pair, the recorded scattering curves are scaled to one another and the 
“laser off” curve is then subtracted from the “laser on” curve. This procedure is done 
independently for samples containing buffer only, and for protein samples. Next, the resulting 
difference curve for the buffer only sample is scaled to the difference curve obtained for the 
protein sample, and an additional buffer subtraction is performed to remove the thermal signal 
from the solvent. The result of this procedure is a difference scattering curve containing signal 
from the protein molecules only. 
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Time-Resolved Changes in Small Angle X-ray Scattering 

Comparison of difference scattering curves calculated for 27 time delays revealed a time-

dependent change in X-ray scattering by the protein, demonstrating that the modest T-jump we 

introduced was capable of exciting protein dynamics that could be observed in real time. The 

difference curves calculated from our data, showing the contribution of the protein to time-

resolved changes in the SAXS/WAXS signal, have features in the low-q (q=0.03-0.20�-1) 

region (Figure 2.4). Qualitatively, the time-resolved on-off differences show that the overall 

low-angle scattering and extrapolated value of I(0) are reduced within the dead time of our 

experiment (562ns), and then begin to increase slightly over the next few microseconds before 

decreasing further at longer pump-probe time delays out to 562µs. Changes in low-angle 

scattering and I(0) reflect changes in the overall size and shape of the particles in solution, with a 

reduction in both observables indicating of a loss of scattering mass and shrinkage of the 

scattering particles. The observed laser on-off difference in I(0) is approximately 3% of the total 

observed signal, with one-third of that signal change occuring in the time regime that can be 

resolved by our measurements.   

The on-off difference for our shortest pump-probe time delay (562ns) is significantly 

different from 0 at low scattering angles, which suggests the existence of structural changes in 

the system that are faster than the dead time of our measurements. The physical basis for the fast 

signal change is likely due to a combination of thermal expansion and change in the amount of 

ordered solvent surrounding the protein. First, thermal expansion of solvent results in the 

expulsion of some scattering mass from the X-ray beam path. Based on the volumetric thermal 

expansion coefficient of water (approximately 0.0003/°C)43, this effect reduces the overall 

scattering mass by approximately 0.3% for our T-jumps, which were approximately 11°C. 
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Second, protein thermal expansion coefficients are estimated to be larger than those of liquid 

water44,45, so heating of the sample could result in a reduction in scattering contrast between the 

protein particles and the bulk solvent. Thermal expansion of solvent is well-known to occur 

within approximately 200ns, and it is reasonable to assume that protein thermal expansion may 

occur on a similar timescale. The thermal expansion coefficient of CypA is unknown, and rates 

of protein thermal expansion in general have not been studied explicitly, although studies of 

“protein-quake” motions in photoactive systems suggest these effects likely occur within 

hundreds of picoseconds9,46. Kratky plots created from our static and T-jump data suggest a 

slight increase in protein flexibility without unfolding (Figure S2.2), which we interpret to be the 

result of protein thermal expansion and an overall increase in thermal disorder. This process 

appears to be faster than the dead time of our measurements, since the effect is temperature-

dependent, but not time-dependent over the pump-probe time delays we explored. In addition to 

thermal expansion effects, the temperature change likely causes some of the ordered solvent 

around the protein to “melt” into the bulk, which could also lead to a fast decrease in the overall 

scattering mass and size of the protein particle. The kinetics of these fast processes, while 

potentially interesting, are invisible to our experiment. Therefore, our subsequent analysis is 

focused on structural dynamics that occur in the microsecond regime.  

Because the main time-resolved signal change was confined to very low-q, we wanted to 

ensure our time-resolved signal was due a change in the protein’s form factor (infinite dilution), 

and not the structure factor of the protein solution. To test whether changes in the radial 

distribution function originated from structural changes within the individual protein particles 

and their associated solvent and not from changes in the relative arrangement of the CypA 

molecules in solution, we performed static SAXS/WAXS measurements of CypA as a function 
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of both temperature and CypA concentration (Figure S2.3). This control allowed us to 

characterize and correct for the effect of interparticle interactions.  Using these data, we 

calculated the structure factor (S(q)) for a 50mg/mL CypA solution at multiple different 

temperatures, and determined there was no significant difference in the q=0.03-0.2 region of the 

scattering curves, consistent with other work on similarly-sized protein molecules in solution47. 

Next, we plotted the second virial coefficient for CypA as a function of temperature, and noticed 

that this quantity shows only a very small temperature dependence that cannot account for the 

observed time-resolved differences. In contrast to our results for CypA, Bonneté, et al. 

performed similar calculations of second virial coefficients for lysozyme solutions at similar 

temperatures and buffer conditions, and calculated temperature-dependent changes that were 50-

fold larger (or more) than what we determined for CypA47. In addition to the direct 

measurements of interparticle interactions provided by concentration-dependent scattering 

measurements, we also used Guinier analysis to assess whether the radial distribution function 

(structure factor) of CypA particles in solution changes significantly upon temperature 

perturbation. We performed linear fits of ln[I(q)] vs. q2 for averaged scattering curves derived 

from static temperature data and from time-resolved data, and observed that the residuals do not 

change substantially as a function of either temperature (in static experiments) or time (in time-

resolved experiments). Because deviations from the linear Guinier fit are often the result of 

interparticle interactions, we concluded that the relative consistency of these residuals provides 

additional evidence that such interactions have a negligible effect on our observations. The 

Guinier analysis was also used for structural interpretation of the time-resolved signal, which is 

described in detail below. 
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Comparison of laser on and off scattering curves revealed scattering differences that were 

approximately the same in magnitude and direction as differences between static temperature 

measurements performed on samples equilibrated to temperatures that differ by 10°C (roughly 

corresponding to the magnitude of the laser-induced T-jump, Figure S2.4). The equilibrated 

signal change that we observe in our time-resolved measurements (I(0)562us - I(0)off) is similar, 

but not identical, in magnitude (3.2% of total) and direction to differences calculated using static 

scattering curves collected at temperatures that approximate the laser on and laser off 

measurements in our time-resolved experiments (1.9% of total signal). The small discrepancy in 

the overall signal change induced by a ~10°C temperature change in static versus dynamic 

experiments could be due to additional relaxation processes which occur on timescales longer 

than we measure in our experiment (our measurements extended out to 562µs), whereas some 

motions in CypA have been reported to have millisecond exchange rates33, or due to systematic 

errors in comparing static and time-resolved measurements.  
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Figure 2.4 | Time-resolved T-jump data allow kinetic modeling of conformational dynamics.  
(a) A series of time-resolved difference X-ray scattering curves is shown for a subset of our T-
jump data (10 out of 26 unique time delays). Data at low q are plotted on a linear q scale in the 
inset. (b) The area under the difference scattering curve in the q=0.03-0.05Å-1 region was 
integrated for all measured pump-probe time delays, and the resulting absolute values are plotted 
as a function of the pump-probe time delay. The plotted data suggest the existence of multiple 
relaxation processes, and we used a two-step model of relaxation kinetics to fit the observations 
(gray line). The rates calculated from the kinetic fit are provided. 
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Figure S2.2 | Kratky plots for CypA reveal a small thermal disorder effect without protein 
unfolding.  
(a) Kratky plots calculated as a function of static temperature, from 8°C to 28°C. The right panel 
shows an expanded view  of the boxed region. (b) Kratky plots calculated as a function of time 
delay for time-resolved T-jump data (T-jump from approximately 15°C to 26°C).  Again, the 
right panel shows an expanded view of the boxed region. All time delays show a similar 
difference relative to the “laser off” state, indicating that the underlying structural change is 
faster than the measurement dead time of our experiment. 
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Figure S2.3 | Intermolecular interactions are not temperature dependent for CypA solutions. 
(a) Structure factors (S(q)) calculated for 50mg/mL CypA solutions (wild type) at temperatures 
ranging from 8-28°C. (b) Second virial coefficients (A2) calculated for 50mg/mL CypA 
solutions (wild type) at temperatures ranging from 8-28°C. 
 
 

 
 

Figure S2.4 | Comparison of static scattering differences between CypA solutions at 13°C and 
23°C (black curve), and time resolved differences (100µs-laser off) for a T-jump spanning a 
temperature range of approximately 15°C and 26°C (red curve). 
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Kinetic Modeling of Structural Dynamics from Time-Resolved Scattering Differences 

Our time-resolved measurements of scattering differences allowed us to model the 

kinetics of global structural changes induced by the T-jump. For kinetic modeling, we integrated 

the area under each of our time-resolved difference curves in the q=0.0275-0.04 region and 

plotted the absolute value of the area as a function of the associated pump-probe time delay 

(Figure 2.4). Based on the apparent shape of the area vs. time delay plot, we reasoned that a two 

step kinetic model would be needed to fit the data, since the area first decreases, and then 

increases, as a function of time delay. We fit the observed data to a two-step model of relaxation 

kinetics (independent steps) using a non-linear least-squares curve fitting algorithm, and 

calculated rates of 9x105 s-1 ± 2x105 s-1 for the fast process (k1) and 2.7x104 s-1 ± 0.2x104 s-1 for 

the slow process (k2) at 26.7°C (299.7K). The errors calculated for these rates are the result of 

propagating measurement standard deviations through radial integration, scaling, on-off 

subtraction, averaging, buffer subtraction, difference curve integration, and kinetic fitting. It is 

worth noting that the errors calculated in our analyses are likely to overestimate the true error, as 

we considered all experimental errors to be random. In contrast, some experimental error is 

likely systematic, and would instead be removed, rather than propagated, by the subtractive 

operations employed during data processing.   

In addition to our kinetic analysis of the on-off difference curves, we also used the time-

resolved data to generate I(q)t scattering curves, which represent the time-dependent X-ray 

scattering from the CypA sample, but are generated in a manner that makes use of the many 

repeated paired “laser on” and “laser off” measurements to reduce the effects of systematic error 

(see Methods). We subsequently used these scattering curves for Guinier analysis to determine 

how the radius-of-gyration (Rg) of the average CypA particle in the conformational ensemble 
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changes as a function of time following the T-jump (Figure 2.5). This analysis demonstrated that 

after the T-Jump, the average CypA particle shrinks in the dead time of our experiment; 

however, within a few microseconds of the T-jump, a fast structural transition (described by k1 in 

our kinetic analysis) causes the average CypA particle to expand subtly. While the increase in the 

calculated radius of gyration is small relative to the error on the Guinier fit for any single data 

point, our conclusion that the particle is expanding is supported by multiple time points and 

kinetic analysis of the integrated area under difference scattering curves. Following this fast 

increase in Rg, a second, slower process (described by k2 in our kinetic analysis) reverses this 

trend, causing the average CypA particle to shrink again.  

Next, to learn more about the conformational transitions in CypA that are excited by the 

T-jump, we repeated the experiment at multiple different jumped (final) temperatures ranging 

from 6.2°C to 29.9°C (279.2K to 302.9K). We modeled the kinetics of the SAXS/WAXS signal 

changes to observe how the relaxation rates changed as a function of temperature. The calculated 

rates (k1 and k2) for all temperatures are provided in Table 2.1. We analyzed the temperature-

dependence of these rates using the Eyring equation, which provided insight into the 

thermodynamics of the transition states for the two processes. First, we plotted ln(k/T) versus 1/T 

(Figure 2.6), and noted that the relationships appeared to be linear. Therefore, we used the fitted 

slopes and y-intercepts to calculate the enthalpies and entropies of activation for each of the two 

processes according to the linearized Eyring equation: 

  Eq. 1 

where R is the gas constant, kB is the Boltzmann constant, and h is Planck’s constant. The 

enthalpies of activation (ΔH‡) and entropies of activation (ΔS‡) and their standard deviations are 

given in Table 2.2. The fast process (k1) has a large, positive enthalpy of activation, but this is 
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partially offset by a slightly positive entropy of activation. Formation of the transition state 

during the slow process (k2) has a smaller enthalpic cost, but is also entropically disfavored. We 

note that the lowest temperature measurement (279.2K) was not used in the Eyring analysis of 

the fast process (k1) because the error on the measured rate was large due to the low magnitude 

of the overall time-resolved signal changes at this temperature. 

 

Figure S2.5 | Kinetic analysis of X-ray scattering by singular value decomposition (SVD).   
We used SAXS curves representing the time-resolved scattering at each time delay spanning 
562ns and 562µs to construct a matrix, which was analyzed by SVD. The top left panel shows 
the top four left singular vectors, and the top right panel shows their corresponding singular 
values. The lower panels are constructed from the right singular vectors, and show the time-
dependent contribution of each left singular vector to the total signal. We note that the primary 
time-resolved signal is dominated by a single singular vector, whose time-dependent behavior 
reflects that of the integration analysis described in the main text. 
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Figure 2.5 | Guinier analysis can be used to estimate changes in physical parameters of the 
average protein particle in the CypA ensemble from the time-resolved scattering data.  
Consistent with our kinetic analysis, the radius of gyration (Rg) of the average CypA particle in 
solution first increases and then decreases as a function of time following the T-jump. 
Additionally, the value of I(0) extrapolated from the Guinier analysis shows an analogous 
increase and decrease, suggesting that the change in the particle size is coupled to a change in its 
average electron density, which is likely due to the acquisition and loss of water molecules from 
the solvation shell as the protein swells and then shrinks. 
 

 
Figure 2.6 | Linear Eyring plots for each of the two relaxation processes observed in our T-jump 
experiment with CypA.  
The data are fit using Eq. 1. The linear fit for the fast process (k1) is shown in purple, and the 
linear fit for the slow process (k2) is shown in green 
  



 63 

Table 2.1 |Calculated rates for the fast (k1) and slow (k2) relaxation processes measured from all 
T-jump experiments reported here.  
Note that kinetic analyses for the S99T and NH variants were performed at 25.5°C and 27.1°C 
respectively. 

CypA Variant Temperature (°C) Temperature (K) k1 (104 s-1) k2 (104 s-1) 

WT 6.2 ± 0.2 279.2 ± 0.2 N/A 1.1± 0.3 

WT 11.4 ± 0.2 284.4 ± 0.2 43 ± 7 1.2 ± 0.2 

WT 15.9 ± 0.2 288.9 ± 0.2 49 ± 10 2.5 ± 0.3 

WT 17.0 ± 0.1 290.0 ± 0.1 58 ± 11 1.6 ± 0.2 

WT 21.5 ± 0.1 294.5 ± 0.1 57 ± 7 2.2 ± 0.2 

WT 23.8 ± 0.2 296.8 ± 0.2 117 ± 33 2.2 ± 0.2 

WT 25.5 ± 0.2 298.5 ± 0.2 53 ± 33 2.7 ± 0.9 

WT 26.7 ± 0.1 299.7 ± 0.1 98 ± 12 2.5 ± 0.2 

WT 29.9 ± 0.1 302.9 ± 0.1 116 ± 24 2.4 ± 0.2 

S99T 25.5 ± 0.2 298.5 ± 0.2 34 ± 4 N/A 

D66N/R69H (1) 27.1 ± 0.1 300.1 ± 0.1 N/A 4.1 ± 0.6 

 
Table 2.2 | Enthalpies (ΔHǂ) and entropies (ΔSǂ) of activation for the fast (k1) and slow (k2) 
processes observed for WT CypA, calculated from Eyring analysis. 

  ΔHǂ (103 J mol-1) ΔSǂ (J mol-1 K-1) 

Fast Process (k1) 37 ± 8 32 ± 26 

Slow Process (k2) 27 ± 3 -34 ± 11 
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CypA mutations with distinct effects on conformational dynamics alter time-resolved signal 

changes 

The time-resolved signal changes that we attributed to WT CypA were observed only at 

low scattering angles, and therefore the resulting structural information had very limited 

resolution. To gain a better understanding of the structural transitions excited by the T-jump, we 

next studied two specific CypA mutants, S99T (in the “core” region, Figure 1B) and NH 

(D66N/R69H in the “loops”, Figure 1B). The conformational dynamics of these two variants of 

the enzyme each differ from the wild type in distinct ways: S99T is catalytically impaired due to 

a loss of rotameric exchange in a key network of residues, whereas NH alters the substrate 

specificity of CypA by enhancing the dynamics of the surface-exposed loops adjacent to the 

active site. Importantly, NMR relaxation measurements indicate that S99T perturbs the active 

site but not the loops39, and that NH only perturb the loops34.   

We observed that both S99T and NH mutants showed time-resolved SAXS signal 

changes that differed from the wild type enzyme. Both mutants show a fast signal change that 

occurs within the measurement dead time of the experiment, which is similar to what we 

observed for the wild type enzyme and consistent with these changes being largely due to 

temperature-dependent changes to the solvation shell and thermal expansion. Beyond the initial 

fast loss of scattering intensity that was observed (and nearly identical) for all three CypA 

variants we studied (WT, S99T, and NH), the evolution of the time-resolved signals for each of 

the two mutants differ substantially from the wild type and from one another. In the S99T mutant 

(Figure 2.7), we observed only the fast decrease (k1) of the integrated area under the difference 

curve (q=0.03-0.05 Å-1), and a striking absence of the subsequent increase (k2) in the integrated 

area at longer time delays that was observed for the wild type enzyme. In contrast, for NH, the 
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plot of integrated area under the difference curve as a function of time delay (Figure 2.7) 

appears to lack the initial fast decrease (k1), but it does appear to retain the slower signal change 

(k2) that results in an increase for this quantity at longer time delays. We initially fit the data 

from both the S99T and NH variants using a two-step relaxation model, as we did for the wild 

type. We found that for the mutants, the two-step kinetic model yielded at least one rate with a 

large error. For the S99T mutant, the first step (k1) was well fit but the second step (k2) was 

poorly fit, while the opposite was true for the NH variant. After visual inspection, we chose to 

use a single step kinetic model to fit the data for the S99T and NH mutants, and the calculated 

rates for the two mutants (k1 for S99T and k2 for NH) are also given in Table 2.1. Plots of the 

residuals for these fits revealed no structure, suggesting that a single-step kinetic model is 

sufficient to explain the data for the CypA mutants. In contrast, fitting kinetic data collected for 

the wild type enzyme using a single-step model results in residuals with exponential character, 

and a two-step kinetic model is needed to reduce the error in the fit (Figure S2.5).  

Our measurements of the S99T and NH variants of CypA clearly demonstrated that 

mutations which are known to impinge on the activity and specificity of the enzyme also perturb 

the observed time-resolved signal relative to the wild type in our T-jump experiments. Most 

notably, the slow relaxation process (modeled by k2) is shared only by the catalytically-

competent wild type and NH variants, and its absence from the S99T variant suggests that the 

underlying conformational change is related to the catalytically-coupled motions that are arrested 

by the S99T mutation. These results indicate that T-jump experiments are capable of exciting 

and measuring functionally-relevant, intramolecular structural dynamics of proteins, even when 

the data are limited to relatively low scattering angles.  
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Figure 2.7 | Kinetic analysis of two CypA mutants with distinct effects on the enzyme’s function 
demonstrate the link between the observed T-jump signal and functional dynamics.  
The data are presented in the same manner as for the wild type enzyme, shown in Figure 4. In the 
plots of integrated area versus pump-probe time delay (right panels), the signal observed for the 
wild type enzyme is shown in light gray for comparison. (a) The S99T mutant, which displays 
defective catalytic function, shows only the fast relaxation process (k1) and lacks the slower 
process (k2). Note that in the right panel, the gray curve representing the wild type signal is offset 
by approximately -0.2 units, which accounts for the difference in integrated area due to a 
beamstop shift during the S99T measurements relative to measurements of other variants. (b) 
The D66N/R69H (NH) mutant, with altered substrate specificity, shows the slow relaxation 
process (k2) and lacks the faster process (k1).  
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Figure S2.6 | Residuals for kinetic fits of T-jump SAXS/WAXS data for CypA variants.  
(a) Wild type, single-step relaxation. (b) Wild type, two-step relaxation. (c) S99T mutant, single-
step relaxation. (d) NH double mutant, single-step relaxation. 
 
 
Discussion 

These results demonstrate the utility of T-jump X-ray scattering experiments for 

characterizing the intramolecular structural dynamics of proteins. Time-resolved T-jump X-ray 

scattering experiments have the potential to be a powerful tool for understanding the complex 

dynamics of protein molecules, such as the model enzyme CypA, which has no intrinsic 

photoactivity. In our experiments, T-jumps of approximately 10-11°C modified the CypA 

conformational ensemble, producing a clear, time-dependent change at very low scattering 

angles. Because the time-resolved scattering changes could be observed only at low-q, we 

attempted to control for the possibility that these changes were due to the temperature-

dependence of interparticle spacings (quantified by the structure factor, S(q)). This process was 

challenging due to low signal-to-noise at high-q, as well as our inability to measure very low-

angle scattering using the available instrumentation. However, static measurements allowed us to 
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identify the contribution of interparticle scattering, demonstrate that this contribution is invariant 

to temperature over the range of our measurement conditions, and correct for its effect. 

Subsequent Guinier analysis of time-resolved scattering curves allowed us to track changes in 

the average radius-of-gyration (Rg) of the scattering particles, which include the CypA molecules 

plus their solvation shells of ordered water molecules. This signal change is comprised of an 

initial reduction in low-angle scattering that occurs within the measurement dead-time of our 

experiment, followed by a small increase in low angle scattering that equilibrates within a few 

microseconds (k1 = 98 ±12 x104 s-1 at 26.7°C), and finally a further reduction in low angle 

scattering that equilibrates within tens of microseconds (k2 = 2.5±0.2 x104 s-1 at 26.7°C). High-

angle scattering differences required for atomistic structural interpretation were not observed due 

to signal-to-noise considerations. We suspect that high-angle features in time-resolved difference 

scattering curves may be especially weak for proteins such as CypA, in which conformational 

motions involve correlated shifts of atoms that can preserve many properties of short-range 

structure. 

This analysis suggests a model in which the scattering density of the CypA particle 

(protein and ordered solvent) first increases and then decreases after excitation by the T-jump. 

By performing T-jump experiments over a range of temperatures, we discovered that both the 

fast and slow processes we observed could be described using Arrhenius kinetics. An Eyring 

analysis revealed relatively large, positive enthalpies of activation for both processes, consistent 

with the idea that conformational changes generally require breakage of existing interactions in 

both the protein and in the solvent. The activation enthalpy for the fast process (k1) is larger, but 

the overall activation energy is lower because of a favorable activation entropy. The opposite is 
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true for the slower process (k2), which has a smaller overall activation enthalpy, but has a 

disfavorable activation entropy. 

We used the S99T and NH variants of CypA to disentangle the nature of these processes 

and their associated functions. The S99T mutant is capable of undergoing the fast (k1) expansion 

process, but does not experience the subsequent slow (k2) shrinkage. NMR and crystallography 

have shown that this mutation arrests the conformational exchange of the “core” catalytic 

network of residues in CypA by creating steric hindrance, strongly favouring a minor 

conformation of the wild type enzyme 40. This interpretation suggests that the internal 

rearrangements are related to the k2 process. However, there is a separation of timescales 

between the NMR results, which indicate ms dynamics in the “core” region, and the T-jump 

SAXS results here, which indicate µs dynamics. This discrepancy may reflect coupled processes 

that are related by a population shuffling mechanism 48 and agree with a broad timescale range of 

side chain dynamics in CypA uncovered by molecular dynamics experiments 49.  In contrast to 

the S99T mutant, the NH variant lacks the initial fast signal change (k1) in our T-jump 

experiments, but clearly retains the slow (k2) signal. NMR and crystallographic studies of the 

D66N/R69H (NH) double mutant demonstrated that it maintains wild type catalytic motions, but 

enhanced flexibility of a surface loop region adjacent to the active site 34. This change is due to 

breaking of several hydrogen-bonding interactions and leads to changes in substrate specificity. 

Therefore, we hypothesize that the loop motions are responsible for the fast (k1) signal in WT 

CypA and S99T, where these motions are known to be unperturbed by NMR 39. However, NMR 

experiments with NH have shown that the loop motions still occur, but at an increased rate that 

renders them invisible to our experiments. Furthermore, the assignment of these motions by the 

mutational analysis is consistent with the Rg changes observed experimentally during each 



 70 

process. X-ray crystal structures indicate that the minor conformational state of the catalytic 

network and associated solvent are smaller than the major state and its associated solvent. Using 

a room temperature X-ray crystal structure of wild type CypA (PDB:3K0N), we calculated the 

radus-of-gyration of the enzyme with the core catalytic network (Arg55, Met61, Ser99, and 

Phe113) in both the major and minor conformational states, and found that the predicted Rg of 

the minor state is 0.07� smaller than the major state (14.09� vs. 14.16�). Additionally the 

increase in the average Rg during the faster process (k1) is consistent with the loops sampling an 

expanded conformational ensemble, as indicated by recent exact-NOE NMR ensembles 50. Our 

kinetic modelling of the WT and mutant data suggest that two uncoupled dynamic modes are 

observed with different kinetics, each of which is individually perturbed by different mutations. 

In addition to decreasing the Rg of the protein, conversion from the major to the minor 

state also results in a small reduction in solvent-exposed surface area, which would necessarily 

reduce the size of the protein solvation layer. While the reduction of the protein’s Rg makes it 

more compact, and therefore should increase I(0) because the protein has become more dense, 

the loss of material from the solvation layer opposes this effect, likely leading to the observed 

decrease in the scattering density of the CypA particle and reduction in I(0). This coupling of Rg 

changes and changes in the solvent-exposed surface area of the protein can potentially explain 

the observed correlation between Rg and I(0) changes calculated from our time-resolved 

scattering data. Additionally the increase in the average Rg and I(0) during the faster process (k1) 

is consistent with the loops sampling an expanded conformational ensemble (with increased 

surface area), as indicated by recent exact-NOE NMR ensembles. Our kinetic modelling of the 

WT and mutant data suggest that two uncoupled dynamic modes are observed with different 

kinetics, each of which is individually perturbed by different mutations. It is, however, unclear 



 71 

from our measurements the extent to which the observed motions are coupled. The S99T variant 

clearly demonstrates that the fast motion can occur independently of the slower motion, because 

S99T is known to have arrested slow dynamics. On the other hand, the fast motion we observe is 

likely to be accelerated by the NH mutation, becoming too fast for us to observe rather than 

being impeded, as in the case for the slow motion in S99T. Therefore, we are unable to 

determine whether the fast motion is a required first step that precedes the slower motion. 

Time-resolved X-ray structural measurements are critical for decoupling the experimental 

signatures of conformational changes that can become convoluted by the spatial and temporal 

averaging that is inherent to traditional X-ray experiments. If one were to assess traditional, static 

SAXS data for CypA, one would find that increasing the temperature of the sample results in a 

decrease in the average particle size at equilibrium. These static measurements as a function of 

equilibrium temperature fail to capture that the temperature change actually perturbs two distinct 

protein motions, which have the opposite effect on the enzyme’s global structural characteristics. 

This information can only be obtained through a time-resolved experiment, which is able to 

separate the effects of these two motions because they have substantially different rates. The 

ability to dissect individual conformational motions and measure their rates using time-resolved 

X-ray measurements is important for understanding processes involving complex protein 

dynamics. Many of these dynamic processes, including allostery51–54 and enzyme catalysis55–59, 

involve extensive reorganization of interactions between the protein and its ordered solvation 

shell, which are key contributors to the energetics that govern protein motions20,21,60–64. Because 

X-ray solution scattering experiments report on the structure of a protein and the ordered solvent 

molecules that constitute its solvation shell65–68, the widespread application of time-resolved 

SAXS/WAXS experiments will enhance our understanding of how protein motions are driven by 
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solvent dynamics, especially when they can be combined with molecular dynamics simulations 

to provide atomic scale insight into the underlying structural changes9–12. In order for these 

experiments to enter the mainstream of structural biology, it has become necessary to create 

perturbations that can be applied universally, to any protein of interest, and our results establish 

that T-jump can be used as a general perturbation method to excite functional intramolecular 

protein motions for time-resolved X-ray structural measurements. Looking forward, T-jumps can 

be paired with other perturbations, such as mutations and ligand binding, to answer important 

questions about how disease alleles or drug molecules impinge on protein dynamics. 

 
Methods 

Sample Preparation 

CypA samples were prepared as described previously. Briefly, the recombinant protein 

was expressed in E. coli BL21(DE3) cells and purified by liquid chromatography. Cells were 

lysed by sonication at pH=6.5, the lysate was clarified by high-speed centrifugation, and CypA 

was captured from the clarified lysate using a HiTrap-SP cation-exchange column (GE 

Healthcare). The protein was eluted using a sodium chloride gradient, and fractions containing 

CypA were pooled, and the pH was shifted to 7.5. The resulting solution was applied to a 

HiTrap-Q anion exchange column (GE Healthcare), and CypA was collected in the column flow-

through. Finally, a polishing step was performed using a Superdex-75 gel filtration column (GE 

Healthcare). The protein was concentrated to 50mg/mL in buffer containing 20mM HEPES (4-

(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid) buffer at pH=7.5, 50mM sodium chloride, 

and 0.5mM TCEP (tris-hydroxyethylphosphine). CypA mutants (S99T and NH) were prepared 

following the same protocol used for the wild type protein. We note that while 50mg/mL is a 

relatively high protein concentration for in vitro experiments, this is much lower than the typical 
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intracellular protein concentration (approximately 300mg/mL). For all X-ray measurements 

performed on buffer only without protein, the buffer was taken from the concentrator filtrate.  

T-Jump SAXS/WAXS Data Collection and Processing 

Time-resolved SAXS/WAXS measurements of CypA were performed on the BioCARS 

beamline at the Advanced Photon Source, while the storage ring was operating in hybrid mode. 

Temperature-jump data were acquired using the pump-probe method, as described recently by 

Cho. et al.32. Fast temperature-jump was performed on a CypA solution (50mg/mL) in a silica 

capillary using an Opolette 355 II (HE) optical parametric oscillator (OPOTEK), which produced 

a 7ns laser pulse with a peak wavelength of 1443nm. The pump laser energy was approximately 

1mJ per pulse, and the beam was focused to an elliptical spot with dimensions of 400µm by 

60µm (FWHM, gaussian beam profile), yielding a photon fluence of ~50mJ/mm2 at the sample, 

which heated a 50mg/mL CypA solution in a capillary. A suitably delayed X-ray pulse of 494ns 

duration (eight septuplets in APS hybrid mode) with a peak X-ray energy of 12keV and 3% 

energy bandwidth (pink beam, Figure S2.1), was used to probe the sample following the 

introduction of the T-jump, and the X-ray scattering was recorded using a Rayonix MX340-HS 

CCD detector. In our experiments, the temporal resolution is limited to approximately 500ns by 

the duration of the X-ray pulse, which is substantially longer than the duration of the IR pulse. 

To speed data acquisition, we utilized a sample holder and data collection scheme recently 

reported by Cho, et al, (Cho et al., 2018) which combined fast translation along the capillary axis 

with slow sample circulation via a peristaltic pump. The fast translation of the capillary allowed 

us to rapidly accumulate X-ray scattering from 41 pump-probe measurements on a single 

detector image by translating the capillary to a fresh position between each pump-probe pair. The 

slow circulation of the sample allowed us to replenish the protein solution and limit the extent of 
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X-ray radiation damage by spreading the X-ray dose over a relatively large volume during long 

data collection runs. Data were collected as pairs of alternating "laser on" and "laser off" X-ray 

images. The pump-probe time delay was systematically increased with each successive on/off 

pair of images. We measured pump-probe time delays spanning three logarithmic decades from 

562ns to 1ms, at a time density of eight points per decade. A total of 50 replicate X-ray images 

were collected for each pump-probe time delay. It is important to note that time-resolved X-ray 

measurements referred to herein as “laser off,” were followed (10µs) by application of an IR 

pulse to the sample, as described by Cho, et al. (Cho et al., 2018), which prevented the 

introduction of a temperature offset created by incomplete cooling in between “laser on” and 

“laser off” measurements. A temperature controller integrated into the sample holder allowed us 

to initiate the T-jump from different starting temperatures, and also allowed us to collect static 

temperature data. Static temperature images were collected in a manner similar to the time-

resolved images, but without application of the pump laser pulse. Data collection protocols were 

identical for protein and buffer samples. 

After acquiring the data we applied polarization, geometry, and detector non-uniformity 

corrections to the 2D X-ray images. The scattering intensities (photons/pixel) were binned and 

averaged as a function of the scattering vector magnitude (q), yielding isotropic scattering curves 

(I(q) vs. q; q = 4π·sin(θ)/λ, where 2θ is the scattering angle and λ is the X-ray wavelength) (Cho 

et al., 2018). Next, for each data collection run, we carried out outlier detection by performing 

singular value decomposition (SVD) on a matrix constructed from our integrated scattering 

curves. In this SVD, the left singular vector with the largest singular value represents the global 

average of all the scattering curves used to construct the input matrix. We analyzed the right 

singular vectors from the SVD to determine which images were irregular. Specifically, we 
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calculated the mean value of v1,n, the entry in the matrix V that describes contribution of the right 

singular vector with the largest singular value (U1) to the nth scattering curve, across all the input 

X-ray scattering curves. Then, if the value of v1,n for any specific scattering was more than 2.5 

standard deviations above or below the mean, that image was discarded. Our outlier detection 

procedure is implemented in a Python script called “SVD_Quarantine.py.” By inspecting the 

results of the SVD, we decided to remove the first 5 repeats from each data set, as well as some 

additional outliers that failed our statistical test. The same averaging and outlier detection 

method was used for both static and time-resolved measurements. 

Scaling of X-ray Scattering Curves 

All scaling of X-ray scattering curves was performed using an algebraic (least-squares) 

procedure. To determine the scale factor, A, which can be applied to a scattering curve I(q)a in 

order to scale it to a second scattering curve I(q)b, we used the following equation: 

  Eq. 2 

 

Although we used the equation above for scaling throughout our analysis, the q-range to which it 

was applied varied depending on the context, and details are provided below.  

X-ray Thermometry 

Following the initial data processing steps described above, we used singular value 

decomposition (SVD) to determine the magnitude of the T-jump introduced by the IR laser 

pulse. We pooled static, temperature-dependent SAXS/WAXS curves (azimuthally integrated 

I(q) v. q) with the time-resolved SAXS/WAXS curves from time-resolved measurements, scaled 

them to a common reference over the q=0.025-4.28 Å-1 region, and performed SVD on a matrix 
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built from these scaled curves. In this matrix, each column represents a single scattering curve, 

with the rows of the matrix corresponding to q-bins and the entries in the matrix consisting of 

azimuthally-averaged scattering intensities. The SVD analysis was performed using only the 

q=0.07-3.45 Å-1 region of the scattering curves. As described in the Results section, the SVD 

identified a left singular vector whose contribution to the overall scattering signal was highly 

temperature dependent. This was the left singular vector with the second largest singular value 

(U2). For each of the five temperatures used for static data collection, we calculated the average 

value of v2,n, which is the entry in the matrix V describing the contribution of the temperature-

dependent singular vector (U2) to the nth scattering curve. We then plotted the average v2,n vs. 

temperature and ultimately fit this data using a quadratic model. Finally, we used the resulting 

second-degree polynomial and the values v2,n for each time-resolved scattering curve to estimate 

the temperature for each T-jump measurement. By comparison of neighboring “laser on” and 

“laser off” scattering curves, we determined that the average T-jump was 10.7°C. Our 

thermometry procedure is implemented in a Python script called “thermometry_timepoints.py.”  

Data reduction: On-Off Subtraction, Repeat Averaging, and Buffer Subtraction 

We implemented a data reduction procedure that operated on the integrated scattering 

curves generated using our data collection protocol and produced several outputs that were 

subsequently used for our kinetic and structural analyses. This procedure, implemented in a 

Python script called “reduce_data.py,” took advantage of paired “laser on” and “laser off” 

measurements, redundant measurements of each pump-probe time-delay, and parallel T-jump 

experiments for samples containing protein and samples consisting of buffer only. The input for 

this script was essentially two data sets. The first, was the series of time-resolved scattering 

curves measured from a sample containing protein and consisting of paired “laser on/off” 
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measurements with multiple replicate measurements of each pump-probe time delay (see above). 

The second was a similar data set, only collected from a sample containing buffer only and no 

protein. All of the input scattering curves were scaled to a common reference over the q=0.025-

4.28�-1 range, and “laser off” curves were subtracted from their associated “laser on” curves to 

create a difference scattering curve (ΔI(q)) for each “laser on/off” pair. Next, all replicate 

difference curves (i.e. same sample and time delay) were grouped together, an iterative chi-

squared test was performed (using a cutoff of χ2=1.5), and the average difference curve was 

calculated for each pump-probe time delay in the series. For each time delay, the difference 

signal for the buffer only sample was scaled to the difference signal for the sample containing 

protein over the q=1.5-3.6 Å-1 range, and then the buffer signal was subtracted from the protein 

signal to isolate the difference signal due only to the protein. Additionally, this script took all of 

the “laser off” scattering curves, performed an iterative chi-squared test (cutoff of χ2=1.5), and 

calculated their average. As was done for the difference curves, the average “laser off” scattering 

curve for buffer only was subtracted from the average “laser off” scattering curve for the protein 

sample after an additional scaling step (q=1.5-3.6 Å-1 range). The output of this data reduction 

procedure was a single scattering curve (I(q) vs. q) for the “laser off” state, and a difference 

scattering curve (ΔI(q) vs. q) for each pump-probe time delay. All output data were corrected for 

the contribution of the buffer, and errors were propagated from the initial measurement standard 

deviations. 

Kinetic Analysis 

The averaged difference curves produced by our data reduction procedure were used for 

kinetic analysis of the time-resolved signal changes, which was implemented in a Python script 

called “difference_dat_kinetics_bootstrap.py.” For each time delay, this script integrated the area 
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under the difference curve over the q=0.03-0.05 Å-1 range, then fit the resulting data (integrated 

area vs. time) to calculate relaxation rates using non-linear least-squares curve fitting. We used 

the following equations, for single-step kinetic fits: 

  Eq.3 

And for two-step kinetic fits: 

  Eq. 4 

The output of this analysis was a relaxation rate, or two rates, with standard errors calculated 

using a bootstrapping method (DiCiccio and Efron, 1996). In cases where we performed T-jumps 

at multiple temperatures, we used the observed rates and their standard deviations to perform an 

Eyring analysis by fitting Eq. 1 (above) using a least-squares method to determine the enthalpy 

and entropy of activation, and their standard errors (using the covariance matrix). We 

implemented the Eyring analysis in a Python script called “eyring_fit_k1_k2.py.” 

Creation of High-Quality Time-Resolved Scattering Curves for Structural Analysis 

To produce high-quality scattering curves that could be used for real space interpretation of the 

time-resolved X-ray scattering, we took the following steps. We used all of the “laser off” 

scattering curves from our on-off paired time-resolved measurements to create a single average 

curve. Then, for each of the time-delays reported, we added the average on-off difference (see 

above) to this average “laser off” scattering curve: 

 

  Eq. 5 
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Next, we utilized static scattering measurements, as a function of both concentration and 

temperature, to characterize the effect of intermolecular interactions on the observed X-ray 

scattering and to calculate structure factors (S(q)) for our 50mg/mL CypA solutions at 

temperatures spanning a range relevant to our T-jump experiments. We calculated structure 

factors (and second virial coefficients) following the methods described by Bonnette, et al.47. The 

scattering curves derived from summing the average “laser off” signal and the time-resolved 

differences were then divided by the calculated structure factors to correct for intermolecular 

interactions and extrapolate our measurements to infinite dilution. Because we discovered that 

the effect of intermolecular interactions were not temperature dependent, we did not need to 

model the time-dependence of structure factors for our protein solutions following the T-jump, 

and the structure factor calculated at 13°C was used for the infinite dilution extrapolation. The 

calculation of structure factors and the creation of the high-quality, corrected I(q) curves were 

implemented in a pair of Python scripts called “packing_calc.py” and “packing_correction.py,” 

respectively. 

 

Guinier Analysis and Calculation of Rg 

In order to calculate radii-of-gyration (Rg) and to extrapolate the value of I(0) from 

scattering curves, we used the linear Guinier approximation: 

  Eq. 6 

Guinier analysis was performed over the q-region spanning 0.03-0.08Å-1. We note that scattering 

curves were not placed on an absolute scale, however, this is not a requirement for Guinier 

analysis. The calculations were implemented in a Python script called “Rg_and_i0.py.”  
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Introduction  

Polysaccharides are ubiquitous biopolymers which serve roles ranging from energy 

storage to signalling to structural rigidity.1–3 Polysaccharide catabolism is achieved by enzymes 

in the gylcosyl hydrolase, lytic polysaccharide monooxygenase, and glycosyltransferase 

families.4–6 Many polysaccharides assemble into higher order structures that complicate access 

by metabolic enzymes, and processive hydrolases are commonly employed by organisms to 

more effectively metabolize the substrates.7,8 Enzymatic hydrolysis is often quantified using 
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small oligomer analogues, which release a chromophore or fluorophore when cleaved.9,10 These 

simple substrates allow for high signal to noise and precise quantification,  but activity 

measurement using these simple substrates is fundamentally limited in assessing activity with 

bulk substrates, due to their higher order crystalline  structures, variable polymer length, 

branching and other modifications. An additional challenge is quantifying processivity - 

processive enzymes cut bulk substrate multiple times for each binding event. As simple 

substrates often only have one site at which hydrolysis will generate signal, the degree of 

processivity cannot be assessed at all with these substrates, and the total activity of the enzyme 

with bulk substrate can be very different in the presence vs absence of processivity.8 

The difficulties in assessing catabolism of complex polysaccharide substrates is 

exemplified by Chitin, which is a ubiquitous polysaccharide, comprised of ß-1,4-linked n-acetyl 

glucosamine, that is produced by fungi and arthropods for structural rigidity and water 

repulsion.3,11 Chitin polymers assemble into water-insoluble microcrystals, which have been 

observed in 3 different crystal forms, differentiated by the parallel or antiparallel orientation of 

neighboring particles.12 The most common and lowest energy conformation, alpha-chitin, forms 

into antiparallel sheets which intercalate the N-acetyl groups of neighboring polymers and form 

tight hydrogen bonding networks.13 Strands of chitin must be extracted from this highly ordered 

structure in order to be degraded, and the rate limiting step of catalysis has been observed to be 

the processive decrystallization of additional substrate from the bulk crystal.8,14 This observation 

makes it particularly challenging to effectively associate degradation with short oligomeric 

analogues with true catalytic efficacy. Beyond this, the insolubility and recalcitrance of bulk 

chitin makes it a particularly challenging substrate to quantify with high precision. Recently, 

several new methods have tackled this problem, both using labelled chitin substrates with 
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chromatography15,16 as well as enzyme coupled assays to generate colorimetric signal from 

reducing ends.17 These methods have enabled new insights into chitinase behavior, but their 

signal to noise ratio and throughput limit the ability to separate total activity into binding and 

catalysis, as well as other components of polysaccharide catabolism such as substrate specificity 

and processivity.   

Dissecting chitinolytic activity to understand its mechanisms has particularly interesting 

implications for understanding how mammalian chitinases function in innate immunity. Chitin is 

not expressed by mammals, but mammals have a conserved machinery to recognize and degrade 

environmental chitin that is inhaled or ingested.18,19 The molecular mechanism of recognition is 

not well understood, but breakdown of inhaled chitin is accomplished by the secreted enzymes 

acidic mammalian chitinase (AMCase) and chitotriosidase, which are conserved across 

mammals.18 Both are two domain family-18 glycosyl hydrolase consisting of a catalytic TIM-

barrel domain and a C-terminal carbohydrate binding domain.In AMCase, the two domains are 

connected by a 25 residue glycine and serine rich linker domain which is expected to be highly 

glycosylated, while Chitotriosidase has a shorter proline rich linker that has also been found to 

have glycosylation.20–22 The role of the chitin binding domain, and of the linker, in processing 

chitin are not well understood. AMCase is upregulated in response to chitin insult and is secreted 

into the airway lumen, where it interacts with crystalline chitin and breaks down the substrate.23 

AMCase deficient mice build up chitin in their lungs and develop tissue fibrosis as an aging 

phenotype; external addition of recombinant chitinase to the airway reduces this phenotype.24 

This suggests that AMCase is predominantly responsible for clearance of chitin from airways, 

and further suggests that improvements to AMCase may reduce chitin load in airways.  
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Consistent with the reported role of AMCase in asthma,  while the most common human 

haplotype of AMCase is significantly less active than the mouse AMCase (mAMCase), 

polymorphisms of AMCase which increase its activity have been associated previously with 

asthma protection.25 A trio of mutations found in humans, N45D, D47N, and R61M, which 

change residues to the wild type identities of mAMCase, has been previously described to 

increase specific activity against model substrates.26 Of these mutations, previous work has 

identified the R61M mutation as causing the largest increase in total activity, as well as the 

largest decrease in mice with the reverse M61R mutation.16 The mechanism by which these 

mutations alter binding and catalysis, both with simple and complex substrates, remains unclear. 

In this study, we develop and compare several techniques of measuring kinetics of 

mammalian chitinases, and provide improved methodology using commercial fluorogenic 

substrates as well as novel approaches to quantifying bulk chitin degradation. We develop a one-

pot continuous-read fluorescent assay based on the previously developed enzyme-coupled 

assay.17 We use these methods to assay the impact of the carbohydrate binding domain on 

activity, and discover that it cause a minor Km vs kcat tradeoff but does not have a major effect on 

overall activity. We also compare the activity of murine acidic mammalian chitinase and 

chitotriosidase with different small oligomeric substrates and with bulk chitin. We compare the 

results of the asthma associated mutants in the mouse background, and find that the dominant 

effect is a kcat decrease from the M61R mutation. 

Finally, we endeavored to engineer hyperactive chitinase mutants, using a directed 

evolution approach based on simple fluorogenic substrates. We find mutations which 

dramatically increase the activity of the enzyme, both improving binding and catalysis. Using the 

novel enzyme coupled assay, we discovered that these mutations did not have the same effect 
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with bulk substrates, underscoring the importance of making kinetic measurements with real 

chitin substrates, both for screening and for characterization. 

 

Results  

Comparison of the activity of the catalytic domain of AMCase to the full length enzyme 

with new approaches 

In order to assess the role of the carbohydrate binding domain of AMCase in catalysis, 

we expressed and purified the isolated catalytic domain of AMCase, as well as the full length 

enzyme, using an E. coli periplasmic expression approach.27 We first measured the ability of the 

enzyme to catalyze the breakdown of 4-methylumbelliferone (4MU) conjugated chitobiose, 

using a continuous read approach at pH 7. The activity of the two constructs was 

indistinguishable, either in binding or catalysis (Figure 3.1, Table 3.1). Due to the short length 

of the oligomeric substrate, this reaction is likely driven only by local interactions in the catalytic 

domain, and the presence of the carbohydrate binding domain does not affect it. Understanding 

the difference in activity between these constructs drove the development of new methodology 

for quantifying chitinase activity with complex substrates. We took advantage of the commercial 

availability of colloidal chitin substrates, which we found to be more consistent in size and shape 

and to have reduced settling times compared to traditional shrimp shell chitin. We first attempted 

to measure chitin hydrolysis by the disappearance of scattering by solid substrate as it is 

converted into small oligomeric products. We could not distinguish a statistically significant 

difference between the two enzymes with this approach, which was likely limited by the 

relatively small dynamic range and large amount of enzyme required to produce a measurable 
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change in scattering (Figure 3.1, Table 3.1). Each cutting event only minimally alters the 

scattering of chitin crystals, and many cuts are necessary to fully solubilize crystals.  
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Figure 3.1 | Activity comparisons of AMCase catalytic domain and full length enzyme. 
Difference in kcat/Km of AMCase catalytic domain and full length enzyme generated via (a) 
4MU-chitobiose assay (b) colloidal chitin clearance assay (c) reducing sugar generation assay 
quantified with potassium ferricyanide (d) chitooligosaccharide oxidase coupled peroxidase 
assay. Catalytic domain is in green, while full length AMCase including the linker and 
carbohydrate binding domain is in orange. 
 
Table 3.1 | Calculated rate constants of AMCase catalytic domain and full length enzyme 
kcat values are reported in units of 1/s. Km values are reported in units of µM for 4MU assays and 
% w/v for colloidal clearance, ferricyanide, and chitO assays. 

 Catalytic Domain Full Length Enzyme 
kcat Km kcat Km 

4MU-Chitobiose 1.12 ± 0.09 
 

28.0 ± 2.97 
 

1.05 ± 0.07 
 

25.2± 2.26 
 

Colloidal 
Clearance 

.00140 ± .00008 
 

.0890 ± .0274 .00106 ± .00002 
 

.0650 ± 0.0178 

Ferricyanide 0.454 ± 0.042 
 

0.0461 ± 0.0161 0.392 ± 0.023 0.0294 ± 0.0069 

ChitO 0.944 ± 0.111 
 

0.0333 ± 0.0056 
 

0.540 ± 0.083 
 

0.0172± 0.0049 
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We next attempted to quantify the production of soluble reducing ends, which we 

hypothesized to be more sensitive and to have an improved connection between individual 

catalytic events and improvement in signal. The first method we used to attempt this was a 

classical ferricyanide reduction assay:28 after incubating colloidal chitin with AMCase at 37ºC 

for up to 18 hours, we quenched the reaction with sodium carbonate, removed the insoluble 

chitin by centrifugation, and quantified the non-enzymatic reaction of soluble reducing sugars 

with potassium ferricyanide, read out by the disappearance of the yellow color by absorbance at 

420nm. With this assay, we were not able to identify a significant difference in total activity, but 

were able to identify a small improvement in Km that was offset by reduction in the kcat of AMCase 

with the addition of the carbohydrate binding domain (Figure 3.1, Table 3.1). This tradeoff did 

not result in a large difference in activity, and due to the endpoint-based requirements of assay 

and of the dynamic range available in measuring reduction in absorbance were limiting. We next 

developed a new assay based on previous work using chitooligosaccharide oxidase (chitO) in 

combination with horseradish peroxidase to generate signal specifically from the production of 

chitin reducing ends.17 In order to convert this assay from endpoint to continuous readout, we 

took advantage of fluorogenic substrates for horseradish peroxidase and carefully washed the 

colloidal chitin to enable signal measurement without removal of the insoluble component. This 

gain-of-signal fluorescent assay had much improved signal to noise and sensitivity, and 

improved quantification of the kinetic parameters of chitinase activity. Using this assay, we were 

able to more confidently determine the tradeoff between improved binding and loss of maximal 

catalytic activity with the inclusion of the carbohydrate binding domain, resulting in no 

significant change in total activity (Figure 3.1, Table 3.1).   
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A caveat of this approach is that our enzymes, expressed in E. coli, lack post-translational 

modifications. Acidic Mammalian Chitinase is predicted to be have multiple O-linked 

glycosylation sites in the linker between the catalytic domain and the chitin binding domain 22. 

Difference in binding, substrate specificity, and eventually processivity all may be affected by 

posttranslational modifications. In particular, the carbohydrate binding domain may interact 

directly with the glycosylations of AMCase, in cis or in trans, and alter the behavior of the 

enzyme in bulk. Further experiments to understand the role of the carbohydrate binding domain 

may require working with enzymes expressed in systems with native glycosylation. 

 

Comparison of Acidic Mammalian Chitinase and Chitotriosidase 

The different mechanisms employed by AMCase and Chitotriosidase to degrade chitin 

are not well understood, nor is their individual role in reacting to chitin in the lungs. Recent work 

has identified significant activity differences between acidic mammalian chitinase and 

chitotriosidase and has determined that in mice they do not have any epistatic effects in 

combination.29 We sought to understand how differences in binding, substrate specificity, and 

hydrolytic activity differed between the two enzymes. We investigated substrate specificity by 

comparing the ability of the enzymes to cleave the terminal glycosidic linkage on 4MU-

chitobiose and 4MU-chitotriose, representing hydrolysis in different substrate binding poses to 

generate chitobiose vs chitotriose as a substrate. When assayed the 4MU-chitobiose substrate, 

AMCase had more than double the activity of chitotriosidase, driven by a significant difference 

in Km (Figure 3.2, Table 3.2). In contrast, the 4MU-chitotriose substrate led to tighter binding 

for both AMCase and chitotriosidase, but the difference was much larger with chitotriosidase, 

leading to a significantly smaller gap in activity between the two enzymes (Figure 3.2, Table 
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3.2). The reduction in observed kcat for both enzymes was likely driven by the alternative, non-

fluorogenic reaction trajectory in which the 4MU chitotriose is cleaved into chitobiose and 4MU-

bound N-acetyl-glucosamine, leading to a systematic underestimate of kcat.  The differences in the 

Km suggests that chitotriosidase benefits more from the extended binding interactions available 

with the larger 4MU-chitotriose substrate. We next assayed the differences in activity with a bulk 

substrate using the chitO coupled assay. The difference in activity was much smaller in this 

assay, with the majority of the activity difference being driven by Km differences (Figure 3.2, 

Table 3.2). The difference in the total activity measured between the 4MU assays and the bulk 

chitin experiment may be due to a variety of different mechanisms, including differential binding 

efficiency for extended chitin chains or differences in processivity. 

 
Figure 3.2 | Comparison of AMCase and Chitotriosidase. 
Differences in kcat/Km between AMCase (green) and Chitotriosidase (orange) using (a) 4MU-
chitobiose (b) 4MU-chitotriose (c) chitooligosaccharide oxidase coupled peroxidase assay. 
 
Table 3.2 | Calculated rate constants for AMCase and Chitotriosidase 
kcat values are reported in units of 1/s. Km values are reported in units of µM for 4MU assays and 
% w/v for chitO assays. 

 AMCase Chitotriosidase 
kcat Km kcat Km 

4MU-chitobiose 1.02 ± 0.05 28.12 ± 3.97 1.10 ± 0.12 68.02 ± 14.99 
4MU-chitotriose 0.507 ± 0.117 24.32 ± 11.31 0.330 ± 0.029 25.00 ± 4.44 

ChitO 0.908 + 0.036 0.0176 ± 0.002 0.854 ± 0.028 0.0220 ± 0.0020 
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Effects of Human Asthma-Associated Mutants in the Mouse context  

A trio of mutations in AMCase in humans, N45D, D47N, and R61M, confer significant 

increased activity to AMCase.16,26 In all three cases, the identity of the mutated residues becomes 

the same as the identity of the residues in the mouse context. In order to better understand the 

mutational landscape between the mouse and human enzymes, we sought to make the reverse 

mutations in the mouse background and quantify their effect on activity with 4MU-chitobiose as 

well as with bulk chitin. First we measured the activity of the mutations using 4MU-chitobiose, 

which gave largely similar results in the mouse background to what has previously been 

described in humans, with the majority of the activity difference being driven by the M61R 

mutation driving a significant decrease in kcat and a small increase in Km (Figure 3.3, Table 3.3). 

Smaller effects were observed for the individual D45N and N47D mutations, but the effects were 

reversed by the charge-swapped D45N/N47D construct, and the full triple mutant was the least 

active. These results suggest that the different residue identities have overall very similar effects 

in the mouse and human backgrounds, and that the low-activity wild-type identities in primates 

may have arisen due to reduced selective pressure for chitinase activity around pH 7. To 

understand how well these effects observed with the oligomeric substrate transferred to the case 

of bulk chitin, we assayed the activity of the mutations in the mouse context using the enzyme 

coupled chitO assay. For the most part, the results were similar, with the largest effect of any 

individual mutation and the majority of the effect of the triple mutation achieved by the M61R 

mutant (Figure 3.3, Table 3.3). The effects of the D45N and N47D mutations were less 

pronounced in the chitO background, while the M61R mutation had a similar effect on both Km 

and kcat.  
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Figure 3.3 | Comparison of activity of AMCase asthma-associated mutants. 
Measurement of kcat/Km for reversed asthma-associated mutants in the mouse background using 
the (a) 4MU-chitobiose and (b) chitooligosaccharide oxidase coupled peroxidase assays. 
 
Table 3.3 | Calculated rate constants for AMCase and chitotriosidase 
kcat values are reported in units of 1/s. Km values are reported in units of µM for 4MU-chitobiose 
and % w/v for chitO assays. 
 4MU-Chitobiose Chitooligosaccharide Oxidase 

kcat Km kcat Km 
WT 1.09 ± 0.10 29.6 ± 3.4 1.02 ± 0.17 0.0321 ± 0.0077 

D45N 0.94 ± 0.07 34.7 ± 6.0 0.80 ± 0.14 0.0316 ± 0.0084 
N47D 0.71 ± 0.05 34.6 ± 5.6 0.74 ± 0.03 0.0320 ± 0.0076 
M61R 0.76 ± 0.15 60.3 ± 11.5 0.48 ± 0.05 0.0406 ± 0.0045 

D45N/N47D 0.98 ± 0.09 36.8 ± 4.9 1.02 ± 0.04 0.0272 ± 0.0032 
D45N/N47D/M61R 0.46 ± 0.05 50.3 ± 7.0 0.31 ± 0.04 0.0469 ± 0.0056 

 
 
Engineering of Hyperactive Chitinases 

Recent efforts have identified recombinant chitinase as a potential direct therapy to 

ameliorate inflammatory lung symptoms that arise when native chitinase activity is knocked 

down 24. We sought to investigate whether we could improve the activity of mouse AMCase in 

order to improve its efficacy in replacing or improving lung chitinase activity. We used error 

prone PCR to generate libraries of mAMCase mutants, and expressed individual mutants in 96-

well format (Figure 3.4). Our recombinant expression approach, utilizing periplasmic secretion 

as described previously, also results in significant enzyme secreted into the media.27 Taking 
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advantage of this, we assayed the ability of the spent media of individual mutants after protein 

expression to cleave 4MU-chitobiose. Comparing these results to both wild-type and engineered 

catalytically dead mutants, we found that while most mutations resulted in either total loss of 

protein activity or similar activity to wild-type, a small number of mutants were much more 

active than the wild-type (Figure 3.4). Because these assays were done directly on spent media, 

they result from changes to the specific activity of the enzyme as well as to expression and 

secretion efficiency with different mutants. In order to determine whether our results represented 

real improvements in activity, we isolated and purified the two most active mutants: 

A239T/L364Q (Figure 3.4, orange) was the most active mutant identified, with a 5-fold 

improvement in activity, and V246A (Figure 3-4, blue), which showed a 2-fold improvement in 

activity. After purification, we measured the specific activity of the assay with the 4MU-

chitobiose substrate, and replicated the improvements we saw in the screening condition (Figure 

3.4). The A239T/L364Q mutant improved significantly both in Km and kcat (Table 3.4). These 

results can be rationalized by the locations of the mutations in the structure. A239T and V246A 

are relatively distant from the active site, but L364Q is positioned immediately at the binding site 

for chitin, and may even coordinate the 4MU moiety in the fluorogenic substrate (Figure 3.4). 

Next, we investigated whether the activity increases observed with the 4MU-chitobiose mutant 

resulted in similar improvements to degradation of bulk chitin. Using purified protein, we 

measured the activity of the mutants to degrade collodial chitin using the enzyme-coupled ChitO 

assay, and discovered that the A239T/L364Q mutant had lost all measurable activity, while the 

V246A mutant was not statistically significantly more active than the wild type (Figure 3.4). 

The loss of activity of the double mutant suggests that the improvements were driven by the 

L364Q mutation interacting with the 4MU fluorophore. The stark difference in results between 
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the results with the 4MU and chitO assay underscores the need for assays of catabolism of bulk 

chitin substrate, even at the stage of screening. Our attempts at directly screening activity of 

media with the chitO assay thus far have not been successful, due to a high background signal in 

the absence of active enzyme.  

 

Figure 3.4 | Engineering of hyperactive AMCase mutants. 
(a) Workflow for directed evolution of AMCase. Mutants of AMCase were generated via error 
prone PCR, then transformed and grown out from individual colonies in 96-well blocks. After 
expression, activity was measured using the 4MU chitobiose substrate incubated with the 
expression media. (b) Distribution of activity for mutants with 1-3 mutations per construct. 
Vertical lines at 0 and 1 represent a catalytically dead negative control and a wild type positive 
control, respectively. The best two results are highlighted in blue and orange. (c) kcat/Km of 
purified hyperactive mutants using the 4MU-chitobiose assay and (d) the chitO assay. (e) 
Structure of AMCase catalytic domain highlighting A239T/L364Q (orange) and V246A (blue). 
The active site catalytic network is highlighted in purple, and an inhibitor that binds to the active 
site cleft is shown in red. 
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Table 3.4 | Comparison of calculated rates for engineered mutants. 
kcat values are reported in units of 1/s. Km values are reported in units of µM for 4MU-chitobiose 
and % w/v for chitO assays. 
 4MU-Chitobiose Chitooligosaccharide Oxidase 

kcat Km kcat Km 
WT 1.48 ± 0.26 32.97 ± 11.91 0.779 ± 0.048 0.0297 ± 0.0023 

A239T/L364Q 4.46 ± 1.17 18.6 ± 9.43 N.D. N.D. 
V246A 3.62 ± 0.73 31.5 ± 11.8 0.800 ± 0.073 0.0351 ± 0.0042 

 
 
Discussion 

Broadly, these results demonstrate the value of pushing to quantify chitinase kinetics with 

bulk substrates with the same care used with model substrates (fluorogenic oligomers). Our 

results suggest that the effectiveness and sensitivity of the one-pot chitooligosaccharide oxidase 

coupled assay makes it an ideal approach to monitoring chitinase activity. While in some cases 

the results of the activity assays were more or less unchanged relative to the 4MU-chitobiose 

assays, in others the activities were tremendously different, underscoring the need for 

quantitative measures of bulk chitin catabolism. This proved to be particularly true both for 

studies of the effects of multiple domains, which necessarily cannot bind the same short 

oligomer the same way they could a chitin crystal, as well as for engineered variants, in which 

screening with short fluorogenic substrates led to artifacts that may be related to fluorophore 

binding. The sensitivity and throughput available with the chitO coupled assay enables more 

precise and quantitative measurements of bulk chitin catabolism than was previously available, 

and we expect that this technique will be effective for a variety of experiments teasing apart the 

components driving enzyme activity. 

Using the new bulk activity measurements, we were able to discern a kcat to Km tradeoff 

with the addition of the carbohydrate binding domain of AMCase, as Km improved from 

0.0333% ± 0.0056% to 0.0172% ± 0.0049% chitin w/v (p=0.02), while kcat decreased from 0.944 
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± 0.111 1/s to 0.540 ± 0.083 1/s (p=0.007). While the improved binding with the addition of 

additional binding sites for chitin is unsurprising, the difference in the kcat is less clear. Previous 

work has suggested that for some chitinases the rate limiting step in bulk catalysis is 

processivity, 14 and this result appears to support that hypothesis for AMCase as well, since the 

additional binding motif may inhibit the ability of the catalytic domain to effectively slide to new 

binding sites. If that proves to be true, given the closely matched kcat for 4MU-chitobiose, in 

which processivity is not possible and can’t be rate limiting, and bulk chitin, it appears that the 

rates of these two components of enzyme activity may be similar in mice. This may be a result of 

selection maximizing the overall rate of the enzyme, or may impact the relative size of products 

generated by the enzyme, since the likelihood of multiple sliding events between cutting events 

would be greater than if decrystallization and sliding were much slower than the rate of 

hydrolysis. Alternatively, the carbohydrate binding domain may further impact other aspects of 

catalysis, such as selecting specific chitin local morphology, binding chitin in the correct 

orientation, modulating processivity, or releasing when strands of chitin become too short to 

further process. The secondary domain may also impact the stability of folding of the catalytic 

domain, leading to artificial reduction of measured kcat by reducing the effective concentration 

of active sites in catalysis-competent conformations. Further studies may benefit by studying the 

effect of the secondary domain on activity in other chitinases, or using chimeras between 

different chitinase sequences to alter the sequence and function of the linker and carbohydrate 

binding domains. Beyond this, since both mammalian chitinases are expected to be natively 

glycosylated, the carbohydrate binding domain may create protein-protein interactions that could 

create assemblies that may be important for processing chitin by maximizing concentrations 

where crystallinity is breaking down. 
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Using the chitO assay, we are able to reliably tease out binding and catalysis effects for 

chitinases with real substrates, and compare them to the measurement we make with commercial 

oligomeric substrates. Qualitatively, the agreement between the 4MU and bulk chitin assays was 

very strong, with kcat values that were remarkably similar, suggesting that the 4MU assay 

effectively captures the chemical step of hydrolysis, and Km values that were on the order of 30 

µM for the 4MU chitobiose and 0.03% w/v for the bulk chitin assay. Under the approximation of 

infinite polymer length, there is one potential binding site per monomer of n-acetylglucosamine. 

Each chitin monomer unit has a molecular mass of 203.21 g/mol, so 0.03% w/v or 0.3 g/L would 

correspond to approximately 1.5 mM, 50 times greater than the Km observed for the small 

oligomeric substrates. Given the expectation that Acidic Mammalian Chitinase would be able to 

accommodate up to a hexamer of chitin in its binding cleft, we would expect that the actual 

binding should be tighter than with the shorter oligomers. We hypothesize that the higher 

effective Km reports on the relative crystallinity of the chitin, with a small proportion of 

theoretical substrate binding sites being accessible to the enzyme. In the future, it may be 

possible to alter this crystallinity, using partial deacetylation, co-application of chitin binding 

enzymes that might loosen the crystalline geometry, or physical milling to alter the surface area 

to volume ratio, in order to test this hypothesis. Testing colloidal chitin generated from 

alternative sources, which may have different polymer crystallinity as well as average polymer 

length may also reveal new information about the mechanisms of chitin processing by chitinases. 

 

In contrast to the majority of cases, which had reasonable agreement between the bulk 

experiments and the small oligomers, our efforts to engineer hyperactive chitinases were limited 

by the use of the 4MU-chitobiose substrate as a screening tool. Our best mutants from screening 
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had significant increases in activity, but once the purified mutants were assayed by the chitO 

assay, the improvements were not present and in the case of the A239T/L364Q mutant there was 

no quantifiable activity with bulk substrate. The classic maxim is that in protein engineering you 

get what you screen for, and in this case that was maximizing binding efficiency for the 4-

methylumbelliferone fluorophore, as well as the smaller substrate overall. The result underscores 

the need in the future for utilizing frequent counter-screening with bulk chitin when performing 

selection experiments for chitin processing in the future. One challenge to accomplishing this is 

that, while the chitO assay is more sensitive and high throughput than previous techniques, it is 

sensitive to free sugars and other components of the media that limits its utility for direct 

screening. It is possible that with small scale purification using nickel resin, we may in the future 

be able to directly screen activity of mutants using the chitO method. In combination with recent 

advances in guiding small library directed evolution with machine learning,30 we may be able to 

effectively identify use this approach to find activation mutants without the requirement of using 

chitobiose substrates. 

Looking beyond this work developing methods to understand chitin hydrolysis in bulk, 

the methods developed here can give information about binding and catalysis with real 

substrates, but questions still remain about processivity, endo vs exo preference, and potential 

clustering and cooperative behavior between multiple enzymes. In order to fully characterize 

these aspects of catalysis, future work will require single-molecule measurements of kinetics. 

Recently, significant progress has been made in measuring chitinase activities by single molecule 

microscopy, 14,31,32 and applying this approach to mammalian chitinases, ideally with native 

glycosylation, may help to break down the effects of different mutations on activity, give new 
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insights into the function of the carbohydrate binding domain, and help to differentiate the 

enzymatic role of chitotriosidase and acidic mammalian chitinase. 

 

Methods 

Protein Preparation 

Constructs expressing a fusion of a protein A secretion sequence targeting periplasmic 

expression, AMCase or chitotriosidase, and a c-terminal V5-his-tag as previously described27 

were ordered from Atum. Mutants of AMCase were generated via PCR mutagenesis. Chitinase-

containing plasmids were transformed into BL21 cells and expressed overnight in ZY 

Autoinduction media at 37ºC for 3 hours followed by 19ºC overnight. We added protease 

inhibitor at the temperature change to minimize proteolysis of periplasmically expressed protein. 

Pelleted cells were lysed via osmotic shock in a two step procedure. First, cells were resuspended 

in 20% Sucrose, 20 mM Tris pH 6.5, 1mg/mL lysozyme, 1 µL universal nuclease, with a 

protease inhibitor tablet. The resuspended cells were incubated at 37ºC for 1 hour, then pelleted 

via centrifugation at 15000*g for 15 minutes. The supernatant was collected, and the pellet was 

resuspended in a wash buffer of 20 mM Tris pH 6.5 and 150 mM NaCl and incubated for 15 

minutes at 4ºC. The cells were centrifuged at 15000*g for 15 minutes and the supernatant was 

combined with the supernatant from the first step to form the combined lysate. The combined 

lysate was bound to a HisTrap FF column, washed with 100 mM Tris pH 6.5, 150 mM NaCl, 

then eluted with a gradient into 100 mM Tris pH 6.5, 150 mM NaCl, 500 mM imidazole. 

Fractions were selected for further purification based on activity assay with a commercial 

fluorogenic substrate (described below). Active fractions were pooled and subject to dialysis 

overnight into 100 mM Sodium Acetate pH 4.5, 150 mM NaCl, 5% glycerol w/v followed by 
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filtration to remove insoluble aggregate and dialysis into 100 mM Tris pH 6.5, 150 mM NaCl, 

5% glycerol w/v. The protein solution was concentrated and separated via size exclusion 

chromatography on a superdex S75 16/600. Fractions were selected based on purity as assessed 

via SDS-page gel electrophoresis, and based on activity based on an activity assay with 

commercial fluorogenic substrate. 

 

Analysis of Kinetic Data 

Kinetic measurements were made in a range of substrate concentrations outside of 

pseudo-first-order conditions. In order to robustly measure rates of catalysis, we fit our data 

using non-linear least-squares curve fitting to simple relaxation models for enzyme kinetics: 

 

Where A shows the asymptotic signal from the clearance of substrate, k1 is the rate constant of 

relaxation, and B is the background signal of the assay condition. To this end, we developed a 

small free and open source python library for relaxation modeling, which is available on github: 

https://github.com/fraser-lab/relax. Generally a single-step relaxation model was required, but in 

cases where residuals showed significant structure, additional steps were added as either 

relaxation or linear fits (in cases where kinetics were pseudo-first-order). The product of A and 

k1 yields a rate appropriate for kcat/Km determination. Specific data analysis scripts using 

relax.py are available at https://github.com/fraser-lab/chitin_analysis.  
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Continuous fluorescence measurements to quantify activity using commercial oligomeric 

substrates 

Catalytic activity was assayed using 4-methylumbelliferyl chitobiose and 4-

methylumbelliferyl chitotriose as described previously33 with one critical modification. 10 nM 

chitinase enzyme was incubated with varying concentrations of 4MU-chitobiose or 4MU-

chitotriose up to 433 µM in McIlvaine Buffer34 pH 7 at 37 ºC. The 4-methylumbelliferone 

(4MU) fluorophore is quenched by a ß-glycosidic linkage to a short chitin oligomer, which is 

cleaved by a chitinase enzyme, which generates fluorescence with peak excitation at 360 nm and 

emission at 450 nm. Previously, the reaction was quenched and the pH was raised to maximize 

the quantum yield of the 4MU substrate. In order to avoid noise introduced by quenching and 

substrate concentration, we instead measured fluorescence at regular intervals during the course 

of the reaction without a pH shift and determined the rate using a single step relaxation model. 

This allowed us to measure rates of catalysis under a large range of conditions without needing 

to account for the proper time to quench to maximize signal without the reaction reaching 

completion. The processing for data collected from this assay is illustrated in Figure S3.1. 

 

 

Figure S3.1 | Processing 4MU assay data 
(a) Standards of 4MU were measured by fluorescence at 360 nm excitation and 420 nm emission 
and concentrations below 50 µM fit well to a linear regression (b) Progress curves of a 
concentration series of 4MU-chitobiose were fit by a non-linear relaxation analysis to extract 
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initial rates. (c) Initial rates were plotted against substrate concentration and were fitted via non-
linear regression to a michaelis menten curve to extract rate constants.  
 
Bulk Clearance Activity Assay 

Borohydride-reduced colloidal chitin was purchased as a powder from Megazyme and 

resuspended to 4% w/v in pH 7 McIlvaine buffer. Higher concentrations did not stay in 

suspension effectively. In order to remove soluble chitin oligomers, the suspension was pelleted 

by centrifugation at 3200*g, the supernatant was discarded, and the pellet was resuspended in 

McIlvaine buffer. This wash step was repeated a total of 5 times. A concentration series was 

prepared by serial dilution of this washed 4% stock in McIlvaine buffer, and 50 µL of each 

substrate concentration was incubated with 50 µL of 200 nM chitinase at 37C in a clear-

bottomed 96-well microplate with a lid that was sealed around the sides with parafilm to 

minimize evaporation. Clearance of substrate was monitored by reduction of scattering at OD680 

for 72 hours with shaking between reads to maintain substrate suspension. The processing for 

data collected from this assay is illustrated in Figure S3.2. 

 
Figure S3.2 | Data processing for colloidal chitin clearance assay. 
(a) Concentrations from enzyme-free controls were matched to absorbance, and for 
concentrations below 0.5% a linear regression fit the data reasonably well. (b) Progress curves of 
a concentration series of bulk chitin were subtracted from their initial state, then fit by a non-
linear relaxation analysis to extract initial rates. (c) Initial rates were plotted against substrate 
concentration and were fitted via non-linear regression to a michaelis menten curve to extract 
rate constants.  
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Potassium Ferricyanide Reduction Assay 

4% w/v colloidal chitin was washed as above, then diluted serially to generate a 

concentration range from was incubated with 1-100nM chitinase for up to 18 hours at 37ºC. At 

the endpoint of incubation, 50 µL of reaction mixture was quenched by the addition of 100 µ of 

400 mM sodium carbonate. The insoluble chitin was pelleted by centrifugation at 4000*g, then 

100 µL of supernatant was mixed with 100 µL of 0.6 g/ml potassium ferricyanide in a 96 well 

microplate with clear bottoms and a lid that was sealed around the sides with parafilm to 

minimize evaporation. The microplate was incubated for 4 hours at 42ºC to maximize the rate of 

the non-enzymatic reduction of potassium ferricyanide by solubilized reducing sugars. During 

incubation absorbance at 420nm was read out in 1 minute intervals. We found that progress 

curve analysis gave results for this data, and instead ultimately found the difference between the 

maximum and minimum absorbance to be a more robust measure of total reducing sugar 

generation in the 18 hour incubation with chitinase. The  processing of the data for this assay to 

generate rates is illustrated in Figure S3.3. 

 

Figure S3.3 | Data processing for ferricyanide reduction assay. 
(a) Concentrations from chitobiose controls were matched to absorbance, and for concentrations 
below 250 µM a linear regression was fit the data. (b) From progress curves for the non-
enzymatic reaction with potassium ferricyanide, the maximum and minimum values were 
subtracted from each other and scaled by the incubation time to extract the rate of generation of 
soluble reducing sugars. (c) Rates were plotted against substrate concentration and were fitted 
via non-linear regression to a michaelis menten curve to extract rate constants.  
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Chitooligosaccharide Oxidase Coupled Peroxidase Assay 

Processing of colloidal chitin and resultant generation of new reducing sugar moieties 

was monitored, as previously described,17 by oxidation by chitooligosaccharide oxidase (ChitO), 

producing as a byproduct peroxide, which in turn is converted into a fluorescent signal by 

horseradish peroxidase (HRP) and quantared peroxidase substrate.35 ChitO was purchased from 

Gecco Biotech, HRP and quantared substrate were purchased from Sigma. Incorporating a 

fluorogenic HRP substrate improves the dynamic range of the experiment and enables real time 

observation of reducing sugar cleavage in a one pot reaction incorporating insoluble chitin, 

chitinase, chitO, HRP, and quantared substrate.  Briefly, a 50 µL solution containing 1-10 nM 

chitinase, 20 U/mL HRP, 100nM ChitO, 0.5 µL of quantared substrate, and 10 µL of quantared 

enhancer solution in McIlvaine buffer pH 7 was mixed with 50 µL of washed colloidal chitin 

substrate, as prepared above, in a black 96-well microplate with a lid to minimize evaporation. 

The plate was incubated with at 37 ºC and the fluorescence of the quantared substrate was 

measured at 1 minute intervals for 16 hours. The progression of fluorescence over time was 

modeled as a relaxation process as described above, after subtracting the signal from a chitinase-

free control, which had significant signal that was modulated by the washing of the collodial 

chitin. This enzyme coupled reaction proved to be very sensitive to reaction conditions, with 

artifacts introduced by insufficient excess of chitO or HRP as well as by insufficiently washed 

colloidal chitin. With careful washing of the colloidal chitin and sufficient prewarming of both 

enzyme and substrate solutions, rates can be reliably measured for chitin concentrations ranging 

from 0.0005% to 2% colloidal chitin w/v, and for chitinase concentrations as low as 50 pM. The 

processing of data from this experiment is illustrated in Figure S3.4.  
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Figure S3.4 | Data processing for chitO assay. 
(a) Concentrations from chitobiose controls were matched to fluorescence after incubation with 
chitO, horseradish peroxidase, and quantared, and for concentrations below 30 µM a linear 
regression was fit the data. (b) From progress curves, a non-linear regression was used to fit 
relaxation parameters to extract initial rates for a concentration series of colloidal chitin (c) Rates 
were plotted against substrate concentration and were fitted via non-linear regression to a 
michaelis menten curve to extract rate constants.  
 

Random Mutagenesis and Screening 

Random mutations were generated using the commercial Genemorph II random 

mutagenesis kit.36 Briefly, the catalytic domain of acidic mammalian chitinase was amplified via 

error prone PCR with varying amounts of parent plasmid present. We titrated the amount of 

parent plasmid until each clone carried 1-2 mutations. We then performed restriction digestion 

using StyI and Eco130I and ligation using quik ligase to generate plasmids containing our 

mutations. We transformed these into electrocompetent BL21(DE3) E. coli. Individual colonies 

were picked and grown overnight in 96-well deep-well blocks, then 20 µL of starter media was 

used to inoculate 300 µL of ZY media in deep well blocks, which was then used to express the 

protein at 30ºC overnight. After expression, 50 µL of media from individual wells was mixed 

with 50 µL of 21.6 µM 4MU-chitobiose in McIlvaine buffer pH 7, which had been prewarmed to 

37ºC. The mixture was monitored by fluorescence as described above, and compared to positive 

and negative controls which had been expressed in the same plate. Mutants with increased 

activity were grown out, mini-prepped, sequenced, retransformed, and expressed and rescreened 
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in this manner in triplicate to confirm improved activity. Winners at this point were stored 

individually and pooler for further error prone PCR and screening. 
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